Science.gov

Sample records for induced fission reactions

  1. Spallation-induced fission reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.

    2017-03-01

    During the last decade spallation-induced fission reactions have received particular attention because of their impact in the design of spallation-neutron sources or radioactive beam facilities, but also in the understanding of the fission process at high excitation energy. In this paper, we review the main progress brought by modern experimental techniques, in particular those based in the inverse kinematic, as well as the achievements in modelling these reactions. We will also address future possibilities for improving the investigation of fission dynamics.

  2. Multimodal Fission in Heavy-Ion Induced Reactions

    SciTech Connect

    Pokrovskiy, I. V.; Bogachev, A. A.; Iitkis, M. G.; Iitkis, J. M.; Kondratiev, N. A.; Kozulin, E. M.; Dorvaux, O.; Rowley, N.; Schmitt, Ch.; Stuttge, L.

    2006-08-14

    Mass, energy and folding angle distributions of the fission fragments as well as multiplicities of neutron and gamma-quanta emissions accompanying the fission process were measured for fission of 226Th, 227Pa and 234Pu compound nuclei produced in reactions with 18O and 26Mg projectiles over a wide energy range. Data were analyzed with respect to the presence of fission modes. Asymmetric fission was observed even at very high initial excitation for all the measured systems. The so-called fission mode S1 (caused by the proton shell Z{approx}50 and neutron shell N{approx}82 in heavy fragment) was found to be dominant in asymmetric fission of 234Pu. Reactions with not full linear momentum transfer were observed in the folding spectra for all the measured systems.

  3. Fission Reaction Event Yield Algorithm

    SciTech Connect

    Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona; Roundrup, Jorgen

    2016-05-31

    FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).

  4. Light charged particles emitted in fission reactions induced by protons on 208Pb

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Casarejos, E.; Alvarez-Pol, H.; Audouin, L.; Bélier, G.; Boutoux, G.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2016-09-01

    Light charged particles emitted in proton-induced fission reactions on 208Pb have been measured at different kinetic energies: 370 A ,500 A , and 650 A MeV. The experiment was performed by the SOFIA Collaboration at the GSI facilities in Darmstadt (Germany). The inverse kinematics technique was combined with a setup especially designed to measure light charged particles in coincidence with fission fragments. This measurement allowed us, for the first time, to obtain correlations between the light charged particles emitted during the fission process and the charge distributions of the fission fragments. These correlations were compared with different model calculations to assess the ground-to-saddle dynamics. The results confirm that transient and dissipative effects are required for an accurate description of the fission observables.

  5. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  6. Capture and Fusion-Fission Processes in Heavy Ion Induced Reactions

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Beghini, S.; Behera, B. R.; Bogatchev, A. A.; Bouchat, V.; Corradi, L.; Dorvaux, O.; Fioretto, E.; Gadea, A.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Lyapin, V. G.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Schmitt, C.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Voskresenski, V. M.

    2005-11-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+204Pb, 48Ca+144,154Sm, 168Er, 208Pb, 238U, 244Pu, 248Cm; 58Fe+208Pb, 244Pu, 248Cm, and 64Ni+186W, 242Pu are presented. The choice of the above-mentioned reactions was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. The role of shell effects and the influence of the entrance channel asymmetry and the deformations of colliding nucleus on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  7. Simultaneous measurement of neutron-induced capture and fission reactions at CERN

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Berthoumieux, E.; Cano-Ott, D.; Mendoza, E.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Billowes, J.; Brugger, M.; Calviani, M.; Calviño, F.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Ganesan, S.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Jenkins, D.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kroll, J.; Krtička, M.; Lebbos, E.; Lederer, C.; Leeb, H.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P. F.; Meaze, M.; Mengoni, A.; Milazzo, P. M.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Roman, F.; Rubbia, C.; Sarmento, R.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeullen, M.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weiß, C.; Wright, T.

    2012-03-01

    The measurement of the capture cross-section of fissile elements, of utmost importance for the design of innovative nuclear reactors and the management of nuclear waste, faces particular difficulties related to the γ -ray background generated in the competing fission reactions. At the CERN neutron time-of-flight facility n_TOF we have combined the Total Absorption Calorimeter (TAC) capture detector with a set of three 235U loaded MicroMegas (MGAS) fission detectors for measuring simultaneously two reactions: capture and fission. The results presented here include the determination of the three detection efficiencies involved in the process: ensuremath \\varepsilon_{TAC}(n,f) , ensuremath \\varepsilon_{TAC}(n,γ) and ensuremath \\varepsilon_{MGAS}(n,f) . In the test measurement we have succeeded in measuring simultaneously with a high total efficiency the 235U capture and fission cross-sections, disentangling accurately the two types of reactions. The work presented here proves that accurate capture cross-section measurements of fissile isotopes are feasible at n_TOF.

  8. A new set-up for the simultaneous measurement of neutron-induced capture and fission reactions

    SciTech Connect

    Guerrero, C.; Berthoumieux, E.; Cano-Ott, D.; Gunsing, F.; Andriamonje, S.

    2011-07-01

    The measurement of the capture cross section of fissile elements, of upmost importance for the design of innovative nuclear reactors and the management of nuclear waste, involves particular difficulties related to the {gamma}-ray background produced in the fission reactions. These difficulties are the reason why five out of the six actinide {sigma}(n,{gamma}) measurements in the NEA High Request Priority List are fissile isotopes. At n-TOF we have combined the Total Absorption Calorimeter capture detector with a set of three {sup 235}U loaded MicroMegas fission detectors for measuring simultaneously the two reactions: capture and fission. In a first test measurement we have succeeded in measuring simultaneously with high efficiency the {sup 235}U capture and fission cross sections, disentangling accurately the two types of reactions. (authors)

  9. Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Hs{sup *}

    SciTech Connect

    Itkis, I. M.; Kozulin, E. M.; Itkis, M. G.; Knyazheva, G. N.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Oganessian, Yu. Ts.; Zagrebaev, V. I.; Rusanov, A. Ya.; Goennenwein, F.; Dorvaux, O.; Stuttge, L.; Hanappe, F.; Vardaci, E.; Goes Brennand, E. de

    2011-06-15

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U, and {sup 58}Fe+{sup 208}Pb have been measured. All reactions lead to Hs isotopes. At energies below the Coulomb barrier the bimodal fission of Hs{sup *}, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U, leading to the formation of a similar compound nucleus, the main part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier fusion-fission is the main process leading to the formation of symmetric fragments for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies.

  10. Experiments on nuclear fission induced by radioactive beams

    SciTech Connect

    Skobelev, N.K.

    1994-07-01

    The cross sections of {sup 209}Bi nuclear fission induced by secondary beams of {sup 6}He and {sup 4}He are measured under identical conditions. The experimental data are in good agreement with earlier results on the fission cross section of the {sup 4}He + {sup 209}Bi reaction. The measured values of the cross section of {sup 209}Bi fission induced by {sup 6}He ions are much higher than the cross sections of fission induced by {alpha}-particles. It is found that the fission threshold for the {sup 6}He + {sup 209}Bi reaction is shifted as compared to that of the {sup 4}He + {sup 209}Bi reaction. Various factors that can be responsible for the observed peculiarities in the {sup 209}Bi fission induced by the {sup 6}He ions are analyzed. 25 refs., 5 figs.

  11. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  12. Fission Cross Sections and Fission-Fragment Mass Yields via the Surrogate Reaction Method

    SciTech Connect

    Jurado, B.; Kessedjian, G.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Osmanov, B.; Ahmad, I.

    2008-04-17

    The surrogate reaction method is a powerful tool to infer neutron-induced data of short-lived nuclei. After a short overview of the experimental techniques employed in the present surrogate experiments, we will concentrate on a recent measurement to determine neutron-induced fission cross sections for the actinides {sup 242,243}Cm and {sup 241}Am. The latest direct neutron-induced measurement for the {sup 243}Cm fission cross section is questioned by our results, since there are differences of more than 60% in the 0.7 to 7 MeV neutron energy range. Our experimental set-up has also enabled us to measure for the first time the fission fragment ''pseudo-mass'' distributions of {sup 243,244,245}Cm and {sup 242}Am compound nuclei in the excitation energy range from a few MeV to about 25 MeV.

  13. Incorporation of a tilting coordinate into the multidimensional Langevin dynamics of heavy-ion-induced fission: Analysis of experimental data from fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Ryabov, E. G.; Gegechkori, A. E.; Anischenko, Yu. A.; Adeev, G. D.

    2014-01-01

    A four-dimensional dynamical model was developed and applied to study fission characteristics in a wide range of a fissility parameter. Three collective shape coordinates and the K coordinate were considered dynamically from the ground-state deformation to the scission into fission fragments. A modified one-body mechanism for nuclear dissipation with a reduction coefficient ks of the contribution from a "wall" formula has been used in the study. The inclusion of the K coordinate in the dynamical consideration and use of the "chaos-weighted wall formula" with a deformation-dependent scaling factor ks(q1) lead to fairly good reproduction of the variances of the fission-fragment mass distribution and the prescission neutron multiplicity for a number of fissioning compound nuclei in a wide fissility range. The four-dimensional dynamical calculations describe better experimental prescission neutron multiplicity and variances of fission-fragment mass distribution for heaviest nuclei with respect to a three-dimensional dynamical model, where the K coordinate is assumed to be equal to zero. The estimate of a dissipation coefficient for the orientation degree of freedom, γK≃0.077 (MeVzs)-1/2, is good for heavy nuclei and a larger value of γK≃0.2 (MeVzs)-1/2 is needed for nuclei with mass ACN ≃ 200.

  14. Neutron induced capture and fission discrimination using calorimetric shape decomposition

    NASA Astrophysics Data System (ADS)

    Carrapiço, C.; Berthoumieux, E.; Dridi, W.; Gonçalves, I. F.; Gunsing, F.; Lampoudis, C.; Vaz, P.; n TOF Collaboration

    2013-03-01

    The neutron capture and fission cross-sections of 233U have been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 keV using a high performance 4π BaF2 Total Absorption Calorimeter (TAC) as a detection device. In order to separate the contributions of neutron capture and neutron induced fission in the TAC, a methodology called Calorimetric Shape Decomposition (CSD) was developed. The CSD methodology is based on the study of the TAC's energy response for all competing reactions, allowing to discriminate between γ s originating from neutron induced fission and those from neutron capture reactions without the need for fission tagging or any additional detection system. In this article, the concept behind the CSD is explained in detail together with the necessary analysis to obtain the TAC's response to neutron capture and neutron induced fission. The discrimination between capture and fission contributions is shown for several neutron energies. A comparison between the 233U neutron capture and fission yield extraction with ENDF/B-VII v1. library data is also provided.

  15. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  16. Fission induced by nucleons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2015-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p , f) cross sections and used to predict (n , f) cross sections for the same isotopes.

  17. 231Pa and 233Pa Neutron-Induced Fission Data Analysis

    SciTech Connect

    Maslov, V.M.; Tetereva, N.A.; Baba, M.; Hasegawa, A.; Kornilov, N.V.; Kagalenko, A.B.

    2005-05-24

    The 231Pa and 233Pa neutron-induced fission cross-section database is analyzed within the Hauser-Feshbach approach. The consistency of neutron-induced fission cross-section data and data extracted from transfer reactions is investigated. The fission probabilities of Pa, fissioning in 231,233Pa(n,nf) reactions, are defined by fitting (3He,d) or (3He,t) transfer-reaction data. The present estimate of the 233Pa(n,f) fission cross section above the emissive fission threshold is supported by smooth level-density parameter systematics, validated in the case of the 231Pa(n,f) data description up to En =20 MeV.

  18. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  19. Fission Reaction Event Yield Algorithm, FREYA - For event-by-event simulation of fission

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Randrup, J.; Vogt, R.

    2015-06-01

    From nuclear materials accountability to detection of special nuclear material, SNM, the need for better modeling of fission has grown over the past decades. Current radiation transport codes compute average quantities with great accuracy and performance, but performance and averaging come at the price of limited interaction-by-interaction modeling. For fission applications, these codes often lack the capability of modeling interactions exactly: energy is not conserved, energies of emitted particles are uncorrelated, prompt fission neutron and photon multiplicities are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g. the neutron multiplicity) and correlations between neutrons and photons. The new computational model, FREYA (Fission Reaction Event Yield Algorithm), aims to meet this need by modeling complete fission events. Thus it automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum. FREYA has been integrated into the LLNL Fission Library, and will soon be part of MCNPX2.7.0, MCNP6, TRIPOLI-4.9, and Geant4.10.

  20. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  1. Reaction rate calibration techniques at ZPPR for /sup 239/Pu fission, /sup 235/U fission, /sup 238/U fission, and /sup 238/U capture

    SciTech Connect

    Brumbach, S.B.; Maddison, D.W.

    1982-06-10

    Reaction-rate calibration techniques used at ZPPR are described for /sup 239/Pu fission, /sup 235/U fission, /sup 238/U fission and /sup 238/U capture. In addition to these absolute reaction rates, calibration techniques are described for fission-rate ratios and the ratio of /sup 238/U capture to /sup 239/U capture to /sup 239/Pu fission. Uncertainty estimates are presented for all calibrations. Intercomparison measurements are reported which support the validity of the calibration techniques and their estimated uncertainties.

  2. Microscopic Calculation of Fission Fragment Energies for the 239Pu(nth,f) Reaction

    SciTech Connect

    Younes, W; Gogny, D

    2011-10-03

    We calculate the total kinetic and excitation energies of fragments produced in the thermal-induced fission of {sup 239}Pu. This result is a proof-of-principle demonstration for a microscopic approach to the calculation of fission-fragment observables for applied data needs. In addition, the calculations highlight the application of a fully quantum mechanical description of scission, and the importance of exploring scission configurations as a function of the moments of the fragments, rather than through global constraints on the moments of the fissioning nucleus. Using a static microscopic calculation of configurations at and near scission, we have identified fission fragments for the {sup 239}Pu (n{sub th}, f) reaction and extracted their total kinetic and excitation energies. Comparison with data shows very good overall agreement between theory and experiment. Beyond their success as a proof of principle, these calculations also highlight the importance of local constraints on the fragments themselves in microscopic calculations.

  3. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  4. Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.; Knoll, A.

    2014-11-01

    Eighty years after its experimental discovery, a description of induced nuclear fission based solely on the interactions between neutrons and protons and quantum many-body methods still poses formidable challenges. The goal of this paper is to contribute to the development of a predictive microscopic framework for the accurate calculation of static properties of fission fragments for hot fission and thermal or slow neutrons. To this end, we focus on the 239Pu(n ,f ) reaction and employ nuclear density functional theory with Skyrme energy densities. Potential energy surfaces are computed at the Hartree-Fock-Bogoliubov approximation with up to five collective variables. We find that the triaxial degree of freedom plays an important role, both near the fission barrier and at scission. The impact of the parametrization of the Skyrme energy density and the role of pairing correlations on deformation properties from the ground state up to scission are also quantified. We introduce a general template for the quantitative description of fission fragment properties. It is based on the careful analysis of scission configurations, using both advanced topological methods and recently proposed quantum many-body techniques. We conclude that an accurate prediction of fission fragment properties at low incident neutron energies, although technologically demanding, should be within the reach of current nuclear density functional theory.

  5. Protactinium neutron-induced fission up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Maslov, V.

    2010-03-01

    The theoretical evaluation of 230-233Pa(n,F) cross sections is based on direct data, 230-234Pa fission probabilities and ratios of fission probabilities in first-chance and emissive fission domains, surrogate for neutroninduced fission. First chance fission cross sections trends of Pa are based on consistent description of 232Th(n,F), 232Th(n,2n) and 238U(n,F), 238U(n,xn) data, supported by the ratio surrogate data by Burke et al., 2006, for the 237U(n,F) reaction. Ratio surrogate data on fission probabilities of 232Th(6 Li,4 He)234Pa and 232 Th(6 Li,d)236U by Nayak et al., 2008, support the predicted 233Pa(n, F) cross section at En=11.5-16.5 MeV. The predicted trends of 230-232Pa(n, F) cross section up to En=20 MeV, are consistent with fissilities of Pa nuclides, extracted by 232Th(p,F) (Isaev et al., 2008) and 232Th(p,3n) (Morgenstern et al., 2008) data analysis. The excitation energy and nucleon composition dependence of the transition from asymmetric to symmetric scission for fission observables of Pa nuclei is defined by analysis of p-induced fission of 232Th at Ep=1-200 MeV. Predominantly symmetric fission in 232Th(p,F) at En( p)=200 MeV as revealed by experimental branching ratios (Dujvestijn et al., 1999) is reproduced. Steep transition from asymmetric to symmetric fission with increase of nucleon incident energy is due to fission of neutron-deficient Pa (A≤229) nuclei. A structure of the potential energy surface (a drop of f f symmetric and asymmetric fission barriers difierence (EfSYM - EfASYM) from ~3.5 MeV to ~1 MeV) of N-deficient Pa nuclides (A≤226) and available phase space at outer fission saddles, are shown to be responsible for the sharp increase with En( p) of the symmetric fission component contribution for 232Th(p,F) and 230-233 Pa(n, F) reactions. That is a strong evidence of emissive fission nature of moderately excited Pa nuclides, reliably quantified only up to En( p)~20(30) MeV. Predicted fission cross section of 232Pa(n,F) coincides

  6. Membrane fission reactions of the mammalian ESCRT pathway.

    PubMed

    McCullough, John; Colf, Leremy A; Sundquist, Wesley I

    2013-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.

  7. Membrane Fission Reactions of the Mammalian ESCRT Pathway

    PubMed Central

    McCullough, John; Colf, Leremy A.; Sundquist, Wesley I.

    2014-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission. PMID:23527693

  8. Shell effects in fission, quasifission and multinucleon transfer reaction

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Kozulina, N. I.; Loktev, T. A.; Novikov, K. V.; Harca, I.

    2014-05-01

    Results of the study of mass-energy distributions of binary fragments for a wide range of nuclei with Z= 82-122 produced in reactions of ions located between 22Ne and 136Xe at energies close and below the Coulomb barrier are reported. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission, quasifission and multinucleon transfer reactions are discussed. The observed peculiarities of the mass and energy distributions of reaction fragments are determined by the shell structure of the formed fragments. Special attention is paid on the symmetric fragment features in order to clarify the origin of these fragments (fission or quasifission). The influence of shell effects on the fragment yield in quasifission and multinucleon transfer reactions is considered. It is noted that the major part of the asymmetric quasifission fragments peaks around the region of the Z=82 and N=126 (double magic lead) and Z=28 and N=50 shells; moreover the maximum of the yield of the quasifission component is a mixing between all these shells. Hence, shell effects are everywhere present and determine the basic characteristics of fragment mass distributions.

  9. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  10. Prompt fission neutron spectra in fast-neutron-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Desai, V. V.; Nayak, B. K.; Saxena, A.; Suryanarayana, S. V.; Capote, R.

    2015-07-01

    Prompt fission neutron spectrum (PFNS) measurements for the neutron-induced fission of 238U are carried out at incident neutron energies of 2.0, 2.5, and 3.0 MeV, respectively. The time-of-flight technique is employed to determine the energy of fission neutrons. The prompt fission neutron energy spectra so obtained are analyzed using Watt parametrization to derive the neutron multiplicity and average prompt fission neutron energy. The present experimental PFNS data are compared with the evaluated spectra taken from the ENDF/B-VII.1 library and the predictive calculations carried out using the empire-3.2 (Malta) code with built-in Los Alamos (LA) and Kornilov PFNS models. The sensitivity of the empire-3.2 LA model-calculated PFNS to the nuclear level density parameter of the average fission fragment and to the total kinetic energy is investigated. empire-3.2 LA model PFNS calculations that use Madland 2006-recommended values [D. G. Madland, Nucl. Phys. A 772, 113 (2006), 10.1016/j.nuclphysa.2006.03.013] of the total kinetic energy and the level density parameter a =A /(10 ±0.5 ) compare very well to measured data at all incident neutron incident energies.

  11. Mass-asymmetric fission in the 40ca+142Nd reaction

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Ramachandran, K.; Khuyagbaatar, J.; Dullmann, Ch. E.; Lommel, B.; Kindler, B.

    2016-09-01

    Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180Hg nuclei in recent β-delayed fission experiments. This low-energy β-delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragment mass distribution as a function of neutron and proton numbers and also with excitation energy, fission fragment mass distributions have been measured for the 40Ca+142Nd reaction forming the compound nucleus 182Hg at energies around the capture barrier, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass-asymmetric fission is observed in this reaction at an excitation energy of 33.6 MeV. The results are consistent with the β-delayed fission measurements and indicate the presence of shell effects even at higher exciation energies.

  12. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  13. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  14. Evaluation of the Prompt Fission Neutron Spectrum of Thermal-neutron Induced Fission in U-235

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.

    A new evaluation of the prompt fission neutron spectra (PFNS) for the neutron-induced fission of the U-235 nucleus is presented. By using differential data as "shape data" good consistency was achieved between selected sets of differential data. A fit of differential PFNS data with the generalised least-squares method using the GANDR code allowed the estimation of the uncertainties and correlations. All experimental data were consistently fitted in a model independent way giving a PFNS average energy of2.000 MeV with an estimated 9 keV uncertainty.

  15. Single particle fluorescence burst analysis of epsin induced membrane fission.

    PubMed

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  16. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  17. Effect of projectile breakup on fission-fragment mass distributions in the Li,76 + 238U reactions

    NASA Astrophysics Data System (ADS)

    Santra, S.; Pal, A.; Rath, P. K.; Nayak, B. K.; Singh, N. L.; Chattopadhyay, D.; Behera, B. R.; Singh, Varinderjit; Jhingan, A.; Sugathan, P.; Golda, K. S.; Sodaye, S.; Appannababu, S.; Prasad, E.; Kailas, S.

    2014-12-01

    Background: Detailed studies on the effect of the breakup of weakly bound projectile on fission are scarce. Distinguishing the events of compound nuclear (CN) fission from the breakup or transfer induced fission to understand the properties of measured fission fragments is difficult but desirable. Purpose: To investigate the effect of projectile breakup and its breakup threshold energy on fission-fragment (FF) mass distributions and folding angle distributions for Li,76 + 238U reactions and find out the differences in the properties of the fission events produced by complete fusion (CF) from the total fusion (TF). Methods: The FF mass and folding angle distributions have been measured at energies around the Coulomb barrier using gas detectors by time-of-flight technique. The results are compared with the ones involving tightly bound projectiles as well as predictions from systematics to bring out the effect of the breakup. Results: A sharp increase in the peak to valley (P:V) ratio of FF mass distribution with the decrease in bombarding energy for Li,76 + 238U reactions is observed when all events are assumed to be CN fission. As the beam energy falls through the fusion barrier, the full width half maximum (FWHM) of the FF folding angle distribution is found to increase at sub-barrier energies, unlike the reactions involving tightly bound projectiles where a linear decrease in FWHM is expected. By selecting pure CN events from the scatter plot of the velocity components of the composite nuclei, the energy dependence of the deduced FWHM is found to be consistent with the ones involving tightly bound projectiles. Similarly, the P:V ratio obtained for the selected CN events is consistent with the theoretical calculations as well as the experimental data for the proton induced reaction forming similar CN. Conclusions: The presence of projectile breakup induced fission and a relatively low breakup threshold for 6Li compared to 7Li explains the observed differences in

  18. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

    2011-03-15

    The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

  19. Fission induced swelling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Jeong, G. Y.; Park, J. M.; Robinson, A. B.

    2015-10-01

    Fission-induced swelling of U-Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U-Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U-Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U-Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U-Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  20. Developments for neutron-induced fission at IGISOL-4

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Penttilä, H.; Al-Adili, A.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.; Koponen, J.; Lantz, M.; Mattera, A.; Moore, I. D.; Pohjalainen, I.; Pomp, S.; Rakopoulos, V.; Reinikainen, J.; Rinta-Antila, S.; Simutkin, V.; Solders, A.; Voss, A.; Äystö, J.

    2016-06-01

    At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.

  1. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  2. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, Ramona; Randrup, Joergen

    2008-04-17

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  3. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  4. On the role of energy separated in fission process, excitation energy and reaction channels effects in the isomeric ratios of fission product 135Xe in photofission of actinide elements

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Mishinski, G. V.; Zhemenik, V. I.

    2016-07-01

    In this work we present the isomeric ratio of fission product 135Xe in the photo-fission of actinide elements 232Th, 233U and 237Np induced by end-point bremsstrahlung energies of 13.5, 23.5 and 25.0 MeV which were determined by the method of inert gaseous flow. The data were analyzed, discussed and compared with the similar data from literature to examine the role of energy separated in fission process, excitation energy and reaction channels effects.

  5. Towards an improved evaluation of neutron-induced fission cross sections on actinides

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Hilaire, S.; Koning, A. J.; Capote, R.

    2011-03-01

    Mean-field calculations can now provide all the nuclear ingredients required to describe the fission path from the equilibrium deformation up to the nuclear scission point. The information obtained from microscopic mean-field models has been included in the TALYS reaction code to improve the predictions of neutron-induced fission cross sections. The nuclear inputs concern not only the details of the energy surface along the fission path, but also the coherent estimate of the nuclear level density derived within the combinatorial approach on the basis of the same single-particle properties, in particular at the fission saddle points. The predictive power of such a microscopic approach is tested on the experimental data available for the uranium isotopic chain. It is also shown that the various inputs can be tuned to reproduce, at best, experimental data in one unique coherent framework, so that in a close future it should become possible to make, on the basis of such models, accurate fission-cross-section calculations and the corresponding estimates for nuclei, energy ranges, or reaction channels for which no data exist. Such model uncertainties are usually not taken into account in data evaluations.

  6. Proton-induced fission of actinides at energies 26.5 and 62.9 MeV—Theoretical interpretation

    NASA Astrophysics Data System (ADS)

    Demetriou, P.; Keutgen, Th.; Prieels, R.; El Masri, Y.

    2011-10-01

    Fission properties of proton-induced fission on 232Th, 237Np, 238U, 239Pu and 241Am targets, measured at the Louvain-la-Neuve cyclotron facility at proton energies of 26.5 and 62.9 MeV, are compared with the predictions of the state-of-the-art nuclear reaction code TALYS. The sensitivity of the calculations to the input parameters of the code and possible improvements are discussed.

  7. Analytic computation of average energy of neutrons inducing fission

    SciTech Connect

    Clark, Alexander Rich

    2016-08-12

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  8. Mass yield distributions of fission products from photo-fission of 238U induced by 11.5-17.3 MeV bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Naik, H.; Carrel, Frédérick; Kim, G. N.; Laine, Frédéric; Sari, Adrien; Normand, S.; Goswami, A.

    2013-07-01

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of 238U have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley ( P/ V ratio, average light mass (< A L>) and heavy mass (< A H>) and average number of neutrons (< v>) in the bremsstrahlung-induced fission of 238U at different excitation energies were obtained from the mass yield data. From the present and literature data in the 238U ( γ, f ) and 238U ( n, f ) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the 238U ( γ, f ) reaction at various energies of the present work are double-humped, similar to those of the 238U ( n, f ) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the 238U ( γ, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the 238U ( γ, f ) than in the 238U ( n, f ) , whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley ( P/ V ratio in the 238U ( γ, f) reaction is similar to the 238U ( n, f) reaction. v) The increase of < v> with excitation energy is also similar between the 238U ( γ, f ) and 238U ( n, f) reactions. However, it is surprising to see that the < A L> and < A H> values with excitation energy behave entirely differently from the 238U ( γ, f ) and 238U ( n, f ) reactions.

  9. Hard error generation by neutron-induced fission fragments

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-12-01

    The authors observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal-nitride-oxide nonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup **2/ moving at an angle of 30 degrees or less from the electric field in the high-field, gate region of the memory transistor, and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, they observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. They mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. The authors' concentration measurements are in excellent agreement with other's measurement of uranium concentration in ceramic lids. The authors' Monte Carlo analyses also agree closely with their measurements of hard error probability in MNOS NVRAMs.

  10. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  11. Digital acquisition development for neutron induced fission studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Richman, Debra; O'Donnell, John; Couture, Aaron; Mosby, Shea; Wender, Steve

    2013-10-01

    The Los Alamos Neutron Science Center (LANSCE) is a neutron time of flight facility with a diverse group of experiments dedicated to the study of neutron induced reactions. A powerful proton LINAC is used to produce multiple pulsed neutron beams for which monitoring is required to track the neutron flux and energy distribution for each pulse. Digital DAQ techniques lend themselves well to beam monitoring and many of the experiments. Significant effort is being put into transitioning several traditional analog DAQ systems to state of the art digital systems. The Irradiation of Chips and Electronics (ICE House) and the Total Kinetic Energy of Fission (TKE) experiments are both transitioning to digital for the fall 2013 LANSCE run cycle. These new DAQ systems were built using the CAEN VME digitizer family, and both systems will benefit from reduced module count and zero deadtime. The TKE experiment utilizes FPGA firmware to streamline the acquisition system, as well as provide additional data for further analysis. Details of the implementation process along with preliminary data from both experiments will be presented.

  12. Tables of Neutron-Induced Fission Cross Section for Various Pu, U, and Th Isotopes, Deduced from Measured Fission Probabilites

    SciTech Connect

    Younes, W; Britt, H C

    2003-03-31

    Cross sections for neutron-induced fission of {sup 231,233}Th, {sup 234,235,236,237,239}U, and {sup 240,241,243}Pu are presented in tabular form for incident neutron energies of 0.1 {le} E{sub n}(MeV) {le} 2.5. The cross sections were obtained by converting measured fission probabilities from (t,pf) reactions on mass-A targets to (n,f) cross sections on mass-A + 1 neutron targets, by using modeling to compensate for the differences in the reaction mechanisms. Data from Britt et al. were used for the {sup 234}U(t,pf) reaction, from Cramer et al. for the {sup 230,232}Th(t,pf), {sup 236,238}U(t,pf), and {sup 240,242}Pu(t,pf) reactions, and from Britt et al. for the {sup 233,235}U(t,pf) and {sup 239}Pu(t,pf) reactions. The fission probabilities P{sub (t,pf)}(E{sub x}), measured as a function of excitation energy E{sub x} of the compound system formed by the (t,p) reaction, are listed in the tables with the corresponding deduced cross sections as a function of incident neutron energy E{sub n}, {sigma}{sub (n,f)}(E{sub n}). The excitation energy and incident neutron energy are related by E{sub x} = E{sub n} + B{sub n}, where B{sub n}, where B{sub n} is the neutron binding energy. Comparison with ENDF/B-VI evaluations of the well-measured {sup 234,235,236}U(n,f) and {sup 240,241}Pu(n,f) cross sections confirms the accuracy of the present results within a 10% standard deviation above E{sub n} = 1 MeV. Below E{sub n} = 1 MeV, localized deviations of at most {+-} 20% are observed.

  13. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  14. Thermal-Neutron-Induced Fission of 243Cm: Light-Peak Data from the Lohengrin Mass Separator

    SciTech Connect

    Tsekhanovich, I.; Simpson, G.S.; Varapai, N.; Rochman, D.; Sokolov, V.; Fioni, G.; Al Mahamid, Ilham

    2005-05-24

    Thermal-neutron-induced fission of 243Cm was studied at the Lohengrin mass separator. The light-mass peak of the fission-yield curve was investigated, and mass (from A=72 to A=120) and independent-product (for Z=28-37) yields were obtained. A comparison was made of the results obtained on the mass yields with those from the fission of 245Cm as well as with the data given by the JEF-2.2 and ENDF/B-VI libraries. The yield of masses in the superasymmetric region was found to be identical to other fission reactions studied at Lohengrin. Experimental fission-product yields from the fission of 243Cm and 245Cm were able to be well described within a theoretical model, which incorporates standard and superasymmetric fission modes as well as a calculation of the charge-distribution parameters in isobaric chains and neutron multiplicities from primary fragments. A prediction of the yield of Ni isotopes in the fission of 243,245,247Cm was made.

  15. Investigation of the 238U(d ,p ) surrogate reaction via the simultaneous measurement of γ -decay and fission probabilities

    NASA Astrophysics Data System (ADS)

    Ducasse, Q.; Jurado, B.; Aïche, M.; Marini, P.; Mathieu, L.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Tornyi, T.; Wilson, J. N.; Barreau, G.; Boutoux, G.; Czajkowski, S.; Giacoppo, F.; Gunsing, F.; Hagen, T. W.; Lebois, M.; Lei, J.; Méot, V.; Morillon, B.; Moro, A. M.; Renstrøm, T.; Roig, O.; Rose, S. J.; Sérot, O.; Siem, S.; Tsekhanovich, I.; Tveten, G. M.; Wiedeking, M.

    2016-08-01

    We investigated the 238U(d ,p ) reaction as a surrogate for the n +238U reaction. For this purpose we measured for the first time the γ -decay and fission probabilities of *239U simultaneously and compared them to the corresponding neutron-induced data. We present the details of the procedure to infer the decay probabilities, as well as a thorough uncertainty analysis, including parameter correlations. Calculations based on the continuum-discretized coupled-channels method and the distorted-wave Born approximation (DWBA) were used to correct our data from detected protons originating from elastic and inelastic deuteron breakup. In the region where fission and γ emission compete, the corrected fission probability is in agreement with neutron-induced data, whereas the γ -decay probability is much higher than the neutron-induced data. We have performed calculations of the decay probabilities with the statistical model and of the average angular momentum populated in the 238U(d ,p ) reaction with the DWBA to interpret these results.

  16. Scaling phenomena of isobaric yields in projectile fragmentation, spallation, and fission reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Huang, Ling; Song, Yi-Dan

    2017-02-01

    Background: The isobaric ratio difference scaling phenomenon, which has been found for the fragments produced in projectile fragmentation reactions, is related to the nuclear density change in reaction systems. Purpose: To verify whether the isobaric ratio difference scaling exists in the fragments produced in the spallation and fission reactions. Methods: The isobaric ratio difference scaling, denoted by SΔ lnR21 , is in theory deduced within the framework of the canonical ensemble theory at the grand-canonical limitation. The fragments measured in a series of projectile fragmentation, spallation, and fission reactions have been analyzed. Results: A good SΔ lnR21 scaling phenomenon is shown for the fragments produced both in the projectile fragmentation reactions and in the spallation reactions, whereas the SΔ lnR21 scaling phenomenon for the fragments in the fission reaction is less obvious. Conclusions: The SΔ lnR21 scaling is used to probe the properties of the equilibrium system at the time of fragment formation. The good scaling of SΔ lnR21 suggests that the equilibrium state can be achieved in the projectile fragmentation and spallation reactions. Whereas in the fission reaction, the result of SΔ lnR21 indicates that the equilibrium of the system is hard to achieve.

  17. Analysis of nucleon-induced fission cross sections of lead and bismuth at energies from 45 to 500 MeV

    SciTech Connect

    Prokofyev, A.V.; Mashnik, S.G.; Sierk, A.J.

    1998-08-01

    In order to investigate the applicability of the Cascade-Exciton model (CEM) of nuclear reactions to fission cross sections and hoping to learn more about intermediate-energy fission, the authors use an extended version of the CEM, as realized in the code CEM95 to perform a detailed analysis of proton- and neutron-induced fission cross sections of {sup 209}Bi and {sup 208}Pb nuclei and of the linear momentum transfer to the fissioning nuclei in the 45--500 meV energy range.

  18. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    SciTech Connect

    Pozzi, Sara; Haight, Robert

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  19. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2015-11-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide Pu240 as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.

  20. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.

  1. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  2. The fusion-fission process in the reaction 34S +186W near the interaction barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.; Vardaci, E.

    2015-02-01

    The reaction 34S +186W at Elab=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF-γ coincidence method is of better use then the γ - γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  3. Fission barriers for Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Sagaidak, R. N.; Andreyev, A. N.

    2009-05-15

    Evaporation residues and fission excitation functions obtained in complete fusion reactions leading to Po compound nuclei have been analyzed in the framework of the standard statistical model. Macroscopic fission barriers deduced from the cross-section data analysis are compared with the predictions of various theoretical models and available data. A drop in the Po barriers with the decrease in a neutron number was found, which is stronger than predicted by any theory. The presence of entrance channel effects and collective excitations in the compound nucleus decay is considered as a possible reason for the barrier reduction.

  4. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  5. Effects of nuclear orientation on fusion and fission process for reactions using actinide target nuclei

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-04-30

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, triple-humped distribution was observed, which consists of symmetric fission and asymmetric fission peaked at A{sub L}/A{sub H}approx =90/178. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. We also report the results on the fragment mass distributions for {sup 36,34}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  6. T invariance and T-odd asymmetries for the cold-polarized-neutron-induced fission of nonoriented nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2014-12-15

    It is shown that the coefficients D{sup exp} for all T-odd asymmetries observed experimentally in the cross sections for the reactions of cold-polarized-neutron-induced fission of nonoriented target nuclei (which involves the emission of prescission and evaporated particles) comply in shape and scale with the coefficients D{sup theor} calculated for the analogous asymmetries on the basis of quantum-mechanical nuclear-fission theory for T-invariant Hamiltonians of fissile systems. It is also shown that the asymmetries in question arise upon taking into account the effect of (i) the interference between the fission amplitudes of s- and p-wave resonances of a polarized fissile compound nucleus formed in the aforementioned reactions; (ii) the collective rotation of the compound nucleus in question (this rotation entails a change in the angular distributions of fission fragments and third particles); and (iii) the wriggling vibrations of this compound nucleus in the vicinity of its scission point, which lead to the appearance of high aligned spins of fission fragments, with the result that the emission of neutrons and photons evaporated from these fragments becomes anisotropic. The possible contribution of T-noninvariant interactions to the formation of the T-odd asymmetries under analysis is estimated by using the results obtained in experimentally testing the detailed-balance principle, (P-A) theorem, and T invariance of cross sections for elastic proton-proton and proton-neutron scattering.

  7. Extended optical model for fission

    SciTech Connect

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  8. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  9. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  10. Measurements of high-energy neutron-induced fission ofnatPb and 209Bi

    NASA Astrophysics Data System (ADS)

    Tarrío, D.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Paradela, C.; Stephan, C.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Becvár, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Gonçalves, I.; González-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsig, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-10-01

    The CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of natPb and 209Bi relative to 235U and 238U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV.

  11. Particle γ/fission studies of Uranium nuclei via (p,x) reactions

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Ross, T. J.; Beausang, C. W.; Burke, J. T.; Scielzo, N. D.; Allmond, J. M.; Basunia, M. S.; Campbell, C. M.; Casperson, R. J.; Crawford, H. L.; Munson, J.; Phair, L.; Ressler, J. J.; Stars-Liberace Collaboration

    2011-04-01

    An experiment was conducted at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory to study the structure and measure (n, γ) /(n,fission) cross-sections (via surrogate reactions) of Uranium isotopes. A 28 MeV proton beam incident on236U and 23 8U targets populated states in Uranium isotopes via (p,p'), (p,d) and (p,t) reactions. The STARS array was used for detection of the outgoing light ions for exit channel nucleus tagging (as well as nuclear excitation energy information), and included a detector at backward angles for fission events. Coincident γ rays were detected using the 6 Clover detectors of the LIBERACE array and both p- γ and p-fission events were collected. The data provide a number of results including internal surrogate ratio measurements of (n γ) /(n,fission) cross-sections, and detailed structure information for nuclear levels from the ground state to well above the neutron evaporation thresholds across a range of Uranium isotopes. Preliminary results will be presented. This work is supported in part by the U.S. Department of energy via grant numbers DE-FG02-05 ER41379 & DE-FG52-06 NA26206(University of Richmond), DE-AC52 07NA27344(LLNL) and DE-AC02 05CH11231(LBNL).

  12. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  13. Neutron-induced fission measurements at the time-of-flight facility nELBE

    SciTech Connect

    Kögler, T.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2015-05-18

    Neutron-induced fission of ²⁴²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  14. Fission fragment mass distributions in 35Cl+Sm,154144 reactions

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.

    2015-08-01

    Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the

  15. Comparative measurement of prompt fission γ -ray emission from fast-neutron-induced fission of 235U and 238U

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Wilson, J. N.; Halipré, P.; Oberstedt, A.; Oberstedt, S.; Marini, P.; Schmitt, C.; Rose, S. J.; Siem, S.; Fallot, M.; Porta, A.; Zakari, A.-A.

    2015-09-01

    Prompt fission γ -ray (PFG) spectra have been measured in a recent experiment with the novel directional fast-neutron source LICORNE at the ALTO facility of the IPN Orsay. These first results from the facility involve the comparative measurement of prompt γ emission in fast-neutron-induced fission of 235U and 238U . Characteristics such as γ multiplicity and total and average radiation energy are determined in terms of ratios between the two systems. Additionally, the average photon energies were determined and compared with recent data on thermal-neutron-induced fission of 235U . PFG spectra are shown to be similar within the precision of the present measurement, suggesting that the extra incident energy does not significantly impact the energy released by prompt γ rays. The origins of some small differences, depending on either the incident energy or the target mass, are discussed. This study demonstrates the potential of the present approach, combining an innovative neutron source and new-generation detectors, for fundamental and applied research on fission in the near future.

  16. Prompt and Delayed Inelastic Scattering Reactions from Fission Neutron PGAA - First Results of FaNGaS

    SciTech Connect

    Rossbach, M.; Randriamalala, T.; Revay, Zs.; Kudejova, P.; Soelradel, S.; Wagner, F.

    2015-07-01

    The new instrument Fast Neutron Gamma Spectroscopy (FaNGaS) has been installed at the SR10 beam line of the FRM II Research Reactor in Garching and tested successfully. Complimentary to cold neutron PGAA, with FaNGaS inelastic scattering reactions induced by fission neutrons can be studied. Gamma lines from (n,n'γ) reactions up to now have been rarely studied and no adequate compilation of the emitted gamma energies exist. In developing nondestructive analytical techniques using neutron generator based PGAA such data are badly needed for quantification of heavy metals and actinides in e.g. nuclear waste or safeguards samples. A number of elements and relevant actinides have been irradiated in the fast neutron beam SR10 at the FRM II reactor in Garching, Germany. A heavily shielded 50% eff. HPGe detector perpendicular to the beam is looking at the samples exposed to 2.3 E8 cm{sup -2}s{sup -1} fission neutrons. Prompt gamma spectra have been taken and evaluated using the available data in scattered sources. Additional gamma lines have been detected and are being compiled to create a data base for (n,n') reactions. Particular emphasis is given on actinides including {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 242}Pu and {sup 241}Am. Some examples will be given and first results will be discussed in this contribution. (authors)

  17. Prospects for further studies of effects of T-odd asymmetry in the emission of light particles in the polarized-neutron-induced ternary fission of heavy nuclei

    SciTech Connect

    Petrov, G. A. Gagarskii, A. M.; Guseva, I. S.; Kopatch, Yu. N.; Goennenwein, F.; Mutterer, M.

    2008-07-15

    Prospects for further studies of TRI and ROT effects of T-odd asymmetry in the emission of light particles in the ternary and binary fission of heavy nuclei that is induced by slow polarized neutrons are considered with a view to studying the mechanism for the formation of these effects and using them to get new information about fission dynamics. It is planned to investigate the dependence of the corresponding T-odd-asymmetry coefficients on the main characteristics of the fission reaction.

  18. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  19. Low-energy fission investigated in reactions of 750 AMeV238U-ions with Pb and Be targets. I. Nuclear charge distributions

    NASA Astrophysics Data System (ADS)

    Armbruster, P.; Bernas, M.; Czajkowski, S.; Geissel, H.; Aumann, T.; Dessagne, Ph.; Donzaud, C.; Hanelt, E.; Heinz, A.; Hesse, M.; Kozhuharov, C.; Miehe, Ch.; Münzenberg, G.; Pfützner, M.; Schmidt, K.-H.; Schwab, W.; Stéphan, C.; Sümmerer, K.; Tassan-Got, L.; Voss, B.

    1996-12-01

    Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magnetic field for the U/Pb-system, or by peripheral nuclear interactions for the U/Be-system.

  20. Fission of nuclei with Z=102-112 produced in reactions with {sup 22}Ne and {sup 48}Ca ions

    SciTech Connect

    Itkis, M. G.; Oganessian, Yu. Ts.; Kozulin, E. M.; Kondratiev, N. A.; Krupa, L.; Pokrovsky, I. V.; Polyakov, A. N.; Ponomarenko, V. A.; Prokhorova, E. V.; Pustylnik, B. I.; Vakatov, V. I.; Rusanov, A. Ya.

    1998-12-21

    The talk presents new results obtained in the study of fission of superheavy nuclei {sup 256}No, {sup 270}Sg and {sup 286}112 formed in reactions with {sup 22}Ne and {sup 48}Ca ions at energies near or considerably lower than the Coulomb barrier. The experiments have been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (FLNR) with the use of the time-of-flight spectrometer of fission fragments CORSET.

  1. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  2. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  3. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect

    Grudzevich, O. T.; Yavshits, S. G.

    2013-03-15

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  4. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

  5. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of (238)U at the National Ignition Facility.

    PubMed

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of (88)Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the (85m)Kr/(88)Kr ratio, which may be the result of incorrect nuclear data.

  6. Prompt γ-ray production in neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2013-04-01

    Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.

  7. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  8. Neutron-neutron angular correlations in spontaneous and neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2015-04-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  9. Proof of Principle for Active Detection of Fissionable Material Using Intense, Pulsed-Bremsstrahlung-Induced Photofission

    DTIC Science & Technology

    2014-10-07

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6770--14-9554 Proof of Principle for Active Detection of Fissionable Material Using...of Fissionable Material Using Intense, Pulsed-Bremsstrahlung-Induced Photofission R.J. Commisso, J.W. Schumer, R.J. Allen, D.D. Hinshelwood, S.L...induce photofission in fissile material . We are investigating the applicability of this mechanism, using photons from bremsstrahlung, for long-range

  10. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  11. Total Kinetic Energy Release in the Fast Neutron Induced Fission of 235U

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Yanez, Ricardo

    2016-09-01

    We have measured the total kinetic energy (TKE) release, its variance and associated fission product mass distributions for the neutron induced fission of 235U for En = 2-90 MeV using the 2E method. The neutron energies were determined,event by event, by time of flight measurements with the white spectrum neutron beam from LANSCE. The TKE decreases with increasing neutron energy. This TKE decrease is due to increasing symmetric fission (and decreasing asymmetric fission)with increasing neutron energy, in accord with Brosa model predictions. Our measurement of the TKE release for 235U(nth,f) is in excellent agreement with the known value, indicating our measurements are absolute measurements. The TKE variances are sensitive indicators of nth chance fission. Due to the occurrence of nth chance fission and pre-fission neutron emission, the average fissioning system and its excitation energy is a complex function of the incident neutron energy. Detailed comparisons of our data with previous measurements will be made. This work was supported, in part, by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Grant DE-SC0014380.

  12. Role of mitochondrial fission in neuronal injury in pilocarpine-induced epileptic rats.

    PubMed

    Qiu, X; Cao, L; Yang, X; Zhao, X; Liu, X; Han, Y; Xue, Y; Jiang, H; Chi, Z

    2013-08-15

    Mitochondrial fission has been reported to be involved in oxidative stress, apoptosis and many neurological diseases. However, the role of mitochondrial fission in seizures, which could induce oxidative stress and neuronal loss, remains unknown. In this study, we used pilocarpine to elicit seizures in rats. Meanwhile, we used mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of mitochondrial fission protein dynamin-related protein1 (Drp1), to suppress mitochondrial fission in epileptic model of rats in vivo. We found that mitochondrial fission was increased after seizures and the inhibition of mitochondrial fission by mdivi-1 significantly attenuated oxidative stress and reduced neuronal loss after seizures, shown by the decreased 8-hydroxy deoxyguanosine (8-oHdG) content, the increased superoxide dismutase (SOD) activity, the reduced expression of cytochrome c and caspase3 and the increased surviving neurons in the hippocampus. These results indicated that mitochondrial fission is up-regulated after seizures and the inhibition of mitochondrial fission is protective against neuronal injury in seizures, the underlying mechanism may be through the mitochondria/reactive oxygen species (ROS)/cytochrome c pathway.

  13. Yeast mitochondrial fission proteins induce antagonistic Gaussian membrane curvatures to regulate apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Michelle; Hwee Lai, Ghee; Schmidt, Nathan; Xian, Wujing; Wong, Gerard C. L.

    2013-03-01

    Mitochondria form a dynamic and interconnected network, which disintegrates during apoptosis to generate numerous smaller mitochondrial fragments. This process is at present not well understood. Yeast mitochondrial fission machinery proteins, Dnm1 and Fis1, are believed to regulate programmed cell death in yeast. Yeast Dnm1 has been previously shown to promote mitochondrial fragmentation and degradation characteristic of apoptotic cells, while yeast Fis1 inhibits cell death by limiting the mitochondrial fission induced by Dnm1 [Fannjiang et al, Genes & Dev. 2004. 18: 2785-2797]. To better understand the mechanisms of these antagonistic fission proteins, we use synchrotron small angle x-ray scattering (SAXS) to investigate their interaction with model cell membranes. The relationship between each protein, Dnm1 and Fis1, and protein-induced changes in membrane curvature and topology is examined. Through the comparison of the membrane rearrangement and phase behavior induced by each protein, we will discuss their respective roles in the regulation of mitochondrial fission.

  14. Pre-fission neutron emission in {sup 19}F+{sup 209}Bi reaction

    SciTech Connect

    Singh, Hardev; Sugathan, P.; Shidling, P. D.; Behera, B. R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Jhingan, Akhil; Singh, R. P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2009-03-04

    The pre- and post-scission neutron multiplicities are measured for {sup 19}F+{sup 209}Bi reaction at E{sub lab} = 100, 104, 108, 112 and 116 MeV. The measured value of pre-scission neutron multiplicity was found to be increasing with the excitation energy. The comparison of experimental values with the statistical model calculations shows that the measured values are much larger than the model predictions. This difference in excess yield over the model predictions amounts to the survival time of 80{+-}5x10{sup -21} s for the {sup 228}U compound nucleus before it undergoes fission.

  15. On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.

    2017-01-01

    It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.

  16. Fusion and quasi-fission dynamics in nearly-symmetric reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhao, Kai; Li, ZhuXia

    2015-11-01

    Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in 154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5 for this reaction, and the nuclear contact time is generally smaller than 1500 fm/ c. From the central collisions of Sm+Gd, the neutron-rich fragments such as 164,165Gd, 192W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.

  17. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  18. Fission measurements with PPAC detectors using a coincidence technique

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Audouin, L.; Tassan-Got, L.; Stephan, C.

    2011-07-01

    A fission detection setup based on Parallel Plate Avalanche Counters (PPAC) has been constructed and used at the CERN n-TOF facility. The setup takes advantage of the coincidence detection of both fission fragments to discriminate the background reactions produced by high energy neutrons and it allows obtaining neutron-induced fission cross section up to 1 GeV. (authors)

  19. Spin distribution in neutron induced preequilibrium reactions

    SciTech Connect

    Dashdorj, D; Kawano, T; Chadwick, M; Devlin, M; Fotiades, N; Nelson, R O; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Macri, R; Younes, W

    2005-10-04

    The preequilibrium reaction mechanism makes an important contribution to neutron-induced reactions above E{sub n} {approx} 10 MeV. The preequilibrium process has been studied exclusively via the characteristic high energy neutrons produced at bombarding energies greater than 10 MeV. They are expanding the study of the preequilibrium reaction mechanism through {gamma}-ray spectroscopy. Cross-section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 250 MeV) on a {sup 48}Ti sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Residual state population was predicted using the GNASH reaction code, enhanced for preequilibrium. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshback, Kerman, and Koonin (FKK). The multistep direct part of the FKK theory was calculated for a one-step process. The FKK preequilibrium spin distribution was incorporated into the GNASH calculations and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without preequilibrium effects is significant.

  20. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-20

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm,{sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  1. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  2. Characteristics of Symmetric and Asymmetric Fission Modes as a Function of the Compound Nucleus Excitation in the Proton-Induced Fission of 233Pa, 239Np and 243Am

    SciTech Connect

    Beresova, M.; Kliman, J.; Krupa, L.; Bogatchev, A. A.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Dorvaux, O.; Khlebnikov, S.; Lyapin, V.; Rubchenia, W.; Stuttge, L.; Trzaska, W.; Vakhtin, D.

    2007-05-22

    Average preequilibrium average statistical prescission and postscission neutron multiplicities as well as average {gamma}-ray multiplicity , average energy emitted by {gamma}-rays and average energy per one gamma quantum <{epsilon}{gamma}> as a function of mass and total kinetic energy (TKE) of fission fragments were measured in the proton-induced reactions p+232Th{yields}233Pa, p+238U{yields}239Np and p+242Pu{yields}243Am (at proton energy Ep=13, 20, 40 and 55 MeV). The fragment mass and energy distributions (MEDs) have been analyzed in terms of the multimodal fission. The decomposition of the experimental MEDs onto the MEDs of the distinct modes has been fulfilled in the framework of a method that is free from any parameterization of the distinct fission mode mass distribution shapes. The main characteristics for symmetric and asymmetric modes have been studied in their dependence on the compound nucleus composition and proton energy. The manifestation of multimodal fission in average {gamma}-ray multiplicities of fission fragments was also studied in this work.

  3. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  4. Dynamical simulation of the fission process and anisotropy of the fission fragment angular distributions of excited nuclei produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2016-10-01

    Abstract. A stochastic approach based on four-dimensional Langevin equations was applied to calculate the anisotropy of fission fragment angular distributions, average prescission neutron multiplicity, and the fission probability in a wide range of fissile parameters for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf produced in fusion reactions. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations, nuclear dissipation was generated through the chaos-weighted wall and window friction formula. Furthermore, in the dynamical calculations the dissipation coefficient of K ,γk was considered as a free parameter, and its magnitude inferred by fitting measured data on the anisotropy of fission fragment angular distributions for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf. Comparison of the calculated results for the anisotropy of fission fragment angular distributions with the experimental data showed that the results of the calculations are in good agreement with the experimental data by using values of the dissipation coefficient of K equal to (0.185-0.205), (0.175-0.192), (0.077-0.090), and (0.075-0.085) (MeVzs ) -1 /2 for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf, respectively. It was also shown that the influence of the dissipation coefficient of K on the results of the calculations of the prescission neutron multiplicity and fission probability is small.

  5. Scaling laws in {sup 3}He induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, K.X.; Moretto, L.G.; Phair, L.; Tso, K.; Wozniak, G.J.

    1996-12-01

    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. Furthermore, the method applied in this paper allows for the model-independent determination of the nuclear shell effects. {copyright} {ital 1996 The American Physical Society.}

  6. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-05

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.

  7. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    SciTech Connect

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  8. Reducing Uncertainties in Neutron Induced Fission Cross Sections via a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2016-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission Fragment Tracking Experiment collaboration (NIFFTE) designed and built a fission Time Project Chamber (fission TPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2015 run cycle, measurements of several actinides were performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as the current progress towards a sub-percent measurement of the 239Pu/235U (n,f) cross-section ratio. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Neutron-induced fission cross section of 237Np in the keV to MeV range at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2016-03-01

    The neutron-induced fission cross section of 237Np was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the 235U(n ,f ) and 238U(n ,f ) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of α spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the empire code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  10. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    DOE PAGES

    Diakaki, M.; Karadimos, D.; Vlastou, R.; ...

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, andmore » the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.« less

  11. Isotopic yield measurement in the heavy mass region for {sup 239}Pu thermal neutron induced fission

    SciTech Connect

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Koester, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-15

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the {sup 239}Pu(n{sub th},f) reaction. In order to do this, a new experimental method based on {gamma}-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  12. Fission induced swelling and creep of U–Mo alloy fuel

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; J. S. Cheon; A. B. Robinson; D. M. Wachs

    2013-06-01

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  13. Fission induced swelling and creep of U-Mo alloy fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.; Cheon, J. S.; Robinson, A. B.; Wachs, D. M.

    2013-06-01

    Tapering of U-Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U-Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical-mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  14. Modernizing the Fission Basis

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona

    2016-09-01

    In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  15. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    NASA Astrophysics Data System (ADS)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  16. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    SciTech Connect

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Hanappe, F.; Piot, J.; Schmitt, C.; Vardaci, E.

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  17. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    SciTech Connect

    Iwamoto, O. Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-15

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  18. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  19. Cluster aspects of binary fission

    NASA Astrophysics Data System (ADS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2013-04-01

    With the improved scission-point model the mass distributions are calculated for induced fission of different Hg isotopes with even mass numbers A =180, 184, 188, 192, 196, 198. The calculated mass distribution and mean total kinetic energy of fission fragments are in a good agreement with the existing experimental data. The change in the shape of the mass distribution from asymmetric to more symmetric is revealed with increasing A of the fissioning AHg nucleus, and the reactions are proposed to verify this prediction experimentally.

  20. Isotopic dependence of the cross section for the induced fission of heavy nuclei

    SciTech Connect

    Bolgova, O. N.; Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Ivanova, S. P.; Scheid, W.

    2009-06-15

    The cross sections for the induced fission of {sup 211-223}Ra, {sup 203-211}Rn, and {sup 221-231}Th nuclei undergoing peripheral collisions with {sup 208}Pb nuclei are calculated on the basis of the statistical model. The role of the N = 126 neutron shell is studied. The level density in excited nuclei is determined within the Fermi gas model and a model that takes into account the collective enhancement of the level density. The inclusion of a particle-hole excitation in addition to a collective Coulomb excitation makes it possible to obtain a satisfactory description of experimental cross sections for the fission of radium isotopes. The calculated ratios of the cross sections for the induced fission of {sup 236}U ({sup 237}U) and {sup 238}U ({sup 239}U) nuclei agree with experimental data.

  1. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  2. Multivariate High Order Statistics of Measurements of the Temporal Evolution of Fission Chain-Reactions

    SciTech Connect

    Mattingly, J.K.

    2001-03-08

    The development of high order statistical analyses applied to measurements of the temporal evolution of fission chain-reactions is described. These statistics are derived via application of Bayes' rule to conditional probabilities describing a sequence of events in a fissile system beginning with the initiation of a chain-reaction by source neutrons and ending with counting events in a collection of neutron-sensitive detectors. Two types of initiating neutron sources are considered: (1) a directly observable source introduced by the experimenter (active initiation), and (2) a source that is intrinsic to the system and is not directly observable (passive initiation). The resulting statistics describe the temporal distribution of the population of prompt neutrons in terms of the time-delays between members of a collection (an n-tuplet) of correlated detector counts, that, in turn, may be collectively correlated with a detected active source neutron emission. These developments are a unification and extension of Rossi-a, pulsed neutron, and neutron noise methods, each of which measure the temporal distribution of pairs of correlated events, to produce a method that measures the temporal distribution of n-tuplets of correlated counts of arbitrary dimension n. In general the technique should expand present capabilities in the analysis of neutron counting measurements.

  3. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  4. Neutron-Induced Fission Cross Section Measurements for Uranium Isotopes and Other Actinides at LANSCE

    SciTech Connect

    Laptev, Alexander B.; Tovesson, Fredrik K.; Hill, Tony S.

    2012-08-16

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research center (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard {sup 235}U foil is translated into a fission cross section ratio. Thin actinide targets with deposits of <200 {micro}g/cm{sup 2} on stainless steel backing were loaded into a fission chamber. In addition to previously measured data for {sup 237}Np, {sup 239-242}Pu, {sup 243}Am, new measurements include the recently completed {sup 233,238}U isotopes, {sup 236}U data which is being analyzed, and {sup 234}U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. When analysis of the new measured data is completed, data will be delivered to evaluators. Having data for multiple Uranium isotopes will support theoretical modeling capabilities and strengthens nuclear data evaluation.

  5. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  6. The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis

    PubMed Central

    Alirol, Emilie; James, Dominic; Huber, Denise; Marchetto, Andrea; Vergani, Lodovica

    2006-01-01

    Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca2+-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis. PMID:16914522

  7. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    SciTech Connect

    Gharibyan, Narek

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  8. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  9. Comparison of yields of neutron-rich nuclei in proton- and photon-induced 238U fission

    NASA Astrophysics Data System (ADS)

    Khan, F. A.; Bhowmick, Debasis; Basu, D. N.; Farooq, M.; Chakrabarti, Alok

    2016-11-01

    A comparative study of fission of actinides, especially 238U, by proton and bremsstrahlung photon is performed. The relative mass distribution of 238U fission fragments has been explored theoretically for both proton- and photon-induced fission. The integrated yield along with charge distribution of the products are calculated to find the neutron richness in comparison with the nuclei produced by the r process in nucleosynthesis. Some r -process nuclei in the intermediate-mass range for symmetric fission mode are found to be produced almost two orders of magnitude more for proton-induced fission than for photofission, although the rest of the neutron-rich nuclei in the asymmetric mode are produced in comparable proportion for both processes.

  10. Effects of nuclear orientation on fusion and fission process for reactions using {sup 238}U target nucleus

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-06-01

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, asymmetric fission mode peaked at A{sub L}/A{sub H}approx =90/178 was observed. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. The fragment mass distributions are compared to those for {sup 36}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  11. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death.

    PubMed

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G; Bosnjak, Zeljko J

    2014-10-31

    Myocardial ischemia-reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of mitochondrial fission; and (2) the increased mitochondrial fission is resulted from both increased activation and decreased inactivation of Drp1 through Cdk1, PKCδ, and calcineurin-mediated pathways, respectively.

  12. Fusion-fission study at IUAC: Recent results

    NASA Astrophysics Data System (ADS)

    Pullanhiotan, Sugathan

    2016-10-01

    Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.

  13. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    SciTech Connect

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Reddy, A. V. R.; Pujari, P. K.; Goswami, A.; Ramachandran, K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrance as reported in the pre-actinide region based on the measurement of evaporation residue cross section.

  14. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  15. Assessment of fission-gas-induced transient swelling in metallic fuel

    SciTech Connect

    Sevy, R H; Cahalan, J E

    1985-03-01

    A model for fission-gas-induced transient swelling in metallic fuel is described. An observation that the strength of metallic fuel becomes very small at a temperature several hundred degrees below the solidus forms the basis for an assumption that, above this temperature, the fuel proceeds through a series of stress-free equilibrium states for a large range of heating rates. Gas bubble coalescence and growth and any effects from ingested sodium are ignored such that the model may tend to underestimate swelling in some circumstances. The fuel swelling model is used to predict the reactivity effect of fission-gas-induced axial expansion of metallic fuel during transient overpower excursions. Comparisons to oxide fuel behavior are made. Sensitivity of results to metallic fuel modeling assumptions are assessed in a parametric study.

  16. Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons

    SciTech Connect

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B. Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-15

    The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

  17. Mass distribution and mass resolved angular distribution of fission products in 28Si+232Th

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; John, B. V.; Ramachandran, K.; Pujari, P. K.

    2017-01-01

    Background: Fission process with heavier projectiles and actinide targets has contributions from processes, such as compound nucleus fission, transfer-induced fission, and noncompound nucleus fission. Mass distribution and mass-dependent anisotropy can be used to identify and delineate the contributions due to these different processes. Purpose: Mass distribution in 28Si+232Th has been studied at beam energies of 180 and 158 MeV to investigate the nature of mass distribution arising from complete and incomplete momentum-transfer fission events. Mass-dependent angular anisotropy has been measured at 166 MeV to investigate the dominant noncompound nucleus process contributing to the fission. Method: Mass distribution and mass resolved angular distribution of fission products were measured by the recoil catcher method followed by off-line γ -ray spectrometry. Results: Mass distributions for full momentum-transfer fission processes were found to be symmetric, and those for transfer-induced fission were found to be asymmetric at both beam energies. The relative contribution from transfer-induced fission was found to be higher at lower beam energy. The anisotropy of the fission product angular distribution was found to increase with decreasing mass asymmetry. Conclusions: The mass distribution indicates that, apart from the full momentum-transfer fission process, there is a significant contribution due to transfer-induced fission. The mass dependence of angular anisotropy indicated that preequilibrium fission is the dominant noncompound nucleus process in the present reaction system at near barrier energy (Ec .m ./VC=1.06 ) .

  18. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu).

  19. Quasifission and fission rates and their lifetimes in asymmetric reactions forming 216Ra within a dinuclear system approach

    NASA Astrophysics Data System (ADS)

    Khanlari, M. Varasteh; Soheyli, S.

    2017-02-01

    Background: The study of evolution of asymmetric dinuclear systems (DNSs) formed in heavy ion collisions is a topic of intense research. The DNS evolution leads to a variety of reaction channels such as deep inelastic, complete fusion, quasifission, fast fission, fusion-fission, and evaporation of particles. The time evolution of the DNS in the quasifission process and the role of relevant parameters are still not fully understood. Purpose: The influence of the entrance channel mass asymmetry on the time evolution of an excited and rotating DNS, populated via four reactions with different entrance channel mass asymmetry parameters which all lead to the compound nucleus 216Ra, is explored. Method: The driving potential, emission barriers for the binary decay (namely the quasifission and intrinsic fusion barriers), rate of the quasifission channel, and the lifetime of an excited DNS, as well as the fission rate and fission lifetime of the compound nucleus 216Ra formed in the 12C+204Pb,19F+197Au,30Si+186W , and 48Ca+168Er reactions, are calculated by the dinuclear system approach. Results: Our results show that the intrinsic fusion barrier values are equal to zero for the 12C+204Pb and 19F+197Au reactions. Therefore, the quasifission signature is extremely hindered for these reactions, while the 30Si+186W and 48Ca+168Er calculated results contain quasifission contributions. Provided the quasifission rate is nonzero, the quasifission rate increases with increasing orbital angular momentum ℓ of the composite system for a given excitation energy ECN * of the compound nucleus. On the other hand, the quasifission lifetime decreases moderately with increasing ℓ . Furthermore, both quasifission and fission rates increase with increasing excitation energy ECN *, while the quasifission and fission lifetimes decrease with increasing ECN * for a given ℓ . Conclusions: Although these reactions with different entrance channels populate the same compound nucleus 216Ra at

  20. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast.

    PubMed

    Cooper, Katrina F; Khakhina, Svetlana; Kim, Stephen K; Strich, Randy

    2014-01-27

    Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C.

  1. Evolution of nuclear shapes in odd-mass yttrium and niobium isotopes from lifetime measurements following fission reactions

    NASA Astrophysics Data System (ADS)

    Hagen, T. W.; Görgen, A.; Korten, W.; Grente, L.; Salsac, M.-D.; Farget, F.; Ragnarsson, I.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clément, E.; de France, G.; Delaune, O.; Dewald, A.; Dijon, A.; Hackstein, M.; Jacquot, B.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Rother, W.; Sahin, E.; Siem, S.; Sulignano, B.; Theisen, Ch.; Valiente-Dobon, J. J.

    2017-03-01

    Lifetimes of excited states in 99Y,101Y,101Nb,103Nb, and 105Nb were measured in an experiment using the recoil distance Doppler shift method at GANIL (Grand Accélérateur National d'Ions Lourds). The neutron-rich nuclei were produced in fission reactions between a 238U beam and a 9Be target. Prompt γ rays were measured with the EXOGAM array and correlated with fission fragments that were identified in mass and atomic number with the VAMOS++ spectrometer. The measured lifetimes, together with branching ratios, provide B (M 1 ) and B (E 2 ) values for the strongly coupled rotational bands built on the [422 ] 5 /2+ ground state in the Y and Nb nuclei with neutron number N ≥60 . The comparison of the experimental results with triaxial particle-rotor calculations provides information about the evolution of the nuclear shape in this mass region.

  2. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    SciTech Connect

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G.; Bosnjak, Zeljko J.

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  3. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    SciTech Connect

    Rest, J.

    1995-08-01

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products in both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.

  4. Neutron-induced fission-cross-section measurements and calculations of selected transplutonic isotopes

    SciTech Connect

    White, R.M.; Browne, J.C.

    1982-08-27

    The neutron-induced fission cross sections of /sup 242m/Am and /sup 245/Cm have been measured over an energy range of 10/sup -4/ eV to approx. 20 MeV in a series of experiments at three facilities during the past several years. The combined results of these measurements, in which only sub-milligram quantities of enriched isotopes were used, yield cross sections with uncertainties of approximately 5% below 10 MeV relative to the /sup 235/U standard cross section used to normalize the data. We summarize the resonance analysis of the /sup 242m/Am(n,f) cross section in the eV region. Hauser-Feshbach statistical calculations of the detailed fission cross sections of /sup 235/U and /sup 245/Cm have been carried out over the energy region from 0.1 to 5 MeV and these results are compared with our experimental data.

  5. Short-lived fission product measurements from >0.1 MeV neutron-induced fission using boron carbide.

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce D.; Friese, Judah I.; Kephart, Rosara F.; Kephart, Jeremy D.

    2012-02-01

    A boron carbide shield was designed, custom fabricated, and used to create a fast fission energy neutron spectrum. The fissionable isotopes 233, 235, 238U, 237Np, and 239Pu were separately placed inside of this shield and irradiated under pulsed conditions at the Washington State University 1 MW TRIGA reactor. A unique set of fission product gamma spectra were collected at short times (4 minutes to 1 week) post-fission. Gamma spectra were collected on single-crystal high purity germanium detectors and on Pacific Northwest National Laboratory's (PNNL's) Direct Simultaneous Measurement (DSM) system composed of HPGe detectors connected in coincidence. This work defines the experimental methods used to produce and collect the gamma data, and demonstrates the validity of the measurements. It is important to fully document this information so the data can be used with high confidence for the advancement of nuclear science and non-proliferation applications. The gamma spectra collected in these and other experiments will be made publicly available at https://spcollab.pnl.gov/sites/gammadata or via the link at http://rdnsgroup.pnl.gov. A revised version of this publication will be posted with the data to make the experimental details available to those using the data.

  6. Total fission cross section of {sup 181}Ta and {sup 208}Pb induced by protons at relativistic energies

    SciTech Connect

    Ayyad, Y.; Benlliure, J.; Casarejos, E.; Schmidt, K. H.; Jurado, B.; Pol, H. A.; Ricciardi, M. V.; Pleskac, R.; Enqvist, T.; Rejmund, F.; Giot, L.; Henzl, V.; Lukic, S.; Ngoc, S. N.; Boudard, A.; Leray, S.; Kurtukian, T.; Schmitt, C.; Henzlova, D.; Paradela, C.; Bacquias, A.; Loureiro, D. P.; Foehr, V.; Tarrio, D.; Kezzar, K.

    2011-07-01

    Total fission cross section induced by protons in {sup 181}Ta and {sup 208}Pb at energies in the range of 300 to 1000 A MeV have been measured at GSI (Germany) using the inverse kinematics technique. A dedicated setup with high efficiency made it possible to determine these cross sections with high accuracy. The new data seed light in the controversial results obtained so far and contribute to the understanding of the fission process at high excitation energies. (authors)

  7. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    PubMed

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-07-12

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).

  8. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ

    PubMed Central

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A.; Formiggini, Fabio; Polishchuk, Roman S.; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  9. Systematic measurements of proton-induced reactions on enriched molybdenum

    NASA Astrophysics Data System (ADS)

    Lamere, Edward; Gilardy, Gwenaelle; Meisel, Zach; Moran, Michael; Seymore, Christopher; Skulski, Michael; Simonetti, Antonio; Couder, Manoel

    2016-09-01

    Between 2008 and 2010, shortages in the world-wide supply of Mo highlighted weaknesses in the current fission-based production method of mTc, a critical medical isotope. This crisis sparked interest in developing the direct production of mTc from proton-induced reactions on enriched Mo targets as an alternative. One complication with this method is that mTc must be chemically extracted from the irradiated target. Therefore, radiopharmaceuticals produced from proton bombardment will contain a mixture of all Tc-species with open production channels, affecting radiochemical purity, specific activity and total production yield of mTc-factors critical for the feasibility of this production method. Reactions on trace impurities in the enriched targets have been shown to impact these factors dramatically. Precise cross-section measurements for all Mo +p reactions that lead to Tc or Mo species are required for proper assessment of this production technique. Cross-section measurements for the main reaction of interest, mTc(p,2n), have been performed in recent years, however, other reactions producing Tc have been mostly neglected. We will introduce a systematic study of proton-induced reactionson 92, 94-98, 100 Mo currently being performed at Notre Dame. Preliminary results will be presented. NRC-HQ-12-G-38-0073.

  10. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  11. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Couture, A.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Stoyer, M. A.; Wu, C. Y.; Becker, J. A.; Haslett, R. J.; Henderson, R. A.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  12. The Interaction of Mitochondrial Biogenesis and Fission/Fusion Mediated by PGC-1α Regulates Rotenone-Induced Dopaminergic Neurotoxicity.

    PubMed

    Peng, Kaige; Yang, Likui; Wang, Jian; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Cai, Ying; Cui, Zhihong; Ao, Lin; Liu, Jinyi; Zou, Zhongmin; Sai, Yan; Cao, Jia

    2016-06-07

    Parkinson's disease is a common neurodegenerative disease in the elderly, and mitochondrial defects underlie the pathogenesis of PD. Impairment of mitochondrial homeostasis results in reactive oxygen species formation, which in turn can potentiate the accumulation of dysfunctional mitochondria, forming a vicious cycle in the neuron. Mitochondrial fission/fusion and biogenesis play important roles in maintaining mitochondrial homeostasis. It has been reported that PGC-1α is a powerful transcription factor that is widely involved in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. Therefore, we explored mitochondrial biogenesis, mitochondrial fission/fusion, and especially PGC-1α as the key point in the signaling mechanism of their interaction in rotenone-induced dopamine neurotoxicity. The results showed that mitochondrial number and mass were reduced significantly, accompanied by alterations in proteins known to regulate mitochondrial fission/fusion (MFN2, OPA1, Drp1, and Fis1) and mitochondrial biogenesis (PGC-1α and mtTFA). Further experiments proved that inhibition of mitochondrial fission or promotion of mitochondrial fusion has protective effects in rotenone-induced neurotoxicity and also promotes mitochondrial biogenesis. By establishing cell models of PGC-1α overexpression and reduced expression, we found that PGC-1α can regulate MFN2 and Drp1 protein expression and phosphorylation to influence mitochondrial fission/fusion. In summary, it can be concluded that PGC-1α-mediated cross talk between mitochondrial biogenesis and fission/fusion contributes to rotenone-induced dopaminergic neurodegeneration.

  13. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  14. Synesthetes show normal sound-induced flash fission and fusion illusions.

    PubMed

    Whittingham, Karen M; McDonald, J Scott; Clifford, Colin W G

    2014-12-01

    Idiopathic synesthesia, a neurological condition in which a stimulus in one sense generates a concurrent experience in a different sense, is often considered an example of multisensory integration. Consequently it has been suggested that synesthetes should experience multisensory illusions more consistently and compellingly than typical participants. To test this we measured the sound induced flash fission and fusion illusions in 22 coloured hearing synesthetes and 31 control participants. Analysis of the data using signal detection analysis, however, indicated no difference between the groups, either in perception or response bias, but a secondary analysis of the data did show evidence of a decline in the illusions for synesthetes with increasing age.

  15. Neutron-induced fission cross section of U234 measured at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Karadimos, D.; Vlastou, R.; Ioannidis, K.; Demetriou, P.; Diakaki, M.; Vlachoudis, V.; Pavlopoulos, P.; Konovalov, V.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Cennini, P.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2014-04-01

    The neutron-induced fission cross section of U234 has been measured at the CERN n_TOF facility relative to the standard fission cross section of U235 from 20 keV to 1.4 MeV and of U238 from 1.4 to 200 MeV. A fast ionization chamber (FIC) was used as a fission fragment detector with a detection efficiency of no less than 97%. The high instantaneous flux and the low background characterizing the n_TOF facility resulted in wide-energy-range data (0.02 to 200 MeV), with high energy resolution, high statistics, and systematic uncertainties bellow 3%. Previous investigations around the energy of the fission threshold revealed structures attributed to β-vibrational levels, which have been confirmed by the present measurements. Theoretical calculations have been performed, employing the talys code with model parameters tuned to fairly reproduce the experimental data.

  16. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis.

    PubMed

    Li, Guobing; Zhou, Jing; Budhraja, Amit; Hu, Xiaoye; Chen, Yibiao; Cheng, Qi; Liu, Lei; Zhou, Ting; Li, Ping; Liu, Ehu; Gao, Ning

    2015-01-30

    Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer.

  17. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    SciTech Connect

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  18. Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.

    2016-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly

  19. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  20. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    SciTech Connect

    Nolen, J.A.; Ahmad, I.; Back, B.B.

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  1. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  2. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Hamrita, H.; Jammes, C.; Galli, G.; Laine, F.

    2017-03-01

    Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.

  3. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  4. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  5. A new design of fission detector for prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy spectroscopy. Correlated FF kinetic energies, their masses and the angle of the fission axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical algorithms were provided along with formulae derived for fission axis angles determination. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event by event analysis of individual fission reactions from non point fissile source. Position sensitive neutron induced fission detector for neutron imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  6. Effects of deformations and orientations in the fission of the actinide nuclear system 254Fm* formed in the 11B + 243Am reaction

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Sharma, Manoj K.; Gupta, Raj K.

    2012-12-01

    We have studied the decay of actinide nuclear system 254Fm* formed in 11B + 243Am reaction using the dynamical cluster decay model (DCM), with choices of spherical, quadrupole deformation β2 alone and higher multipole deformations β2-β4. For β2 deformations, the optimum orientations θiopt are used whereas for higher multipole deformations the compact orientations θic of decaying fragments are taken in to account. Besides static-β2 deformations, the effects of dynamical-β2 deformations are also explored. The calculated cross sections find excellent agreement with the available experimental data with spherical as well as deformed choices of fragmentations, enabling us to account for the role of important nuclear deformation effects in the 11B-induced nuclear reaction. Spontaneous decay of 254Fm with cold elongated configuration and optimum orientation is also worked out. The mass distributions of excited fermium isotopes in the neighborhood of 254Fm* are also explored. In addition, the roles of temperature, angular momentum, and fission fragment anisotropies are investigated in the context of the chosen reaction.

  7. Dissipation of the tilting degree of freedom in heavy-ion-induced fission from four-dimensional Langevin dynamics

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Ryabov, E. G.; Cheredov, A. V.; Adeev, G. D.

    2016-10-01

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to the calculation of a wide set of experimental observables of excited compound nuclei from 199Pb to 248Cf formed in reactions induced by heavy ions. In the model under investigation, the tilting degree of freedom ( K coordinate) representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of {c,h,α} parametrization. The evolution of the K coordinate is described by means of the Langevin equation in the overdamped regime. The friction tensor for the shape collective coordinates is calculated under the assumption of the modified version of the one-body dissipation mechanism, where the reduction coefficient ks of the contribution from the "wall" formula is introduced. The calculations are performed both for the constant values of the coefficient ks and for the coordinate-dependent reduction coefficient ks(q) which is found on the basis of the "chaos-weighted wall formula". Different possibilities of the deformation-dependent dissipation coefficient (γK) for the K coordinate are investigated. The presented results demonstrate that an impact of the ks and γK parameters on the calculated observable fission characteristics can be selectively probed. It was found that it is possible to describe the experimental data consistently with the deformation-dependent γK(q) coefficient for shapes featuring a neck, which predicts quite small values of γK=0.0077 (MeV zs)-1/2 and constant γK=0.1-0.4 (MeV zs)-1/2 for compact shapes featuring no neck.

  8. Membrane Shape at the Edge of the Dynamin Helix Sets Location and Duration of the Fission Reaction

    PubMed Central

    Morlot, Sandrine; Galli, Valentina; Klein, Marius; Chiaruttini, Nicolas; Manzi, John; Humbert, Frédéric; Dinis, Luis; Lenz, Martin; Cappello, Giovanni; Roux, Aurélien

    2013-01-01

    SUMMARY The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane. At this location, the considerable change in membrane curvature increases the local membrane elastic energy, reducing the energy barrier for fission. Fission kinetics depends on tension, bending rigidity, and the dynamin constriction torque. Indeed, we experimentally find that the fission rate depends on membrane tension in vitro and during endocytosis in vivo. By estimating the energy barrier from the increased elastic energy at the edge of dynamin and measuring the dynamin torque, we show that the mechanical energy spent on dynamin constriction can reduce the energy barrier for fission sufficiently to promote spontaneous fission. PMID:23101629

  9. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction.

    PubMed

    Morlot, Sandrine; Galli, Valentina; Klein, Marius; Chiaruttini, Nicolas; Manzi, John; Humbert, Frédéric; Dinis, Luis; Lenz, Martin; Cappello, Giovanni; Roux, Aurélien

    2012-10-26

    The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane. At this location, the considerable change in membrane curvature increases the local membrane elastic energy, reducing the energy barrier for fission. Fission kinetics depends on tension, bending rigidity, and the dynamin constriction torque. Indeed, we experimentally find that the fission rate depends on membrane tension in vitro and during endocytosis in vivo. By estimating the energy barrier from the increased elastic energy at the edge of dynamin and measuring the dynamin torque, we show that the mechanical energy spent on dynamin constriction can reduce the energy barrier for fission sufficiently to promote spontaneous fission. :

  10. Phonon-Induced Dephasing of Excitons in Semiconductor Quantum Dots: Multiple Exciton Generation, Fission, and Luminescence

    NASA Astrophysics Data System (ADS)

    Madrid, Angeline; Kim, Hyeon-Deuk; Habenicht, Bradley; Prezhdo, Oleg

    2010-03-01

    Phonon-induced dephasing processes that govern optical line widths, multiple exciton (ME) generation (MEG), and ME fission (MEF) in semiconductor quantum dots (QDs) are investigated by ab initio molecular dynamics simulation. Using Si QDs as an example, we propose that MEF occurs by phonon-induced dephasing and, for the first time, estimate its time scale to be 100 fs. In contrast, luminescence and MEG dephasing times are all sub-10 fs. Generally, dephasing is faster for higher-energy and higher-order excitons and increased temperatures. MEF is slow because it is facilitated only by low-frequency acoustic modes. Luminescence and MEG couple to both acoustic and optical modes of the QD, as well as ligand vibrations. The detailed atomistic simulation of the dephasing processes advances understanding of exciton dynamics in QDs and other nanoscale materials.

  11. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/$$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$$\\overline{A}_L$$/$$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  12. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-09-01

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E* (180Hg) = 33- 66 MeV and E* (190Hg) = 48- 71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses AbarL /AbarH = 79 / 101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+ / EC -delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of AbarL /AbarH = 83 / 107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  13. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    NASA Astrophysics Data System (ADS)

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; de Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-04-01

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

  14. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    PubMed Central

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; De Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-01-01

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides. PMID:27079683

  15. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    SciTech Connect

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; De Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-04-15

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

  16. TPC tracking software for NIFFTE: the Neutron Induced Fission Fragment Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Kudo, Ryuho; Klay, J. L.

    2008-10-01

    Ever since the scientific community started analyzing and filtering data using computers, programming has become a crucial part for the success of many projects. The NIFFTE Collaboration, which is building a Time Projection Chamber (TPC) to study neutron-induced fission of the major actinides, naturally requires a comprehensive software framework to analyze the high volume of data it will collect. Following the traditional TPC reconstruction model, we have written a set of offline analysis algorithms to reconstruct tracks left by the fission fragments in the TPC and determine their (A,Z). We accomplish this by organizing the raw TPC voxel data into 2 dimensional planes, performing cluster and hit-finding within those planes and then connecting the hits to create 3-D tracks. Finally, track fitting and error correction are performed and the fragment A,Z are determined from the distribution of specific ionization along the track. Since one of the goals of this project is to create a re-usable library of TPC reconstruction code that can be adapted to other TPC projects, the software uses open source tools and is built as an object-oriented package in C++. This poster will present the current status of the TPC reconstruction algorithms and discuss the motivations behind our specific programming choices.

  17. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    DOE PAGES

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; ...

    2016-04-15

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less

  18. Measurements of the neutron-induced fission cross section of sup 242 Cm and sup 238 Pu by lead slowing down time spectrometer

    SciTech Connect

    Alam, B.

    1987-01-01

    The neutron-induced fission cross section of {sup 242}Cm and {sup 238}Pu have been measured from 0.1 eV to 100 keV energy range using the Rensselaer Polytechnic Institute's Gaerttner Laboratory Electron Linac as a pulsed neutron source and the Rensselaer Intense Neutron Spectrometer (RINS) system to obtain an adequate ratio of the neutron-induced fission signal to that due to spontaneous fission background. A special fission chamber design employing multiple pairs of hemispherical electrodes coupled with fast electronics ({approx}nsec rise-time) combine to suppress the alpha pileup effects. The fission cross section of {sup 242}Cm and {sup 238}Pu reported in this thesis were obtained from simultaneous measurements on {sup 235}U, {sup 238}Pu and {sup 242}Cm, and these data were normalized to the resolution-broadened ENDF/B-V {sup 235} U fission cross section. The fission areas and the widths for the resolved low-energy resonances of {sup 242}Cm and {sup 238}Pu were determined. The resolution-broadened ENDF/B-V {sup 238}Pu fission data are generally in poor agreement with the measured fission data and a new evaluation on {sup 238}Pu has been recommended. The measured fission cross section of {sup 242}Cm cannot be compared because no evaluation or measurement on this nuclide is available in the energy region of the present measurements.

  19. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  20. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function.

  1. Late-time emission of prompt fission γ rays

    NASA Astrophysics Data System (ADS)

    Talou, P.; Kawano, T.; Stetcu, I.; Lestone, J. P.; McKigney, E.; Chadwick, M. B.

    2016-12-01

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ -ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ -ray energy, the average total γ -ray multiplicity, and the fragment-specific γ -ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μ s following fission, in the case of 235U and 239Pu(nth,f ) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ -ray energy increases by 2% to 5% in the same time interval. Finally, those results are shown to be robust against significant changes in the model input parameters.

  2. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  3. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  4. Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers

    SciTech Connect

    Boreyko, Jonathan B; Mruetusatorn, Prachya; Sarles, Stephen A; Retterer, Scott T; Collier, Pat

    2013-01-01

    Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers ( DIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemi-spherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a bending moment corresponding to a critical shear stress, the buckling bilayer fissions a vesicle to regulate its shape and stress. The DIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.

  5. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n_TOF

    NASA Astrophysics Data System (ADS)

    Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becčvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Heil, M.; Herrera-Martinez, A.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-08-01

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n_TOF spallation neutron facility. Between them some measurements involve isotopes (233U, 241Am, 243Am, 245Cm) relevant for applications to nuclear technologies. The n_TOF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and α particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of 235U.

  6. Reactions Induced by Platelet Transfusions

    PubMed Central

    Kiefel, Volker

    2008-01-01

    Summary Platelet transfusions play a central role in therapeutic regimens for patients with hematologic/oncologic diseases who develop severe thrombocytopenia either in the course of their disease or following cytostatic therapy. Like other blood components, platelet transfusions have achieved a high degree of safety as far as transmission of viral diseases is concerned. However, transfusion of platelet concentrates is accompanied by a high frequency of febrile and anaphylactoid reactions. In rare cases, recipients of platelet concentrates are threatened by severe reactions as septic complications due to bacterial contamination of platelet concentrates, transfusion-related acute lung injury and severe anaphylactic episodes. PMID:21512624

  7. Laser-induced tissue reactions and dermatology.

    PubMed

    Weber, Rebecca J; Taylor, Brent R; Engelman, Dendy E

    2011-01-01

    Knowledge of laser tissue reactions and tissue properties allows the practitioner to tailor a treatment to an individual patient's need and goals. A laser's power, spot size and pulse duration may be manipulated to yield different tissue reactions. Five tissue reactions, each the result of varying laser pulse durations and energy densities, may be achieved. They are photochemical, photothermal, photoablation, plasma-induced ablation and photomechanical. Of these, photothermal reactions are most utilized in dermatology. When higher powered pulses are applied, tissue often undergoes multiple reactions simultaneously. An understanding of these reactions allows their effects to be predicted. In this chapter, the various reactions are reviewed, and the reactions caused by many of the most commonly used lasers in dermatology are discussed.

  8. True ternary fission, the collinear decay into fragments of similar size in the 252Cf(sf) and 235U(nth, f) reactions

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.

    2014-06-01

    The collinear cluster decay in 252Cf(sf, fff), with three cluster fragments of different masses (e.g. 132Sn, 52-48Ca, 68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode of heavy nuclei, the collinear cluster tripartition (CCT). The same type of ternary fission decay has been observed in the reaction 235U(nth, fff). This kind of “true ternary fission” of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present note we discuss true ternary fission (TFFF) into three nuclei of almost equal size (e.g. Z=98→Zi=32, 34, 32) in the same systems. The possible fission channels are predicted from potential-energy (PES) calculations. These PES's show pronounced minima for several ternary fragmentation decays, e.g. for 252Cf(sf) and for 235U(nth, f). They suggest the existence of a variety of collinear ternary fission modes. The TFFF-decays chosen in this letter have very similar dynamical features as the previously observed collinear CCT-decays. The data obtained in the above mentioned experiments allow us to extract the yield for these TFFF-decays in both systems by using specific gates on the measured parameters. These yields are a few 1.0ṡ10-6/(binary fission).

  9. Accurate measurements of fission-fragment yields in 234,235,236,238U(γ,f) with the SOFIA set-up

    NASA Astrophysics Data System (ADS)

    Chatillon, A.; Taïeb, J.; Martin, J.-F.; Pellereau, E.; Boutoux, G.; Gorbinet, T.; Grente, L.; Bélier, G.; Laurent, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamaño, M.; Audouin, L.; Casarejos, E.; Cortina-Gil, D.; Farget, F.; Fernández-Domínguez, B.; Heinz, A.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Lindberg, S.; Löher, B.; Nociforo, C.; Paradela, C.; Pietri, S.; Ramos, D.; Rodriguez-Sanchez, J.-L.; Rodrìguez-Tajes, C.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Törnqvist, H.; Vargas, J.; Voss, B.; Weick, H.; Yan, Y.

    2016-03-01

    SOFIA (Studies On Fission with Aladin) is a new experimental set-up dedicated to accurate measurement of fission-fragments isotopic yields. It is located at GSI, the only place to use inverse kinematics at relativistic energies in order to study the (γ,f) electromagnetic-induced fission. The SOFIA set-up is a large-acceptance magnetic spectrometer, which allows to fully identify both fission fragments in coincidence on the whole fission-fragment range. This paper will report on fission yields obtained in 234,235,236,238U(γ,f) reactions.

  10. Effects of YORP-induced rotational fission on the small size end of the Main Belt asteroid size distribution

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Jacobson, S.; Marzari, F.; Scheeres, D.; Davis, D. R.

    2013-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis has strong repercussions for the small size end of the Main Belt asteroid size frequency distribution. These results are consistent with observed asteroid population statistics. The foundation of this model is the asteroid rotation model of Marzari et al. (2011), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur). The YORP effect timescale for large asteroids with diameters D > ~6 km is longer than the collision timescale in the Main Belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ~6 km, the asteroid population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size frequency distribution. Using the outputs of the asteroid population evolution model and a 1-D collision evolution model, we can generate this new size frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated “Asteroids were Born Big” size frequency distribution (Weidenschilling 2010, Morbidelli 2009).

  11. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of

  12. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus.

    PubMed

    Chen, Xiao-Lin; Shen, Mi; Yang, Jun; Xing, Yunfei; Chen, Deng; Li, Zhigang; Zhao, Wensheng; Zhang, Yan

    2017-02-01

    Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.

  13. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  14. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death

    PubMed Central

    Jain, Prashant; Luo, Zhao-Qing; Blanke, Steven R.

    2011-01-01

    A number of pathogenic bacteria target mitochondria to modulate the host's apoptotic machinery. Studies here revealed that infection with the human gastric pathogen Helicobacter pylori disrupts the morphological dynamics of mitochondria as a mechanism to induce host cell death. The vacuolating cytotoxin A (VacA) is both essential and sufficient for inducing mitochondrial network fragmentation through the mitochondrial recruitment and activation of dynamin-related protein 1 (Drp1), which is a critical regulator of mitochondrial fission within cells. Inhibition of Drp1-induced mitochondrial fission within VacA-intoxicated cells inhibited the activation of the proapoptotic Bcl-2–associated X (Bax) protein, permeabilization of the mitochondrial outer membrane, and cell death. Our data reveal a heretofore unrecognized strategy by which a pathogenic microbe engages the host's apoptotic machinery. PMID:21903925

  15. Quantum and Thermodynamic Properties of Spontaneous and Low-Energy Induced Fission of Nuclei

    SciTech Connect

    Kadmensky, S.G.

    2005-12-01

    It is shown that A. Bohr's concept of transition fission states can be matched with the properties of Coriolis interaction if an axisymmetric fissile nucleus near the scission point remains cold despite a nonadiabatic character of nuclear collective deformation motion. The quantum and thermodynamic properties of various stages of binary and ternary fission after the descent of a fissile nucleus from the outer saddle point are studied within quantum-mechanical fission theory. It is shown that two-particle nucleon-nucleon correlations--in particular, superfluid correlations--play an important role in the formation of fission products and in the classification of fission transitions. The distributions of thermalized primary fission fragments with respect to spins and their projections onto the symmetry axis of the fissile nucleus and fission fragments are constructed, these distributions determining the properties of prompt neutrons and gamma rays emitted by these fragments. A new nonevaporation mechanism of third-particle production in ternary fission is proposed. This mechanism involves transitions of third particles from the cluster states of the fissile-nucleus neck to high-energy states under effects of the shake-off type that are due to the nonadiabatic character of nuclear collective deformation motion.

  16. Calculation of 239Pu fission observables in an event-by-event simulation

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-03-31

    The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.

  17. Evaluation of the 239Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of 239Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  18. A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels

    NASA Astrophysics Data System (ADS)

    Rest, J.

    2004-03-01

    Irradiation-induced recrystallization appears to be a general phenomenon in that it is observed to occur in a variety of nuclear fuel types, e.g. U-xMo, UO2, and U3O8. For temperatures below that where significant thermal annealing of defects occurs, an expression is derived for the fission density at which irradiation-induced recrystallization is initiated that is athermal and weakly dependent on fission rate. The initiation of recrystallization is to be distinguished from the subsequent progression and eventual consumption of the original fuel grain. The formulation takes into account the observed microstructural evolution of the fuel, the role of precipitate pinning and fission gas bubbles, and the triggering event for recrystallization. The calculated dislocation density, fission gas bubble-size distribution, and fission density at which recrystallization first appears are compared to measured quantities.

  19. Drp1, Mff, Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis.

    PubMed

    Zhang, Zhenzhen; Liu, Lei; Wu, Shengnan; Xing, Da

    2016-01-01

    Mitochondrial fission and proteins vital to this process play essential roles in apoptosis. Several mitochondrial outer membrane proteins, including mitochondrial fission protein 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics of 51 kDa protein (MiD51), also known as mitochondrial elongation factor 1 (MEIF1), have been reported to promote mitochondrial fission by recruiting the GTPase dynamin-related protein 1 (Drp1). However, it remains unclear how these fission factors coordinate to control apoptotic mitochondrial fission. Molecular studies have suggested the existence of interaction between Mff and Drp1, but fundamental questions remain concerning their function. In the present study, we reported that the phosphorylation status of Drp1-Ser(637) was essential for its interaction with Mff. UV stimulation induced a decrease in cytoplasmic and mitochondrial Drp1 phosphorylation on Ser(637) and enhanced the interaction between Drp1 and Mff, resulting in mitochondrial fragmentation. Simultaneously, the interaction increased markedly between Fis1 and MiD51/MIEF1, whereas the interaction between Drp1 and MiD51/MIEF1 decreased significantly after UV irradiation, which suggests that Fis1 competitively binds to MiD51/MIEF1 to activate Drp1 indirectly. Moreover, Mff-Drp1 binding and Mff-mediated recruitment of Drp1 to mitochondria did not require Bax during UV stimulation. Our study revealed a novel role of Mff in regulation of mitochondrial fission and showed how the fission proteins are orchestrated to mediate the fission process during apoptosis.

  20. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe.

    PubMed

    Horváth, Eszter; Papp, Gábor; Belágyi, József; Gazdag, Zoltán; Vágvölgyi, Csaba; Pesti, Miklós

    2010-07-01

    Patulin is a toxic metabolite produced by various species of Penicillium, Aspergillus and Byssochlamys. In the present study, its effects on the plasma membrane of fission yeast Schizosaccharomyces pombe were investigated. The phase-transition temperature (G) of untreated cells, measured by electron paramagnetic resonance spectrometry proved to be 14.1 degrees C. Treatment of cells for 20 min with 50, 500, or 1000 microM patulin resulted in a decrease of the G value of the plasma membrane to 13.9, 10.1 or 8.7 degrees C, respectively. This change in the transition temperature was accompanied by the loss of compounds absorbing light at 260 nm. Treatment of cells with 50, 500 or 1000 microM patulin for 20 min induced the efflux of 25%, 30.5% or 34%, respectively, of these compounds. Besides its cytotoxic effects an adaptation process was observed. This is the first study to describe the direct interaction of patulin with the plasma membrane, a process which could definitely contribute to the adverse toxic effects induced by patulin.

  1. Investigation of Shell Effects in the Fusion-Fission Process in the Reaction 34S + 186W Near the Interaction Barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Kozulin, E. M.; Bogachev, A.; Dmitriev, S. N.; Itkis, J.; Knyazheva, G.; Loktev, T.; Novikov, K.; Vardaci, E.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.

    2015-06-01

    The reaction 34S + 186W at Elab = 160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays coincident with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. The coupling of the ORGAM and CORSET setups enables the FF-γ coincident measurement which offers the opportunity to extract the isotopic distribution of the fragments of different masses formed in the aforementioned reaction and to find the exact neutron multiplicity, the average spin and average angular momenta. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  2. Foxo3a inhibits mitochondrial fission and protects against doxorubicin-induced cardiotoxicity by suppressing MIEF2.

    PubMed

    Zhou, Luyu; Li, Ruibei; Liu, Cuiyun; Sun, Teng; Htet Aung, Lynn Htet; Chen, Chao; Gao, Jinning; Zhao, Yanfang; Wang, Kun

    2017-03-01

    Doxorubicin (DOX) as a chemotherapeutic drug is widely used to treat a variety of human tumors. However, a major factor limiting its clinical use is its cardiotoxicity. The molecular components and detailed mechanisms regulating DOX-induced cardiotoxicity remain largely unidentified. Here we report that Foxo3a is downregulated in the cardiomyocyte and mouse heart in response to DOX treatment. Foxo3a attenuates DOX-induced mitochondrial fission and apoptosis in cardiomyocytes. Cardiac specific Foxo3a transgenic mice show reduced mitochondrial fission, apoptosis and cardiotoxicity upon DOX administration. Furthermore, Foxo3a directly targets mitochondrial dynamics protein of 49kDa (MIEF2) and suppresses its expression at transcriptional level. Knockdown of MIEF2 reduces DOX-induced mitochondrial fission and apoptosis in cardiomyocytes and in vivo. Also, knockdown of MIEF2 protects heart from DOX-induced cardiotoxicity. Our study identifies a novel pathway composed of Foxo3a and MIEF2 that mediates DOX cardiotoxicity. This discovery provides a promising therapeutic strategy for the treatment of cancer therapy and cardioprotection.

  3. Angular momentum effects in multimodal fission of 226Th

    NASA Astrophysics Data System (ADS)

    Chubarian, G. G.; Hurst, B. J.; O'Kelly, D.; Schmitt, R. P.; Itkis, M. G.; Kondratiev, N. A.; Kozulin, E. M.; Oganessian, Yu. Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Rusanov, A. Ya.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttgé, L.

    1998-12-01

    The γ-rays from the multimodal fission of the 226Th formed in 18O+208Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, Esp*, ranged from 23 to 26 MeV. The average γ-ray multiplicities and relative γ-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region.

  4. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G.G.; Hurst, B.J.; OKelly, D.; Schmitt, R.P.; Itkis, M.G.; Kondratiev, N.A.; Kozulin, E.M.; Oganessian, Y.T.; Pashkevich, V.V.; Pokrovsky, I.V.; Salamatin, V.S.; Rusanov, A.Y.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttge, L.

    1998-12-01

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}{sup {asterisk}}, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region. {copyright} {ital 1998 American Institute of Physics.}

  5. Fission Measurements with Dance

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  6. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe

    PubMed Central

    1995-01-01

    Elevated levels of certain membrane proteins, including the sterol biosynthetic enzyme HMG-CoA reductase, induce proliferation of the endoplasmic reticulum. When the amounts of these proteins return to basal levels, the proliferated membranes are degraded, but the molecular details of this degradation remain unknown. We have examined the degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. In this yeast, increased levels of the Saccharomyces cerevisiae HMG-CoA reductase isozyme encoded by HMG1 induced several types of membranes, including karmellae, which formed a cap of stacked membranes that partially surrounded the nucleus. When expression of HMG1 was repressed, the karmellae detached from the nucleus and formed concentric, multilayered membrane whorls that were then degraded. During the degradation process, CDCFDA-stained compartments distinct from preexisting vacuoles formed within the interior of the whorls. In addition to these compartments, particles that contained neutral lipids also formed within the whorl. As the thickness of the whorl decreased, the lipid particle became larger. When degradation was complete, only the lipid particle remained. Cycloheximide treatment did not prevent the formation of whorls. Thus, new protein synthesis was not needed for the initial stages of karmellae degradation. On the contrary, cycloheximide promoted the detachment of karmellae to form whorls, suggesting that a short lived protein may be involved in maintaining karmellae integrity. Taken together, these results demonstrate that karmellae membranes differentiated into self-degradative organelles. This process may be a common pathway by which ER membranes are turned over in cells. PMID:7559789

  7. Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury

    PubMed Central

    Wang, Hui; Robichaux, William G.; Wang, Ziqing; Mei, Fang C.; Cai, Ming; Du, Guangwei; Chen, Ju; Cheng, Xiaodong

    2016-01-01

    Vascular smooth muscle cell (VSMC) activation in response to injury plays an important role in the development of vascular proliferative diseases, including restenosis and atherosclerosis. The aims of this study were to ascertain the physiological functions of exchange proteins directly activated by cAMP isoform 1 (Epac1) in VSMC and to evaluate the potential of Epac1 as therapeutic targets for neointima formation during vascular remodeling. In a mouse carotid artery ligation model, genetic knockdown of the Epac1 gene led to a significant reduction in neointima obstruction in response to vascular injury. Pharmacologic inhibition of Epac1 with an Epac specific inhibitor, ESI-09, phenocopied the effects of Epac1 null by suppressing neointima formation and proliferative VSMC accumulation in neointima area. Mechanistically, Epac1 deficient VSMCs exhibited lower level of PI3K/AKT signaling and dampened response to PDGF-induced mitochondrial fission and reactive oxygen species levels. Our studies indicate that Epac1 plays important roles in promoting VSMC proliferation and phenotypic switch in response to vascular injury, therefore, representing a therapeutic target for vascular proliferative diseases. PMID:27830723

  8. Feasibility of 99Mo production by proton-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Abbas, Kamel; Holzwarth, Uwe; Simonelli, Federica; Kozempel, Jan; Cydzik, Izabela; Bulgheroni, Antonio; Cotogno, Giulio; Apostolidis, Christos; Bruchertseifer, Frank; Morgenstern, Alfred

    2012-05-01

    The current global crisis in supply of the medical isotope generator 99Mo/99mTc has triggered much research into alternative non-reactor based production methods for 99Mo including innovative radionuclide production techniques using ion accelerators. A novel method is presented here that has thus far not been considered: 232Th is used as target material to produce carrier-free 99Mo for 99Mo/99mTc generators by proton-induced fission (232Th (p, f) 99Mo). The thick target yields of 99Mo are estimated as 3.6 MBq/μA·h and 21 MBq/μA·h for proton energies of 22 MeV and 40 MeV, respectively, energies that are available from many cyclotrons. With respect to 99Mo reactor based methods using uranium targets, the presented concept using 232Th does not pose proliferation concerns, transport of highly radioactive target materials can be reduced and unused cyclotron capacities could be exploited. Radiochemical target processing could be based on existing technologies of extraction of 99Mo from reactor irradiated 235U. The presented method could be used for co-production of other radioisotopes of medical interest such as 131I.

  9. Water-Soluble Coenzyme Q10 Reduces Rotenone-Induced Mitochondrial Fission.

    PubMed

    Li, Hai-Ning; Zimmerman, Mary; Milledge, Gaolin Z; Hou, Xiao-Lin; Cheng, Jiang; Wang, Zhen-Hai; Li, P Andy

    2017-02-11

    Parkinson's disease is a neurodegenerative disorder characterized by mitochondrial dysfunction and oxidative stress. It is usually accompanied by an imbalance in mitochondrial dynamics and changes in mitochondrial morphology that are associated with impaired function. The objectives of this study were to identify the effects of rotenone, a drug known to mimic the pathophysiology of Parkinson's disease, on mitochondrial dynamics. Additionally, this study explored the protective effects of water-soluble Coenzyme Q10 (CoQ10) against rotenone-induced cytotoxicity in murine neuronal HT22 cells. Our results demonstrate that rotenone elevates protein expression of mitochondrial fission markers, Drp1 and Fis1, and causes an increase in mitochondrial fragmentation as evidenced through mitochondrial staining and morphological analysis. Water-soluble CoQ10 prevented mitochondrial dynamic imbalance by reducing Drp1 and Fis1 protein expression to pre-rotenone levels, as well as reducing rotenone treatment-associated mitochondrial fragmentation. Hence, water-soluble CoQ10 may have therapeutic potential in treating patients with Parkinson's disease.

  10. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  11. In-beam Fission Study at JAEA

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  12. Induced Fission of 240Pu within a Real-Time Microscopic Framework

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; Stetcu, Ionel

    2016-03-01

    We describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  13. Induced Fission of (240)Pu within a Real-Time Microscopic Framework.

    PubMed

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J; Stetcu, Ionel

    2016-03-25

    We describe the fissioning dynamics of ^{240}Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  14. Induced fission of Pu240 within a real-time microscopic framework

    DOE PAGES

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; ...

    2016-03-25

    Here, we describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclearmore » dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).« less

  15. Ternary particles with extreme N/Z ratios from neutron-induced fission

    SciTech Connect

    Koster, U.; Faust, H.; Friedrichs, T.; Oberstedt, S.; Fioni, G.; Grob, M.; Ahmad, I. J.; Devlin, M.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Sarantites, D. G.; Siem, S.; Sobotka, L. G.; Sonzogni, A.

    2000-05-16

    The existing ternary fission models can well reproduce the yields of the most abundant light charged particles. However, these models tend to significantly overestimate the yields of ternary particles with an extreme N/Z ratio: {sup 3}He, {sup 11}Li, {sup 14}Be, etc. The experimental yields of these isotopes were investigated with the recoil separator LOHENGRIN down to a level of 10{sup {minus}10} per fission. Results from the fissioning systems {sup 233}U (n{sub th}, f), {sup 235}U(n{sub th},f), {sup 239}Pu(n{sub th},f) {sup 241}Pu(n{sub th},f) and {sup 245}Cm(n{sub th},f) are presented and the implications for the ternary fission models are discussed.

  16. Measurement of the Amm242 neutron-induced reaction cross sections

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2017-02-01

    The neutron-induced reaction cross sections of Amm242 were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known Amm242(n ,f ) cross section. The (n ,γ ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new Amm242 fission cross section was normalized to ENDF/B-VII.1 to set the absolute scale, and it agreed well with the (n ,f ) cross section reported by Browne et al. (1984) from thermal energy to 1 keV. The average absolute capture-to-fission ratio was determined from thermal energy to En=0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19 % from the ENDF/B-VII.1 evaluation.

  17. Measurement of the Am242m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  18. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy.

    PubMed

    Molina-Jijón, Eduardo; Aparicio-Trejo, Omar Emiliano; Rodríguez-Muñoz, Rafael; León-Contreras, Juan Carlos; Del Carmen Cárdenas-Aguayo, María; Medina-Campos, Omar Noel; Tapia, Edilia; Sánchez-Lozada, Laura Gabriela; Hernández-Pando, Rogelio; Reyes, José L; Arreola-Mendoza, Laura; Pedraza-Chaverri, José

    2016-11-12

    We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •(-) ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.

  19. Measurement of Neutron-Induced Fission Cross Sections of {sup 229}Th and {sup 231}Pa Using Linac-Driven Lead Slowing-Down Spectrometer

    SciTech Connect

    Kobayashi, Katsuhei; Yamamoto, Shuji; Lee, Samyol; Cho, Hyun-Je; Yamana, Hajimu; Moriyama, Hirotake; Fujita, Yoshiaki; Mitsugashira, Toshiaki

    2001-11-15

    Use is made of a back-to-back type of double fission chamber and an electron linear accelerator-driven lead slowing-down spectrometer to measure the neutron-induced fission cross sections of {sup 229}Th and {sup 231}Pa below 10 keV relative to that of {sup 235}U. A measurement relative to the {sup 10}B(n, {alpha}) reaction is also made using a BF{sub 3} counter at energies below 1 keV and normalized to the absolute value obtained by using the cross section of the {sup 235}U(n,f) reaction between 200 eV and 1 keV.The experimental data of the {sup 229}Th(n,f) reaction, which was measured by Konakhovich et al., show higher cross-section values, especially at energies of 0.1 to 0.4 eV. The data by Gokhberg et al. seem to be lower than the current measurement above 6 keV. Although the evaluated data in JENDL-3.2 are in general agreement with the measurement, the evaluation is higher from 0.25 to 5 eV and lower above 10 eV. The ENDF/B-VI data evaluated above 10 eV are also lower. The current thermal neutron-induced fission cross section at 0.0253 eV is 32.4 {+-} 10.7 b, which is in good agreement with results of Gindler et al., Mughabghab, and JENDL-3.2.The mean value of the {sup 231}Pa(n,f) cross sections between 0.37 and 0.52 eV, which were measured by Leonard and Odegaarden, is close to the current measurement. The evaluated data in ENDF/B-VI are lower below 0.15 eV and higher above {approx}30 eV. The ENDF/B-VI and the JEF-2.2 are extremely higher above 1 keV. The JENDL-3.2 data are in general agreement with the measurement, although they are lower above {approx}100 eV.

  20. Effect of electrical stimulation-induced resistance exercise on mitochondrial fission and fusion proteins in rat skeletal muscle.

    PubMed

    Kitaoka, Yu; Ogasawara, Riki; Tamura, Yuki; Fujita, Satoshi; Hatta, Hideo

    2015-11-01

    It is well known that resistance exercise increases muscle protein synthesis and muscle strength. However, little is known about the effect of resistance exercise on mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria exist as dynamic networks that are continuously remodeling through fusion and fission. The purpose of this study was to investigate the effect of acute and chronic resistance exercise, which induces muscle hypertrophy, on the expression of proteins related to mitochondrial dynamics in rat skeletal muscle. Resistance exercise consisted of maximum isometric contraction, which was induced by percutaneous electrical stimulation of the gastrocnemius muscle. Our results revealed no change in levels of proteins that regulate mitochondrial fission (Fis1 and Drp1) or fusion (Opa1, Mfn1, and Mfn2) over the 24-h period following acute resistance exercise. Phosphorylation of Drp1 at Ser616 was increased immediately after exercise (P < 0.01). Four weeks of resistance training (3 times/week) increased Mfn1 (P < 0.01), Mfn2 (P < 0.05), and Opa1 (P < 0.01) protein levels without altering mitochondrial oxidative phosphorylation proteins. These observations suggest that resistance exercise has little effect on mitochondrial biogenesis but alters the expression of proteins involved in mitochondrial fusion and fission, which may contribute to mitochondrial quality control and improved mitochondrial function.

  1. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2016-03-01

    Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  2. The use of the U(n,f) reaction dosimetry in the determination of the λf value through fission-track techniques

    NASA Astrophysics Data System (ADS)

    Guedes, S.; Hadler, J. C.; Iunes, P. J.; Zuñiga, A.; Tello, C. A.; Paulo, S. R.

    2003-01-01

    A new set of determinations of the decay constant for spontaneous fission of 238U, λf, using mica-uranium sandwich and thin films of natural uranium is presented. A value of λf=(8.37±0.17)×10 -17 a -1 has been determined. The use of uranium-based neutron dosimetry for the measurement of λf through fission-track techniques is discussed. Particularly, the λf measurement by Roberts et al. (Phys. Rev. 174 (1968) 4847), is analyzed, showing that the value obtained by these authors (7.03×10 -17 a -1) underestimated λf. It is concluded that the dosimetry based on U(n,f) reaction does not support a λf value around 7×10 -17 a -1 determined by various authors using mica-uranium sandwich.

  3. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission.

    PubMed

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L; Medin, Carey L

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication.

  4. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  5. Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  6. Systemic immunotoxicity reactions induced by adjuvanted vaccines.

    PubMed

    Batista-Duharte, Alexander; Portuondo, Deivys; Pérez, O; Carlos, Iracilda Zeppone

    2014-05-01

    Vaccine safety is a topic of concern for the treated individual, the family, the health care personnel, and the others involved in vaccination programs as recipients or providers. Adjuvants are necessary components to warrant the efficacy of vaccines, however the overstimulation of the immune system is also associated with adverse effects. Local reactions are the most frequent manifestation of toxicity induced by adjuvanted vaccines and, with the exception of the acute phase response (APR), much less is known about the systemic reactions that follow vaccination. Their low frequency or subclinical expression meant that this matter has been neglected. In this review, various systemic reactions associated with immune stimulation will be addressed, including: APR, hypersensitivity, induction or worsening of autoimmune diseases, modification of hepatic metabolism and vascular leak syndrome (VLS), with an emphasis on the mechanism involved. Finally, the authors analyze the current focus of discussion about vaccine safety and opportunities to improve the design of new adjuvanted vaccines in the future.

  7. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Perret, G.

    2011-04-01

    The LIFE@PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO 2 fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1σ uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2σ of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  8. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension.

    PubMed

    Tian, Lian; Neuber-Hess, Monica; Mewburn, Jeffrey; Dasgupta, Asish; Dunham-Snary, Kimberly; Wu, Danchen; Chen, Kuang-Hueih; Hong, Zhigang; Sharp, Willard W; Kutty, Shelby; Archer, Stephen L

    2017-04-01

    Right ventricular (RV) function determines prognosis in pulmonary arterial hypertension (PAH). We hypothesize that ischemia causes RV dysfunction in PAH by triggering dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. RV function was compared in control rats (n = 50) versus rats with monocrotaline-induced PAH (MCT-PAH; n = 60) both in vivo (echocardiography) and ex vivo (RV Langendorff). Mitochondrial membrane potential and morphology and RV function were assessed before or after 2 cycles of ischemia-reperfusion injury challenge (RV-IR). The effects of Mdivi-1 (25 μM), a Drp1 GTPase inhibitor, and P110 (1 μM), a peptide inhibitor of Drp1-Fis1 interaction, were studied. We found that MCT caused RV hypertrophy, RV vascular rarefaction, and RV dysfunction. Prior to IR, the mitochondria in MCT-PAH RV were depolarized and swollen with increased Drp1 content and reduced aconitase activity. RV-IR increased RV end diastolic pressure (RVEDP) and mitochondrial Drp1 expression in both control and MCT-PAH RVs. IR depolarized mitochondria in control RV but did not exacerbate the basally depolarized MCT-PAH RV mitochondria. During RV IR mdivi-1 and P110 reduced Drp1 translocation to mitochondria, improved mitochondrial structure and function, and reduced RVEDP. In conclusion, RV ischemia occurs in PAH and causes Drp1-Fis1-mediated fission leading to diastolic dysfunction. Inhibition of mitochondrial fission preserves RV function in RV-IR.

  9. Asymmetries of various P- and T-parities in angular distributions of products of cold-polarized-neutron-induced binary and ternary fission of oriented nuclei and T-invariance

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.; Kostryukov, P. V.

    2016-09-01

    It is shown that a quantum system whose Hamiltonian is independent of time is T -invariant if this Hamiltonian contains only those terms that do not change sign upon time reversal. It is also shown that the coincidence of the amplitudes for multistep direct and statistical nuclear reactions with the timereversed amplitudes for the reactions being studied is a condition that ensures the T -invariance of the amplitudes in question, the transition from the original amplitudes to their time-reversed counterparts being accomplished, first, upon introducing the inverse-reactionmatrices T instead of the original-reaction matrix T and, second, upon replacing the wave functions for the initial, final, and intermediate states of the system by the respective time-reversed functions. It is found that the T -even ( T -odd) asymmetries in cross sections for nuclear reactions stem from the interference between the amplitudes characterizing these reactions and having identical (opposite) T -parities. It is shown that the T -invariance condition for the above T -even ( T -odd) asymmetries is related to the conservation of (change in) the sign of these asymmetries upon going over from original to inverse nuclear reactions. Mechanisms underlying the appearance of possible T -even and T-odd asymmetries in the cross sections for the cold-polarizedneutron- induced binary and ternary fission of oriented target nuclei are analyzed for the case of employing T -invariant Hamiltonians for the systems under study. It is also shown that the asymmetries in question satisfy the T -invariance condition if the reactions being considered have a sequential multistep statistical character. It is concluded that T -invariance is violated in the limiting case where, in ternary nuclear fission, the emission of a light third particle froma fissile compound nucleus formed upon incident-neutron capture by a target nucleus and its separation to two fission fragments are simultaneous events.

  10. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  11. Calibration factors for determination of relativistic particle induced fission rates in natU, 235U, 232Th, natPb and 197Au foils

    NASA Astrophysics Data System (ADS)

    Hashemi-Nezhad, S. R.; Zhuk, Igor; Potapenko, A.; Kievets, M.; Krivopustov, M. I.

    2012-02-01

    Calibration factors w, for determination of fission rate in metallic foils of natU, 235U, 232Th, natPb and 197Au were determined for foils in contact with synthetic mica track detectors. Proton-induced fission at proton energies of 0.7 GeV and 1.5 GeV were used. Using our experimental results as well as those of the other authors, w for different foil-mica systems were determined. Two methods were used to calculate w, relative to the calibration factor for uranium-mica system, which has been obtained in a standard neutron field of energy 14.7 MeV. One of these methods requires the knowledge of the mean range of the fission fragments in the foils of interest and other method needs information on the values of the fission cross-sections at the required energies as well as the density of the tracks recorded in the track detectors in contact with the foil surfaces. The obtained w-values were compared with Monte Carlo calculations and good agreements were found. It is shown that a calibration factor obtained at low energy neutron induced fissions in uranium isotopes deviates only by less than 10% from those obtained at relativistic proton induced fissions.

  12. Fission and quasifission of composite systems with Z =108 -120 : Transition from heavy-ion reactions involving S and Ca to Ti and Ni ions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.

    2016-11-01

    Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.

  13. Role of dynamical effects in the formation of T-Odd asymmetries for products of polarized-neutron-induced ternary fission of nuclei

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2015-07-01

    Basic dynamical effects that accompany the cold-polarized-neutron-induced binary and ternary fission of actinide nuclei and which determine the properties of T -odd asymmetries in angular distributions of various prescission and evaporated light third particles emitted in true and delayed ternary fission are analyzed on the basis of quantum-mechanical fission theory. It is emphasized that effects associated with the conservation of axial symmetry of the fissioning system under study at all stages of its evolution from the formation of neutron resonance states of the fissile compound nucleus to the separation of its fission fragments, including the appearance of zero wriggling vibrations of the cold compound nucleus in the vicinity of its scission point, are of particular importance, the influence of quantum collective rotation of the polarized fissile system on the asymmetry of the angular distribution of both fission fragments and third particles being taken into account. It is shown that the difference in the behavior of the coefficients characterizing the T -odd asymmetries under analysis for the target nuclei being studied can be explained, upon taking into account the interference between the fission amplitudes for the neutron resonance states of fissile compound nuclei, by the difference in the contributions of even and odd components of the amplitudes of angular distributions of third particles to the coefficients in question.

  14. Role of dynamical effects in the formation of T-Odd asymmetries for products of polarized-neutron-induced ternary fission of nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2015-07-15

    Basic dynamical effects that accompany the cold-polarized-neutron-induced binary and ternary fission of actinide nuclei and which determine the properties of T -odd asymmetries in angular distributions of various prescission and evaporated light third particles emitted in true and delayed ternary fission are analyzed on the basis of quantum-mechanical fission theory. It is emphasized that effects associated with the conservation of axial symmetry of the fissioning system under study at all stages of its evolution from the formation of neutron resonance states of the fissile compound nucleus to the separation of its fission fragments, including the appearance of zero wriggling vibrations of the cold compound nucleus in the vicinity of its scission point, are of particular importance, the influence of quantum collective rotation of the polarized fissile system on the asymmetry of the angular distribution of both fission fragments and third particles being taken into account. It is shown that the difference in the behavior of the coefficients characterizing the T -odd asymmetries under analysis for the target nuclei being studied can be explained, upon taking into account the interference between the fission amplitudes for the neutron resonance states of fissile compound nuclei, by the difference in the contributions of even and odd components of the amplitudes of angular distributions of third particles to the coefficients in question.

  15. Measurement of neutron-induced reactions on 242mAm

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  16. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    SciTech Connect

    Manning, Brett

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  17. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  18. Late-time emission of prompt fission γ rays

    SciTech Connect

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; Lestone, John Paul; McKigney, Edward Allen; Chadwick, Mark Benjamin

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.

  19. Theory of photon and electron induced reactions

    SciTech Connect

    Onley, D.S.; Wright, L.E.

    1992-01-01

    During the first year and half of the current grant from the Department of Energy we have made considerable progress on the following aspects of the general investigation of electron and photon induced reactions: (1) photo- and electro-production of mesons; (2) Coulomb distortion effects on (e,e{prime}{gamma}) and (e,e{prime}) and (e,e{prime}p) in the quasi-elastic region, (3) studies involving the relativistic shell model, and (4) quark models. We will report on each of these developments in this paper.

  20. Fission cross section calculations of actinides with EMPIRE code

    SciTech Connect

    Sin, M.; Oblozinsky, P.; Herman,M.; Capote,R.

    2010-04-30

    The cross sections of the neutron induced reactions on {sup 233,234,236}U, {sup 237}Np, {sup 238,242}Pu, {sup 241,243}Am, {sup 242,246}Cm carried out in the energy range 1 keV-20 MeV with EMPIRE code are presented, emphasizing the fission channel. Beside a consistent, accurate set of evaluations, the paper contains arguments supporting the choice of the reaction models and input parameters. A special attention is paid to the fission parameters and their uncertainties.

  1. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    SciTech Connect

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  2. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  3. Constraining the level density using fission of lead projectiles

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  4. Neutrino-induced reactions on nuclei

    NASA Astrophysics Data System (ADS)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  5. Reaction induced fractures in 3D

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders

    2014-05-01

    The process of fracture formation due to volume changing processes has been studied numerically in a variety of different settings, e.g. fracture initiation in general volume increasing reactions by Ulven et al.[4], weathering of dolerites by Røyne et al.[2], and volume reduction during chemical decomposition prosesses by Malthe-Sørenssen et al.[1]. Common to many previous works is that the simulations were performed in a 2D setting, due to computational limitations. Fractures observed both in field studies and in experiments are in many cases three dimensional. It remains an open question in what cases the simplification to 2D systems is applicable, and when a full 3D simulation is necessary. In this study, we use a newly developed 3D code combining elements from the discrete element model (DEM) with elements from Peridynamics[3]. We study fracture formation in fully three dimensional simulations, and compare them with simulation results from 2D DEM, thus gaining insight in both qualitative and quantitative differences between results from 2D and 3D simulations. References [1] Malthe-Sørenssen, A., Jamtveit, B., and Meakin, P., 'Fracture Patterns Generated by Diffusion Controlled Volume Changing Reactions,' Phys. Rev. Lett. 96, 2006, pp. 245501-1 - 245501-4. [2] Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., 'Controls on rock weathering rates by reaction-induced hierarchial fracturing,' Earth Planet. Sci. Lett. 275, 2008, pp. 364 - 369. [3] Silling, S. A., 'Reformulation of elasticity theory for discontinuities and long-range forces,' J. Mech. Phys. Solids, 48, Issue 1, 2000, pp. 175 - 209 [4] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A., 'Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration', Earth Planet. Sci. Lett. 389C, 2014, pp. 132 - 142.

  6. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  7. Fission Detection Using the Associated Particle Technique

    SciTech Connect

    R.P. Keegan, J.P. Hurley, J.R. Tinsley, R. Trainham, S.C. Wilde

    2008-09-18

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 107 neutrons/second radiated into a 4π solid angle. Two 4 in.×4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium.

  8. Role of nuclear dissipation and entrance channel mass asymmetry in pre-scission neutron multiplicity enhancement in fusion-fission reactions

    SciTech Connect

    Singh, Hardev; Sandal, Rohit; Behera, Bivash R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Ranjeet,; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2008-08-15

    Pre-scission neutron multiplicities are measured for {sup 12}C + {sup 204}Pb and {sup 19}F + {sup 197}Au reactions at laboratory energies of 75-95 MeV for the {sup 12}C beam and 98-118 MeV for the {sup 19}F beam. The chosen projectile-target combinations in the present study lie on either side of the Businaro-Gallone mass asymmetry ({alpha}{sub BG}) and populate the {sup 216}Ra compound nucleus. The dissipation strength is deduced after comparing the experimentally measured neutron yield with the statistical model predictions which contains the nuclear viscosity as a free parameter. Present results demonstrate the combined effects of entrance channel mass asymmetry and the dissipative property of nuclear matter on the pre-scission neutron multiplicity in fusion-fission reactions.

  9. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    PubMed

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion.

  10. Absolute cross section measurements of neutron-induced fission of 242Pu from 1 to 2.5 MeV

    NASA Astrophysics Data System (ADS)

    Matei, C.; Belloni, F.; Heyse, J.; Plompen, A. J. M.; Thomas, D. J.

    2017-02-01

    The absolute neutron-induced fission cross section of 242Pu was measured at five energies between 1 and 2.5 MeV at the low-scatter neutron measurement facility of the National Physical Laboratory, UK. The measurements are part of an effort to reduce uncertainties of nuclear data related to fast spectrum reactors. The neutron-induced fission results are in good agreement with the Evaluated Nuclear Data File/B-VII.1 but disagree with several recent measurements near the resonance-like structure around 1.1 MeV. Within the same experimental campaign, the spontaneous fission half-life of 242Pu was measured and it is in good agreement with previous results.

  11. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  12. Experimental Progress Report--Modernizing the Fission Basis

    SciTech Connect

    Macri, R A

    2012-02-17

    In 2010 a proposal (Modernizing the Fission Basis) was prepared to 'resolve long standing differences between LANL and LLNL associated with the correct fission basis for analysis of nuclear test data'. Collaboration between LANL/LLNL/TUNL has been formed to implement this program by performing high precision measurements of neutron induced fission product yields as a function of incident neutron energy. This new program benefits from successful previous efforts utilizing mono-energetic neutrons undertaken by this collaboration. The first preliminary experiment in this new program was performed between July 24-31, 2011 at TUNL and had 2 main objectives: (1) demonstrating the capability to measure characteristic {gamma}-rays from specific fission products; (2) studying background effects from room scattered neutrons. In addition, a new dual fission ionization chamber has been designed and manufactured. The production design of the chamber is shown in the picture below. The first feasibility experiment to test this chamber is scheduled at the TUNL Tandem Laboratory from September 19-25, 2011. The dual fission chamber design will allow simultaneous exposure of absolute fission fragment emission rate detectors and the thick fission activation foils, positioned between the two chambers. This document formalizes the earlier experimental report demonstrating the experimental capability to make accurate (< 2 %) precision gamma-ray spectroscopic measurements of the excitation function of high fission product yields of the 239Pu(n,f) reaction (induced by quasimonoenergetic neutrons). A second experiment (9/2011) introduced an compact double-sided fission chamber into the experimental arrangement, and so the relative number of incident neutrons striking the sample foil at each bombarding energy is limited only by statistics. (The number of incident neutrons often limits the experimental accuracy.) Fission chamber operation was so exceptional that 2 more chambers have been

  13. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    DOE PAGES

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmarkmore » calculations using this evaluation are briefly discussed.« less

  14. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    SciTech Connect

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; Kahler, Albert Comstock; Rising, Michael Evan; White, Morgan Curtis

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  15. Fission yield studies at the IGISOL facility

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V.; Saastamoinen, A.; Weber, C.; Äystö, J.

    2012-04-01

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future.

  16. Neutron-induced fission cross-section of 233U in the energy range 0.5 < En < 20 MeV

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Calviani, M.; Colonna, N.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martınez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2011-01-01

    The neutron-induced fission cross-section of 233U has been measured at the CERN n_TOF facility relative to the standard fission cross-section of 235U between 0.5 and 20MeV. The experiment was performed with a fast ionization chamber for the detection of the fission fragments and to discriminate against α -particles from the natural radioactivity of the samples. The high instantaneous flux and the low background of the n_TOF facility result in data with uncertainties of ≈ 3% , which were found in good agreement with previous experiments. The high quality of the present results allows to improve the evaluation of the 233U (n,f) cross-section and, consequently, the design of energy systems based on the Th/U cycle.

  17. Measurement of the neutron-induced fission cross-section of 241Am at the time-of-flight facility n_TOF

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Calviani, M.; Colonna, N.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tarrio, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2013-01-01

    The neutron-induced fission cross-section of 241Am has been measured relative to the standard fission cross-section of 235U between 0.5 and 20MeV. The experiment was performed at the CERN n_TOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the α-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the n_TOF facility enabled us to obtain uncertainties of ≈ 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up.

  18. Scaling laws, transient times and shell effects in helium induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, Kexing; Moretto, L.G.; Phair, L.; Tso, Kin; Wozniak, G.J.

    1996-02-01

    Fission excitation functions are analyzed and discussed according to a method which allows one to check the validity of the transition state rate predictions over a large range of excitation energies and a regime of compound nuclei masses characterized by strong shell effects. Once these shell effects are accounted for, no deviation from transition state rates can be observed. Furthermore, shell effects can be determined directly from the experiment by using the above described procedure. In contrast to the standard method, there is no need to include liquid drop model calculations. Finally, plotting the quantity R{sub f} allows one to search for evidence of transition times (discussed in a series of papers): our results set an upper limit of 10{sup {minus}20} seconds.

  19. Confinement-induced orbital breathing, fusion, fission and re-ordering in semifilled shell atoms

    NASA Astrophysics Data System (ADS)

    Dolmatov, V. K.

    2013-05-01

    Alternate contraction and drastic expansion, i.e., ‘breathing’ of electronic subshells, the effects of the fusion of two subshells into one subshell and its subsequent fission (splitting) into the original subshells, as well as multiple alteration of the order of subshells in confined semifilled shell atoms with a progressively narrowing confinement are theoretically discovered. The confinement is represented by a repulsive penetrable spherical potential of an inner radius r0. The effects are exemplified by calculated data for confined semifilled shell atoms from the second, third and fourth rows of Mendeleev's table—Li, N, P and Cr atoms with semifilled 2s1, 2p3, 3p3 and 3d5 subshells, respectively—for the completeness of the study. The underlying physics behind the discovered effects is explained.

  20. Fission fragment angular distributions in pre-actinide nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between

  1. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  2. Neutron Emission in Fission And Quasi-Fission of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttge, L.

    2010-04-30

    Mass and energy distributions of fission-like fragments obtained in the reactions {sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to the formation of {sup 266,274}Hs are reported. From the analysis of TKE distributions for symmetric fragment it was found that at energies below the Coulomb barrier the bimodal fission of {sup 274}Hs, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed, while in the reaction {sup 36}S+{sup 238}U at these energies the main part of the symmetric fragments arises from the quasi-fission process. At energies above the Coulomb barrier the fusion-fission is a main process leading to the formation of symmetric fragment for the both reactions. In the case of {sup 58}Fe+{sup 208}Pb reaction the quasi-fission process is the main reaction mechanism at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for all studied reactions.

  3. Epidemiology of cutaneous drug-induced reactions.

    PubMed

    Naldi, L; Crotti, S

    2014-04-01

    Cutaneous reactions represent in many surveillance systems, the most frequent adverse events attributable to drugs. The spectrum of clinical manifestations is wide and virtually encompasses any known dermatological disease. The introduction of biological agents and so-called targeted therapies has further enlarged the number of reaction patterns especially linked with cytokine release or in balance. The frequency and clinical patterns of cutaneous reactions are influenced by drug use, prevalence of specific conditions (e.g., HIV infection) and pharmacogenetic traits of a population, and they may vary greatly among the different populations around the world. Studies of reaction rates in cohorts of hospitalized patients revealed incidence rates ranging from, 1 out 1000 to 2 out 100 of all hospitalized patients. For drugs such as aminopenicillines and sulfamides the incidence of skin reactions is in the order of 3-5 cases out of 100 exposed people. Although the majority of cutaneous reactions are mild and self-limiting, there are reactions such as Stevens Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) which are associated with significant morbidity and mortality. Surveillance systems routed on sound epidemiologic methodology, are needed to raise signals and to assess risks associated with specific reactions and drug exposures. Identification of risk factors for adverse reactions and appropriate genetic screening of groups at higher risk may improve the outcomes of skin reactions.

  4. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  5. Multi-channel probes to understand fission dynamics

    SciTech Connect

    Mosby, Shea Morgan

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fission output channels.

  6. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions

    PubMed Central

    Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse

  7. Possible error-prone repair of neoplastic transformation induced by fission-spectrum neutrons

    SciTech Connect

    Hill, C.K.; Han, A.; Elkind, M.M.

    1983-07-18

    We have examined the effect of fission-spectrum neutrons from the JANUS reactor at Argonne National Laboratory, delivered either as acute or protracted irradiation, on the incidence of neoplastic transformation in the C3H 1OT1/2 mouse embryo cell line. Acute exposures were delivered at 10 to 38 rads/min, protracted exposures at 0.086 or 0.43 rad/min. The total doses for both ranged from 2.4 to 350 rads. In the low dose region (2.4 to 80 rads), there was a large enhancement in transformation frequency when the neutrons were delivered at the low dose rates compared with the high dose rates, but the survival of the cells was not significantly different between the two exposure conditions. Analysis of the initial parts of the curves shows that the regression line for protracted doses is about 9 times steeper than that for single acute exposures. Finally, the possibility is discussed that an error-prone repair process may be causing the enhanced transformation frequency by protracted neutron exposures. 12 references, 2 figures, 1 table.

  8. Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Neukirch, Amanda J.; Prezhdo, Oleg V.

    2013-10-01

    The size and temperature dependence of the pure-dephasing processes involved in luminescence, multiple exciton generation (MEG), and multiple exciton fission (MEF) are investigated for Sin clusters (n = 5-10, 15) using ab initio molecular dynamics and optical response function theory. The cluster bandgaps correlate with two types of binding energy, indicating that bandgaps can be used to characterize cluster stability. Ranging from 5 to 100 fs, the dephasing times are found to be longest for MEF and shortest for MEG, with luminescence falling in the middle range. Generally, the dephasing is fast, if the orbitals supporting the pair of states involved in the superpositions differ in energy, atomic localization, and number of nodes. The dephasing accelerates with temperature, because more phonon modes are activated, and lower frequency acoustic modes are able to explore the anhamonic part of the potential energy surface. The temperature dependence is stronger for larger clusters, since they possess a wider range of low-frequency anharmonic modes. Our research indicates that rapid dephasing in Si clusters favors generation of independent charge carriers from single and multiple excitons, making the clusters a promising material for photon energy conversion. The simulations of the dephasing processes reported in this work assist in understanding of the exciton evolution pathways in inorganic semiconductor clusters and other nanoscale materials.

  9. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  10. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  11. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  12. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  13. Pediatric bupropion-induced serum sicknesslike reaction.

    PubMed

    Hack, Sabine

    2004-01-01

    This reports the first 2 cases of serum sicknesslike reaction to bupropion in children (age 12 and 14). Serum sicknesslike reactions are an example of immune-complex medicated disease. The cardinal symptoms of serum sickness are fever, lymphadenopathy, arthralgias or arthritis, and urticaria. Symptoms usually resolve without long-term sequela following discontinuation of the exogenous antigen. It is likely that serum sicknesslike reactions to bupropion are either relatively rare or underrecognized and underreported. Between May 1998 and May 2001, GlaxoSmith Kline received 172 reports of seizures (a well-known adverse drug reaction) and only 37 reports of serum sicknesslike reactions (Wooltorton 2002). We do not know if children and adolescents are more prone than adults to develop serum sicknesslike reactions to bupropion. Luckily, the reported cases of serum sicknesslike reactions to bupropion have not caused irreversible morbidity or mortality. Nevertheless, the symptoms are painful, temporarily disfiguring and disabling, and warrant prompt medical attention. Parents and patients should be educated about this potential side effect at the onset of treatment, because symptoms are similar to many infectious childhood illnesses, and the treatment of serum sicknesslike reactions to bupropion should include the discontinuation of bupropion.

  14. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    DOE PAGES

    Neudecker, D.; Talou, P.; Kawano, T.; ...

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.« less

  15. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    SciTech Connect

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  16. Electron-induced hydration of an alkene: alternative reaction pathways.

    PubMed

    Warneke, Jonas; Wang, Ziyan; Swiderek, Petra; Bredehöft, Jan Hendrik

    2015-03-27

    Electron-induced reactions in condensed mixtures of ethylene and water lead to the synthesis of ethanol, as shown by post-irradiation thermal desorption spectrometry (TDS). Interestingly, this synthesis is not only induced by soft electron impact ionization similar to a previously observed electron-induced hydroamination but also, at low electron energy, by electron attachment to ethylene and a subsequent acid/base reaction with water.

  17. Indirect Methods for Nuclear Reaction Data

    SciTech Connect

    Escher, J E; Dietrich, F S

    2005-11-18

    Several indirect approaches for obtaining reaction cross sections are briefly reviewed. The Surrogate Nuclear Reactions method, which aims at determining cross sections for compound-nuclear reactions, is discussed in some detail. The validity of the Weisskopf-Ewing approximation in the Surrogate approach is studied for the example of neutron-induced fission of an actinide nucleus.

  18. Excitation Energy Deposition and the Fission Process in the Reactions COPPER-63 + MOLYBDENUM-92, 100 AT 10, 17, 25 and 35 Amev and NEON-20 + SAMARIUM-144, 148, 154 AT 20 Amev.

    NASA Astrophysics Data System (ADS)

    Lou, Yunian

    Excitation energy deposition and light particle emission for fissioning nuclei with excitation energies from 2 to 6 MeV/nucleon are studied for the reaction of 20 AMeV ^{20}Ne with ^{144,148,154}Sm and 10, 17, 25 and 35 AMeV ^{63}Cu with ^{92,100}Mo using the Texas A&M Neutron Ball detector. Linear momentum transfers (LMT) are determined from fission fragment folding angle measurements and used to estimate excitation energies. The associated multiplicities of neutrons, protons and alpha particles are obtained, together with their average energies. These data are used to reconstruct the initial excitation energies of the compound nucleus. With increasing beam energy, an increasing discrepancy between the excitation energy derived from the LMT measurements and the reconstructed one is observed attributed to intermediate mass fragment (IMF) emission. The measured neutron multiplicities show a strong increase with increasing neutron to proton ratio of composite system, as well as increasing beam energy. The experimental data for particle multiplicities are compared with calculations using the statistical model GEMINI. The effect of the dynamic fission delay on the light particle multiplicities is explored. The neutron multiplicities are relatively insensitive to the dynamic fission delay. The calculated charged particle multiplicities are more sensitive, but the comparisons between the calculation and experiment indicate that the light charged particle multiplicity data are not a good measure of dynamic fission delay.

  19. Erythropoietin-induced iritis-like reaction.

    PubMed

    Beiran, I; Krasnitz, I; Mezer, E; Meyer, E; Miller, B

    1996-01-01

    The present report describes an iritis-like reaction found in 13 patients treated with recombinant human erythropoietin (Eprex), a drug given to hemodialysis patients for their chronic anemia. Among 120 patients being treated by hemodialysis in two centers affiliated with our medical center, ten out of 30 Eprex-treated patients but none of 90 not being treated with Eprex developed this reaction. The observations described support a causal relation between Eprex treatment and the iritis-like reaction. Further investigative effort is needed to establish the mechanism.

  20. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  1. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  2. Reactions of buffers in cyanogen bromide-induced ligations.

    PubMed

    Vogel, Heike; Gerlach, Claudia; Richert, Clemens

    2013-01-01

    Rapid, template-directed ligation reactions between a phosphate-terminated oligonucleotide and an unphosphorylated reaction partner may be induced by cyanogen bromide (BrCN). Frequently, however, the reaction is low yielding, and even a large excess of the condensing agent can fail to induce quantitative conversions. In this study, we used BrCN to induce chemical primer extension reactions. Here, we report that buffers containing hydroxyl groups react with short oligodeoxynucleotides in the presence of BrCN. One stable adduct between HEPBS buffer and cytosine was characterized by mass spectrometry and NMR after HPLC purification, indicating that a side reaction occurred at this nucleobase. Further, a first example of a primer extension reaction between an unmodified oligodeoxynucleotide as primer and dGMP is reported. Together, our results shed light on the potency, as well as the drawbacks of BrCN as a highly reactive condensing reagent for the ligation of unmodified nucleic acids.

  3. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol.

    PubMed

    Breckenridge, David G; Stojanovic, Marina; Marcellus, Richard C; Shore, Gordon C

    2003-03-31

    Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731-6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8-induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.

  4. First inverse-kinematics fission measurements in a gaseous active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Farget, F.; Acosta, L.; Alvarez-Pol, H.; Babo, M.; Boulay, F.; Caamaño, M.; Damoy, S.; Fernández-Domínguez, B.; Galaviz, D.; Grinyer, G. F.; Grinyer, J.; Harakeh, M. N.; Konczykowski, P.; Martel, I.; Pancin, J.; Randisi, G.; Renzi, F.; Roger, T.; Sánchez-Benítez, A. M.; Teubig, P.; Vandebrouck, M.

    2017-02-01

    The fission of a variety of actinides was induced by fusion and transfer reactions between a 238U beam and 12C nuclei, in the active target MAYA. The performance of MAYA was studied, as well as its capability to reconstruct the fission-fragment trajectories. Furthermore, a full characterization of the different transfer reactions was achieved, and the populated excitation-energy distributions were investigated as a function of the kinetic energy in the entrance channel. The ratio between transfer- and fusion-induced fission cross-sections was also determined, in order to investigate the competition between both reaction types and its evolution with the incident energy. The experimental results will be discussed with a view to forthcoming radioactive-ion beam facilities, and next-generation active-target setups.

  5. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  6. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission.

    PubMed

    Mattila, Juha-Pekka; Shnyrova, Anna V; Sundborger, Anna C; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E; Schmid, Sandra L; Frolov, Vadim A

    2015-08-06

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate, characterized by a 'stalk' in which only the outer membrane monolayers of the two compartments have merged to form a localized non-bilayer connection. Formation of the hemi-fission intermediate requires energy input from proteins catalysing membrane remodelling; however, the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analysed how the GTPase cycle of human dynamin 1, the prototypical membrane fission catalyst, is directly coupled to membrane remodelling. We used intramolecular chemical crosslinking to stabilize dynamin in its GDP·AlF4(-)-bound transition state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fuelled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent, drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction, the force bimodality might constitute a general paradigm for leakage-free membrane remodelling.

  7. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission

    PubMed Central

    Sundborger, Anna C.; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E.; Schmid, Sandra L.; Frolov, Vadim A.

    2015-01-01

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate1,2, characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection1-3. Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analyzed how the GTPase cycle of dynamin, the prototypical membrane fission catalyst4-6, is directly coupled to membrane remodeling. We used intra-molecular chemical cross-linking to stabilize dynamin in its GDP•AlF4--bound transition-state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fueled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction7-8, the force bimodality might constitute a general paradigm for leakage-free membrane remodeling. PMID:26123023

  8. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Gorelov, D.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Parkkonen, J.; Peräjärvi, K.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V. A.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Äystö, J.

    2016-04-01

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {}^{nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {}^{nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution.

  9. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  10. Ofloxacin Induced Cutaneous Reactions in Children.

    PubMed

    Ramani, Yerramalli Roja; Mishra, Sailen Kumar; Rath, Bandana; Rath, Saroj Sekhar

    2015-06-01

    Cutaneous adverse effects to antimicrobials are a major health problem. Though majority of them are mild and self-limiting, severe variants like Steven Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) are not uncommon. Ofloxacin, a fluoroquinolone widely used for the treatment of urinary tract infections, acute bacterial diarrheas, enteric fever, STDs and other soft tissue infections either as a single drug or in combination with other drugs. Earlier a case of mucocutaneous maculopapular rash with oral ofloxacin and was reported in an adult. In the present hospital set up there were few reports of such reactions to adults. Here we report three different variants of reactions associated with oral ofloxacin in chlidren. Early detection of cutaneous lesions and immediate withdrawal of the offending drug can prevent progression of such reactions to their severe variants as well as morbidity and mortality.

  11. 3-Nitropropionic acid induces autophagy by forming mitochondrial permeability transition pores rather than activatiing the mitochondrial fission pathway

    PubMed Central

    Solesio, Maria E; Saez-Atienzar, Sara; Jordan, Joaquin; Galindo, Maria F

    2013-01-01

    BACKGROUND AND PURPOSE Huntington's disease is a neurodegenerative process associated with mitochondrial alterations. Inhibitors of the electron–transport channel complex II, such as 3-nitropropionic acid (3NP), are used to study the molecular and cellular pathways involved in this disease. We studied the effect of 3NP on mitochondrial morphology and its involvement in macrophagy. EXPERIMENTAL APPROACH Pharmacological and biochemical methods were used to characterize the effects of 3NP on autophagy and mitochondrial morphology. SH-SY5Y cells were transfected with GFP-LC3, GFP-Drp1 or GFP-Bax to ascertain their role and intracellular localization after 3NP treatment using confocal microscopy. KEY RESULTS Untreated SH-SY5Y cells presented a long, tubular and filamentous net of mitochondria. After 3NP (5 mM) treatment, mitochondria became shorter and rounder. 3NP induced formation of mitochondrial permeability transition pores, both in cell cultures and in isolated liver mitochondria, and this process was inhibited by cyclosporin A. Participation of the mitochondrial fission pathway was excluded because 3NP did not induce translocation of the dynamin-related protein 1 (Drp1) to the mitochondria. The Drp1 inhibitor Mdivi-1 did not affect the observed changes in mitochondrial morphology. Finally, scavengers of reactive oxygen species failed to prevent mitochondrial alterations, while cyclosporin A, but not Mdivi-1, prevented the generation of ROS. CONCLUSIONS AND IMPLICATIONS There was a direct correlation between formation of mitochondrial permeability transition pores and autophagy induced by 3NP treatment. Activation of autophagy preceded the apoptotic process and was mediated, at least partly, by formation of reactive oxygen species and mitochondrial permeability transition pores. LINKED ARTICLE This article is commented on by González-Polo et al., pp. 60–62 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02203.x PMID

  12. Fission at intermediate nucleon energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2014-07-01

    In the present work Monte Carlo calculations of fission of actinides and pre- actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with different evaporation-fission codes, in particular GEMINI++ and ABLA07. Fission model parameters are adjusted on experimental (p, f) cross sections and used to predict (n, f) cross sections, in order to provide a theoretical support to the campaign of neutron cross section measurements at the n_TOF facility at CERN.

  13. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    DOE PAGES

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; ...

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with themore » improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.« less

  14. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    SciTech Connect

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; Lee, Hye Young; White, Morgan Curtis; Rising, Michael Evans

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.

  15. The Need for Precise and Well-documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission of {sup 239}Pu

    SciTech Connect

    Neudecker, D. Taddeucci, T.N.; Haight, R.C.; Lee, H.Y.; White, M.C.; Rising, M.E.

    2016-01-15

    The spectrum of neutrons emitted promptly after {sup 239}Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the {sup 239}Pu PFNS as a ratio to either the {sup 235}U or {sup 252}Cf PFNS.

  16. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  17. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms.

    PubMed

    Sameera, W M C; Kumar Sharma, Akhilesh; Maeda, Satoshi; Morokuma, Keiji

    2016-10-01

    Nowadays, computational studies are very important for the elucidation of reaction mechanisms and selectivity of complex reactions. However, traditional computational methods usually require an estimated reaction path, mainly driven by limited experimental implications, intuition, and assumptions of stationary points. However, the artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy can be used for unbiased and automatic reaction path searches for complex reactions. In this account, we highlight applications of the AFIR method to a variety of reactions (organic, organometallic, enzymatic, and photochemical) of complex molecular systems. In addition, the AFIR method has been successfully used to rationalise the origin of stereo- and regioselectivity. The AFIR method can be applied from small to large molecular systems, and will be a very useful tool for the study of complex molecular problems in many areas of chemistry, biology, and material sciences.

  18. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  19. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  20. Potential Energy Calculations for Collinear Cluster Tripartition Fission Events

    NASA Astrophysics Data System (ADS)

    Unzhakova, A. V.; Pashkevich, V. V.; Pyatkov, Y. V.

    2014-09-01

    Strutinsky shell correction calculations were performed to describe the recent experimental results on collinear ternary fission. Collinear Cluster Tripartion fission events were studied experimentally in neutron induced fission of 235U, where the missing mass in the detected binary decay was suggested to characterize fission event as a collinear tripartition; and in spontaneous fission of 252Cf, where the direct detection of the three fission fragments has been used to confirm the existence of the Collinear Cluster Tripartition channel with a probability of 4.7×10-3 relative to the binary fission events.

  1. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  2. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  3. Freshly induced short-lived gamma-ray activity as a measure of fission rates in lightly re-irradiated spent fuel

    NASA Astrophysics Data System (ADS)

    Kröhnert, H.; Perret, G.; Murphy, M. F.; Chawla, R.

    2010-12-01

    A new measurement technique has been developed to determine fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. The development has been made in the frame of the LIFE@PROTEUS program at the Paul Scherrer Institute, which aims at characterizing the interfaces between fresh and highly burnt fuel assemblies in modern LWRs. To discriminate against the high intrinsic gamma-ray activity of the burnt fuel, the proposed measurement technique uses high-energy gamma-rays, above 2000 keV, emitted by short-lived fission products freshly produced in the fuel. To demonstrate the feasibility of this technique, a fresh UO 2 sample and a 36 GWd/t burnt UO 2 sample were irradiated in the PROTEUS reactor and their gamma-ray activities were recorded directly after irradiation. For both fresh and the burnt fuel samples, relative fission rates were derived for different core positions, based on the short-lived 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV) and 95Y (3576 keV) gamma-ray lines. Uncertainties on the inter-position fission rate ratios were mainly due to the uncertainties on the net-area of the gamma-ray peaks and were about 1-3% for the fresh sample, and 3-6% for the burnt one. Thus, for the first time, it has been shown that the short-lived gamma-ray activity, induced in burnt fuel by irradiation in a zero-power reactor, can be used as a quantitative measure of the fission rate. For both fresh and burnt fuel, the measured results agreed, within the uncertainties, with Monte Carlo (MCNPX) predictions.

  4. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  5. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    SciTech Connect

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses $\\overline{A}_L$/$\\overline{A}_H$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$\\overline{A}_L$/$\\overline{A}_H$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  6. The Microscopic Theory of Fission

    SciTech Connect

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  7. Fission meter

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  8. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  9. Laser-induced reactions in energetic materials

    NASA Astrophysics Data System (ADS)

    Ling, Ping

    1999-07-01

    Several energetic materials have been investigated under shock wave loading, heating, and photodissociation. This dissertation highlights some efforts to understand energetic material from an angle of basic physical processes and elementary chemical reactions. The first series of experiments was performed to study laser-generated shock waves in energetic materials. Shock waves are generated by pulsed laser vaporization of thin aluminum films. The rapidly expanding aluminum plasma launches a shock wave into the adjacent layer of energetic material, initiating chemical reactions. The shock velocity has been measured by a velocity interferometer. Shock pressures as high as 8 GPa have been generated in this manner. A simple model is proposed to predict laser-generated shock pressure. Several energetic materials have been studied under laser- generated shock wave. The second series of experiments was conducted to study thermal decomposition and photodissociation of energetic materials. Glycidyl azide polymer (GAP) and poly(glycidyl nitrate) (PGN) have been investigated by pulsed infrared laser pyrolysis and ultraviolet laser photolysis of thin films at 17-77 K. Reactions are monitored by transmission infrared spectroscopy. Photolysis of GAP at 266 nm shows that the initial reaction steps are elimination of molecular nitrogen with subsequent formation of imines. Thermal decomposition of GAP by infrared laser pyrolysis reveals products similar to the UV experiments after warming. Laser pyrolysis of PGN indicated that the main steps of decomposition are elimination of NO2 and CH2O from the nitrate ester functional group. It seems that the initial thermal decomposition mechanism of GAP and PGN are the same from heating rate of several degrees per second to 107 oC/s. The third series of experiments is about detailed study of photodissociation mechanism of methyl nitrate. Photodissociation of methyl nitrate isolated in an argon matrix at 17 K has been investigated by 266 nm

  10. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  11. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein

    PubMed Central

    Xu, Shan; Cherok, Edward; Das, Shweta; Li, Sunan; Roelofs, Brian A.; Ge, Shealinna X.; Polster, Brian M.; Boyman, Liron; Lederer, W. Jonathan; Wang, Chunxin; Karbowski, Mariusz

    2016-01-01

    Ubiquitin- and proteasome-dependent outer mitochondrial membrane (OMM)-associated degradation (OMMAD) is critical for mitochondrial and cellular homeostasis. However, the scope and molecular mechanisms of the OMMAD pathways are still not well understood. We report that the OMM-associated E3 ubiquitin ligase MARCH5 controls dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and cell sensitivity to stress-induced apoptosis. MARCH5 knockout selectively inhibited ubiquitination and proteasomal degradation of MiD49, a mitochondrial receptor of Drp1, and consequently led to mitochondrial fragmentation. Mitochondrial fragmentation in MARCH5−/− cells was not associated with inhibition of mitochondrial fusion or bioenergetic defects, supporting the possibility that MARCH5 is a negative regulator of mitochondrial fission. Both MARCH5 re-expression and MiD49 knockout in MARCH5−/− cells reversed mitochondrial fragmentation and reduced sensitivity to stress-induced apoptosis. These findings and data showing MARCH5-dependent degradation of MiD49 upon stress support the possibility that MARCH5 regulation of MiD49 is a novel mechanism controlling mitochondrial fission and, consequently, the cellular response to stress. PMID:26564796

  12. Both size-frequency distribution and sub-populations of the main-belt asteroid population are consistent with YORP-induced rotational fission

    NASA Astrophysics Data System (ADS)

    Jacobson, S.; Scheeres, D.; Rossi, A.; Marzari, F.; Davis, D.

    2014-07-01

    From the results of a comprehensive asteroid-population-evolution model, we conclude that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution and is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. The foundation of this model is the asteroid-rotation model of Marzari et al. (2011) and Rossi et al. (2009), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; Scheeres 2007) and binary-asteroid evolution (Jacobson & Scheeres, 2011). The YORP-effect timescale for large asteroids with diameters D > ˜ 6 km is longer than the collision timescale in the main belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ˜ 6 km, the asteroid-population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size-frequency distribution. Using the outputs of the asteroid-population evolution model and a 1-D collision evolution model, we can generate this new size-frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated ''Asteroids were Born Big'' size-frequency distribution

  13. Neutron-induced fission cross section of natPb and Bi209 from threshold to 1 GeV: An improved parametrization

    NASA Astrophysics Data System (ADS)

    Tarrío, D.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Paradela, C.; Stephan, C.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lederer, C.; Lindote, A.; Lopes, I.; Losito, R.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2011-04-01

    Neutron-induced fission cross sections for natPb and Bi209 were measured with a white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. The experiment, using neutrons from threshold up to 1 GeV, provides the first results for these nuclei above 200 MeV. The cross sections were measured relative to U235 and U238 in a dedicated fission chamber with parallel plate avalanche counter detectors. Results are compared with previous experimental data. Upgraded parametrizations of the cross sections are presented, from threshold energy up to 1 GeV. The proposed new sets of fitting parameters improve former results along the whole energy range.

  14. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  15. Noise-induced transition in human reaction times

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-09-01

    The human reaction/response time can be defined as the time elapsed from the onset of stimulus presentation until a response occurs in many sensory and cognitive processes. A reaction time model based on Piéron’s law is investigated. The model shows a noise-induced transition in the moments of reaction time distributions due to the presence of strong additive noise. The model also demonstrates that reaction times do not follow fluctuation scaling between the mean and the variance but follow a generalized version between the skewness and the kurtosis. The results indicate that noise-induced transitions in the moments govern fluctuations in sensory-motor transformations and open an insight into the macroscopic effects of noise in human perception and action. The conditions that lead to extreme reaction times are discussed based on the transfer of information in neurons.

  16. I. Fission probabilities, fission barriers, and shell effects. II. Particle structure functions

    NASA Astrophysics Data System (ADS)

    Jing, Kexing

    1999-11-01

    In Part I, fission excitation functions of osmium isotopes 185,186,187,189 Os produced in 3He + 182,183,184,186W reactions, and of polonium isotopes 209,210,211,212Po produced in 3He/4He + 206,207,208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15 × 10-21 sec and 25 × 10-21 sec for Os and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the α- particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that substracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  17. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    SciTech Connect

    Jing, Kexing

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  18. On laser-induced harpooning reactions

    NASA Astrophysics Data System (ADS)

    Weiner, J.

    1980-05-01

    In the present paper, the switching of chemical reactivity by a nonresonant laser field in simple gas-phase collisions of the type A + BC to AB + C is discussed in terms of a second-order optical/collision perturbation. A simple expression relating laser-induced harpooning cross sections to the laser power density is derived and is applied to Hg/Cl2 collisions.

  19. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    PubMed

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  20. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells.

    PubMed

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  1. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  2. Cinnamon-induced Oral Mucosal Contact Reaction

    PubMed Central

    Vivas, Ana P. M; Migliari, Dante A

    2015-01-01

    Contact stomatitis associated with consumption of cinnamon flavoring agents is a relatively uncommon disorder. Of relevance, both clinical features and the histopathologic findings of this condition are nonspecific, and, more importantly, may resemble some other inflammatory oral mucosa disorders, eventually making diagnosis difficult. Usually a patient exhibits a combination of white and erythematous patches of abrupt onset, accompanied by a burning sensation. To shed some light on this subject, a case of a 64-year-old woman with hypersensitivity contact reaction on the oral mucosa due to cinnamon mints is presented, with emphasis on differential diagnosis and the process for confirmation of the diagnosis. The treatment consists of discontinuing the use of cinnamon products. Clinicians will be able to recognize this disorder following a careful clinical examination and detailed history. This recognition is important in order to avoid invasive and expensive diagnostic procedures. PMID:26312097

  3. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    NASA Astrophysics Data System (ADS)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  4. Preliminary Results on Direct Observation of True Ternary fission in the reaction {sup 232}Th+d (10 MeV)

    SciTech Connect

    Pyatkov, Yu.; Kamanin, D.; Alexandrov, A.; Alexandrova, I.; Kondratyev, N.; Kuznetsova, E.; Tyukavkin, A.; Zhuchko, V.; Krasznohorkay, A.; Csatlos, M.; Csige, L.; Gulyas, J.; Naqvi, F.; Tornyi, T.

    2010-04-30

    Results of the first direct observation of the true ternary fission of {sup 234}Pa* nucleus are presented. The yield of the effect depending of the experimental geometry is about 10{sup -5}/binary fission. Mass of the lightest fragment in the triplet lies mainly in the range of (20 divide 40) a.m.u. Connection between the effect and known heavy ion or lead radioactivity is discussed.

  5. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity.

  6. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis

    NASA Astrophysics Data System (ADS)

    Moran, J. L.; Wheat, P. M.; Posner, J. D.

    2010-06-01

    Bimetallic rod-shaped nanomotors swim autonomously in hydrogen peroxide solutions. Here, we present a scaling analysis, computational simulations, and experimental data that show that the nanomotor locomotion is driven by fluid slip around the nanomotor surface due to electrical body forces. The body forces are generated by a coupling of charge density and electric fields induced by electrochemical reactions occurring on the nanomotor surface. We describe the dependence of nanomotor motion on the nanomotor surface potential and reaction-driven flux.

  7. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  8. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  9. Prompt fission neutron spectra of n+235U above the (n,nf) fission threshold

    NASA Astrophysics Data System (ADS)

    Shu, Neng-Chuan; Jia, Min; Chen, Yong-Jing; Liu, Ting-Jin

    2015-05-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. Supported by National Natural Science Foundation of China (11205246, 91126010, U1230127, 91226102), IAEA CRP (15905), and Defense Industrial Technology Development Program (B0120110034)

  10. On reaction mechanisms involved in the deuteron–induced surrogate reactions

    SciTech Connect

    Avrigeanu, M.; Avrigeanu, V.; Mănăilescu, C.

    2015-02-24

    An extended analysis of the nuclear reaction mechanisms involved within deuteron interaction with nuclei, namely the breakup, stripping, pick-up, pre-equilibrium emission, and evaporation from fully equilibrated compound nucleus, is presented in order to highlight the importance of the direct mechanisms still neglected in the analysis of deuteron-induced surrogate reactions. Particularly, the dominance of the breakup mechanism at low energies around the Coulomb barrier should be considered in the case of (d,x) surrogate reactions on actinide target nuclei.

  11. Dynamics of synchrotron VUV-induced intracluster reactions

    SciTech Connect

    Grover, J.R.

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  12. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  13. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  14. Measurement of the neutron-induced fission cross-section of 243Am relative to 235U from 0.5 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Calviani, M.; Colonna, N.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tarrio, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2011-12-01

    The ratio of the neutron-induced fission cross-sections of 243Am and 235U was measured in the energy range from 0.5 to 20 MeV with uncertainties of ≈ 4%. The experiment was performed at the CERN n_TOF facility using a fast ionization chamber. With the good counting statistics that could be achieved thanks to the high instantaneous flux and the low backgrounds, the present results are useful for resolving discrepancies in previous data sets and are important for future reactors with improved fuel burn-up.

  15. Neutron-induced fission cross section of U234 and Np237 measured at the CERN Neutron Time-of-Flight (n_TOF) facility

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Tarrío, D.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-09-01

    A high-resolution measurement of the neutron-induced fission cross section of U234 and Np237 has been performed at the CERN Neutron Time-of-Flight facility. The cross sections have been determined in a wide energy range from 1 eV to 1 GeV using the evaluated U235 cross section as reference. In these measurements the energy determination for the U234 resonances could be improved, whereas previous discrepancies for the Np237 resonances were confirmed. New cross-section data are provided for high neutron energies that go beyond the limits of prior evaluations, obtaining important differences in the case of Np237.

  16. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Grente, L.; Taïeb, J.; Chatillon, A.; Martin, J.-F.; Pellereau, É.; Boutoux, G.; Gorbinet, T.; Bélier, G.; Laurent, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamaño, M.; Audouin, L.; Casarejos, E.; Cortina-Gil, D.; Farget, F.; Fernández-Domínguez, B.; Heinz, A.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Lindberg, S.; Löher, B.; Nociforo, C.; Paradela, C.; Pietri, S.; Ramos, D.; Rodriguez-Sanchez, J.-L.; Rodríguez-Tajes, C.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Törnqvist, H.; Vargas, J.; Voss, B.; Weick, H.; Yan, Y.

    2016-06-01

    The SOFIA (Studies On FIssion with Aladin) experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.

  17. Tween-80 and impurity induce anaphylactoid reaction in zebrafish.

    PubMed

    Yang, Rui; Lao, Qiao-Cong; Yu, Hang-Ping; Zhang, Yong; Liu, Hong-Cui; Luan, Lin; Sun, Hui-Min; Li, Chun-Qi

    2015-03-01

    A number of recent reports suspected that Tween-80 in injectable medicines, including traditional Chinese medicine injections could cause life-threatening anaphylactoid reaction, but no sound conclusion was drawn. A drug-induced anaphylactoid reaction is hard to be assayed in vitro and in conventional animal models. In this study, we developed a microplate-based quantitative in vivo zebrafish assay for assessing anaphylactoid reaction and live whole zebrafish mast cell tryptase activity was quantitatively measured at a wavelength of 405 nm using N-benzoyl-dl-arginine p-nitroanilide as a substrate. We assessed 10 batches of Tween-80 solutions from various national and international suppliers and three Tween-80 impurities (ethylene glycol, 2-chloroethanol and hydrogen peroxide) in this model and found that three batches of Tween-80 (nos 2, 20080709 and 20080616) and one Tween-80 impurity, hydrogen peroxide (H2 O2 ), induced anaphylactoid reactions in zebrafish. Furthermore, we found that H2 O2 residue and peroxide value were much higher in Tween-80 samples 2, 20080709 and 20080616. These findings suggest that H2 O2 residue in combination with oxidized fatty acid residues (measured as peroxide value) or more likely the oxidized fatty acid residues in Tween-80 samples, but not Tween-80 itself, may induce anaphylactoid reaction. High-throughput zebrafish tryptase assay developed in this report could be used for assessing safety of Tween-80-containing injectable medicines and potentially for screening novel mast cell-modulating drugs.

  18. Modelling Neutron-induced Reactions on 232-237U from 10 keV up to 30 MeV

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2017-01-01

    Comprehensive calculations of cross sections for neutron-induced reactions on 232-237U targets are performed in the 10 keV-30 MeV incident energy range with the code EMPIRE-3.2 Malta. The advanced modelling and consistent calculation scheme are aimed at improving our knowledge of the neutron scattering and emission cross sections, and to assess the consistency of available evaluated libraries for light uranium isotopes. The reaction model considers a dispersive optical potential (RIPL 2408) that couples from five (even targets) to nine (odd targets) levels of the ground-state rotational band, and a triple-humped fission barrier with absorption in the wells described within the optical model for fission. A modified Lorentzian model (MLO) of the radiative strength function and Enhanced Generalized Superfluid Model nuclear level densities are used in Hauser-Feschbach calculations of the compound-nuclear decay that include width fluctuation corrections. The starting values for the model parameters are retrieved from RIPL. Excellent agreement with available experimental data for neutron emission and fission is achieved, giving confidence that the quantities for which there is no experimental information are also accurately predicted. Deficiencies in existing evaluated libraries are highlighted.

  19. Mechanisms of shock-induced reactions in high explosives

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey J.

    2017-01-01

    Understanding the mechanisms by which shock waves initiate chemical reactions in explosives is key to understanding their unique and defining property: the ability to undergo rapid explosive decomposition in response to mechanical stimulus. Although shock-induced reactions in explosives have been studied experimentally and computationally for decades, the nature of even the first chemical reactions that occur in response to shock remain elusive. To predictively understand how explosives respond to shock, the detailed sequence of events that occurs - mechanical deformation, energy transfer, bond breakage, and first chemical reactions - must be understood at the quantum-mechanical level. This paper reviews recent work in this field and ongoing experimental and theoretical work at Sandia National Laboratories in this important area of explosive science.

  20. Photo-induced chemical reaction of trans-resveratrol.

    PubMed

    Zhao, Yue; Shi, Meng; Ye, Jian-Hui; Zheng, Xin-Qiang; Lu, Jian-Liang; Liang, Yue-Rong

    2015-03-15

    Photo-induced chemical reaction of trans-resveratrol has been studied. UV B, liquid state and sufficient exposure time are essential conditions to the photochemical change of trans-resveratrol. Three principal compounds, cis-resveratrol, 2,4,6-phenanthrenetriol and 2-(4-hydroxyphenyl)-5,6-benzofurandione, were successively generated in the reaction solution of trans-resveratrol (0.25 mM, 100% ethanol) under 100 μW cm(-2) UV B radiation for 4h. cis-Resveratrol, originated from isomerization of trans-resveratrol, resulted in 2,4,6-phenanthrenetriol through photocyclisation reaction meanwhile loss of 2 H. 2,4,6-Phenanthrenetriol played a role of photosensitizer producing singlet oxygen in the reaction pathway. The singlet oxygen triggered [4+2] cycloaddition reaction of trans-resveratrol, and then resulted in the generation of 2-(4-hydroxyphenyl)-5,6-benzofurandione through photorearrangement and oxidation reaction. The singlet oxygen reaction was closely related to the substrate concentration of trans-resveratrol in solution.

  1. Investigations of fission characteristics and correlation effects

    NASA Astrophysics Data System (ADS)

    Gundorin, N. A.; Zeinalov, Sh. S.; Kopach, Yu. N.; Popov, A. B.; Furman, V. I.

    2016-07-01

    We review the experimental results on the P-even and P-odd angular correlations of fission fragments in the fission of the 235U and 239Pu nuclei induced by unpolarized and polarized resonance neutrons, and on the TRI and ROT effects in the ternary and binary fission of actinides induced by polarized thermal neutrons. Also reported are the measured yields of prompt and delayed neutrons per fission event. The experimental data are analyzed within a novel theoretical framework developed by the JINR—RNC KI Collaboration, whereby the reduction of the multidimensional phase space of fission fragments to the JπK-channel space is consistently validated and the role of resonance interference in the observed correlation effects is revealed.

  2. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    NASA Astrophysics Data System (ADS)

    Montoya, M.

    2016-07-01

    Even-odd effects of the maximal total kinetic energy (Kmax) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of 235U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, Kmax is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher Kmax-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher Kmax-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between Kmax and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  3. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases.

    PubMed

    Gu, Zezong; Nakamura, Tomohiro; Lipton, Stuart A

    2010-06-01

    Overstimulation of N-methyl-D-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through beta-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration.

  4. Oral Muscle Relaxant May Induce Immediate Allergic Reactions

    PubMed Central

    Hur, Gyu-Young; Hwang, Eui Kyung; Moon, Jae-Young; Ye, Young-Min; Shim, Jae-Jeong; Kang, Kyung-Ho

    2012-01-01

    Eperisone and afloqualone act by relaxing both skeletal and vascular smooth muscles to improve circulation and suppress pain reflex. These drugs are typically prescribed with non-steroidal anti-inflammatory drugs (NSAIDs) as painkillers. However, there have been no reports on serious adverse reactions to oral muscle relaxants; and this is the first report to describe three allergic reactions caused by eperisone and afloqualone. All three patients had histories of allergic reactions after oral intake of multiple painkillers, including oral muscle relaxants and NSAIDs, for chronic muscle pain. An open-label oral challenge test was performed with each drug to confirm which drugs caused the systemic reactions. All patients experienced the same reactions within one hour after oral intake of eperisone or afloqualone. The severity of these reactions ranged from laryngeal edema to hypotension. To confirm that the systemic reaction was caused by eperisone or afloqualone, skin prick testing and intradermal skin tests were performed with eperisone or afloqualone extract in vivo, and basophil activity tests were performed after stimulation with these drugs in vitro. In one patient with laryngeal edema, the intradermal test with afloqualone extract had a positive result, and CD63 expression levels on basophils increased in a dose-dependent manner by stimulation with afloqualone. We report three allergic reactions caused by oral muscle relaxants that might be mediated by non-immunoglobulin E-mediated responses. Since oral muscle relaxants such as eperisone and afloqualone are commonly prescribed for chronic muscle pain and can induce severe allergic reactions, we should prescribe them carefully. PMID:22665359

  5. Event-by-Event Fission with FREYA

    SciTech Connect

    Randrup, J; Vogt, R

    2010-11-09

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. The presentation first discusses the present status of FREYA, which has now been extended up to energies where pre-equilibrium emission becomes significant and one or more neutrons may be emitted prior to fission. Concentrating on {sup 239}Pu(n,f), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also briefly suggest novel fission observables that could be measured with modern detectors.

  6. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  7. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    SciTech Connect

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; Bond, Evelyn M.; Bredeweg, Todd Allen; Couture, Aaron Joseph; Daum, Jaimie Kay; Favalli, Andrea; Ianakiev, Kiril Dimitrov; Iliev, Metodi L.; Mosby, Shea Morgan; Roman, Audrey Rae; Springs, Rebecca Kristien; Ullmann, John Leonard; Walker, Carrie Lynn

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  8. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  9. Fission of /sup 255,256/Es, /sup 255en-dash257/Fm, and /sup 258/Md at moderate excitation energies

    SciTech Connect

    Britt, H.C.; Hoffman, D.C.; van der Plicht, J.; Wilhelmy, J.B.; Cheifetz, E.; Dupzyk, R.J.; Lougheed, R.W.

    1984-08-01

    The fission of /sup 255,256/Es, /sup 255en-dash257/Fm, and /sup 258/Md has been studied in the excitation energy range from threshold to 25 MeV. A target of /sup 254/Es was used in the direct reaction studies; (d,pf), (t,pf), (/sup 3/He,df), (/sup 3/He,pf), and in the compound induced fission reactions formed with p, d, t, and ..cap alpha.. particle projectiles. Coincident fission fragment energies were recorded along with (in the direct reaction studies) the outgoing light charged particle. The mass and kinetic energy distributions were studied as a function of nuclear excitation energy. The observed bulk properties were consistent with established systematics in that they exhibited an asymmetric mass distribution and a phenomenologically consistent total kinetic energy. However, the systems demonstrated a fission decay mode which we ascribe to high energy symmetric fission decay. This component, though somewhat arbitrary in its definition, showed a general decrease in yield as a function of increasing nuclear excitation energy. This observed rapid change in fission properties between ''normal'' and high energy symmetric fission probably points to the important observable consequences that can occur from small variations in the potential energy surface.

  10. A systematic review of drug induced ocular reactions in diabetes

    PubMed Central

    Hampson, J; Harvey, J

    2000-01-01

    AIMS—To conduct a systematic review of drug induced adverse ocular effects in diabetes to determine if this approach identified any previously unrecognised adverse drug effects; to make a preliminary assessment of the feasibility of this approach in identifying adverse drug reactions; and to assess the current accessibility of this information to prescribing physicians.
METHODS—Literature search of online biomedical databases. The search strategy linked eye disorders with adverse drug reactions and diabetes. Source journals were classified as medical, pharmaceutical, diabetes related, or ophthalmological. It was determined whether the reactions identified were recorded in drug datasheets and the British National Formulary.
RESULTS—63 references fulfilled the selection criteria, of which 45 were considered to be relevant to the study. The majority of these were case reports but cross sectional surveys, case-control and cohort studies, and review articles were also identified. 61% of the reactions were not recorded in the British National Formulary and 41% were not recorded in the datasheets. 55% appeared in specialist ophthalmology journals.
CONCLUSIONS—This is a feasible approach to the identification of adverse drug reactions. Adverse reactions not listed in the most commonly used reference sources were found. The majority were published in specialist ophthalmology journals which might not be seen by prescribing physicians.

 PMID:10655188

  11. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  12. Fission at intermediate neutron energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2014-09-01

    In the present work, as a theoretical support to the campaign of neutron cross section measurements at the n_TOF facility at CERN[1], Monte Carlo calculations of fission induced by neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liege Intranuclear Cascade Model, INCL++[6], coupled with different evaporation-fission codes, such as Gemini++[7] and ABLA07[8]. Theoretical cross sections are compared with experimental data obtained by the n_TOF collaboration and perspectives for future theoretical work are outlined.

  13. Impact of prompt-neutron corrections on final fission-fragment distributions

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Hambsch, F.-J.; Pomp, S.; Oberstedt, S.

    2012-11-01

    Background: One important quantity in nuclear fission is the average number of prompt neutrons emitted from the fission fragments, the prompt neutron multiplicity, ν¯. The total number of prompt fission neutrons, ν¯tot, increases with increasing incident neutron energy. The prompt-neutron multiplicity is also a function of the fragment mass and the total kinetic energy of the fragmentation. Those data are only known in sufficient detail for a few thermal-neutron-induced fission reactions on, for example, 233,235U and 239Pu. The enthralling question has always been asked how the additional excitation energy is shared between the fission fragments. The answer to this question is important in the analysis of fission-fragment data taken with the double-energy technique. Although in the traditional approach the excess neutrons are distributed equally across the mass distribution, a few experiments showed that those neutrons are predominantly emitted by the heavy fragments.Purpose: We investigated the consequences of the ν(A,TKE,En) distribution on the fission fragment observables.Methods: Experimental data obtained for the 234U(n,f) reaction with a Twin Frisch Grid Ionization Chamber, were analyzed assuming two different methods for the neutron evaporation correction. The effect of the two different methods on the resulting fragment mass and energy distributions is studied.Results: We found that the preneutron mass distributions obtained via the double-energy technique become slightly more symmetric, and that the impact is larger for postneutron fission-fragment distributions. In the most severe cases, a relative yield change up to 20-30% was observed.Conclusions: We conclude that the choice of the prompt-neutron correction method has strong implications on the understanding and modeling of the fission process and encourages new experiments to measure fission fragments in coincidence with prompt fission neutrons. Even more, the correct determination of postneutron

  14. Loss of Msp1p in Schizosaccharomyces pombe induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes.

    PubMed

    Delerue, Thomas; Khosrobakhsh, Farnoosh; Daloyau, Marlène; Emorine, Laurent Jean; Dedieu, Adrien; Herbert, Christopher J; Bonnefoy, Nathalie; Arnauné-Pelloquin, Laetitia; Belenguer, Pascale

    2016-10-01

    Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA.

  15. TANGRA-Setup for the Investigation of Nuclear Fission Induced by 14.1 MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, I. N.; Kopatch, Yu. N.; Bystritsky, V. M.; Skoy, V. R.; Shvetsov, V. N.; Hambsch, F.-J.; Oberstedt, S.; Noy, R. Capote; Sedyshev, P. V.; Grozdanov, D. N.; Ivanov, I. Zh.; Aleksakhin, V. Yu.; Bogolubov, E. P.; Barmakov, Yu. N.; Khabarov, S. V.; Krasnoperov, A. V.; Krylov, A. R.; Obhođaš, J.; Pikelner, L. B.; Rapatskiy, V. L.; Rogachev, A. V.; Rogov, Yu. N.; Ryzhkov, V. I.; Sadovsky, A. B.; Salmin, R. A.; Sapozhnikov, M. G.; Slepnev, V. M.; Sudac, D.; Tarasov, O. G.; Valković, V.; Yurkov, D. I.; Zamyatin, N. I.; Zeynalov, Sh. S.; Zontikov, A. O.; Zubarev, E. V.

    The new experimental setup TANGRA (Tagged Neutrons & Gamma Rays), for the investigation of neutron induced nuclear reactions, e.g. (n,xn'), (n,xn'γ), (n,γ), (n,f), on a number of important isotopes for nuclear science and engineering (235,238U, 237Np, 239Pu, 244,245,248Cm) is under construction and being tested at the Frank Laboratory of Neutron Physics (FLNP) of the Joint Institute for Nuclear Research (JINR) in Dubna. The TANGRA setup consists of: a portable neutron generator ING-27, with a 64-pixel Si charge-particle detector incorporated into its vacuum chamber for registering of α-particles formed in the T(d, n)4He reaction, as a source of 14.1 MeV steady-state neutrons radiation with an intensity of ∼5x107n/s; a combined iron (Fe), borated polyethylene (BPE) and lead (Pb) compact shielding-collimator; a reconfigurable multi-detector (neutron plus gamma ray detecting system); a fast computer with 2 (x16 channels) PCI-E 100 MHz ADC cards for data acquisition and hard disk storage; Linux ROOT data acquisition, visualization and analysis software. The signals from the α-particle detector are used to 'tag' the neutrons with the coincident α-particles. Counting the coincidences between the α-particle and the reaction-product detectors in a 20ns time-interval improves the effect/background-ratio by a factor of ∼200 as well as the accuracy in the neutron flux determination, which decreases noticeably the overall experimental data uncertainty.

  16. Ofloxacin Induced Angioedema: A Rare Adverse Drug Reaction

    PubMed Central

    Yadav, Sankalp; Kumar, Raj; Wani, Umar Rasool

    2016-01-01

    The Adverse Drug Reaction (ADR) to a commonly prescribed anti-microbial can pose a major public health problem. The authors report a rare case of 24-year-old young lady who presented with angioedema of lips after ingestion of Ofloxacin, prescribed to her for treatment of loose motions. Fluoroquinolones are widely prescribed antibiotics for various disease conditions. The history, clinical examination and normal laboratory parameters led to the diagnosis of ofloxacin induced hypersensitivity reaction and the patient was successfully treated with corticosteroids and antihistamines. The hypersensitivity reactions to fluoroquinolones are rare with an incidence of 0.4% to 2%. The pharmacovigilance program and self-reporting of all the ADR’s by the health care workers can help in ensuring the judicious use of the drug, drug safety and thus decrease the associated morbidity and mortality. PMID:28050397

  17. Photo-induced electron-transfer reactions in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Yang, J. M.

    1981-11-01

    The conversion of solar energy into chemical energy was pursued by two approaches. One is the photo-induced electron transfer reactions in heterogeneous media, and the other is the photo-decomposition of water with liquid-junction solar cells. Photo-induced electron-transfer reactions in heterogeneous media with colloidal silica or poly-acrylate were studied by flash photolysis. In an effort to illustrate that small band-gap semiconductors can be protected from photo-corrosion through surface modification, the surface of polycrystalline ZnO was chemically coated with zinc phthalocyanine and the electron-transfer process across the coated ZnO-electrolyte interface was studied by photo-electrochemical techniques.

  18. Dynamical isospin effects in nucleon-induced reactions

    SciTech Connect

    Ou Li; Li Zhuxia; Wu Xizhen

    2008-10-15

    The isospin effects in proton-induced reactions on isotopes of {sup 112-132}Sn and the corresponding {beta}-stable isobars are studied by means of the improved quantum molecular dynamics model and some sensitive probes for the density dependence of the symmetry energy at subnormal densities are proposed. The beam energy range is chosen to be 100-300 MeV. Our study shows that the system size dependence of the reaction cross sections for p+{sup 112-132}Sn deviates from the Carlson's empirical expression obtained by fitting the reaction cross sections for proton on nuclei along the {beta}-stability line and sensitively depends on the stiffness of the symmetry energy. We also find that the angular distribution of elastic scattering for p+{sup 132}Sn at large impact parameters is very sensitive to the density dependence of the symmetry energy, which is uniquely due to the effect of the symmetry potential with no mixture of the effect from the isospin dependence of the nucleon-nucleon cross sections. The isospin effects in neutron-induced reactions are also studied and it is found that the effects are just opposite to that in proton-induced reactions. We find that the difference between the peaks of the angular distributions of elastic scattering for p+{sup 132}Sn and n+{sup 132}Sn at E{sub p,n}=100 MeV and b=7.5 fm is positive for soft symmetry energy U{sub sym}{sup sf} and negative for super-stiff symmetry energy U{sub sym}{sup nlin} and close to zero for linear density dependent symmetry energy U{sub sym}{sup lin}, which seems very useful for constraining the density dependence of the symmetry energy at subnormal densities.

  19. Effect of high-frequency modes on singlet fission dynamics.

    PubMed

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-28

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  20. Effect of high-frequency modes on singlet fission dynamics

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Chen, Lipeng; Ishizaki, Akihito; Wang, Junling; Zhao, Yang

    2017-01-01

    Singlet fission is a spin-allowed energy conversion process whereby a singlet excitation splits into two spin-correlated triplet excitations residing on adjacent molecules and has a potential to dramatically increase the efficiency of organic photovoltaics. Recent time-resolved nonlinear spectra of pentacene derivatives have shown the importance of high frequency vibrational modes in efficient fission. In this work, we explore impacts of vibration-induced fluctuations on fission dynamics through quantum dynamics calculations with parameters from fitting measured linear and nonlinear spectra. We demonstrate that fission dynamics strongly depends on the frequency of the intramolecular vibrational mode. Furthermore, we examine the effect of two vibrational modes on fission dynamics. Inclusion of a second vibrational mode creates an additional fission channel even when its Huang-Rhys factor is relatively small. Addition of more vibrational modes may not enhance the fission per se, but can dramatically affect the interplay between fission dynamics and the dominant vibrational mode.

  1. Fast neutron induced fission cross sections of {sup 242m}Am, {sup 245}Cm, {sup 247}Cm

    SciTech Connect

    Fursov, B.I.; Samylin, B.F.; Smirenkin, G.N.; Polynov, V.N.

    1994-12-31

    The experimental data on {sup 242m}Am, {sup 245}Cm and {sup 247}Cm fission cross sections in the 0.13-7.2 Mev neutron energy range are presented. The measurements were made at Van-de-Graaf accelerators with monoenergetic neutron sources. The total data errors are 3.8% for {sup 242m}Am, 3.5% for {sup 245}Cm and 4.5% for {sup 247}Cm. The results given in this paper are preliminary ones.

  2. Neutron-induced fission cross section of 245Cm: New results from data taken at the time-of-flight facility n_TOF

    NASA Astrophysics Data System (ADS)

    Calviani, M.; Meaze, M. H.; Colonna, N.; Praena, J.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Galanopoulos, S.; Giubrone, G.; Gonçalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Kerveno, M.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Lederer, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Savvidis, I.; Schillebeeckx, P.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2012-03-01

    The neutron-induced fission cross section of 245Cm was measured at n_TOF in a wide energy range and with high resolution. The energy dependence, measured in a single measurement from 30 meV to 1 MeV neutron energy, has been determined with 5% accuracy relative to the 235U(n,f) cross section. In order to reduce the uncertainty on the absolute value, the data have been normalized at thermal energy to recent measurements performed at ILL and BR1. In the energy range of overlap, the results are in fair agreement with some previous measurements and confirm, on average, the evaluated cross section in the ENDF/B-VII.0 database, although sizable differences are observed for some important resonances below 20 eV. A similar behavior is observed relative to JENDL/AC-2008, a reactor-oriented database for actinides. The new results contribute to the overall improvement of the databases needed for the design of advanced reactor systems and may lead to refinements of fission models for the actinides.

  3. Neutron-induced fission cross section of 240Pu from 0.5 MeV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-07-01

    240Pu has recently been pointed out by a sensitivity study of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) to be one of the isotopes whose fission cross section lacks accuracy to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). In the High Priority Request List (HPRL) of the OECD, it is suggested that the knowledge of the 240Pu(n ,f ) cross section should be improved to an accuracy within 1-3 %, compared to the present 5%. A measurement of the 240Pu cross section has been performed at the Van de Graaff accelerator of the Joint Research Center (JRC) Institute for Reference Materials and Measurements (IRMM) using quasi-monoenergetic neutrons in the energy range from 0.5 MeV to 3 MeV. A twin Frisch-grid ionization chamber (TFGIC) has been used in a back-to-back configuration as fission fragment detector. The 240Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U (n ,f ) , and 238U (n ,f ) . Additionally, the secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U (n ,f ) in the same geometry. A comprehensive study of the corrections applied to the data and the associated uncertainties is given. The results obtained are in agreement with previous experimental data at the threshold region. For neutron energies higher than 1 MeV, the results of this experiment are slightly lower than the ENDF/B-VII.1 evaluation, but in agreement with the experiments of Laptev et al. (2004) as well as Staples and Morley (1998).

  4. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes.

  5. Effect of dexmedetomidine priming on convulsion reaction induced by lidocaine.

    PubMed

    Wang, Xi-Feng; Luo, Xiao-Ling; Liu, Wei-Cheng; Hou, Ben-Chao; Huang, Jian; Zhan, Yan-Ping; Chen, Shi-Biao

    2016-10-01

    To study the effect of dexmedetomidine priming on convulsion reaction induced by lidocaine.The New Zealand white rabbits were applied for the mechanism study of dexmedetomidine priming for preventing convulsion reaction induced by lidocaine. The influence of dexmedetomidine priming with different doses on the time for convulsion occurrence and the duration time of convulsion induced by lidocaine, as well as contents of excitatory amino acids (aspartate [Asp], glutamate [Glu]) and inhibitory amino acids (glycine [Gly], γ-aminobutyric acid [GABA]) in the brain tissue were investigated.With 3 and 5 μg/kg dexmedetomidine priming, the occurrence times of convulsion were prolonged from 196 seconds to 349 and 414 seconds, respectively. With dexmedetomidine priming, the contents of excitatory amino acids (Asp, Glu) were much reduced at occurrence time of convulsion comparing with that without dexmedetomidine priming, while content of inhibitory amino acids Gly was much enhanced.The application of dexmedetomidine before local anesthetics can improve intoxication dose threshold of the lidocaine, delay occurrence of the convulsion, and helped for the recovery of convulsion induced by lidocaine. The positive effect of dexmedetomidine on preventing convulsion would owe to not only the inhibition of excitatory amino acids (Asp, Glu), but also the promotion of inhibitory amino acids Gly secretion.

  6. Effect of dexmedetomidine priming on convulsion reaction induced by lidocaine

    PubMed Central

    Wang, Xi-Feng; Luo, Xiao-Ling; Liu, Wei-Cheng; Hou, Ben-Chao; Huang, Jian; Zhan, Yan-Ping; Chen, Shi-Biao

    2016-01-01

    Abstract To study the effect of dexmedetomidine priming on convulsion reaction induced by lidocaine. The New Zealand white rabbits were applied for the mechanism study of dexmedetomidine priming for preventing convulsion reaction induced by lidocaine. The influence of dexmedetomidine priming with different doses on the time for convulsion occurrence and the duration time of convulsion induced by lidocaine, as well as contents of excitatory amino acids (aspartate [Asp], glutamate [Glu]) and inhibitory amino acids (glycine [Gly], γ-aminobutyric acid [GABA]) in the brain tissue were investigated. With 3 and 5 μg/kg dexmedetomidine priming, the occurrence times of convulsion were prolonged from 196 seconds to 349 and 414 seconds, respectively. With dexmedetomidine priming, the contents of excitatory amino acids (Asp, Glu) were much reduced at occurrence time of convulsion comparing with that without dexmedetomidine priming, while content of inhibitory amino acids Gly was much enhanced. The application of dexmedetomidine before local anesthetics can improve intoxication dose threshold of the lidocaine, delay occurrence of the convulsion, and helped for the recovery of convulsion induced by lidocaine. The positive effect of dexmedetomidine on preventing convulsion would owe to not only the inhibition of excitatory amino acids (Asp, Glu), but also the promotion of inhibitory amino acids Gly secretion. PMID:27787355

  7. Report on simulation of fission gas and fission product diffusion in UO2

    SciTech Connect

    Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni; Tonks, Michael R.; Cooper, Michael William; Liu, Xiang-Yang; Goyal, Anuj; Uberuaga, Blas P.; Stanek, Christopher Richard

    2016-07-22

    In UO2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functional theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the XeU3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving XeU3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher

  8. Report of the Workshop on Light Particle-Induced Reactions

    NASA Astrophysics Data System (ADS)

    The study meeting on light particle (mass number = 3 - 11) induced reaction was held for three days from 5-7 Dec. 1991 at the Research Center for Nuclear Physics, Osaka University. This book records the reports based on the lectures presented at the meeting. In the new facility of the RCNP, the experiment on the nuclear reaction using 400 MeV polarized protons and 200 MeV polarized deuterons is about to begin. When the acceleration of polarized He-3 beam which is being developed becomes feasible, by combining it with the high resolution spectrometer GRAND RAIDEN, it is expected that the unique, high accuracy research using the polarized He-3 having intermediate energy (540 MeV) becomes possible. At this time, by focusing attention to what new physics is developed by the nuclear reaction induced by the composite particles having the intermediate energy of mass number 3 - 11, this study meeting was planned and held. As the result, 29 lectures collected were to cover wide fields, and active discussion was carried out.

  9. Production and decay of baryonic resonances in pion induced reactions

    NASA Astrophysics Data System (ADS)

    Przygoda, Witold

    2016-11-01

    Pion induced reactions give unique opportunities for an unambiguous description of baryonic resonances and their coupling channels. A systematic energy scan and high precision data, in conjunction with a partial wave analysis, allow for the study of the excitation function of the various contributions. A review of available world data unravels strong need for modern facilities delivering measurements with a pion beam. Recently, HADES collaboration collected data in pion-induced reactions on light (12C) and heavy (74W) nuclei at a beam momentum of 1.7 GeV/c dedicated to strangeness production. It was followed by a systematic scan at four different pion beam momenta (0.656, 0.69, 0.748 and 0.8 GeV/c) in π- - p reaction in order to tackle the role of N(1520) resonance in conjunction with the intermediate ρ production. First results on exclusive channels with one pion (π- p) and two pions (nπ+π-, pπ-π0) in the final state are discussed.

  10. Fifty years with nuclear fission. Volume 1

    SciTech Connect

    Behrens, J.W.; Carlson, A.D.

    1989-12-31

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ``Fifty Years with Nuclear Fission,`` in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  11. The Fission Programme at the CERN n_TOF Facility

    NASA Astrophysics Data System (ADS)

    Tsinganis, A.; Barbagallo, M.; Berthoumieux, E.; Calviani, M.; Chiaveri, E.; Colonna, N.; Diakaki, M.; Duran, I.; Guerrero, C.; Gunsing, F.; Leal-Cidoncha, E.; Leong, L.-S.; Paradela, C.; Tarrio, D.; Tassan-Got, L.; Vlastou, R.

    Since 2001, the scientific programme of the CERN n_TOF facility has focused mainly on the study of radiative neutron capture reactions, which are of great interest to nuclear astrophysics and on neutron-induced fission reactions, which are of relevance for nuclear technology, as well as essential for the development of theoretical models of fission. In particular, taking advantage of the high instantaneous neutron flux and high energy resolution of the facility, as well as of high-performance detection and acquisition systems, accurate new measurements on several long-lived major and minor actinides, from 232Th to 245Cm, have been performed so far. Data on these isotopes are needed in order to improve the safety and efficiency of conventional reactors, as well as to develop new systems for nuclear energy production and treatment of nuclear waste, such as Generation IV reactors, Accelerator Driven Systems and reactors based on innovative fuel cycles. A review of the most important results on fission cross-sections and fragment properties obtained at n_TOF for a variety of (radioactive) isotopes is presented along with the perspectives arising from the coming on line in the second half of 2014 of a new 19 m flight-path, which will allow n_TOF to expand its measurement capabilities to even more rare or short-lived isotopes, such as 230Th, 232U, 238,240Pu and 244Cm.

  12. Marmot-Fission-Gas-Diffusion

    SciTech Connect

    Andersson, Anders; Matthews, Christopher

    2016-10-22

    The MARMOT-FISSION-GAS-DIFFUSION software solves a coupled set of partial differential equations describing fission gas evolution in UO2 nuclear fuel. It is part of the MARMOT code, which builds on the MOOSE framework. Both the MARMOT code and the MOOSE framework are developed and maintained by Idaho National Laboratory. The model in MARMOT-FISSION-GAS-DIFFUSION consists of a set of continuum reaction-diffusion equations capturing formation and annihilation of defects, reactions between defects, diffusion of defects and segregation of defects to grain boundaries. Defects refer to vacancies and interstitials as well fission gas atoms (Xe) occupying various trap sites such as uranium and oxygen vacancies and interstitials sites. The code can treat a large number of defect types. The model is formulated within the phase field framework to be compatible with other MARMOT kernels. The driving forces for all reactions, diffusion and segregation events are consistently formulated as a variational derivatives of the free energy of the system. The rates of the reactions are controlled by the corresponding kinetic coefficients. The free energy and the kinetic coefficients for UO2 have been parameterized by lower length scale simulations. The code can be used to simulate defect evolution in a prescribed UO2 microstructure as well as to solve defect clustering problems that control effective diffusivities under both thermal and irradiation conditions. It I possible to extend the current UO2 model to other fuel types such as accident tolerant fuels based on the U3Si2 compound. This would obviously require a new set of material properties describing the behavior of defects in U3Si2 rather than UO2. The framework is however designed to be generic.

  13. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  14. Electrokinetic locomotion due to Reaction Induced Charge Auto-Electrophoresis

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey; Posner, Jonathan

    2010-11-01

    Synthetic nanomotors, like their biological counterparts, propel themselves through aqueous solutions by harvesting chemical energy from their local environment and converting it to mechanical energy. We study bimetallic rod-shaped particles which move autonomously by catalytically decomposing hydrogen peroxide to oxygen and water. We present a scaling analysis and computational simulations that describe the locomotion of bimetallic rod-shaped motors in hydrogen peroxide solutions due to reaction-induced charge auto-electrophoresis. The model shows that the locomotion results from electrical body forces in the surrounding fluid, which are generated by a coupling of an asymmetric dipolar charge density distribution and the electric field it generates. The simulations make the predictions, in agreement with experiment, that the rods' velocity depends linearly on both the surface charge and reaction rate.

  15. Collective effects in deuteron induced reactions of aluminum

    NASA Astrophysics Data System (ADS)

    Canbula, Bora

    2017-01-01

    Cross sections of 27 Al (d,x)22 Na , 27 Al (d,x)24 Na , and 27 Al (d,x)27 Mg reactions are calculated by using TALYS 1.6 computer code with different nuclear level density models, which are composite Gilbert-Cameron model, back-shifted Fermi gas model, generalized superfluid model, and recently proposed collective semi-classical Fermi gas model in the energy range of 3-180 MeV. The results are compared with the experimental data taken from EXFOR library. In these deuteron induced reactions, collective effects are investigated by means of nuclear level density models. Collective semi-classical Fermi gas model including the collective effects via the level density parameter represents the best agreement with the experimental data compared to the other level density models, especially in the low deuteron bombarding energies where the collective effects dominate.

  16. Energetics of the fission process

    NASA Astrophysics Data System (ADS)

    Gönnenwein, Friedrich

    1994-09-01

    The mass asymmetry of fragments from nuclear fission of heavy nuclei is reviewed. While mass asymmetry is a common and well-known phenomenon for low-energy fission of the lighter actinides, more recent experiments have demonstrated that, for the heaviest actinides, the mass distribution switches to a symmetric one. On the other hand, it has been discovered that, though for fissioning nuclei with mass numbers A225 the mass distribution is basically symmetric, an asymmetric component is clearly to be identified for nuclei down to the Pb-region. In the absence of a generally accepted dynamical theory of fission, the above experimental findings are discussed in terms of static energy considerations. Triggered from the outset by the structure of the potential energy surface at the saddlepoint, the energy balance at the scission point between the available energy ( Q-value) of the reaction and the Coulomb and deformation energy of the nascent fragments is shown to steer the characteristics of the fragment mass distributions.

  17. Neutron-induced transmutation reactions in 237Np, 238Pu, and 239Pu at the massive natural uranium spallation target

    NASA Astrophysics Data System (ADS)

    Zavorka, L.; Adam, J.; Baldin, A. A.; Caloun, P.; Chilap, V. V.; Furman, W. I.; Kadykov, M. G.; Khushvaktov, J.; Pronskikh, V. S.; Solnyshkin, A. A.; Sotnikov, V.; Stegailov, V. I.; Suchopar, M.; Tsoupko-Sitnikov, V. M.; Tyutyunnikov, S. I.; Voronko, V.; Vrzalova, J.

    2015-04-01

    Transmutation reactions in the 237Np, 238Pu, and 239Pu samples were investigated in the neutron field generated inside a massive (m = 512 kg) natural uranium spallation target. The uranium target assembly QUINTA was irradiated with the deuteron beams of kinetic energy 2, 4, and 8 GeV provided by the Nuclotron accelerator at the Joint Institute for Nuclear Research (JINR) in Dubna. The neutron-induced transmutation of the actinide samples was measured off-line by implementing methods of gamma-ray spectrometry with HPGe detectors. Results of measurement are expressed in the form of both the individual reaction rates and average fission transmutation rates. For the purpose of validation of radiation transport programs, the experimental results were compared with simulations of neutron production and distribution performed by the MCNPX 2.7 and MARS15 codes employing the INCL4-ABLA physics models and LAQGSM event generator, respectively. In general, a good agreement between the experimental and calculated reaction rates was found in the whole interval of provided beam energies.

  18. Tri And Rot Effects In Ternary Fission: What Can Be Learned?

    SciTech Connect

    Goennenwein, F.; Gagarski, A.; Petrov, G.; Guseva, I.; Zavarukhina, T.; Mutterer, M.; Kalben, J. von; Kopatch, Yu.; Tiourine, G.; Trzaska, W.; Sillanpaea, M.; Soldner, T.; Nesvizhevsky, V.

    2010-04-30

    Inducing fission by polarized neutrons allows studying subtle effects of the dynamics of the process. In the present experiments ternary fission of {sup 235}U and {sup 239}Pu was investigated with cold neutrons in the (n,f) reaction at the Institut Laue-Langevin, Grenoble. Asymmetries in the emission of ternary particles were discovered by making use of the neutron spin flipping. It was found that two effects are interfering. There is first an asymmetry in the total yields of ternary particles having been called the TRI-effect. Second, it was observed that the angular distributions of ternary particles are shifted back and forth when flipping the neutron spin. This shift was named ROT effect. Guided by trajectory calculations of the three-body decay, the signs and sizes of the ROT effect are interpreted in terms of the K-numbers of the transition states at the saddle point of fission.

  19. Establishing a theory for deuteron induced surrogate reactions

    SciTech Connect

    Potel, G.; Nunes, F. M.; Thompson, I. J.

    2015-09-18

    Background: Deuteron-induced reactions serve as surrogates for neutron capture into compound states. Although these reactions are of great applicability, no theoretical efforts have been invested in this direction over the last decade. Purpose: The goal of this work is to establish on firm grounds a theory for deuteron-induced neutron-capture reactions. This includes formulating elastic and inelastic breakup in a consistent manner. Method: We describe this process both in post- and prior-form distorted wave Born approximation following previous works and discuss the differences in the formulation. While the convergence issues arising in the post formulation can be overcome in the prior formulation, in this case one still needs to take into account additional terms due to nonorthogonality. Results: We apply our method to the Nb93(d,p)X at Ed=15 and 25 MeV and are able to obtain a good description of the data. We then look at the various partial wave contributions, as well as elastic versus inelastic contributions. We also connect our formulation with transfer to neutron bound states.Conclusions: Our calculations demonstrate that the nonorthogonality term arising in the prior formulation is significant and is at the heart of the long-standing controversy between the post and the prior formulations of the theory. We also show that the cross sections for these reactions are angular-momentum dependent and therefore the commonly used Weisskopf limit is inadequate. We finally make important predictions for the relative contributions of elastic breakup and nonelastic breakup and call for elastic-breakup measurements to further constrain our model.

  20. Establishing a theory for deuteron induced surrogate reactions

    DOE PAGES

    Potel, G.; Nunes, F. M.; Thompson, I. J.

    2015-09-18

    Background: Deuteron-induced reactions serve as surrogates for neutron capture into compound states. Although these reactions are of great applicability, no theoretical efforts have been invested in this direction over the last decade. Purpose: The goal of this work is to establish on firm grounds a theory for deuteron-induced neutron-capture reactions. This includes formulating elastic and inelastic breakup in a consistent manner. Method: We describe this process both in post- and prior-form distorted wave Born approximation following previous works and discuss the differences in the formulation. While the convergence issues arising in the post formulation can be overcome in the priormore » formulation, in this case one still needs to take into account additional terms due to nonorthogonality. Results: We apply our method to the Nb93(d,p)X at Ed=15 and 25 MeV and are able to obtain a good description of the data. We then look at the various partial wave contributions, as well as elastic versus inelastic contributions. We also connect our formulation with transfer to neutron bound states.Conclusions: Our calculations demonstrate that the nonorthogonality term arising in the prior formulation is significant and is at the heart of the long-standing controversy between the post and the prior formulations of the theory. We also show that the cross sections for these reactions are angular-momentum dependent and therefore the commonly used Weisskopf limit is inadequate. We finally make important predictions for the relative contributions of elastic breakup and nonelastic breakup and call for elastic-breakup measurements to further constrain our model.« less

  1. Induced rates of mitotic crossing over and possible mitotic gene conversion per wing anlage cell in Drosophila melanogaster by X rays and fission neutrons

    SciTech Connect

    Ayaki, T.; Fujikawa, K.; Ryo, H.; Itoh, T.; Kondo, S. )

    1990-09-01

    As a model for chromosome aberrations, radiation-induced mitotic recombination of mwh and flr genes in Drosophila melanogaster strain (mwh +/+ flr) was quantitatively studied. Fission neutrons were five to six times more effective than X rays per unit dose in producing either crossover-mwh/flr twins and mwh singles-or flr singles, indicating that common processes are involved in the production of crossover and flr singles. The X-ray-induced rate/wing anlage cell/Gy for flr singles was 1 X 10(-5), whereas that of crossover was 2 x 10(-4); the former and the latter rate are of the same order of magnitude as those of gene conversion and crossover in yeast, respectively. Thus, we conclude that proximal-marker flr singles induced in the transheterozygote are gene convertants. Using the model based on yeast that recombination events result from repair of double-strand breaks or gaps, we propose that mitotic recombination in the fly is a secondary result of recombinational DNA repair. Evidence for recombinational misrepair in the fly is given. The relative ratio of radiation-induced mitotic crossover to spontaneous meiotic crossover is one order of magnitude higher in the fly than in yeast and humans.

  2. Spin Modes, Neutrino-Induced Reactions and Nucleosynthesis in Stars

    SciTech Connect

    Suzuki, Toshio; Otsuka, Takaharu; Honma, Michio; Higashiyama, Koji

    2008-11-11

    Recent advances in shell model calculations of spin modes in nuclei with the use of new shell model Hamiltonians are discussed. Important roles of tensor interaction in shell evolutions toward drip-lines are pointed out. Electromagnetic transitions in exotic carbon isotopes are investigated. Anomalous supressions of transition strengths in the isotopes are found to be rather well explained. Neutrino-induced reactions on {sup 56}Fe and {sup 56}Ni are studied, and implications on production yields of heavy elements in stars are discussed.

  3. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    NASA Astrophysics Data System (ADS)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  4. Membrane Fission: Model for Intermediate Structures

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M.

    2003-01-01

    Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the “job description” for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process. PMID:12829467

  5. DSP Algorithms for Fission Fragment and Prompt Fission Neutron Spectroscopy

    SciTech Connect

    Zeynalova, O.; Zeynalov, Sh.; Hambsch, F.-J.; Oberstedt, S.; Fabry, I.

    2009-10-29

    Digital signal processing (DSP) algorithms are in high demand for modern nuclear fission investigation due to importance of increase the accuracy of fissile nuclear data for new generation of nuclear power stations. DSP algorithms for fission fragment (FF) and prompt fission neutron (PFN) spectroscopy are described in the present work. The twin Frisch-grid ionization chamber (GTIC) is used to measure the kinetic energy-, mass- and angular distributions of the FF in the {sup 252}Cf(SF) reaction. Along with the neutron time-of-flight (TOF) measurement the correlation between neutron emission and FF mass and energy is investigated. The TOF is measured between common cathode of the GTIC and the neutron detector (ND) pulses. Waveform digitizers (WFD) having 12 bit amplitude resolution and 100 MHz sampling frequency are used for the detector pulse sampling. DSP algorithms are developed as recursive procedures to perform the signal processing, similar to those available in various nuclear electronics modules, such as constant fraction discriminator (CFD), pulse shape discriminator (PSD), peak-sensitive analogue-to-digital converter (pADC) and pulse shaping amplifier (PSA). To measure the angle between FF and the cathode plane normal to the GTIC a new algorithm is developed having advantage over the traditional analogue pulse processing schemes. Algorithms are tested by comparing the numerical simulation of the data analysis of the {sup 252}Cf(SF) reaction with data available from literature.

  6. Fission Fragment Angular Distribution measurements of 235U and 238U at CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Leal-Cidoncha, E.; Durán, I.; Paradela, C.; Tarrío, D.; Leong, L. S.; Tassan-Got, L.; Audouin, L.; Altstadt, S.; Andrzejewski, J.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Lederer, C.; Leeb, H.; Lo Meo, S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2016-03-01

    Neutron-induced fission cross sections of 238U and 235U are used as standards in the fast neutron region up to 200 MeV. A high accuracy of the standards is relevant to experimentally determine other neutron reaction cross sections. Therefore, the detection effciency should be corrected by using the angular distribution of the fission fragments (FFAD), which are barely known above 20 MeV. In addition, the angular distribution of the fragments produced in the fission of highly excited and deformed nuclei is an important observable to investigate the nuclear fission process. In order to measure the FFAD of neutron-induced reactions, a fission detection setup based on parallel-plate avalanche counters (PPACs) has been developed and successfully used at the CERN-n_TOF facility. In this work, we present the preliminary results on the analysis of new 235U(n,f) and 238U(n,f) data in the extended energy range up to 200 MeV compared to the existing experimental data.

  7. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  8. MCNP6 Fission Multiplicity with FMULT Card

    SciTech Connect

    Wilcox, Trevor; Fensin, Michael Lorne; Hendricks, John S.; James, Michael R.; McKinney, Gregg W.

    2012-06-18

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  9. Advanced modeling of prompt fission neutrons

    SciTech Connect

    Talou, Patrick

    2009-01-01

    Theoretical and numerical studies of prompt fission neutrons are presented. The main results of the Los Alamos model often used in nuclear data evaluation work are reviewed briefly, and a preliminary assessment of uncertainties associated with the evaluated prompt fission neutron spectrum for n (0.5 MeV)+{sup 239}Pu is discussed. Advanced modeling of prompt fission neutrons is done by Monte Carlo simulations of the evaporation process of the excited primary fission fragments. The successive emissions of neutrons are followed in the statistical formalism framework, and detailed information, beyond average quantities, can be inferred. This approach is applied to the following reactions: {sup 252}Cf (sf), n{sub th} + {sup 239}Pu, n (0.5 MeV)+{sup 235}U, and {sup 236}Pu (sf). A discussion on the merits and present limitations of this approach concludes this presentation.

  10. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    . Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the

  11. Accurate Fission Data for Nuclear Safety

    NASA Astrophysics Data System (ADS)

    Solders, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Lantz, M.; Mattera, A.; Penttilä, H.; Pomp, S.; Rakopoulos, V.; Rinta-Antila, S.

    2014-05-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyväskylä. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (1012 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons for benchmarking and to study the energy dependence of fission yields. The scientific program is extensive and is planed to start in 2013 with a measurement of isomeric yield ratios of proton induced fission in uranium. This will be followed by studies of independent yields of thermal and fast neutron induced fission of various actinides.

  12. Fission studies of secondary beams from relativistic uranium projectiles: The proton even-odd effect in fission fragment charge yields

    SciTech Connect

    Junghans, A. R.; Benlliure, J.; Schmidt, K.-H.; Voss, B.; Boeckstiegel, C.; Clerc, H.-G.; Grewe, A.; Heinz, A.; Jong, M. de; Mueller, J.; Steinhaeuser, S.; Pfuetzner, M.

    1999-09-02

    Nuclear-charge yields of fragments produced by fission of neutron-deficient isotopes of uranium, protactinium, actinium, and radium have been measured. These radioactive isotopes were produced as secondary beams, and electromagnetic fission was induced in a lead target with an average excitation energy around 11 MeV. The local even-odd effect in symmetric and in asymmetric fission of thorium isotopes is found to be independent of Z{sup 2}/A. The charge yields of the fission fragments of the odd-Z fissioning protactinium and actinium show a pronounced even-odd effect. In asymmetric fission the unpaired proton predominantly sticks to the heavy fragment. A statistical model based on the single-particle level density at the Fermi energy is able to reproduce the overall trend of the local even-odd effects both in even-Z and odd-Z fissioning systems.

  13. Improved fission neutron energy discrimination with 4He detectors through pulse filtering

    NASA Astrophysics Data System (ADS)

    Zhu, Ting; Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit; Chandra, Rico; Kiff, Scott; Chung, Heejun; Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A.

    2017-03-01

    This paper presents experimental and computational techniques implemented for 4He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since 4He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the 4He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with 252Cf spontaneous fission neutrons. Given the 4He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a 4He fast neutron detection system.

  14. Inhibition of peroxisome fission, but not mitochondrial fission, increases yeast chronological lifespan.

    PubMed

    Lefevre, Sophie D; Kumar, Sanjeev; van der Klei, Ida J

    2015-01-01

    Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.

  15. Energy Dependence of Neutron-Induced Fission Product Yields of 235U, 238U and 239Pu Between 0.5 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Gooden, Matthew; Tornow, Werner; Tonchev, Anton; Vieira, Dave; Wilhelmy, Jerry; Arnold, Charles; Fowler, Malcolm; Stoyer, Mark

    2014-09-01

    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements have been performed. The energy dependence of a number of cumulative fission products between 0.5 and 14.8 MeV have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of activation utilizing specially designed dual-fission chambers and γ-ray counting. The dual-fission chambers are back-to-back ionization chambers encasing a target with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the fission rate in the activation target with no reference to the fission cross-section, reducing uncertainties. γ-ray counting was performed on well-shield HPGe detectors over a period of 2 months per activation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 4.6 and 14.8 MeV.

  16. Multi-strangeness production in hadron induced reactions

    NASA Astrophysics Data System (ADS)

    Gaitanos, T.; Moustakidis, Ch.; Lalazissis, G. A.; Lenske, H.

    2016-10-01

    We discuss in detail the formation and propagation of multi-strangeness particles in reactions induced by hadron beams relevant for the forthcoming experiments at FAIR. We focus the discussion on the production of the decuplet-particle Ω and study for the first time the production and propagation mechanism of this heavy hyperon inside hadronic environments. The transport calculations show the possibility of Ω-production in the forthcoming P ‾ANDA-experiment, which can be achieved with measurable probabilities using high-energy secondary Ξ-beams. We predict cross sections for Ω-production. The theoretical results are important in understanding the hyperon-nucleon and, in particular, the hyperon-hyperon interactions also in the high-strangeness sector. We emphasize the importance of our studies for the research plans at FAIR.

  17. Laser induced sonofusion: A new road toward thermonuclear reactions

    NASA Astrophysics Data System (ADS)

    Sadighi-Bonabi, Rasoul; Gheshlaghi, Maryam

    2016-03-01

    The Possibility of the laser assisted sonofusion is studied via single bubble sonoluminescence (SBSL) in Deuterated acetone (C3D6O) using quasi-adiabatic and hydro-chemical simulations at the ambient temperatures of 0 and -28.5 °C. The interior temperature of the produced bubbles in Deuterated acetone is 1.6 × 106 K in hydro-chemical model and it is reached up to 1.9 × 106 K in the laser induced SBSL bubbles. Under these circumstances, temperature up to 107 K can be produced in the center of the bubble in which the thermonuclear D-D fusion reactions are promising under the controlled conditions.

  18. A Transport Model for Nuclear Reactions Induced by Radioactive Beams

    SciTech Connect

    Li Baoan; Chen Liewen; Das, Champak B.; Das Gupta, Subal; Gale, Charles; Ko, C.M.; Yong, G.-C.; Zuo Wei

    2005-10-14

    Major ingredients of an isospin and momentum dependent transport model for nuclear reactions induced by radioactive beams are outlined. Within the IBUU04 version of this model we study several experimental probes of the equation of state of neutron-rich matter, especially the density dependence of the nuclear symmetry energy. Comparing with the recent experimental data from NSCL/MSU on isospin diffusion, we found a nuclear symmetry energy of Esym({rho}) {approx_equal} 31.6({rho}/{rho}0)1.05 at subnormal densities. Predictions on several observables sensitive to the density dependence of the symmetry energy at supranormal densities accessible at GSI and the planned Rare Isotope Accelerator (RIA) are also made.

  19. Modeling of Fission Neutrons as a Signature for Detection of Highly Enriched Uranium

    SciTech Connect

    Wolford, J K; Frank, M I; Descalle, M

    2004-03-09

    We present the results of modeling intended to evaluate the feasibility of using neutrons from induced fission in highly enriched uranium (HEU) as a means of detecting clandestine HEU, even when it is embedded in absorbing surroundings, such as commercial cargo. We characterized radiation from induced fission in HEU, which consisted of delayed neutrons at all energies and prompt neutrons at energies above a threshold. We found that for the candidate detector and for the conditions we considered, a distinctive HEU signature should be detectable, given sufficient detector size, and should be robust over a range of cargo content. In the modeled scenario, an intense neutron source was used to induce fissions in a spherical shell of HEU. To absorb, scatter, and moderate the neutrons, we place one layer of simulated cargo between the source and target and an identical layer between the target and detector. The resulting neutrons and gamma rays are resolved in both time and energy to reveal the portion arising from fission. We predicted the dominant reaction rates within calcium fluoride and liquid organic scintillators. Finally, we assessed the relative effectiveness of two common neutron source energies.

  20. UV-induced reaction kinetics of dilinoleoylphosphatidylethanolamine monolayers.

    PubMed Central

    Viitala, T; Peltonen, J

    1999-01-01

    The UV-induced reactivity of dilinoleoylphosphatidylethanolamine (DLiPE) Langmuir and Langmuir-Blodgett films has been studied by in situ measurements of the changes in the mean molecular area, UV-vis and Fourier transform infrared spectroscopy, and atomic force microscopy (AFM). Optimum orientation and packing density of the DLiPE molecules in the monolayer were achieved by adding uranyl acetate to the subphase. A first-order reaction kinetic model was successfully fitted to the experimental reaction kinetics data obtained at a surface pressure of 30 mN/m. Topographical studies of LB films by AFM were performed on bilayer structures as a function of subphase composition and UV irradiation time. The orientational effect of the uranyl ions on the monolayer molecules was observed as an enhanced homogeneity of the freshly prepared monomeric LB films. However, the long-term stability of these films proved to be bad; clear reorganization and loss of a true monolayer structure were evidenced by the AFM images. This instability was inhibited for the UV-irradiated films, indicating that the UV irradiation gave rise to a cross-linked structure. PMID:10233096

  1. Porous fission fragment tracks in fluorapatite

    SciTech Connect

    Li Weixing; Ewing, Rodney C.; Wang Lumin; Sun Kai; Lang, Maik; Trautmann, Christina

    2010-10-01

    Fission tracks caused by the spontaneous fission of {sup 238}U in minerals, as revealed by chemical etching, are extensively used to determine the age and thermal history of Earth's crust. Details of the structure and annealing of tracks at the atomic scale have remained elusive, as the original track is destroyed during chemical etching. By combining transmission electron microscopy with in situ heating, we demonstrate that fission tracks in fluorapatite are actually porous tubes, instead of having an amorphous core, as generally assumed. Direct observation shows thermally induced track fragmentation in fluoapatite, in clear contrast to the amorphous tracks in zircon, which gradually ''fade'' without fragmentation. Rayleigh instability and the thermal emission of vacancies control the annealing of porous fission tracks in fluorapatite.

  2. Deuteron Induced ( d,p) and ( d,2p) Nuclear Reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Yiğit, M.; Tel, E.; Kara, A.

    2013-06-01

    Many studies have shown that the nuclear reactions of charged particles with nuclei are very important in many fields of nuclear physics. The interactions of deuterons with nuclei have been especially the subject of common research in the history of nuclear physics. Moreover, the knowledge of cross section for deuteron-nucleus interactions are required for various application such as space applications, accelerator driven sub-critical systems, nuclear medicine, nuclear fission reactors and controlled thermonuclear fusion reactors. Particularly, the future of controlled thermonuclear fusion reactors is largely dependent on the nuclear reaction cross section data and the selection of structural fusion materials. Finally, the reaction cross section data of deuteron induced reactions on fusion structural materials are of great importance for development and design of both experimental and commercial fusion devices. In this work, reaction model calculations of the cross sections of deuteron induced reactions on structural fusion materials such as Al ( Aluminium), Ti ( Titanium), Cu ( Copper), Ni ( Nickel), Co ( Cobalt), Fe ( Iron), Zr ( Zirconium), Hf ( Hafnium) and Ta ( Tantalum) have been investigated. The new calculations on the excitation functions of 27 Al( d,2p) 27 Mg, 47 Ti( d,2p) 47 Sc, 65 Cu( d,2p) 65 Ni, 58 Ni( d,2p) 58 Co, 59 Co( d,2p) 59 Fe, 58 Fe( d,p) 59 Fe, 96 Zr( d,p) 97 Zr, 180 Hf ( d,p) 181 Hf and 181 Ta( d,p) 182 Ta have been carried out for incident deuteron energies up to 50 MeV. In these calculations, the equilibrium and pre-equilibrium effects for ( d,p) and ( d,2p) reactions have been investigated. The equilibrium effects are calculated according to the Weisskopf-Ewing ( WE) Model. The pre-equilibrium calculations involve the new evaluated the Geometry Dependent Hybrid Model ( GDH) and Hybrid Model. In the calculations the program code ALICE/ASH was used. The calculated results are discussed and compared with the experimental data taken from the

  3. Fission studies with 140 MeV {alpha} particles

    SciTech Connect

    Buttkewitz, A.; Duhm, H. H.; Strauss, W.; Goldenbaum, F.; Machner, H.

    2009-09-15

    Binary fission induced by 140 MeV {alpha} particles has been measured for {sup nat}Ag, {sup 139}La, {sup 165}Ho, and {sup 197}Au targets. The measured quantities are the total kinetic energies, fragment masses, and fission cross sections. The results are compared with other data and systematics. A minimum of the fission probability in the vicinity Z{sup 2}/A=24 is observed.

  4. Electron-capture delayed fission properties of 244Es

    SciTech Connect

    Shaughnessy, Dawn A.; Gregorich, Kenneth E.; Adams, Jeb L.; Lane, Michael R.; Laue, Carola A.; Lee, Diana M.; McGrath, Christopher A.; Ninov, Victor; Patin, Joshua B.; Strellis, Dan A.; Sylwester, Eric R.; Wilk, Philip A.; Hoffman, Darleane C.

    2001-03-16

    Electron-capture delayed fission was observed in {sup 244}Es produced via the {sup 237}Np({sup 12}C,5n){sup 244}Es reaction at 81 MeV (on target) with a production cross section of 0.31{+-}0.12 {micro}b. The mass-yield distribution of the fission fragments is highly asymmetric. The average preneutron-emission total kinetic energy of the fragments was measured to be 186{+-}19 MeV. Based on the ratio of the number of fission events to the measured number of {alpha} decays from the electron-capture daughter {sup 244}Cf (100% {alpha} branch), the probability of delayed fission was determined to be (1.2{+-}0.4) x 10{sup -4}. This value for the delayed fission probability fits the experimentally observed trend of increasing delayed fission probability with increasing Q value for electron-capture.

  5. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF 2 array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R. C.; Esch, E.-I.; Ethvignot, T.; Granier, T.; Jandel, M.; Macri, R. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2007-08-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σγ/σf) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented.

  6. Expanded cumuli induce acrosome reaction in boar sperm.

    PubMed

    Mattioli, M; Lucidi, P; Barboni, B

    1998-12-01

    The authors investigated acrosomal changes occurring in boar sperm that interact with the expanded cumulus matrix surrounding ovulated pig oocytes. Samples of washed boar sperm obtained from six donors were incubated for 4 hr under capacitating conditions and exposed either to solubilized zonae pellucidae (ZP) or solubilized expanded pig cumuli (SEC) obtained from IVM oocytes. Alternatively, hyaluronic acid, laminin, or fibronectin, components of the extracellular matrix (ECM) were added to capacitated sperm. Acrosomal integrity was evaluated 1 hr later by using FITC-PSA staining. Solubilized cumuli induced acrosome reaction (AR) in a dose-dependent manner with a saturating effect exerted at 2.5 SEC/50 microl. Both 500 nM fibronectin and 500 nM laminin stimulated acrosomal exocytosis, the latter being more effective and inducing saturating levels of AR. By contrast, hyaluronic acid did not affect acrosomal status. Preincubation with anti-laminin antibodies completely prevented the inducing activity of SEC without affecting the activity of solubilized ZP. Consistent with these data, the integrin VLA-6, a receptor with high affinity for laminin, was detected by immunoblotting on the plasma membrane of capacitated boar spermatozoa. In addition, its immunoneutralization, obtained with the preincubation of capacitated sperm with the antibody raised against the alpha chain of VLA-6 integrin, prevented AR upon exposure to laminin or SEC (10.7+/-3.2 and 10.2+/-1.0% respectively), while the samples retained their responsiveness to ZP (29.6+/-1.2%). The results demonstrate that the interaction between laminin, entrapped in the expanded cumuli, and specific integrins present on the sperm membrane can initiate AR, thus taking part in the process of sperm-egg recognition.

  7. The Fission Barrier Landscape

    SciTech Connect

    Phair, L.; Moretto, L. G.

    2008-04-17

    Fission excitation functions have been measured for a chain of neighboring compound nuclei from {sup 207}Po to {sup 212}Po. We present a new analysis which provides a determination of the fission barriers and ground state shell effects with nearly spectroscopic accuracy. The accuracy achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and its spectroscopy.

  8. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  9. Our 50-year odyssey with fission: Summary

    SciTech Connect

    Nix, J.R.

    1989-01-01

    On the occasion of this International Conference on Fifty Years Research in Nuclear Fission, we summarize our present understanding of the fission process and the challenges that lie ahead. The basic properties of fission arise from a delicate competition between disruptive Coulomb forces, cohesive nuclear forces, and fluctuating shell and pairing forces. These static forces are primarily responsible for such experimental phenomena as deformed ground-state nuclear shapes, fission into fragments of unequal size, sawtooth neutron yields, spontaneously fissioning isomers, broad resonances and narrow intermediate structure in fission cross sections, and cluster radioactivity. However, inertial and dissipative forces also play decisive roles in the dynamical evolution of a fissioning nucleus. The energy dissipated between the saddle and scission points is small for low initial excitation energy at the saddle point and increases with increasing excitation energy. At moderate excitation energies, the dissipation of collective energy into internal single-particle excitation energy proceeds largely through the interaction of nucleons with the mean field and with each other in the vicinity of the nuclear surface, as well as through the transfer of nucleons between the two portions of the evolving dumbell-like system. These unique dissipation mechanisms arise from the Pauli exclusion principle for fermions and the details of the nucleon-nucleon interaction, which make the mean free path of a nucleon near the Fermi surface at low excitation energy longer than the nuclear radius. With its inverse process of heavy-ion fusion reactions, fission continues to yield surprises in the study of large-amplitude collective nuclear motion. 87 refs., 12 figs.

  10. Decreasing mitochondrial fission prevents cholestatic liver injury.

    PubMed

    Yu, Tianzheng; Wang, Li; Lee, Hakjoo; O'Brien, Dawn K; Bronk, Steven F; Gores, Gregory J; Yoon, Yisang

    2014-12-05

    Mitochondria frequently change their shape through fission and fusion in response to physiological stimuli as well as pathological insults. Disrupted mitochondrial morphology has been observed in cholestatic liver disease. However, the role of mitochondrial shape change in cholestasis is not defined. In this study, using in vitro and in vivo models of bile acid-induced liver injury, we investigated the contribution of mitochondrial morphology to the pathogenesis of cholestatic liver disease. We found that the toxic bile salt glycochenodeoxycholate (GCDC) rapidly fragmented mitochondria, both in primary mouse hepatocytes and in the bile transporter-expressing hepatic cell line McNtcp.24, leading to a significant increase in cell death. GCDC-induced mitochondrial fragmentation was associated with an increase in reactive oxygen species (ROS) levels. We found that preventing mitochondrial fragmentation in GCDC by inhibiting mitochondrial fission significantly decreased not only ROS levels but also cell death. We also induced cholestasis in mouse livers via common bile duct ligation. Using a transgenic mouse model inducibly expressing a dominant-negative fission mutant specifically in the liver, we demonstrated that decreasing mitochondrial fission substantially diminished ROS levels, liver injury, and fibrosis under cholestatic conditions. Taken together, our results provide new evidence that controlling mitochondrial fission is an effective strategy for ameliorating cholestatic liver injury.

  11. Biomodal spontaneous fission

    SciTech Connect

    Hulet, E.K. )

    1989-09-26

    Investigations of mass and kinetic-energy distributions from spontaneous fission have been extended in recent years to an isotope of element 104 and, for half-lives, to an isotope of element 108. The results have been surprising in that spontaneous fission half-lives have turned out to be much longer than expected and mass and kinetic- energy distributions were found to abruptly shift away from those of the lighter actinides, showing two modes of fission. These new developments have caused a re-evaluation of our understanding of the fission process, bringing an even deeper appreciation of the role played by nuclear shell effects upon spontaneous fission properties. 16 refs., 10 figs.

  12. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV ⩽ En ⩽ 20 MeV at n_TOF at CERN

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Milazzo, P. M.; Calviani, M.; Colonna, N.; Mastinu, P.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cerutti, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Ketlerov, V.; Kerveno, M.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Lederer, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martínez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wallner, A.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2012-10-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n_TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  13. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  14. Fission foil detector calibrations with high energy protons

    SciTech Connect

    Benton, E.V.; Frank, A.L.

    1995-03-01

    Fission foil detectors (FFD`s) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD`s, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  15. Spontaneous fission of the heaviest elements

    SciTech Connect

    Hoffman, D.C.

    1989-04-01

    Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

  16. Delayed neutrons in fission of polonium isotopes

    SciTech Connect

    Ramazanov, R.; Urikbaev, Z.S.; Maksyutenko, B.P.; Ignat'ev, S.V.

    1988-06-01

    A strong difference is found in the relative yields of delayed neutrons in the production of compound nuclei of polonium isotopes in reactions in which bismuth and lead are bombarded by various charged particles. The effect can be partially explained by the different lengths of the ..beta..-decay chains of the light and heavy fission products.

  17. Fission cross sections in the intermediate energy region

    SciTech Connect

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. ); Carlson, A.D.; Wasson, O.A. ); Hill, N.W. )

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  18. Possible origin of transition from symmetric to asymmetric fission

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-09-01

    The charged distributions of fragments produced in the electromagnetic-induced fission of the even-even isotopes of Rn, Ra, Th, and U are described within an improved scission-point model and compared with the available experimental data. The three-equal-peaked charge distributions are predicted for several fissioning nuclei with neutron number N = 136. The possible explanation of the transition from a symmetric fission mode to an asymmetric one around N ∼ 136 is presented. The excitation energy dependencies of the asymmetric and symmetric fission modes are anticipated.

  19. New fission-fragment detector for experiments at DANCE

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  20. Shell effects in fission and quasi-fission of heavy and superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; A¨ysto¨, J.; Beghini, S.; Bogachev, A. A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Khlebnikov, S. V.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Vakhtin, D. N.; Vinodkumar, A. M.; Voskressenski, V. M.; Zagrebaev, V. I.

    2004-04-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+ 204Pb, 48Ca+ 144,154Sm, 168Er, 208Pb, 244Pu, 248Cm; 58Fe+ 208Pb, 244Pu, 248Cm, and 64Ni+ 186W, 242Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna [1],[2] using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.

  1. Prompt fission gamma-ray studies at DANCE

    SciTech Connect

    Jandel, M.; Rusev, G.; Bond, E. M.; Bredeweg, T. A.; Chadwick, M. B.; Couture, A.; Fowler, M.. M; Haight, R. C.; Kawano, T.; Keksis, A. L.; Mosby, S. M.; O’Donnell, J. M.; Rundberg, R. S.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Stoyer, M. A.; Haslett, R. J.; Henderson, R. A.; Becker, J. A.; Wu, C. Y.

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL, for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.

  2. The quantum and thermodynamical characteristics of fission taking into account adiabatic and nonadiabatic modes of motion

    SciTech Connect

    Kadmensky, S. G.

    2007-09-15

    In the framework of the quantum theory of spontaneous and low-energy induced fission, the nature of quantum and thermodynamical properties of a fissioning system is analyzed taking into account adiabatic and nonadiabatic modes of motion for different fission stages. It is shown that, owing to the influence of the Coriolis interaction, the states of the fissile nucleus and of primary fission products are cold and strongly nonequilibrium. The important role of superfluid and pairing nucleon-nucleon correlations for binary and ternary fission is demonstrated. The mechanism of pumping of high values of relative orbital momenta and spins of fission fragments for binary and ternary fission and the nonevaporation mechanism of formation of third particles for ternary fission are investigated. The anisotropies and P-odd, P-even, and T-odd asymmetries for angular distributions of fission products are analyzed.

  3. A multiple parallel-plate avalanche counter for fission-fragment detection

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Henderson, R. A.; Haight, R. C.; Lee, H. Y.; Taddeucci, T. N.; Bucher, B.; Chyzh, A.; Devlin, M.; Fotiades, N.; Kwan, E.; O'Donnell, J. M.; Perdue, B. A.; Ullmann, J. L.

    2015-09-01

    A new low-mass multiple gas-filled parallel-plate avalanche counter for the fission-fragment detection has been developed to mark the fission occurrence in measurements of the prompt fission neutron energy spectrum as a function of incident neutron energy. It was used successfully for the neutron-induced fission of 235U and 239Pu with a total mass near 100 mg each and the spontaneous fission of 252Cf. Both the incident neutron energy and the prompt fission neutron energy are measured by using the time-of-flight method. The design and performance of this avalanche counter are described.

  4. Nuclear fission of Fm isotopes

    SciTech Connect

    Asano, T.; Wada, T.; Ohta, M.; Chiba, S.

    2010-06-01

    Multi-modal fission has been systematically investigated for the series of isotopes of Fm and Cf. The multi-dimensional Langevin-type stochastic differential equation is used for the dynamical calculation. The primary fission mode changes from mass-asymmetric fission to mass-symmetric fission with the increase of neutron numbers for both Fm and Cf cases.

  5. Expression of the fission yeast cell cycle regulator cdc25 induces de novo shoot formation in tobacco: evidence of a cytokinin-like effect by this mitotic activator.

    PubMed

    Suchomelová, Petra; Velgová, Denisa; Masek, Tomás; Francis, Dennis; Rogers, Hilary J; Marchbank, Angela M; Lipavská, Helena

    2004-01-01

    During the last decade, the cell cycle and its control by cyclin-dependent kinases (CDKs) has been extensively studied in eukaryotes. The regulation of CDK activity includes, among others, its activation by Cdc25 phosphatase at G2/M. However, within the plant kingdom studies of this regulation have lagged behind and a plant cdc25 homologue has not been identified yet. Here, we report on the effects of transformation of tobacco (Nicotiana tabacum L., cv. Samsun) with fission yeast (Schizosaccharomyces pombe) cdc25 (Spcdc25) on de novo plant organ formation, a process dependent on rate and orientation of cell division. On shoot-inducing medium (low 1-naphthylacetic acid (NAA), high 6-benzylaminopurine (BAP)) the number of shoots formed on internode segments cultured from transgenic plants was substantially higher than in the non-transformed controls. Anatomical observations indicated that the shoot formation process was accelerated but with no changes in the quality and sequence of shoot development. Surprisingly, and in contrast to the controls, when on root-inducing medium (high NAA, low BAP) cultured segments from transgenic plants failed to initiate hardly any roots. Instead, they continued to form shoots at low frequencies. Moreover, in marked contrast to the controls, stem segments from transgenic plants were able to form shoots even without the addition of exogenous growth regulators to the medium. The results indicate that Spcdc25 expression in culture tobacco stem segments mimicked the developmental effects caused by an exogenous hormone balance shifted towards cytokinins. The observed cytokinin-like effects of Spcdc25 transformation are consistent with the concept of an interaction between cell cycle regulators and phytohormones during plant development.

  6. True ternary fission, the collinear cluster tripartition (CCT) of 252Cf

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Pyatkov, Y. V.; Kamanin, D.

    2012-10-01

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in 235U(n,fff) and 252Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180°, the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10-3 per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, 132Sn+50Ca+70Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al. [1]. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on "ternary fission", where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  7. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    SciTech Connect

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign , the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.

  8. The phebus fission product project

    NASA Astrophysics Data System (ADS)

    von der Hardt, P.; Tattegrain, A.

    1992-06-01

    A new facility is being built at the Phebus test reactor in Cadarache, France, for investigations into phenomena of fuel damage and fission product (FP) release under severe power reactor accident conditions, as part of a large international research program. Phebus FP simulates core, cooling system and containment of an accidented reactor by appropriate scaled-down experimental components. The test fuel, with 25 to 30 GWd/t burnup, is re-irradiated in situ and then overheated up to UO 2 melting. Fission products and other aerosols are swept through the primary pipework into the containment vessel, by hot steam and hydrogen. Experimental instrumentation and posttest analyses will enable the following main phenomena to be studied: structural material and fuel dislocation, final fuel state; release, chemical form and transport/depletion of fission products in the facility, particularly aerosol physics, including nonfission product material and iodine chemistry in terms of volatile species formation through radiolysis, reactions with organic material, aerosol-vapor reactions, etc. Design and development of equipment and experimental procedures are supported by modeling and code calculations with the scope of predicting the experimental sequence, on one hand, and to prepare code validation through the results, on the other hand. More than 25 organisation from Europe and overseas, collaborate in the scientific and technological development of the Phebus FP program. The first in-pile test is planned for spring 1993, and five subsequent experiments are scheduled to follow in yearly intervals. This paper describes facility and support activities, and highlights a number of nuclear materials aspects involved.

  9. Fission Product Data Measured at Los Alamos for Fission Spectrum and Thermal Neutrons on 239Pu, 235U, 238U

    NASA Astrophysics Data System (ADS)

    Selby, H. D.; Mac Innes, M. R.; Barr, D. W.; Keksis, A. L.; Meade, R. A.; Burns, C. J.; Chadwick, M. B.; Wallstrom, T. C.

    2010-12-01

    We describe measurements of fission product data at Los Alamos that are important for determining the number of fissions that have occurred when neutrons are incident on plutonium and uranium isotopes. The fission-spectrum measurements were made using a fission chamber designed by the National Institute for Standards and Technology (NIST) in the BIG TEN critical assembly, as part of the Inter-laboratory Liquid Metal Fast Breeder Reactor (LMFBR) Reaction Rate (ILRR) collaboration. The thermal measurements were made at Los Alamos' Omega West Reactor. A related set of measurements were made of fission-product ratios (so-called R-values) in neutron environments provided by a number of Los Alamos critical assemblies that range from having average energies causing fission of 400-600 keV (BIG TEN and the outer regions of the Flattop-25 assembly) to higher energies (1.4-1.9 MeV) in the Jezebel, and in the central regions of the Flattop-25 and Flattop-Pu, critical assemblies. From these data we determine ratios of fission product yields in different fuel and neutron environments (Q-values) and fission product yields in fission spectrum neutron environments for 99Mo, 95Zr, 137Cs, 140Ba, 141,143Ce, and 147Nd. Modest incident-energy dependence exists for the 147Nd fission product yield; this is discussed in the context of models for fission that include thermal and dynamical effects. The fission product data agree with measurements by Maeck and other authors using mass-spectrometry methods, and with the ILRR collaboration results that used gamma spectroscopy for quantifying fission products. We note that the measurements also contradict earlier 1950s historical Los Alamos estimates by ˜5-7%, most likely owing to self-shielding corrections not made in the early thermal measurements. Our experimental results provide a confirmation of the England-Rider ENDF/B-VI evaluated fission-spectrum fission product yields that were carried over to the ENDF/B-VII.0 library, except for 99Mo

  10. [Reaction mechanism studies of heavy ion induced nuclear reactions]. [Dept. of Chemistry and Biochemistry, Univ. of Maryland, College Park, Maryland

    SciTech Connect

    Mignerey, A.C.

    1993-02-01

    Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

  11. Fission in a Plasma

    SciTech Connect

    Younes, W.

    2016-10-26

    A three-year theory project was undertaken to study the fission process in extreme astrophysical environments, such as the crust of neutron stars. In the first part of the project, the effect of electron screening on the fission process was explored using a microscopic approach. For the first time, these calculations were carried out to the breaking point of the nucleus. In the second part of the project, the population of the fissioning nucleus was calculated within the same microscopic framework. These types of calculations are extremely computer-intensive and have seldom been applied to heavy deformed nuclei, such as fissioning actinides. The results, tools and methodologies produced in this work will be of interest to both the basic-science and nuclear-data communities.

  12. A time projection chamber for high accuracy and precision fission cross-section measurements

    DOE PAGES

    Heffner, M.; Asner, D. M.; Baker, R. G.; ...

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less

  13. A time projection chamber for high accuracy and precision fission cross-section measurements

    SciTech Connect

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  14. A time projection chamber for high accuracy and precision fission cross-section measurements

    NASA Astrophysics Data System (ADS)

    Heffner, M.; Asner, D. M.; Baker, R. G.; Baker, J.; Barrett, S.; Brune, C.; Bundgaard, J.; Burgett, E.; Carter, D.; Cunningham, M.; Deaven, J.; Duke, D. L.; Greife, U.; Grimes, S.; Hager, U.; Hertel, N.; Hill, T.; Isenhower, D.; Jewell, K.; King, J.; Klay, J. L.; Kleinrath, V.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Leonard, M.; Loveland, W.; Massey, T. N.; McGrath, C.; Meharchand, R.; Montoya, L.; Pickle, N.; Qu, H.; Riot, V.; Ruz, J.; Sangiorgio, S.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D.; Towell, R. S.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  15. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    SciTech Connect

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  16. Mechanisms of laser induced reactions in opaque heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Wilkinson, F.

    1993-11-01

    The technique of laser flash photolysis has been applied to both heterogeneous and homogeneous samples in order to increase understanding of the mechanisms of laser induced reactions at surfaces. Nanosecond diffuse reflectance laser flash photolysis has been used to study triplet state absorption and fluorescence emission of monomers and dimers of acridine orange and other dyes which are shown to aggregate when adsorbed on microcrystalline cellulose and on other surfaces. The properties of excited states within dyed fabrics have been evaluated in several cases. The mechanism of the yellowing of thermomechanical paper pulp has also been investigated and transients studied on nanosecond timescales for the first time. Triplet-triplet energy transfer from benzophenone to oxazine dyes, from eosin to anthracene, and from anthracene to azomethine dyes has been studied on both cellulose and silica surfaces. This work demonstrates the occurrence of energy transfer by static and dynamic mechanisms depending on both the nature of the surface and the adsorbed species. The first picosecond studies exciting directly into the charge transfer absorption bands of aromatic hydrocarbon/oxygen complexes formed in the presence of high pressures of oxygen have been carried out to demonstrate the role of charge-transfer interactions in determining the singlet oxygen formation efficiencies during quenching of electronically excited states by molecular oxygen. Nanosecond laser excitation of a series of naphthalene and anthracene derivatives in the presence and absence of oxygen has clearly demonstrated for the first time the importance of charge transfer interactions in determining oxygen quenching constants and singlet oxygen formation efficiencies.

  17. Persistent Skin Reactions and Aluminium Hypersensitivity Induced by Childhood Vaccines.

    PubMed

    Salik, Elaha; Løvik, Ida; Andersen, Klaus E; Bygum, Anette

    2016-11-02

    There is increasing awareness of reactions to vaccination that include persistent skin reactions. We present here a retrospective investigation of long-lasting skin reactions and aluminium hypersensitivity in children, based on medical records and questionnaires sent to the parents. In the 10-year period 2003 to 2013 we identified 47 children with persistent skin reactions caused by childhood vaccinations. Most patients had a typical presentation of persisting pruritic subcutaneous nodules. Five children had a complex diagnostic process involving paediatricians, orthopaedics and plastic surgeons. Two patients had skin biopsies performed from their skin lesions, and 2 patients had the nodules surgically removed. Forty-two children had a patch-test performed with 2% aluminium chloride hexahydrate in petrolatum and 39 of them (92%) had a positive reaction. The persistent skin reactions were treated with potent topical corticosteroids and disappeared slowly. Although we advised families to continue vaccination of their children, one-third of parents omitted or postponed further vaccinations.

  18. Identification of MHC Haplotypes Associated with Drug-induced Hypersensitivity Reactions in Cynomolgus Monkeys.

    PubMed

    Wu, Hong; Whritenour, Jessica; Sanford, Jonathan C; Houle, Christopher; Adkins, Karissa K

    2017-01-01

    Drug-induced hypersensitivity reactions can significantly impact drug development and use. Studies to understand risk factors for drug-induced hypersensitivity reactions have identified genetic association with specific human leukocyte antigen (HLA) alleles. Interestingly, drug-induced hypersensitivity reactions can occur in nonhuman primates; however, association between drug-induced hypersensitivity reactions and major histocompatibility complex (MHC) alleles has not been described. In this study, tissue samples were collected from 62 cynomolgus monkeys from preclinical studies in which 9 animals had evidence of drug-induced hypersensitivity reactions. Microsatellite analysis was used to determine MHC haplotypes for each animal. A total of 7 haplotypes and recombinant MHC haplotypes were observed, with distribution frequency comparable to known MHC I allele frequency in cynomolgus monkeys. Genetic association analysis identified alleles from the M3 haplotype of the MHC I B region (B*011:01, B*075:01, B*079:01, B*070:02, B*098:05, and B*165:01) to be significantly associated (χ(2) test for trend, p < 0.05) with occurrence of drug-induced hypersensitivity reactions. Sequence similarity from alignment of alleles in the M3 haplotype B region and HLA alleles associated with drug-induced hypersensitivity reactions in humans was 86% to 93%. These data demonstrate that MHC alleles in cynomolgus monkeys are associated with drug-induced hypersensitivity reactions, similar to HLA alleles in humans.

  19. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  20. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  1. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  2. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.; Friese, Judah I.; Greenwood, Lawrence R.; Kephart, Jeremy D.; Pierson, Bruce D.; Ellis, Tere A.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  3. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells

    PubMed Central

    Cai, Jianye; Wang, Jiancheng; Huang, Yinong; Wu, Haoxiang; Xia, Ting; Xiao, Jiaqi; Chen, Xiaoyong; Li, Hongyu; Qiu, Yuan; Wang, Yingnan; Wang, Tao; Xia, Huimin; Zhang, Qi; Xiang, Andy Peng

    2016-01-01

    The bone marrow microenvironment facilitates the proliferation and survival of leukemia cells, contributing to disease relapse. Bone marrow-derived mesenchymal stem cells (MSCs) are well known to promote cancer chemoresistance via soluble factors and cell adhesion. However, little is known about the effects of MSCs on the mitochondrial dynamics of T-cell acute lymphoblastic leukemia (T-ALL) cells, or how this may influence the chemoresistance of these cells. Here, we tested both indirect (Transwell) and direct coculture strategies, and found that MSCs protected T-ALL cells from chemotherapeutic cell death and cytotoxicity under both culture conditions. In addition, cell viability was higher in the direct contact system compared with the Transwell system. We further showed that exposure of T-ALL cells to MSCs decreased mitochondrial reactive oxygen species (ROS) levels and promoted a pro-glycolytic shift that was characterized by increased glucose uptake and lactate production with concomitant reductions in adenosine triphosphate production and mitochondrial membrane potential. In T-ALL cells cocultured with MSCs, the mitochondrial morphology of T-ALL cells were altered from elongation to fragmentation because of the extracellular signal-regulated kinase activation-mediated phosphorylation of the pro-fission factor, dynamin-related protein 1 (Drp1), at residue S616. Consistent with this, the expression of S616-phosphorylated Drp1 recapitulated the mitochondrial dynamics, mitochondrial ROS levels, metabolic switching and chemoresistance seen in T-ALL cells cocultured with MSCs. These findings suggest that the ability of MSCs to trigger Drp1 activation-induced changes in mitochondrial dynamics is crucial to their ability to protect cells against chemotherapeutic agents. PMID:27831567

  4. [Adverse cutaneous reactions induced by exposure to woods].

    PubMed

    Chomiczewska-Skóra, Dorota

    2013-01-01

    Various adverse cutaneous reactions may occur as a result of exposure to wood dust or solid woods. These include allergic contact dermatitis, irritant contact dermatitis and, more rarely, contact urticaria, photoallergic and phototoxic reactions. Also cases of erythema multiforme-like reactions have been reported. Contact dermatitis, both allergic and irritant, is most frequently provoked by exotic woods, e.g. wood of the Dalbergia spp., Machaerium scleroxylon or Tectona grandis. Cutaneous reactions are usually associated with manual or machine woodworking, in occupational setting or as a hobby. As a result of exposure to wood dust, airborne contact dermatitis is often diagnosed. Cases of allergic contact dermatitis due to solid woods of finished articles as jewelry or musical instruments have also been reported. The aim of the paper is to present various adverse skin reactions related to exposure to woods, their causal factors and sources of exposure, based on the review of literature.

  5. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    PubMed

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-04

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state.

  6. γ -ray spectroscopy of fission fragments produced in 208Pb(18O ,f )

    NASA Astrophysics Data System (ADS)

    Banerjee, P.; Ganguly, S.; Pradhan, M. K.; Moin Shaikh, Md.; Sharma, H. P.; Chakraborty, S.; Palit, R.; Pillay, R. G.; Nanal, V.; Saha, S.; Sethi, J.; Biswas, D. C.

    2015-08-01

    Prompt gamma-ray spectroscopy of fission fragments produced in the heavy-ion induced fusion-fission reaction 208Pb(18O,f ) at E =90 MeV has been performed. The relative isotopic yields of the fission fragments and the fragment mass distribution have been studied. Structures in the mass distribution have been discussed in the light of earlier results. Relative yields of several odd-A isotopes of Mo, Ru, Pd, and Cd and the odd-A isotones with N =62 and 64 have been studied along with the yields of the neighboring even-Z , even-N fragments and correlated to nuclear structural effects. The average total neutron multiplicity during fission has been measured to be 5.48 ±0.59 . The level schemes of the two neutron-rich nuclei 110Pd and 116Cd have been studied from γ -ray triple coincidence data. A large number of transitions, previously reported only from β -decay studies, have been observed in 110Pd for the first time. The yrast band in 116Cd has been extended up to spin (16+). In addition, a rotational sequence built upon an excited 5- state in 116Cd has been observed up to (13-). The level schemes have been discussed in the context of existing results, both experimental and theoretical, in the literature.

  7. Applications of Event-by-Event Fission Modeling with FREYA

    SciTech Connect

    Vogt, R; Randrup, J

    2011-09-16

    The recently developed code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, consisting of two receding product nuclei as well as a number of neutrons and photons, all with complete kinematic information. Thus it is possible to calculate arbitrary correlation observables whose behavior may provide unique insight into the fission process. We first discuss the present status of FREYA, which has now been extended to include spontaneous fission. Concentrating on {sup 239}Pu(n{sub th},f), {sup 240}Pu(sf) and {sup 252}Cf(sf), we discuss the neutron multiplicity correlations, the dependence of the neutron energy spectrum on the neutron multiplicity, and the relationship between the fragment kinetic energy and the number of neutrons and their energies. We also suggest novel fission observables that could be measured with modern detectors.

  8. Mutual control of membrane fission and fusion proteins.

    PubMed

    Peters, Christopher; Baars, Tonie L; Bühler, Susanne; Mayer, Andreas

    2004-11-24

    Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.

  9. Evaluation on thermal explosion induced by slightly exothermic interface reaction.

    PubMed

    Yu, Ma-Hong; Li, Yong-Fu; Sun, Jin-Hua; Hasegawa, Kazutoshi

    2004-09-10

    An asphalt-salt mixture (ASM), which once caused a fire and explosion in a reprocessing plant, was prepared by imitating the real bituminization process of waste on a lab scale to evaluate its actual thermal hazards. Heat flux reaction calorimeters were used to measure the release of heat for the simulated ASM at a constant heating rate and at a constant temperature, respectively. Experimental results show that the reaction in the ASM below about 250 degrees C is a slightly exothermic interface reaction between the asphalt and the salt particles contained in the asphalt, and that the heat release rate increases sharply above about 250 degrees C due to melting of the salt particles. The reaction rates were formulated on the basis of an assumed reaction model, and the kinetic parameters were determined. Using the model with the kinetic parameters, temperature changes with time and drum-radius axes for the ASM-filled drum were numerically simulated assuming a one-dimensional infinite cylinder system, where the drum was being cooled at an ambient temperature of 50 degrees C. The minimum filling temperature, at which the runaway reaction (MFTRR) can occur for the simulated ASM in the drum is about 194 degrees C. Furthermore, a very good linear correlation exists between this MFTRR and the initial radius of salt particles formed in the bituminization product. The critical filling temperature to the runaway reaction is about 162 degrees C for the asphalt-salt mixture, containing zero-size salt particles, filled in the same drum at an ambient temperature of 50 degrees C. Thus, the runaway reaction will never occur in the drum filled with the asphalt-salt mixture under the conditions of the filling temperature below 162 degrees C and a constant ambient temperature of 50 degrees C. As a consequence, the ASM explosion occurred in the reprocessing plant likely was due to a slightly exothermically reaction and self heating.

  10. Radiotherapy-induced skin reactions: assessment and management.

    PubMed

    Glover, Deborah; Harmer, Victoria

    Radiotherapy, the use of high-energy rays to either kill cancer cells or treat some benign tumours, is undoubtedly a positive intervention. However, as the primary mode of action in radiotherapy treatment is the killing of cells to prevent replication, other non-cancerous cells may be affected. For example, up to 85% of patients will experience some form of skin reaction, which will range from local erythema to moist desquamation. Such reactions are not only distressing and painful for the patient, if severe enough, they may warrant a halt in treatment. This article outlines the aims and nature of radiotherapy, and then discusses the aetiology of skin reactions, risk factors for reaction, and assessment tools. Management interventions will also be shown, with emphasis on silicone dressings.

  11. Studies of alpha-induced astrophysical reactions at CRIB

    SciTech Connect

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-08-12

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, many measurements on proton alpha resonance scatterings, ({alpha},p) reactions, and others were performed in recent years mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the {sup 7}Li+{alpha} resonance scatterings are presented.

  12. [DRUG INDUCED EXANTHEMA AND SEVERE CUTANEOUS DRUG REACTIONS].

    PubMed

    Bensaïd, Benoît; Valeyrie-Allanore, Laurence; Lebrun-Vignes, Bénédicte; Nicolas, Jean-François

    2015-09-01

    Cutaneous adverse drug reactions (CADR) are delayed hypersensivities. Their clinical presentation and severity are very diverse ranging from the frequent and benign exanthemas to the rare but severe CADR involving deep organs in the case of drug reaction with eosinophilia and systemic symptoms (DRESS) or leading to skin bulla and epidermal detachment in toxic epidermal necrolysis. The main differential diagnoses are infections, especially viral ones, which could give clinical symptoms identical to those occurring in CADR.

  13. Landau-Zener effect in fission

    SciTech Connect

    Mirea, M.; Tassan-Got, L.; Stephan, C.; Bacri, C. O.; Bobulescu, R. C.

    2007-12-15

    A model that takes into account the Landau-Zener promotion mechanism during fission was developed recently. The structures observed in the subthreshold neutron-induced fission of {sup 232}Th are investigated employing this model. Theoretical single-particle excitations of a phenomenological two-humped barrier are determined by solving a system of coupled differential equations for the motion along the optimal fission path. A rather good agreement with experimental data is obtained using a small number of independent parameters. It is predicted that the structure at 1.4 and 1.6 MeV is mainly dominated by a spin 3/2 partial cross section with a small admixture of spin 1/2, while the structure at 1.7 MeV is given by a large partial cross section of spin 5/2.

  14. Measurements of Short-Lived Fission Isomers

    NASA Astrophysics Data System (ADS)

    Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner

    2016-09-01

    Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.

  15. Perspective: Vibrational-induced steric effects in bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Liu, Kopin

    2015-02-01

    The concept of preferred collision geometry in a bimolecular reaction is at the heart of reaction dynamics. Exemplified by a series of crossed molecular beam studies on the reactions of a C-H stretch-excited CHD3(v1 = 1) with F, Cl, and O(3P) atoms, two types of steric control of chemical reactivity will be highlighted. A passive control is governed in a reaction with strong anisotropic entry valley that can significantly steer the incoming trajectories. This disorientation effect is illustrated by the F and O(3P) + CHD3(v1 = 1) reactions. In the former case, the long-range anisotropic interaction acts like an optical "negative" lens by deflecting the trajectories away from the favored transition-state geometry, and thus inhibiting the bond rupture of the stretch-excited CHD3. On the contrary, the interaction between O(3P) and CHD3(v1 = 1) behaves as a "positive" lens by funneling the large impact-parameter collisions into the cone of acceptance, and thereby enhances the reactivity. As for reactions with relatively weak anisotropic interactions in the entry valley, an active control can be performed by exploiting the polarization property of the infrared excitation laser to polarize the reactants in space, as demonstrated in the reaction of Cl with a pre-aligned CHD3(v1 = 1) reactant. A simpler case, the end-on versus side-on collisions, will be elucidated for demonstrating a means to disentangle the impact-parameter averaging. A few general remarks about some closely related issues, such as mode-, bond-selectivity, and Polanyi's rules, are made.

  16. Perspective: Vibrational-induced steric effects in bimolecular reactions

    SciTech Connect

    Liu, Kopin

    2015-02-28

    The concept of preferred collision geometry in a bimolecular reaction is at the heart of reaction dynamics. Exemplified by a series of crossed molecular beam studies on the reactions of a C–H stretch-excited CHD{sub 3}(v{sub 1} = 1) with F, Cl, and O({sup 3}P) atoms, two types of steric control of chemical reactivity will be highlighted. A passive control is governed in a reaction with strong anisotropic entry valley that can significantly steer the incoming trajectories. This disorientation effect is illustrated by the F and O({sup 3}P) + CHD{sub 3}(v{sub 1} = 1) reactions. In the former case, the long-range anisotropic interaction acts like an optical “negative” lens by deflecting the trajectories away from the favored transition-state geometry, and thus inhibiting the bond rupture of the stretch-excited CHD{sub 3}. On the contrary, the interaction between O({sup 3}P) and CHD{sub 3}(v{sub 1} = 1) behaves as a “positive” lens by funneling the large impact-parameter collisions into the cone of acceptance, and thereby enhances the reactivity. As for reactions with relatively weak anisotropic interactions in the entry valley, an active control can be performed by exploiting the polarization property of the infrared excitation laser to polarize the reactants in space, as demonstrated in the reaction of Cl with a pre-aligned CHD{sub 3}(v{sub 1} = 1) reactant. A simpler case, the end-on versus side-on collisions, will be elucidated for demonstrating a means to disentangle the impact-parameter averaging. A few general remarks about some closely related issues, such as mode-, bond-selectivity, and Polanyi’s rules, are made.

  17. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    SciTech Connect

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  18. Insights into nuclear structure and the fission process from spontaneous fission

    SciTech Connect

    Hamilton, J.H.; Butler-Moore, K.; Ramayya, A.V.

    1993-12-31

    The {gamma}-rays emitted following spontaneous and induced fission are rich sources of information about the structure of neutron-rich nuclei and about the fission process itself. The study of spontaneous fissioning isotopes with large Ge detector arrays are providing a wealth of such information as seen, for example, in recent reports. In this paper we present some of our most recent results on nuclear structure studies and conclusions on the fission process itself. In our work, we have employed in spontaneous fission, a triple gamma coincidence study for the first time and a high resolution, X-ray detector-{gamma}-coincidence study. These data provide powerful ways of separating the gamma rays which belong to a particular nucleus. The triple coincidence technique was used to uniquely identify the levels in {sup 136}Te and higher spin states in its N=84 isotones, {sup 138}Xe and {sup 140}Ba{sup 171}. Some other examples of the level structures observed in the low and high mass partners are presented, including a detailed analysis of the backbending of the moment of inertia in {sup 112,114,116}Pd. Finally, we present the first examples of how our analysis allows one to extract a detailed picture of the dependence of the angular momentum on the mass and atomic numbers of the fission fragments and of the long-sought neutron multiplicity distribution from zero-n to ten-n as a function of the charge and mass asymmetry.

  19. Direct measurements of astrophysically important α-induced reactions

    NASA Astrophysics Data System (ADS)

    Avila, Melina

    2016-03-01

    Understanding stellar evolution is one of the primary objectives of nuclear astrophysics. Reaction rates involving α-particles are often key nuclear physics inputs in stellar models. For instance, there are numerous (α , p) reactions fundamental for the understanding of X-ray bursts and the production of 44Ti in core-collapse supernovae. Furthermore, some (α , n) reactions are considered as one of the main neutron sources in the s-process. However, direct measurements of these reactions at relevant astrophysical energies are experimentally challenging because of their small cross section and intensity limitation of radioactive beams. The active target system MUSIC offers a unique opportunity to study (α , p) and (α , n) reactions because its segmented anode allows the investigation of a large energy range in the excitation function with a single measurement. Recent results on the direct measurement of (α , n) and (α , p) measurements in the MUSIC detector will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User.

  20. Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells.

    PubMed

    Parameyong, Arisa; Govitrapong, Piyarat; Chetsawang, Banthit

    2015-09-01

    Methamphetamine (METH) is an addictive drug that can cause toxicity and degeneration in the brain. Several pieces of evidence have demonstrated that METH toxicity results in increases in oxidative stress that regulate an intracellular signaling cascade that leads to cell death. Recently, several studies have emphasized that the overload of cytosolic calcium levels and mitochondrial fission into a small mitochondrial structure is involved in cell death processes. In the present study, we aimed to investigate the effects of METH toxicity on cytosolic calcium overload and mitochondrial fission in neuroblastoma SH-SY5Y cells. Additionally, the protective effect of melatonin against METH-induced toxicity was also investigated. The results of the present study demonstrated that METH significantly decreases cell viability and increases the levels of mitochondrial fission (Fis1 and Drp1) proteins and pro-apoptotic protein, Bax in isolated mitochondria. The levels of Drp1 in the cytosol of METH-treated cells had no significant differences compared to the control untreated cells. METH also significantly increased the cytosolic calcium levels. Melatonin reversed the toxic effects of METH by restoring cell viability and inhibiting the increase in mitochondrial Fis1 levels and the mitochondrial translocation of Drp1 and Bax. Additionally, melatonin was able to reduce the METH-induced increase in cytosolic calcium levels and fragmented mitochondria into small globular structures in SH-SY5Y cells. The results of the present study demonstrate the potential abilities of melatonin to maintain the homeostasis of mitochondrial dynamics and cytosolic calcium levels in METH-induced toxicity in neuronal cells.

  1. Population of Nuclei Via 7Li-Induced Binary Reactions

    SciTech Connect

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha,Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis

    2005-08-08

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.

  2. (α, γ) reaction induced background events for rare event experiments

    NASA Astrophysics Data System (ADS)

    Tiwari, Ashok; Zhang, Chao; Mei, Dongming

    2016-09-01

    We report an observation of (α, γ) reaction at the Soudan mine. With a 12-Liter scintillation neutron detector at Soudan mine for about 5 years of data taking, we have observed (α, γ) reaction, which can generate potential background events for dark matter and neutrinoless double-beta decay experiments. We have simulated the alpha flux from radon decay using the measured radon concentration in Soudan mine. The convolution of the alpha flux and the cross-section of (α, γ) allows us to determine the rate of high energy gamma from (α, γ) reaction. This rate is compared to the measured event rate. We demonstrate that the modulation of (α, γ) event rate has similar pattern as the radon modulation observed independently in Soudan mine. This work is supported by NSF in part by the NSF PHY-0758120, DOE Grant DE-FG02-10ER46709, and the State of South Dakota.

  3. Fission Product Library and Resource

    SciTech Connect

    Burke, J. T.; Padgett, S.

    2016-09-29

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  4. Physiological Environment Induces Quick Response – Slow Exhaustion Reactions

    PubMed Central

    Hiroi, Noriko; Lu, James; Iba, Keisuke; Tabira, Akito; Yamashita, Shuji; Okada, Yasunori; Flamm, Christoph; Oka, Kotaro; Köhler, Gottfried; Funahashi, Akira

    2011-01-01

    In vivo environments are highly crowded and inhomogeneous, which may affect reaction processes in cells. In this study we examined the effects of intracellular crowding and an inhomogeneity on the behavior of in vivo reactions by calculating the spectral dimension (ds), which can be translated into the reaction rate function. We compared estimates of anomaly parameters obtained from fluorescence correlation spectroscopy (FCS) data with fractal dimensions derived from transmission electron microscopy (TEM) image analysis. FCS analysis indicated that the anomalous property was linked to physiological structure. Subsequent TEM analysis provided an in vivo illustration; soluble molecules likely percolate between intracellular clusters, which are constructed in a self-organizing manner. We estimated a cytoplasmic spectral dimension ds to be 1.39 ± 0.084. This result suggests that in vivo reactions initially run faster than the same reactions in a homogeneous space; this conclusion is consistent with the anomalous character indicated by FCS analysis. We further showed that these results were compatible with our Monte-Carlo simulation in which the anomalous behavior of mobile molecules correlates with the intracellular environment, leading to description as a percolation cluster, as demonstrated using TEM analysis. We confirmed by the simulation that the above-mentioned in vivo like properties are different from those of homogeneously concentrated environments. Additionally, simulation results indicated that crowding level of an environment might affect diffusion rate of reactant. Such knowledge of the spatial information enables us to construct realistic models for in vivo diffusion and reaction systems. PMID:21960972

  5. Fusion-fission Study at JAEA for Heavy-element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.

    Fission fragment mass distributions were measured in the heavy-ion induced fission using 238U target nucleus. The mass distribu- tions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their inci- dent energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that the sub-barrier energies can be used for heavy element synthesis.

  6. Fission Product Transmutation in Mixed Radiation Fields

    SciTech Connect

    Harmon, Frank; Burgett, Erick; Starovoitova, Valeriia; Tsveretkov, Pavel

    2015-01-15

    Work under this grant addressed a part of the challenge facing the closure of the nuclear fuel cycle; reducing the radiotoxicity of lived fission products (LLFP). It was based on the possibility that partitioning of isotopes and accelerator-based transmutation on particular LLFP combined with geological disposal may lead to an acceptable societal solution to the problem of management. The feasibility of using photonuclear processes based on the excitation of the giant dipole resonance (GDR) by bremsstrahlung radiation as a cost effective transmutation method was accessed. The nuclear reactions of interest: (γ,xn), (n,γ), (γ,p) can be induced by bremsstrahlung radiation produced by high power electron accelerators. The driver of these processes would be an accelerator that produces a high energy and high power electron beam of ~ 100 MeV. The major advantages of such accelerators for this purpose are that they are essentially available “off the shelf” and potentially would be of reasonable cost for this application. Methods were examined that used photo produced neutrons or the bremsstrahlung photons only, or use both photons and neutrons in combination for irradiations of selected LLFP. Extrapolating the results to plausible engineering scale transmuters it was found that the energy cost for 129I and 99Tc transmutation by these methods are about 2 and 4%, respectively, of the energy produced from 1000MWe.

  7. Fission neutron spectra measurements at LANSCE - status and plans

    SciTech Connect

    Haight, Robert C; Noda, Shusaku; Nelson, Ronald O; O' Donnell, John M; Devlin, Matt; Chatillon, Audrey; Granier, Thierry; Taieb, Julien; Laurent, Benoit; Belier, Gilbert; Becker, John A; Wu, Ching - Yen

    2009-01-01

    A program to measure fission neutron spectra from neutron-induced fission of actinides is underway at the Los Alamos Neutron Science Center (LANSCE) in a collaboration among the CEA laboratory at Bruyeres-le-Chatel, Lawrence Livermore National Laboratory and Los Alamos National Laboratory. The spallation source of fast neutrons at LANSCE is used to provide incident neutron energies from less than 1 MeV to 100 MeV or higher. The fission events take place in a gas-ionization fission chamber, and the time of flight from the neutron source to that chamber gives the energy of the incident neutron. Outgoing neutrons are detected by an array of organic liquid scintillator neutron detectors, and their energies are deduced from the time of flight from the fission chamber to the neutron detector. Measurements have been made of the fission neutrons from fission of {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. The range of outgoing energies measured so far is from 1 MeV to approximately 8 MeV. These partial spectra and average fission neutron energies are compared with evaluated data and with models of fission neutron emission. Results to date will be presented and a discussion of uncertainties will be given in this presentation. Future plans are to make significant improvements in the fission chambers, neutron detectors, signal processing, data acquisition and the experimental environment to provide high fidelity data including mea urements of fission neutrons below 1 MeV and improvements in the data above 8 MeV.

  8. Fission modelling with FIFRELIN

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  9. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  10. Low-energy deuteron-induced reactions on 93Nb

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Avrigeanu, V.; Bém, P.; Fischer, U.; Honusek, M.; Koning, A. J.; Mrázek, J.; Šimečková, E.; Štefánik, M.; Závorka, L.

    2013-07-01

    The activation cross sections of (d,p), (d,2n), (d,2np+nd+t), (d,2nα), and (d,pα) reactions on 93Nb were measured in the energy range from 1 to 20 MeV using the stacked-foil technique. Then, within a simultaneous analysis of elastic scattering and reaction data, the available elastic-scattering data analysis was carried out in order to obtain the optical potential for reaction cross-section calculations. Particular attention was paid to the description of the breakup mechanism and direct reaction stripping and pick-up, followed by pre-equilibrium and compound-nucleus calculations. The measured cross sections as well as all available deuteron activation data of 93Nb were compared with results of local model calculations carried out using the codes fresco and stapre-h and both default and particular predictions of the code talys-1.4 and tendl-2012-evaluated data.

  11. Pulmonary reactions caused by welding-induced decomposed trichloroethylene

    SciTech Connect

    Sjoegren, B.P.; Plato, N.; Alexandersson, R.; Eklund, A.; Falkenberg, C. )

    1991-01-01

    This is the report of a welder who performed argon-shielded electric arc welding in an atmosphere containing trichloroethylene. He developed immediate respiratory symptoms, pulmonary edema 12 hours after exposure, and recurring dyspnea ten days after exposure. These pulmonary reactions might be explained by inhalation of decomposition products of trichloroethylene such as dichloroacetyl chloride and phosgene.

  12. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  13. Uncertainties in nuclear fission data

    NASA Astrophysics Data System (ADS)

    Talou, Patrick; Kawano, Toshihiko; Chadwick, Mark B.; Neudecker, Denise; Rising, Michael E.

    2015-03-01

    We review the current status of our knowledge of nuclear fission data, and quantify uncertainties related to each fission observable whenever possible. We also discuss the roles that theory and experiment play in reducing those uncertainties, contributing to the improvement of our fundamental understanding of the nuclear fission process as well as of evaluated nuclear data libraries used in nuclear applications.

  14. Unexpected death due to cefuroxime-induced disulfiram-like reaction

    PubMed Central

    Dong, Hongmei; Zhang, Ji; Ren, Liang; Liu, Qian; Zhu, Shaohua

    2013-01-01

    Cefuoxime, a second-generation cephalosporin, is used in the treatment of Gram-positive infections. Here, we report a case cefuroxime-induced disulfiram-like reaction which led to sudden death of the patient. PMID:24014919

  15. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemistry in the region of Iriduim and Gold

    SciTech Connect

    Hoffman, R D; Dietrich, F S; Kelley, K; Escher, J; Bauer, R; Mustafa, M

    2008-02-26

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from osmium (Z = 76) to gold (Z = 79). Of particular interest are the cross sections on Ir and Au including reactions on isomeric targets.

  16. Modeling Proton- and Light Ion-Induced Reactions at Low Energies in the MARS15 Code

    SciTech Connect

    Rakhno, I. L.; Mokhov, N. V.; Gudima, K. K.

    2015-04-25

    An implementation of both ALICE code and TENDL evaluated nuclear data library in order to describe nuclear reactions induced by low-energy projectiles in the Monte Carlo code MARS15 is presented. Comparisons between results of modeling and experimental data on reaction cross sections and secondary particle distributions are shown.

  17. Population of Nuclei Via 7Li-Induced Binary Reactions

    SciTech Connect

    Clark, R M; Phair, L W; Descovich, M; Cromaz, M; Deleplanque, M A; Fallon, P; Lee, I Y; Macchiavelli, A O; McMahan, M A; Moretto, L G; Rodriguez-Vieitez, E; Sinha, S; Stephens, F S; Ward, D; Wiedeking, M; Bernstein, L A; Burke, J T; Church, J A

    2005-08-09

    The authors have investigated the population of nuclei formed in binary reactions involving {sup 7}Li beams on targets of {sup 160}Gd and {sup 184}W. The {sup 7}Li + {sup 184}W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si {Delta}E-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies.

  18. Reaction-induced rheological weakening enables oceanic plate subduction

    NASA Astrophysics Data System (ADS)

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-01

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the `cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  19. Reaction-induced rheological weakening enables oceanic plate subduction.

    PubMed

    Hirauchi, Ken-Ichi; Fukushima, Kumi; Kido, Masanori; Muto, Jun; Okamoto, Atsushi

    2016-08-26

    Earth is the only terrestrial planet in our solar system where an oceanic plate subducts beneath an overriding plate. Although the initiation of plate subduction requires extremely weak boundaries between strong plates, the way in which oceanic mantle rheologically weakens remains unknown. Here we show that shear-enhanced hydration reactions contribute to the generation and maintenance of weak mantle shear zones at mid-lithospheric depths. High-pressure friction experiments on peridotite gouge reveal that in the presence of hydrothermal water, increasing strain and reactions lead to an order-of-magnitude reduction in strength. The rate of deformation is controlled by pressure-solution-accommodated frictional sliding on weak hydrous phyllosilicate (talc), providing a mechanism for the 'cutoff' of the high peak strength at the brittle-plastic transition. Our findings suggest that infiltration of seawater into transform faults with long lengths and low slip rates is an important controlling factor on the initiation of plate tectonics on terrestrial planets.

  20. Robotic reactions: delay-induced patterns in autonomous vehicle systems.

    PubMed

    Orosz, Gábor; Moehlis, Jeff; Bullo, Francesco

    2010-02-01

    Fundamental design principles are presented for vehicle systems governed by autonomous cruise control devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity model using numerical continuation and numerical simulation.

  1. Shock-Induced Chemical Reactions in Condensed Matter.

    DTIC Science & Technology

    1982-08-01

    Technical, 4/1/78 - 6/30/82 Matter 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMUER(e) George E. Duvall, Principal Investigator...CHEMICAL REACTIONS IN CONDENSED MATTER George E. Duvall, Principal Investigator Stephen A. Sheffield* Kendal M. OgilvieT 4 C. Robert Wilson Paul...Temperture," in Sixth Symposium (International on Detonation (Office of Naval Research, Arlington, 1976), ACR-Z21, p. 36. 24. G. Gamow , "Tentative

  2. Continuum effects in transfer reactions induced by heavy ions

    SciTech Connect

    Marta, H.D.; Donangelo, R.; Fernandez Niello, J.O.; Pacheco, A.J.

    2006-02-15

    In the usual treatment of transfer nuclear reactions, the continuum states of the transferred particle are neglected. Here we perform a semiclassical calculation that treats the continuum in an exact way. For comparison purposes, we perform a second calculation in which the continuum is completely disregarded. The results of these two calculations indicates that the influence of the continuum states may be very important in systems with weakly bound reactants.

  3. Diethyl pyrocarbonate reaction with the lactose repressor protein affects both inducer and DNA binding

    SciTech Connect

    Sams, C.F.; Matthews, K.S.

    1988-04-05

    Modification of the lactose repressor protein of Escherichia coli with diethyl pyrocarbonate (DPC) results in decreased inducer binding as well as operator and nonspecific DNA binding. Spectrophotometric measurements indicated a maximum of three histidines per subunit was modified, and quantitation of lysine residues with trinitrobenzenesulfonate revealed the modification of one lysine residue. The loss of DNA binding, both operator and nonspecific, was correlated with histidine modification; removal of the carbethoxy groups from the histidines by hydroxylamine was accompanied by significant recovery of DNA binding function. The presence of inducing sugars during the DPC reaction had no effect on histidine modification or the loss of DNA binding activity. In contrast, inducer binding was not recovered upon reversal of the histidine modification. However, the presence of inducer during reaction protected lysine from reaction and also prevented the decrease in inducer binding; these results indicate that reaction of the lysine residue(s) may correlate to the loss of sugar binding activity. Since no difference in incorporation of radiolabeled carbethoxy was observed following reaction with diethyl pyrocarbonate in the presence or absence of inducer, the reagent appears to function as a catalyst in the modification of the lysine. The formation of an amide bond between the affected lysine and a nearby carboxylic acid moiety provides a possible mechanism for the activity loss. Reaction of the isolated NH2-terminal domain resulted in loss of DNA binding with modification of the single histidine at position 29. Results from the modification of core domain paralleled observations with intact repressor.

  4. Unexpected asymmetry of the charge distribution in the fission of Th,224222 at high excitation energies

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    Using the improved scission-point model, the isotopic trends of the charge distribution of fission fragments are studied in induced fission of even-even Th isotopes. The calculated results are in good agreement with available experimental data. With increasing neutron number the transition from symmetric to asymmetric fission mode is shown to be related to the change of the potential energy surface. The change of the shape of mass distribution with increasing excitation energy is discussed for fissioning ATh nuclei. At high excitation energies, there are unexpected large asymmetric modes in the fission of neutron-deficient Th isotopes considered.

  5. Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.

    2016-12-01

    A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.

  6. Spontaneous fission of /sup 259/Fm

    SciTech Connect

    Hulet, E.K.; Lougheed, R.W.; Landrum, J.H.; Wild, J.F.; Hoffman, D.C.; Weber, J.; Wilhelmy, J.B.

    1980-03-01

    A 1.5-s spontaneous fission activity has been produced by irradiating /sup 257/Fm with 16-MeV tritons. On the basis of formation cross sections, fission half-life systematics, and the identification of other possible products, this 1.5-s activity has been attributed to /sup 259/Fm formed by the reaction /sup 257/Fm(t,p)/sup 259/Fm. /sup 259/Fm is the heaviest known isotope of Fm and has more neutrons than any other nuclide thus far identified. This measurement of the spontaneous fission of /sup 259/Fm is the first to show a narrow, predominantly symmetric, mass division from spontaneous fission. It is accompanied by a very high kinetic energy, the most probable total kinetic energy being 242 +- 6 MeV. These features show a marked acceleration in the trend toward more symmetric mass division and higher total kinetic energies than have been observed previously for the Fm isotopes as the mass increased.

  7. Systematic review of NSAID-induced adverse reactions in patients with rheumatoid arthritis in Japan.

    PubMed

    Tomita, Tetsuya; Ochi, Takahiro; Sugano, Kentaro; Uemura, Shinichi; Makuch, Robert W

    2003-06-01

    Abstract A systematic review of randomized controlled clinical trials of nonsteroidal antiinflammatory drugs (NSAIDs) in rheumatoid arthritis (RA) patients was conducted to evaluate the risk of NSAID-induced adverse reactions. Double-blind, randomized, controlled trials with 6-week treatments for RA patients were included in the study. The endpoints for the analysis included any adverse reactions, digestive adverse reactions, and upper gastrointestinal (GI) adverse reactions. A fixed-effect model was used for estimation of the risk. Time-to-event analysis of the incidence of adverse reactions was also conducted. A total of 28 trials was included for the analysis, and a total of 30 NSAIDs were used in the trials. The proportion of patients who experienced any adverse reaction was as follows: piroxicam 18.9% (3 trials), diclofenac 18.8% (4 trials), indomethacin 22.1% (14 trials), and aspirin 25.0% (4 trials). The proportion of patients who experienced digestive adverse reactions was as follows: piroxicam 10.2%, diclofenac 10.6%, indomethacin 13.1%, and aspirin 14.1%. Most withdrawals due to adverse reaction occurred during the first 3 weeks after administration of the NSAID. Although the risk of NSAID-induced adverse reaction was different from drug to drug, the risk of adverse reaction was clinically significant.

  8. Actin polymerization does not provide direct mechanical forces for vesicle fission during clathrin-mediated endocytosis.

    PubMed

    Yao, Li-Hua; Rao, Yan; Bang, Chi; Kurilova, Svetlana; Varga, Kelly; Wang, Chun-Yang; Weller, Brandon D; Cho, Wonhwa; Cheng, Jun; Gong, Liang-Wei

    2013-10-02

    Actin polymerization is important for vesicle fission during clathrin-mediated endocytosis (CME), and it has been proposed that actin polymerization may promote vesicle fission during CME by providing direct mechanical forces. However, there is no direct evidence in support of this hypothesis. In the present study, the role of actin polymerization in vesicle fission was tested by analyzing the kinetics of the endocytic tubular membrane neck (the fission-pore) with cell-attached capacitance measurements to detect CME of single vesicles in a millisecond time resolution in mouse chromaffin cells. Inhibition in dynamin GTPase activity increased the fission-pore conductance (Gp), supporting the mechanical role of dynamin GTPase in vesicle fission. However, disruptions in actin polymerization did not alter the fission-pore conductance Gp, thus arguing against the force-generating role of actin polymerization in vesicle fission during CME. Similar to disruptions of actin polymerization, cholesterol depletion results in an increase in the fission-pore duration, indicating a role for cholesterol-dependent membrane reorganization in vesicle fission. Further experiments suggested that actin polymerization and cholesterol might function in vesicle fission during CME in the same pathway. Our results thus support a model in which actin polymerization promotes vesicle fission during CME by inducing cholesterol-dependent membrane reorganization.

  9. Kinetics of Reactions of Monomeric Nitrosomethane Induced by Flash Photolysis.

    ERIC Educational Resources Information Center

    Kozubek, H.; And Others

    1984-01-01

    Describes an experiment in which the kinetics of dimerization of nitrosamine induced by a flash of light is measured. The experiment can be performed with a commercial ultraviolet-VIS spetrophotometer with easy to make modifications. The experiment demonstrates a flash photolysis system not always available in university chemistry laboratories.…

  10. Mass and charge distributions in chlorine-induced nuclear reactions

    SciTech Connect

    Marchetti, A.A.

    1991-12-31

    Projectile-like fragments were detected and characterized in terms of A, Z, and energy for the reactions {sup 37}Cl on {sup 40}Ca and {sup 209}Bi at E/A = 7.3 MeV, and {sup 35}Cl, on {sup 209}Bi at E/A = 15 MeV, at angles close to the grazing angle. Mass and charge distributions were generated in the N-Z plane as a function of energy loss, and have been parameterized in terms of their centroids, variances, and coefficients of correlation. Due to experimental problems, the mass resolution corresponding to the {sup 31}Cl on {sup 209}Bi reaction was very poor. This prompted the study and application of a deconvolution technique for peak enhancement. The drifts of the charge and mass centroids for the system {sup 37}Cl on {sup 40}Ca are consistent with a process of mass and charge equilibration mediated by nucleon exchange between the two partners, followed by evaporation. The asymmetric systems show a strong drift towards larger asymmetry, with the production of neutron-rich nuclei. It was concluded that this is indicative of a net transfer of protons from the light to the heavy partner, and a net flow of neutrons in the opposite direction. The variances for all systems increase with energy loss, as it would be expected from a nucleon exchange mechanism; however, the variances for the reaction {sup 37}Cl on {sup 40}Ca are higher than those expected from that mechanism. The coefficients of correlation indicate that the transfer of nucleons between projectile and target is correlated. The results were compared to the predictions of two current models based on a stochastic nucleon exchange mechanism. In general, the comparisons between experimental and predicted variances support this mechanism; however, the need for more realistic driving forces in the model calculations is indicated by the disagreement between predicted and experimental centroids.

  11. Properties of fission fragments for Z =112 -116 superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-07-01

    The dynamical cluster decay model (DCM) is applied to understand the dynamics of 48Ca+238U,244Pu,248Cm reactions at comparable excitation energies across the barrier. To understand the capture stage of *286112 ,*292114 , and *296116 nuclei, the compound nucleus formation probability is calculated. The indication of PC N<1 in the DCM framework demonstrates the fact that some competing process such as quasifission may occur at the capture stage of the 48Ca induced reactions. To understand this further, the comparative decay analysis of *286112 ,*292114 and *296116 , nuclei is carried out using β2 i deformations within hot optimum orientation criteria, and the calculat