Sample records for induced fission reactions

  1. Fission Reaction Event Yield Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona

    FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).

  2. Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

    NASA Astrophysics Data System (ADS)

    Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.

    2018-04-01

    The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.

  3. Fusion-fission and quasifission of superheavy systems with Z =110 -116 formed in 48Ca-induced reactions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.; Itkis, M. G.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttgé, L.; Trzaska, W. H.; Schmitt, C.; Chubarian, G.

    2014-11-01

    Background: In heavy-ion-induced reactions the mechanism leading to the formation of the compound nucleus and the role of quasifission is still not clear. Purpose: Investigation of the quasifission process of superheavy composite systems with Z =110 -116 and comparison with properties of fusion-fission and quasifission of lighter composite systems. Method: Mass and energy distributions of fissionlike fragments formed in the reactions 48Ca+232Th, 238U , 244Pu , and 248Cm at energies near the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer CORSET at the U-400 cyclotron of the FLNR JINR. Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies and ion-target combinations have been studied for asymmetric and symmetric fragments formed in the reactions. The capture cross sections were obtained for the reactions 48Ca+244Pu and 248Cm . The lower limits for fission barriers of 283 -286Cn , 289 -292Fl , and 293 -296Lv compound nuclei were estimated. Conclusions: Analysis of the properties of symmetric fragments has shown that a significant part of these fragments may be attributed to fusion-fission process for the reactions 48Ca +238U , 244Pu , and 248Cm .

  4. The Effect of Stiffness Parameter on Mass Distribution in Heavy-Ion Induced Fission

    NASA Astrophysics Data System (ADS)

    Soheyli, Saeed; Khalil Khalili, Morteza; Ashrafi, Ghazaaleh

    2018-06-01

    The stiffness parameter of the composite system has been studied for several heavy-ion induced fission reactions without the contribution of non-compound nucleus fission events. In this research, determination of the stiffness parameter is based on the comparison between the experimental data on the mass widths of fission fragments and those predicted by the statistical model treatments at the saddle and scission points. Analysis of the results shows that for the induced fission reactions of different targets by the same projectile, the stiffness parameter of the composite system decreases with increasing the fissility parameter, as well as with increasing the mass number of the compound nucleus. This parameter also exhibits a similar behavior for the reactions of a given target induced by different projectiles. As expected, nearly same stiffness values are obtained for different reactions leading to the same compound nucleus.

  5. Prompt fission neutron emission in the reaction 235U(n,f)

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2018-03-01

    Experimental activities at JRC-Geel on prompt fission neutron (PFN) emission in response to OECD/NEA nuclear data requests are presented in this contribution. Specifically, on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances, taking place at the GELINA facility, are presented. The focus of this contribution lies on studies of PFN correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. This setup allows us to study several correlations between properties of neutron and fission fragments simultaneously. Results on PFN correlations with fission fragment properties from the present study differ significantly from earlier studies on this reaction, induced by thermal neutrons.

  6. Analysis of reaction cross-section production in neutron induced fission reactions on uranium isotope using computer code COMPLET.

    PubMed

    Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso

    2018-04-22

    This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Study of fission using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Mark, Vermeulen; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Asai, Masato; Toyoshima, Atsushi; Sato, Tetsuya K.; Nagame, Yuichiro; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-11-01

    It is shown that multi-nucleon transfer reaction is a powerful tool to study fission of exotic neutronrich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U, 18O+248Cm, and 18O+237Np were used to measure fission-fragment mass distribution for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all the studied cases, with an increase of the symmetric fission towards high excitation energies. Experimental data are compared with predictions of the fluctuation-dissipation model, where effects of multi-chance fission (neutron evaporation prior to fission) was introduced. It is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited and less neutronrich excited nuclei due to higher-order chance fissions.

  8. Experimental fission study using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-09-01

    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.

  9. Mass-yield distributions of fission products in bremsstrahlung-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Kim, G. N.; Kim, K.

    2018-01-01

    The cumulative yields of various fission products within the 77-153 mass regions in the 2.5-GeV bremsstrahlung-induced fission of 232Th have been determined by using the recoil catcher and an off-line γ-ray spectrometric technique at the Pohang Accelerator Laboratory, Korea. The mass-yield distributions were obtained from the cumulative yields after charge-distribution corrections. The peak-to-valley (P /V ) ratio, the average value of light mass ( ) and heavy mass ( ), and the average postfission number of neutrons ( expt) were obtained from the mass yield of the 232Th(γ ,f ) reaction. The present and literature data in the 232Th(γ ,f ) reaction were compared with the similar data in the 238U(γ ,f ) reaction at various excitation energies to examine the role of potential energy surface and the effect of standard I and standard II asymmetric modes of fission. It was found that (i) even at the bremsstrahlung end-point energy of 2.5 GeV, the mass-yield distribution in the 232Th(γ ,f ) reaction is triple humped, unlike 238U(γ ,f ) reaction, where it is double humped. (ii) The peak-to-valley (P /V ) ratio decreases with the increase of excitation energies. However, the P /V ratio of the 232Th(γ ,f ) reaction is always lower than that of the 238U(γ ,f ) reaction due to the presence of a third peak in the former. (iii) In both the 232Th(γ ,f ) and 238U(γ ,f ) reactions, the nuclear structure effect almost vanishes at the bremsstrahlung end-point energies of 2.5-3.5 GeV.

  10. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  11. Fission Activities of the Nuclear Reactions Group in Uppsala

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.

    This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.

  12. Neutron induced fission of 237Np - status, challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Ruskov, Ivan; Goverdovski, Andrei; Furman, Walter; Kopatch, Yury; Shcherbakov, Oleg; Hambsch, Franz-Josef; Oberstedt, Stephan; Oberstedt, Andreas

    2018-03-01

    Nowadays, there is an increased interest in a complete study of the neutron-induced fission of 237Np. This is due to the need of accurate and reliable nuclear data for nuclear science and technology. 237Np is generated (and accumulated) in the nuclear reactor core during reactor operation. As one of the most abundant long-lived isotopes in spent fuel ("waste"), the incineration of 237Np becomes an important issue. One scenario for burning of 237Np and other radio-toxic minor actinides suggests they are to be mixed into the fuel of future fast-neutron reactors, employing the so-called transmutation and partitioning technology. For testing present fission models, which are at the basis of new generation nuclear reactor developments, highly accurate and detailed neutron-induced nuclear reaction data is needed. However, the EXFOR nuclear database for 237Np on neutron-induced capture cross-section, σγ, and fission cross-section, σf, as well as on the characteristics of capture and fission resonance parameters (Γγ, Γf, σoΓf, fragments mass-energy yield distributions, multiplicities of neutrons vn and γ-rays vγ), has not been updated for decades.

  13. Compound Nucleus Reactions in LENR, Analogy to Uranium Fission

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Miley, George; Philberth, Karl

    2008-03-01

    The discovery of nuclear fission by Hahn and Strassmann was based on a very rare microanalytical result that could not initially indicate the very complicated details of this most important process. A similarity is discussed for the low energy nuclear reactions (LENRs) with analogies to the yield structure found in measurements of uranium fission. The LENR product distribution measured earlier in a reproducible way in experiments with thin film electrodes and a high density deuteron concentration in palladium has several striking similarities with the uranium fission fragment yield curve.ootnotetextG.H. Miley and J.A. Patterson, J. New Energy 1, 11 (1996); G.H. Miley et al, Proc ICCF6, p. 629 (1997).This comparison is specifically focussed to the Maruhn-Greiner local maximum of the distribution within the large-scale minimum when the fission nuclei are excited. Implications for uranium fission are discussed in comparison with LENR relative to the identification of fission a hypothetical compound nuclear reaction via a element ^306X126 with double magic numbers.

  14. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  15. Relativistic Coulomb Fission

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  16. Fission fragment yield distribution in the heavy-mass region from the 239Pu (nth,f ) reaction

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Biswas, D. C.; Serot, O.; Bernard, D.; Litaize, O.; Julien-Laferrière, S.; Chebboubi, A.; Kessedjian, G.; Sage, C.; Blanc, A.; Faust, H.; Köster, U.; Ebran, A.; Mathieu, L.; Letourneau, A.; Materna, T.; Panebianco, S.

    2017-07-01

    The fission fragment yield distribution has been measured in the 239Pu(nth,f ) reaction in the mass region of A =126 to 150 using the Lohengrin recoil-mass spectrometer. Three independent experimental campaigns were performed, allowing a significant reduction of the uncertainties compared to evaluated nuclear data libraries. The long-standing discrepancy of around 10% for the relative yield of A =134 reported in JEF-2.2 and JEFF-3.1.1 data libraries is finally solved. Moreover, the measured mass distribution in thermal neutron-induced fission does not show any significant dip around the shell closure (A =136 ) as seen in heavy-ion fission data of 208Pb(18O, f ) and 238U(18O, f ) reactions. Lastly, comparisons between our experimental data and the predictions from Monte Carlo codes (gef and fifrelin) are presented and discussed.

  17. Transfer-induced fission in inverse kinematics: Impact on experimental and evaluated nuclear data bases

    NASA Astrophysics Data System (ADS)

    Farget, F.; Caamaño, M.; Ramos, D.; Rodrıguez-Tajes, C.; Schmidt, K.-H.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clément, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domınguez, B.; Gaudefroy, L.; Golabek, C.; Heinz, A.; Jurado, B.; Lemasson, A.; Paradela, C.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2015-12-01

    Inverse kinematics is a new tool to study nuclear fission. Its main advantage is the possibility to measure with an unmatched resolution the atomic number of fission fragments, leading to new observables in the properties of fission-fragment distributions. In addition to the resolution improvement, the study of fission based on nuclear collisions in inverse kinematics beneficiates from a larger view with respect to the neutron-induced fission, as in a single experiment the number of fissioning systems and the excitation energy range are widden. With the use of spectrometers, mass and kinetic-energy distributions may now be investigated as a function of the proton and neutron number sharing. The production of fissioning nuclei in transfer reactions allows studying the isotopic yields of fission fragments as a function of the excitation energy. The higher excitation energy resulting in the fusion reaction leading to the compound nucleus 250Cf at an excitation energy of 45MeV is also presented. With the use of inverse kinematics, the charge polarisation of fragments at scission is now revealed with high precision, and it is shown that it cannot be neglected, even at higher excitation energies. In addition, the kinematical properties of the fragments inform on the deformation configuration at scission.

  18. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  19. Fission Reaction Event Yield Algorithm FREYA 2.0.2

    DOE PAGES

    Verbeke, J. M.; Randrup, J.; Vogt, R.

    2017-09-01

    The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less

  20. DEATH-STAR: Silicon and Photovoltaic Fission Fragment Detector Arrays for Light-Ion Induced Fission Correlation Studies

    NASA Astrophysics Data System (ADS)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.

    2017-05-01

    The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.

  1. Spallation reaction study for the long-lived fission product 107Pd

    NASA Astrophysics Data System (ADS)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Nobuyuki, Chiga; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-02-01

    Spallation reactions for the long-lived fission product 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained at 196 and 118 MeV/nucleon in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. It was found that the proton-induced cross sections at 196 MeV/nucleon are close to those for deuteron obtained at 118 MeV/nucleon for the light-mass products. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intranuclear cascade and evaporation processes. Our data give a design goal of proton/deuteron flux for the transmutation of 107Pd using the spallation reaction. In addition, it is found that the spallation reaction at 118 MeV/nucleon may have an advantage over the 107Pd transmutation because of the low production of other long-lived radioactive isotopes.

  2. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  3. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE PAGES

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; ...

    2017-02-20

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  4. Neutron induced fission cross section measurements of 240Pu and 242Pu

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Eykens, R.; Heyse, J.; Matei, C.; Moens, A.; Nolte, R.; Plompen, A. J. M.; Richter, S.; Sibbens, G.; Vanleeuw, D.; Wynants, R.

    2017-09-01

    Accurate neutron induced fission cross section of 240Pu and 242Pu are required in view of making nuclear technology safer and more efficient to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). The probability for a neutron to induce such reactions figures in the NEA Nuclear Data High Priority Request List [1]. A measurement campaign to determine neutron induced fission cross sections of 240Pu and 242Pu at 2.51 MeV and 14.83 MeV has been carried out at the 3.7 MV Van De Graaff linear accelerator at Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig. Two identical Frisch Grid fission chambers, housing back to back a 238U and a APu target (A = 240 or A = 242), were employed to detect the total fission yield. The targets were molecular plated on 0.25 mm aluminium foils kept at ground potential and the employed gas was P10. The neutron fluence was measured with the proton recoil telescope (T1), which is the German primary standard for neutron fluence measurements. The two measurements were related using a De Pangher long counter and the charge as monitors. The experimental results have an average uncertainty of 3-4% at 2.51 MeV and for 6-8% at 14.81 MeV and have been compared to the data available in literature.

  5. Energy dependence of the prompt γ -ray emission from the ( d , p ) -induced fission of U * 234 and Pu * 240

    DOE PAGES

    Rose, Sunniva J.; Zeiser, Fabio; Wilson, J. N.; ...

    2017-07-05

    Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energymore » above the fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. In conclusion, further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.« less

  6. Compact fission counter for DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C Y; Chyzh, A; Kwan, E

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additionalmore » signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  7. Nuclear fission: a review of experimental advances and phenomenology

    NASA Astrophysics Data System (ADS)

    Andreyev, A. N.; Nishio, K.; Schmidt, K.-H.

    2018-01-01

    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion–fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around {\\hspace{0pt}}180 Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in Z and A, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions

  8. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Shi, Tan; Venuti, Michael; Fellers, Deion; Martin, Sean; Morris, Chris; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the UCN energy, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, this work has the potential to deconvolve the various damage mechanisms. During the irradiation with UCN, NaI detectors are used to monitor the fission events and were calibrated by monitoring fission fragments with an organic scintillator. Alpha spectroscopy of the ejected actinide material is performed in an ion chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this talk, I will discuss our experimental setup and present the preliminary results from the testing of multiple samples. This work has been supported by Los Alamos National Laboratory and Seaborg Summer Research Fellowship.

  9. Study of proton- and deuteron-induced spallation reactions on the long-lived fission product 93Zr at 105 MeV/nucleon in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Kawase, Shoichiro; Nakano, Keita; Watanabe, Yukinobu; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, Deuk Soon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Jun'ichi; Uesaka, Meiko; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission product ^{93}Zr have been studied in order to provide basic data necessary for nuclear waste transmutation. Isotopic-production cross sections via proton- and deuteron-induced spallation reactions on ^{93}Zr at 105 MeV/nucleon were measured in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Remarkable jumps in isotopic production originating from the neutron magic number N=50 were observed in Zr and Y isotopes. The experimental results were compared to the PHITS calculations considering both the intranuclear cascade and evaporation processes, and the calculations greatly overestimated the measured production yield, corresponding to few-nucleon-removal reactions. The present data suggest that the spallation reaction is a potential candidate for the treatment of ^{93}Zr in spent nuclear fuel.

  10. Measurement of high-energy prompt gamma-rays from neutron induced fission of U-235

    NASA Astrophysics Data System (ADS)

    Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Léguillon, Romain; Ogawa, Tatsuhiko; Soldner, Torsten; Hambsch, Franz-Josef; Astier, Alain; Pollitt, Andrew; Petrache, Costel; Tsekhanovich, Igor; Mathieu, Ludovic; Aïche, Mourad; Frost, Robert; Czajkowski, Serge; Guo, Song; Köster, Ulli

    2017-09-01

    We have developed a new setup to measure prompt γ-rays from the 235U(nth,f) reaction. The setup consists of two multi-wire proportional counters (MWPCs) to detect the fission fragments, two LaBr3(Ce) scintillators to measure the γ-rays. The highly efficient setup was installed at the PF1B beam line of the Institut Laue Langevin (ILL). We have successfully measured the γ-ray spectrum up to about 20 MeV for the fist time in neutron-induced fission.

  11. Actinide Sputtering Induced by Fission with Ultra-cold Neutrons

    NASA Astrophysics Data System (ADS)

    Venuti, Michael; Shi, Tan; Fellers, Deion; Morris, Christopher; Makela, Mark

    2017-09-01

    Understanding the effects of actinide sputtering due to nuclear fission is important for a wide range of applications, including nuclear fuel storage, space science, and national defense. A new program at the Los Alamos Neutron Science Center uses ultracold neutrons (UCN) to induce fission in actinides such as uranium and plutonium. By controlling the energy of UCN, it is possible to induce fission at the sample surface within a well-defined depth. It is therefore an ideal tool for studying the effects of fission-induced sputtering as a function of interaction depth. Since the mechanism for fission-induced surface damage is not well understood, especially for samples with a surface oxide layer, this work has the potential to separate the various damage mechanisms proposed in previous works. During the irradiation with UCN, fission events are monitored by coincidence counting between prompt gamma rays using NaI detectors. Alpha spectroscopy of the ejected actinide material is performed in a custom-built ionization chamber to determine the amount of sputtered material. Actinide samples with various sample properties and surface conditions are irradiated and analyzed. In this presentation, we will discuss our experimental setup and present the preliminary results.

  12. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  13. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharibyan, Narek

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially bemore » investigated in this manner include (but are not limited to) Pu-239 and U-237.« less

  14. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  15. Measurement of 240Pu Angular Momentum Dependent Fission Probabilities Using the (α ,α') Reaction

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Burke, Jason; Fisher, Scott; Jovanovic, Igor

    2017-09-01

    The surrogate reaction method often lacks the theoretical framework and necessary experimental data to constrain models especially when rectifying differences between angular momentum state differences between the desired and surrogate reaction. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(α ,α' f) reaction - a surrogate for the 239Pu(n , f) - and fission fragment angular distributions. Fission probability measurements were performed at a beam energy of 35.9(2) MeV at eleven scattering angles from 40° to 140°e in 10° intervals and at nuclear excitation energies up to 16 MeV. Fission fragment angular distributions were measured in six bins from 4.5 MeV to 8.0 MeV and fit to expected distributions dependent on the vibrational and rotational excitations at the saddle point. In this way, the contributions to the total fission probability from specific states of K angular momentum projection on the symmetry axis are extracted. A sizable data collection is presented to be considered when constraining microscopic cross section calculations.

  16. Study of Heavy-ion Induced Fission for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Hofmann, S.; Ackermann, D.; Aritomo, Y.; Comas, V. F.; Düllmann, Ch. E.; Heinz, S.; Heredia, J. A.; Heßberger, F. P.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, M.; Mann, R.; Mitsuoka, S.; Nishinaka, I.; Ohtsuki, T.; Saro, S.; Schädel, M.; Popeko, A. G.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A.

    2014-05-01

    Fission fragment mass distributions were measured in heavy-ion induced fission of 238U. The mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model for the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that sub-barrier energies can be used for heavy element synthesis.

  17. Measurements of fission product yield in the neutron-induced fission of 238U with average energies of 9.35 MeV and 12.52 MeV

    NASA Astrophysics Data System (ADS)

    Mukerji, Sadhana; Krishnani, Pritam Das; Shivashankar, Byrapura Siddaramaiah; Mulik, Vikas Kaluram; Suryanarayana, Saraswatula Venkat; Naik, Haladhara; Goswami, Ashok

    2014-07-01

    The yields of various fission products in the neutron-induced fission of 238U with the flux-weightedaveraged neutron energies of 9.35 MeV and 12.52 MeV were determined by using an off-line gammaray spectroscopic technique. The neutrons were generated using the 7Li(p, n) reaction at Bhabha Atomic Research Centre-Tata Institute of Fundamental Research Pelletron facility, Mumbai. The gamma- ray activities of the fission products were counted in a highly-shielded HPGe detector over a period of several weeks to identify the decaying fission products. At both the neutron energies, the fission-yield values are reported for twelve fission product. The results obtained from the present work have been compared with the similar data for mono-energetic neutrons of comparable energy from the literature and are found to be in good agreement. The peak-to-valley (P/V) ratios were calculated from the fission-yield data and were found to decreases for neutron energy from 9.35 to 12.52 MeV, which indicates the role of excitation energy. The effect of the nuclear structure on the fission product-yield is discussed.

  18. Decay of Plutonium isotopes via spontaneous and heavy-ion induced fission paths

    NASA Astrophysics Data System (ADS)

    Sharma, Kanishka; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2018-04-01

    Based on the collective clusterization approach, we have extended our earlier study on α-decay, exotic cluster-decay, and heavy particle radioactivity, to the phenomenon of spontaneous fission (SF) in the ground-state (g.s.) decays of even mass 234-246Pu parents. The calculations for the SF half-lives of these Pu-isotopes have been made within the framework of preformed cluster model (PCM), both for spherical as well as β2-deformed choices of shapes, and a comparison is made with the relevant available experimental data, which prefer spherical shapes. The importance of the orientation degree of freedom (hot compact or cold elongated configurations) is also explored. Next, in order to look for the exclusive role of heavy-ion induced fission, the dynamics of 6He + 238U reaction forming 244Pu* is studied over the center of mass energy range of E c . m . = 15.0- 28.8MeV, using the dynamical cluster-decay model (DCM), an extension of the PCM with temperature T- and angular momentum ℓ-effects included. The β2-deformed fragments of 244Pu* in the mass range A2 = 106- 113 (plus their complementary heavy fragments), corresponding to asymmetric fission peaks, are found contributing towards the fission cross-section. Finally, the potential energy surfaces and barrier modification effects are presented for the relative comparison of spontaneous and the heavy-ion induced fission processes. Both are found to behave similar with respect to the probable emission of fragments and hence point out to the shell closure property of the decay fragments.

  19. Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Dolan; M. J. Marcath; M. Flaska

    2012-07-01

    Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, amore » system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX

  20. Measurement of Plutonium-240 Angular Momentum Dependent Fission Probabilities Using the Alpha-Alpha' Reaction

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon

    Accurate nuclear reaction data from a few keV to tens of MeV and across the table of nuclides is essential to a number of applications of nuclear physics, including national security, nuclear forensics, nuclear astrophysics, and nuclear energy. Precise determination of (n, f) and neutron capture cross sections for reactions in high- ux environments are particularly important for a proper understanding of nuclear reactor performance and stellar nucleosynthesis. In these extreme environments reactions on short-lived and otherwise difficult-to-produce isotopes play a significant role in system evolution and provide insights into the types of nuclear processes taking place; a detailed understanding of these processes is necessary to properly determine cross sections far from stability. Indirect methods are often attempted to measure cross sections on isotopes that are difficult to separate in a laboratory setting. Using the surrogate approach, the same compound nucleus from the reaction of interest is created through a "surrogate" reaction on a different isotope and the resulting decay is measured. This result is combined with appropriate reaction theory for compound nucleus population, from which the desired cross sections can be inferred. This method has shown promise, but the theoretical framework often lacks necessary experimental data to constrain models. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(alpha, alpha'f) reaction - a surrogate for the 239Pu(n, f) - and fission of 35.9(2)MeV at eleven scattering angles from 40° to 140° in 10° intervals and at nuclear excitation energies up to 16MeV. Within experimental uncertainty, the maximum fission probability was observed at the neutron separation energy for each alpha scattering angle. Fission probabilities were separated into five 500 keV bins from 5:5MeV to

  1. Production of fissioning uranium plasma to approximate gas-core reactor conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.

    1974-01-01

    The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.

  2. Accurate isotopic fission yields of electromagnetically induced fission of 238U measured in inverse kinematics at relativistic energies

    NASA Astrophysics Data System (ADS)

    Pellereau, E.; Taïeb, J.; Chatillon, A.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Benlliure, J.; Boutoux, G.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Ebran, A.; Farget, F.; Fernández-Domínguez, B.; Gorbinet, T.; Grente, L.; Heinz, A.; Johansson, H.; Jurado, B.; Kelić-Heil, A.; Kurz, N.; Laurent, B.; Martin, J.-F.; Nociforo, C.; Paradela, C.; Pietri, S.; Rodríguez-Sánchez, J. L.; Schmidt, K.-H.; Simon, H.; Tassan-Got, L.; Vargas, J.; Voss, B.; Weick, H.

    2017-05-01

    SOFIA (Studies On Fission with Aladin) is a novel experimental program, dedicated to accurate measurements of fission-fragment isotopic yields. The setup allows us to fully identify, in nuclear charge and mass, both fission fragments in coincidence for the whole fission-fragment range. It was installed at the GSI facility (Darmstadt), to benefit from the relativistic heavy-ion beams available there, and thus to use inverse kinematics. This paper reports on fission yields obtained in electromagnetically induced fission of 238U.

  3. A New Measurement of Neutron Induced Fission Cross Sections

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2017-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission ragment Tracking Experiment (NIFFTE) collaboration designed and built a fission Time Projection Chamber (fissionTPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2016 run cycle, measurements of the 238U(n,f)/235U(n,f) cross section shape was performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as these recently reported results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Prompt fissionγ-ray characteristics from neutron-induced fission on 239Pu and the time-dependence of prompt-γray emission

    NASA Astrophysics Data System (ADS)

    Gatera, Angélique; Göök, Alf; Hambsch, Franz-Josef; Moens, André; Oberstedt, Andreas; Oberstedt, Stephan; Sibbens, Goedele; Vanleeuw, David; Vidali, Marzio

    2018-03-01

    Recent years have seen an increased interest in prompt fission γ-ray (PFG) measurements motivated by a high priority request of the OECD/NEA for high precision data, mainly for the nuclear fuel isotopes 235U and 239Pu. Our group has conducted a PFG measurement campaign using state-of-the-art lanthanum halide detectors for all the main actinides to a precision better than 3%. The experiments were performed in a coincidence setup between a fission trigger and γ-ray detectors. The time-of-flight technique was used to discriminate photons, traveling at the speed of light, and prompt fission neutrons. For a full rejection of all neutrons below 20 MeV, the PFG time window should not be wider than a few nanoseconds. This window includes most PFG, provided that no isomeric states were populated during the de-excitation process. When isomeric states are populated, PFGs can still be emitted up to 1 yus after the instant of fission or later. To study these γ-rays, the detector response to neutrons had to be determined and a correction had to be applied to the γ-ray spectra. The latest results for PFG characteristics from the reaction 239Pu(nth,f) will be presented, together with an analysis of PFGs emitted up to 200 ns after fission in the spontaneous fission of 252Cf as well as for thermal-neutron induced fission on 235U and 239Pu. The results are compared with calculations in the framework of the Hauser-Feshbach Monte Carlo code CGMF and FIFRELIN.

  5. Exploiting Fission Chain Reaction Dynamics to Image Fissile Materials

    NASA Astrophysics Data System (ADS)

    Chapman, Peter Henry

    Radiation imaging is one potential method to verify nuclear weapons dismantlement. The neutron coded aperture imager (NCAI), jointly developed by Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL), is capable of imaging sources of fast (e.g., fission spectrum) neutrons using an array of organic scintillators. This work presents a method developed to discriminate between non-multiplying (i.e., non-fissile) neutron sources and multiplying (i.e., fissile) neutron sources using the NCAI. This method exploits the dynamics of fission chain-reactions; it applies time-correlated pulse-height (TCPH) analysis to identify neutrons in fission chain reactions. TCPH analyzes the neutron energy deposited in the organic scintillator vs. the apparent neutron time-of-flight. Energy deposition is estimated from light output, and time-of-flight is estimated from the time between the neutron interaction and the immediately preceding gamma interaction. Neutrons that deposit more energy than can be accounted for by their apparent time-of-flight are identified as fission chain-reaction neutrons, and the image is reconstructed using only these neutron detection events. This analysis was applied to measurements of weapons-grade plutonium (WGPu) metal and 252Cf performed at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) in July 2015. The results demonstrate it is possible to eliminate the non-fissile 252Cf source from the image while preserving the fissileWGPu source. TCPH analysis was also applied to additional scenes in which theWGPu and 252Cf sources were measured individually. The results of these separate measurements further demonstrate the ability to remove the non-fissile 252Cf source and retain the fissileWGPu source. Simulations performed using MCNPX-PoliMi indicate that in a one hour measurement, solid spheres ofWGPu are retained at a 1sigma level for neutron multiplications M -˜ 3.0 and above, while hollowWGPu spheres are

  6. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  7. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.

    PubMed

    Zhang, Guojie; Müller, Marcus

    2017-08-14

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.

  8. Mesoscale model for fission-induced recrystallization in U-7Mo alloy

    DOE PAGES

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo; ...

    2016-08-09

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  9. Anomalies in the Charge Yields of Fission Fragments from the U ( n , f ) 238 Reaction

    DOE PAGES

    Wilson, J. N.; Lebois, M.; Qi, L.; ...

    2017-06-01

    Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fissionmore » fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. Finally, this has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.« less

  10. Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: Spontaneous vs. neutron-induced fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A.; Jaffke, P.; Wu, C. Y.

    Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less

  11. Dependence of the prompt fission γ-ray spectrum on the entrance channel of compound nucleus: Spontaneous vs. neutron-induced fission

    DOE PAGES

    Chyzh, A.; Jaffke, P.; Wu, C. Y.; ...

    2018-06-07

    Prompt γ-ray spectra were measured for the spontaneous fission of 240,242Pu and the neutron-induced fission of 239,241Pu with incident neutron energies ranging from thermal to about 100 keV. Measurements were made using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments using a parallel-plate avalanche counter. The unfolded prompt fission γ-ray energy spectra can be reproduced reasonably well by Monte Carlo Hauser–Feshbach statistical model for the neutron-induced fission channel but not for the spontaneous fission channel. However, this entrance-channel dependence of the prompt fission γ-ray emission can be described qualitatively by themore » model due to the very different fission-fragment mass distributions and a lower average fragment spin for spontaneous fission. The description of measurements and the discussion of results under the framework of a Monte Carlo Hauser–Feshbach statistical approach are presented.« less

  12. Fission Product Yield Study of 235U, 238U and 239Pu Using Dual-Fission Ionization Chambers

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Howell, C.; Tornow, W.; Gooden, M.; Kelley, J.; Arnold, C.; Bond, E.; Bredeweg, T.; Fowler, M.; Moody, W.; Rundberg, R.; Rusev, G.; Vieira, D.; Wilhelmy, J.; Becker, J.; Macri, R.; Ryan, C.; Sheets, S.; Stoyer, M.; Tonchev, A.

    2014-05-01

    To resolve long-standing differences between LANL and LLNL regarding the correct fission basis for analysis of nuclear test data [M.B. Chadwick et al., Nucl. Data Sheets 111, 2891 (2010); H. Selby et al., Nucl. Data Sheets 111, 2891 (2010)], a collaboration between TUNL/LANL/LLNL has been established to perform high-precision measurements of neutron induced fission product yields. The main goal is to make a definitive statement about the energy dependence of the fission yields to an accuracy better than 2-3% between 1 and 15 MeV, where experimental data are very scarce. At TUNL, we have completed the design, fabrication and testing of three dual-fission chambers dedicated to 235U, 238U, and 239Pu. The dual-fission chambers were used to make measurements of the fission product activity relative to the total fission rate, as well as for high-precision absolute fission yield measurements. The activation method was employed, utilizing the mono-energetic neutron beams available at TUNL. Neutrons of 4.6, 9.0, and 14.5 MeV were produced via the 2H(d,n)3He reaction, and for neutrons at 14.8 MeV, the 3H(d,n)4He reaction was used. After activation, the induced γ-ray activity of the fission products was measured for two months using high-resolution HPGe detectors in a low-background environment. Results for the yield of seven fission fragments of 235U, 238U, and 239Pu and a comparison to available data at other energies are reported. For the first time results are available for neutron energies between 2 and 14 MeV.

  13. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

  14. Superasymmetric fission of heavy nuclei induced by intermediate-energy protons

    NASA Astrophysics Data System (ADS)

    Deppman, A.; Andrade-II, E.; Guimarães, V.; Karapetyan, G. S.; Tavares, O. A. P.; Balabekyan, A. R.; Demekhina, N. A.; Adam, J.; Garcia, F.; Katovsky, K.

    2013-12-01

    In this work we present the results for the investigation of intermediate-mass fragment (IMF) production with the proton-induced reaction at 660 MeV on 238U and 237Np target. The data were obtained with the LNR Phasotron U-400M Cyclotron at Joint Institute for Nuclear Research (JINR), Dubna, Russia. A total of 93 isotopes, in the mass range of 30induced-activation method in an off-line analysis. Mass-yield distributions were derived from the data and compared with the results of the simulation code CRISP for multimodal fission. A discussion of the superasymmetric fragment production mechanism is also given.

  15. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  16. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  17. Variational RRKM theory calculation of thermal rate constant for carbon—hydrogen bond fission reaction of nitro benzene

    NASA Astrophysics Data System (ADS)

    Manesh, Afshin Taghva; Heidarnezhad, Zabi alah; Masnabadi, Nasrin

    2013-07-01

    The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k( T) = 2.1 × 1017exp(-56575.98/ T), k( T) = 2.1 × 1017exp(-57587.45/ T), and k( T) = 3.3 × 1016exp(-57594.79/ T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k( T) = 2 × 1018exp(-59343.48.18/ T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.

  18. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirolf, P. G.; Gross, M.; Allinger, K.

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Thmore » ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.« less

  19. Fission properties of superheavy nuclei for r -process calculations

    NASA Astrophysics Data System (ADS)

    Giuliani, Samuel A.; Martínez-Pinedo, Gabriel; Robledo, Luis M.

    2018-03-01

    We computed a new set of static fission properties suited for r -process calculations. The potential energy surfaces and collective inertias of 3640 nuclei in the superheavy region are obtained from self-consistent mean-field calculations using the Barcelona-Catania-Paris-Madrid energy density functional. The fission path is computed as a function of the quadrupole moment by minimizing the potential energy and exploring octupole and hexadecapole deformations. The spontaneous fission lifetimes are evaluated employing different schemes for the collective inertias and vibrational energy corrections. This allows us to explore the sensitivity of the lifetimes to those quantities together with the collective ground-state energy along the superheavy landscape. We computed neutron-induced stellar reaction rates relevant for r -process nucleosynthesis using the Hauser-Feshbach statistical approach and study the impact of collective inertias. The competition between different reaction channels including neutron-induced rates, spontaneous fission, and α decay is discussed for typical r -process conditions.

  20. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  1. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, H.; Otsu, H.; Sakurai, H.; Ahn, D. S.; Aikawa, M.; Doornenbal, P.; Fukuda, N.; Isobe, T.; Kawakami, S.; Koyama, S.; Kubo, T.; Kubono, S.; Lorusso, G.; Maeda, Y.; Makinaga, A.; Momiyama, S.; Nakano, K.; Niikura, M.; Shiga, Y.; Söderström, P.-A.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Taniuchi, R.; Watanabe, Ya.; Watanabe, Yu.; Yamasaki, H.; Yoshida, K.

    2016-03-01

    We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  2. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  3. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu( nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  4. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  5. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrancemore » as reported in the pre-actinide region based on the measurement of evaporation residue cross section.« less

  6. Fission fragment yields and total kinetic energy release in neutron-induced fission of235,238U,and239Pu

    NASA Astrophysics Data System (ADS)

    Tovesson, F.; Duke, D.; Geppert-Kleinrath, V.; Manning, B.; Mayorov, D.; Mosby, S.; Schmitt, K.

    2018-03-01

    Different aspects of the nuclear fission process have been studied at Los Alamos Neutron Science Center (LANSCE) using various instruments and experimental techniques. Properties of the fragments emitted in fission have been investigated using Frisch-grid ionization chambers, a Time Projection Chamber (TPC), and the SPIDER instrument which employs the 2v-2E method. These instruments and experimental techniques have been used to determine fission product mass yields, the energy dependent total kinetic energy (TKE) release, and anisotropy in neutron-induced fission of U-235, U-238 and Pu-239.

  7. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  8. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    NASA Astrophysics Data System (ADS)

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-01

    Mass and energy distributions of binary reaction products obtained in the reactions 22Ne+249Cf,26Mg+248Cm,36S+238U and 58Fe+208Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction 26Mg+248Cm, is observed. In the reaction 36S+238U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the 58Fe+208Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  9. Measurement of the Am 242 m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to E n = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  10. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    NASA Astrophysics Data System (ADS)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  11. Neutron-induced fission measurements at the time-of-flight facility nELBE

    DOE PAGES

    Kögler, T.; Beyer, R.; Junghans, A. R.; ...

    2015-05-18

    Neutron-induced fission of ²⁴²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  12. Mass-yield distributions of fission products from 20, 32, and 45 MeV proton-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Goswami, A.; Kim, G. N.; Kim, K.; Suryanarayana, S. V.

    2013-10-01

    The yields of various fission products in the 19.6, 32.2, and 44.8 MeV proton-induced fission of 232Th have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the BARC-TIFR Pelletron in India and MC-50 cyclotron in Korea. The mass-yield distributions were obtained from the fission product yield using the charge distribution corrections. The peak-to-valley (P/V) ratio of the present work and that of literature data for 232Th(p,f) and 238U(p,f) were obtained from the mass yield distribution. The present and the existing literature data for 232Th(p,f), 232Th(n,f), and 232Th( γ,f) at various energies were compared with those for 238U(p,f), 238U(n,f), and 238U( γ,f) to examine the probable nuclear structure effect. The role of Th-anomaly on the peak-to-valley ratio in proton-, neutron-, and photon-induced fission of 232Th was discussed with the similar data in 238U. On the other hand, the fine structure in the mass yield distributions of the fissioning systems at various excitation energies has been explained from the point of standard I and II asymmetric mode of fission besides the probable role of even-odd effect, A/ Z ratio, and fissility parameter.

  13. Statistical and dynamical modeling of heavy-ion fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.; Razazzadeh, H.

    2018-02-01

    A modified statistical model and a four dimensional dynamical model based on Langevin equations have been used to simulate the fission process of the excited compound nuclei 207At and 216Ra produced in the fusion 19F + 188Os and 19F + 197Au reactions. The evaporation residue cross section, the fission cross section, the pre-scission neutron, proton and alpha multiplicities and the anisotropy of fission fragments angular distribution have been calculated for the excited compound nuclei 207At and 216Ra. In the modified statistical model the effects of spin K about the symmetry axis and temperature have been considered in calculations of the fission widths and the potential energy surfaces. It was shown that the modified statistical model can reproduce the above mentioned experimental data by using appropriate values of the temperature coefficient of the effective potential equal to λ = 0.0180 ± 0.0055, 0.0080 ± 0.0030 MeV-2 and the scaling factor of the fission barrier height equal to rs = 1.0015 ± 0.0025, 1.0040 ± 0.0020 for the compound nuclei 207At and 216Ra, respectively. Three collective shape coordinates plus the projection of total spin of the compound nucleus on the symmetry axis, K, were considered in the four dimensional dynamical model. In the dynamical calculations, dissipation was generated through the chaos weighted wall and window friction formula. Comparison of the theoretical results with the experimental data showed that two models make it possible to reproduce satisfactorily the above mentioned experimental data for the excited compound nuclei 207At and 216Ra.

  14. Anisotropy of the angular distribution of fission fragments in heavy-ion fusion-fission reactions: The influence of the level-density parameter and the neck thickness

    NASA Astrophysics Data System (ADS)

    Naderi, D.; Pahlavani, M. R.; Alavi, S. A.

    2013-05-01

    Using the Langevin dynamical approach, the neutron multiplicity and the anisotropy of angular distribution of fission fragments in heavy ion fusion-fission reactions were calculated. We applied one- and two-dimensional Langevin equations to study the decay of a hot excited compound nucleus. The influence of the level-density parameter on neutron multiplicity and anisotropy of angular distribution of fission fragments was investigated. We used the level-density parameter based on the liquid drop model with two different values of the Bartel approach and Pomorska approach. Our calculations show that the anisotropy and neutron multiplicity are affected by level-density parameter and neck thickness. The calculations were performed on the 16O+208Pb and 20Ne+209Bi reactions. Obtained results in the case of the two-dimensional Langevin with a level-density parameter based on Bartel and co-workers approach are in better agreement with experimental data.

  15. Role of (n,2n) reactions in transmutation of long-lived fission products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G.

    2016-12-15

    The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 andmore » the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).« less

  16. Structure Of Neutron-Rich Nuclei In A˜100 Region Observed In Fusion-Fission Reactions

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Hua, H.; Cline, D.; Hayes, A. B.; Teng, R.; Clark, R. M.; Fallon, P.; Görgen, A.; Macchiavelli, A. O.; Vetter, K.

    2003-03-01

    Neutron-rich nuclei around A˜100 were populated as fission fragments produced by the 238U(α,f) fusion-fission reaction. The deexcitation γ rays were detected by Gammasphere in coincidence with the detection of both fission fragments by the Rochester 4π heavy-ion detector array, CHICO. This technique allows Doppler-shift corrections to be applied for the observed γ rays on an event-by-event basis thus establishing the origin of γ rays from either fission fragment. In addition, it allows observation of γ-ray transitions from states with short lifetimes and offers the opportunity to study nuclear species beyond the reach of the spontaneous fission process. With these advantages, one can extend the spectroscopic study to higher spins than those derived using the thick-target technique, and to more neutron-rich nuclei than those derived from spontaneous fissions. Among the new and interesting phenomena identified in this rapid shape-changing region, the most distinct result is the evidence for a prolate-to-oblate shape transition occurring at 116Pd, which may have important implications to our understanding of the shell structure for neutron-rich nuclei.

  17. Isotopic fission-fragment distributions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through inelastic scattering, transfer, and fusion reactions in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Caamaño, M.; Farget, F.; Rodríguez-Tajes, C.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.

    2018-05-01

    Transfer- and fusion-induced fission in inverse kinematics has proved to be a powerful tool to investigate nuclear fission, widening information on the fission fragments and access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign is being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through inelastic scattering, transfer, and fusion reactions, with excitation energies that range from a few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer allow the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. This work reports on new data from the second experiment of the campaign on fission-fragment yields of the heavy actinides 238U, 239Np, 240Pu, 244Cm, and 250Cf, which are of interest from both fundamental and application points of view.

  18. Fission time scale from pre-scission neutron and α multiplicities in the 16O + 194Pt reaction

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Verma, S.; Sharma, P.; Mahajan, R.; Kaur, N.; Kaur, G.; Behera, B. R.; Singh, K. P.; Kumar, A.; Singh, H.; Dubey, R.; Saneesh, N.; Jhingan, A.; Sugathan, P.; Mohanto, G.; Nayak, B. K.; Saxena, A.; Sharma, H. P.; Chamoli, S. K.; Mukul, I.; Singh, V.

    2017-11-01

    Pre- and post-scission α -particle multiplicities have been measured for the reaction 16O+P194t at 98.4 MeV forming R210n compound nucleus. α particles were measured at various angles in coincidence with the fission fragments. Moving source technique was used to extract the pre- and post-scission contributions to the particle multiplicity. Study of the fission mechanism using the different probes are helpful in understanding the detailed reaction dynamics. The neutron multiplicities for this reaction have been reported earlier. The multiplicities of neutrons and α particles were reproduced using standard statistical model code joanne2 by varying the transient (τt r) and saddle to scission (τs s c) times. This code includes deformation dependent-particle transmission coefficients, binding energies and level densities. Fission time scales of the order of 50-65 ×10-21 s are required to reproduce the neutron and α -particle multiplicities.

  19. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  20. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis

    PubMed Central

    Xu, Hailuan; Yuan, Jin; He, Wencheng; Zhu, Mengjiao; Ding, Hongxing; Yi, Lin; Chen, Jinding

    2017-01-01

    Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies. PMID:28455958

  1. Neutron-Induced Fission Measurements at the Dance and Lsds Facilities at Lanl

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Chadwick, M. B.; Couture, A.; O'Donnell, J. M.; Fowler, M. M.; Haight, R. C.; Hayes-Sterbenz, A. C.; Rundberg, R. S.; Rusev, G. Y.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Alexander, C. W.; Belier, G.

    2014-09-01

    New results from neutron-induced fission measurements performed at the Detector for Advanced Neutron Capture Experiments (DANCE) and Lead Slowing Down Spectrometer (LSDS) are presented. New correlated data on promptfission γ-ray (PFG) distributions were measured using the DANCE array for resonant neutron-induced fission of 233U, 235U and 239Pu. The deduced properties of PFG emission are presented using a simple parametrization. An accurate knowledge of fission γ-ray spectra enables us to analyze the isomeric states of 236U created after neutron capture on 235U. We briefly discuss these new results. Finally, we review details and preliminary results of the challenging 237U(n,f) cross section measurement at the LSDS facility.

  2. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.

    1995-08-01

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products inmore » both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.« less

  3. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  4. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  5. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.

    2018-03-01

    Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  6. Statistical prescission point model of fission fragment angular distributions

    NASA Astrophysics Data System (ADS)

    John, Bency; Kataria, S. K.

    1998-03-01

    In light of recent developments in fission studies such as slow saddle to scission motion and spin equilibration near the scission point, the theory of fission fragment angular distribution is examined and a new statistical prescission point model is developed. The conditional equilibrium of the collective angular bearing modes at the prescission point, which is guided mainly by their relaxation times and population probabilities, is taken into account in the present model. The present model gives a consistent description of the fragment angular and spin distributions for a wide variety of heavy and light ion induced fission reactions.

  7. Temperature dependence of nuclear fission time in heavy-ion fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Eccles, Chris; Roy, Sanil; Gray, Thomas H.; Zaccone, Alessio

    2017-11-01

    Accounting for viscous damping within Fokker-Planck equations led to various improvements in the understanding and analysis of nuclear fission of heavy nuclei. Analytical expressions for the fission time are typically provided by Kramers' theory, which improves on the Bohr-Wheeler estimate by including the time scale related to many-particle dissipative processes along the deformation coordinate. However, Kramers' formula breaks down for sufficiently high excitation energies where Kramers' assumption of a large barrier no longer holds. Focusing on the overdamped regime for energies T >1 MeV, Kramers' theory should be replaced by a new analytical theory derived from the Ornstein-Uhlenbeck first-passage time method that is proposed here. The theory is applied to fission time data from fusion-fission experiments on 16O+208Pb→224Th . The proposed model provides an internally consistent one-parameter fitting of fission data with a constant nuclear friction as the fitting parameter, whereas Kramers' fitting requires a value of friction which falls out of the allowed range. The theory provides also an analytical formula that in future work can be easily implemented in numerical codes such as cascade or joanne4.

  8. Reducing Uncertainties in Neutron Induced Fission Cross Sections via a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2016-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission Fragment Tracking Experiment collaboration (NIFFTE) designed and built a fission Time Project Chamber (fission TPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2015 run cycle, measurements of several actinides were performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as the current progress towards a sub-percent measurement of the 239Pu/235U (n,f) cross-section ratio. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. New measurements on isobaric fission product yields and mean kinetic energy for 241Pu thermal neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Julien-Laferrière, Sylvain; Kessedjian, Grégoire; Serot, Olivier; Chebboubi, Abdelaziz; Bernard, David; Blanc, Aurélien; Köster, Ulli; Litaize, Olivier; Materna, Thomas; Meplan, Olivier; Rapala, Michal; Sage, Christophe

    2018-03-01

    Nuclear fission yields data measurements for thermal neutron induced fission of 241Pu have been carried out at the Institut Laue Langevin (ILL) in Grenoble, using the Lohengrin mass spectrometer. Mass, isotopic and isomeric yields have been extracted for the last measurements. A focus is given in this document to the mass yield results which are obtained for almost the entire heavy peak and most of the light high yields masses, along with the covariance matrix. The mean kinetic energy as a function of the fission product mass has also been extracted from the measurements. The total mean kinetic energy pre and post neutron emission have been assessed and compared to other works showing a rather good agreement.

  10. Exploratory study of fission product yields of neutron-induced fission of U 235 ,   U 238 , and Pu 239 at 8.9 MeV

    DOE PAGES

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; ...

    2015-06-05

    Using dual-fission chambers each loaded with a thick (200–400–mg/cm 2) actinide target of 235,238U or 239Pu and two thin (~10–100–μg/cm 2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at E n = 8.9MeV. The 2H(d,n) 3He reaction provided the quasimonoenergetic neutron beam. Here, the experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented.

  11. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  12. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility.

    PubMed

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88 Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85m Kr/ 88 Kr ratio, which may be the result of incorrect nuclear data.

  13. Study of heavy-ion induced fission for heavy-element synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Antalic, S.; Aritomo, Y.; Comas, V. F.; Düllman, Ch. E.; Gorshkov, A.; Graeger, R.; Heinz, S.; Heredia, J. A.; Hirose, K.; Khuyagbaatar, J.; Kindler, B.; Kojouharov, I.; Lommel, B.; Makii, H.; Mann, R.; Mitsuoka, S.; Nagame, Y.; Nishinaka, I.; Ohtsuki, T.; Popeko, A. G.; Saro, S.; Schädel, M.; Türler, A.; Wakabayashi, Y.; Watanabe, Y.; Yakushev, A.; Yeremin, A. V.

    2014-03-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis, and the values were consistent with those determined from the evaporation residue cross sections.

  14. Dynamics of Db isotopes formed in reactions induced by 238U, 248Cm, and 249Bk across the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Kaur, Gurjit; Sandhu, Kirandeep; Kaur, Amandeep; Sharma, Manoj K.

    2018-05-01

    The dynamical cluster decay model is employed to investigate the decay of *265Db and *267Db nuclei, formed in the 27Al+238U , 18O+249Bk , and 19F+248Cm hot fusion reactions at energies around the Coulomb barrier. First, the fission dynamics of the 27Al+238U reaction is explored by investigating the fragmentation and preformation yield of the reaction. The symmetric mass distribution of the fission fragments is observed for *265Db nucleus, when static β2 i deformations are used within hot optimum orientation approach. However, the mass split gets broaden for the use of β2 i-dynamical hot configuration of the fragments and becomes clearly asymmetric for the cold-static-deformed approach. Within the application of cold orientations of fragments, a new fission channel is observed at mass asymmetry η =0.29 . In addition to 238U-induced reaction, the work is carried out to address the fission and neutron evaporation cross sections of *267Db nucleus formed via 19F+248Cm and 18O+249Bk reactions, besides a comprehensive analysis of fusion and capture processes. Higher fusion cross sections and compound nucleus formation probabilities (PCN) are obtained for the 18O+249Bk reaction, as larger mass asymmetry in the entrance channel leads to reduced Coulomb factor. Finally, the role of sticking (IS) and nonsticking (INS) moments of inertia is analyzed for the 4 n and 5 n channels of *267Db nuclear system.

  15. In-beam Fission Study at JAEA

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  16. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    DOE PAGES

    Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; ...

    2016-09-22

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility (NIF) induce fission in depleted uranium (DU) contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. Here, the results from this experiment and England and Rider are in agreement, except for the 85mKr/ 88Kr ratio, which may be the result of incorrect nuclear data.

  17. Measurement of neutron-induced reactions on 242mAm

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  18. Dual neutral particle induced transmutation in CINDER2008

    NASA Astrophysics Data System (ADS)

    Martin, W. J.; de Oliveira, C. R. E.; Hecht, A. A.

    2014-12-01

    Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data-the exit channel from the compound nucleus-are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly.

  19. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  20. Thorium-232 fission induced by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Métivier, Vincent; Duchemin, Charlotte; Guertin, Arnaud; Michel, Nathalie; Haddad, Férid

    2017-09-01

    Studies have been devoted to the production of alpha emitters for medical application in collaboration with the GIP ARRONAX that possesses a high energy and high intensity multi-particle cyclotron. The productions of Ra-223, Ac-225 and U-230 have been investigated from the Th-232(p,x) and Th-232(d,x) reactions using the stacked-foils method and gamma spectrometry measurements. These reactions have led to the production of several fission products, including some with a medical interest like Mo-99, Cd-115g and I-131. This article presents cross section data of fission products obtained from these undedicated experiments. These data have been also compared with the TALYS code results.

  1. Simulations of Multi-Gamma Coincidences From Neutron-Induced Fission in Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Kane, Steven; Gozani, Tsahi; King, Michael J.; Kwong, John; Brown, Craig; Gary, Charles; Firestone, Murray I.; Nikkel, James A.; McKinsey, Daniel N.

    2013-04-01

    A study is presented on the detection of illicit special nuclear materials (SNM) in cargo containers using a conceptual neutron-based inspection system with xenon-doped liquefied argon (LAr(Xe)) scintillation detectors for coincidence gamma-ray detection. For robustness, the system is envisioned to exploit all fission signatures, namely both prompt and delayed neutron and gamma emissions from fission reactions induced in SNM. However, this paper focuses exclusively on the analysis of the prompt gamma ray emissions. The inspection system probes a container using neutrons produced either by (d, D) or (d, T) in pulsed form or from an associated particle neutron generator to exploit the associated particle imaging (API) technique, thereby achieving background reduction and imaging. Simulated signal and background estimates were obtained in MCNPX (2.7) for a 2 kg sphere of enriched uranium positioned at the center of a 1m × 1m × 1m container, which is filled uniformly with wood or iron cargos at 0.1 g/cc or 0.4 g/cc. Detection time estimates are reported assuming probabilities of detection of 95% and false alarm of 0.5%.

  2. Interference of fission amplitudes of neutron resonances and T-odd asymmetry for various prescission third particles in the ternary fission of nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bunakov, V. E.; Kadmensky, S. S.

    Differential cross sections for reactions of the true ternary fission of nuclei that was induced by cold polarized neutrons were constructed with allowance of the effect that Coriolis interaction and the interference between fission amplitudes of neutron resonances excited in fissile nuclei upon incidentneutron capture by target nuclei exerted on angular distributions of prescission third particles (alpha particles, neutrons, or photons). It is shown that T -odd TRI- and ROT-type asymmetries for prescission alpha particles are associated with, respectively, the odd and even components of the Coriolis interaction-perturbed amplitude of angular distributions of particles belonging to the types indicated above.more » These asymmetries have angular distributions differing from each other and stemming from a nontrivial dependence of these components on the neutron-resonance spins J{sub s} and their projections K{sub s} onto the symmetry axis of the nucleus involved. It is shown that angular distributions of prescission photons and neutrons from reactions of the ternary fission of nuclei that is induced by cold polarized neutrons are determined by the effect of Coriolis forces exclusively. Therefore, the emerging T-odd asymmetries have a character of a ROT-type asymmetry and are universal for all target nuclei.« less

  3. Proton induced fission of {sup 232}Th at intermediate energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gikal, K. B., E-mail: kgikal@mail.ru; Kozulin, E. M.; Bogachev, A. A.

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has beenmore » observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.« less

  4. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Dolan; M. J. Marcath; M. Flaska

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  5. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Geochemical evidence for the formation of the Moon by impact induced fission of the proto-Earth

    NASA Technical Reports Server (NTRS)

    Waenke, H.; Dreibus, G.

    1984-01-01

    Geochemical evidence is discussed which advocates the theory that the Moon was formed by impact induced fission of the Earth. The Earth's mantle exhibits a number of geochemical peculiarities which make our planet a unique object in the solar system. Terrestrial basalts are compared with those from the Eucrite parent body and the Shergotty parent body. Also the Moon's composition is very close to the Earth's in all details except the lower FeO content which is explained. Evidence is discussed for the plausible physical process of formation of the Moon by impact induced fission. Also the theory that impact induced fission occurred at the moment at which accretion of the Earth was not totally complete is briefly discussed.

  7. Prompt fission γ-ray data from spontaneous fission and the mechanism of fission-fragment de-excitation

    NASA Astrophysics Data System (ADS)

    Oberstedt, Stephan; Dragic, Aleksandar; Gatera, Angelique; Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Andreas

    2017-09-01

    The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f), 239Pu(nth, f), and 252Cf(sf). Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS) characteristics (average number of photons per fission, average total energy per fission and mean photon energy) from 252Cf(sf), 235U(nth, f) and 239,241Pu(nth, f) within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf) show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.

  8. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  9. Prompt γ rays and neutrons from fission

    NASA Astrophysics Data System (ADS)

    Kwan, E.; Wu, C. Y.; Chyzh, A.; Gostic, J.; Henderson, R.; Haight, R. C.; Lee, H. Y.; O'Donnell, J. M.; Perdue, B. A.; Taddeucci, T. N.

    2011-10-01

    Nuclear data are needed to test the accuracy of calculations from nuclear reaction codes. Information on the prompt γ-ray distributions from fission is sparse and only a handful of published experiments data that measured the prompt γ-ray distribution above incident neutron energies of 1 MeV can be found. In addition, improvement on the accuracy and shape of neutron spectrum from the fission of actinides been requested by the nuclear data community. An investigation on the shapes of the neutron and γ-ray distributions from the spontaneous fission of 252Cf and the neutron-induced fission of 235U was undertaken using the Chi-Nu detector array at the Weapons Neutron Research Facility of the Los Alamos Neutron Science Center. Preliminary results will be presented. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and the Los Alamos National Laboratory under Contract DE-AC52-06NA25396.

  10. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  11. Analytic computation of average energy of neutrons inducing fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Alexander Rich

    2016-08-12

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  12. Pairing-induced speedup of nuclear spontaneous fission

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-01

    Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  13. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  14. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  15. The total kinetic energy release in the fast neutron-induced fission of 232Th

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Jonathan; Yanez, Ricardo; Loveland, Walter

    Here, the post-emission total kinetic energy release (TKE) in the neutron-induced fission of 232Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E n=3 to 91MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3±0.3 at E n=3 MeV to 154.9±0.3 MeV at E n=91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission.

  16. The total kinetic energy release in the fast neutron-induced fission of 232Th

    DOE PAGES

    King, Jonathan; Yanez, Ricardo; Loveland, Walter; ...

    2017-12-15

    Here, the post-emission total kinetic energy release (TKE) in the neutron-induced fission of 232Th was measured (using white spectrum neutrons from LANSCE) for neutron energies from E n=3 to 91MeV. In this energy range the average post-neutron total kinetic energy release decreases from 162.3±0.3 at E n=3 MeV to 154.9±0.3 MeV at E n=91 MeV. Analysis of the fission mass distributions indicates that the decrease in TKE with increasing neutron energy is a combination of increasing yields of symmetric fission (which has a lower associated TKE) and a decrease in the TKE release in asymmetric fission.

  17. Atypical mitochondrial fission upon bacterial infection

    PubMed Central

    Stavru, Fabrizia; Palmer, Amy E.; Wang, Chunxin; Youle, Richard J.; Cossart, Pascale

    2013-01-01

    We recently showed that infection by Listeria monocytogenes causes mitochondrial network fragmentation through the secreted pore-forming toxin listeriolysin O (LLO). Here, we examine factors involved in canonical fusion and fission. Strikingly, LLO-induced mitochondrial fragmentation does not require the traditional fission machinery, as Drp1 oligomers are absent from fragmented mitochondria following Listeria infection or LLO treatment, as the dynamin-like protein 1 (Drp1) receptor Mff is rapidly degraded, and as fragmentation proceeds efficiently in cells with impaired Drp1 function. LLO does not cause processing of the fusion protein optic atrophy protein 1 (Opa1), despite inducing a decrease in the mitochondrial membrane potential, suggesting a unique Drp1- and Opa1-independent fission mechanism distinct from that triggered by uncouplers or the apoptosis inducer staurosporine. We show that the ER marks LLO-induced mitochondrial fragmentation sites even in the absence of functional Drp1, demonstrating that the ER activity in regulating mitochondrial fission can be induced by exogenous agents and that the ER appears to regulate fission by a mechanism independent of the canonical mitochondrial fission machinery. PMID:24043775

  18. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  19. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    NASA Astrophysics Data System (ADS)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  20. Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235U and 238U with En =200 keV - 30 MeV

    NASA Astrophysics Data System (ADS)

    Duke, D. L.; Tovesson, F.; Brys, T.; Geppert-Kleinrath, V.; Hambsch, F.-J.; Laptev, A.; Meharchand, R.; Manning, B.; Mayorov, D.; Meierbachtol, K.; Mosby, S.; Perdue, B.; Richman, D.; Shields, D.; Vidali, M.

    2017-09-01

    The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV - 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.

  1. Emilio Segrè and Spontaneous Fission

    Science.gov Websites

    fissioned instead. The discovery of fission led in turn to the discovery of the chain reaction that, if material apart before it had a chance to undergo an efficient chain reaction. The possibility of chain reaction. If a similar rate was found in plutonium, it might rule out the use of that element as

  2. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  3. Studies of Neutron-Induced Fission of 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana; TKE Team

    2014-09-01

    A Frisch-gridded ionization chamber and the double energy (2E) analysis method were used to study mass yield distributions and average total kinetic energy (TKE) release from neutron-induced fission of 235U, 238U, and 239Pu. Despite decades of fission research, little or no TKE data exist for high incident neutron energies. Additional average TKE information at incident neutron energies relevant to defense- and energy-related applications will provide a valuable observable for benchmarking simulations. The data can also be used as inputs in theoretical fission models. The Los Alamos Neutron Science Center-Weapons Neutron Research (LANSCE - WNR) provides a neutron beam from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on 238U, 235U, and 239Pu will be presented. LA-UR-14-24921.

  4. Neutron-Induced Fission Cross Section Measurements for Full Suite of Uranium Isotopes

    NASA Astrophysics Data System (ADS)

    Laptev, Alexander; Tovesson, Fredrik; Hill, Tony

    2010-11-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans energies from sub-thermal energies up to 200 MeV by measuring both the Lujan Center and the Weapons Neutron Research center (WNR). Conventional parallel-plate fission ionization chambers with actinide deposited foils are used as a fission detector. The time-of-flight method is implemented to measure neutron energy. Counting rate ratio from investigated and standard U-235 foils is translated into fission cross section ratio. Different methods of normalization for measured ratio are employed, namely, using of actinide deposit thicknesses, normalization to evaluated data, etc. Finally, ratios are converted to cross sections based on the standard U-235 fission cross section data file. Preliminary data for newly investigated isotopes U-236 and U-234 will be reported. Those new data complete a full suite of Uranium isotopes, which were investigated with presented experimental approach. When analysis of the new measured data will is completed, data will be delivered to evaluators. Having data for full set of Uranium isotopes will increase theoretical modeling capabilities and make new data evaluations much more reliable.

  5. Mitochondrial fission contributes to heat-induced oxidative stress in skeletal muscle but not hyperthermia in mice.

    PubMed

    Yu, Tianzheng; Ferdjallah, Iman; Elenberg, Falicia; Chen, Star K; Deuster, Patricia; Chen, Yifan

    2018-05-01

    We have previously demonstrated in vitro that heat-induced skeletal muscle damage is associated with an increase in dynamin-related protein 1 (Drp1)-mediated mitochondrial fission and no change in mitochondrial fusion. In this study, we investigated the in vivo effects of mitochondrial fission inhibition on heat-induced oxidative skeletal muscle injury and hyperthermic response in mice. Core body temperatures of mice pre-treated with vehicle or Mdivi-1 were recorded by radio telemetry during heat exposure. Tissue samples were obtained immediately following heat exposure. We found that heat exposure caused increased mitochondrial fragmentation and mitochondrial fission protein Drp1 expression, whereas had no effect on the mitochondrial fusion-related proteins mitofusin 1, mitofusin 2 and OPA1 in mouse gastrocnemius muscles. Two groups of mice with a similar high level of heat-induced hyperthermia were allowed to recover for at least one week and subsequently treated with Mdivi-1 and vehicle, respectively. Neither Mdivi-1 nor vehicle altered the hyperthermic responses of mice during heat exposure. However, Mdivi-1 significantly reduced mitochondrial fragmentation and Drp1, reactive oxygen species levels and apoptotic responses in mouse gastrocnemius muscles following heat exposure compared with vehicle. These results suggest that Drp1-mediated mitochondrial fission plays a role in heat-induced oxidative stress in skeletal muscle, but not in hyperthermic response in mice. Published by Elsevier Inc.

  6. (Reaction mechanism studies of heavy ion induced nuclear reactions): Annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignerey, A.C.

    1988-10-01

    A major experiment was performed at the Oak Ridge National Laboratory Holifield Heavy Ion Research Facility in January 1988. The primary goal of the experiment was to determine the excitation energy division in the initial stages of damped reactions. The reaction of /sup 35/Cl on /sup 209/Bi was chosen because the excited projectile-like fragments would preferentially emit light charged particles and the target-like fragments deexcite via neutron emission. This provides a means by which projectile excitations can be selected over target excitations through detection of light charged particles in coincidence with projectile-like fragments. Two experiments were performed during the pastmore » year at the Lawrence Berkeley Laboratory Bevalac in collaboration with the Wozniak-Moretto group. The first was in February 1988 and was a continuation of earlier work on La-induced reactions at intermediate energies. Beams of La with E/A = 80 and 100 MeV were used to bombard targets of C, Al, and Cu. At this time a test run was also performed using the uranium beam to see if the intensity was sufficient to use this very heavy beam for future experiments. The high intensities obtained for uranium showed that it was feasible to extend the studies of inverse reactions begun with the lanthanum beam to a heavier beam. Gold rather than uranium was chosen for our major run in August due to its low fission probability and higher beam intensity. No results are yet available for that experiment.« less

  7. Fission-like events in the 12C+169Tm system at low excitation energies

    NASA Astrophysics Data System (ADS)

    Sood, Arshiya; Singh, Pushpendra P.; Sahoo, Rudra N.; Kumar, Pawan; Yadav, Abhishek; Sharma, Vijay R.; Shuaib, Mohd.; Sharma, Manoj K.; Singh, Devendra P.; Gupta, Unnati; Kumar, R.; Aydin, S.; Singh, B. P.; Wollersheim, H. J.; Prasad, R.

    2017-07-01

    Background: Fission has been found to be a dominating mode of deexcitation in heavy-ion induced reactions at high excitation energies. The phenomenon of heavy-ion induced fission has been extensively investigated with highly fissile actinide nuclei, yet there is a dearth of comprehensive understanding of underlying dynamics, particularly in the below actinide region and at low excitation energies. Purpose: Prime objective of this work is to study different aspects of heavy-ion induced fission ensuing from the evolution of composite system formed via complete and/or incomplete fusion in the 12C+169Tm system at low incident energies, i.e., Elab≈6.4 , 6.9, and 7.4 A MeV, as well as to understand charge and mass distributions of fission fragments. Method: The recoil-catcher activation technique followed by offline γ spectroscopy was used to measure production cross sections of fission-like events. The evaporation residues were identified by their characteristic γ rays and vetted by the decay-curve analysis. Charge and mass distributions of fission-like events were studied to obtain dispersion parameters of fission fragments. Results: In the present work, 26 fission-like events (32 ≤Z ≤49 ) were identified at different excitation energies. The mass distribution of fission fragments is found to be broad and symmetric, manifesting their production via compound nuclear processes. The dispersion parameters of fission fragments obtained from the analysis of mass and isotopic yield distributions are found to be in good accord with the reported values obtained for different fissioning systems. A self-consistent approach was employed to determine the isobaric yield distribution. Conclusions: The present work suggests that fission is one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies, i.e., E*≈57 , 63, and 69 MeV, where evaporation of light nuclear particle(s) and/or γ rays are assumed to be the sole

  8. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less

  9. Isotopic yield measurement in the heavy mass region for 239Pu thermal neutron induced fission

    NASA Astrophysics Data System (ADS)

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Köster, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-01

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the 239Pu(nth,f) reaction. In order to do this, a new experimental method based on γ-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  10. Comparison Of 252Cf Time Correlated Induced Fisssion With AmLi Induced Fission On Fresh MTR Research Reactor Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Jay Prakash

    The effective application of international safeguards to research reactors requires verification of spent fuel as well as fresh fuel. To accomplish this goal various nondestructive and destructive assay techniques have been developed in the US and around the world. The Advanced Experimental Fuel Counter (AEFC) is a nondestructive assay (NDA) system developed at Los Alamos National Laboratory (LANL) combining both neutron and gamma measurement capabilities. Since spent fuel assemblies are stored in water, the system was designed to be watertight to facilitate underwater measurements by inspectors. The AEFC is comprised of six 3He detectors as well as a shielded andmore » collimated ion chamber. The 3He detectors are used for active and passive neutron coincidence counting while the ion chamber is used for gross gamma counting. Active coincidence measurement data is used to measure residual fissile mass, whereas the passive coincidence measurement data along with passive gamma measurement can provide information about burnup, cooling time, and initial enrichment. In the past, most of the active interrogation systems along with the AEFC used an AmLi neutron interrogation source. Owing to the difficulty in obtaining an AmLi source, a 252Cf spontaneous fission (SF) source was used during a 2014 field trail in Uzbekistan as an alternative. In this study, experiments were performed to calibrate the AEFC instrument and compare use of the 252Cf spontaneous fission source and the AmLi (α,n) neutron emission source. The 252Cf source spontaneously emits bursts of time-correlated prompt fission neutrons that thermalize in the water and induce fission in the fuel assembly. The induced fission (IF) neutrons are also time correlated resulting in more correlated neutron detections inside the 3He detector, which helps reduce the statistical errors in doubles when using the 252Cf interrogation source instead of the AmLi source. In this work, two MTR fuel assemblies varying both in

  11. Measuring Fission Chain Dynamics Through Inter-event Timing of Correlated Particles

    NASA Astrophysics Data System (ADS)

    Monterial, Mateusz

    Neutrons born from fission may go on to induce subsequent fissions in self-propagating series of reactions resulting in a fission chain. Fissile materials comprise all isotopes capable of sustaining nuclear fission chain reactions, and are therefore a necessary prerequisite for the construction of a nuclear weapon. As a result the accountancy and characterization of fissile material is of great importance for national security and the international community. The rate at which neutrons "multiply" in a fissile material is a function of the composition, total mass, density, and shape of the object. These are key characteristics sought out in areas of nuclear non-proliferation, safeguards, treaty verification and emergency response. This thesis demonstrates a novel technique of measuring the underlying fission chain dynamics in fissile material through temporal correlation of neutrons and gamma rays emitted from fission. Fissile material exhibits key detectable signatures through the emission of correlated neutrons and gamma rays from fission. The Non-Destructive Assay (NDA) community has developed mature techniques of assaying fissile material that detect these signatures, such as neutron counting by thermal capture based detectors, and gamma-ray spectroscopy. An alternative use of fast organic scintillators provides three additional capabilities: (1) discrimination between neutrons and gamma-ray pulses (2) sub-nanosecond scale timing between correlated events (3) measurement of deposited neutron energy in the detector. This thesis leverages these capabilities into to measure a new signature, which is demonstrated to be sensitive to both fissile neutron multiplication and presence of neutronically coupled reflectors. In addition, a new 3D imaging method of sources of correlated gamma rays and neutrons is presented, which can improve estimation of total source volume and localization.

  12. Prompt fission gamma-ray emission spectral data for 239Pu(n,f) using fast directional neutrons from the LICORNE neutron source

    NASA Astrophysics Data System (ADS)

    Qi, L.; Wilson, J. N.; Lebois, M.; Al-Adili, A.; Chatillon, A.; Choudhury, D.; Gatera, A.; Georgiev, G.; Göök, A.; Laurent, B.; Maj, A.; Matea, I.; Oberstedt, A.; Oberstedt, S.; Rose, S. J.; Schmitt, C.; Wasilewska, B.; Zeiser, F.

    2018-03-01

    Prompt fission gamma-ray spectra (PFGS) have been measured for the 239Pu(n,f) reaction using fast neutrons at Ēn=1.81 MeV produced by the LICORNE directional neutron source. The setup makes use of LaBr3 scintillation detectors and PARIS phoswich detectors to measure the emitted prompt fission gamma rays (PFG). The mean multiplicity, average total energy release per fission and average energy of photons are extracted from the unfolded PFGS. These new measurements provide complementary information to other recent work on thermal neutron induced fission of 239Pu and spontaneous fission of 252Cf.

  13. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  14. Report on simulation of fission gas and fission product diffusion in UO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, Anders David; Perriot, Romain Thibault; Pastore, Giovanni

    2016-07-22

    In UO 2 nuclear fuel, the retention and release of fission gas atoms such as xenon (Xe) are important for nuclear fuel performance by, for example, reducing the fuel thermal conductivity, causing fuel swelling that leads to mechanical interaction with the clad, increasing the plenum pressure and reducing the fuel–clad gap thermal conductivity. We use multi-­scale simulations to determine fission gas diffusion mechanisms as well as the corresponding rates in UO 2 under both intrinsic and irradiation conditions. In addition to Xe and Kr, the fission products Zr, Ru, Ce, Y, La, Sr and Ba have been investigated. Density functionalmore » theory (DFT) calculations are used to study formation, binding and migration energies of small clusters of Xe atoms and vacancies. Empirical potential calculations enable us to determine the corresponding entropies and attempt frequencies for migration as well as investigate the properties of large clusters or small fission gas bubbles. A continuum reaction-­diffusion model is developed for Xe and point defects based on the mechanisms and rates obtained from atomistic simulations. Effective fission gas diffusivities are then obtained by solving this set of equations for different chemical and irradiation conditions using the MARMOT phase field code. The predictions are compared to available experimental data. The importance of the large Xe U3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and high binding energy. We find that the Xe U3O cluster gives Xe diffusion coefficients that are higher for intrinsic conditions than under irradiation over a wide range of temperatures. Under irradiation the fast-­moving Xe U3O cluster recombines quickly with irradiation-induced interstitial U ions, while this mechanism is less important for intrinsic conditions. The net result is higher concentration of the Xe U3O cluster for intrinsic

  15. Determination of the fast-neutron-induced fission cross-section of 242Pu at nELBE

    NASA Astrophysics Data System (ADS)

    Kögler, Toni; Beyer, Roland; Junghans, Arnd R.; Schwengner, Ronald; Wagner, Andreas

    2018-03-01

    The fast-neutron-induced fission cross section of 242Pu was determined in the energy range of 0.5 MeV to 10MeV at the neutron time-of-flight facility nELBE. Using a parallel-plate fission ionization chamber this quantity was measured relative to 235U(n,f). The number of target nuclei was thereby calculated by means of measuring the spontaneous fission rate of 242Pu. An MCNP 6 neutron transport simulation was used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  16. Determination of gaseous fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    DOE PAGES

    Cassata, W. S.; Velsko, C. A.; Stoeffl, W.; ...

    2016-01-14

    We determined fission yields of xenon ( 133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerablemore » differences exist between our measured yields and the JEFF-3.1 database values.« less

  17. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    NASA Astrophysics Data System (ADS)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  18. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions.

    PubMed

    Ryu, JiHyeon; Lee, HeeYoung; Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary's teaching hospital, Daejeon, Korea) from 2010-2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton's preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization-Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse reactions. The World Health Organization

  19. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions

    PubMed Central

    Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse

  20. Position-sensitive coincidence detection of nuclear reaction products at the Prague Van-de-Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Kraus, Vaclav; Pugatch, Valery; Kohout, Zdenek

    2017-06-01

    In low-energy nuclear reactions of astrophysical interest or fusion studies the spatial- and time-correlated detection of two and more reaction products can be a valuable tool in studies of reaction mechanisms, resolving reaction channels and measuring angular distributions of reaction products. For this purpose we constructed a configurable array of position-sensitive detectors based on the hybrid semiconductor pixel detector Timepix. Additional analog-signal electronics provide self-trigger together with extended multi-device control and synchronized readout electronics by a customized control and coincidence unit. The instrumentation, developed and used for detection of fission fragments in spontaneous and neutron induced fission as well as in charged particle detection in neutron induced reactions, is being implemented for low-energy light-ion induced nuclear reactions. Application and demonstration of the technique with two Timepix detectors on p+p elastic scattering at the Van-de-Graaff (VdG) accelerator in Prague is given.

  1. Modelling Neutron-induced Reactions on 232–237U from 10 keV up to 30 MeV

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2017-01-17

    Comprehensive calculations of cross sections for neutron-induced reactions on 232–237U targets are performed in this paper in the 10 keV–30 MeV incident energy range with the code EMPIRE–3.2 Malta. The advanced modelling and consistent calculation scheme are aimed at improving our knowledge of the neutron scattering and emission cross sections, and to assess the consistency of available evaluated libraries for light uranium isotopes. The reaction model considers a dispersive optical potential (RIPL 2408) that couples from five (even targets) to nine (odd targets) levels of the ground-state rotational band, and a triple-humped fission barrier with absorption in the wells describedmore » within the optical model for fission. A modified Lorentzian model (MLO) of the radiative strength function and Enhanced Generalized Superfluid Model nuclear level densities are used in Hauser-Feschbach calculations of the compound-nuclear decay that include width fluctuation corrections. The starting values for the model parameters are retrieved from RIPL. Excellent agreement with available experimental data for neutron emission and fission is achieved, giving confidence that the quantities for which there is no experimental information are also accurately predicted. Finally, deficiencies in existing evaluated libraries are highlighted.« less

  2. Fission barriers of light nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Pl-dash-baraneta, R.; Blann, M.

    1989-04-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems.

  3. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shupei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shinichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  4. Trap-induced photoconductivity in singlet fission pentacene diodes

    NASA Astrophysics Data System (ADS)

    Qiao, Xianfeng; Zhao, Chen; Chen, Bingbing; Luan, Lin

    2014-07-01

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  5. Production of Sn and Sb isotopes in high-energy neutron-induced fission of natU

    NASA Astrophysics Data System (ADS)

    Mattera, A.; Pomp, S.; Lantz, M.; Rakopoulos, V.; Solders, A.; Al-Adili, A.; Penttilä, H.; Moore, I. D.; Rinta-Antila, S.; Eronen, T.; Kankainen, A.; Pohjalainen, I.; Gorelov, D.; Canete, L.; Nesterenko, D.; Vilén, M.; Äystö, J.

    2018-03-01

    The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyväskylä, Finland. The fission products from high-energy neutron-induced fission of nat U were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133 , were transported to a tape-implantation station and identified using γ -spectroscopy. We report here the relative cumulative isotopic yields of tin ( Z = 50) and the relative independent isotopic yields of antimony ( Z = 51) . Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a staggered behaviour around A = 131 , not observed in the ENDF/B-VII.1 evaluation. The yields of antimony also contradict the trend from the evaluation, but are in agreement with a calculation performed using the GEF model that shows the yield increasing with mass in the range A = 128-133.

  6. Precise ruthenium fission product isotopic analysis using dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Christopher F.; Dresel, P. Evan; Geiszler, Keith N.

    2006-05-09

    99Tc is a subsurface contaminant of interest at numerous federal, industrial, and international facilities. However, as a mono-isotopic fission product, 99Tc lacks the ability to be used as a signature to differentiate between the different waste disposal pathways that could have contributed to subsurface contamination at these facilities. Ruthenium fission-product isotopes are attractive analogues for the characterization of 99Tc sources because of their direct similarity to technetium with regard to subsurface mobility, and their large fission yields and low natural background concentrations. We developed an inductively coupled plasma mass spectrometry (ICP-MS) method capable of measuring ruthenium isotopes in groundwater samplesmore » and extracts of vadose zone sediments. Samples were analyzed directly on a Perkin Elmer ELAN DRC II ICP-MS after a single pass through a 1-ml bed volume of Dowex AG 50W-X8 100-200 mesh cation exchange resin. Precise ruthenium isotopic ratio measurements were achieved using a low-flow Meinhard-type nebulizer and long sample acquisition times (150,000 ms). Relative standard deviations of triplicate replicates were maintained at less than 0.5% when the total ruthenium solution concentration was 0.1 ng/ml or higher. Further work was performed to minimize the impact caused by mass interferences using the dynamic reaction cell (DRC) with O2 as the reaction gas. The aqueous concentrations of 96Mo and 96Zr were reduced by more than 99.7% in the reaction cell prior to injection of the sample into the mass analyzer quadrupole. The DRC was used in combination with stable-mass correction to quantitatively analyze samples containing up to 2-orders of magnitude more zirconium and molybdenum than ruthenium. The analytical approach documented herein provides an efficient and cost-effective way to precisely measure ruthenium isotopes and quantitate total ruthenium (natural vs. fission-product) in aqueous matrixes.« less

  7. Prompt fission neutron spectra from fission induced by 1 to 8 MeV neutrons on U235 and Pu239 using the double time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Noda, S.; Haight, R. C.; Nelson, R. O.; Devlin, M.; O'Donnell, J. M.; Chatillon, A.; Granier, T.; Bélier, G.; Taieb, J.; Kawano, T.; Talou, P.

    2011-03-01

    Prompt fission neutron spectra from U235 and Pu239 were measured for incident neutron energies from 1 to 200 MeV at the Weapons Neutron Research facility (WNR) of the Los Alamos Neutron Science Center, and the experimental data were analyzed with the Los Alamos model for the incident neutron energies of 1-8 MeV. A CEA multiple-foil fission chamber containing deposits of 100 mg U235 and 90 mg Pu239 detected fission events. Outgoing neutrons were detected by the Fast Neutron-Induced γ-Ray Observer array of 20 liquid organic scintillators. A double time-of-flight technique was used to deduce the neutron incident energies from the spallation target and the outgoing energies from the fission chamber. These data were used for testing the Los Alamos model, and the total kinetic energy parameters were optimized to obtain a best fit to the data. The prompt fission neutron spectra were also compared with the Evaluated Nuclear Data File (ENDF/B-VII.0). We calculate average energies from both experimental and calculated fission neutron spectra.

  8. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  9. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  10. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  11. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in themore » center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.« less

  12. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  13. Fission product yield measurements using monoenergetic photon beams

    NASA Astrophysics Data System (ADS)

    Krishichayan; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2017-09-01

    Measurements of fission products yields (FPYs) are an important source of information on the fission process. During the past couple of years, a TUNL-LANL-LLNL collaboration has provided data on the FPYs from quasi monoenergetic neutron-induced fission on 235U, 238U, and 239Pu and has revealed an unexpected energy dependence of both asymmetric fission fragments at energies below 4 MeV. This peculiar FPY energy dependence was more pronounced in neutron-induced fission of 239Pu. In an effort to understand and compare the effect of the incoming probe on the FPY distribution, we have carried out monoenergetic photon-induced fission experiments on the same 235U, 238U, and 239Pu targets. Monoenergetic photon beams of Eγ = 13.0 MeV were provided by the HIγS facility, the world's most intense γ-ray source. In order to determine the total number of fission events, a dual-fission chamber was used during the irradiation. These irradiated samples were counted at the TUNL's low-background γ-ray counting facility using high efficient HPGe detectors over a period of 10 weeks. Here we report on our first ever photofission product yield measurements obtained with monoenegetic photon beams. These results are compared with neutron-induced FPY data.

  14. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  15. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.; Isolde Collaboration

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high- Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC 2/graphite and ThO 2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  16. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  17. Exploratory study of fission product yields of neutron-induced fission of 235U , 238U , and 239Pu at 8.9 MeV

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E.; Bredeweg, T. A.; Fowler, M. M.; Moody, W.; Rundberg, R. S.; Rusev, G. Y.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2015-06-01

    Using dual-fission chambers each loaded with a thick (200 -400 -mg /c m2) actinide target of 235 ,238U or 239Pu and two thin (˜10 -100 -μ g /c m2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En= 8.9 MeV . The 2H(d ,n ) 3He reaction provided the quasimonoenergetic neutron beam. The experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented. Our FPYs for 235U(n ,f ) , 238U(n ,f ) , and 239Pu(n ,f ) at 8.9 MeV are compared with the existing data below 8 MeV from Glendenin et al. [Phys. Rev. C 24, 2600 (1981), 10.1103/PhysRevC.24.2600], Nagy et al. [Phys. Rev. C 17, 163 (1978), 10.1103/PhysRevC.17.163], Gindler et al. [Phys. Rev. C 27, 2058 (1983), 10.1103/PhysRevC.27.2058], and those of Mac Innes et al. [Nucl. Data Sheets 112, 3135 (2011), 10.1016/j.nds.2011.11.009] and Laurec et al. [Nucl. Data Sheets 111, 2965 (2010), 10.1016/j.nds.2010.11.004] at 14.5 and 14.7 MeV, respectively. This comparison indicates a negative slope for the energy dependence of most fission product yields obtained from 235U and 239Pu , whereas for 238U the slope issue remains unsettled.

  18. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  19. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaja, Ivan; Bai, Xiaowen, E-mail: xibai@mcw.edu; Liu, Yanan

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1more » (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  20. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; hide

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  1. Does Compound Nucleus remember its Isospin- An Evidence from the Fission Widths

    NASA Astrophysics Data System (ADS)

    Garg, Swati; Jain, Ashok Kumar

    2018-05-01

    We present an evidence of isospin effects in nuclear fission by comparing the fission widths for reactions involving different isospin states of the same compound nucleus (CN). Yadrovsky [1] suggested this possibility in 1975. Yadrovsky obtained the fission widths for two reaction data sets, namely 206Pb(α,f) and 209Bi(p,f), both leading to same CN, and concluded that "a nucleus remembers the isospin value of the nuclear states leading to fission". We obtain the fission decay widths for both the T0 + ½ and T0 - ½ states of CN by using two appropriate reaction data sets. We then compare the fission widths for the two isospin states of CN. More specifically, we have chosen the combination of 206Pb(α,f) and 209Bi(p,f) same as presented in Yadrovsky's paper [1] in this study. A significant difference between the ratios of fission decay widths to total decay widths for different isospin values suggests that isospin plays an important role in fission.

  2. Evaluations of Energy Spectra of Neutrons Emitted Promptly in Neutron-induced Fission of 235 U and 239 Pu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko

    The energy spectra of neutrons emitted promptly in the neutron-induced fission reactions of 235U and 239Pu were re-evaluated for ENDF/B-VIII.0. The evaluations presented here are based on a careful modeling of all relevant physics processes, an extensive analysis of experimental data and a detailed quantification of pertinent uncertainties. Energy spectra of neutrons emitted in up to fourth chance fission are considered and both compound and pre-equilibrium processes are included. Also, important nuclear model parameters, such as the average total kinetic energy of the fission fragments and the multiple chance fission probabilities, and their uncertainties are estimated based on experimental knowledge,more » model information and evaluated data. In addition to experimental information already available for ENDF/B-VII.1, these new evaluations make use of recently published experimental data either of high precision or spanning a broad incident energy range, information on legacy measurements explaining discrepancies and recently measured data of the average total kinetic energy as a function of incident neutron energy. The resulting evaluated data and covariances agree well with the experimental database used for the evaluation. However, the evaluated spectra are softer than the 235U and 239Pu ENDF/B-VII.1, JENDL-4.0 and JEFF-3.2 evaluations for incident neutron energies E inc ≤ 1.5 MeV and E inc ≤ 5 MeV, respectively. For E inc > 5 MeV, the evaluated spectra show structures due to the improved modeling which are not present in ENDF/B-VII.1 and JEFF-3.2 but can be observed in JENDL-4.0 evaluations. Part of these new evaluations were adopted for ENDF/B-VIII.0, while the ENDF/B-VII.1 239Pu PFNS was retained for E inc ≤ 5 MeV awaiting more conclusive experimental evidence.« less

  3. Evaluations of Energy Spectra of Neutrons Emitted Promptly in Neutron-induced Fission of 235 U and 239 Pu

    DOE PAGES

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...

    2018-02-01

    The energy spectra of neutrons emitted promptly in the neutron-induced fission reactions of 235U and 239Pu were re-evaluated for ENDF/B-VIII.0. The evaluations presented here are based on a careful modeling of all relevant physics processes, an extensive analysis of experimental data and a detailed quantification of pertinent uncertainties. Energy spectra of neutrons emitted in up to fourth chance fission are considered and both compound and pre-equilibrium processes are included. Also, important nuclear model parameters, such as the average total kinetic energy of the fission fragments and the multiple chance fission probabilities, and their uncertainties are estimated based on experimental knowledge,more » model information and evaluated data. In addition to experimental information already available for ENDF/B-VII.1, these new evaluations make use of recently published experimental data either of high precision or spanning a broad incident energy range, information on legacy measurements explaining discrepancies and recently measured data of the average total kinetic energy as a function of incident neutron energy. The resulting evaluated data and covariances agree well with the experimental database used for the evaluation. However, the evaluated spectra are softer than the 235U and 239Pu ENDF/B-VII.1, JENDL-4.0 and JEFF-3.2 evaluations for incident neutron energies E inc ≤ 1.5 MeV and E inc ≤ 5 MeV, respectively. For E inc > 5 MeV, the evaluated spectra show structures due to the improved modeling which are not present in ENDF/B-VII.1 and JEFF-3.2 but can be observed in JENDL-4.0 evaluations. Part of these new evaluations were adopted for ENDF/B-VIII.0, while the ENDF/B-VII.1 239Pu PFNS was retained for E inc ≤ 5 MeV awaiting more conclusive experimental evidence.« less

  4. Evaluations of Energy Spectra of Neutrons Emitted Promptly in Neutron-induced Fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Kahler, A. C.; White, M. C.; Taddeucci, T. N.; Haight, R. C.; Kiedrowski, B.; O'Donnell, J. M.; Gomez, J. A.; Kelly, K. J.; Devlin, M.; Rising, M. E.

    2018-02-01

    The energy spectra of neutrons emitted promptly in the neutron-induced fission reactions of 235U and 239Pu were re-evaluated for ENDF/B-VIII.0. These evaluations are based on a careful modeling of all relevant physics processes, an extensive analysis of experimental data and a detailed quantification of pertinent uncertainties. Energy spectra of neutrons emitted in up to fourth chance fission are considered and both compound and pre-equilibrium processes are included. Also, important nuclear model parameters, such as the average total kinetic energy of the fission fragments and the multiple chance fission probabilities, and their uncertainties are estimated based on experimental knowledge, model information and evaluated data. In addition to experimental information already available for ENDF/B-VII.1, these new evaluations make use of recently published experimental data either of high precision or spanning a broad incident energy range, information on legacy measurements explaining discrepancies and recently measured data of the average total kinetic energy as a function of incident neutron energy. The resulting evaluated data and covariances agree well with the experimental database used for the evaluation. However, the evaluated spectra are softer than the 235U and 239Pu ENDF/B-VII.1, JENDL-4.0 and JEFF-3.2 evaluations for incident neutron energies Einc ≤ 1.5 MeV and Einc ≤ 5 MeV, respectively. For Einc > 5 MeV, the evaluated spectra show structures due to the improved modeling which are not present in ENDF/B-VII.1 and JEFF-3.2 but can be observed in JENDL-4.0 evaluations. Part of these new evaluations were adopted for ENDF/B-VIII.0, while the ENDF/B-VII.1 239Pu PFNS was retained for Einc ≤ 5 MeV awaiting more conclusive experimental evidence.

  5. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  6. Effects of YORP-induced rotational fission on the small size end of the Main Belt asteroid size distribution

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Jacobson, S.; Marzari, F.; Scheeres, D.; Davis, D. R.

    2013-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis has strong repercussions for the small size end of the Main Belt asteroid size frequency distribution. These results are consistent with observed asteroid population statistics. The foundation of this model is the asteroid rotation model of Marzari et al. (2011), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur). The YORP effect timescale for large asteroids with diameters D > ~6 km is longer than the collision timescale in the Main Belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ~6 km, the asteroid population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size frequency distribution. Using the outputs of the asteroid population evolution model and a 1-D collision evolution model, we can generate this new size frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated “Asteroids were Born Big” size frequency distribution (Weidenschilling 2010, Morbidelli 2009).

  7. Fission Fragment characterization with FALSTAFF at NFS

    NASA Astrophysics Data System (ADS)

    Doré, D.; Farget, F.; Lecolley, F.-R.; Ledoux, X.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.

    2013-03-01

    The Neutrons for Science (NFS) facility will be one of the first installations of the SPIRAL2 facility. NFS will be composed of a time-of-flight baseline and irradiation stations and will allow studying neutron-induced reactions for energies going from some hundreds of keV up to 40 MeV. Continuous and quasi-monoenergetic energy neutron beams will be available. Taking advantage of this new installation, the development of an experimental setup for a full characterization of actinide fission fragments in this energy domain has been undertaken. To achieve this goal a new detection system called FALSTAFF (Four Arm cLover for the STudy of Actinide Fission Fragments) in under development. In this paper, the characteristics of the NFS facility will be exposed and the motivations for the FALSTAFF experiment will be presented. The experimental setup will be described and the expected resolutions based on realistic GEANT4 simulations will be discussed.

  8. Modeling spallation reactions in tungsten and uranium targets with the Geant4 toolkit

    NASA Astrophysics Data System (ADS)

    Malyshkin, Yury; Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2012-02-01

    We study primary and secondary reactions induced by 600 MeV proton beams in monolithic cylindrical targets made of natural tungsten and uranium by using Monte Carlo simulations with the Geant4 toolkit [1-3]. Bertini intranuclear cascade model, Binary cascade model and IntraNuclear Cascade Liège (INCL) with ABLA model [4] were used as calculational options to describe nuclear reactions. Fission cross sections, neutron multiplicity and mass distributions of fragments for 238U fission induced by 25.6 and 62.9 MeV protons are calculated and compared to recent experimental data [5]. Time distributions of neutron leakage from the targets and heat depositions are calculated. This project is supported by Siemens Corporate Technology.

  9. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, M.; Capote, R.; Carlson, B.V.

    EMPIRE is a modular system of nuclear reaction codes, comprising various nuclear models, and designed for calculations over a broad range of energies and incident particles. A projectile can be a neutron, proton, any ion (including heavy-ions) or a photon. The energy range extends from the beginning of the unresolved resonance region for neutron-induced reactions ({approx} keV) and goes up to several hundred MeV for heavy-ion induced reactions. The code accounts for the major nuclear reaction mechanisms, including direct, pre-equilibrium and compound nucleus ones. Direct reactions are described by a generalized optical model (ECIS03) or by the simplified coupled-channels approachmore » (CCFUS). The pre-equilibrium mechanism can be treated by a deformation dependent multi-step direct (ORION + TRISTAN) model, by a NVWY multi-step compound one or by either a pre-equilibrium exciton model with cluster emission (PCROSS) or by another with full angular momentum coupling (DEGAS). Finally, the compound nucleus decay is described by the full featured Hauser-Feshbach model with {gamma}-cascade and width-fluctuations. Advanced treatment of the fission channel takes into account transmission through a multiple-humped fission barrier with absorption in the wells. The fission probability is derived in the WKB approximation within the optical model of fission. Several options for nuclear level densities include the EMPIRE-specific approach, which accounts for the effects of the dynamic deformation of a fast rotating nucleus, the classical Gilbert-Cameron approach and pre-calculated tables obtained with a microscopic model based on HFB single-particle level schemes with collective enhancement. A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers, moments of inertia and {gamma}-ray strength functions. The results can be converted into ENDF-6

  10. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, Vladimir

    1986-01-01

    This invention teaches a nuclear fission reactor having a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200.degree.-1800.degree. C. range, and even higher to 2500.degree. C., limited only by the thermal effectiveness of the structural materials, increasing the efficiency of power generation from the normal 30-35% with 300.degree.-500.degree. C. upper limit temperature to 50-65%. Irradiation of the circulating liquid fuel, as contrasted to only localized irradiation of a solid fuel, provides improved fuel utilization.

  11. miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission.

    PubMed

    Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong

    2018-07-01

    Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA‑125a (miR‑125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro‑apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR‑125a enhanced mitochondria‑dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC‑1 cell migration by preserving the F‑actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a‑mediated mitochondrial fission. Low contents of miR‑125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR‑125a and Mfn2 are regulated by hypoxia‑inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR‑125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR‑125a/Mfn2 pathways, acting to restrict PANC‑1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy.

  12. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  13. Neutron-induced fission cross section measurements for uranium isotopes 236U and 234U at LANSCE

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2013-04-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard 235U foil is converted into a fission cross section ratio. In addition to previously measured data new measurements include 236U data which is being analyzed, and 234U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. Obtained data are presented in comparison with existing evaluations and previous data.

  14. miR-125a induces apoptosis, metabolism disorder and migration impairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission

    PubMed Central

    Pan, Lichao; Zhou, Lin; Yin, Weijia; Bai, Jia; Liu, Rong

    2018-01-01

    Mitochondrial fission is important for the development and progression of pancreatic cancer (PC). However, little is known regarding its role in pancreatic cancer apoptosis, metabolism and migration. In the current study, the mechanism by which mitochondrial fission modifies the biological characteristics of PC was explored. MicroRNA-125a (miR-125a) had the ability to inhibit mitochondrial fission and contributed to cellular survival. Suppressed mitochondrial fission led to a reduction in mitochondrial debris, preserved the mitochondrial membrane potential, inhibited mitochondrial permeability transition pore opening, ablated cytochrome c leakage into the cytoplasm and reduced the pro-apoptotic protein contents, finally blocking mitochondria related apoptosis pathways. Furthermore, defective mitochondrial fission induced by miR-125a enhanced mitochondria-dependent energy metabolism by promoting activity of electron transport chain complexes. Furthermore, suppressed mitochondrial fission also contributed to PANC-1 cell migration by preserving the F-actin balance. Furthermore, mitofusin 2 (Mfn2), the key defender of mitochondrial fission, is involved in inhibition of miR125a-mediated mitochondrial fission. Low contents of miR-125a upregulated Mfn2 transcription and expression, leading to inactivation of mitochondrial fission. Ultimately, the current study determined that miR-125a and Mfn2 are regulated by hypoxia-inducible factor 1 (HIF1). Knockdown of HIF1 reversed miR-125a expression, and therefore, inhibited Mfn2 expression, leading to activation of mitochondrial fission. Collectively, the present study demonstrated mitochondrial fission as a tumor suppression process that is regulated by the HIF/miR-125a/Mfn2 pathways, acting to restrict PANC-1 cell survival, energy metabolism and migration, with potential implications for novel approaches for PC therapy. PMID:29749475

  15. Prompt fission neutron multiplicity and spectrum model for 30-80 MeV neutrons incident on 238U

    NASA Astrophysics Data System (ADS)

    Tudora, Anabella; Vladuca, G.; Morillon, B.

    2004-08-01

    The improved Los Alamos model is developed for the first time in order to provide prompt fission neutron multiplicity, prompt fission neutron spectra and other quantities at high incident neutron energies where the fission of secondary compound nuclei formed by charged particle emission occurs. In this model (exemplified by the n+ 238U reaction up to 80 MeV incident energy) the fission of the secondary nuclei formed by proton emission, neutron evaporation from the nuclei formed by proton emission, deuteron emission, alpha emission and neutron evaporation from the nuclei formed by alpha emission is taken into account. Input model parameters and related excitation energy dependences are determined using available experimental information and systematics as well as total and partial neutron induced fission cross-sections and their ratios obtained separately from a recent evaluation performed up to medium energies. Our present model predictions are in good agreement with the measured prompt neutron spectra and multiplicities.

  16. Fission and Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.

    2008-08-01

    . Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the

  17. Mass-energy distribution of fragments within Langevin dynamics of fission induced by heavy ions

    NASA Astrophysics Data System (ADS)

    Anischenko, Yu. A.; Adeev, G. D.

    2012-08-01

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to calculating mass-energy distributions of fragments originating from the fission of excited compound nuclei. In the model under investigation, the coordinate K representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of the { c, h, α} parametrization. The evolution of the orientation degree of freedom ( K mode) is described by means of the Langevin equation in the overdamped regime. The tensor of friction is calculated under the assumption of the reducedmechanismof one-body dissipation in the wall-plus-window model. The calculations are performed for two values of the coefficient that takes into account the reduction of the contribution from the wall formula: k s = 0.25 and k s = 1.0. Calculations with a modified wall-plus-window formula are also performed, and the quantity measuring the degree to which the single-particle motion of nucleons within the nuclear system being considered is chaotic is used for k s in this calculation. Fusion-fission reactions leading to the production of compound nuclei are considered for values of the parameter Z 2/ A in the range between 21 and 44. So wide a range is chosen in order to perform a comparative analysis not only for heavy but also for light compound nuclei in the vicinity of the Businaro-Gallone point. For all of the reactions considered in the present study, the calculations performed within four-dimensional Langevin dynamics faithfully reproduce mass-energy and mass distributions obtained experimentally. The inclusion of the K mode in the Langevin equation leads to an increase in the variances of mass and energy distributions in relation to what one obtains from three-dimensional Langevin calculations. The results of the calculations where one associates k s with the measure of chaoticity in the

  18. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: The EXILL campaign

    NASA Astrophysics Data System (ADS)

    Blanc, A.; de France, G.; Drouet, F.; Jentschel, M.; Köster, U.; Mancuso, C.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Ur, C. A.; Urban, W.; Vancraeyenest, A.

    2013-12-01

    One way to explore exotic nuclei is to study their structure by performing γ-ray spectroscopy. At the ILL, we exploit a high neutron flux reactor to induce the cold fission of actinide targets. In this process, fission products that cannot be accessed using standard spontaneous fission sources are produced with a yield allowing their detailed study using high resolution γ-ray spectroscopy. This is what was pursued at the ILL with the EXILL (for EXOGAM at the ILL) campaign. In the present work, the EXILL setup and performance will be presented.

  20. Technical Application of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  1. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*( 180Hg) = 33-66 MeV and E*( 190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β +/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of $$\\overline{A}_L$$/ $$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  2. Fusion-fission Study at JAEA for Heavy-element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, K.

    Fission fragment mass distributions were measured in the heavy-ion induced fission using 238U target nucleus. The mass distribu- tions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their inci- dent energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si+238U and 34S+238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections of 263,264Sg and 267,268Hs, produced by 30Si+238U and 34S+238U, respectively. It is also suggested that the sub-barrier energies can be used for heavy element synthesis.

  3. On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.

    2017-01-01

    It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.

  4. Multi-channel probes to understand fission dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosby, Shea Morgan

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fissionmore » output channels.« less

  5. Developing the Pulsed Fission-Fusion (PuFF) Engine

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Cassibry, Jason; Bradley, David; Fabisinski, Leo; Statham, Geoffrey

    2014-01-01

    In September 2013 the NASA Innovative Advanced Concept (NIAC) organization awarded a phase I contract to the PuFF team. Our phase 1 proposal researched a pulsed fission-fusion propulsion system that compressed a target of deuterium (D) and tritium (T) as a mixture in a column, surrounded concentrically by Uranium. The target is surrounded by liquid lithium. A high power current would flow down the liquid lithium and the resulting Lorentz force would compress the column by roughly a factor of 10. The compressed column would reach criticality and a combination of fission and fusion reactions would occur. Our Phase I results, summarized herein, review our estimates of engine and vehicle performance, our work to date to model the fission-fusion reaction, and our initial efforts in experimental analysis.

  6. Reexamining the role of the ( n , γ f ) process in the low-energy fission of U 235 and Pu 239

    DOE PAGES

    Lynn, J. E.; Talou, P.; Bouland, O.

    2018-06-01

    In this paper, themore » $$(n,{\\gamma}f)$$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $$^{235}\\mathrm{U}$$ and $$^{239}\\mathrm{Pu}$$. Observed fluctuations of the average prompt fission neutron multiplicity and average total $${\\gamma}$$-ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the $M1$ transitions to the prefission $${\\gamma}$$-ray spectrum of $$^{239}\\mathrm{Pu}$$ is explained by the dominant fission probabilities of $${0}^{+}$$ and $${2}^{+}$$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through $M1$ transitions. The impact of an additional low-lying $M1$ scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. In conclusion, calculations are extended to the fast energy range where $$(n,{\\gamma}f)$$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.« less

  7. Reexamining the role of the (n ,γ f ) process in the low-energy fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Lynn, J. E.; Talou, P.; Bouland, O.

    2018-06-01

    The (n ,γ f ) process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on 235U and 239Pu. Observed fluctuations of the average prompt fission neutron multiplicity and average total γ -ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the M 1 transitions to the prefission γ -ray spectrum of 239Pu is explained by the dominant fission probabilities of 0+ and 2+ transition states, which can only be accessed from compound nucleus states formed by the interaction of s -wave neutrons with the target nucleus in its ground state, and decaying through M 1 transitions. The impact of an additional low-lying M 1 scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. Finally, calculations are extended to the fast energy range where (n ,γ f ) corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.

  8. Reexamining the role of the ( n , γ f ) process in the low-energy fission of U 235 and Pu 239

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, J. E.; Talou, P.; Bouland, O.

    In this paper, themore » $$(n,{\\gamma}f)$$ process is reviewed in light of modern nuclear reaction calculations in both slow and fast neutron-induced fission reactions on $$^{235}\\mathrm{U}$$ and $$^{239}\\mathrm{Pu}$$. Observed fluctuations of the average prompt fission neutron multiplicity and average total $${\\gamma}$$-ray energy below 100-eV incident neutron energy are interpreted in this framework. The surprisingly large contribution of the $M1$ transitions to the prefission $${\\gamma}$$-ray spectrum of $$^{239}\\mathrm{Pu}$$ is explained by the dominant fission probabilities of $${0}^{+}$$ and $${2}^{+}$$ transition states, which can only be accessed from compound nucleus states formed by the interaction of $s$-wave neutrons with the target nucleus in its ground state, and decaying through $M1$ transitions. The impact of an additional low-lying $M1$ scissors mode in the photon strength function is analyzed. We review experimental evidence for fission fragment mass and kinetic-energy fluctuations in the resonance region and their importance in the interpretation of experimental data on prompt neutron data in this region. In conclusion, calculations are extended to the fast energy range where $$(n,{\\gamma}f)$$ corrections can account for up to 3% of the total fission cross section and about 20% of the capture cross section.« less

  9. Enhanced trigger for the NIFFTE fissionTPC in presence of high-rate alpha backgrounds

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy; Niffte Collaboration

    2015-10-01

    Nuclear physics and nuclear energy communities call for new, high precision measurements to improve existing fission models and design next generation reactors. The Neutron Induced Fission Fragment Tracking experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unrivaled precision. The fissionTPC is annually deployed to the Weapons Neutron Research facility at Los Alamos Neutron Science Center where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's TPC lab, where it measures spontaneous fission from radioactive sources to characterize detector response, improve performance, and evolve the design. To measure 244Cm, we've developed a fission trigger to reduce the data rate from alpha tracks while maintaining a high fission detection efficiency. In beam, alphas from 239Pu are a large background when detecting fission fragments; implementing the fission trigger will greatly reduce this background. The implementation of the cathode fission trigger in the fissionTPC will be presented along with a detailed study of its efficiency.

  10. Neutron-induced fission-cross-section measurements and calculations of selected transplutonic isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.M.; Browne, J.C.

    1982-08-27

    The neutron-induced fission cross sections of /sup 242m/Am and /sup 245/Cm have been measured over an energy range of 10/sup -4/ eV to approx. 20 MeV in a series of experiments at three facilities during the past several years. The combined results of these measurements, in which only sub-milligram quantities of enriched isotopes were used, yield cross sections with uncertainties of approximately 5% below 10 MeV relative to the /sup 235/U standard cross section used to normalize the data. We summarize the resonance analysis of the /sup 242m/Am(n,f) cross section in the eV region. Hauser-Feshbach statistical calculations of the detailedmore » fission cross sections of /sup 235/U and /sup 245/Cm have been carried out over the energy region from 0.1 to 5 MeV and these results are compared with our experimental data.« less

  11. Measuring Fission Fragment Mass Distributions as a Function of Incident Neutron Energy Using the fissionTPC

    NASA Astrophysics Data System (ADS)

    Gearhart, Joshua; Niffte Collaboration

    2017-09-01

    Fission fragment mass distributions are important observables for developing next generation dynamical models of fission. Many previous measurements have utilized ionization chambers to measure fission fragment energies and emission angles which are then used for mass calculations. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has built a time projection chamber (fissionTPC) that is capable of measuring additional quantities such as the ionization profiles of detected particles, allowing for the association of an individual fragment's ionization profile with its mass. The fragment masses are measured using the previously established 2E method. The fissionTPC takes its data using a continuous incident neutron energy spectrum provided by the Los Alamos Neutron Science CEnter (LANSCE). Mass distribution measurements across a continuous range of neutron energies put stronger constraints on fission models than similar measurements conducted at a handful of discrete neutron energies. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Numbers DE-NA0003180 and DE-NA0002921.

  12. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  13. Membrane Fission: Model for Intermediate Structures

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M.

    2003-01-01

    Membrane budding-fission is a fundamental process generating intracellular carriers of proteins. Earlier works were focused only on formation of coated buds connected to the initial membrane by narrow membrane necks. We present the theoretical analysis of the whole pathway of budding-fission, including the crucial stage where the membrane neck undergoes fission and the carrier separates from the donor membrane. We consider two successive intermediates of the reaction: 1), a constricted membrane neck coming out of aperture of the assembling protein coat, and 2), hemifission intermediate resulting from self-fusion of the inner monolayer of the neck, while its outer monolayer remains continuous. Transformation of the constricted neck into the hemifission intermediate is driven by the membrane stress produced in the neck by the protein coat. Although apparently similar to hemifusion, the fission is predicted to have an opposite dependence on the monolayer spontaneous curvature. Analysis of the further stages of the process demonstrates that in all practically important cases the hemifission intermediate decays spontaneously into two separate membranes, thereby completing the fission process. We formulate the “job description” for fission proteins by calculating the energy they have to deliver and the radii of the protein coat aperture which have to be reached to drive the fission process. PMID:12829467

  14. Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.

    Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.

  15. Fourier Method for Calculating Fission Chain Neutron Multiplicity Distributions

    DOE PAGES

    Chambers, David H.; Chandrasekaran, Hema; Walston, Sean E.

    2017-03-27

    Here, a new way of utilizing the fast Fourier transform is developed to compute the probability distribution for a fission chain to create n neutrons. We then extend this technique to compute the probability distributions for detecting n neutrons. Lastly, our technique can be used for fission chains initiated by either a single neutron inducing a fission or by the spontaneous fission of another isotope.

  16. A time projection chamber for high accuracy and precision fission cross-section measurements

    DOE PAGES

    Heffner, M.; Asner, D. M.; Baker, R. G.; ...

    2014-05-22

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4π acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This study provides a detailed description of the design requirements, the design solutions, and the initial performance ofmore » the fissionTPC.« less

  17. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    DOE PAGES

    Rusev, Gencho Yordanov; Jandel, Marian; Baramsai, Bayarbadrakh; ...

    2015-08-26

    Here, investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flightmore » spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.« less

  18. Development of a thin scintillation films fission-fragment detector and a novel neutron source

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Jandel, M.; Baramsai, B.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Daum, J. K.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Roman, A. R.; Springs, R. K.; Ullmann, J. L.; Walker, C. L.

    2015-08-01

    Investigation of prompt fission and neutron-capture Υ rays from fissile actinide samples at the Detector for Advanced Neutron Capture Experiments (DANCE) requires use of a fission-fragment detector to provide a trigger or a veto signal. A fission-fragment detector based on thin scintillating films and silicon photomultipliers has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4π detection of the fission fragments. The scintillations were registered with silicon photomultipliers. A measurement of the 235U(n,f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described. A neutron source with fast timing has been built to help with detector-response measurements. The source is based on the neutron emission from the spontaneous fission of 252Cf and the same type of scintillating films and silicon photomultipliers. Overall time resolution of the source is 0.3 ns. Design of the source and test measurements with it are described. An example application of the source for determining the neutron/gamma pulse-shape discrimination by a stilbene crystal is given.

  19. Contribution of fission to heavy-element nucleosynthesis in an astrophysical r-process

    NASA Astrophysics Data System (ADS)

    Korneev, I. Yu.; Panov, I. V.

    2011-12-01

    During the formation of heavy elements in the neutron star merger (NSM) scenario with a fairly long duration of the r-process, most of the seed nuclei rapidly burn out at the initial stage. The nucleosynthesis wave rapidly reaches the region of actinoids, where beta-delayed, neutron-induced, and spontaneous fission are the main reaction channels. The fission products of transuranium elements are again drawn into the r-process as new seed nuclei to form the yields of elements with mass numbers A > 100. The contribution from the various types of fission to the formation of heavy and superheavy nuclei is investigated. The proposed r-process model applied to the NSM scenario describes well the observed abundances of chemical elements, which confirms the formation of the main r-process component in the NSM scenario. Simple extrapolations of the spontaneous fission half-lives are shown to be inapplicable for the region of nuclei with N ˜ 184, because the formulas do not reflect the increase in half-life when the shell structure changes as the number of neutrons approaches 184. The formation of superheavy elements in the r-process is possible, but their survival depends to a large extent on how reliable the predictions of nuclear parameters, including the half-lives of the forming nuclei from the island of long-lived isotopes, are. The contributions from various types of fission—neutron-induced, beta-delayed, and spontaneous one—to the formation of heavy elements in the main r-process have been determined.

  20. Measurement of fission yields and isomeric yield ratios at IGISOL

    NASA Astrophysics Data System (ADS)

    Pomp, Stephan; Mattera, Andrea; Rakopoulos, Vasileios; Al-Adili, Ali; Lantz, Mattias; Solders, Andreas; Jansson, Kaj; Prokofiev, Alexander V.; Eronen, Tommi; Gorelov, Dimitri; Jokinen, Ari; Kankainen, Anu; Moore, Iain D.; Penttilä, Heikki; Rinta-Antila, Sami

    2018-03-01

    Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range from natU(n,f) based on γ-spectrometry. We find a staggering behaviour in the cumulative yields for Sn and a shift in the independent fission yields for Sb as compared to current evaluations. Plans for the future experimental program on fission yields and IYR measurements are discussed.

  1. Space Fission Propulsion System Development Status

    NASA Astrophysics Data System (ADS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  2. Both size-frequency distribution and sub-populations of the main-belt asteroid population are consistent with YORP-induced rotational fission

    NASA Astrophysics Data System (ADS)

    Jacobson, S.; Scheeres, D.; Rossi, A.; Marzari, F.; Davis, D.

    2014-07-01

    From the results of a comprehensive asteroid-population-evolution model, we conclude that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution and is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. The foundation of this model is the asteroid-rotation model of Marzari et al. (2011) and Rossi et al. (2009), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; Scheeres 2007) and binary-asteroid evolution (Jacobson & Scheeres, 2011). The YORP-effect timescale for large asteroids with diameters D > ˜ 6 km is longer than the collision timescale in the main belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ˜ 6 km, the asteroid-population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size-frequency distribution. Using the outputs of the asteroid-population evolution model and a 1-D collision evolution model, we can generate this new size-frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated ''Asteroids were Born Big'' size-frequency distribution

  3. The effect of 2-[(aminopropyl)amino] ethanethiol on fission-neutron-induced DNA damage and repair.

    PubMed Central

    Grdina, D. J.; Sigdestad, C. P.; Dale, P. J.; Perrin, J. M.

    1989-01-01

    The effect(s) of the radioprotector 2-[(aminopropyl)amino] ethanethiol (WR 1065) on fission-neutron-induced DNA damage and repair in V79 Chinese hamster cells was determined by using a neutral filter elution procedure (pH 7.2). When required, WR1065, at a final working concentration of 4 mM, was added to the culture medium, either 30 min before and during irradiation with fission spectrum neutrons (beam energy of 0.85 MeV) from the JANUS research reactor, or for selected intervals of time following exposure. The frequency of neutron-induced DNA strand breaks as measured by neutral elution as a function of dose equalled that observed for 60Co gamma-ray-induced damage (relative biological effectiveness of one). In contrast to the protective effect exhibited by WR1065 in reducing 60Co-induced DNA damage, WR1065 was ineffective in reducing or protecting against induction of DNA strand breaks by JANUS neutrons. The kinetics of DNA double-strand rejoining were measured following neutron irradiation. In the absence of WR1065, considerable DNA degradation by cellular enzymes was observed. This process was inhibited when WR1065 was present. These results indicate that, under the conditions used, the quality (i.e. nature), rather than quantity, of DNA lesions (measured by neutral elution) formed by neutrons was significantly different from that formed by gamma-rays. PMID:2667608

  4. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems bothmore » with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).« less

  5. Cellular stress induces cytoplasmic RNA granules in fission yeast.

    PubMed

    Nilsson, Daniel; Sunnerhagen, Per

    2011-01-01

    Severe stress causes plant and animal cells to form large cytoplasmic granules containing RNA and proteins. Here, we demonstrate the existence of stress-induced cytoplasmic RNA granules in Schizosaccharomyces pombe. Homologs to several known protein components of mammalian processing bodies and stress granules are found in fission yeast RNA granules. In contrast to mammalian cells, poly(A)-binding protein (Pabp) colocalizes in stress-induced granules with decapping protein. After glucose deprivation, protein kinase A (PKA) is required for accumulation of Pabp-positive granules and translational down-regulation. This is the first demonstration of a role for PKA in RNA granule formation. In mammals, the translation initiation protein eIF2α is a key regulator of formation of granules containing poly(A)-binding protein. In S. pombe, nonphosphorylatable eIF2α does not block but delays granule formation and subsequent clearance after exposure to hyperosmosis. At least two separate pathways in S. pombe appear to regulate stress-induced granules: pka1 mutants are fully proficient to form granules after hyperosmotic shock; conversely, eIF2α does not affect granule formation in glucose starvation. Further, we demonstrate a Pka1-dependent link between calcium perturbation and RNA granules, which has not been described earlier in any organism.

  6. Correlated fission data measurements with DANCE and NEUANCE

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Hayes, A. C.; Ianakiev, K. D.; Iliev, M. L.; Kawano, T.; Mosby, S.; Rusev, G.; Stetcu, I.; Talou, P.; Ullmann, J. L.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.

    2018-02-01

    To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30-40 keVee. A fission reaction tagging method was developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is ∼47%. New correlated data for prompt fission neutrons and prompt fission γ rays were obtained for 252Cf using this high detection efficiency experimental setup. Average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.

  7. Correlated fission data measurements with DANCE and NEUANCE

    DOE PAGES

    Jandel, Marian; Baramsai, Baramsai; Bredeweg, Todd Allen; ...

    2017-11-16

    To enhance the capabilities of the DANCE array, a new detector array NEUANCE was developed to enable simultaneous measurements of prompt fission neutrons and γ rays. NEUANCE was designed and constructed using 21 stilbene organic scintillator crystals. It was installed in the central cavity of the DANCE array. Signals from the 160 BaF 2 detectors of DANCE and the 21 detectors of NEUANCE were merged into a newly designed high-density high-throughput data acquisition system. The excellent pulse shape discrimination properties of stilbene enabled detection of neutrons with energy thresholds as low as 30–40 keVee. A fission reaction tagging method wasmore » developed using a NEUANCE γ-ray or neutron signal. The probability of detecting a neutron from the spontaneous fission of 252Cf using NEUANCE is 47%. New correlated data for prompt fission neutrons and prompt fission rays were obtained for 252Cf using this high detection efficiency experimental setup. In conclusion, average properties of prompt fission neutron emission as a function of prompt fission γ-ray quantities were also obtained, suggesting that neutron and γ-ray emission in fission are correlated.« less

  8. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    NASA Astrophysics Data System (ADS)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(<1 MeV) internal-conversion electron studies, a set of trial responses for the spectrometer was established and spanned electron energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  9. Preliminary results utilizing high-energy fission product γ-rays to detect fissionable material in cargo

    NASA Astrophysics Data System (ADS)

    Slaughter, D. R.; Accatino, M. R.; Bernstein, A.; Church, J. A.; Descalle, M. A.; Gosnell, T. B.; Hall, J. M.; Loshak, A.; Manatt, D. R.; Mauger, G. J.; Moore, T. L.; Norman, E. B.; Pohl, B. A.; Pruet, J. A.; Petersen, D. C.; Walling, R. S.; Weirup, D. L.; Prussin, S. G.; McDowell, M.

    2005-12-01

    A concept for detecting the presence of special nuclear material (235U or 239Pu) concealed in intermodal cargo containers is described. It is based on interrogation with a pulsed beam of 7 MeV neutrons that produce fission events and their β-delayed neutron emission or β-delayed high-energy γ radiation between beam pulses provide the detection signature. Fission product β-delayed γ-rays above 3 MeV are nearly 10 times more abundant than β-delayed neutrons and are distinct from natural radioactivity and from nearly all of the induced activity in a normal cargo. Detector backgrounds and potential interferences with the fission signature radiation have been identified and quantified.

  10. NEUTRONIC REACTION SYSTEM

    DOEpatents

    Wigner, E.P.

    1963-09-01

    A nuclear reactor system is described for breeding fissionable material, including a heat-exchange tank, a high- and a low-pressure chamber therein, heat- exchange tubes connecting these chambers, a solution of U/sup 233/ in heavy water in a reaction container within the tank, a slurry of thorium dioxide in heavy water in a second container surrounding the first container, an inlet conduit including a pump connecting the low pressure chamber to the reaction container, an outlet conduit connecting the high pressure chamber to the reaction container, and means of removing gaseous fission products released in both chambers. (AEC)

  11. Prompt fission gamma-ray studies at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandel, M.; Rusev, G.; Bond, E. M.

    2014-11-26

    Measurements of correlated data on prompt-fission γ-rays (PFG) have been carried out for various actinide isotopes in recent years using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL). We have developed a model that conveniently parametrizes the correlated data of γ-ray multiplicity and energy. New results on two- dimensional prompt-fission γ-ray multiplicity versus energy distributions from spontaneous fission on ²⁵²Cf and neutron-induced fission on 242mAm are presented together with previously obtained results on 233,235U and ²³⁹Pu. Correlated PFG data from ²⁵²Cf are also compared to results of the detailed theoretical model developed at LANL,more » for different thresholds of PFG energies. Future plans to measure correlated data on fission fragments, prompt fission neutrons and γ-rays at DANCE are presented.« less

  12. New fission-fragment detector for experiments at DANCE

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  13. Developments toward Understanding and Improving the Low Energy Measurement Capabilities of a Fission Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bundgaard, Jeremy J.

    Nuclear physicists have been recently called upon for new, high precision fission measurements to improve existing fission models, ultimately enabling engineers to design next generation reactors as well as guarding the nation's stockpile. In response, a resurgence in fission research is aimed at developing detectors to design and build new experiments to meet these needs. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration has developed the fission Time Projection Chamber (fissionTPC) to measure neutron induced fission with unprecedented precision. The fissionTPC is annually deployed to the Los Alamos Neutron Science Center LANSCE where it operates with a neutron beam passing axially through the drift volume, irradiating heavy actinide targets to induce fission. The fissionTPC was developed at the Lawrence Livermore National Laboratory's (LLNL) TPC lab, where it is tested with spontaneous fission (SF) from radioactive sources, typically 252Cf and 244Cm, to characterize detector response, improve performance, and evolve the design. One of the experiments relevant for both nuclear energy and nonproliferation is to measure the neutron induced fission of 239Pu, which exhibits a high alpha activity, generating a large unwanted background for the fission measurements. The ratio of alpha to fission present in our neutron induced fission measurement of 239Pu is on the same order of magnitude as the 244Cm alpha/SF branching ratio. The high alpha rate required the TPC to be triggering on fission signals during beam time and we set out to build a trigger system, which, using 244Cm to produce a similar alpha to fission ratio as 239Pu in the neutron beam, we successfully demonstrated the viability of this approach. The trigger design has been evolved for use in NIFFTE's current measurements at LANSCE. In addition to several hardware and software contributions in the development and operation of the fissionTPC, a central purpose of this thesis was

  14. Induced fission of Pu 240 within a real-time microscopic framework

    DOE PAGES

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; ...

    2016-03-25

    Here, we describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclearmore » dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).« less

  15. Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.

    2016-12-01

    A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.

  16. Recent Results from Lohengrin on Fission Yields and Related Decay Properties

    NASA Astrophysics Data System (ADS)

    Serot, O.; Amouroux, C.; Bidaud, A.; Capellan, N.; Chabod, S.; Ebran, A.; Faust, H.; Kessedjian, G.; Köester, U.; Letourneau, A.; Litaize, O.; Martin, F.; Materna, T.; Mathieu, L.; Panebianco, S.; Regis, J.-M.; Rudigier, M.; Sage, C.; Urban, W.

    2014-05-01

    The Lohengrin mass spectrometer is one of the 40 instruments built around the reactor of the Institute Laue-Langevin (France) which delivers a very intense thermal neutron flux. Usually, Lohengrin was combined with a high-resolution ionization chamber in order to obtain good nuclear charge discrimination within a mass line, yielding an accurate isotopic yield determination. Unfortunately, this experimental procedure can only be applied for fission products with a nuclear charge less than about 42, i.e. in the light fission fragment region. Since 2008, a large collaboration has started with the aim of studying various fission aspects, mainly in the heavy fragment region. For that, a new experimental setup which allows isotopic identification by γ-ray spectrometry has been developed and validated. This technique was applied on the 239Pu(nth,f) reaction where about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared with what was that previously available in nuclear data libraries. The same γ-ray spectrometric technique is currently being applied to the study of the 233U(nth,f) reaction. Our aim is to deduce charge and mass distributions of the fission products and to complete the experimental data that exist mainly for light fission fragments. The measurement of 41 mass yields from the 241Am(2nth,f) reaction has been also performed. In addition to these activities on fission yield measurements, various new nanosecond isomers were discovered. Their presence can be revealed from a strong deformed ionic charge distribution compared to a 'normal' Gaussian shape. Finally, a new neutron long-counter detector designed to have a detection efficiency independent of the detected neutron energy has been built. Combining this neutron device with a Germanium detector and a beta-ray detector array allowed us to measure the beta-delayed neutron emission probability Pn of some important fission products for reactor

  17. Cross section for the subthreshold fission of 236U

    NASA Astrophysics Data System (ADS)

    Alekseev, A. A.; Bergman, A. A.; Berlev, A. I.; Koptelov, E. A.; Samylin, B. F.; Trufanov, A. M.; Fursov, B. I.; Shorin, V. S.

    2008-08-01

    The cross section for 236U fission in the neutron-energy range E n = 0.001 20 keV was measured by using the INR RAS (Institute of Nuclear Research, Russian Academy of Sciences, Moscow) LSDS-100 neutron spectrometer of the lead slowing-down spectrometer type. The resonance fission areas of the resonances at 5.45 eV and 1.28 keV were found, and the fission widths of these resonances were evaluated. The cross section for the 238U( n, f) fission process was measured, and the threshold sensitivity of the LSDS-100 to small values of fission cross sections was estimated. The well-known intermediate structure in the cross section for the neutron-induced subbarrier fission of 236U was confirmed.

  18. Skyrme forces and the fusion-fission dynamics of the 132Sn+64Ni→196Pt* reaction

    NASA Astrophysics Data System (ADS)

    Jain, Deepika; Kumar, Raj; Sharma, Manoj K.; Gupta, Raj K.

    2012-02-01

    The dependence of the fusion-fission process on Skyrme forces is studied by using the dynamical cluster-decay model (DCM) and the ℓ-summed extended-Wong model in the 132Sn+64Ni→196Pt* reaction, where the nuclear proximity potential is obtained by using the semiclassical extended Thomas-Fermi (ETF) approach in the Skyrme energy density formalism (SEDF) under the frozen density approximation. The DCM gives an excellent fit to the measured fusion evaporation residue (ER) and the fission cross sections below and above barrier energies, with ER data needing “barrier lowering” at below-barrier energies for each Skyrme force (an in-built property of the DCM). The fission cross sections show a contribution of quasifission (qf) at the above-barrier two or three highest energies, depending on the Skyrme force. Calculations are illustrated for three Skyrme forces, GSkI, SSk, and SIII. Another interesting result is that there is a change of fission mass distribution from a predominantly asymmetric one to a symmetric one with a decrease in the N/Z ratio of the compound nucleus, independent of the choice of nuclear interaction potential, which gives an opportunity to address the isospin effects in the Pt* nucleus. Within the ℓ-summed extended-Wong model we find that the GSkI and SSk forces fit the total fusion cross-section data exactly, whereas the SIII force needs “barrier modification” in order to fit the data at below-barrier energies. This happens because the isospin and neutron-proton asymmetry nature of GSkI and SSk forces is different from that of the SIII force, and because the center-of-mass energy Ec.m. dependence of the barrier height for the SIII force and that of Blocki [Ann. Phys. (NY)10.1016/0003-4916(77)90249-4 105, 427 (1977)] differs strongly (by a constant amount of ˜7 MeV) from those for GSKI and SSk forces. Note that, because of the associated preformation factor with each fragment, the DCM has the advantage of treating various decay

  19. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia

    PubMed Central

    Wang, Li; Yu, Tianzheng; Lee, Hakjoo; O'Brien, Dawn K.; Sesaki, Hiromi; Yoon, Yisang

    2015-01-01

    Aims Vascular smooth muscle cell (VSMC) migration in response to arterial wall injury is a critical process in the development of intimal hyperplasia. Cell migration is an energy-demanding process that is predicted to require mitochondrial function. Mitochondria are morphologically dynamic, undergoing continuous shape change through fission and fusion. However, the role of mitochondrial morphology in VSMC migration is not well understood. The aim of the study is to understand how mitochondrial fission contributes to VSMC migration and provides its in vivo relevance in the mouse model of intimal hyperplasia. Methods and results In primary mouse VSMCs, the chemoattractant PDGF induced mitochondrial shortening through the mitochondrial fission protein dynamin-like protein 1 (DLP1)/Drp1. Perturbation of mitochondrial fission by expressing the dominant-negative mutant DLP1-K38A or by DLP1 silencing greatly decreased PDGF-induced lamellipodia formation and VSMC migration, indicating that mitochondrial fission is an important process in VSMC migration. PDGF induced an augmentation of mitochondrial energetics as well as ROS production, both of which were found to be necessary for VSMC migration. Mechanistically, the inhibition of mitochondrial fission induced an increase of mitochondrial inner membrane proton leak in VSMCs, abrogating the PDGF-induced energetic enhancement and an ROS increase. In an in vivo model of intimal hyperplasia, transgenic mice expressing DLP1-K38A displayed markedly reduced ROS levels and neointima formation in response to femoral artery wire injury. Conclusions Mitochondrial fission is an integral process in cell migration, and controlling mitochondrial fission can limit VSMC migration and the pathological intimal hyperplasia by altering mitochondrial energetics and ROS levels. PMID:25587046

  20. Active interrogation using low-energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula

    2005-09-01

    High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.

  1. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less

  2. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    DOE PAGES

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; ...

    2016-04-15

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less

  3. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y

    2016-01-01

    HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.

  4. Fission Product Yields of 233U, 235U, 238U and 239Pu in Fields of Thermal Neutrons, Fission Neutrons and 14.7-MeV Neutrons

    NASA Astrophysics Data System (ADS)

    Laurec, J.; Adam, A.; de Bruyne, T.; Bauge, E.; Granier, T.; Aupiais, J.; Bersillon, O.; Le Petit, G.; Authier, N.; Casoli, P.

    2010-12-01

    The yields of more than fifteen fission products have been carefully measured using radiochemical techniques, for 235U(n,f), 239Pu(n,f) in a thermal spectrum, for 233U(n,f), 235U(n,f), and 239Pu(n,f) reactions in a fission neutron spectrum, and for 233U(n,f), 235U(n,f), 238U(n,f), and 239Pu(n,f) for 14.7 MeV monoenergetic neutrons. Irradiations were performed at the EL3 reactor, at the Caliban and Prospero critical assemblies, and at the Lancelot electrostatic accelerator in CEA-Valduc. Fissions were counted in thin deposits using fission ionization chambers. The number of fission products of each species were measured by gamma spectrometry of co-located thick deposits.

  5. Investigating Prompt Fission Neutron Emission from 235U(n,f) in the Resolved Resonance Region

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2016-03-01

    Investigations of prompt emission in fission is of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at IRMM on prompt neutron emission from fission in response to OECD/NEA nuclear data requests is presented in this contribution. Main focus lies on currently on-going investigations of prompt neutron emission from the reaction 235U(n,f) in the region of the resolved resonances. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed [Nucl. Phys. A 491, 56 (1989)] as a function of incident neutron energy in the resonance region. In addition fluctuations of prompt neutron multiplicities were also observed [Phys. Rev. C 13, 195 (1976)]. The goal of the present study is to verify the current knowledge of prompt neutron multiplicity fluctuations and to study correlations with fission fragment properties.

  6. Symmetric and asymmetric ternary fission of hot nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siwek-Wilczynska, K.; Wilczynski, J.; Leegte, H.K.W.

    1993-07-01

    Emission of [alpha] particles accompanying fusion-fission processes in the [sup 40]Ar +[sup 232]Th reaction at [ital E]([sup 40]Ar) = 365 MeV was studied in a wide range of in-fission-plane and out-of-plane angles. The exact determination of the emission angles of both fission fragments combined with the time-of-flight measurements allowed us to reconstruct the complete kinematics of each ternary event. The coincident energy spectra of [alpha] particles were analyzed by using predictions of the energy spectra of the statistical code CASCADE . The analysis clearly demonstrates emission from the composite system prior to fission, emission from fully accelerated fragments after fission,more » and also emission during scission. The analysis is presented for both symmetric and asymmetric fission. The results have been analyzed using a time-dependent statistical decay code and confronted with dynamical calculations based on a classical one-body dissipation model. The observed near-scission emission is consistent with evaporation from a dinuclear system just before scission and evaporation from separated fragments just after scission. The analysis suggests that the time scale of fission of the hot composite systems is long (about 7[times]10[sup [minus]20] s) and the motion during the descent to scission almost completely damped.« less

  7. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  8. True ternary fission, the collinear cluster tripartition (CCT) of {sup 252}Cf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oertzen, W. von; Pyatkov, Y. V.; Kamanin, D.

    2012-10-20

    In systematic work over the last decade (see Pyatkov et al. [12] and refs therein), the ternary fission decay of heavy nuclei, in {sup 235}U(n,fff) and {sup 252}Cf(sf) has been studied in a collinear geometry. The name used for this process is (CCT), with three fragments of similar size in a collinear decay, it is the true ternary fission. This decay has been observed in spontaneous fission as well as in a neutron induced reaction. The measurements are based on different experimental set-ups, with binary coincidences containing TOF and energy determinations. With two detector telescopes placed at 180 Degree-Sign ,more » the measurements of masses and energies of each of the registered two fragments, give complete kinematic solutions. Thus the missing mass events in binary coincidences can be determined, these events are obtained by blocking one of the lighter fragments on a structure in front of the detectors. The relatively high yield of CCT (more than 10{sup -3} per binary fission) is explained. It is due to the favourable Q-values (more positive than for binary) and the large phase space of the ternary CCT-decay, dominated by three (magic) clusters: e.g. isotopes of Sn, Ca and Ni, {sup 132}Sn+{sup 50}Ca+{sup 70}Ni. It is shown that the collinear (prolate) geometry has the favoured potential energy relative to the oblate shapes. The ternary fission is considered to be a sequential process. With this assumption the kinetic energies of the fragments have been calculated by Vijay et al.. The third fragments have very low kinetic energies (below 20 MeV) and have thus escaped their detection in previous work on 'ternary fission', where in addition an oblate shape and a triangle for the momentum vectors have been assumed.« less

  9. Fission cross section uncertainties with the NIFFTE TPC

    NASA Astrophysics Data System (ADS)

    Sangiorgio, Samuele; Niffte Collaboration

    2014-09-01

    Nuclear data such as neutron-induced fission cross sections play a fundamental role in nuclear energy and defense applications. In recent years, understanding of these systems has become increasingly dependent upon advanced simulation and modeling, where uncertainties in nuclear data propagate in the expected performances of existing and future systems. It is important therefore that uncertainties in nuclear data are minimized and fully understood. For this reason, the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) uses a Time Projection Chamber (TPC) to measure energy-differential (n,f) cross sections with unprecedented precision. The presentation will discuss how the capabilities of the NIFFTE TPC allow to directly measures systematic uncertainties in fission cross sections, in particular for what concerns fission-fragment identification, and target and beam uniformity. Preliminary results from recent analysis of 238U/235U and 239Pu/235U data collected with the TPC will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Control of a laser inertial confinement fusion-fission power plant

    DOEpatents

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  11. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  12. U-238 fission and Pu-239 production in subcritical assembly

    NASA Astrophysics Data System (ADS)

    Grab, Magdalena; Wojciechowski, Andrzej

    2018-04-01

    The project touches upon an issue of U-238 fission reactions and Pu-239 production reactions in subcritical assembly. The experiment took place in November 2014 at the Dzhelepov Laboratory of Nuclear Problems (JINR, Dubna) using PHASOTRON.Data of this experiment were analyzed in Laboratory of Information Technologies (LIT). Four MCNPX models were considered for simulation: Bertini/Dresnen, Bertini/Abla, INCL4/Drensnen, INCL4/Abla. The main goal of the project was to compare the experimental data and simulation results. We obtain a good agreement of experimental data and computation results especially for detectors placed besides the assembly axis. In addition, the U-238 fission reactions are more probable to be observed in the region of a higher particle energy spectrum, located closer to the assembly axis and the particle beam as well and vice versa Pu-239 production reactions were dominant in the peripheral region of geometry.

  13. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    PubMed

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion. Copyright © 2015 the American Physiological Society.

  14. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  15. Superheavy nuclei from 48Ca-induced reactions

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.

    2015-12-01

    The discovery and investigation of the new region of superheavy nuclei at the DGFRS separator based on fusion reactions of 48Ca with 238U-249Cf target nuclei are reviewed. The production cross sections and summaries of the decay properties, including the results of the posterior experiments performed at the SHIP, BGS, and TASCA separators, as well as at the chemistry setups, are discussed and compared with the theoretical calculations and the systematic trends in the α-decay and spontaneous fission properties. The properties of the new nuclei, isotopes of elements 112-118, and their decay products demonstrate significant increases in the stability of the heaviest nuclei with increasing neutron number and closer approach to magic number N = 184.

  16. Transfer reactions induced by lithium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogloblin, A.A.

    The review deals with nuclear reactions induced by /sup 6/Li and /sup 7/ Li io ns having energies between 10 and 30 MeV. Due to the cluster structure of / sup 6/Li (/sup 6/Li= alpha +d) and /sup 7/Li (/sup 7/Li= alpha +t) and the low bindi ng energy of these nuclei, one of the clustcr is directly transferred in (/ sup 6/Li, d), (/sup 7/Li, t) (/sup 6/Li alpha ) and (/sup 7/Li, alpha ) reactions, i.e., the alpha p article, the deuteron, or the triton is directly transferred. Particular attention is paid to the (/sup 6/Li, d) andmore » (/sup 7/Li, t) reactions, in which the cluster-transfe r mechanism (alpha-particle transfer) appear in ita purest fomn. These reactions can be used to study the alpha- particle or quartet states of light nuclei, which are difficult or impossible to excite in any other way. The present state of the theory of multinucleon transfcr reactions is considered and the application of the theory to thc analysis of reactions induced by lithium atoms is discussed. (auth)« less

  17. Maruhn-Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions LENR via a Compound Nucleus with Double Magic Numbers

    NASA Astrophysics Data System (ADS)

    Hora, H.; Miley, G. H.

    2007-12-01

    One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.

  18. MCNP6 Fission Multiplicity with FMULT Card

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, Trevor; Fensin, Michael Lorne; Hendricks, John S.

    With the merger of MCNPX and MCNP5 into MCNP6, MCNP6 now provides all the capabilities of both codes allowing the user to access all the fission multiplicity data sets. Detailed in this paper is: (1) the new FMULT card capabilities for accessing these different data sets; (2) benchmark calculations, as compared to experiment, detailing the results of selecting these separate data sets for thermal neutron induced fission on U-235.

  19. Permeability Changes in Reaction Induced Fracturing

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv

    2013-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and

  20. Low-energy electron-induced reactions in condensed matter

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.

    2010-01-01

    The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative

  1. Neutron-multiplicity experiments for enhanced fission modelling

    NASA Astrophysics Data System (ADS)

    Al-Adili, Ali; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Jansson, Kaj; Solders, Andreas; Rakapoulos, Vasileios; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Oberstedt, Stephan; Prokofiev, Alexander V.; Sundén, Erik A.; Vidali, Marzio; Österlund, Michael; Pomp, Stephan

    2017-09-01

    The nuclear de-excitation process of fission fragments (FF) provides fundamental information for the understanding of nuclear fission and nuclear structure in neutron-rich isotopes. The variation of the prompt-neutron multiplicity, ν(A), as a function of the incident neutron energy (En) is one of many open questions. It leads to significantly different treatments in various fission models and implies that experimental data are analyzed based on contradicting assumptions. One critical question is whether the additional excitation energy (Eexc) is manifested through an increase of ν(A) for all fragments or for the heavy ones only. A systematic investigation of ν(A) as a function of En has been initiated. Correlations between prompt-fission neutrons and fission fragments are obtained by using liquid scintillators in conjunction with a Frisch-grid ionization chamber. The proof-of-principle has been achieved on the reaction 235U(nth,f) at the Van De Graff (VdG) accelerator of the JRC-Geel using a fully digital data acquisition system. Neutrons from 252Cf(sf) were measured separately to quantify the neutron-scattering component due to surrounding shielding material and to determine the intrinsic detector efficiency. Prelimenary results on ν(A) and spectrum in correlation with FF properties are presented.

  2. FIFRELIN - TRIPOLI-4® coupling for Monte Carlo simulations with a fission model. Application to shielding calculations

    NASA Astrophysics Data System (ADS)

    Petit, Odile; Jouanne, Cédric; Litaize, Olivier; Serot, Olivier; Chebboubi, Abdelhazize; Pénéliau, Yannick

    2017-09-01

    TRIPOLI-4® Monte Carlo transport code and FIFRELIN fission model have been coupled by means of external files so that neutron transport can take into account fission distributions (multiplicities and spectra) that are not averaged, as is the case when using evaluated nuclear data libraries. Spectral effects on responses in shielding configurations with fission sampling are then expected. In the present paper, the principle of this coupling is detailed and a comparison between TRIPOLI-4® fission distributions at the emission of fission neutrons is presented when using JEFF-3.1.1 evaluated data or FIFRELIN data generated either through a n/g-uncoupled mode or through a n/g-coupled mode. Finally, an application to a modified version of the ASPIS benchmark is performed and the impact of using FIFRELIN data on neutron transport is analyzed. Differences noticed on average reaction rates on the surfaces closest to the fission source are mainly due to the average prompt fission spectrum. Moreover, when working with the same average spectrum, a complementary analysis based on non-average reaction rates still shows significant differences that point out the real impact of using a fission model in neutron transport simulations.

  3. On similarity of various reactor spectra and 235U prompt fission neutron spectrum.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch

    2018-05-01

    A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Measurements of energy dependence of average number of prompt neutrons from neutron-induced fission of 242Pu from 0.5 to 10 Mev

    NASA Astrophysics Data System (ADS)

    Khokhlov, Yurii A.; Ivanin, Igor A.; In'kov, Valerii I.; Danilin, Lev D.

    1998-10-01

    The results of energy dependence measurements of the average number of prompt neutrons from neutrons-induced fission of 242Pu from 0.5 to 10 MeV are presented. The measurements were carried out with neutrons beam from uranium target of electron linac of Russian Federal Nuclear Center using time-of-flight technique on 28.5 m flight-path. The neutrons from fission were detected by a liquid scintillator detector loaded with gadolinium, events of fission—by parallel plate avalanche detector for fission fragments. Least squares fitting results give ν¯p(En)=(2.881±0.033)+(0.141±0.003)ṡEn. The work is executed on ISTC project # 471-97.

  5. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fissionmore » measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.« less

  6. Measurement of the normalized U 238 ( n , f ) / U 235 ( n , f ) cross section ratio from threshold to 30 MeV with the NIFFTE fission Time Projection Chamber

    DOE PAGES

    Casperson, R. J.; Asner, D. M.; Baker, J.; ...

    2018-03-23

    We present that the normalized 238U(n,f)/ 235U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n,f)/ 235U(n,f) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n,f) crossmore » section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β5 at 14.5 MeV.« less

  7. Measurement of the normalized 238U(n ,f )/235U(n ,f ) cross section ratio from threshold to 30 MeV with the NIFFTE fission Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Casperson, R. J.; Asner, D. M.; Baker, J.; Baker, R. G.; Barrett, J. S.; Bowden, N. S.; Brune, C.; Bundgaard, J.; Burgett, E.; Cebra, D. A.; Classen, T.; Cunningham, M.; Deaven, J.; Duke, D. L.; Ferguson, I.; Gearhart, J.; Geppert-Kleinrath, V.; Greife, U.; Grimes, S.; Guardincerri, E.; Hager, U.; Hagmann, C.; Heffner, M.; Hensle, D.; Hertel, N.; Higgins, D.; Hill, T.; Isenhower, L. D.; King, J.; Klay, J. L.; Kornilov, N.; Kudo, R.; Laptev, A. B.; Loveland, W.; Lynch, M.; Lynn, W. S.; Magee, J. A.; Manning, B.; Massey, T. N.; McGrath, C.; Meharchand, R.; Mendenhall, M. P.; Montoya, L.; Pickle, N. T.; Qu, H.; Ruz, J.; Sangiorgio, S.; Schmitt, K. T.; Seilhan, B.; Sharma, S.; Snyder, L.; Stave, S.; Tate, A. C.; Tatishvili, G.; Thornton, R. T.; Tovesson, F.; Towell, D. E.; Towell, R. S.; Walsh, N.; Watson, S.; Wendt, B.; Wood, L.; Yao, L.; Younes, W.; Niffte Collaboration

    2018-03-01

    The normalized 238U(n ,f )/235U(n ,f ) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n ,f )/235U(n ,f ) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n ,f ) cross section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β 5 at 14.5 MeV.

  8. Measurement of the normalized U 238 ( n , f ) / U 235 ( n , f ) cross section ratio from threshold to 30 MeV with the NIFFTE fission Time Projection Chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casperson, R. J.; Asner, D. M.; Baker, J.

    We present that the normalized 238U(n,f)/ 235U(n,f) cross section ratio has been measured using the NIFFTE fission Time Projection Chamber (fissionTPC) from the reaction threshold to 30 MeV . The fissionTPC is a two-volume MICROMEGAS time projection chamber that allows for full three-dimensional reconstruction of fission-fragment ionization profiles from neutron-induced fission. The measurement was performed at the Los Alamos Neutron Science Center, where the neutron energy is determined from neutron time of-flight. The 238U(n,f)/ 235U(n,f) ratio reported here is the first cross section measurement made with the fissionTPC, and will provide new experimental data for evaluation of the 238U(n,f) crossmore » section, an important standard used in neutron-flux measurements. Use of a development target in this work prevented the determination of an absolute normalization, to be addressed in future measurements. Instead, the measured cross section ratio has been normalized to ENDF/B-VIII.β5 at 14.5 MeV.« less

  9. Reassessment of fission fragment angular distributions from continuum states in the context of transition-state theory

    NASA Astrophysics Data System (ADS)

    Vaz, Louis C.; Alexander, John M.

    1983-07-01

    Fission angular distributions have been studied for years and have been treated as classic examples of trasitions-state theory. Early work involving composite nuclei of relatively low excitation energy E ∗ (⪅35 MeV) and spin I (⪅25ħ) gave support to theory and delimited interesting properties of the transitions-state nuclei. More recent research on fusion fission and sequential fission after deeply inelastic reactions involves composite nuclei of much higher energies (⪅200 MeV) and spins (⪅100ħ). Extension of the basic ideas developed for low-spin nuclei requires detailed consideration of the role of these high spins and, in particular, the “spin window” for fussion. We have made empirical correlations of cross sections for evaporation residues and fission in order to get a description of this spin window. A systematic reanalysis has been made for fusion fission induced by H, He and heavier ions. Empirical correlations of K 20 (K 20 = {IeffT }/{h̷2}) are presented along with comparisons of Ieff to moments of inertia for saddle-point nuclei from the rotating liquid drop model. This model gives an excellent guide for the intermidiate spin zone (30⪅ I ⪅65), while strong shell and/or pairing effects are evident for excitations less than ⪅35 MeV. Observations of strong anisotropies for very high-spin systems signal the demise of certain approximation commonly made in the theory, and suggestions are made toward this end.

  10. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    DOE PAGES

    Mayer, Michael F.; Nattress, J.; Jovanovic, I.

    2016-06-27

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the 11B(d,n γ) 12C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time- dependent buildup and decay of delayed neutron emission from 238Umore » were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. Furthermore, this method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.« less

  11. Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.

    2016-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly

  12. Trojan Horse Method for neutrons-induced reaction studies

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  13. General Description of Fission Observables: GEF Model Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, K.-H.; Jurado, B., E-mail: jurado@cenbg.in2p3.fr; Amouroux, C.

    2016-01-15

    The GEF (“GEneral description of Fission observables”) model code is documented. It describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum. The GEF model is applicable for a wide range of isotopes from Z = 80 to Z = 112 and beyond, up to excitation energies of about 100 MeV. The results of the GEF model are compared with fission barriers, fission probabilities, fission-fragment mass- and nuclide distributions, isomeric ratios, total kinetic energies, and prompt-neutron and prompt-gamma yields and energymore » spectra from neutron-induced and spontaneous fission. Derived properties of delayed neutrons and decay heat are also considered. The GEF model is based on a general approach to nuclear fission that explains a great part of the complex appearance of fission observables on the basis of fundamental laws of physics and general properties of microscopic systems and mathematical objects. The topographic theorem is used to estimate the fission-barrier heights from theoretical macroscopic saddle-point and ground-state masses and experimental ground-state masses. Motivated by the theoretically predicted early localisation of nucleonic wave functions in a necked-in shape, the properties of the relevant fragment shells are extracted. These are used to determine the depths and the widths of the fission valleys corresponding to the different fission channels and to describe the fission-fragment distributions and deformations at scission by a statistical approach. A modified composite nuclear-level-density formula is proposed. It respects some features in the superfluid regime that are in accordance with new experimental findings and with theoretical expectations. These are a constant-temperature behaviour that is consistent with a considerably increased heat capacity and an increased pairing condensation energy

  14. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  15. Measurement of Fission Product Yields from Fast-Neutron Fission

    NASA Astrophysics Data System (ADS)

    Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Henderson, R.; Kenneally, J.; Macri, R.; McNabb, D.; Ryan, C.; Sheets, S.; Stoyer, M. A.; Tonchev, A. P.; Bhatia, C.; Bhike, M.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.

    2014-09-01

    One of the aims of the Stockpile Stewardship Program is a reduction of the uncertainties on fission data used for analyzing nuclear test data [1,2]. Fission products such as 147Nd are convenient for determining fission yields because of their relatively high yield per fission (about 2%) and long half-life (10.98 days). A scientific program for measuring fission product yields from 235U,238U and 239Pu targets as a function of bombarding neutron energy (0.1 to 15 MeV) is currently underway using monoenergetic neutron beams produced at the 10 MV Tandem Accelerator at TUNL. Dual-fission chambers are used to determine the rate of fission in targets during activation. Activated targets are counted in highly shielded HPGe detectors over a period of several weeks to identify decaying fission products. To date, data have been collected at neutron bombarding energies 4.6, 9.0, 14.5 and 14.8 MeV. Experimental methods and data reduction techniques are discussed, and some preliminary results are presented.

  16. Total prompt γ-ray emission in fission

    NASA Astrophysics Data System (ADS)

    Wu, C. Y.; Chyzh, A.; Kwan, E.; Henderson, R. A.; Bredeweg, T. A.; Haight, R. C.; Hayes-Sterbenz, A. C.; Lee, H. Y.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The total prompt γ-ray energy distributions were measured for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV-100 keV, and the spontaneous fission of 252Cf using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total prompt γ-ray energy vs multiplicity using a simulated DANCE response matrix. A summary of this work is presented with the emphasis on the comparison of total prompt fission γ-ray energy between our results and previous ones. The mean values of the total prompt γ-ray energy ⟨Eγ,tot⟩, determined from the unfolded distributions, are ˜20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied.

  17. Measurements of Short-Lived Fission Isomers

    NASA Astrophysics Data System (ADS)

    Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner

    2016-09-01

    Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.

  18. Nuclear Forensics and Radiochemistry: Reaction Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.

  19. Absence of a dose-fractionation effect on neoplastic transformation induced by fission-spectrum neutrons in C3H 10T1/2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saran, A.; Pazzaglia, S.; Coppola, M.

    1991-06-01

    We have investigated the effect of fission-spectrum neutron dose fractionation on neoplastic transformation of exponentially growing C3H 10T1/2 cells. Total doses of 10.8, 27, 54, and 108 cGy were given in single doses or in five equal fractions delivered at 24-h intervals in the biological channel of the RSV-TAPIRO reactor at CRE-Casaccia. Both cell inactivation and neoplastic transformation were more effectively induced by fission neutrons than by 250-kVp X rays. No significant effect on cell survival or neoplastic transformation was observed with split doses compared to single doses of fission-spectrum neutrons. Neutron RBE values relative to X rays determined frommore » data for survival and neoplastic transformation were comparable.« less

  20. Covariance Matrix Evaluations for Independent Mass Fission Yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, N., E-mail: nicholas.terranova@unibo.it; Serot, O.; Archier, P.

    2015-01-15

    Recent needs for more accurate fission product yields include covariance information to allow improved uncertainty estimations of the parameters used by design codes. The aim of this work is to investigate the possibility to generate more reliable and complete uncertainty information on independent mass fission yields. Mass yields covariances are estimated through a convolution between the multi-Gaussian empirical model based on Brosa's fission modes, which describe the pre-neutron mass yields, and the average prompt neutron multiplicity curve. The covariance generation task has been approached using the Bayesian generalized least squared method through the CONRAD code. Preliminary results on mass yieldsmore » variance-covariance matrix will be presented and discussed from physical grounds in the case of {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f) reactions.« less

  1. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbier, Vincent; Lang, Diane; Valois, Sierra

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associatedmore » with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.« less

  2. Methods to Collect, Compile, and Analyze Observed Short-lived Fission Product Gamma Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finn, Erin C.; Metz, Lori A.; Payne, Rosara F.

    2011-09-29

    A unique set of fission product gamma spectra was collected at short times (4 minutes to 1 week) on various fissionable materials. Gamma spectra were collected from the neutron-induced fission of uranium, neptunium, and plutonium isotopes at thermal, epithermal, fission spectrum, and 14-MeV neutron energies. This report describes the experimental methods used to produce and collect the gamma data, defines the experimental parameters for each method, and demonstrates the consistency of the measurements.

  3. Studies On Particle-Accompanied Fission Of 252Cf(sf) And 235U(nth,f)

    NASA Astrophysics Data System (ADS)

    Kopatch, Yu N.; Tishchenko, V.; Speransky, M.; Mutterer, M.; Gönnenwein, F.; Jesinger, P.; Gagarski, A. M.; von Kalben, J.; Kojouharov, I.; Lubkiewics, E.; Mezentseva, Z.; Nezvishevsky, V.; Petrov, G. A.; Schaffner, H.; Scharma, H.; Trzaska, W. H.; Wollersheim, H.-J.

    2005-11-01

    In recent multi-parameter studies of spontaneous and thermal neutron induced fission, 252Cf(sf) and 235U(nth,f) respectively, the energies and emission angles of fission fragments and light charged particles were measured. Fragments were detected by an energy and angle sensitive twin ionization chamber while the light charged particles were identified by a series of ΔE-Erest telescopes. Up to Be the light particle isotopes could be disentangled. In addition, in the 252Cf(sf) experiment, gammas emitted by the fragments were analyzed by a pair of large-volume segmented clover Ge detectors. Here the main interest is to study the γ-decay and the anisotropy of gammas emitted by fragments and light particles. On the other hand, the high count rates achieved in the U-experiment performed at the high flux reactor of the ILL, Grenoble, should allow to explore fragment-particle correlations in very rare events like quaternary fission. At the present stage of data evaluation, yields and energy distributions of light particles are available. For the present contribution in particular the yields of Be-isotopes for the two reactions studied are compared and discussed. For 252Cf(sf) these isotopic yields were hitherto not known.

  4. Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jofuku, Akihiro; Ishihara, Naotada; Mihara, Katsuyoshi

    2005-07-29

    In yeast, mitochondrial-fission is regulated by the cytosolic dynamin-like GTPase (Dnm1p) in conjunction with a peripheral protein, Mdv1p, and a C-tail-anchored outer membrane protein, Fis1p. In mammals, a dynamin-related protein (Drp1) and Fis1 are involved in the mitochondrial-fission reaction as Dnm1 and Fis1 orthologues, respectively. The involvement of other component(s), such as the Mdv1 homologue, and the mechanisms regulating mitochondrial-fission remain unclear. Here, we identified rat Fis1 (rFis1) and analyzed its structure-function relationship. Blue-native-polyacrylamide gel electrophoresis revealed that rFis1 formed a {approx}200-kDa complex in the outer mitochondrial membrane. Its expression in HeLa cells promoted extensive mitochondrial fragmentation, and gene knock-downmore » by RNAi induced extension of the mitochondrial networks. Taking advantage of these properties, we analyzed functional domains of rFis1. These experiments revealed that the N-terminal and C-terminal segments are both essential for oligomeric rFis1 interaction, and the middle TPR-like domains regulate proper oligomer assembly. Any mutations that disturb the proper oligomeric assembly compromise mitochondrial division-stimulating activity of rFis1.« less

  5. A new approach to barrier-top fission dynamics

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Mehlhaff, J. M.

    2016-06-01

    We proposed a calculational framework for describing induced fission that avoids the Bohr-Wheeler assumption of well-defined fission channels. The building blocks of our approach are configurations that form a discrete, orthogonal basis and can be characterized by both energy and shape. The dynamics is to be determined by interaction matrix elements between the states rather than by a Hill-Wheeler construction of a collective coordinate. Within our approach, several simple limits can be seen: diffusion; quantized conductance; and ordinary decay through channels. The specific proposal for the discrete basis is to use the Kπ quantum numbers of the axially symmetric Hartree-Fock approximation to generate the configurations. Fission paths would be determined by hopping from configuration to configuration via the residual interaction. We show as an example the configurations needed to describe a fictitious fission decay 32S → 16 O + 16 O. We also examine the geometry of the path for fission of 236U, measuring distances by the number of jumps needed to go to a new Kπ partition.

  6. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  7. Recent advances in nuclear fission theory: pre- and post-scission physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talou, Patrick; Kawano, Toshihiko; Bouland, Olivier

    2010-01-01

    Recent advances in the modeling of the nuclear fission process for data evaluation purposes are reviewed. In particular, it is stressed that a more comprehensive approach to fission data is needed if predictive capability is to be achieved. The link between pre- and post-scission data is clarified, and a path forward to evaluate those data in a consistent and comprehensive manner is presented. Two examples are given: (i) the modeling of fission cross-sections in the R-matrix formalism, for which results for Pu isotopes from 239 to 242 are presented; (ii) the modeling of prompt fission neutrons in the Monte Carlomore » Hauser-Feshbach framework. Results for neutron-induced fission on {sup 235}U are discussed.« less

  8. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  9. Neutron-Induced Fission Cross Sections of 240Pu, 243Am, and natW in the Energy Range 1-200 MeV

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Donets, A. Yu.; Dushin, V. N.; Fomichev, A. V.; Fomichev, A. A.; Haight, R. C.; Shcherbakov, O. A.; Soloviev, S. M.; Tuboltsev, Yu. V.; Vorobyev, A. S.

    2005-05-01

    A long-range research program devoted to measurements of neutron-induced fission cross-sections of actinides and stable isotopes is under way at the GNEIS facility. By now the new series of experiments for measurements of fission cross-section ratios relative to 235U has been completed for 240Pu, 243Am, and natW in a wide energy range of incident neutrons from 1 MeV to 200 MeV in the frame of the ISTC Project ♯1971. The measurements were performed using the multiplate ionization chamber and time-of-flight techniques. The results obtained in this measurement are presented in comparison with the other data.

  10. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    NASA Astrophysics Data System (ADS)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  11. Evaporation channel as a tool to study fission dynamics

    NASA Astrophysics Data System (ADS)

    Di Nitto, A.; Vardaci, E.; La Rana, G.; Nadtochy, P. N.; Prete, G.

    2018-03-01

    The dynamics of the fission process is expected to affect the evaporation residue cross section because of the fission hindrance due to the nuclear viscosity. Systems of intermediate fissility constitute a suitable environment for testing such hypothesis since they are characterized by evaporation residue cross sections comparable or larger than the fission ones. Observables related to emitted charged particles, due to their relatively high emission probability, can be used to put stringent constraints on models describing the excited nucleus decay and to recognize the effects of fission dynamics. In this work model simulations are compared with the experimental data collected via the 32S +100 Mo reaction at Elab = 200 MeV. Consequently we pointed out, exploring an extended set of evaporation channel observables, the limits of the statistical model and the large improvement obtained with a dynamical model. Moreover we stress the importance of using an apparatus covering a large fraction of 4π to extract observables. Finally, we discuss the opportunity to measure more sensitive observables by a new detection device in operation at LNL.

  12. Fission fragment mass distributions from 210Po and 213At

    NASA Astrophysics Data System (ADS)

    Sen, A.; Ghosh, T. K.; Bhattacharya, S.; Banerjee, K.; Bhattacharya, C.; Kundu, S.; Mukherjee, G.; Asgar, A.; Dey, A.; Dhal, A.; Shaikh, Md. Moin; Meena, J. K.; Manna, S.; Pandey, R.; Rana, T. K.; Roy, Pratap; Roy, T.; Srivastava, V.; Bhattacharya, P.

    2017-12-01

    Background: The influence of shell effect on the dynamics of the fusion fission process and its evolution with excitation energy in the preactinide Hg-Pb region in general is a matter of intense research in recent years. In particular, a strong ambiguity remains for the neutron shell closed 210Po nucleus regarding the role of shell effect in fission around ≈30 -40 MeV of excitation energy. Purpose: We have measured the fission fragment mass distribution of 210Po populated using fusion of 4He+206Pb at different excitation energies and compare the result with recent theoretical predictions as well as with our previous measurement for the same nucleus populated through a different entrance channel. Mass distribution in the fission of the neighboring nuclei 213At is also studied for comparison. Methods: Two large area multiwire proportional counters (MWPC) were used for complete kinematical measurement of the coincident fission fragments. The time of flight differences of the coincident fission fragments were used to directly extract the fission fragment mass distributions. Results: The measured fragment mass distribution for the reactions 4He+206Pb and 4He+209Bi were symmetric and the width of the mass distributions were found to increase monotonically with excitation energy above 36.7 MeV and 32.9 MeV, respectively, indicating the absence of shell effects at the saddle. However, in the fission of 210Po, we find minor deviation from symmetric mass distributions at the lowest excitation energy (30.8 MeV). Conclusion: Persistence of shell effect in fission fragment mass distribution of 210Po was observed at the excitation energy ≈31 MeV as predicted by the theory; at higher excitation energy, however, the present study reaffirms the absence of any shell correction in the fission of 210Po.

  13. Structure effects on reaction mechanisms in collisions induced by radioactive ion beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietro, A. Di, E-mail: dipietro@lns.infn.it; Figuera, P.; Scuderi, V.

    2006-08-15

    The present paper concerns the study of reactions induced by radioactive beams of halo and weakly bound nuclei at energies around and above the Coulomb barrier. The results obtained for the reaction induced by the halo nucleus {sup 6}He on {sup 64}Zn have been compared with the results for the reaction induced by {sup 4}He on the same target. The results of the reaction induced by the weakly bound unstable {sup 13}N on the weakly bound {sup 9}Be have been compared with those for the reaction {sup 10}B + {sup 12}C.

  14. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Devlin, M.; Gomez, J. A.; Kelly, K. J.; Haight, R. C.; O'Donnell, J. M.; Taddeucci, T. N.; Lee, H. Y.; Mosby, S. M.; Perdue, B. A.; Fotiades, N.; Ullmann, J. L.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.

    2018-02-01

    New prompt fission neutron spectrum measurements are reported for 235U(n , f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the various detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.

  15. Cathepsin E Promotes Pulmonary Emphysema via Mitochondrial Fission

    PubMed Central

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J.

    2015-01-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. PMID:25239563

  16. Fission yield calculation using toy model based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jubaidah, Kurniadi, Rizal

    2015-09-01

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90fission yield is in about 135

  17. Sequential character of low-energy ternary and quaternary nuclear fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Bulychev, A. O.

    2016-09-15

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collectivemore » deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.« less

  18. Fission-suppressed fusion breeder on the thorium cycle and nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moir, R. W.

    2012-06-19

    Fusion reactors could be designed to breed fissile material while suppressing fissioning thereby enhancing safety. The produced fuel could be used to startup and makeup fuel for fission reactors. Each fusion reaction can produce typically 0.6 fissile atoms and release about 1.6 times the 14 MeV neutron's energy in the blanket in the fission-suppressed design. This production rate is 2660 kg/1000 MW of fusion power for a year. The revenues would be doubled from such a plant by selling fuel at a price of 60/g and electricity at $0.05/kWh for Q=P{sub fusion}/P{sub input}=4. Fusion reactors could be designed to destroymore » fission wastes by transmutation and fissioning but this is not a natural use of fusion whereas it is a designed use of fission reactors. Fusion could supply makeup fuel to fission reactors that were dedicated to fissioning wastes with some of their neutrons. The design for safety and heat removal and other items is already accomplished with fission reactors. Whereas fusion reactors have geometry that compromises safety with a complex and thin wall separating the fusion zone from the blanket zone where wastes could be destroyed. Nonproliferation can be enhanced by mixing {sup 233}U with {sup 238}U. Also nonproliferation is enhanced in typical fission-suppressed designs by generating up to 0.05 {sup 232}U atoms for each {sup 233}U atom produced from thorium, about twice the IAEA standards of 'reduced protection' or 'self protection.' With 2.4%{sup 232}U, high explosive material is predicted to degrade owing to ionizing radiation after a little over 1/2 year and the heat rate is 77 W just after separation and climbs to over 600 W ten years later. The fissile material can be used to fuel most any fission reactor but is especially appropriate for molten salt reactors (MSR) also called liquid fluoride thorium reactors (LFTR) because of the molten fuel does not need hands on fabrication and handling.« less

  19. Exploratory study of fission product yield determination from photofission of Pu 239 at 11 MeV with monoenergetic photons

    DOE PAGES

    Bhike, Megha; Tornow, W.; Krishichayan, -; ...

    2017-02-14

    Here, measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of  239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratorymore » on  239Pu at E γ = 11 MeV. In this exploratory study the yield of eight fission products ranging from  91Sr to  143Ce has been obtained.« less

  20. Exploratory study of fission product yield determination from photofission of Pu 239 at 11 MeV with monoenergetic photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhike, Megha; Tornow, W.; Krishichayan, -

    Here, measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of  239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratorymore » on  239Pu at E γ = 11 MeV. In this exploratory study the yield of eight fission products ranging from  91Sr to  143Ce has been obtained.« less

  1. Comparative study of the fragments' mass and energy characteristics in the spontaneous fussion of 238Pu, 240Pu and 242Pu and in the thermal-neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Schillebeeckx, P.; Wagemans, C.; Deruytter, A. J.; Barthélémy, R.

    1992-08-01

    The energy and mass distribution and their correlations have been studied for the spontaneous fission of 238, 240, 242Pu and for the thermal-neutron-induced fission of 239Pu. A comparison of 240Pu(s.f.) and 239Pu(nth,f) shows that the increase in excitation energy mainly results in an increase of the intrinsic excitation energy. A comparison of the results for 238Pu, 240Pu and 242Pu(s.f.) demonstrates the occurence of different fission modes with varying relative probability. These results are discussed in terms of the scission point model as well as in terms of the fission channel model with random neck-rupture.

  2. Fission and quasifission of composite systems with Z =108 -120 : Transition from heavy-ion reactions involving S and Ca to Ti and Ni ions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.

    2016-11-01

    Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.

  3. Neutron-induced fission cross section of 240Pu from 0.5 MeV to 3 MeV

    NASA Astrophysics Data System (ADS)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-07-01

    240Pu has recently been pointed out by a sensitivity study of the Organization for Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) to be one of the isotopes whose fission cross section lacks accuracy to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). In the High Priority Request List (HPRL) of the OECD, it is suggested that the knowledge of the 240Pu(n ,f ) cross section should be improved to an accuracy within 1-3 %, compared to the present 5%. A measurement of the 240Pu cross section has been performed at the Van de Graaff accelerator of the Joint Research Center (JRC) Institute for Reference Materials and Measurements (IRMM) using quasi-monoenergetic neutrons in the energy range from 0.5 MeV to 3 MeV. A twin Frisch-grid ionization chamber (TFGIC) has been used in a back-to-back configuration as fission fragment detector. The 240Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U (n ,f ) , and 238U (n ,f ) . Additionally, the secondary standard reactions were benchmarked through measurements against the primary standard reaction 235U (n ,f ) in the same geometry. A comprehensive study of the corrections applied to the data and the associated uncertainties is given. The results obtained are in agreement with previous experimental data at the threshold region. For neutron energies higher than 1 MeV, the results of this experiment are slightly lower than the ENDF/B-VII.1 evaluation, but in agreement with the experiments of Laptev et al. (2004) as well as Staples and Morley (1998).

  4. Computer program FPIP-REV calculates fission product inventory for U-235 fission

    NASA Technical Reports Server (NTRS)

    Brown, W. S.; Call, D. W.

    1967-01-01

    Computer program calculates fission product inventories and source strengths associated with the operation of U-235 fueled nuclear power reactor. It utilizes a fission-product nuclide library of 254 nuclides, and calculates the time dependent behavior of the fission product nuclides formed by fissioning of U-235.

  5. Fission yield calculation using toy model based on Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jubaidah, E-mail: jubaidah@student.itb.ac.id; Physics Department, Faculty of Mathematics and Natural Science – State University of Medan. Jl. Willem Iskandar Pasar V Medan Estate – North Sumatera, Indonesia 20221; Kurniadi, Rizal, E-mail: rijalk@fi.itb.ac.id

    2015-09-30

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. Theremore » are five Gaussian parameters used in this research. They are scission point of the two curves (R{sub c}), mean of left curve (μ{sub L}) and mean of right curve (μ{sub R}), deviation of left curve (σ{sub L}) and deviation of right curve (σ{sub R}). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90« less

  6. Search for electron and gamma-ray decay of the ^238fPu fission

    NASA Astrophysics Data System (ADS)

    Beausang, C. W.; Gurdal, G.; Ressler, J.; Barton, C. J.; Caprio, M. A.; Casten, R. F.; Cooper, J. R.; Hecht, A. A.; Hutter, C.; Zamfir, N. V.; Hauschild, K.; Korten, W.; Mergel, E.

    2002-04-01

    The reaction ^9Be + ^232Th arrow ^241Pu, at beam energies of 50 and 55 MeV, was used in an attempt to populate states in the second minimum (fission isomer) of ^238Pu via the 3n evaporation channel. Prompt gamma-rays, detected using YRAST Ball and conversion electrons, detected using ICE Ball, were collected in coincidence with delayed fission events measured using elements of the Yale SCARY array of solar cell detectors. The solar cell detectors were shielded so as not to view the large prompt fission flux from the target. Instead the detectors were located so that they could detect delayed fission events, originating from the 6 ns fission isomer state in ^238Pu, which occur downstream from the target position. Data analysis is in progress and results to date will be presented. This work is partly supported by the U.S. DOE under grant numbers DE-FG02-91ER-40609, DE-FG02-88ER-40417.

  7. The role of fission in Supernovae r-process nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Otsuki, Kaori; Kajino, Toshitaka; Sumiyoshi, Kosuke; Ohta, Masahisa; Mathews, J. Grant

    2001-10-01

    The r-process elements are presumed to be produced in an explosive environment with short timescale at high entropy, like type-II supernova explosion. Intensive flux of free neutrons are absorbed successively by seed elements to form the nuclear reaction flow on extremely unstable nuclei on the neutron rich side. It would probe our knowledge of the properties of nulei far from the beta stability. It is also important in astronomy since this process forms the long-lived nuclear chronometers Thorium and Uranium that are utilised dating the age of the Milky Way. In our previous work, we showed that the succesful r-process nucleosynthesis can occure above young, hot protoneutron star. Although these long-lived heavy elements are produced comparable amounts to observation in several supernova models which we constructed, fission and alpha-decay were not included there. The fission products could play an important role in setting actinide yields which are used as cosmochronometers. In this talk, we report an infulence of fission on actinide yields and on estimate of Galactic age as well. We also discuss fission yields at lighter elements (Z ~ 50).

  8. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    NASA Astrophysics Data System (ADS)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; Manning, Brett; Geppert-Kleinrath, Verena

    2017-09-01

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.

  9. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devlin, Matthew James; Gomez, Jaime A.; Kelly, Keegan John

    New prompt fission neutron spectrum measurements are reported for 235U(n,f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP ® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the variousmore » detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.« less

  10. The Prompt Fission Neutron Spectrum of 235U(n,f) below 2.5 MeV for Incident Neutrons from 0.7 to 20 MeV

    DOE PAGES

    Devlin, Matthew James; Gomez, Jaime A.; Kelly, Keegan John; ...

    2018-02-01

    New prompt fission neutron spectrum measurements are reported for 235U(n,f) reactions induced by neutrons with energies from 0.7 to 20 MeV. These measurements cover outgoing neutron energies from 2.5 MeV down to 10 keV, using an array of 6Li-glass scintillators for neutron detection and a double time-of-flight technique. The neutrons were produced at the Weapons Neutron Research facility of the Los Alamos Neutron Science Center. A detailed MCNP ® model of the experimental equipment and the surrounding room was used to interpret the experimental results. Backgrounds were measured in situ, making use of the time-dependent singles rates of the variousmore » detectors with asynchronous readout from waveform digitizers. The results presented here have been included in a re-evaluation of the fission neutron spectra for this fissioning system, a description of which is presented elsewhere in this issue.« less

  11. Dynamical approach to fusion-fission process in superheavy mass region

    NASA Astrophysics Data System (ADS)

    Aritomo, Y.; Hinde, D. J.; Wakhle, A.; du Rietz, R.; Dasgupta, M.; Hagino, K.; Chiba, S.; Nishio, K.

    2012-10-01

    In order to describe heavy-ion fusion reactions around the Coulomb barrier with an actinide target nucleus, we propose a model which combines the coupled-channels approach and a fluctuation-dissipation model for dynamical calculations. This model takes into account couplings to the collective states of the interacting nuclei in the penetration of the Coulomb barrier and the subsequent dynamical evolution of a nuclear shape from the contact configuration. In the fluctuation-dissipation model with a Langevin equation, the effect of nuclear orientation at the initial impact on the prolately deformed target nucleus is considered. Fusion-fission, quasifission and deep quasifission are separated as different Langevin trajectories on the potential energy surface. Using this model, we analyze the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of 36S+238U at several incident energies around the Coulomb barrier.

  12. Advanced model for the prediction of the neutron-rich fission product yields

    NASA Astrophysics Data System (ADS)

    Rubchenya, V. A.; Gorelov, D.; Jokinen, A.; Penttilä, H.; Äystö, J.

    2013-12-01

    The consistent models for the description of the independent fission product formation cross sections in the spontaneous fission and in the neutron and proton induced fission at the energies up to 100 MeV is developed. This model is a combination of new version of the two-component exciton model and a time-dependent statistical model for fusion-fission process with inclusion of dynamical effects for accurate calculations of nucleon composition and excitation energy of the fissioning nucleus at the scission point. For each member of the compound nucleus ensemble at the scission point, the primary fission fragment characteristics: kinetic and excitation energies and their yields are calculated using the scission-point fission model with inclusion of the nuclear shell and pairing effects, and multimodal approach. The charge distribution of the primary fragment isobaric chains was considered as a result of the frozen quantal fluctuations of the isovector nuclear matter density at the scission point with the finite neck radius. Model parameters were obtained from the comparison of the predicted independent product fission yields with the experimental results and with the neutron-rich fission product data measured with a Penning trap at the Accelerator Laboratory of the University of Jyväskylä (JYFLTRAP).

  13. Cathepsin E promotes pulmonary emphysema via mitochondrial fission.

    PubMed

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J

    2014-10-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Recent MELCOR and VICTORIA Fission Product Research at the NRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bixler, N.E.; Cole, R.K.; Gauntt, R.O.

    1999-01-21

    The MELCOR and VICTORIA severe accident analysis codes, which were developed at Sandia National Laboratories for the U. S. Nuclear Regulatory Commission, are designed to estimate fission product releases during nuclear reactor accidents in light water reactors. MELCOR is an integrated plant-assessment code that models the key phenomena in adequate detail for risk-assessment purposes. VICTORIA is a more specialized fission- product code that provides detailed modeling of chemical reactions and aerosol processes under the high-temperature conditions encountered in the reactor coolant system during a severe reactor accident. This paper focuses on recent enhancements and assessments of the two codes inmore » the area of fission product chemistry modeling. Recently, a model for iodine chemistry in aqueous pools in the containment building was incorporated into the MELCOR code. The model calculates dissolution of iodine into the pool and releases of organic and inorganic iodine vapors from the pool into the containment atmosphere. The main purpose of this model is to evaluate the effect of long-term revolatilization of dissolved iodine. Inputs to the model include dose rate in the pool, the amount of chloride-containing polymer, such as Hypalon, and the amount of buffering agents in the containment. Model predictions are compared against the Radioiodine Test Facility (RTF) experiments conduced by Atomic Energy of Canada Limited (AECL), specifically International Standard Problem 41. Improvements to VICTORIA's chemical reactions models were implemented as a result of recommendations from a peer review of VICTORIA that was completed last year. Specifically, an option is now included to model aerosols and deposited fission products as three condensed phases in addition to the original option of a single condensed phase. The three-condensed-phase model results in somewhat higher predicted fission product volatilities than does the single-condensed-phase model. Modeling of

  15. Resveratrol Induces Cancer Cell Apoptosis through MiR-326/PKM2-Mediated ER Stress and Mitochondrial Fission.

    PubMed

    Wu, Haili; Wang, Yingying; Wu, Changxin; Yang, Peng; Li, Hanqing; Li, Zhuoyu

    2016-12-14

    Resveratrol (Res), a natural phytoalexin found in a variety of plants, has significant antitumor activity. Pyruvate kinase M2 (PKM2) has abnormally high expression in various tumor cells, and it has been implicated in the survival of tumors. However, whether and how Res inhibits PKM2 expression is poorly understood. In the present study, we found that treatment with Res inhibited cell proliferation and induced cell apoptosis. The IC 50 values of Res against DLD1, HeLa, and MCF-7 cells were 75 ± 4.54, 50 ± 3.65, and 50 ± 3.32 μM, respectively. To elucidate mechanisms underlying its antitumor activities, serial experiments were performed. Results showed that reduction of PKM2 expression in tumor cells by Res treatment increased the expression of ER stress and mitochondrial fission proteins but reduced cell viability and the levels of fusion proteins. These phenomena were reversed by artificial overexpression of PKM2. Quantitative analyses showed that the expression of microRNA-326 (miR-326) was increased upon Res treatment. Treatment with the miR-326 mimic reduced PKM2 expression, promoting recovery from ER stress and mitochondrial fission. Overall, these results demonstrate that miR-326/PKM2-mediated ER stress and mitochondrial dysfunction participate in apoptosis induced by Res. These results provide novel insight into the molecular mechanisms by which Res suppresses tumors and further support for the use of Res as an antitumor drug.

  16. Photo-fission Product Yield Measurements at Eγ=13 MeV on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Bhike, M.; Finch, S. W.; Krishichayan, Fnu; Tonchev, A. P.

    2016-09-01

    We have measured Fission Product Yields (FPYs) in photo-fission of 235U, 238U, and 239Pu at TUNL's High-Intensity Gamma-ray Source (HI γS) using mono-energetic photons of Eγ = 13 MeV. Details of the experimental setup and analysis procedures will be discussed. Yields for approximately 20 fission products were determined. They are compared to neutron-induced FPYs of the same actinides at the equivalent excitation energies of the compound nuclear systems. In the future photo-fission data will be taken at Eγ = 8 . 0 and 10.5 MeV to find out whether photo-fission exhibits the same so far unexplained dependence of certain FPYs on the energy of the incident probe, as recently observed in neutron-induced fission, for example, for the important fission product 147Nd. Work supported by the U. S. Dept. of Energy, under Grant No. DE-FG02-97ER41033, and by the NNSA, Stewardship Science Academic Alliances Program, Grant No. DE-NA0001838 and the Lawrence Livermore, National Security, LLC under Contract No. DE-AC52-07NA27344.

  17. Experimental programme on absolute fission fragment yields with the lohengrin spectrometer: New optical and statistical methodologies

    NASA Astrophysics Data System (ADS)

    Abdelaziz, Chebboubi; Grégoire, Kessedjian; Olivier, Serot; Sylvain, Julien-Laferriere; Christophe, Sage; Florence, Martin; Olivier, Méplan; David, Bernard; Olivier, Litaize; Aurélien, Blanc; Herbert, Faust; Paolo, Mutti; Ulli, Köster; Alain, Letourneau; Thomas, Materna; Michal, Rapala

    2017-09-01

    The study of fission yields has a major impact on the characterization and understanding of the fission process and is mandatory for reactor applications. In the past with the LOHENGRIN spectrometer of the ILL, priority has been given for the studies in the light fission fragment mass range. The LPSC in collaboration with ILL and CEA has developed a measurement program on symmetric and heavy mass fission fragment distributions. The combination of measurements with ionisation chamber and Ge detectors is necessary to describe precisely the heavy fission fragment region in mass and charge. Recently, new measurements of fission yields and kinetic energy distributions are has been made on the 233U(nth,f) reaction. The focus of this work has been on the new optical and statistical methodology and the self-normalization of the data to provide new absolute measurements, independently of any libraries, and the associated experimental covariance matrix.

  18. HLA Association with Drug-Induced Adverse Reactions

    PubMed Central

    Fan, Wen-Lang; Shiao, Meng-Shin; Hui, Rosaline Chung-Yee; Wang, Chuang-Wei; Chang, Ya-Ching

    2017-01-01

    Adverse drug reactions (ADRs) remain a common and major problem in healthcare. Severe cutaneous adverse drug reactions (SCARs), such as Stevens–Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) with mortality rate ranges from 10% to more than 30%, can be life threatening. A number of recent studies demonstrated that ADRs possess strong genetic predisposition. ADRs induced by several drugs have been shown to have significant associations with specific alleles of human leukocyte antigen (HLA) genes. For example, hypersensitivity to abacavir, a drug used for treating of human immunodeficiency virus (HIV) infection, has been proposed to be associated with allele 57:01 of HLA-B gene (terms HLA-B∗57:01). The incidences of abacavir hypersensitivity are much higher in Caucasians compared to other populations due to various allele frequencies in different ethnic populations. The antithyroid drug- (ATDs- ) induced agranulocytosis are strongly associated with two alleles: HLA-B∗38:02 and HLA-DRB1∗08:03. In addition, HLA-B∗15:02 allele was reported to be related to carbamazepine-induced SJS/TEN, and HLA-B∗57:01 in abacavir hypersensitivity and flucloxacillin induced drug-induced liver injury (DILI). In this review, we summarized the alleles of HLA genes which have been proposed to have association with ADRs caused by different drugs. PMID:29333460

  19. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  20. Microscopic theory of nuclear fission: a review

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  1. Microscopic theory of nuclear fission: a review.

    PubMed

    Schunck, N; Robledo, L M

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  2. Microscopic Theory of Nuclear Fission: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunck, N.; Robledo, L. M.

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula

  3. Microscopic Theory of Nuclear Fission: A Review

    DOE PAGES

    Schunck, N.; Robledo, L. M.

    2016-10-11

    This paper reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree–Fock–Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections,more » are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel–Kramers–Brillouin (WKB) formula

  4. Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Daniel James; Schmitt, Kyle Thomas; Mosby, Shea Morgan

    Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understandmore » the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.« less

  5. Langevin model of low-energy fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sierk, Arnold John

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for

  6. Langevin model of low-energy fission

    DOE PAGES

    Sierk, Arnold John

    2017-09-05

    Since the earliest days of fission, stochastic models have been used to describe and model the process. For a quarter century, numerical solutions of Langevin equations have been used to model fission of highly excited nuclei, where microscopic potential-energy effects have been neglected. In this paper I present a Langevin model for the fission of nuclei with low to medium excitation energies, for which microscopic effects in the potential energy cannot be ignored. I solve Langevin equations in a five-dimensional space of nuclear deformations. The macroscopic-microscopic potential energy from a global nuclear structure model well benchmarked to nuclear masses ismore » tabulated on a mesh of approximately 10 7 points in this deformation space. The potential is defined continuously inside the mesh boundaries by use of a moving five-dimensional cubic spline approximation. Because of reflection symmetry, the effective mesh is nearly twice this size. For the inertia, I use a (possibly scaled) approximation to the inertia tensor defined by irrotational flow. A phenomenological dissipation tensor related to one-body dissipation is used. A normal-mode analysis of the dynamical system at the saddle point and the assumption of quasiequilibrium provide distributions of initial conditions appropriate to low excitation energies, and are extended to model spontaneous fission. A dynamical model of postscission fragment motion including dynamical deformations and separation allows the calculation of final mass and kinetic-energy distributions, along with other interesting quantities. The model makes quantitative predictions for fragment mass and kinetic-energy yields, some of which are very close to measured ones. Varying the energy of the incident neutron for induced fission allows the prediction of energy dependencies of fragment yields and average kinetic energies. With a simple approximation for spontaneous fission starting conditions, quantitative predictions are made for

  7. Experimental Cross Sections of Fission Fragments of Thorium-232 Irradiated with Medium-Energy Protons

    NASA Astrophysics Data System (ADS)

    Libanova, O. N.; Golubeva, E. S.; Ermolaev, S. V.; Matushko, V. L.; Botvina, A. S.

    2018-05-01

    This paper is focused on fission of Th-232 nuclei induced by protons with energies ranging from 20 to 140 MeV. This energy range is the most informative for studying the competition between asymmetric and symmetric fission modes. Experimental cross sections of production of radionuclides in thorium targets have been determined a year after irradiation. The corresponding theoretical values are calculated using the cascade-evaporation-fission model. The theoretical and experimental cross sections (literature data included) are compared.

  8. Evaluated Mean Values and Covariances for the Prompt Fission Neutron Spectrum of 239Pu induced by neutrons of 500 keV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neudecker, Denise

    2014-07-10

    This document provides the numerical values of the evaluated prompt fission neutron spectrum for 239Pu induced by neutrons of 500 keV as well as relative uncertainties and correlations. This document also contains a short description how these data were obtained and shows plots comparing the evaluated results to experimental information as well as the corresponding ENDF/B-VII.1 evaluation.

  9. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  10. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE)

    DOE PAGES

    Tovesson, Fredrik; Mayorov, Dmitriy; Duke, Dana; ...

    2017-09-13

    Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE), fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE) we are studying neutron-induced fission at incidentmore » energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR) facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer), the NIFFTE Time Projection Chamber (TPC), and Frisch grid Ionization Chambers (FGIC) are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.« less

  11. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world's highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding during fabrication and are enhanced during irradiation. One aspect of fuel development and qualification is to demonstrate an appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding and Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 °C). The mechanisms responsible for fission gas release events are discussed.

  12. The influence of cladding on fission gas release from irradiated U-Mo monolithic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.

    2017-04-01

    The monolithic uranium-molybdenum (U-Mo) alloy has been proposed as a fuel design capable of converting the world’s highest power research reactors from use of high enriched uranium to low enriched uranium. However, a zirconium (Zr) diffusion barrier must be used to eliminate interactions that form during fabrication and are enhanced during irradiation between the U-Mo monolith and aluminum alloy 6061 (AA6061) cladding. One aspect of fuel development and qualification is to demonstrate appropriate understanding of the extent of fission product release from the fuel under anticipated service environments. An exothermic reaction has previously been observed between the AA6061 cladding andmore » Zr diffusion layer. In this paper, two fuel segments with different irradiation history were subjected to specified thermal profiles under a controlled atmosphere using a thermogravimetric/differential thermal analyzer coupled with a mass spectrometer inside a hot cell. Samples from each segment were tested with cladding and without cladding to investigate the effect, if any, that the exothermic reaction has on fission gas release mechanisms. Measurements revealed there is an instantaneous effect of the cladding/Zr exothermic reaction, but not necessarily a cumulative effect above approximately 973 K (700 oC). The mechanisms responsible for fission gas release events are discussed.« less

  13. Neutrino-induced reactions on nuclei

    NASA Astrophysics Data System (ADS)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  14. Role of breakup and direct processes in deuteron-induced reactions at low energies

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Avrigeanu, V.

    2015-08-01

    Background: Recent studies of deuteron-induced reactions around the Coulomb barrier B pointed out that numerical calculations for deuteron-induced reactions are beyond current capabilities. The statistical model of nuclear reactions was used in this respect since the compound-nucleus (CN) mechanism was considered to be responsible for most of the total-reaction cross section σR in this energy range. However, specific noncompound processes such as the breakup (BU) and direct reactions (DR) should be also considered for the deuteron-induced reactions, making them different from reactions with other incident particles. Purpose: The unitary and consistent BU and DR consideration in deuteron-induced reactions is proved to yield results at variance with the assumption of negligible noncompound components. Method: The CN fractions of σR obtained by analysis of measured neutron angular distributions in deuteron-induced reactions on 27Al, 56Fe, 63,63Cu, and 89Y target nuclei, around B , are compared with the results of an unitary analysis of every reaction mechanism. The latter values have been supported by the previously established agreement with all available deuteron data for 27Al 54,56,-58,natCu, 63,65,natCu and 93Nb. Results: There is a significant difference between the larger CN contributions obtained from measured neutron angular distributions and calculated results of an unitary analysis of every deuteron-interaction mechanism. The decrease of the latter values is mainly due to the BU component. Conclusions: The above-mentioned differences underline the key role of the breakup and direct reactions that should be considered explicitly in the case of deuteron-induced reactions.

  15. Influence of fusion dynamics on fission observables: A multidimensional analysis

    NASA Astrophysics Data System (ADS)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  16. Evaluation of the 239 Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neudecker, D.; Talou, P.; Kawano, T.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of (PU)-P-239 induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talon et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data These improvements lead to changes in the evaluated PENS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented. which lead to more reasonable evaluated uncertainties. The calculated k(eff) of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The k(eff) one standard deviations overlap with some of those obtained using ENDF/B-VILl, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,) and (n,f) reactions, and show improvements for highenergy threshold (n,2n) reactions compared to ENDF/B-VII.l. (C) 2015 Elsevier B.V. All rights reserved.« less

  17. Simultaneous measurement of (n,{gamma}) and (n,fission) cross sections with the DANCE 4{pi} BaF2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.

    2006-03-13

    Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross sectionmore » ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.« less

  18. Metabolic Stress and Disorders Related to Alterations in Mitochondrial Fission or Fusion

    PubMed Central

    Babbar, Mansi; Sheikh, M. Saeed

    2014-01-01

    Mitochondrial morphology and metabolism play an important role in cellular homeostasis. Recent studies have shown that the fidelity of mitochondrial morphology is important in maintaining mitochondrial shape, number, size, membrane potential, ATP synthesis, mtDNA, motility, signaling, quality control, response to cellular stress, mitophagy and apoptosis. This article provides an overview of the current state of knowledge of the fission and fusion machinery with a focus on the mechanisms underlying the regulation of the mitochondrial morphology and cellular energy state. Several lines of evidence indicate that dysregulation of mitochondrial fission or fusion is associated with mitochondrial dysfunction, which in turn impacts mitophagy and apoptosis. Metabolic disorders are also associated with dysregulation of fission or fusion and the available lines of evidence point to a bidirectional interplay between the mitochondrial fission or fusion reactions and bioenergetics. Clearly, more in-depth studies are needed to fully elucidate the mechanisms that control mitochondrial fission and fusion. It is envisioned that the outcome of such studies will improve the understanding of the molecular basis of related metabolic disorders and also facilitate the development of better therapeutics. PMID:24533171

  19. Evolution of a predator-induced, nonlinear reaction norm.

    PubMed

    Carter, Mauricio J; Lind, Martin I; Dennis, Stuart R; Hentley, William; Beckerman, Andrew P

    2017-08-30

    Inducible, anti-predator traits are a classic example of phenotypic plasticity. Their evolutionary dynamics depend on their genetic basis, the historical pattern of predation risk that populations have experienced and current selection gradients. When populations experience predators with contrasting hunting strategies and size preferences, theory suggests contrasting micro-evolutionary responses to selection. Daphnia pulex is an ideal species to explore the micro-evolutionary response of anti-predator traits because they face heterogeneous predation regimes, sometimes experiencing only invertebrate midge predators and other times experiencing vertebrate fish and invertebrate midge predators. We explored plausible patterns of adaptive evolution of a predator-induced morphological reaction norm. We combined estimates of selection gradients that characterize the various habitats that D. pulex experiences with detail on the quantitative genetic architecture of inducible morphological defences. Our data reveal a fine scale description of daphnid defensive reaction norms, and a strong covariance between the sensitivity to cues and the maximum response to cues. By analysing the response of the reaction norm to plausible, predator-specific selection gradients, we show how in the context of this covariance, micro-evolution may be more uniform than predicted from size-selective predation theory. Our results show how covariance between the sensitivity to cues and the maximum response to cues for morphological defence can shape the evolutionary trajectory of predator-induced defences in D. pulex . © 2017 The Authors.

  20. A new UK fission yield evaluation UKFY3.7

    NASA Astrophysics Data System (ADS)

    Mills, Robert William

    2017-09-01

    The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.

  1. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values

  2. Tailoring transition-metal hydroxides and oxides by photon-induced reactions

    DOE PAGES

    Niu, Kai -Yang; Fang, Liang; Ye, Rong; ...

    2016-10-18

    Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni 2+, Mn 2+, and Co 2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni 0.18Mn 0.45Co 0.37O x) or core–shell metal hydroxide nanoflowers ([Ni 0.15Mnmore » 0.15Co 0.7(OH) 2](NO 3) 0.2•H 2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. As a result, the study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities.« less

  3. Coincident measurements of prompt fission γ rays and fission fragments at DANCE

    NASA Astrophysics Data System (ADS)

    Walker, C. L.; Baramsai, B.; Jandel, M.; Rusev, G.; Couture, A.; Mosby, S.; Ullmann, J.; Kawano, T.; Stetcu, I.; Talou, P.

    2015-10-01

    Modern statistical approaches to modeling fission involve the calculation of not only average quantities but also fully correlated distributions of all fission products. Applications such as those involving the detection of special nuclear materials also rely on fully correlated data of fission products. Experimental measurements of correlated data are thus critical to the validation of theory and the development of important applications. The goal of this experiment was to measure properties of prompt fission gamma-ray emission as a function of fission fragments' total kinetic energy in the spontaneous fission of 252Cf. The measurement was carried out at the Detector for Advanced Neutron Capture Experiments (DANCE), a 4 π γ-ray calorimeter. A prototype design consisting of two silicon detectors was installed in the center of DANCE, allowing simultaneous measurement of fission fragments and γ rays. Effort has been taken to simulate fragment kinetic energy losses as well as γ-ray attenuation in DANCE using such tools as GEANT4 and SRIM. Theoretical predictions generated by the code CGMF were also incorporated as input for these simulations. Results from the experiment and simulations will be presented, along with plans for future measurements.

  4. Effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, Masao; Naeser, Charles W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.

  5. Search for ternary fission of chromium-48

    NASA Astrophysics Data System (ADS)

    Dummer, Andrew K.

    1999-07-01

    Both alpha cluster model calculations and macroscopic energy calculations that allow for a double-neck shape of the compound nucleus suggest the possibility of a novel three 16O, chain-like configuration in 48 Cr. Such a configuration might lead to an enhanced cross section for three-16O breakup. To explore this possibility, the three-body exit channels for the 36Ar + 12C reaction at a beam energy of 210 MeV have been studied. The cross section for 16O + 16O + 16O breakup has been deduced and has been found to be in excess of what would be expected to result from a sequential binary fission process. However, the observation of a similarly enhanced 12C + 16O + 20Ne breakup cross section suggests that the observed 16O + 16O + 16O yields might still be associated with a statistical fission process. The results are discussed in the context of the fission of light nuclear systems and a simple cluster model calculation. This latter, ``Harvey model'' calculation suggests a possible inhibition of the formation of a three- 16O chain configuration from the 36Ar + 12C entrance channel. A further measurement using the 20Ne + 28Si-entrance channel is suggested.

  6. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions.

    PubMed

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro , human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  7. RhoA/ROCK Signaling Pathway Mediates Shuanghuanglian Injection-Induced Pseudo-allergic Reactions

    PubMed Central

    Han, Jiayin; Zhao, Yong; Zhang, Yushi; Li, Chunying; Yi, Yan; Pan, Chen; Tian, Jingzhuo; Yang, Yifei; Cui, Hongyu; Wang, Lianmei; Liu, Suyan; Liu, Jing; Deng, Nuo; Liang, Aihua

    2018-01-01

    Background: Shuanghuanglian injection (SHLI) is a famous Chinese medicine used as an intravenous preparation for the treatment of acute respiratory tract infections. In the recent years, the immediate hypersensitivity reactions induced by SHLI have attracted broad attention. However, the mechanism involved in these reactions has not yet been elucidated. The present study aims to explore the characteristics of the immediate hypersensitivity reactions induced by SHLI and deciphers the role of the RhoA/ROCK signaling pathway in these reactions. Methods: SHLI-immunized mice or naive mice were intravenously injected (i.v.) with SHLI (600 mg/kg) once, and vascular leakage in the ears was evaluated. Passive cutaneous anaphylaxis test was conducted using sera collected from SHLI-immunized mice. Naive mice were administered (i.v.) with a single dose of 150, 300, or 600 mg/kg of SHLI, and vascular leakage, histamine release, and histopathological alterations in the ears, lungs, and intestines were tested. In vitro, human umbilical vein endothelial cell (HUVEC) monolayer was incubated with SHLI (0.05, 0.1, or 0.15 mg/mL), and the changes in endothelial permeability and cytoskeleton were observed. Western blot analysis was performed and ROCK inhibitor was employed to investigate the contribution of the RhoA/ROCK signaling pathway in SHLI-induced hypersensitivity reactions, both in HUVECs and in mice. Results: Our results indicate that SHLI was able to cause immediate dose-dependent vascular leakage, edema, and exudates in the ears, lungs, and intestines, and histamine release in mice. These were pseudo-allergic reactions, as SHLI-specific IgE was not elicited during sensitization. In addition, SHLI induced reorganization of actin cytoskeleton and disrupted the endothelial barrier. The administration of SHLI directly activated the RhoA/ROCK signaling pathway both in HUVECs and in the ears, lungs, and intestines of mice. Fasudil hydrochloride, a ROCK inhibitor, ameliorated the

  8. Simulated fissioning of uranium and testing of the fission-track dating method

    USGS Publications Warehouse

    McGee, V.E.; Johnson, N.M.; Naeser, C.W.

    1985-01-01

    A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of

  9. Coulomb- and Antiferromagnetic-Induced Fission in Doubly Charged Cubelike Fe-S Clusters

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Wang, Xue-Bin; Niu, Shuqiang; Pickett, Chris J.; Ichiye, Toshiko; Wang, Lai-Sheng

    2002-09-01

    We report the observation of symmetric fission in doubly charged Fe-S cluster anions, [Fe4S4X4]2- -->2[Fe2S2X2]- (X=Cl,Br), owing to both Coulomb repulsion and antiferromagnetic coupling. Photoelectron spectroscopy shows that both the parent and the fission fragments have similar electronic structures and confirms the inverted energy schemes due to the strong spin polarization of the Fe 3d levels. The current observation provides direct confirmation for the unusual spin couplings in the [Fe4S4X4]2- clusters, which contain two valent-delocalized and ferromagnetically coupled Fe2S2 subunits.

  10. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    NASA Astrophysics Data System (ADS)

    de France, G.; Blanc, A.; Drouet, F.; Jentschel, M.; Köster, U.; Mutti, P.; Régis, J. M.; Simpson, G.; Soldner, T.; Stezowski, O.; Ur, C. A.; Urban, W.; Vancrayenest, A.

    2014-03-01

    A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  11. Characterization of the Medley setup for measurements of neutron-induced fission cross sections at the GANIL-NFS facility

    NASA Astrophysics Data System (ADS)

    Tarrío, Diego; Prokofiev, Alexander V.; Gustavsson, Cecilia; Jansson, Kaj; Andersson-Sundén, Erik; Al-Adili, Ali; Pomp, Stephan

    2017-09-01

    Neutron-induced fission cross sections of 235U and 238U are widely used as standards for monitoring of neutron beams and fields. An absolute measurement of these cross sections at an absolute scale, i.e., versus the H(n,p) scattering cross section, is planned with the white neutron beam under construction at the Neutrons For Science (NFS) facility in GANIL. The experimental setup, based on PPACs and ΔE-ΔE-E telescopes containing Silicon and CsI(Tl) detectors, is described. The expected uncertainties are discussed.

  12. Singlet exciton fission photovoltaics.

    PubMed

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  13. Exploratory study of fission product yield determination from photofission of 239Pu at 11 MeV with monoenergetic photons

    NASA Astrophysics Data System (ADS)

    Bhike, Megha; Tornow, W.; Krishichayan, Tonchev, A. P.

    2017-02-01

    Measurements of fission product yields play an important role for the understanding of fundamental aspects of the fission process. Recently, neutron-induced fission product-yield data of 239Pu at energies below 4 MeV revealed an unexpected energy dependence of certain fission fragments. In order to investigate whether this observation is prerogative to neutron-induced fission, a program has been initiated to measure fission product yields in photoinduced fission. Here we report on the first ever photofission product yield measurement with monoenergetic photons produced by Compton back-scattering of FEL photons. The experiment was performed at the High-Intensity Gamma-ray Source at Triangle Universities Nuclear Laboratory on 239Pu at Eγ=11 MeV. In this exploratory study the yield of eight fission products ranging from 91Sr to 143Ce has been obtained.

  14. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed themore » expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.« less

  15. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    PubMed

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  16. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE PAGES

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  17. Will water act as a photocatalyst for cluster phase chemical reactions? Vibrational overtone-induced dehydration reaction of methanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.

    2012-04-28

    The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energymore » is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.« less

  18. Fission prompt gamma-ray multiplicity distribution measurements and simulations at DANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chyzh, A; Wu, C Y; Ullmann, J

    2010-08-24

    The nearly energy independence of the DANCE efficiency and multiplicity response to {gamma} rays makes it possible to measure the prompt {gamma}-ray multiplicity distribution in fission. We demonstrate this unique capability of DANCE through the comparison of {gamma}-ray energy and multiplicity distribution between the measurement and numerical simulation for three radioactive sources {sup 22}Na, {sup 60}Co, and {sup 88}Y. The prospect for measuring the {gamma}-ray multiplicity distribution for both spontaneous and neutron-induced fission is discussed.

  19. Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, Daniel J.

    2011-07-01

    We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.

  20. The Munich accelerator for fission fragments MAFF

    NASA Astrophysics Data System (ADS)

    Habs, D.; Groß, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P. G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Krücken, R.; Maier-Komor, P.

    2003-05-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (˜3×10 11 s -1) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV· A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups.

  1. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe.

    PubMed

    Horváth, Eszter; Papp, Gábor; Belágyi, József; Gazdag, Zoltán; Vágvölgyi, Csaba; Pesti, Miklós

    2010-07-01

    Patulin is a toxic metabolite produced by various species of Penicillium, Aspergillus and Byssochlamys. In the present study, its effects on the plasma membrane of fission yeast Schizosaccharomyces pombe were investigated. The phase-transition temperature (G) of untreated cells, measured by electron paramagnetic resonance spectrometry proved to be 14.1 degrees C. Treatment of cells for 20 min with 50, 500, or 1000 microM patulin resulted in a decrease of the G value of the plasma membrane to 13.9, 10.1 or 8.7 degrees C, respectively. This change in the transition temperature was accompanied by the loss of compounds absorbing light at 260 nm. Treatment of cells with 50, 500 or 1000 microM patulin for 20 min induced the efflux of 25%, 30.5% or 34%, respectively, of these compounds. Besides its cytotoxic effects an adaptation process was observed. This is the first study to describe the direct interaction of patulin with the plasma membrane, a process which could definitely contribute to the adverse toxic effects induced by patulin. 2010 Elsevier Ltd. All rights reserved.

  2. Radiochemistry and the Study of Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    These are slides from a lecture given at UC Berkeley. Radiochemistry has been used to study fission since its discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution. The following topics are covered:more » In the beginning: the discovery of fission; forensics using fission products: what can be learned from fission products, definitions of R-values and Q-values, fission bases, K-factors and fission chambers, limitations; the neutron energy dependence of the mass yield distribution (the two mode fission hypothesis); the influence of nuclear structure on the mass yield distribution. In summary: Radiochemistry has been used to study fission since its discovery. Radiochemical measurement of fission product yields have provided the highest precision data for developing fission models and for nuclear forensics. The two-mode fission hypothesis provides a description of the neutron energy dependence of the mass yield curve. However, data is still rather sparse and more work is needed near second and third chance fission. Radiochemical measurements have provided evidence for the importance of nuclear states in the compound nucleus in predicting the mass yield curve in the resonance region.« less

  3. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  4. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    DOE PAGES

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmarkmore » calculations using this evaluation are briefly discussed.« less

  5. Near-barrier Fusion Evaporation and Fission of 28Si+174Yb and 32S+170Er

    NASA Astrophysics Data System (ADS)

    Wang, Dongxi; Lin, Chengjian; Jia, Huiming; Ma, Nanru; Sun, Lijie; Xu, Xinxing; Yang, Lei; Yang, Feng; Zhang, Huanqiao; Bao, Pengfei

    2017-11-01

    Fusion evaporation residues and fission fragments have been measured, respectively, at energies around the Coulomb barrier for the 28Si+174Yb and 32S+170Er systems forming the same compound nucleus 202Po. The excitation function of fusion evaporation, fission as well as capture reactions were deduced. Coupled-channels analyses reveal that couplings to the deformations of targets and the two-phonon states of projectiles contribute much to the enhancement of capture cross sections at sub-barrier energies. The mass and total kinetic energy of fission fragments were deduced by the time-difference method assuming full momentum transfer in a two-body kinematics. The mass-energy and mass-angle distributions were obtained and no obvious quasi-fission components were observed in this bombarding energy range. Further, mass distributions of fission fragments were fitted to extract their widths. Results show that the mass widths decrease monotonically with decreasing energy, but might start to increase when Ec.m./VB < 0.95 for both systems.

  6. Cross section measurement of residues produced in proton- and deuteron-induced spallation reactions on 93Zr at 105 MeV/u using the inverse kinematics method

    NASA Astrophysics Data System (ADS)

    Kawase, Shoichiro; Watanabe, Yukinobu; Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Takeuchi, Satoshi; Togano, Yasuhiro; Nakamura, Takashi; Maeda, Yukie; Ahn, Deuk Soon; Aikawa, Masayuki; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Ichihara, Takashi; Isobe, Tadaaki; Kawakami, Shunsuke; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubo, Toshiyuki; Kubono, Shigeru; Kurokawa, Meiko; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Taniuchi, Ryo; Tsubota, Jun'ichi; Watanabe, Yasushi; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Isotopic production cross sections in the proton- and deuteron-induced spallation reactions on 93Zr at an energy of 105 MeV/u were measured in inverse kinematics conditions for the development of realistic nuclear transmutation processes for long-lived fission products (LLFPs) with neutron and light-ion beams. The experimental results were compared to the PHITS calculations describing the intra-nuclear cascade and evaporation processes. Although an overall agreement was obtained, a large overestimation of the production cross sections for the removal of a few nucleons was seen. A clear shell effect associated with the neutron magic number N = 50 was observed in the measured isotopic production yields of Zr and Y isotopes, which can be reproduced reasonably by the PHITS calculation.

  7. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites

    PubMed Central

    Ji, Wei-ke; Hatch, Anna L; Merrill, Ronald A; Strack, Stefan; Higgs, Henry N

    2015-01-01

    While the dynamin GTPase Drp1 plays a critical role during mitochondrial fission, mechanisms controlling its recruitment to fission sites are unclear. A current assumption is that cytosolic Drp1 is recruited directly to fission sites immediately prior to fission. Using live-cell microscopy, we find evidence for a different model, progressive maturation of Drp1 oligomers on mitochondria through incorporation of smaller mitochondrially-bound Drp1 units. Maturation of a stable Drp1 oligomer does not forcibly lead to fission. Drp1 oligomers also translocate directionally along mitochondria. Ionomycin, a calcium ionophore, causes rapid mitochondrial accumulation of actin filaments followed by Drp1 accumulation at the fission site, and increases fission rate. Inhibiting actin polymerization, myosin IIA, or the formin INF2 reduces both un-stimulated and ionomycin-induced Drp1 accumulation and mitochondrial fission. Actin filaments bind purified Drp1 and increase GTPase activity in a manner that is synergistic with the mitochondrial protein Mff, suggesting a role for direct Drp1/actin interaction. We propose that Drp1 is in dynamic equilibrium on mitochondria in a fission-independent manner, and that fission factors such as actin filaments target productive oligomerization to fission sites. DOI: http://dx.doi.org/10.7554/eLife.11553.001 PMID:26609810

  8. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    PubMed

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Energy spectrum of 208Pb(n,x) reactions

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kavun, Y.; Özdoǧan, H.; Kaplan, A.

    2018-02-01

    Fission and fusion reactor technologies have been investigated since 1950's on the world. For reactor technology, fission and fusion reaction investigations are play important role for improve new generation technologies. Especially, neutron reaction studies have an important place in the development of nuclear materials. So neutron effects on materials should study as theoretically and experimentally for improve reactor design. For this reason, Nuclear reaction codes are very useful tools when experimental data are unavailable. For such circumstances scientists created many nuclear reaction codes such as ALICE/ASH, CEM95, PCROSS, TALYS, GEANT, FLUKA. In this study we used ALICE/ASH, PCROSS and CEM95 codes for energy spectrum calculation of outgoing particles from Pb bombardment by neutron. While Weisskopf-Ewing model has been used for the equilibrium process in the calculations, full exciton, hybrid and geometry dependent hybrid nuclear reaction models have been used for the pre-equilibrium process. The calculated results have been discussed and compared with the experimental data taken from EXFOR.

  10. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  11. The effect of α-damage on fission-track annealing in zircon

    USGS Publications Warehouse

    Kasuya, M.; Naeser, C.W.

    1988-01-01

    The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e. different amounts of ??-damage) has been studied by one hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon. ?? 1988.

  12. Prompt Fission Neutron Multiplicities for 241Pu using Surrogate Reactions

    NASA Astrophysics Data System (ADS)

    Akindele, Oluwatomi; Burke, Jason; Casperson, Robert; Hughes, Richard; Norman, Eric; Saastamoinen, Antti; Wang, Barbara

    2017-09-01

    The prompt fission neutron multiplicity for 241Pu was measured at the Texas A&M University Cyclotron using the NeutronSTARS array. Due to the short half-life (14.3 yrs) of 241Pu, inelastic scattering on 242Pu with 55 MeV alpha particles was used as a surrogate. The average neutron multiplicity (ν), and the neutron multiplicity distribution for equivalent neutron energies up to 20 MeV are discussed and reported. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344, and supported by the DOE NNSA under Award Number DE-NA0000979, and through the Nuclear Science and Security Consortium under Award Number DE-NA-0003180.

  13. Drug-induced sarcoidosis-like reactions (DISR).

    PubMed

    Chopra, Amit; Nautiyal, Amit; Kalkanis, Alexander; Judson, Marc A

    2018-04-23

    A drug-induced sarcoidosis-like reaction (DISR) is a systemic granulomatous reaction that is indistinguishable from sarcoidosis and occurs in temporal relationship with initiation of an offending drug. DISRs typically improve or resolve after the withdrawal of offending drug. Four common categories of drugs that have been associated with the development of a DISR are immune checkpoint inhibitors (ICIs), highly active anti-retroviral therapy (HAART), interferons (IFNs) and tumor necrosis factor alpha antagonists (TNF-alpha antagonists). Similar to sarcoidosis, DISRs do not necessarily require treatment, as they may cause no significant symptoms, quality of life impairment or organ dysfunction. When treatment of a DISR is required, standard anti-sarcoidosis regimens seem to be effective. As a DISR tends to improve or resolve when the offending drug is discontinued, this is another effective treatment for a DISR. However, the offending drug need not be discontinued if it is useful, and anti-granulomatous therapy can be added. In some situations, the development of a DISR may suggest a beneficial effect of the inducing drug. Understanding the mechanisms leading to DISRs may yield important insights into the immunopathogenesis of sarcoidosis. Copyright © 2018. Published by Elsevier Inc.

  14. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    PubMed Central

    Hollenbach, D. F.; Herndon, J. M.

    2001-01-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483

  15. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.

    PubMed

    Hollenbach, D F; Herndon, J M

    2001-09-25

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.

  16. Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields with Proposed Revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, M.T., E-mail: pignimt@ornl.gov; Francis, M.W.; Gauld, I.C.

    A recent implementation of ENDF/B-VII.1 independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear schemes in the decay sub-library that are not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that do not agree with the cumulative fission yields in the library as well as with experimental measurements. To address these issues, a comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron-induced fission for {supmore » 235,238}U and {sup 239,241}Pu in order to provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to compare the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. Another important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library for stable and long-lived fission products. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  17. Deuteron-induced reactions on Ni isotopes up to 60 MeV

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Šimečková, E.; Fischer, U.; Mrázek, J.; Novak, J.; Štefánik, M.; Costache, C.; Avrigeanu, V.

    2016-07-01

    Background: The high complexity of the deuteron-nucleus interaction from the deuteron weak binding energy of 2.224 MeV is also related to a variety of reactions induced by the deuteron-breakup (BU) nucleons. Thus, specific noncompound processes as BU and direct reactions (DR) make the deuteron-induced reactions so different from reactions with other incident particles. The scarce consideration of only pre-equilibrium emission (PE) and compound-nucleus (CN) mechanisms led to significant discrepancies with experimental results so that recommended reaction cross sections of high-priority elements as, e.g., Ni have mainly been obtained by fit of the data. Purpose: The unitary and consistent BU and DR account in deuteron-induced reactions on natural nickel may take advantage of an extended database for this element, including new accurate measurements of particular reaction cross sections. Method: The activation cross sections of 64,61,60Cu, Ni,5765, and 55,56,57,58,59m,60Co nuclei for deuterons incident on natural Ni at energies up to 20 MeV, were measured by the stacked-foil technique and high-resolution gamma spectrometry using U-120M cyclotron of CANAM, NPI CAS. Then, within an extended analysis of deuteron interactions with Ni isotopes up to 60 MeV, all processes from elastic scattering until the evaporation from fully equilibrated compound system have been taken into account while an increased attention is paid especially to the BU and DR mechanisms. Results: The deuteron activation cross-section analysis, completed by consideration of the PE and CN contributions corrected for decrease of the total-reaction cross section from the leakage of the initial deuteron flux towards BU and DR processes, is proved satisfactory for the first time to all available data. Conclusions: The overall agreement of the measured data and model calculations validates the description of nuclear mechanisms taken into account for deuteron-induced reactions on Ni, particularly the BU and

  18. Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odsuren, M.; Khuukhenkhuu, G.

    2011-06-28

    Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fastmore » neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.« less

  19. Fission-gas release from uranium nitride at high fission rate density

    NASA Technical Reports Server (NTRS)

    Weinstein, M. B.; Kirchgessner, T. A.; Tambling, T. N.

    1973-01-01

    A sweep gas facility has been used to measure the release rates of radioactive fission gases from small UN specimens irradiated to 8-percent burnup at high fission-rate densities. The measured release rates have been correlated with an equation whose terms correspond to direct recoil release, fission-enhanced diffusion, and atomic diffusion (a function of temperature). Release rates were found to increase linearly with burnups between 1.5 and 8 percent. Pore migration was observed after operation at 1550 K to over 6 percent burnup.

  20. 132Sn+96Zr reaction: A study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Vinodkumar, A. M.; Loveland, W.; Neeway, J. J.; Prisbrey, L.; Sprunger, P. H.; Peterson, D.; Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-11-01

    Capture-fission cross sections were measured for the collision of the massive nucleus Sn132 with Zr96 at center-of-mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled-channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron-rich projectiles.

  1. Improved modeling of photon observables with the event-by-event fission model FREYA

    DOE PAGES

    Vogt, R.; Randrup, J.

    2017-12-28

    The event-by-event fission model FREYA has been improved, in particular to address deficiencies in the calculation of photon observables. In this paper, we discuss the improvements that have been made and introduce several new variables, some detector dependent, that affect the photon observables. We show the sensitivity of FREYA to these variables. Finally, we then compare the results to the available photon data from spontaneous and thermal neutron-induced fission.

  2. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    DOE PAGES

    Neudecker, D.; Talou, P.; Kawano, T.; ...

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated k eff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The k eff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.« less

  3. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  4. The LANL/LLNL Program to Measure Prompt Fission Neutron Spectra at LANSCE

    NASA Astrophysics Data System (ADS)

    Haight, Robert; Wu, Ching Yen; Lee, Hye Young; Taddeucci, Terry; Mosby, Shea; O'Donnell, John; Fotiades, Nikolaos; Devlin, Mattew; Ullmann, John; Nelson, Ronald; Wender, Stephen; White, Morgan; Solomon, Clell; Neudecker, Denise; Talou, Patrick; Rising, Michael; Bucher, Brian; Buckner, Matthew; Henderson, Roger

    2015-10-01

    Accurate data on the spectrum of neutrons emitted in neutron-induced fission are needed for applications and for a better understanding of the fission process. At LANSCE we have made important progress in understanding systematic uncertainties and in obtaining data for 235U on the low-energy part of the prompt fission neutron spectra (PFNS), a particularly difficult region because down-scattered neutrons go in this direction. We use a double time-of-flight technique to determine energies of incoming and outgoing neutrons. With data acquisition via waveform digitizers, accidental coincidences between fission chamber and neutron detector are measured to high statistical accuracy and then subtracted from measured events. Monte Carlo simulations with high performance computers have proven to be essential in the design to minimize neutron scattering and in calculating detector response. Results from one of three approaches to analyzing the data will be presented. This work is funded by the US Department of Energy, National Nuclear Security Administration and Office of Nuclear Physics.

  5. Process for treating fission waste

    DOEpatents

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  6. Energy production using fission fragment rockets

    NASA Astrophysics Data System (ADS)

    Chapline, G.; Matsuda, Y.

    1991-08-01

    Fission fragment rockets are nuclear reactors with a core consisting of thin fibers in a vacuum, and which use magnetic fields to extract the fission fragments from the reactor core. As an alternative to ordinary nuclear reactors, fission fragment rockets would have the following advantages: approximately twice the efficiency if the fission fragment energy can be directly converted into electricity; reduction of the buildup of a fission fragment inventory in the reactor could avoid a Chernobyl type disaster; and collection of the fission fragments outside the reactor could simplify the waste disposal problem.

  7. Mitochondrial Fission Triggered by Hyperglycemia Is Mediated by ROCK1 Activation in Podocytes and Endothelial Cells

    PubMed Central

    Wang, Wenjian; Wang, Yin; Long, Jianyin; Wang, Jinrong; Haudek, Sandra B.; Overbeek, Paul; Chang, Benny H.J.; Schumacker, Paul T.; Danesh, Farhad R.

    2012-01-01

    SUMMARY Several lines of evidence suggest that mitochondrial dysfunction plays a critical role in the pathogenesis of microvascular complications of diabetes, including diabetic nephropathy. However, the signaling pathways by which hyperglycemia leads to mitochondrial dysfunction are not fully understood. Here we examined the role of Rho-associated coiled-coil containing protein kinase 1 (ROCK1) on mitochondrial dynamics by generating two diabetic mouse models with targeted deletions of ROCK1, and an inducible podocyte-specific knock-in mouse expressing a constitutively active (cA) mutant of ROCK1. Our findings suggest that ROCK1 mediates hyperglycemia-induced mitochondrial fission by promoting dynamin-related protein-1 (Drp1) recruitment to the mitochondria. Deletion of ROCK1 in diabetic mice prevented mitochondrial fission, whereas podocyte-specific cA-ROCK1 mice exhibited increased mitochondrial fission. Importantly, we found that ROCK1 triggers mitochondrial fission by phosphorylating Drp1 at Serine 600 residue. These findings provide insights into the unexpected role of ROCK1 in a signaling cascade that regulates mitochondrial dynamics. PMID:22326220

  8. Laser-induced reaction alumina coating on ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Chenghe

    Silicon carbide ceramics are susceptible to corrosion by certain industrial furnace environments. It is also true for a new class of silicon carbide-particulate reinforced alumina-matrix composite (SiCsb(P)Alsb2Osb3) since it contains more than 55% of SiC particulate within the composite. This behavior would limit the use of SiCsb(P)Alsb2Osb3 composites in ceramic heat exchangers. Because oxide ceramics corrode substantially less in the same environments, a laser-induced reaction alumina coating technique has been developed for improving corrosion resistance of the SiCsb(P)Alsb2Osb3 composite. Specimens with and without the laser-induced reaction alumina coating were subjected to corrosion testing at 1200sp°C in an air atmosphere containing Nasb2COsb3 for 50 ˜ 200 hours. Corroded specimens were characterized via x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The uncoated SiCsbP/Alsb2Osb3 composite samples experienced an initial increase in weight during the exposure to Nasb2COsb3 at 1200sp°C due to the oxidation of residual aluminum metal in the composite. There was no significant weight change difference experienced during exposure times between 50 and 200 hours. The oxidation layer formed on the as-received composite surface consisted of Si and Alsb2Osb3 (after washing with a HF solution). The oxidation layer grew outward and inward from the original surface of the composite. The growth rate in the outward direction was faster than in the inward direction. The formation of the Si/Alsb2Osb3 oxidation layer on the as-received composite was nonuniform, and localized corrosion was observed. The coated samples experienced very little mass increase. The laser-induced reaction alumina coating effectively provided protection for the SiCsbP/Alsb2Osb3 composite by keeping the corrodents from contacting the composite and by the formation of some refractory compounds such as Nasb2OAlsb2Osb3SiOsb2 and Nasb2Alsb{22}Osb

  9. Spontaneous and induced emission of XeCl* excimer molecules under pumping of Xe - CCl4 and Ar - Xe - CCl4 gas mixtures with a low CCl4 content by fast electrons and uranium fission fragments

    NASA Astrophysics Data System (ADS)

    Mis'kevich, A. I.; Guo, J.; Dyuzhov, Yu A.

    2013-11-01

    The spontaneous and induced emission of XeCl* excimer molecules upon excitation of Xe - CCl4 and Ar - Xe - CCl4 gas mixtures with a low CCl4 content by high-energy charged particles [a pulsed high-energy electron beam and products of neutron nuclear reaction 235U(n, f)] has been experimentally studied. The electron energy was 150 keV, and the pump current pulse duration and amplitude were 5 ns and 5 A, respectively. The energy of fission fragments did not exceed 100 MeV, the duration of the neutron pump pulse was 200 μs, and the specific power contribution to the gas was about 300 W cm-3. Electron beam pumping in a cell 4 cm long with a cavity having an output mirror transmittance of 2.7% gives rise to lasing on the B → X transition in the XeCl* molecule (λ = 308 nm) with a gain α = 0.0085 cm-1 and fluorescence efficiency η ≈ 10%. Pumping by fission fragments in a 250-cm-long cell with a cavity formed by a highly reflecting mirror and a quartz window implements amplified spontaneous emission (ASE) with an output power of 40 - 50 kW sr-1 and a base ASE pulse duration of ~200 ms.

  10. Adverse drug reactions induced by cardiovascular drugs in outpatients.

    PubMed

    Gholami, Kheirollah; Ziaie, Shadi; Shalviri, Gloria

    2008-01-01

    Considering increased use of cardiovascular drugs and limitations in pre-marketing trials for drug safety evaluation, post marketing evaluation of adverse drug reactions (ADRs) induced by this class of medicinal products seems necessary. To determine the rate and seriousness of adverse reactions induced by cardiovascular drugs in outpatients. To compare sex and different age groups in developing ADRs with cardiovascular agents. To assess the relationship between frequencies of ADRs and the number of drugs used. This cross-sectional study was done in cardiovascular clinic at a teaching hospital. All patients during an eight months period were evaluated for cardiovascular drugs induced ADRs. Patient and reaction factors were analyzed in detected ADRs. Patients with or without ADRs were compared in sex and age by using chi-square test. Assessing the relationship between frequencies of ADRs and the number of drugs used was done by using Pearson analysis. The total number of 518 patients was visited at the clinic. ADRs were detected in 105 (20.3%) patients. The most frequent ADRs were occurred in the age group of 51-60. The highest rate of ADRs was recorded to be induced by Diltiazem (23.5%) and the lowest rate with Atenolol (3%). Headache was the most frequent detected ADR (23%). Assessing the severity and preventability of ADRs revealed that 1.1% of ADRs were detected as severe and 1.9% as preventable reactions. Women significantly developed more ADRs in this study (chi square = 3.978, P<0.05). ADRs more frequently occurred with increasing age in this study (chi square = 15.871, P<0.05). With increasing the number of drugs used, the frequency of ADRs increased (Pearson=0.259, P<0.05). Monitoring ADRs in patients using cardiovascular drugs is a matter of importance since this class of medicines is usually used by elderly patients with critical conditions and underlying diseases.

  11. Investigation of inconsistent ENDF/B-VII.1 independent and cumulative fission product yields with proposed revisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigni, Marco T; Francis, Matthew W; Gauld, Ian C

    A recent implementation of ENDF/B-VII. independent fission product yields and nuclear decay data identified inconsistencies in the data caused by the use of updated nuclear scheme in the decay sub-library that is not reflected in legacy fission product yield data. Recent changes in the decay data sub-library, particularly the delayed neutron branching fractions, result in calculated fission product concentrations that are incompatible with the cumulative fission yields in the library, and also with experimental measurements. A comprehensive set of independent fission product yields was generated for thermal and fission spectrum neutron induced fission for 235,238U and 239,241Pu in order tomore » provide a preliminary assessment of the updated fission product yield data consistency. These updated independent fission product yields were utilized in the ORIGEN code to evaluate the calculated fission product inventories with experimentally measured inventories, with particular attention given to the noble gases. An important outcome of this work is the development of fission product yield covariance data necessary for fission product uncertainty quantification. The evaluation methodology combines a sequential Bayesian method to guarantee consistency between independent and cumulative yields along with the physical constraints on the independent yields. This work was motivated to improve the performance of the ENDF/B-VII.1 library in the case of stable and long-lived cumulative yields due to the inconsistency of ENDF/B-VII.1 fission p;roduct yield and decay data sub-libraries. The revised fission product yields and the new covariance data are proposed as a revision to the fission yield data currently in ENDF/B-VII.1.« less

  12. Introduction to Nuclear Physics (4/4)

    ScienceCinema

    Goutte, D.

    2018-05-04

    The last lecture of the summer student program devoted to nuclear physics. I'm going to talk about nuclear reaction and the fission process. There are two kinds of fission: spontaneous fission and induced fission.

  13. Synthesis reactions and radioactive properties of transactinoid elements

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.

    1994-10-01

    It is well known that the heaviest elements of the periodic table have been synthesized in the cold fusion of magic nuclei of Pb with Z less than 26 ions. Because of dynamic limitations for fusion under strong Coulomb interaction of nuclei, the cross-sections of cold fusion reactions diminish exponentially with growing compound nucleus atomic number. For element Z = 110 produced in the reaction Pb-208(Ni-62,n)(sub 271)110, the expected cross-section is 10(exp -36) sq cm. In still more asymmetric reactions, when isotopes of actinoid elements irradiated with relatively light ions (Z less than or equal 12) are used as the target material, the compound nuclei possess an excitation energy of approx. 50 MeV. At this energy the nuclear shell effects are strongly suppressed and, as a result, in the case of hot compound nuclei of transactinoid elements the fission barrier is practically absent. The transition of these nuclei into the ground state depends strongly on the dynamic properties of the system with respect to the fission degree of freedom. Experimental studies were going on in two directions: (1) determination of the fission time by measuring the prefission neutrons (of Cf-Fm nuclei) in a wide interval of excitation energies; (2) direct synthesis of known nuclides with Z = 102-105 in reactions with ions of Ne-22, Mg-26, Al-27 and P-31 when final nuclei are produced in the ground state after the evaporation of five or six neutrons from the excited compound nuclei (E(sub x) = 50-60 MeV). The dependence of the reaction cross-section (HI, 5-6n) on the atomic number of the compound nucleus in different target-ion combinations points to the possibility of synthesizing new elements in hot fusion reactions. The advantage of these reactions arises from the use of neutron-rich nuclei like Cm-248 and Cf-249 which allows us to synthesize nuclei close to the deformed shell N = 162, for which a considerable growth of stability against spontaneous fission is predicted

  14. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease.

    PubMed

    Galloway, Chad A; Lee, Hakjoo; Brookes, Paul S; Yoon, Yisang

    2014-09-15

    Mitochondria produce the majority of cellular ATP through oxidative phosphorylation, and their capacity to do so is influenced by many factors. Mitochondrial morphology is recently suggested as an important contributor in controlling mitochondrial bioenergetics. Mitochondria divide and fuse continuously, which is affected by environmental factors, including metabolic alterations. Underscoring its bioenergetic influence, altered mitochondrial morphology is reported in tissues of patients and in animal models of metabolic dysfunction. In this study, we found that mitochondrial fission plays a vital role in the progression of nonalcoholic fatty liver disease (NAFLD). The development of hepatic steatosis, oxidative/nitrative stress, and hepatic tissue damage, induced by a high-fat diet, were alleviated in genetically manipulated mice suppressing mitochondrial fission. The alleviation of steatosis was recapitulated in primary hepatocytes with the inhibition of mitochondrial fission. Mechanistically, our study indicates that fission inhibition enhances proton leak under conditions of free fatty acid incubation, implicating bioenergetic change through manipulating mitochondrial fission. Taken together, our results suggest a mechanistic role for mitochondrial fission in the etiology of NAFLD. The efficacy of decreasing mitochondrial fission in the suppression of NAFLD suggests that mitochondrial fission represents a novel target for therapeutic treatment of NAFLD. Copyright © 2014 the American Physiological Society.

  15. Two neutron correlations in photo-fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, D. S.; Kosinov, O.; Forest, T.

    2016-01-01

    A large body of experimental work has established the strong kinematical correlation between fission fragments and fission neutrons. Here, we report on the progress of investigations of the potential for strong two neutron correlations arising from the nearly back-to-back nature of the two fission fragments that emit these neutrons in the photo-fission process. In initial measurements, a pulsed electron linear accelerator was used to generate bremsstrahlung photons that impinged upon an actinide target, and the energy and opening angle distributions of coincident neutrons were measured using a large acceptance neutron detector array. A planned comprehensive set of measurements of twomore » neutron correlations in the photo-fission of actinides is expected to shed light on several fundamental aspects of the fission process including the multiplicity distributions associated with the light and heavy fission fragments, the nuclear temperatures of the fission fragments, and the mass distribution of the fission fragments as a function of energy released. In addition to these measurements providing important nuclear data, the unique kinematics of fission and the resulting two neutron correlations have the potential to be the basis for a new tool to detect fissionable materials. A key technical challenge of this program arises from the need to perform coincidence measurements with a low duty factor, pulsed electron accelerator. This has motivated the construction of a large acceptance neutron detector array, and the development of data analysis techniques to directly measure uncorrelated two neutron backgrounds.« less

  16. The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE

    DOE PAGES

    Gomez, J. A.; Devlin, M.; Haight, R. C.; ...

    2017-09-13

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF) technique, the fission neutrons are measured in one of two arrays: a 22- 6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.

  17. The 235U prompt fission neutron spectrum measured by the Chi-Nu project at LANSCE

    NASA Astrophysics Data System (ADS)

    Gomez, J. A.; Devlin, M.; Haight, R. C.; O'Donnell, J. M.; Lee, H. Y.; Mosby, S. M.; Taddeucci, T. N.; Kelly, K. J.; Fotiades, N.; Neudecker, D.; White, M. C.; Talou, P.; Rising, M. E.; Solomon, C. J.; Wu, C. Y.; Bucher, B.; Buckner, M. Q.; Henderson, R. A.

    2017-09-01

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced with neutrons ranging from 0.7 MeV and above. Using a two arm time-of-flight (TOF) technique, the fission neutrons are measured in one of two arrays: a 22-6Li glass array for lower energies, or a 54-liquid scintillator array for outgoing energies of 0.5 MeV and greater. Presented here are the collaboration's preliminary efforts at measuring the 235U PFNS.

  18. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  20. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  1. HLA-A★3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans

    PubMed Central

    McCormack, Mark; Alfirevic, Ana; Bourgeois, Stephane; Farrell, John J.; Kasperavičiūtė, Dalia; Carrington, Mary; Sills, Graeme J.; Marson, Tony; Jia, Xiaoming; de Bakker, Paul I.W.; Chinthapalli, Krishna; Molokhia, Mariam; Johnson, Michael R.; O’Connor, Gerard D.; Chaila, Elijah; Alhusaini, Saud; Shianna, Kevin V.; Radtke, Rodney A.; Heinzen, Erin L.; Walley, Nicole; Pandolfo, Massimo; Pichler, Werner; Park, B. Kevin; Depondt, Chantal; Sisodiya, Sanjay M.; Goldstein, David B.; Deloukas, Panos; Delanty, Norman; Cavalleri, Gianpiero L.; Pirmohamed, Munir

    2011-01-01

    BACKGROUND Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B★1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens–Johnson syndrome and toxic epidermal necrolysis (SJS–TEN) in the Han Chinese and other Asian populations but not in European populations. METHODS We performed a genomewide association study of samples obtained from 22 subjects with carbamazepine-induced hypersensitivity syndrome, 43 subjects with carbamazepine-induced maculopapular exanthema, and 3987 control subjects, all of European descent. We tested for an association between disease and HLA alleles through proxy single-nucleotide polymorphisms and imputation, confirming associations by high-resolution sequence-based HLA typing. We replicated the associations in samples from 145 subjects with carbamazepine-induced hypersensitivity reactions. RESULTS The HLA-A★3101 allele, which has a prevalence of 2 to 5% in Northern European populations, was significantly associated with the hypersensitivity syndrome (P = 3.5×10−8). An independent genomewide association study of samples from subjects with maculopapular exanthema also showed an association with the HLA-A★3101 allele (P = 1.1×10−6). Follow-up genotyping confirmed the variant as a risk factor for the hypersensitivity syndrome (odds ratio, 12.41; 95% confidence interval [CI], 1.27 to 121.03), maculopapular exanthema (odds ratio, 8.33; 95% CI, 3.59 to 19.36), and SJS–TEN (odds ratio, 25.93; 95% CI, 4.93 to 116.18). CONCLUSIONS The presence of the HLA-A★3101 allele was associated with carbamazepine-induced hypersensitivity reactions among subjects of Northern European ancestry. The presence of the allele increased the risk from 5.0% to 26.0%, whereas its absence reduced the risk from 5.0% to 3.8%. (Funded by the U.K. Department of Health and others.) PMID:21428769

  2. The ^132Sn + ^96Zr reaction: a study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Vinodkumar, A. M.; Neeway, James; Sprunger, Peter; Prisbrey, Landon; Peterson, Donald; Liang, J. F.; Shapira, Dan; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-10-01

    Capture-fission cross sections were measured for the collision of the massive nucleus ^132Sn with ^96Zr at center of mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm, instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system (DNS) model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron rich projectiles.

  3. Distinguishing fissions of 232Th, 237Np and 238U with beta-delayed gamma rays

    DOE PAGES

    Iyengar, A.; Norman, E. B.; Howard, C.; ...

    2013-04-08

    Measurements of beta-delayed gamma-ray spectra following 14-MeV neutron-induced fissions of 232Th, 238U, and 237Np were conducted at Lawrence Berkeley National Laboratory’s 88-Inch Cyclotron. Spectra were collected for times ranging from 1 minute to 14 hours after irradiation. Lastly, intensity ratios of gamma-ray lines were extracted from the data that allow identification of the fissioning isotope.

  4. Mass and angular distributions of the reaction products in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  5. Student Experiments in Spontaneous Fission.

    ERIC Educational Resources Information Center

    Becchetti, F. D.; Ying, J. S.

    1981-01-01

    Advanced undergraduate experiments utilizing a commercially available, thin spontaneous fission source are described, including studies of the energy and mass distribution of the fission fragments and their energy and angular correlation. The experiments provide a useful introduction to fission, nuclear mass equations, heavy-ion physics, and…

  6. Measurement of prompt fission neutron spectrum for spontaneous fission of 252Cf using γ multiplicity tagging

    NASA Astrophysics Data System (ADS)

    Blain, E.; Daskalakis, A.; Block, R. C.; Danon, Y.

    2017-06-01

    The prompt fission neutron spectrum from spontaneous fission of 252Cf is an integral part of several aspects of nuclear data. Not only is the spectrum itself of interest, but neutron detectors often use the spectrum for calibration, and other prompt fission neutron spectra are measured as a ratio to 252Cf. Therefore, reducing the uncertainties in this spectrum will allow for more accurate nuclear data to be available across a wide range of fields. The prompt fission neutron spectrum for the spontaneous fission of 252Cf was measured at Rensselaer Polytechnic Institute using the multiple γ tagging method with a 18.4-ng fission sample. An EJ-301 liquid scintillator fast neutron detector was used to measure the high energy portion of the spectrum, 0.5-7 MeV, and a thin EJ-204 plastic scintillator was used to measure the low energy portion of the spectrum, from 50 keV to 2 MeV. These spectra both show good agreement with the current evaluation of 252Cf and have low associated uncertainties providing a new high precision measurement that helps reduce the uncertainties in the prompt fission neutron spectrum for the spontaneous fission of 252Cf.

  7. Downregulation of Pink1 influences mitochondrial fusion–fission machinery and sensitizes to neurotoxins in dopaminergic cells

    PubMed Central

    Rojas-Charry, Liliana; Cookson, Mark R.; Niño, Andrea; Arboleda, Humberto; Arboleda, Gonzalo

    2016-01-01

    It is now well established that mitochondria are organelles that, far from being static, are subject to a constant process of change. This process, which has been called mitochondrial dynamics, includes processes of both fusion and fission. Loss of Pink1 (PTEN-induced putative kinase 1) function is associated with early onset recessive Parkinson’s disease and it has been proposed that mitochondrial dynamics might be affected by loss of the mitochondrial kinase. Here, we report the effects of silencing Pink1 on mitochondrial fusion and fission events in dopaminergic neuron cell lines. Cells lacking Pink1 were more sensitive to cell death induced by C2-Ceramide, which inhibits proliferation and induces apoptosis. In the same cell lines, mitochondrial morphology was fragmented and this was enhanced by application of forskolin, which stimulates the cAMP pathway that phosphorylates Drp1 and thereby inactivates it. Cells lacking Pink1 had lower Drp1 and Mfn2 expression. Based on these data, we propose that Pink1 may exert a neuroprotective role in part by limiting mitochondrial fission. PMID:24792327

  8. Nuclear Forensics and Radiochemistry: Fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rundberg, Robert S.

    Radiochemistry has been used to study fission since it’ discovery. Radiochemical methods are used to determine cumulative mass yields. These measurements have led to the two-mode fission hypothesis to model the neutron energy dependence of fission product yields. Fission product yields can be used for the nuclear forensics of nuclear explosions. The mass yield curve depends on both the fuel and the neutron spectrum of a device. Recent studies have shown that the nuclear structure of the compound nucleus can affect the mass yield distribution.

  9. Fission product palladium-silicon carbide interaction in htgr fuel particles

    NASA Astrophysics Data System (ADS)

    Minato, Kazuo; Ogawa, Toru; Kashimura, Satoru; Fukuda, Kousaku; Shimizu, Michio; Tayama, Yoshinobu; Takahashi, Ishio

    1990-07-01

    Interaction of fission product palladium (Pd) with the silicon carbide (SiC) layer was observed in irradiated Triso-coated uranium dioxide particles for high temperature gas-cooled reactors (HTGR) with an optical microscope and electron probe microanalyzers. The SiC layers were attacked locally or the reaction product formed nodules at the attack site. Although the main element concerned with the reaction was palladium, rhodium and ruthenium were also detected at the corroded areas in some particles. Palladium was detected on both the hot and cold sides of the particles, but the corroded areas and the palladium accumulations were distributed particularly on the cold side of the particles. The observed Pd-SiC reaction depths were analyzed on the assumption that the release of palladium from the fuel kernel controls the whole Pd-SiC reaction.

  10. Experimental evidence regarding the pressure dependence of fission track annealing in apatite

    NASA Astrophysics Data System (ADS)

    Schmidt, J. S.; Lelarge, M. L. M. V.; Conceicao, R. V.; Balzaretti, N. M.

    2014-03-01

    The main purposes of fission track thermochronology are unravelling the thermal histories of sedimentary basins, determining uplift and denudation rates, identifying the structural evolution of orogenic belts, determining sedimentary provenance, and dating volcanic rocks. The effect of temperature on fission tracks is well known and is used to determine the thermal history; however, the effect of pressure on the stability of tracks is still under debate. The present work aims to understand the role of pressure on the annealing kinetics of apatite fission tracks. The samples of Durango apatite used in our experiments were chosen for their international recognition as a calibration standard for geological dating. Neutron irradiation of the samples, after total annealing of their spontaneous tracks, produced induced tracks with homogeneous densities and lengths. The effect of pressure associated with temperature on fission track annealing was verified by experimental procedures using a hydraulic press of 1000 t with a toroidal chamber profile. The experiments consisted of a combination of applying 2 and 4 GPa with 20,150,190,235, and 290 °C for 1 and 10 h. The annealing rate was analysed by measuring the lengths of the fission tracks after each experiment using optical microscopy. The results demonstrate that the annealing of apatite fission tracks has a pressure dependence for samples subjected to 2 and 4 GPa. However, when extrapolated to pressures of ⩽150 MPa, compatible with the normal geological context in which apatite fission track methodology is broadly used, this dependence becomes insignificant compared to the temperature effect.

  11. An Actin-Dependent Step in Mitochondrial Fission Mediated by the ER-Associated Formin INF2

    PubMed Central

    Korobova, Farida; Ramabhadran, Vinay; Higgs, Henry N.

    2013-01-01

    Mitochondrial fission is fundamentally important to cellular physiology. The dynamin-related protein Drp1 mediates fission, and interaction between mitochondrion and endoplasmic reticulum (ER) enhances fission. However, the mechanism for Drp1 recruitment to mitochondria is unclear, although previous results implicate actin involvement. Here, we found that actin polymerization through ER-localized inverted formin 2 (INF2) was required for efficient mitochondrial fission in mammalian cells. INF2 functioned upstream of Drp1. Actin filaments appeared to accumulate between mitochondria and INF2-enriched ER membranes at constriction sites. Thus, INF2-induced actin filaments may drive initial mitochondrial constriction, which allows Drp1-driven secondary constriction. Because INF2 mutations can lead to Charcot-Marie-Tooth disease, our results provide a potential cellular mechanism for this disease state. PMID:23349293

  12. The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy.

    PubMed

    Mao, Kai; Wang, Ke; Liu, Xu; Klionsky, Daniel J

    2013-07-15

    As the cellular power plant, mitochondria play a significant role in homeostasis. To maintain the proper quality and quantity of mitochondria requires both mitochondrial degradation and division. A selective type of autophagy, mitophagy, drives the degradation of excess or damaged mitochondria, whereas division is controlled by a specific fission complex; however, the relationship between these two processes, especially the role of mitochondrial fission during mitophagy, remains unclear. In this study, we report that mitochondrial fission is important for the progression of mitophagy. When mitophagy is induced, the fission complex is recruited to the degrading mitochondria through an interaction between Atg11 and Dnm1; interfering with this interaction severely blocks mitophagy. These data establish a paradigm for selective organelle degradation. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Slow slip generated by dehydration reaction coupled with slip-induced dilatancy and thermal pressurization

    NASA Astrophysics Data System (ADS)

    Yamashita, Teruo; Schubnel, Alexandre

    2016-10-01

    Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.

  14. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  15. Properties of true quaternary fission of nuclei with allowance for its multistep and sequential character

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Bulychev, A. O.

    An analysis of basicmechanisms of binary and ternary fission of nuclei led to the conclusion that true ternary and quaternary fission of nuclei has a sequential two-step (three-step) character, where, at the first step, a fissile nucleus emits a third light particle (third and fourth light particles) under shakeup effects associated with a nonadiabatic character of its collective deformation motion, whereupon the residual nucleus undergoes fission to two fission fragments. Owing to this, the formulas derived earlier for the widths with respect to sequential two- and three-step decays of nuclei in constructing the theory of two-step twoproton decays and multistepmore » decays in chains of genetically related nuclei could be used to describe the relative yields and angular and energy distributions of third and fourth light particles emitted in (α, α), (t, t), and (α, t) pairs upon the true quaternary spontaneous fission of {sup 252}Cf and thermal-neutron-induced fission of {sup 235}U and {sup 233}U target nuclei. Mechanisms that explain a sharp decrease in the yield of particles appearing second in time and entering into the composition of light-particle pairs that originate from true quaternary fission of nuclei in relation to the yields of analogous particles in true ternary fission of nuclei are proposed.« less

  16. Investigation of Fission Product Transport into Zeolite-A for Pyroprocessing Waste Minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James R. Allensworth; Michael F. Simpson; Man-Sung Yim

    Methods to improve fission product salt sorption into zeolite-A have been investigated in an effort to reduce waste associated with the electrochemical treatment of spent nuclear fuel. It was demonstrated that individual fission product chloride salts were absorbed by zeolite-A in a solid-state process. As a result, recycling of LiCl-KCl appears feasible via adding a zone-freezing technique to the current treatment process. Ternary salt molten-state experiments showed the limiting kinetics of CsCl and SrCl2 sorption into the zeolite. CsCl sorption occurred rapidly relative to SrCl2 with no observed dependence on zeolite particle size, while SrCl2 sorption was highly dependent onmore » particle size. The application of experimental data to a developed reaction-diffusion-based sorption model yielded diffusivities of 8.04 × 10-6 and 4.04 × 10-7 cm2 /s for CsCl and SrCl2, respectively. Additionally, the chemical reaction term in the developed model was found to be insignificant compared to the diffusion term.« less

  17. A fast-neutron detection detector based on fission material and large sensitive 4H silicon carbide Schottky diode detector

    NASA Astrophysics Data System (ADS)

    Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping

    2017-12-01

    Silicon carbide radiation detectors are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode detector and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-energy deuterium-tritium (D-T) fusion neutrons and continuous energy fission neutrons were obtained. The detector is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.

  18. Supplement to Theory of Neutron Chain Reactions

    DOE R&D Accomplishments Database

    Weinberg, Alvin M.; Noderer, L. C.

    1952-05-26

    General discussions are given of the theory of neutron chain reactions. These include observations on exponential experiments, the general reactor with resonance fission, microscopic pile theory, and homogeneous slow neutron reactors. (B.J.H.)

  19. Exciton fission in monolayer transition metal dichalcogenide semiconductors.

    PubMed

    Steinhoff, A; Florian, M; Rösner, M; Schönhoff, G; Wehling, T O; Jahnke, F

    2017-10-27

    When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a plasma of unbound fermionic particles or a gas of composite bosons called excitons. Usually, the exciton phase is associated with low temperatures. In atomically thin transition metal dichalcogenide semiconductors, excitons are particularly important even at room temperature due to strong Coulomb interaction and a large exciton density of states. Using state-of-the-art many-body theory, we show that the thermodynamic fission-fusion balance of excitons and electron-hole plasma can be efficiently tuned via the dielectric environment as well as charge carrier doping. We propose the observation of these effects by studying exciton satellites in photoemission and tunneling spectroscopy, which present direct solid-state counterparts of high-energy collider experiments on the induced fission of composite particles.

  20. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  1. Establishing a theory for deuteron-induced surrogate reactions

    NASA Astrophysics Data System (ADS)

    Potel, G.; Nunes, F. M.; Thompson, I. J.

    2015-09-01

    Background: Deuteron-induced reactions serve as surrogates for neutron capture into compound states. Although these reactions are of great applicability, no theoretical efforts have been invested in this direction over the last decade. Purpose: The goal of this work is to establish on firm grounds a theory for deuteron-induced neutron-capture reactions. This includes formulating elastic and inelastic breakup in a consistent manner. Method: We describe this process both in post- and prior-form distorted wave Born approximation following previous works and discuss the differences in the formulation. While the convergence issues arising in the post formulation can be overcome in the prior formulation, in this case one still needs to take into account additional terms due to nonorthogonality. Results: We apply our method to the 93Nb(d ,p )X at Ed=15 and 25 MeV and are able to obtain a good description of the data. We look at the various partial wave contributions, as well as elastic versus inelastic contributions. We also connect our formulation with transfer to neutron bound states. Conclusions: Our calculations demonstrate that the nonorthogonality term arising in the prior formulation is significant and is at the heart of the long-standing controversy between the post and the prior formulations of the theory. We also show that the cross sections for these reactions are angular-momentum dependent and therefore the commonly used Weisskopf limit is inadequate. Finally, we make important predictions for the relative contributions of elastic breakup and nonelastic breakup and call for elastic-breakup measurements to further constrain our model.

  2. Using MCNP6 to Estimate Fission Neutron Properties of a Reflected Plutonium Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Alexander Rich; Nelson, Mark Andrew; Hutchinson, Jesson D.

    The purpose of this project was to determine the fission multiplicity distribution, p(v), for the Beryllium Reflected Plutonium (BeRP) ball and to determine whether or not it changed appreciably for various High Density Polyethylene (HDPE) reflected configurations. The motivation for this project was to determine whether or not the average number of neutrons emitted per fission, v, changed significantly enough to reduce the discrepancy between MCNP6 and Robba, Dowdy, Atwater (RDA) point kinetic model estimates of multiplication. The energy spectrum of neutrons that induced fissions in the BeRP ball, NIF (E), was also computed in order to determine the averagemore » energy of neutrons inducing fissions, NIF . p(v) was computed using the FMULT card, NIF (E) and NIF were computed using an F4 tally with an FM tally modifier (F4/FM) card, and the multiplication factor, k eff, was computed using the KCODE card. Although NIF (E) changed significantly between bare and HDPE reflected configurations of the BeRP ball, the change in p(v), and thus the change in v, was insignificant. This is likely due to a difference between the way that NIF is computed using the FMULT and F4/FM cards. The F4/FM card indicated that NIF (E) was essentially Watt-fission distributed for a bare configuration and highly thermalized for all HDPE reflected configurations, while the FMULT card returned an average energy between 1 and 2 MeV for all configurations, which would indicate that the spectrum is Watt-fission distributed, regardless of the amount of HDPE reflector. The spectrum computed with the F4/FM cards is more physically meaningful and so the discrepancy between it and the FMULT card result is being investigated. It is hoped that resolving the discrepancy between the FMULT and F4/FM card estimates of NIF(E) will provide better v estimates that will lead to RDA multiplication estimates that are in better agreement with MCNP6 simulations.« less

  3. Shock-induced reaction synthesis of cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Beason, M. T.; Pauls, J. M.; Gunduz, I. E.; Rouvimov, S.; Manukyan, K. V.; Matouš, K.; Son, S. F.; Mukasyan, A.

    2018-04-01

    Here, we report ultra-fast (0.1-5 μs) shock-induced reactions in the 3B-TiN system, leading to the direct synthesis of cubic boron nitride, which is extremely rare in nature and is the second hardest material known. Composite powders were produced through high-energy ball milling to provide intimate mixing and subsequently shocked using an explosive charge. High-resolution transmission electron microscopy and X-ray diffraction confirm the formation of nanocrystalline grains of c-BN produced during the metathetical reaction between boron and titanium nitride. Our results illustrate the possibility of rapid reactions enabled by high-energy ball milling possibly occurring in the solid state on incredibly short timescales. This process may provide a route for the discovery and fabrication of advanced compounds.

  4. On the effect of irradiation-induced resolution in modelling fission gas release in UO2 LWR fuel

    NASA Astrophysics Data System (ADS)

    Lösönen, Pekka

    2017-12-01

    Irradiation resolution of gas atoms and vacancies from intra- and intergranular bubbles in sintered UO2 fuel was studied by comparing macroscopic models with a more mechanistic approach. The applied macroscopic models imply the resolution rate of gas atoms to be proportional to gas concentration in intragranular bubbles and at grain boundary (including intergranular bubbles). A relation was established between the macroscopic models and a single encounter of an energetic fission fragment with a bubble. The effect of bubble size on resolution was quantified. The number of resoluted gas atoms per encounter of a fission fragment per bubble was of the same order of magnitude for intra- and intergranular bubbles. However, the resulting macroscopic resolution rate of gas atoms was about two orders of magnitude larger from intragranular bubbles. The number of vacancies resoluted from a grain face bubble by a passing fission fragment was calculated. The obtained correlations for resolution of gas atoms from intragranular bubbles and grain boundaries and for resolution of vacancies from grain face bubbles were used to demonstrate the effect of irradiation resolution on fission gas release.

  5. Fission gas detection system

    DOEpatents

    Colburn, Richard P.

    1985-01-01

    A device for collecting fission gas released by a failed fuel rod which device uses a filter to pass coolant but which filter blocks fission gas bubbles which cannot pass through the filter due to the surface tension of the bubble.

  6. Particle induced nuclear reaction calculations of Boron target nuclei

    NASA Astrophysics Data System (ADS)

    Tel, Eyyup; Sahan, Muhittin; Sarpün, Ismail Hakki; Kavun, Yusuf; Gök, Ali Armagan; Poyraz, Meltem

    2017-09-01

    Boron is usable element in many areas such as health, industry and energy. Especially, Boron neutron capture therapy (BNCT) is one of the medical applications. Boron target is irradiated with low energy thermal neutrons and at the end of reactions alpha particles occur. After this process recoiling lithium-7 nuclei is composed. In this study, charge particle induced nuclear reactions calculations of Boron target nuclei were investigated in the incident proton and alpha energy range of 5-50 MeV. The excitation functions for 10B target nuclei reactions have been calculated by using PCROSS Programming code. The semi-empirical calculations for (p,α) reactions have been done by using cross section formula with new coefficient obtained by Tel et al. The calculated results were compared with the experimental data from the literature.

  7. Biological removal of cationic fission products from nuclear wastewater.

    PubMed

    Ngwenya, N; Chirwa, E M N

    2011-01-01

    Nuclear energy is becoming a preferred energy source amidst rising concerns over the impacts of fossil fuel based energy on global warming and climate change. However, the radioactive waste generated during nuclear power generation contains harmful long-lived fission products such as strontium (Sr). In this study, cationic strontium uptake from solution by microbial cultures obtained from mine wastewater is evaluated. A high strontium removal capacity (q(max)) with maximum loading of 444 mg/g biomass was achieved by a mixed sulphate reducing bacteria (SRB) culture. Sr removal in SRB was facilitated by cell surface based electrostatic interactions with the formation of weak ionic bonds, as 68% of the adsorbed Sr(2+) was easily desorbed from the biomass in an ion exchange reaction with MgCl₂. To a lesser extent, precipitation reactions were also found to account for the removal of Sr from aqueous solution as about 3% of the sorbed Sr was precipitated due to the presence of chemical ligands while the remainder occurred as an immobile fraction. Further analysis of the Sr-loaded SRB biomass by scanning electron microscopy (SEM) coupled to energy dispersive X-ray (EDX) confirmed extracellular Sr(2+) precipitation as a result of chemical interaction. In summary, the obtained results demonstrate the prospects of using biological technologies for the remediation of industrial wastewaters contaminated by fission products.

  8. The Fission of Thorium with Alpha Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Amos S.

    1948-04-15

    The fission distribution of fission of thorium with alpha particle of average energy 37.5 Mev has been measured by the chemical method. The distribution found shows that the characteristic dip in the fission yield mass spectrum has been raised to within a factor of two of the peaks compared to a factor of 600 in slow neutron fission of U{sup 235}. The raise in the deip has caused a corresponding lowering in fission yield of these elements at the peaks. The cross section for fission of thorium with 37.5 Mev alphas was found to be about 0.6 barn, and themore » threshold for fission was found to be 23 to 24 Mev.« less

  9. The cross sections of fusion-evaporation reactions: the most promising route to superheavy elements beyond Z=118

    NASA Astrophysics Data System (ADS)

    Jadambaa, Khuyagbaatar

    2017-11-01

    The synthesis of superheavy elements beyond oganesson (Og), which has atomic number Z = 118, is currently one of the main topics in nuclear physics. An absence of sufficient amounts of target material with atomic numbers heavier than californium (Z = 98) forces the use of projectiles heavier than 48Ca (Z = 20), which has been successfully used for the discoveries of elements with Z = 114 - 118 in complete fusion reactions. Experimental cross sections of 48Ca with actinide targets behave very differently to "cold" and "hot" fusion-evaporation reactions, where doubly-magic lead and deformed actinides are used as targets, respectively. The known cross sections of these reactions have been analysed compared to calculated fission barriers. It has been suggested that observed discrepancies between the cross sections of 48Ca-induced and other fusionevaporation reactions originate from the shell structure of the compound nucleus, which lies in the island of the stability. Besides scarcely known data on other reactions involving heavier projectiles, the most promising projectile for the synthesis of the elements beyond Og seems to be 50Ti. However, detailed studies of 50Ti, 54Cr, 58Fe and 64Ni-induced reactions are necessary to be performed in order to fully understand the complexities of superheavy element formation.

  10. Neutron-rich rare-isotope production from projectile fission of heavy nuclei near 20 MeV/nucleon beam energy

    NASA Astrophysics Data System (ADS)

    Vonta, N.; Souliotis, G. A.; Loveland, W.; Kwon, Y. K.; Tshoo, K.; Jeong, S. C.; Veselsky, M.; Bonasera, A.; Botvina, A.

    2016-12-01

    We investigate the possibilities of producing neutron-rich nuclides in projectile fission of heavy beams in the energy range of 20 MeV/nucleon expected from low-energy facilities. We report our efforts to theoretically describe the reaction mechanism of projectile fission following a multinucleon transfer collision at this energy range. Our calculations are mainly based on a two-step approach: The dynamical stage of the collision is described with either the phenomenological deep-inelastic transfer model (DIT) or with the microscopic constrained molecular dynamics model (CoMD). The de-excitation or fission of the hot heavy projectile fragments is performed with the statistical multifragmentation model (SMM). We compared our model calculations with our previous experimental projectile-fission data of 238U (20 MeV/nucleon) + 208Pb and 197Au (20 MeV/nucleon) + 197Au and found an overall reasonable agreement. Our study suggests that projectile fission following peripheral heavy-ion collisions at this energy range offers an effective route to access very neutron-rich rare isotopes toward and beyond the astrophysical r-process path.

  11. Cross Sections Calculations of ( d, t) Nuclear Reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Tel, E.; Yiğit, M.; Tanır, G.

    2013-04-01

    In nuclear fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. Fusion power is the power generated by nuclear fusion processes. In contrast with fission power, the fusion reaction processes does not produce radioactive nuclides. The fusion will not produce CO2 or SO2. So the fusion energy will not contribute to environmental problems such as particulate pollution and excessive CO2 in the atmosphere. Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production is still believed to be unlikely before 2050. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. In the fusion reactor, tritium self-sufficiency must be maintained for a commercial power plant. Therefore, for self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( d, t) nuclear reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. Since the experimental data of charged particle induced reactions are scarce, self-consistent calculation and analyses using nuclear theoretical models are very important. In this study, ( d, t) cross sections for target nuclei 19F, 50Cr, 54Fe, 58Ni, 75As, 89Y, 90Zr, 107Ag, 127I, 197Au and 238U have been investigated up to 50 MeV deuteron energy. The excitation functions for ( d, t) reactions have been calculated by pre-equilibrium reaction mechanism. Calculation results have been also compared with the available measurements in

  12. Studying fission neutrons with 2E-2v and 2E

    NASA Astrophysics Data System (ADS)

    Al-Adili, Ali; Jansson, Kaj; Tarrío, Diego; Hambsch, Franz-Josef; Göök, Alf; Oberstedt, Stephan; Olivier Frégeau, Marc; Gustavsson, Cecilia; Lantz, Mattias; Mattera, Andrea; Prokofiev, Alexander V.; Rakopoulos, Vasileios; Solders, Andreas; Vidali, Marzio; Österlund, Michael; Pomp, Stephan

    2018-03-01

    This work aims at measuring prompt-fission neutrons at different excitation energies of the nucleus. Two independent techniques, the 2E-2v and the 2E techniques, are used to map the characteristics of the mass-dependent prompt fission neutron multiplicity, v(A), when the excitation energy is increased. The VERDI 2E-2v spectrometer is being developed at JRC-GEEL. The Fission Fragment (FF) energies are measured using two arrays of 16 silicon (Si) detectors each. The FFs velocities are obtained by time-of-flight, measured between micro-channel plates (MCP) and Si detectors. With MCPs placed on both sides of the fission source, VERDI allows for independent timing measurements for both fragments. 252Cf(sf) was measured and the present results revealed particular features of the 2E-2v technique. Dedicated simulations were also performed using the GEF code to study important aspects of the 2E-2v technique. Our simulations show that prompt neutron emission has a non-negligible impact on the deduced fragment data and affects also the shape of v(A). Geometrical constraints lead to a total-kinetic energy-dependent detection efficiency. The 2E technique utilizes an ionization chamber together with two liquid scintillator detectors. Two measurements have been performed, one of 252Cf(sf) and another one of thermal-neutron induced fission in 235U(n,f). Results from 252Cf(sf) are reported here.

  13. The Prompt Fission Neutron Spectrum of 235U for Einc 0.7-5.0 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Jaime A.; Devlin, Matthew James; Haight, Robert Cameron

    2017-03-23

    The Chi-Nu experiment aims to accurately measure the prompt fission neutron spectrum (PFNS) for the major actinides. At the Los Alamos Neutron Science Center (LANSCE), fission can be induced using the white neutron source. Using a two arm time of flight (T.O.F) technique; Chi-Nu presents a preliminary result of the low energy component of the 235U PFNS measured using an array of 22-Lithium glass scintillators.

  14. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  15. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  16. Establishing a theory for deuteron induced surrogate reactions

    DOE PAGES

    Potel, G.; Nunes, F. M.; Thompson, I. J.

    2015-09-18

    Background: Deuteron-induced reactions serve as surrogates for neutron capture into compound states. Although these reactions are of great applicability, no theoretical efforts have been invested in this direction over the last decade. Purpose: The goal of this work is to establish on firm grounds a theory for deuteron-induced neutron-capture reactions. This includes formulating elastic and inelastic breakup in a consistent manner. Method: We describe this process both in post- and prior-form distorted wave Born approximation following previous works and discuss the differences in the formulation. While the convergence issues arising in the post formulation can be overcome in the priormore » formulation, in this case one still needs to take into account additional terms due to nonorthogonality. Results: We apply our method to the Nb93(d,p)X at Ed=15 and 25 MeV and are able to obtain a good description of the data. We then look at the various partial wave contributions, as well as elastic versus inelastic contributions. We also connect our formulation with transfer to neutron bound states.Conclusions: Our calculations demonstrate that the nonorthogonality term arising in the prior formulation is significant and is at the heart of the long-standing controversy between the post and the prior formulations of the theory. We also show that the cross sections for these reactions are angular-momentum dependent and therefore the commonly used Weisskopf limit is inadequate. We finally make important predictions for the relative contributions of elastic breakup and nonelastic breakup and call for elastic-breakup measurements to further constrain our model.« less

  17. Fission Xenon on Mars

    NASA Technical Reports Server (NTRS)

    Mathew, K. J.; Marti, K.; Marty, B.

    2002-01-01

    Fission Xe components due to Pu-244 decay in the early history of Mars have been identified in nakhlites; as in the case of ALH84001 and Chassigny the fission gas was assimilated into indigenous solar-type Xe. Additional information is contained in the original extended abstract.

  18. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  19. Microscopic predictions of fission yields based on the time dependent GCM formalism

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-03-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization in nuclear energy. The need for a predictive theory applicable where no data is available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. One of the most promising theoretical frameworks is the time-dependent generator coordinate method (TDGCM) applied under the Gaussian overlap approximation (GOA). Previous studies reported promising results by numerically solving the TDGCM+GOA equation with a finite difference technique. However, the computational cost of this method makes it difficult to properly control numerical errors. In addition, it prevents one from performing calculations with more than two collective variables. To overcome these limitations, we developed the new code FELIX-1.0 that solves the TDGCM+GOA equation based on the Galerkin finite element method. In this article, we briefly illustrate the capabilities of the solver FELIX-1.0, in particular its validation for n+239Pu low energy induced fission. This work is the result of a collaboration between CEA,DAM,DIF and LLNL on nuclear fission theory.

  20. Dynamical approach to heavy-ion induced fusion using actinide target

    NASA Astrophysics Data System (ADS)

    Aritomo, Y.; Hagino, K.; Chiba, S.; Nishio, K.

    2012-10-01

    To treat heavy-ion reactions using actinide target nucleus, we propose a model which takes into account the coupling to the collective states of interacting nuclei in the penetration of the Coulomb barrier and the dynamical evolution of nuclear shape from the contact configuration. A fluctuation-dissipation model (Langevin equation) was applied in the dynamical calculation, where effect of nuclear orientation at the initial impact on the prolately deformed target nucleus was considered. Using this model, we analyzed the experimental data for the mass distribution of fission fragments (MDFF) in the reaction of 36S+238U at several incident energies. Fusion-fission, quasifission and deep-quasi-fission are separated as different trajectories on the potential energy surface. We estimated the fusion cross section of the reaction.

  1. Prevention and Management of Adverse Reactions Induced by Iodinated Contrast Media.

    PubMed

    Wu, Yi Wei; Leow, Kheng Song; Zhu, Yujin; Tan, Cher Heng

    2016-04-01

    Iodinated radiocontrast media (IRCM) is widely used in current clinical practice. Although IRCM is generally safe, serious adverse drug reactions (ADRs) may still occur. IRCM-induced ADRs may be subdivided into chemotoxic and hypersensitivity reactions. Several factors have been shown to be associated with an increased risk of ADRs, including previous contrast media reactions, history of asthma and allergic disease, etc. Contrast media with lower osmolality is generally recommended for at-risk patients to prevent ADRs. Current premedication prophylaxis in at-risk patients may reduce the risk of ADRs. However, there is still a lack of consensus on the prophylactic role of premedication. Contrast-induced nephropathy (CIN) is another component of IRCM-related ADRs. Hydration remains the mainstay of CIN prophylaxis in at-risk patients. Despite several preventive measures, ADRs may still occur. Treatment strategies for potential contrast reactions are also summarised in this article. This article summarises the pathophysiology, epidemiology and risk factors of ADRs with emphasis on prevention and treatment strategies. This will allow readers to understand the rationale behind appropriate patient preparation for diagnostic imaging involving IRCM.

  2. Influence of reaction-induced fracturing on serpentinisation rate

    NASA Astrophysics Data System (ADS)

    Malvoisin, B.; Brantut, N.; Kaczmarek, M. A.

    2017-12-01

    The alteration of mantle rocks at mid-ocean ridges (i.e. serpentinisation) can lead to a solid volume increase responsible for stress build-up and cracking during reaction (reaction-induced fracturing). This mechanism has been proposed to play a key role for maintaining fluid pathways during reaction. However, its impact on the reaction rate is not yet quantified. We propose here a micromechanical model to quantify the influence of the crystallisation pressure generated during serpentine precipitation on crack propagation in olivine. This model is then coupled to a simple geometrical model to calculate the generation of reactive surface area during grain splitting, and thus bulk reaction rate. The model is able to reproduce experimental kinetic data as well as the mesh texture observed in natural samples. The model results are compared to olivine grain size distribution in serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papuan New Guinea). The observations and the model both indicate a decrease of the mean grain size by one order of magnitude as the reaction progresses from 5 to 40 %. Based on this good agreement, we use our model to predict that cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1,000 yr. The peak serpentinisation is also shifted 4 km above the previous predictions due to effective pressure increase with depth.

  3. Thermonuclear plasma with autocatalytic thermomagnetic current amplification by nuclear reactions from fusion neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterberg, F.

    2006-03-15

    It is proposed to use the neutrons released from a deuterium-tritium or deuterium-deuterium fusion reaction to drive thermomagnetic currents in a plasma corona surrounding the fusion plasma through the heating of the corona with nuclear reactions by the neutrons released in the fusion reaction. Because the neutron reaction cross sections are larger for slow neutrons, it is proposed to slow them down in a moderator separated from the hot plasma of the corona, giving the configuration a striking similarity to a heterogeneous nuclear fission reactor. While in a fission reactor the separation makes possible a growing neutron chain reaction, itmore » here makes possible the autocatalytic amplification of the thermomagnetic currents by an increase of the fusion reaction rate through a rise of the plasma pressure by the magnetic pressure of the thermomagnetic currents. This is expected to substantially increase the n{tau} product over its Lawson value.« less

  4. FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS

    DOEpatents

    Moore, R.H.

    1960-05-10

    The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.

  5. Dynamin's helical geometry does not destabilize membranes during fission.

    PubMed

    McDargh, Zachary A; Deserno, Markus

    2018-05-01

    It is now widely accepted that dynamin-mediated fission is a fundamentally mechanical process: dynamin undergoes a GTP-dependent conformational change, constricting the neck between two compartments, somehow inducing their fission. However, the exact connection between dynamin's conformational change and the scission of the neck is still unclear. In this paper, we re-evaluate the suggestion that a change in the pitch or radius of dynamin's helical geometry drives the lipid bilayer through a mechanical instability, similar to a well-known phenomenon occurring in soap films. We find that, contrary to previous claims, there is no such instability. This lends credence to an alternative model, in which dynamin drives the membrane up an energy barrier, allowing thermal fluctuations to take it into the hemifission state. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. A transferable model for singlet-fission kinetics.

    PubMed

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications.

  7. Early Flight Fission Test Facilities (EFF-TF) and Concepts That Support Near-Term Space Fission Missions

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Houts, Mike; Godfroy, Thomas; Martin, James

    2003-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. If fusion propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will most likely occur if frequent, significant hardware-based milestones can be achieved throughout the program. If the system is designed to operate within established radiation damage and fuel burn up limits while simultaneously being designed to allow close simulation of heat from fission using resistance heaters, high confidence in fission system pe$ormance and lifetime can be attained through non-nuclear testing. Through demonstration of systems concepts (designed by DOE National Laboratories) in relevant environments, this philosophy has been demonstrated through hardware testing in the Early Flight Fission Test Facilities (EFF-TF) at the Marshall Space Flight Center. The EFF-TF is designed to enable very realistic non-nuclear testing of space fission systems. Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE labs, industry, universities, and other NASA centers.

  8. Complete event simulations of nuclear fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona

    2015-10-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. In these average fission models energy is not explicitly conserved and everything is uncorrelated because all particles are emitted independently. However, in a true fission event, the energies, momenta and multiplicities of the emitted particles are correlated. Such correlations are interesting for many modern applications. Event-by-event generation of complete fission events makes it possible to retain the kinematic information for all particles emitted: the fission products as well as prompt neutrons and photons. It is therefore possible to extract any desired correlation observables. Complete event simulations can be included in general Monte Carlo transport codes. We describe the general functionality of currently available fission event generators and compare results for several important observables. This work was performed under the auspices of the US DOE by LLNL, Contract DE-AC52-07NA27344. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  9. Proton-induced knockout reactions with polarized and unpolarized beams

    NASA Astrophysics Data System (ADS)

    Wakasa, T.; Ogata, K.; Noro, T.

    2017-09-01

    Proton-induced knockout reactions provide a direct means of studying the single particle or cluster structures of target nuclei. In addition, these knockout reactions are expected to play a unique role in investigations of the effects of the nuclear medium on nucleon-nucleon interactions as well as the properties of nucleons and mesons. However, due to the nature of hadron probes, these reactions can suffer significant disturbances from the nuclear surroundings and the quantitative theoretical treatment of such processes can also be challenging. In this article, we review the experimental and theoretical progress in this field, particularly focusing on the use of these reactions as a spectroscopic tool and as a way to examine the medium modification of nucleon-nucleon interactions. With regard to the former aspect, the review presents a semi-quantitative evaluation of these reactions based on existing experimental data. In terms of the latter point, we introduce a significant body of evidence that suggests, although does not conclusively prove, the existence of medium effects. In addition, this paper also provides information and comments on other related subjects.

  10. Human FcγRIIA induces anaphylactic and allergic reactions

    PubMed Central

    Jönsson, Friederike; Mancardi, David A.; Zhao, Wei; Kita, Yoshihiro; Iannascoli, Bruno; Khun, Huot; van Rooijen, Nico; Shimizu, Takao; Schwartz, Lawrence B.; Daëron, Marc

    2012-01-01

    IgE and IgE receptors (FcϵRI) are well-known inducers of allergy. We recently found in mice that active systemic anaphylaxis depends on IgG and IgG receptors (FcγRIIIA and FcγRIV) expressed by neutrophils, rather than on IgE and FcϵRI expressed by mast cells and basophils. In humans, neutrophils, mast cells, basophils, and eosinophils do not express FcγRIIIA or FcγRIV, but FcγRIIA. We therefore investigated the possible role of FcγRIIA in allergy by generating novel FcγRIIA-transgenic mice, in which various models of allergic reactions induced by IgG could be studied. In mice, FcγRIIA was sufficient to trigger active and passive anaphylaxis, and airway inflammation in vivo. Blocking FcγRIIA in vivo abolished these reactions. We identified mast cells to be responsible for FcγRIIA-dependent passive cutaneous anaphylaxis, and monocytes/macrophages and neutrophils to be responsible for FcγRIIA-dependent passive systemic anaphylaxis. Supporting these findings, human mast cells, monocytes and neutrophils produced anaphylactogenic mediators after FcγRIIA engagement. IgG and FcγRIIA may therefore contribute to allergic and anaphylactic reactions in humans. PMID:22138510

  11. Human FcγRIIA induces anaphylactic and allergic reactions.

    PubMed

    Jönsson, Friederike; Mancardi, David A; Zhao, Wei; Kita, Yoshihiro; Iannascoli, Bruno; Khun, Huot; van Rooijen, Nico; Shimizu, Takao; Schwartz, Lawrence B; Daëron, Marc; Bruhns, Pierre

    2012-03-15

    IgE and IgE receptors (FcεRI) are well-known inducers of allergy. We recently found in mice that active systemic anaphylaxis depends on IgG and IgG receptors (FcγRIIIA and FcγRIV) expressed by neutrophils, rather than on IgE and FcεRI expressed by mast cells and basophils. In humans, neutrophils, mast cells, basophils, and eosinophils do not express FcγRIIIA or FcγRIV, but FcγRIIA. We therefore investigated the possible role of FcγRIIA in allergy by generating novel FcγRIIA-transgenic mice, in which various models of allergic reactions induced by IgG could be studied. In mice, FcγRIIA was sufficient to trigger active and passive anaphylaxis, and airway inflammation in vivo. Blocking FcγRIIA in vivo abolished these reactions. We identified mast cells to be responsible for FcγRIIA-dependent passive cutaneous anaphylaxis, and monocytes/macrophages and neutrophils to be responsible for FcγRIIA-dependent passive systemic anaphylaxis. Supporting these findings, human mast cells, monocytes and neutrophils produced anaphylactogenic mediators after FcγRIIA engagement. IgG and FcγRIIA may therefore contribute to allergic and anaphylactic reactions in humans.

  12. Mitochondrial network complexity emerges from fission/fusion dynamics.

    PubMed

    Zamponi, Nahuel; Zamponi, Emiliano; Cannas, Sergio A; Billoni, Orlando V; Helguera, Pablo R; Chialvo, Dante R

    2018-01-10

    Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. Since functional and structural properties are often interwinded, here we characterized the structure of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions of a recently described computational model of mitochondrial network emergence based on fission-fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the complexity of this organelle but also support the idea that mitochondrial networks behave as critical systems and undergo structural phase transitions.

  13. Dynamical Cluster-decay Model (DCM) applied to 9Li+208Pb reaction

    NASA Astrophysics Data System (ADS)

    Kaur, Arshdeep; Hemdeep; Kaushal, Pooja; Behera, Bivash R.; Gupta, Raj K.

    2017-10-01

    The decay mechanism of 217At* formed in 9Li+208Pb reaction is studied within the dynamical cluster-decay model (DCM) at various center-of-mass energies. The aim is to see the behavior of a light neutron-rich radioactive beam on a doubly-magic target nucleus for the (total) fusion cross section σfus and the individual decay channel cross sections. Experimentally, only the isotopic yield of heavy mass residues * 211- 214At [equivalently, the light-particles (LPs) evaporation residue cross sections σxn for x = 3- 6 neutrons emission] are measured, with the fusion-fission (ff) component σff taken zero. For a fixed neck-length parameter ΔR, the only parameter in the DCM, we are able to fit σfus =∑x=16σxn almost exactly for 9Li on 208Pb at all E c . m .'s. However, the observed individual decay channels (3n-6n) are very poorly fitted, with unobserved channels (1n, 2n) and σff strongly over-estimated. Different ΔR values, meaning thereby different reaction time scales, are required to fit individually both the observed and unobserved evaporation residue channels (1n-6n) and σff, but then the compound nucleus (CN) contribution σCN is very small (< 1%), and the non-compound nucleus (nCN) decay cross section σnCN contributes the most towards total σfus (=σCN +σnCN). Thus, the 9Li induced reaction on doubly-magic 208Pb is more of a quasi-fission-like nCN decay, which is further analyzed in terms of the statistical CN formation probability PCN and CN survival probability Psurv. For the reaction under study, PCN < < 1 and Psurv → 1, in particular at above barrier energies.

  14. Fission Chain Restart Theory

    DOE PAGES

    Kim, K. S.; Nakae, L. F.; Prasad, M. K.; ...

    2017-07-31

    We present that fast nanosecond timescale neutron and gamma-ray counting can be performed with a (liquid) scintillator array. Fission chains in metal evolve over a timescale of tens of nanoseconds. If the metal is surrounded by moderator, neutrons leaking from the metal can thermalize and diffuse in the moderator. With finite probability, the diffusing neutrons can return to the metal and restart the fast fission chain. The timescale for this restart process is microseconds. A theory describing time evolving fission chains for metal surrounded by moderator, including this restart process, is presented. Finally, this theory is sufficiently simple for itmore » to be implemented for real-time analysis.« less

  15. Investigation deuteron-induced reactions on cobalt

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Baba, M.; Ignatyuk, A. V.

    2010-09-01

    The excitation functions of deuteron-induced reactions were measured on metallic cobalt. Beyond the 56,57,58,60Co cobalt isotopes, we also identified 57Ni, 54Mn, 56Mn and 59Fe in the deuteron experiments. For the above radionuclides, the excitation functions in the measured energy range were determined and compared with the data found in the literature and with the results of model calculations (ALICE-IPPE, EMPIRE-D, EAF, and TALYS (TENDL)). The excitation functions agree with previous measurements; furthermore, we calculated the yield and thin layer activation (TLA) curves that are necessary for practical and industrial applications.

  16. Process for treating fission waste. [Patent application

    DOEpatents

    Rohrmann, C.A.; Wick, O.J.

    1981-11-17

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  17. Phenomenology of the sound-induced flash illusion.

    PubMed

    Abadi, Richard V; Murphy, Jonathan S

    2014-07-01

    Past studies, using pairings of auditory tones and visual flashes, which were static and coincident in space but variable in time, demonstrated errors in judging the temporal patterning of the visual flashes-the sound-induced flash illusion. These errors took one of the two forms: under-reporting (sound-induced fusion) or over-reporting (sound-induced fission) of the flash numbers. Our study had three objectives: to examine the robustness of both illusions and to consider the effects of stimulus set and response bias. To this end, we used an extended range of fixed spatial location flash-tone pairings, examined stimuli that were variable in space and time and measured confidence in judging flash numbers. Our results indicated that the sound-induced flash illusion is a robust percept, a finding underpinned by the confidence measures. Sound-induced fusion was found to be more robust than sound-induced fission and a most likely outcome when high numbers of flashes were incorporated within an incongruent flash-tone pairing. Conversely, sound-induced fission was the most likely outcome for the flash-tone pairing which contained two flashes. Fission was also shown to be strongly driven by stimuli confounds such as categorical boundary conditions (e.g. flash-tone pairings with ≤2 flashes) and compressed response options. These findings suggest whilst both fission and fusion are associated with 'auditory driving', the differences in the occurrence and strength of the two illusions not only reflect the separate neuronal mechanisms underlying audio and visual signal processing, but also the test conditions that have been used to investigate the sound-induced flash illusion.

  18. Development of a Gas Filled Magnet spectrometer coupled with the Lohengrin spectrometer for fission study

    NASA Astrophysics Data System (ADS)

    Kessedjian, G.; Chebboubi, A.; Faust, H.; Köster, U.; Materna, T.; Sage, C.; Serot, O.

    2013-03-01

    The accurate knowledge of the fission of actinides is necessary for studies of innovative nuclear reactor concepts. The fission yields have a direct influence on the evaluation of the fuel inventory or the reactor residual power after shutdown. A collaboration between the ILL, LPSC and CEA has developed a measurement program on fission fragment distributions at ILL in order to measure the isotopic and isomeric yields. The method is illustrated using the 233U(n,f)98Y reaction. However, the extracted beam from the Lohengrin spectrometer is not isobaric ions which limits the low yield measurements. Presently, the coupling of the Lohengrin spectrometer with a Gas Filled Magnet (GFM) is studied at the ILL in order to define and validate the enhanced purification of the extracted beam. This work will present the results of the spectrometer characterisation, along with a comparison with a dedicated Monte Carlo simulation especially developed for this purpose.

  19. Fission Product Library and Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, J. T.; Padgett, S.

    Fission product yields can be extracted from an irradiated sample by performing gamma ray spectroscopy on the whole sample post irradiation. There are several pitfalls to avoid when trying to determine a specific isotope's fission product yield.

  20. Options For Development of Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houta, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include high specific power continuous impulse propulsion systems and bimodal nuclear thermal rockets. Despite their tremendous potential for enhancing or enabling deep space and planetary missions, to date space fission system have only been used in Earth orbit. The first step towards utilizing advanced fission propulsion systems is development of a safe, near-term, affordable fission system that can enhance or enable near-term missions of interest. An evolutionary approach for developing space fission propulsion systems is proposed.

  1. Monitoring system for a liquid-cooled nuclear fission reactor

    DOEpatents

    DeVolpi, Alexander

    1987-01-01

    A monitoring system for detecting changes in the liquid levels in various regions of a water-cooled nuclear power reactor, viz., in the downcomer, in the core, in the inlet and outlet plenums, at the head, and elsewhere; and also for detecting changes in the density of the liquid in these regions. A plurality of gamma radiation detectors are used, arranged vertically along the outside of the reactor vessel, and collimator means for each detector limits the gamma-radiation it receives as emitting from only isolated regions of the vessel. Excess neutrons produced by the fission reaction will be captured by the water coolant, by the steel reactor walls, or by the fuel or control structures in the vessel. Neutron capture by steel generates gamma radiation having an energy level of the order of 5-12 MeV, whereas neutron capture by water provides an energy level of approximately 2.2 MeV, and neutron capture by the fission fuel or its cladding provides an energy level of 1 MeV or less. The intensity of neutron capture thus changes significantly at any water-metal interface. Comparative analysis of adjacent gamma detectors senses changes from the normal condition with liquid coolant present to advise of changes in the presence and/or density of the coolant at these specific regions. The gamma detectors can also sense fission-product gas accumulation at the reactor head to advise of a failure of fuel-pin cladding.

  2. KINETIC ENERGY AND MASS DISTRIBUTIONS FOR NUCLEAR FISSION AT MODERATE EXCITATION ENERGY (thesis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, D.S.

    1963-10-01

    Fission fragment kinetic energy measurements using semiconductor detectors were made for the alpha-induced fission of Au/sup 197/, Bi/sup 209/, Th/ sup 232/, and U/sup 238/ at alpha energi es of 21 to 65 Mev. The data were recorded as the number of events at fragment energies E/sub 1/ and E/sub 2/, N(E/ sub 1/,E/sub 2/). The data were then transformed into mass--total kinetic energy maps and analyzed by means of moments. The Bi and Au data are in good agreement with quantitative theoretical predictions from the liquid drop model available for the lighter elements. The U and Th data aremore » discussed in terms of qualitative ideas that have been proposed to explain the properties of the fission process for the heavier elements. The changes in the U and Th mass and total kinetic energy distributions with excitation energy are emphasized. Pulse- height energy relations for the detectors used were obtained by a detailed comparison of detector and time-offlight results for the spontaneous fission of Cf/sup 252/. 54 references. (auth)« less

  3. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    NASA Astrophysics Data System (ADS)

    Jaffke, Patrick; Möller, Peter; Talou, Patrick; Sierk, Arnold J.

    2018-03-01

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U(nth,f ) and 239Pu(nth,f ) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ -ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicity ν ¯ and the average heavy-fragment mass 〈Ah〉 of the input mass yields ∂ ν ¯/∂ 〈Ah〉 =±0.1 (n /f ) /u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, ν¯T(TKE ) . Typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ ν ¯=4 % for the average prompt neutron multiplicity, δ M ¯γ=1 % for the average prompt γ -ray multiplicity, δ ɛ¯nLAB=1 % for the average outgoing neutron energy, δ ɛ¯γ=1 % for the average γ -ray energy, and δ 〈TKE 〉=0.4 % for the average total kinetic energy of the fission fragments.

  4. Fission Product Yields from {sup 232}Th, {sup 238}U, and {sup 235}U Using 14 MeV Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, B.D., E-mail: bpnuke@umich.edu; Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352; Greenwood, L.R.

    Neutron-induced fission yield studies using deuterium-tritium fusion-produced 14 MeV neutrons have not yet directly measured fission yields from fission products with half-lives on the order of seconds (far from the line of nuclear stability). Fundamental data of this nature are important for improving and validating the current models of the nuclear fission process. Cyclic neutron activation analysis (CNAA) was performed on three actinide targets–thorium-oxide, depleted uranium metal, and highly enriched uranium metal–at the University of Michigan's Neutron Science Laboratory (UM-NSL) using a pneumatic system and Thermo-Scientific D711 accelerator-based fusion neutron generator. This was done to measure the fission yields ofmore » short-lived fission products and to examine the differences between the delayed fission product signatures of the three actinides. The measured data were compared against previously published results for {sup 89}Kr, −90, and −92 and {sup 138}Xe, −139, and −140. The average percent deviation of the measured values from the Evaluated Nuclear Data Files VII.1 (ENDF/B-VII.1) for thorium, depleted-uranium, and highly-enriched uranium were −10.2%, 4.5%, and −12.9%, respectively. In addition to the measurements of the six known fission products, 23 new fission yield measurements from {sup 84}As to {sup 146}La are presented.« less

  5. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Houts, Michael G.; Harlow, Scott

    2010-01-01

    Power is a critical consideration in planning exploration of the surfaces of the Moon, Mars, and beyond. Nuclear power is an important option, especially for locations in the solar system where sunlight is limited in availability or intensity. NASA is maintaining the option for fission surface power for the Moon and Mars by developing and demonstrating technology for an affordable fission surface power system. Because affordability drove the determination of the system concept that this technology will make possible, low development and recurring costs result, while required safety standards are maintained. However, an affordable approach to fission surface power also provides the benefits of simplicity, robustness, and conservatism in design. This paper will illuminate the multiplicity of benefits to an affordable approach to fission surface power, and will describe how the foundation for these benefits is being developed and demonstrated in the Exploration Technology Development Program s Fission Surface Power Project.

  6. Updated and revised neutron reaction data for 237Np

    NASA Astrophysics Data System (ADS)

    Chen, Guochang; Wang, Jimin; Cao, Wentian; Tang, Guoyou; Yu, Baosheng

    2017-09-01

    Nuclear data with high accuracy for minor actinides play an important role in nuclear technology applications, including reactor design and operation, fuel cycle, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Based on the evaluated experimental data, the updated and revised evaluation of a full set of n+237Np nuclear data from 10-5 eV ˜ 20 MeV are carried out and recommended. Mainly revised quantities are neutron multiplicities from fission reaction, inelastic, fission, (n, 2n) and (n, γ) reaction cross sections as well as angular distribution and so on. The promising results are obtained when the renewal evaluated data of 237Np will be used to instead of the evaluated data in CENDL-3.1 database.

  7. Singlet fission in pentacene dimers

    PubMed Central

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  8. Geant4 Modifications for Accurate Fission Simulations

    NASA Astrophysics Data System (ADS)

    Tan, Jiawei; Bendahan, Joseph

    Monte Carlo is one of the methods to simulate the generation and transport of radiation through matter. The most widely used radiation simulation codes are MCNP and Geant4. The simulation of fission production and transport by MCNP has been thoroughly benchmarked. There is an increasing number of users that prefer using Geant4 due to the flexibility of adding features. However, it has been found that Geant4 does not have the proper fission-production cross sections and does not produce the correct fission products. To achieve accurate results for studies in fissionable material applications, Geant4 was modified to correct these inaccuracies and to add new capabilities. The fission model developed by the Lawrence Livermore National Laboratory was integrated into the neutron-fission modeling package. The photofission simulation capability was enabled using the same neutron-fission library under the assumption that nuclei fission in the same way, independent of the excitation source. The modified fission code provides the correct multiplicity of prompt neutrons and gamma rays, and produces delayed gamma rays and neutrons with time and energy dependencies that are consistent with ENDF/B-VII. The delayed neutrons are now directly produced by a custom package that bypasses the fragment cascade model. The modifications were made for U-235, U-238 and Pu-239 isotopes; however, the new framework allows adding new isotopes easily. The SLAC nuclear data library is used for simulation of isotopes with an atomic number above 92 because it is not available in Geant4. Results of the modified Geant4.10.1 package of neutron-fission and photofission for prompt and delayed radiation are compared with ENDFB-VII and with results produced with the original package.

  9. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  10. Bruyères-le-Châtel Neutron Evaluations of Actinides with the TALYS Code: The Fission Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romain, P., E-mail: pascal.romain@cea.fr; Morillon, B.; Duarte, H.

    For several years, various neutron evaluations of plutonium and uranium isotopes have been performed at Bruyères-le-Châtel (BRC), from 1 keV up to 30 MeV. Since only nuclear reaction models have been used to produce these evaluations, our approach was named the “Full Model” approach. Total, shape elastic and direct inelastic cross sections were obtained from the coupled channels model using a dispersive optical potential developed for actinides, with a large enough coupling scheme including the lowest octupolar band. All other cross sections were calculated using the Hauser-Feshbach theory (TALYS code) with a pre-equilibrium component above 8–10 MeV. In this paper,more » we focus our attention on the fission channel. More precisely, we will present the BRC contribution to fission modeling and the philosophy adopted in our “Full Model” approach. Performing evaluations with the “Full Model” approach implies the optimization of a large number of model parameters. With increasing neutron incident energy, many residual nuclei produced by nucleon emission also lead to fission. All available experimental data assigned to various fission mechanisms of the same nucleus were used to determine fission barrier parameters. For uranium isotopes, triple-humped fission barriers were required in order to reproduce accurately variations of the experimental fission cross sections. Our BRC fission modeling has shown that the effects of the class II or class III states located in the wells of the fission barrier sometimes provide an anti-resonant transmission rather than a resonant one. Consistent evaluations were produced for a large series of U and Pu isotopes. Resulting files were tested against integral data.« less

  11. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule.

    PubMed

    Kazuma, Emiko; Jung, Jaehoon; Ueba, Hiromu; Trenary, Michael; Kim, Yousoo

    2018-05-04

    Plasmon-induced chemical reactions of molecules adsorbed on metal nanostructures are attracting increased attention for photocatalytic reactions. However, the mechanism remains controversial because of the difficulty of direct observation of the chemical reactions in the plasmonic field, which is strongly localized near the metal surface. We used a scanning tunneling microscope (STM) to achieve real-space and real-time observation of a plasmon-induced chemical reaction at the single-molecule level. A single dimethyl disulfide molecule on silver and copper surfaces was dissociated by the optically excited plasmon at the STM junction. The STM study combined with theoretical calculations shows that this plasmon-induced chemical reaction occurred by a direct intramolecular excitation mechanism. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Two-photon-induced cycloreversion reaction of chalcone photodimers

    NASA Astrophysics Data System (ADS)

    Träger, J.; Härtner, S.; Heinzer, J.; Kim, H.-C.; Hampp, N.

    2008-04-01

    The photocleavage reaction of chalcone photodimers has been studied using a two-photon process. For this purpose, a novel chalcone dimer has been synthesized as a low molecular weight model substance for polymer bound chalcones and its photochemistry triggered by two-photon-absorption (2PA) has been investigated using a pulsed frequency-doubled Nd:YAG-laser. The 2PA-induced cycloreversion reaction selectively leads to the cleavage of the chalcone photodimers resulting in the formation of monomeric chalcone molecules. Hence, as an application chalcones can be used as a photosensitive linker which can be cleaved beyond an UV-absorbing barrier. The 2PA cross section of the chalcone photodimer was determined to be of 1.1 × 10 -49 cm 4 s photon -1 (11 GM).

  13. Charge Transfer-Mediated Singlet Fission

    NASA Astrophysics Data System (ADS)

    Monahan, N.; Zhu, X.-Y.

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers.

  14. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmutemore » minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.« less

  15. Energy Dependence of Fission Product Yields from 235U, 238U and 239Pu for Incident Neutron Energies Between 0.5 and 14.8 MeV

    NASA Astrophysics Data System (ADS)

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; Bhatia, C.; Bhike, M.; Bond, E. M.; Bredeweg, T. A.; Fallin, B.; Fowler, M. M.; Howell, C. R.; Kelley, J. H.; Krishichayan; Macri, R.; Rusev, G.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.; Tornow, W.; Vieira, D. J.; Wilhelmy, J. B.

    2016-01-01

    Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varying degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission chamber and gamma

  16. Energy dependence of fission product yields from 235U, 238U and 239Pu for incident neutron energies between 0.5 and 14.8 MeV

    DOE PAGES

    Gooden, M. E.; Arnold, C. W.; Becker, J. A.; ...

    2016-01-06

    In this study, Fission Product Yields (FPY) have historically been one of the most observable features of the fission process. They are known to have strong variations that are dependent on the fissioning species, the excitation energy, and the angular momentum of the compound system. However, consistent and systematic studies of the variation of these FPY with energy have proved challenging. This is caused primarily by the nature of the experiments that have traditionally relied on radiochemical procedures to isolate specific fission products. Although radiochemical procedures exist that can isolate all products, each element presents specific challenges and introduces varyingmore » degrees of systematic errors that can make inter-comparison of FPY uncertain. Although of high importance in fields such as nuclear forensics and Stockpile Stewardship, accurate information about the energy dependence of neutron induced FPY are sparse, due primarily to the lack of suitable monoenergetic neutron sources. There is a clear need for improved data, and to address this issue, a collaboration was formed between Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL) and the Triangle Universities Nuclear Laboratory (TUNL) to measure the energy dependence of FPY for 235U, 238U and 239Pu. The measurements have been performed at TUNL, using a 10 MV Tandem Van de Graaff accelerator to produce monoenergetic neutrons at energies between 0.6 MeV to 14.8 MeV through a variety of reactions. The measurements have utilized a dual-fission chamber, with thin (10-100 μg/cm2) reference foils of similar material to a thick (100-400 mg) activation target held in the center between the chambers. This method allows for the accurate determination of the number of fissions that occurred in the thick target without requiring knowledge of the fission cross section or neutron fluence on target. Following activation, the thick target was removed from the dual-fission

  17. The effect of noise-induced variance on parameter recovery from reaction times.

    PubMed

    Vadillo, Miguel A; Garaizar, Pablo

    2016-03-31

    Technical noise can compromise the precision and accuracy of the reaction times collected in psychological experiments, especially in the case of Internet-based studies. Although this noise seems to have only a small impact on traditional statistical analyses, its effects on model fit to reaction-time distributions remains unexplored. Across four simulations we study the impact of technical noise on parameter recovery from data generated from an ex-Gaussian distribution and from a Ratcliff Diffusion Model. Our results suggest that the impact of noise-induced variance tends to be limited to specific parameters and conditions. Although we encourage researchers to adopt all measures to reduce the impact of noise on reaction-time experiments, we conclude that the typical amount of noise-induced variance found in these experiments does not pose substantial problems for statistical analyses based on model fitting.

  18. Impact of the HLA-B(*)58:01 Allele and Renal Impairment on Allopurinol-Induced Cutaneous Adverse Reactions.

    PubMed

    Ng, Chau Yee; Yeh, Yu-Ting; Wang, Chuang-Wei; Hung, Shuen-Iu; Yang, Chih-Hsun; Chang, Ya-Ching; Chang, Wan-Chun; Lin, Yu-Jr; Chang, Chee-Jen; Su, Shih-Chi; Fan, Wen-Lang; Chen, Der-Yuan; Wu, Yeong-Jian Jan; Tian, Ya-Chung; Hui, Rosaline Chung-Yee; Chung, Wen-Hung

    2016-07-01

    Allopurinol, a common drug for treating hyperuricemia, is associated with cutaneous adverse drug reactions ranging from mild maculopapular exanthema to life-threatening severe cutaneous adverse reactions, including drug reaction with eosinophilia and systemic symptoms, Stevens-Johnson syndrome, and toxic epidermal necrolysis. We have previously reported that HLA-B*58:01 is strongly associated with allopurinol-induced severe cutaneous adverse reactions in Han Chinese, but the associations of the HLA-B*58:01 genotype in an allopurinol-induced hypersensitivity phenotype remain unclear. To investigate the comprehensive associations of HLA-B*58:01, we enrolled 146 patients with allopurinol-induced cutaneous adverse drug reactions (severe cutaneous adverse reactions, n = 106; maculopapular exanthema, n = 40) and 285 allopurinol-tolerant control subjects. Among these allopurinol-induced cutaneous adverse drug reactions, HLA-B*58:01 was strongly associated with severe cutaneous adverse reactions (odds ratio [OR] = 44.0; 95% confidence interval = 21.5-90.3; P = 2.6 × 10(-41)), and the association was correlated with disease severity (OR = 44.0 for severe cutaneous adverse reactions, OR = 8.5 for maculopapular exanthema). The gene dosage effect of HLA-B*58:01 also influenced the development of allopurinol-induced cutaneous adverse drug reactions (OR = 15.25 for HLA-B*58:01 heterozygotes and OR = 72.45 for homozygotes). Furthermore, coexistence of HLA-B*58:01 and renal impairment increased the risk and predictive accuracy of allopurinol-induced cutaneous adverse drug reactions (heterozygous HLA-B*58:01 and normal renal function: OR = 15.25, specificity = 82%; homozygous HLA-B*58:01 and severe renal impairment: OR = 1269.45, specificity = 100%). This HLA-B*58:01 correlation study suggests that patients with coexisting HLA-B*58:01 and renal impairment (especially estimated glomerular filtration rate < 30ml/minute/1.73 m(2)) should be cautious and avoid using

  19. The Pulsed Fission-Fusion (PUFF) Concept for Deep Space Exploration and Terrestrial Power Generation

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Cassibry, Jason; Schillo, Kevin

    2017-01-01

    This team is exploring a modified Z-pinch geometry as a propulsion system, imploding a liner of liquid lithium onto a pellet containing both fission and fusion fuel. The plasma resulting from the fission and fusion burn expands against a magnetic nozzle, for propulsion, or a magnetic confinement system, for terrestrial power generation. There is considerable synergy in the concept; the lithium acts as a temporary virtual cathode, and adds reaction mass for propulsion. Further, the lithium acts as a radiation shield against generated neutrons and gamma rays. Finally, the density profile of the column can be tailored using the lithium sheath. Recent theoretical and experimental developments (e.g. tailored density profile in the fuel injection, shear stabilization, and magnetic shear stabilization) have had great success in mitigating instabilities that have plagued previous fusion efforts. This paper will review the work in evaluating the pellet sizes and z-pinch conditions for optimal PuFF propulsion. Trades of pellet size and composition with z-pinch power levels and conditions for the tamper and lithium implosion are evaluated. Current models, both theoretical and computational, show that a z-pinch can ignite a small (1 cm radius) fission-fusion target with significant yield. Comparison is made between pure fission and boosted fission targets. Performance is shown for crewed spacecraft for high speed Mars round trip missions and near interstellar robotic missions. The PuFF concept also offers a solution for terrestrial power production. PuFF can, with recycling of the effluent, achieve near 100% burnup of fission fuel, providing a very attractive power source with minimal waste. The small size of PuFF relative to today's plants enables a more distributed power network and less exposure to natural or man-made disruptions.

  20. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVinduced reactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  1. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-19

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  2. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    NASA Astrophysics Data System (ADS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-06-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  3. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    NASA Technical Reports Server (NTRS)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  4. Investigation on the quasifission process by theoretical analysis of experimental data of fissionlike reaction products

    NASA Astrophysics Data System (ADS)

    Giardina, G.; Nasirov, A. K.; Mandaglio, G.; Curciarello, F.; De Leo, V.; Fazio, G.; Manganaro, M.; Romaniuk, M.; Saccá, C.

    2011-02-01

    The hindrance to complete fusion is a phenomenon presenting in the most part of the capture events in reactions with massive nuclei. This phenomenon is due to the onset of the quasifission process which competes with complete fusion during the evolution of the composed system formed at capture stage. The branching ratio between quasifission and complete fusion strongly depends from different characteristics of reacting nuclei in the entrance channel. The experimental and theoretical investigations of reaction dynamics connected with the formation of composed system is nowadays the main subject of the nuclear reactions. There is ambiguity in establishment of the reaction mechanism leading to the observed binary fissionlike fragments. The correct estimation of the fusion probability is important in planning experiments for the synthesis of superheavy elements. The experimental determination of evaporation residues only is not enough to restore the true reaction dynamics. The experimental observation of fissionlike fragments only cannot assure the correct distinguishing of products of the quasifission, fast fission, and fusion-fission processes which have overlapping in the mass (angular, kinetic energy) distributions of fragments. In this paper we consider a wide set of reactions (with different mass asymmetry and mass symmetry parameters) with the aim to explain the role played by many quantities on the reaction mechanisms. We also present the results of study of the 48Ca+249Bk reaction used to synthesize superheavy nuclei with Z = 117 by the determination of the evaporation residue cross sections and the effective fission barriers < Bf > of excited nuclei formed along the de-excitation cascade of the compound nucleus.

  5. Nuclear Reactions: Studying Peaceful Applications in the Middle and Secondary School.

    ERIC Educational Resources Information Center

    Szymanski Sunal, Cynthia; Sunal, Dennis W.

    1999-01-01

    Asserts that students must learn about nuclear fission and fusion in the social studies curriculum to help them develop a foundation for considering the social issues associated with the everyday use of nuclear reactions. Gives background on the two types of reactions and provides three lessons for middle and secondary classrooms. (CMK)

  6. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    PubMed

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  7. Processes in massive nuclei reactions and the way to complete fusion of reactants. What perspectives for the synthesis of heavier superheavy elements?

    NASA Astrophysics Data System (ADS)

    Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.

    2012-12-01

    By using the dinuclear system (DNS) model we determine the capture of reactants at the first stage of reaction, the competition between the DNS decay by the quasifission (QF) and the complete fusion (CF) process up to formation of the compound nucleus (CN) having compact shape. Further evolution of the CN is considered as its fission into two fragments or formation of evaporation residues (ER) by its cooling after emission of neutrons or/and charged light particles. Disappearance of the CN fission barrier due to its fast rotation leads to the fast fission (FF) by formation of fissionlike fragments. The results of calculations for the mass symmetric 136Xe+136Xe reaction, almost mass symmetric 108Mo+144Ba reaction, and mass asymmetric like 24Mg+238U and 34S+248Cm reactions are discussed. The fusion probability PCN calculated for many massive nuclei reactions leading to formation of superheavy nuclei have been analyzed. The reactions which can lead in perspective to the synthesis of superheavy elements in the Z = 120 - 126 range and, eventually, also to heaviest nuclei, are discussed.

  8. Fission Signatures for Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2009-06-01

    Detection and interdiction of nuclear materials in all forms of transport is one of the most critical security issues facing the United States and the rest of the civilized world. Naturally emitted gamma rays by these materials, while abundant and detectable when unshielded, are low in energy and readily shielded. X-ray radiography is useful in detecting the possible presence of shielding material. Positive detection of concealed nuclear materials requires methods which unequivocally detect specific attributes of the materials. These methods typically involve active interrogation by penetrating radiation of neutrons, photons or other particles. Fortunately, nuclear materials, probed by various types of radiation, yield very unique and often strong signatures. Paramount among them are the detectable fission signatures, namely prompt neutrons and gamma rays, and delayed neutrons gamma rays. Other useful signatures are the nuclear states excited by neutrons, via inelastic scattering, or photons, via nuclear resonance fluorescence and absorption. The signatures are very different in magnitude, level of specificity, ease of excitation and detection, signal to background ratios, etc. For example, delayed neutrons are very unique to the fission process, but are scarce, have low energy, and hence are easily absorbed. Delayed gamma rays are more abundant but "featureless", and have a higher background from natural sources and more importantly, from activation due to the interrogation sources. The prompt fission signatures need to be measured in the presence of the much higher levels of probing radiation. This requires taking special measures to look for the signatures, sometimes leading to a significant sensitivity loss or a complete inability to detect them. Characteristic gamma rays induced in nuclear materials reflecting their nuclear structure, while rather unique, require very high intensity of interrogation radiation and very high resolution in energy and/or time. The

  9. RECOVERY OF ALUMINUM FROM FISSION PRODUCTS

    DOEpatents

    Blanco, R.E.; Higgins, I.R.

    1962-11-20

    A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

  10. Influence of exothermic chemical reactions on laser-induced shock waves.

    PubMed

    Gottfried, Jennifer L

    2014-10-21

    Differences in the excitation of non-energetic and energetic residues with a 900 mJ, 6 ns laser pulse (1064 nm) have been investigated. Emission from the laser-induced plasma of energetic materials (e.g. triaminotrinitrobenzene [TATB], cyclotrimethylene trinitramine [RDX], and hexanitrohexaazaisowurtzitane [CL-20]) is significantly reduced compared to non-energetic materials (e.g. sugar, melamine, and l-glutamine). Expansion of the resulting laser-induced shock wave into the air above the sample surface was imaged on a microsecond timescale with a high-speed camera recording multiple frames from each laser shot; the excitation of energetic materials produces larger heat-affected zones in the surrounding atmosphere (facilitating deflagration of particles ejected from the sample surface), results in the formation of additional shock fronts, and generates faster external shock front velocities (>750 m s(-1)) compared to non-energetic materials (550-600 m s(-1)). Non-explosive materials that undergo exothermic chemical reactions in air at high temperatures such as ammonium nitrate and magnesium sulfate produce shock velocities which exceed those of the inert materials but are less than those generated by the exothermic reactions of explosive materials (650-700 m s(-1)). The most powerful explosives produced the highest shock velocities. A comparison to several existing shock models demonstrated that no single model describes the shock propagation for both non-energetic and energetic materials. The influence of the exothermic chemical reactions initiated by the pulsed laser on the velocity of the laser-induced shock waves has thus been demonstrated for the first time.

  11. Fission in R-processes Elements (FIRE) - Annual Report: Fiscal Year 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunck, Nicolas

    The goal of the FIRE topical collaboration in nuclear theory is to determine the astrophysical conditions of the rapid neutron capture process (r-process), which is responsible for the formation of heavy elements. This will be achieved by including in r-process simulations the most advanced models of fission (spontaneous, neutron-induced, beta-delayed) that have been developed at LLNL and LANL. The collaboration is composed of LLNL (lead) and LANL for work on nuclear data (ground-state properties, fission, beta-decay), BNL for nuclear data management, and the university of Notre Dame and North Carolina State University for r-process simulations. Under DOE/NNSA agreement, both universitiesmore » receive funds from the DOE Office of Science, while national laboratories receive funds directly from NA221.« less

  12. Chemical Memory Reactions Induced Bursting Dynamics in Gene Expression

    PubMed Central

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems. PMID:23349679

  13. Neutron emission in 19F-induced reactions

    NASA Astrophysics Data System (ADS)

    Acharya, Jaimin; Mukherjee, S.; Chatterjee, A.; Singh, N. L.; Ramachandran, K.; Rout, P. C.; Mahata, K.; Desai, Vishal; Mirgule, E. T.; Suryanarayana, S. V.; Nayak, B. K.; Saxena, A.; Steyn, G. F.

    2018-03-01

    We measured neutron emission spectra for 19F-induced reactions on 181Ta, 89Y, and 51V at beam energies of 130, 140, 145, and 150 MeV. Measurements were made using liquid scintillator detectors at eight angles in the range of 25∘-143∘ using time-of-flight and pulse-shape discrimination. A comparison has been made with alice2014 and pace4 calculations to understand the role of incomplete fusion and pre-equilibrium effects. Global predictions with alice2014 without parameter adjustment gives a fair agreement with the measured data.

  14. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  15. Hauser-Feshbach fission fragment de-excitation with calculated macroscopic-microscopic mass yields

    DOE PAGES

    Jaffke, Patrick John; Talou, Patrick; Sierk, Arnold John; ...

    2018-03-15

    The Hauser-Feshbach statistical model is applied to the de-excitation of primary fission fragments using input mass yields calculated with macroscopic-microscopic models of the potential energy surface. We test the sensitivity of the prompt fission observables to the input mass yields for two important reactions, 235U (n th, f) and 239Pu (n th, f) , for which good experimental data exist. General traits of the mass yields, such as the location of the peaks and their widths, can impact both the prompt neutron and γ-ray multiplicities, as well as their spectra. Specifically, we use several mass yields to determine a linear correlation between the calculated prompt neutron multiplicitymore » $$\\bar{v}$$ and the average heavy-fragment mass $$\\langle$$A h$$\\rangle$$ of the input mass yields ∂$$\\bar{v}$$/∂ $$\\langle$$A h$$\\rangle$$ = ± 0.1 (n / f )/u . The mass peak width influences the correlation between the total kinetic energy of the fission fragments and the total number of prompt neutrons emitted, $$\\bar{v}_T$$ ( TKE ) . Finally, typical biases on prompt particle observables from using calculated mass yields instead of experimental ones are δ$$\\bar{v}$$ = 4 % for the average prompt neutron multiplicity, δ$$\\overline{M}_γ$$ = 1% for the average prompt γ-ray multiplicity, δ$$\\bar{ε}$$ $$LAB\\atop{n}$$ = 1 % for the average outgoing neutron energy, δ$$\\bar{ε}_γ$$ = 1 % for the average γ-ray energy, and δ $$\\langle$$TKE$$\\rangle$$ = 0.4 % for the average total kinetic energy of the fission fragments.« less

  16. Fission Barrier of ^254No at High Spin

    NASA Astrophysics Data System (ADS)

    Henning, G.; Khoo, T. L.; Seweryniak, D.; Back, B. B.; Bertone, P. F.; Carpenter, M. P.; Greene, J. P.; Gürdal, G.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Zhu, S.; Chiara, C. J.; Hauschild, K.; Lopez-Martens, A.; Heinz, A.; Piot, J.; Chowdhury, P.; Lakshmi, S.

    2010-11-01

    Superheavy nuclei provide opportunities to study nuclear structure at the limits in charge, spin and excitation energy. These nuclei exist only because shell effects create a fission barrier Bf. Hence, it is important to determine Bf and its spin dependence. For ^254No, the maximum spin and energy were found [1] to be Imax= 22 and E* = 8 MeV in the reaction ^208Pb(^48Ca,2n) at a beam energy of 219 MeV. At 223 MeV, the maximum spin increases to 32. In contrast, the spin in ^220Th, produced [2] in the ^176Yb(^48 Ca,4n) reaction at 206 and 219 MeV, saturates at 20. A measurement of the entry distribution of ^254No at 223 MeV has been performed to determine Bf(I) and results will be reported.[4pt] [1] P. Reiter et al., Phys. Rev. Lett. 84, 3542 (2000).[0pt] [2] A. Heinz et al., Nucl. Phys. A682, 458c (2001)

  17. Sulthiame-induced drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome.

    PubMed

    Fong, Choong Yi; Hashim, Nurmaira; Gan, Chin Seng; Chow, Tak Kuan; Tay, Chee Geap

    2016-11-01

    Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome is a rare and potentially life-threatening acute drug-induced hypersensitivity reaction. Antiepileptic drugs (AEDs) predominantly aromatic AEDs are commonly reported in DRESS. To date there are no reports of sulthiame AED causing DRESS syndrome. We report a 10-year-old girl of Indian descent with AED resistant epilepsy on maintenance sodium valproate and clonazepam. Sulthiame AED was initiated to try to improve her seizure control. Five weeks after commencing sulthiame, she developed fever with a diffuse erythematous morbilliform maculopapular rash, elevated transaminases and atypical lymphocytes. At day 3 of illness, she deteriorated with worsening elevation of liver transaminases, thrombocytopenia, progression of rash, hepatosplenomegaly, pneumonitis and markedly elevated inflammatory markers. Immunomodulatory treatment of pulse methylprednisolone was given from day 7 which was associated with improvement inflammatory markers and complete resolution of rash from day 30 of illness. The diagnosis of sulthiame-induced DRESS syndrome was made based on clinical, laboratory and skin histology findings. She was HLA-B heterozygous for HLA-B ∗ 15:123 and 15:240 and HLA-A homozygous for HLA-A ∗ 11:01:09. Both these HLA-A and HLA-B typing has not been reported before in cutaneous drug reactions. This is the first reported case of sulthiame-induced DRESS syndrome. Our case expands the list of possible susceptible HLA alleles associated with cutaneous drug reactions. It also raises the awareness of possible DRESS syndrome among patients commenced on sulthiame who will require immediate discontinuation of sulthiame and consideration of prompt treatment of corticosteroids. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  18. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  19. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    NASA Astrophysics Data System (ADS)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  20. Correlated Production and Analog Transport of Fission Neutrons and Photons using Fission Models FREYA, FIFRELIN and the Monte Carlo Code TRIPOLI-4® .

    NASA Astrophysics Data System (ADS)

    Verbeke, Jérôme M.; Petit, Odile; Chebboubi, Abdelhazize; Litaize, Olivier

    2018-01-01

    Fission modeling in general-purpose Monte Carlo transport codes often relies on average nuclear data provided by international evaluation libraries. As such, only average fission multiplicities are available and correlations between fission neutrons and photons are missing. Whereas uncorrelated fission physics is usually sufficient for standard reactor core and radiation shielding calculations, correlated fission secondaries are required for specialized nuclear instrumentation and detector modeling. For coincidence counting detector optimization for instance, precise simulation of fission neutrons and photons that remain correlated in time from birth to detection is essential. New developments were recently integrated into the Monte Carlo transport code TRIPOLI-4 to model fission physics more precisely, the purpose being to access event-by-event fission events from two different fission models: FREYA and FIFRELIN. TRIPOLI-4 simulations can now be performed, either by connecting via an API to the LLNL fission library including FREYA, or by reading external fission event data files produced by FIFRELIN beforehand. These new capabilities enable us to easily compare results from Monte Carlo transport calculations using the two fission models in a nuclear instrumentation application. In the first part of this paper, broad underlying principles of the two fission models are recalled. We then present experimental measurements of neutron angular correlations for 252Cf(sf) and 240Pu(sf). The correlations were measured for several neutron kinetic energy thresholds. In the latter part of the paper, simulation results are compared to experimental data. Spontaneous fissions in 252Cf and 240Pu are modeled by FREYA or FIFRELIN. Emitted neutrons and photons are subsequently transported to an array of scintillators by TRIPOLI-4 in analog mode to preserve their correlations. Angular correlations between fission neutrons obtained independently from these TRIPOLI-4 simulations, using

  1. A spin exchange model for singlet fission

    NASA Astrophysics Data System (ADS)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  2. Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.

    PubMed

    Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan

    2015-05-07

    This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.

  3. Fission fragment mass and total kinetic energy distributions of spontaneously fissioning plutonium isotopes

    NASA Astrophysics Data System (ADS)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The fission-fragment mass and total kinetic energy (TKE) distributions are evaluated in a quantum mechanical framework using elongation, mass asymmetry, neck degree of freedom as the relevant collective parameters in the Fourier shape parametrization recently developed by us. The potential energy surfaces (PES) are calculated within the macroscopic-microscopic model based on the Lublin-Strasbourg Drop (LSD), the Yukawa-folded (YF) single-particle potential and a monopole pairing force. The PES are presented and analysed in detail for even-even Plutonium isotopes with A = 236-246. They reveal deep asymmetric valleys. The fission-fragment mass and TKE distributions are obtained from the ground state of a collective Hamiltonian computed within the Born-Oppenheimer approximation, in the WKB approach by introducing a neck-dependent fission probability. The calculated mass and total kinetic energy distributions are found in good agreement with the data.

  4. SPIDER: A new tool for measuring fission yields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meierbachtol, Krista C.

    2014-03-27

    The goals of this project are to measure fission-fragment yields as a function of (En, Z,A, TKE); develop theory in order to evaluate fission yield data; and provide an evaluation of the Pu-239 fission yields.

  5. [Anaphylactoid reactions induced by polysorbate 80 on Beagle dogs].

    PubMed

    Sun, Weiwei; Li, Yikui; Wang, Naijie; Du, Feng; Hao, Wei; Zhao, Le

    2011-07-01

    To evaluate the sensitization effect of polysorbate 80 from different factories on Beagle dogs. Beagles dogs were randomly divided into 5 groups, 3 in each group, received respectively the intravenous infusion of polysorbate 80 made by four factories in the concentration of 0.5%, with the constant infusing speed of 5 mL x min(-1) and volume of 10 mL x kg(-1). Changes were observed before infusion and in the 24 h after infusion, time of symptom appearance and disappearance was recorded, and the grade of response was determined. Moreover, blood pressure and heart rates were tested by the machine of Bp-98E, blood samples of animals were collected before infusion and at 10 min after ending infusion for measuring histamine content in plasma using ELISA. Then the sensitization effect was comprehensively estimated by combined consideration of the responding grade and histamine level. Typical symptoms of anaphylactoid reactions were found in sample 3 group, atypical symptoms were found in other polysorbate 80 groups. Different degrees of heart rate speeding and blood pressure downing were found in polysorbate 80 groups. No over 1-fold increase of plasma histamine level was found in all groups. The atypical anaphylactoid reactions and blood pressure of sample 2 group was lighter than other polysorbate 80 groups. Estimation showed that the sample 3 induced the suspicious anaphylactoid reactions, other test solutions did not induce the typical anaphylactoid reactions on Beagle dogs. For allergies and other special populations, there is still a certain risk to applicate polysorbate 80 in the concentration of 0.5%. Production process of polysorbate 80 have a certain influence on allergenicity, refined polysorbate 80 increase the security, but further reasearchs are needed to confirmed.

  6. High precision measurements on fission-fragment de-excitation

    NASA Astrophysics Data System (ADS)

    Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas

    2017-11-01

    In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.

  7. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain

    PubMed Central

    Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza

    2017-01-01

    Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513

  8. Hydrazine-induced post-chemiluminescence phenomenon of permanganate-luminol reaction and its applications.

    PubMed

    Du, Jianxiu; Lu, Jiuru

    2004-01-01

    The post-chemiluminescence phenomenon arising from the permanganate-luminol reaction induced by hydrazine and isoniazid was investigated. When hydrazine or isoniazid was injected into the mixture after the end of the reaction of permanganate with alkaline luminol, a new chemiluminescence (CL) reaction was initiated and strong CL signal was detected. A possible CL mechanism is suggested, based upon the studies of the kinetic characteristics of the CL reaction, the UV-visible spectra, the CL spectra and some other experiments. The present reactions allow the determination of 0.1-10.0 mg/L hydrazine and 0.02-1.0 mg/L isoniazid, with detection limits of 0.03 mg/L and 0.006 mg/L, respectively. The method was applied to the determination of isoniazid in pharmaceutical preparations.

  9. Control system for a small fission reactor

    DOEpatents

    Burelbach, J.P.; Kann, W.J.; Saiveau, J.G.

    1985-02-08

    A system for controlling the reactivity of a small fission reactor includes an elongated, flexible hollow tube in the general form of a helical coiled spring axially positioned around and outside of the reactor vessel in an annular space between the reactor vessel and a surrounding cylindrical-shaped neutron reflector. A neutron absorbing material is provided within the hollow tube with the rate of the reaction controlled by the extension and compression of the hollow tube, e.g., extension of the tube increases reactivity while its compression reduces reactivity, in varying the amount of neutron absorbing material disposed between the reactor vessel and the neutron reflector. Conventional mechanical displacement means may be employed to control the coil density of the hollow tube as desired.

  10. TREATMENT OF FISSION PRODUCT WASTE

    DOEpatents

    Huff, J.B.

    1959-07-28

    A pyrogenic method of separating nuclear reactor waste solutions containing aluminum and fission products as buring petroleum coke in an underground retort, collecting the easily volatile gases resulting as the first fraction, he uminum chloride as the second fraction, permitting the coke bed to cool and ll contain all the longest lived radioactive fission products in greatly reduced volume.

  11. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  12. Measurement of 235U(n,n'γ) and 235U(n,2nγ) reaction cross sections

    NASA Astrophysics Data System (ADS)

    Kerveno, M.; Thiry, J. C.; Bacquias, A.; Borcea, C.; Dessagne, P.; Drohé, J. C.; Goriely, S.; Hilaire, S.; Jericha, E.; Karam, H.; Negret, A.; Pavlik, A.; Plompen, A. J. M.; Romain, P.; Rouki, C.; Rudolf, G.; Stanoiu, M.

    2013-02-01

    The design of generation IV nuclear reactors and the studies of new fuel cycles require knowledge of the cross sections of various nuclear reactions. Our research is focused on (n,xnγ) reactions occurring in these new reactors. The aim is to measure unknown cross sections and to reduce the uncertainty on present data for reactions and isotopes of interest for transmutation or advanced reactors. The present work studies the 235U(n,n'γ) and 235U(n,2nγ) reactions in the fast neutron energy domain (up to 20 MeV). The experiments were performed with the Geel electron linear accelerator GELINA, which delivers a pulsed white neutron beam. The time characteristics enable measuring neutron energies with the time-of-flight (TOF) technique. The neutron induced reactions [in this case inelastic scattering and (n,2n) reactions] are identified by on-line prompt γ spectroscopy with an experimental setup including four high-purity germanium (HPGe) detectors. A fission ionization chamber is used to monitor the incident neutron flux. The experimental setup and analysis methods are presented and the model calculations performed with the TALYS-1.2 code are discussed.

  13. Prompt neutron emission and energy balance in 235U(n,f)

    NASA Astrophysics Data System (ADS)

    Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Stephan

    2017-09-01

    Investigations of prompt fission neutron (PFN) emission are of importance in understanding the fission process in general and the sharing of excitation energy among the fission fragments in particular. Experimental activities at JRC-Geel on PFN emission in response to OECD/NEA nuclear data requests is presented in this contribution. The focus lies on on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances taking place at the GELINA facility. For this reaction strong fluctuations of fission fragment mass distributions and mean total kinetic energy have been observed as a function of incident neutron energy in the resonance region. In addition, fluctuations of prompt neutron multiplicities have also been observed. The goal of the present study is to verify the current knowledge of PFN multiplicity fluctuations and to study correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. Results on PFN multiplicity correlations with fission fragment properties from the present study show significant differences compared to earlier studies on this reaction, induced by thermal neutrons. Specifically, the total kinetic energy dependence of the neutron multiplicity per fission shows an inverse slope FX1TKE/FX2ν approximately 35% weaker than observed in earlier studies of thermal neutron induced fission on 235U. The inverse slope is related to the energy carried away per emitted neutron and is, thereby, closely connected to the energy balance of the fission reaction. The present result should have strong impact on the modeling of both prompt neutron and prompt γ-ray emission in fission of the 236U compound nucleus.

  14. CaMKII-dependent endoplasmic reticulum fission by whisker stimulation and during cortical spreading depolarization.

    PubMed

    Kucharz, Krzysztof; Lauritzen, Martin

    2018-04-01

    Cortical spreading depolarization waves, the cause underlying migraine aura, are also the markers and mechanism of pathology in the acutely injured human brain. Propagation of spreading depolarization wave uniquely depends on the interaction between presynaptic and postsynaptic glutamate N-methyl-d-aspartate receptors (NMDARs). In the normally perfused brain, even a single wave causes a massive depolarization of neurons and glia, which results in transient loss of neuronal function and depression of the ongoing electrocorticographic activity. Endoplasmic reticulum is the cellular organelle of particular importance for modulation of neurotransmission. Neuronal endoplasmic reticulum structure is assumed to be persistently continuous in neurons, but is rapidly lost within 1 to 2 min of global cerebral ischaemia, i.e. the organelle disintegrates by fission. This phenomenon appears to be timed with the cardiac arrest-induced cortical spreading depolarizations, rather than ensuing cell death. To what extent NMDAR-dependent processes may trigger neuronal endoplasmic reticulum fission and whether fission is reversible in the normally perfused brain is unknown. We used two-photon microscopy to examine neuronal endoplasmic reticulum structural dynamics during whisker stimulation and cortical spreading depolarizations in vivo. Somatosensory stimulation triggered loss of endoplasmic reticulum continuity, a likely outcome of constriction and fission, in dendritic spines within less than 10 s of stimulation, which was spontaneously reversible and recovery to normal took 5 min. The endoplasmic reticulum fission was inhibited by blockade of NMDAR and Ca2+/calmodulin-dependent protein kinase II (CaMKII) activated downstream of the NMDARs, whereas inhibition of guanosine triphosphate hydrolases hindered regain of endoplasmic reticulum continuity, i.e. fusion. In contrast to somatosensory stimulation, endoplasmic reticulum fission during spreading depolarization was widespread and

  15. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  16. Development and Utilization of Space Fission Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2008-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  17. SCALP: Scintillating ionization chamber for ALPha particle production in neutron induced reactions

    NASA Astrophysics Data System (ADS)

    Galhaut, B.; Durand, D.; Lecolley, F. R.; Ledoux, X.; Lehaut, G.; Manduci, L.; Mary, P.

    2017-09-01

    The SCALP collaboration has the ambition to build a scintillating ionization chamber in order to study and measure the cross section of the α-particle production in neutron induced reactions. More specifically on 16O and 19F targets. Using the deposited energy (ionization) and the time of flight measurement (scintillation) with a great accuracy, all the nuclear reaction taking part on this project will be identify.

  18. Activation cross-section measurement of proton induced reactions on cerium

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Spahn, I.; Spellerberg, S.

    2017-12-01

    In the framework of a systematic study of proton induced nuclear reactions on lanthanides we have measured the excitation functions on natural cerium for the production of 142,139,138m,137Pr, 141,139,137m,137g,135Ce and 133La up to 65 MeV proton energy using the activation method with stacked-foil irradiation technique and high-resolution γ-ray spectrometry. The cross-sections of the investigated reactions were compared with the data retrieved from the TENDL-2014 and TENDL-2015 libraries, based on the latest version of the TALYS code system. No earlier experimental data were found in the literature. The measured cross-section data are important for further improvement of nuclear reaction models and for practical applications in nuclear medicine, other labeling and activation studies.

  19. Reproducibility of apatite fission-track length data and thermal history reconstruction

    NASA Astrophysics Data System (ADS)

    Ketcham, Richard A.; Donelick, Raymond A.; Balestrieri, Maria Laura; Zattin, Massimiliano

    2009-07-01

    The ability to derive detailed thermal history information from apatite fission-track analysis is predicated on the reliability of track length measurements. However, insufficient attention has been given to whether and how these measurements should be standardized. In conjunction with a fission-track workshop we conducted an experiment in which 11 volunteers measured ~ 50 track lengths on one or two samples. One mount contained Durango apatite with unannealed induced tracks, and one contained apatite from a crystalline rock containing spontaneous tracks with a broad length distribution caused by partial resetting. Results for both mounts showed scatter indicative of differences in measurement technique among the individual analysts. The effects of this variability on thermal history inversion were tested using the HeFTy computer program to model the spontaneous track measurements. A cooling-only scenario and a reheating scenario more consistent with the sample's geological history were posed. When a uniform initial length value from the literature was used, results among analysts were very inconsistent in both scenarios, although normalizing for track angle by projecting all lengths to a c-axis parallel crystallographic orientation improved some aspects of congruency. When the induced track measurement was used as the basis for thermal history inversion congruency among analysts, and agreement with inversions based on data previously collected, was significantly improved. Further improvement was obtained by using c-axis projection. Differences among inversions that persisted could be traced to differential sampling of long- and short-track populations among analysts. The results of this study, while demonstrating the robustness of apatite fission-track thermal history inversion, nevertheless point to the necessity for a standardized length calibration schema that accounts for analyst variation.

  20. Preparation of polymeric Janus particles by directional UV-induced reactions.

    PubMed

    Liu, Lianying; Ren, Mingwei; Yang, Wantai

    2009-09-15

    Polymeric Janus particles are obtained by UV-induced selective surface grafting polymerizations and coupling reactions, in virtue of the light-absorption of photoreactive materials such as the immobilized photoinitiator and spread photoinitiator solution on the surfaces exposed to UV light and the sheltering of densely arrayed immovable particles from light. Varying the monomers or macromolecules applied in photografting polymerization or coupling reaction, and choosing diverse polymeric particles of various size, bicolor and amphiphilic Janus particles could be successfully achieved. Observations by fluorescence microscope, scanning electron microscope ,and transmission electron microscope confirmed the asymmetrical morphology of the resultant Janus particles.