Science.gov

Sample records for induced fission reactions

  1. Spallation-induced fission reactions

    NASA Astrophysics Data System (ADS)

    Benlliure, J.; Rodríguez-Sánchez, J. L.

    2017-03-01

    During the last decade spallation-induced fission reactions have received particular attention because of their impact in the design of spallation-neutron sources or radioactive beam facilities, but also in the understanding of the fission process at high excitation energy. In this paper, we review the main progress brought by modern experimental techniques, in particular those based in the inverse kinematic, as well as the achievements in modelling these reactions. We will also address future possibilities for improving the investigation of fission dynamics.

  2. Multimodal Fission in Heavy-Ion Induced Reactions

    SciTech Connect

    Pokrovskiy, I. V.; Bogachev, A. A.; Iitkis, M. G.; Iitkis, J. M.; Kondratiev, N. A.; Kozulin, E. M.; Dorvaux, O.; Rowley, N.; Schmitt, Ch.; Stuttge, L.

    2006-08-14

    Mass, energy and folding angle distributions of the fission fragments as well as multiplicities of neutron and gamma-quanta emissions accompanying the fission process were measured for fission of 226Th, 227Pa and 234Pu compound nuclei produced in reactions with 18O and 26Mg projectiles over a wide energy range. Data were analyzed with respect to the presence of fission modes. Asymmetric fission was observed even at very high initial excitation for all the measured systems. The so-called fission mode S1 (caused by the proton shell Z{approx}50 and neutron shell N{approx}82 in heavy fragment) was found to be dominant in asymmetric fission of 234Pu. Reactions with not full linear momentum transfer were observed in the folding spectra for all the measured systems.

  3. Fission Reaction Event Yield Algorithm

    SciTech Connect

    Hagmann, Christian; Verbeke, Jerome; Vogt, Ramona; Roundrup, Jorgen

    2016-05-31

    FREYA (Fission Reaction Event Yield Algorithm) is a code that simulated the decay of a fissionable nucleus at specified excitation energy. In its present form, FREYA models spontaneous fission and neutron-induced fission up to 20 MeV. It includes the possibility of neutron emission from the nuclear prior to its fussion (nth chance fission).

  4. Projectile-breakup-induced fission-fragment angular distributions in the 6Li+232Th reaction

    NASA Astrophysics Data System (ADS)

    Pal, A.; Santra, S.; Chattopadhyay, D.; Kundu, A.; Ramachandran, K.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Sawant, Y.; Sarkar, D.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-08-01

    Background: Experimental anisotropy in fission-fragment (FF) angular distribution in reactions involving weakly bound stable projectiles with actinide targets are enhanced compared to statistical saddle-point model (SSPM) predictions. Contributions from breakup- or transfer-induced fission to total fission are cited as possible reasons for such enhancement. Purpose: To identify the breakup- or transfer-induced fission channels in 6Li+232Th reaction and to investigate their effects on FF angular anisotropy. Methods: The FF angular distributions have been measured exclusively at three beam energies (28, 32, and 36 MeV) around the Coulomb barrier in coincidence with projectile breakup fragments like α , d , and p using Si strip detectors. The angular anisotropy obtained for different exclusive breakup- or transfer-induced fission channels are compared with that for total fission. SSPM and pre-equilibrium fission models have been employed to obtain theoretical FF angular anisotropy. Results: Angular anisotropy of the fission fragments produced by different transfer- or breakup-induced fission reactions have been obtained separately in the rest frame of respective recoiling nuclei. Some of these anisotropies were found to be stronger than those of the inclusive fission. Overall angular distributions of transfer or breakup fission, integrated over all possible recoil angles with weight factor proportional to differential cross section of the complementary breakup fragment emitted in coincidence in all possible directions, were obtained. It was observed that the overall FF angular anisotropy for each of these fission channels is less than or equal to the anisotropy of total fission at all the measured energies. Assuming isotropic out-of-plane correlations between the fission fragments and light-charged particles, the overall breakup- or transfer-induced fission fragment angular distributions do not explain the observed enhancement in FF anisotropy of total fission. Pre

  5. Light charged particles emitted in fission reactions induced by protons on 208Pb

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Paradela, C.; Ayyad, Y.; Casarejos, E.; Alvarez-Pol, H.; Audouin, L.; Bélier, G.; Boutoux, G.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2016-09-01

    Light charged particles emitted in proton-induced fission reactions on 208Pb have been measured at different kinetic energies: 370 A ,500 A , and 650 A MeV. The experiment was performed by the SOFIA Collaboration at the GSI facilities in Darmstadt (Germany). The inverse kinematics technique was combined with a setup especially designed to measure light charged particles in coincidence with fission fragments. This measurement allowed us, for the first time, to obtain correlations between the light charged particles emitted during the fission process and the charge distributions of the fission fragments. These correlations were compared with different model calculations to assess the ground-to-saddle dynamics. The results confirm that transient and dissipative effects are required for an accurate description of the fission observables.

  6. Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters

    SciTech Connect

    Fioretto, E.; Stefanini, A. M.; Behera, B. R.; Corradi, L.; Gadea, A.; Latina, A.; Trotta, M.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Chizhov, A. Yu.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Sagaidak, R. N.; Voskressensky, V. M.; Courtin, S.

    2006-04-26

    Experimental results on the fusion inhibition effect near the Coulomb barrier due to the onset of the quasi-fission mechanism are presented. The investigation was focused on reactions induced by 48Ca projectiles on different heavy targets and comparing them to reactions induced by light ions such as 12C and 16O leading to the same compound nuclei. Cross sections and angular distributions of evaporation residues and fission fragments have been measured.

  7. Capture and Fusion-Fission Processes in Heavy Ion Induced Reactions

    NASA Astrophysics Data System (ADS)

    Itkis, M. G.; Beghini, S.; Behera, B. R.; Bogatchev, A. A.; Bouchat, V.; Corradi, L.; Dorvaux, O.; Fioretto, E.; Gadea, A.; Hanappe, F.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Latina, A.; Lyapin, V. G.; Materna, T.; Montagnoli, G.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rowley, N.; Rubchenya, V. A.; Rusanov, A. Ya.; Sagaidak, R. N.; Scarlassara, F.; Schmitt, C.; Stefanini, A. M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W. H.; Voskresenski, V. M.

    2005-11-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12C+204Pb, 48Ca+144,154Sm, 168Er, 208Pb, 238U, 244Pu, 248Cm; 58Fe+208Pb, 244Pu, 248Cm, and 64Ni+186W, 242Pu are presented. The choice of the above-mentioned reactions was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 at Dubna using the same reactions. The 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. The role of shell effects and the influence of the entrance channel asymmetry and the deformations of colliding nucleus on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  8. Simultaneous measurement of neutron-induced capture and fission reactions at CERN

    NASA Astrophysics Data System (ADS)

    Guerrero, C.; Berthoumieux, E.; Cano-Ott, D.; Mendoza, E.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Billowes, J.; Brugger, M.; Calviani, M.; Calviño, F.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Ganesan, S.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Jenkins, D.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kroll, J.; Krtička, M.; Lebbos, E.; Lederer, C.; Leeb, H.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P. F.; Meaze, M.; Mengoni, A.; Milazzo, P. M.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Roman, F.; Rubbia, C.; Sarmento, R.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeullen, M.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weiß, C.; Wright, T.

    2012-03-01

    The measurement of the capture cross-section of fissile elements, of utmost importance for the design of innovative nuclear reactors and the management of nuclear waste, faces particular difficulties related to the γ -ray background generated in the competing fission reactions. At the CERN neutron time-of-flight facility n_TOF we have combined the Total Absorption Calorimeter (TAC) capture detector with a set of three 235U loaded MicroMegas (MGAS) fission detectors for measuring simultaneously two reactions: capture and fission. The results presented here include the determination of the three detection efficiencies involved in the process: ensuremath \\varepsilon_{TAC}(n,f) , ensuremath \\varepsilon_{TAC}(n,γ) and ensuremath \\varepsilon_{MGAS}(n,f) . In the test measurement we have succeeded in measuring simultaneously with a high total efficiency the 235U capture and fission cross-sections, disentangling accurately the two types of reactions. The work presented here proves that accurate capture cross-section measurements of fissile isotopes are feasible at n_TOF.

  9. A new set-up for the simultaneous measurement of neutron-induced capture and fission reactions

    SciTech Connect

    Guerrero, C.; Berthoumieux, E.; Cano-Ott, D.; Gunsing, F.; Andriamonje, S.

    2011-07-01

    The measurement of the capture cross section of fissile elements, of upmost importance for the design of innovative nuclear reactors and the management of nuclear waste, involves particular difficulties related to the {gamma}-ray background produced in the fission reactions. These difficulties are the reason why five out of the six actinide {sigma}(n,{gamma}) measurements in the NEA High Request Priority List are fissile isotopes. At n-TOF we have combined the Total Absorption Calorimeter capture detector with a set of three {sup 235}U loaded MicroMegas fission detectors for measuring simultaneously the two reactions: capture and fission. In a first test measurement we have succeeded in measuring simultaneously with high efficiency the {sup 235}U capture and fission cross sections, disentangling accurately the two types of reactions. (authors)

  10. Fission-induced plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Shiu, Y. J.

    1979-01-01

    The possibility of creating a plasma from fission fragments, and to utilize the energy of the particles to create population inversion that would lead to laser action is investigated. An investigation was made of various laser materials which could be used for nuclear-pumped lasing. The most likely candidate for a fissioning material in the gaseous form is uranium hexafluoride - UF6, and experiments were performed to investigate materials that would be compatible with it. One of the central problems in understanding a fission-induced plasma is to obtain a model of the electron behavior, and some preliminary calculations are presented. In particular, the rates of various processes are discussed. A simple intuitive model of the electron energy distribution function is also shown. The results were useful for considering a mathematical model of a nuclear-pumped laser. Next a theoretical model of a (3)He-Ar nuclear-pumped laser is presented. The theory showed good qualitative agreement with the experimental results.

  11. Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Hs{sup *}

    SciTech Connect

    Itkis, I. M.; Kozulin, E. M.; Itkis, M. G.; Knyazheva, G. N.; Bogachev, A. A.; Chernysheva, E. V.; Krupa, L.; Oganessian, Yu. Ts.; Zagrebaev, V. I.; Rusanov, A. Ya.; Goennenwein, F.; Dorvaux, O.; Stuttge, L.; Hanappe, F.; Vardaci, E.; Goes Brennand, E. de

    2011-06-15

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U, and {sup 58}Fe+{sup 208}Pb have been measured. All reactions lead to Hs isotopes. At energies below the Coulomb barrier the bimodal fission of Hs{sup *}, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U, leading to the formation of a similar compound nucleus, the main part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier fusion-fission is the main process leading to the formation of symmetric fragments for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies.

  12. Experimental studies of quasi-fission reactions

    SciTech Connect

    Back, B.B.

    1988-01-01

    A large number of recent experimental studies have shown that a substantial fraction of the total reaction cross section in heavy-ion reactions is found in fission-like processes, which do not result from the fission decay of a completely fused system. Following the suggestion of Swiatecki such processes, which represents a complete relaxation of the relative kinetic energy and a substantial amount of net mass transfer between the two fragments, are denoted quasi-fission reactions. They are distinct from compound fission reactions by bypassing the stage of a completely fused-system. This typically means that they are associated with short reaction times, which results in several measurable characteristics such as broken forward-backward symmetries, large anisotropies of the angular distributions and increased widths of the fragment mass distributions. The distinction between quasi-fission and deep inelastic reactions is less stringent and has the character of a gradual evolution from one reaction type to the other, as found also as quasi-elastic reaction evolves into deeply inelastic processes as a function of the total kinetic energy loss. In the present paper some of the experimental data characterizing quasi-fission reactions are reviewed and discussed. 22 refs., 6 figs.

  13. Fission cross section of the 232Th(n,f)131Sb reaction induced by neutrons around 14 MeV

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lv, Tao; Pan, Xiao-dong; Wang, Qiang; Fang, Kai-hong; Lan, Chang-lin

    2017-06-01

    In order to make a more detailed study on the 232Th fission process, the cross section of 232Th(n,f)131Sb fission reaction induced by 14 MeV neutrons was measured precisely with the neutron activation method and off-line gamma ray spectrometric technique. Neutron flux was monitored on line using the accompanying α particle from T(d,n)4He reaction in the irradiation and neutron energies were given by the cross section ratio of 90Zr(n,2 n)89Zr reaction to 93Nb(n,2 n)92 mNb reaction. The experimentally determined cross sections were deduced to be 6.27±0.47, 6.19±0.54, 6.00±0.51 mb at 14.1±0.3, 14.5±0.3 and 14.8±0.3 MeV, respectively.

  14. Experiments on nuclear fission induced by radioactive beams

    SciTech Connect

    Skobelev, N.K.

    1994-07-01

    The cross sections of {sup 209}Bi nuclear fission induced by secondary beams of {sup 6}He and {sup 4}He are measured under identical conditions. The experimental data are in good agreement with earlier results on the fission cross section of the {sup 4}He + {sup 209}Bi reaction. The measured values of the cross section of {sup 209}Bi fission induced by {sup 6}He ions are much higher than the cross sections of fission induced by {alpha}-particles. It is found that the fission threshold for the {sup 6}He + {sup 209}Bi reaction is shifted as compared to that of the {sup 4}He + {sup 209}Bi reaction. Various factors that can be responsible for the observed peculiarities in the {sup 209}Bi fission induced by the {sup 6}He ions are analyzed. 25 refs., 5 figs.

  15. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  16. Fission Cross Sections and Fission-Fragment Mass Yields via the Surrogate Reaction Method

    SciTech Connect

    Jurado, B.; Kessedjian, G.; Aiche, M.; Barreau, G.; Bidaud, A.; Czajkowski, S.; Dassie, D.; Haas, B.; Mathieu, L.; Osmanov, B.; Ahmad, I.

    2008-04-17

    The surrogate reaction method is a powerful tool to infer neutron-induced data of short-lived nuclei. After a short overview of the experimental techniques employed in the present surrogate experiments, we will concentrate on a recent measurement to determine neutron-induced fission cross sections for the actinides {sup 242,243}Cm and {sup 241}Am. The latest direct neutron-induced measurement for the {sup 243}Cm fission cross section is questioned by our results, since there are differences of more than 60% in the 0.7 to 7 MeV neutron energy range. Our experimental set-up has also enabled us to measure for the first time the fission fragment ''pseudo-mass'' distributions of {sup 243,244,245}Cm and {sup 242}Am compound nuclei in the excitation energy range from a few MeV to about 25 MeV.

  17. Incorporation of a tilting coordinate into the multidimensional Langevin dynamics of heavy-ion-induced fission: Analysis of experimental data from fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Ryabov, E. G.; Gegechkori, A. E.; Anischenko, Yu. A.; Adeev, G. D.

    2014-01-01

    A four-dimensional dynamical model was developed and applied to study fission characteristics in a wide range of a fissility parameter. Three collective shape coordinates and the K coordinate were considered dynamically from the ground-state deformation to the scission into fission fragments. A modified one-body mechanism for nuclear dissipation with a reduction coefficient ks of the contribution from a "wall" formula has been used in the study. The inclusion of the K coordinate in the dynamical consideration and use of the "chaos-weighted wall formula" with a deformation-dependent scaling factor ks(q1) lead to fairly good reproduction of the variances of the fission-fragment mass distribution and the prescission neutron multiplicity for a number of fissioning compound nuclei in a wide fissility range. The four-dimensional dynamical calculations describe better experimental prescission neutron multiplicity and variances of fission-fragment mass distribution for heaviest nuclei with respect to a three-dimensional dynamical model, where the K coordinate is assumed to be equal to zero. The estimate of a dissipation coefficient for the orientation degree of freedom, γK≃0.077 (MeVzs)-1/2, is good for heavy nuclei and a larger value of γK≃0.2 (MeVzs)-1/2 is needed for nuclei with mass ACN ≃ 200.

  18. Abrasion fission reactions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Bowry, Michael

    2016-09-01

    In-flight fission of 0.3-1.0 GeV A uranium beams at GSI Helmholtz Center for Heavy Ion Research and RIKEN Radioactive Isotope Beam Factory have demonstrated that the yield of fission fragments is naturally attuned to the N, Z and excitation energy of the projectile prefragments formed in peripheral nuclear collisions. Similar measurements at intermediate energies (less than 0.1 GeV A) are scarce despite the potential proximity to the threshold of limiting fragmentation proposed by Benecke et al. and may provide a sensitive probe of prefragment formation. Cross section measurements spanning 20 different isotopic chains from nickel to silver are presented following in-flight fission reactions of an 80 MeV A uranium-238 beam on a diamond active target at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (East Lansing, USA). Fission products were identified on an event-by-event basis by correlating time-of-flight and energy-loss measurements in the S800 spectrograph with in-flight gamma-decays reconstructed by the Gamma-Ray Energy Tracking Array (GRETINA) in the rest frame of the projectile. Transmission through the S800 has been determined using state-of-the-art simulations developed in the LISE + + code. et al. A full author list is available on request.

  19. γ-ray studies of the fission of 238U induced by 12C, spectroscopy and fission dynamics

    NASA Astrophysics Data System (ADS)

    Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Theisen, Ch.; Barreau, G.; Doan, T. P.; Aiche, M.; Aleonard, M. M.; Chemin, J. F.; Scheurer, J. N.; Belier, G.; Meot, V.; Ethvignot, Th.; Durell, J.; Grimwood, D.; Phillips, W. R.; Roach, A.; Smith, A. G.; Varley, B. J.; Deloncle, I.; Porquet, M. G.; Astier, A.; Perries, S.; Redon, N.

    1998-10-01

    Fission studies have been known for a long time to provide neutron-rich nuclei in various states of excitation energy, spin and deformation. Although many studies have been performed concerning fission fragments from spontaneous fission and neutron induced fission, a renewed interest in fission-fragment spectroscopy has occurred with the elaboration of large Ge detector arrays such as EUROBALL. We have recently performed an experiment with EUROBALL III using SAPhIR; a fission-fragment detector made from photovoltaic cells. The compact and versatile geometry of SAPhIR allows it to be installed inside the γ-ray detector, and to obtain additional information from the fission process as well as a timing reference. Neutron-rich nuclei have been populated in the fusion-fission reaction 238U+12C leading to the compound nucleus 250Cf. First results of this experiment are presented.

  20. Neutron induced capture and fission discrimination using calorimetric shape decomposition

    NASA Astrophysics Data System (ADS)

    Carrapiço, C.; Berthoumieux, E.; Dridi, W.; Gonçalves, I. F.; Gunsing, F.; Lampoudis, C.; Vaz, P.; n TOF Collaboration

    2013-03-01

    The neutron capture and fission cross-sections of 233U have been measured at the neutron time-of-flight facility n_TOF at CERN in the energy range from 1 eV to 1 keV using a high performance 4π BaF2 Total Absorption Calorimeter (TAC) as a detection device. In order to separate the contributions of neutron capture and neutron induced fission in the TAC, a methodology called Calorimetric Shape Decomposition (CSD) was developed. The CSD methodology is based on the study of the TAC's energy response for all competing reactions, allowing to discriminate between γ s originating from neutron induced fission and those from neutron capture reactions without the need for fission tagging or any additional detection system. In this article, the concept behind the CSD is explained in detail together with the necessary analysis to obtain the TAC's response to neutron capture and neutron induced fission. The discrimination between capture and fission contributions is shown for several neutron energies. A comparison between the 233U neutron capture and fission yield extraction with ENDF/B-VII v1. library data is also provided.

  1. Angular momentum effects in fusion-fission and fusion-evaporation reactions

    SciTech Connect

    Plasil, F.

    1980-01-01

    The study of heavy-ion fusion reactions is complicated by the possible contributions of several mechanisms. The various types of heavy-ion-induced fission are discussed. Then compound-nucleus fission is considered with reference to fission barriers deduced from heavy-ion-induced fission. Next, the problems associated with measured values of evaporation-residue cross sections and the angular momentum dependence of incomplete fusion are examined. Finally, the de-excitation of compound nuclei is again taken up, this time with reference to the greatly enhanced ..cap alpha.. emission predicted on the basis of the rotating liquid drop model. 24 figures. (RWR)

  2. Measurement of fission cross section for 232Th (n,f) 131 ZX ( Z = 50 , 51, 52, 53) reaction induced by neutrons around 14 MeV

    NASA Astrophysics Data System (ADS)

    Lan, Chang-lin; Qiu, Yi-jia; Wang, Qiang; Zhang, Zheng-wei; Zhang, Qian; Tan, Jun-cai; Lai, Cai-feng; Fang, Kai-hong

    2017-06-01

    The fission cross sections of 232Th (n,f) 131m, gSn , 232Th (n,f) 131Sb , 232Th (n,f) 131m, gTe , 232Th (n,f) 131I fission reactions induced by 14MeV neutrons were measured precisely with the neutron activation technique. The neutron flux was monitored by accompanying α particle in the irradiation and the neutron energies were determined by the cross section ratio of 90Zr (n,2n) 89Zr to 93Nb (n,2n) 92mNb reaction. The values of the cross sections of 232Th (n,f) 131m, gSn were analyzed, and the cross sections of 232Th (n,f) 131Sb were deduced to be 6.5± 0.7 , 6.3± 0.6 , 6.1± 0.6 mb at 14.1± 0.3 , 14.5± 0.3 and 14.8± 0.3 MeV, respectively. The values of the cross sections of 232Th (n,f) 131gTe were deduced to be 1.8± 0.1 , 1.5± 0.1 and 1.4± 0.1 mb at 14.1± 0.3 , 14.5± 0.3 and 14.8± 0.3 MeV, respectively. The values of the cross sections of 232Th (n,f) 131I were given as 1.8± 0.2 , 1.6± 0.2 , 1.5± 0.1 mb at 14.1± 0.3 , 14.5± 0.3 and 14.8± 0.3 MeV, respectively.

  3. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  4. Fission induced by nucleons at intermediate energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2015-01-01

    Monte Carlo calculations of fission of actinides and pre-actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with two different evaporation-fission codes, GEMINI++ and ABLA07. In order to reproduce experimental fission cross sections, model parameters are usually adjusted on available (p , f) cross sections and used to predict (n , f) cross sections for the same isotopes.

  5. Fission Reaction Event Yield Algorithm FREYA 2.0.2

    DOE PAGES

    Verbeke, J. M.; Randrup, J.; Vogt, R.

    2017-09-01

    The purpose of this paper is to present the main differences between FREYA versions 1.0 and 2.0.2. FREYA (Fission Reaction Event Yield Algorithm) is a fission event generator which models complete fission events. As such, it automatically includes fluctuations as well as correlations between observables, resulting from conservation of energy and momentum. The main differences between the two versions are: additional fissionable isotopes, angular momentum conservation, Giant Dipole Resonance form factor for the statistical emission of photons, improved treatment of fission photon emission using RIPL database, and dependence on the incident neutron direction. FREYA 2.0.2 has been integrated into themore » LLNL Fission Library 2.0.2, which has itself been integrated into MCNP6.2, TRIPOLI-4.10, and can be called from Geant4.10.« less

  6. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    NASA Astrophysics Data System (ADS)

    Kaplan, Abdullah; Capali, Veli; Ozdogan, Hasan

    2015-07-01

    Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi) due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS). In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f), (γ,f), (p,f), (n,f) and (3He,f) reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  7. Experimental fission study using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-09-01

    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.

  8. 231Pa and 233Pa Neutron-Induced Fission Data Analysis

    SciTech Connect

    Maslov, V.M.; Tetereva, N.A.; Baba, M.; Hasegawa, A.; Kornilov, N.V.; Kagalenko, A.B.

    2005-05-24

    The 231Pa and 233Pa neutron-induced fission cross-section database is analyzed within the Hauser-Feshbach approach. The consistency of neutron-induced fission cross-section data and data extracted from transfer reactions is investigated. The fission probabilities of Pa, fissioning in 231,233Pa(n,nf) reactions, are defined by fitting (3He,d) or (3He,t) transfer-reaction data. The present estimate of the 233Pa(n,f) fission cross section above the emissive fission threshold is supported by smooth level-density parameter systematics, validated in the case of the 231Pa(n,f) data description up to En =20 MeV.

  9. Prompt Emission in Fission Induced with Fast Neutrons

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  10. Fission Reaction Event Yield Algorithm, FREYA - For event-by-event simulation of fission

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Randrup, J.; Vogt, R.

    2015-06-01

    From nuclear materials accountability to detection of special nuclear material, SNM, the need for better modeling of fission has grown over the past decades. Current radiation transport codes compute average quantities with great accuracy and performance, but performance and averaging come at the price of limited interaction-by-interaction modeling. For fission applications, these codes often lack the capability of modeling interactions exactly: energy is not conserved, energies of emitted particles are uncorrelated, prompt fission neutron and photon multiplicities are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g. the neutron multiplicity) and correlations between neutrons and photons. The new computational model, FREYA (Fission Reaction Event Yield Algorithm), aims to meet this need by modeling complete fission events. Thus it automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum. FREYA has been integrated into the LLNL Fission Library, and will soon be part of MCNPX2.7.0, MCNP6, TRIPOLI-4.9, and Geant4.10.

  11. Fission Mode Influence on Prompt Neutrons and γ-rays Emitted in the Reaction 239Pu(nth,f)

    NASA Astrophysics Data System (ADS)

    Serot, O.; Litaize, O.; Regnier, D.

    Recently, a Monte-Carlo code, which simulates the fission fragment de-excitation process, has been developed at CEA- Cadarache. Our aim is to get a tool capable to predict spectra and multiplicities of prompt particles (neutron and gamma) and to investigate possible correlations between fission observables. One of the main challenges is to define properly the share of the available excitation energy at scission between the two nascent fission fragments. Initially, after the full acceleration of the fission fragments, these excitation energies were treated within a Fermi-gas approximation in aT2 (where a and T stand for the level density parameter and the nuclear temperature) and a mass dependent law of the temperature ratio (RT=TL/TH, with TL and TH the temperature of the light and heavy fragment) has been proposed. With this RT-law, the main fission observables of the 252Cf(sf) could be reproduced. Here, in order to take into account the fission modes by which the fissioning nucleus undergoes to fission, we have adopted a specific RT-law for each fission mode. For actinides, the main fission modes are called Standard I, Standard II and Super Long (following Brosa's terminology). This new procedure has been applied in the case of the thermal neutron induced fission of 239Pu, reaction for which fission modes are rather well known.

  12. Reaction rate calibration techniques at ZPPR for /sup 239/Pu fission, /sup 235/U fission, /sup 238/U fission, and /sup 238/U capture

    SciTech Connect

    Brumbach, S.B.; Maddison, D.W.

    1982-06-10

    Reaction-rate calibration techniques used at ZPPR are described for /sup 239/Pu fission, /sup 235/U fission, /sup 238/U fission and /sup 238/U capture. In addition to these absolute reaction rates, calibration techniques are described for fission-rate ratios and the ratio of /sup 238/U capture to /sup 239/U capture to /sup 239/Pu fission. Uncertainty estimates are presented for all calibrations. Intercomparison measurements are reported which support the validity of the calibration techniques and their estimated uncertainties.

  13. Microscopic Calculation of Fission Fragment Energies for the 239Pu(nth,f) Reaction

    SciTech Connect

    Younes, W; Gogny, D

    2011-10-03

    We calculate the total kinetic and excitation energies of fragments produced in the thermal-induced fission of {sup 239}Pu. This result is a proof-of-principle demonstration for a microscopic approach to the calculation of fission-fragment observables for applied data needs. In addition, the calculations highlight the application of a fully quantum mechanical description of scission, and the importance of exploring scission configurations as a function of the moments of the fragments, rather than through global constraints on the moments of the fissioning nucleus. Using a static microscopic calculation of configurations at and near scission, we have identified fission fragments for the {sup 239}Pu (n{sub th}, f) reaction and extracted their total kinetic and excitation energies. Comparison with data shows very good overall agreement between theory and experiment. Beyond their success as a proof of principle, these calculations also highlight the importance of local constraints on the fragments themselves in microscopic calculations.

  14. Fission dynamics within time-dependent Hartree-Fock. II. Boost-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2016-01-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe induced fission processes, using quadrupole boosts in the nuclide 240Pu as an example. Methods: Following upon the work presented in Goddard et al. [Phys. Rev. C 92, 054610 (2015)], 10.1103/PhysRevC.92.054610, quadrupole-constrained Hartree-Fock calculations are used to create a potential energy surface. An isomeric state and a state beyond the second barrier peak are excited by means of instantaneous as well as temporally extended gauge boosts with quadrupole shapes. The subsequent deexcitation is studied in a time-dependent Hartree-Fock simulation, with emphasis on fissioned final states. The corresponding fission fragment mass numbers are studied. Results: In general, the energy deposited by the quadrupole boost is quickly absorbed by the nucleus. In instantaneous boosts, this leads to fast shape rearrangements and violent dynamics that can ultimately lead to fission. This is a qualitatively different process than the deformation-induced fission. Boosts induced within a finite time window excite the system in a relatively gentler way and do induce fission but with a smaller energy deposition. Conclusions: The fission products obtained using boost-induced fission in time-dependent Hartree-Fock are more asymmetric than the fragments obtained in deformation-induced fission or the corresponding adiabatic approaches.

  15. Simultaneous measurement of neutron-induced fission and capture cross sections for 241Am at neutron energies below fission threshold

    NASA Astrophysics Data System (ADS)

    Hirose, K.; Nishio, K.; Makii, H.; Nishinaka, I.; Ota, S.; Nagayama, T.; Tamura, N.; Goto, S.; Andreyev, A. N.; Vermeulen, M. J.; Gillespie, S.; Barton, C.; Kimura, A.; Harada, H.; Meigo, S.; Chiba, S.; Ohtsuki, T.

    2017-06-01

    Fission and capture reactions were simultaneously measured in the neutron-induced reactions of 241Am at the spallation neutron facility of the Japan Proton Accelerator Research Complex (J-PARC). Data for the neutron energy range of En=0.1-20 eV were taken with the TOF method. The fission events were observed by detecting prompt neutrons accompanied by fission using liquid organic scintillators. The capture reaction was measured by detecting γ rays emitted in the deexcitation of the compound nuclei using the same detectors, where the prompt fission neutrons and capture γ rays were separated by a pulse shape analysis. The cross sections were obtained by normalizing the relative yields at the first resonance to evaluations or other experimental data. The ratio of the fission to capture cross sections at each resonance is compared with those from an evaluated nuclear data library and other experimental data. Some differences were found between the present values and the library/literature values at several resonances.

  16. Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.; Knoll, A.

    2014-11-01

    Eighty years after its experimental discovery, a description of induced nuclear fission based solely on the interactions between neutrons and protons and quantum many-body methods still poses formidable challenges. The goal of this paper is to contribute to the development of a predictive microscopic framework for the accurate calculation of static properties of fission fragments for hot fission and thermal or slow neutrons. To this end, we focus on the 239Pu(n ,f ) reaction and employ nuclear density functional theory with Skyrme energy densities. Potential energy surfaces are computed at the Hartree-Fock-Bogoliubov approximation with up to five collective variables. We find that the triaxial degree of freedom plays an important role, both near the fission barrier and at scission. The impact of the parametrization of the Skyrme energy density and the role of pairing correlations on deformation properties from the ground state up to scission are also quantified. We introduce a general template for the quantitative description of fission fragment properties. It is based on the careful analysis of scission configurations, using both advanced topological methods and recently proposed quantum many-body techniques. We conclude that an accurate prediction of fission fragment properties at low incident neutron energies, although technologically demanding, should be within the reach of current nuclear density functional theory.

  17. Protactinium neutron-induced fission up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Maslov, V.

    2010-03-01

    The theoretical evaluation of 230-233Pa(n,F) cross sections is based on direct data, 230-234Pa fission probabilities and ratios of fission probabilities in first-chance and emissive fission domains, surrogate for neutroninduced fission. First chance fission cross sections trends of Pa are based on consistent description of 232Th(n,F), 232Th(n,2n) and 238U(n,F), 238U(n,xn) data, supported by the ratio surrogate data by Burke et al., 2006, for the 237U(n,F) reaction. Ratio surrogate data on fission probabilities of 232Th(6 Li,4 He)234Pa and 232 Th(6 Li,d)236U by Nayak et al., 2008, support the predicted 233Pa(n, F) cross section at En=11.5-16.5 MeV. The predicted trends of 230-232Pa(n, F) cross section up to En=20 MeV, are consistent with fissilities of Pa nuclides, extracted by 232Th(p,F) (Isaev et al., 2008) and 232Th(p,3n) (Morgenstern et al., 2008) data analysis. The excitation energy and nucleon composition dependence of the transition from asymmetric to symmetric scission for fission observables of Pa nuclei is defined by analysis of p-induced fission of 232Th at Ep=1-200 MeV. Predominantly symmetric fission in 232Th(p,F) at En( p)=200 MeV as revealed by experimental branching ratios (Dujvestijn et al., 1999) is reproduced. Steep transition from asymmetric to symmetric fission with increase of nucleon incident energy is due to fission of neutron-deficient Pa (A≤229) nuclei. A structure of the potential energy surface (a drop of f f symmetric and asymmetric fission barriers difierence (EfSYM - EfASYM) from ~3.5 MeV to ~1 MeV) of N-deficient Pa nuclides (A≤226) and available phase space at outer fission saddles, are shown to be responsible for the sharp increase with En( p) of the symmetric fission component contribution for 232Th(p,F) and 230-233 Pa(n, F) reactions. That is a strong evidence of emissive fission nature of moderately excited Pa nuclides, reliably quantified only up to En( p)~20(30) MeV. Predicted fission cross section of 232Pa(n,F) coincides

  18. Membrane fission reactions of the mammalian ESCRT pathway.

    PubMed

    McCullough, John; Colf, Leremy A; Sundquist, Wesley I

    2013-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.

  19. Membrane Fission Reactions of the Mammalian ESCRT Pathway

    PubMed Central

    McCullough, John; Colf, Leremy A.; Sundquist, Wesley I.

    2014-01-01

    The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission. PMID:23527693

  20. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers

    NASA Astrophysics Data System (ADS)

    Zhang, Guojie; Müller, Marcus

    2017-08-01

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  1. Rupturing the hemi-fission intermediate in membrane fission under tension: Reaction coordinates, kinetic pathways, and free-energy barriers.

    PubMed

    Zhang, Guojie; Müller, Marcus

    2017-08-14

    Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.

  2. MCNP6 updated proton-induced fission cross section calculations at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kerby, Leslie; Mashnik, Stepan; Mulvaney, John

    2017-09-01

    MCNP6 has been Validated and Verified against intermediate- and high-energy fission cross-section experimental data. Recent improvements contained in CEM03.03F and MCNP6-F to consider precompound emission of heavy clusters up to 28Mg has necessitated a re-calculation of fission cross sections. With our re-calculation, we find that CEM03.03F, which is used in MCNP6-F, predicts fission cross sections in good agreement with available experimental data for reactions induced by protons on both subactinide and actinide nuclei at incident energies from several tens of MeV to several GeV.

  3. Event-by-Event Fission Modeling of Prompt Neutrons and Photons from Neutron-Induced and Spontaneous Fission with FREYA

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2013-04-01

    The event-by-event fission Monte Carlo code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events. Using FREYA, it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. We can therefore extract any desired correlation observables. Concentrating on ^239Pu(n,f), ^240Pu(sf) and ^252Cf(sf), we compare our FREYA results with available data on prompt neutron and photon emission and present predictions for novel fission observables that could be measured with modern detectors.

  4. Mitochondrial Fission Inhibitors Suppress Endothelin-1-Induced Artery Constriction.

    PubMed

    Chen, Chang; Gao, Jin-Lai; Liu, Ming-Yu; Li, Shan-Liang; Xuan, Xiu-Chen; Zhang, Xin-Zi; Zhang, Xi-Yue; Wei, Yuan-Yuan; Zhen, Chang-Lin; Jin, Jing; Shen, Xin; Dong, De-Li

    2017-07-27

    Endothelin-1 is implicated in the pathogenesis of hypertension, but the underlying mechanisms remained elusive. Our previous study found that inhibition of mitochondrial fission of smooth muscle cells suppressed phenylephrine- and high K+-induced artery constriction. Here, we studied the effects of mitochondrial fission inhibitors on endothelin-1-induced vasoconstriction. The tension of rat mesenteric arteries and thoracic aorta was measured by using a multi-wire myograph system. Mitochondrial morphology of aortic smooth muscle cells was observed by using transmission electron microscopy. Dynamin-related protein-1 selective inhibitor mdivi-1 relaxed endothelin-1-induced constriction, and mdivi-1 pre-treatment prevented endothelin-1-induced constriction of rat mesenteric arteries with intact and denuded endothelium. Mdivi-1 had a similar inhibitory effect on rat thoracic aorta. Another mitochondrial fission inhibitor dynasore showed similar effects as mdivi-1 in rat mesenteric arteries. Mdivi-1 inhibited endothelin-1-induced increase of mitochondrial fission in smooth muscle cells of rat aorta. Rho-associated protein kinase inhibitor Y-27632 which relaxed endothelin-1-induced vasoconstriction inhibited endothelin-1-induced mitochondrial fission in smooth muscle cells of rat aorta. Endothelin-1 increases mitochondrial fission in vascular smooth muscle cells, and mitochondrial fission inhibitors suppress endothelin-1-induced vasoconstriction. © 2017 The Author(s). Published by S. Karger AG, Basel.

  5. Phenomenological analysis of fission induced by high-energy protons

    NASA Astrophysics Data System (ADS)

    Simbel, M. H.

    1989-06-01

    High-energy proton induced fission is studied in the framework of a two-step model. In the first step, the projectile penetrates the target nucleus, knocks out few nucleons and leaves the residual nucleus with a spectrum of excitation energies depending upon the number of projectile-nucleon collisions. This stage is described in terms of a simplified version of Glauber's multiple-scattering theory. The second stage in which the residual nucleus fissions, is treated by assuming phenomenological expressions for the dependence of the fission probability on excitation energy which take into account the onset of fragmentation at a certain “crack” energy. Comparison with experimental data suggests that high energy fission of heavy nuclei proceeds in a way similar to low-energy fission. Light nuclei, however, require a more violent fission mechanism.

  6. Heavy-ion versus 3He/4He fusion-fission reactions: Angular momentum dependence of dissipation in nuclear fission

    NASA Astrophysics Data System (ADS)

    Ye, W.

    2011-09-01

    The stochastic Langevin model is employed to study dissipation properties in fission in the 16O + 181Ta →197Tl system by analyzing prescission neutron yields measured in this reaction. It has been found that the 197Tl nuclei undergo fission that is not in accordance with the standard Bohr-Wheeler statistical theory. A detailed comparison with previously published work in which fission excitation functions measured in 3,4He + 197Au →200,201Tl are shown to be in excellent agreement with the fission width formula predicted by the traditional models of nuclear fission suggests that nuclear dissipation strength may have an angular momentum dependence in addition to the known deformation and temperature dependence. Implications for the basic understanding of the observed abnormal rise in prescission particles at high energy and the need for further experimental confirmations are discussed.

  7. Mass-asymmetric fission in the 40ca+142Nd reaction

    NASA Astrophysics Data System (ADS)

    Prasad, E.; Hinde, D. J.; Williams, E.; Dasgupta, M.; Carter, I. P.; Cook, K. J.; Jeung, D. Y.; Luong, D. H.; McNeil, S.; Palshetkar, C. S.; Rafferty, D. C.; Simenel, C.; Wakhle, A.; Ramachandran, K.; Khuyagbaatar, J.; Dullmann, Ch. E.; Lommel, B.; Kindler, B.

    2016-09-01

    Shell effects play a major role in fission. Mass-asymmetric fission observed in the spontaneous and low energy fission of actinide nuclei was explained by incorporating the fragment shell properties in liquid drop model. Asymmetric fission has also been observed in the low energy fission of neutron-deficient 180Hg nuclei in recent β-delayed fission experiments. This low-energy β-delayed fission has been explained in terms of strong shell effects in pre-scission configurations associated with the system after capture. Calculations predicted asymmetric fission for heavier Hg isotopes as well, at compound nuclear excitation energy as high as 40 MeV. To explore the evolution of fission fragment mass distribution as a function of neutron and proton numbers and also with excitation energy, fission fragment mass distributions have been measured for the 40Ca+142Nd reaction forming the compound nucleus 182Hg at energies around the capture barrier, using the Heavy Ion Accelerator Facility and CUBE spectrometer at the Australian National University. Mass-asymmetric fission is observed in this reaction at an excitation energy of 33.6 MeV. The results are consistent with the β-delayed fission measurements and indicate the presence of shell effects even at higher exciation energies.

  8. Prompt fission neutron spectra in fast-neutron-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Desai, V. V.; Nayak, B. K.; Saxena, A.; Suryanarayana, S. V.; Capote, R.

    2015-07-01

    Prompt fission neutron spectrum (PFNS) measurements for the neutron-induced fission of 238U are carried out at incident neutron energies of 2.0, 2.5, and 3.0 MeV, respectively. The time-of-flight technique is employed to determine the energy of fission neutrons. The prompt fission neutron energy spectra so obtained are analyzed using Watt parametrization to derive the neutron multiplicity and average prompt fission neutron energy. The present experimental PFNS data are compared with the evaluated spectra taken from the ENDF/B-VII.1 library and the predictive calculations carried out using the empire-3.2 (Malta) code with built-in Los Alamos (LA) and Kornilov PFNS models. The sensitivity of the empire-3.2 LA model-calculated PFNS to the nuclear level density parameter of the average fission fragment and to the total kinetic energy is investigated. empire-3.2 LA model PFNS calculations that use Madland 2006-recommended values [D. G. Madland, Nucl. Phys. A 772, 113 (2006), 10.1016/j.nuclphysa.2006.03.013] of the total kinetic energy and the level density parameter a =A /(10 ±0.5 ) compare very well to measured data at all incident neutron incident energies.

  9. Microsecond and nanosecond isomers populated in fission reactions

    SciTech Connect

    Jones, G. A.; Walker, P. M.; Podolyak, Zs.; Regan, P. H.; Williams, S. J.; Cullen, I. J.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.; Zhu, S.; Carroll, J. J.; Chakrawarthy, R. S.; Chowdhury, P.; Dracoulis, G. D.; Lane, G. J.; Hackman, G.

    2006-08-14

    Fusion-fission reactions were induced by bombarding a thick 27Al target with 178Hf projectiles at a laboratory energy of 1150 MeV using the ATLAS accelerator at Argonne National Laboratory. The subsequent {gamma}-ray decays were measured using the GAMMASPHERE germanium detector array. The beam was pulsed at two different ON/OFF cycles of 82.5/825 ns and 25/75 {mu}s in order to observe the {gamma} rays from the decay of isomeric states. In 121Sb 2721+{delta} keV, I{pi}=(25/2+) and 2434 keV, I{pi}=19/2- states have measured half-lives of T1/2=200(30) {mu}s and 8.2(2) ns respectively. The 2614+{delta} keV, I{pi}=(27/2+) and 2486 keV, I{pi}=19/2+ states in 123Sb have measured half-lives of T1/2=52(3) {mu}s and 7.9(4) ns respectively. The positive parity isomers in these nuclei correspond to a {pi}d5/2 or {pi}g7/2 configuration, in 121Sb and 123Sb respectively, coupled to aligned (h11/2)2 neutrons. The I{pi}=19/2- isomeric state in 121Sb is proposed to have a {nu}h11/2 x {nu}d3/2 x {pi}d5/2 configuration. A previously unobserved isomer has been identified in 99Mo at an energy of 3010 keV, decaying with T1/2=18(5) ns. This state is interpreted as an energetically favoured 3 quasi-particle alignment of {nu} ({sub d{sub 5/2}} {sup g{sub 7/2}}) x {pi}(g{sub 9/2}){sup 2} configuration which is observed systematically in the even-Z N=57 isotones.

  10. Description of induced nuclear fission with Skyrme energy functionals. II. Finite temperature effects

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.

    2015-03-01

    Understanding the mechanisms of induced nuclear fission for a broad range of neutron energies could help resolve fundamental science issues, such as the formation of elements in the universe, but could have also a large impact on societal applications in energy production or nuclear waste management. The goal of this paper is to set up the foundations of a microscopic theory to study the static aspects of induced fission as a function of the excitation energy of the incident neutron, from thermal to fast neutrons. To account for the high excitation energy of the compound nucleus, we employ a statistical approach based on finite temperature nuclear density functional theory with Skyrme energy densities, which we benchmark on the 239Pu(n ,f ) reaction. We compute the evolution of the least-energy fission pathway across multidimensional potential energy surfaces with up to five collective variables as a function of the nuclear temperature and predict the evolution of both the inner and the outer fission barriers as a function of the excitation energy of the compound nucleus. We show that the coupling to the continuum induced by the finite temperature is negligible in the range of neutron energies relevant for many applications of neutron-induced fission. We prove that the concept of quantum localization introduced recently can be extended to T >0 , and we apply the method to study the interaction energy and total kinetic energy of fission fragments as a function of the temperature for the most probable fission. While large uncertainties in theoretical modeling remain, we conclude that a finite temperature nuclear density functional may provide a useful framework to obtain accurate predictions of fission fragment properties.

  11. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  12. Evaluation of the Prompt Fission Neutron Spectrum of Thermal-neutron Induced Fission in U-235

    NASA Astrophysics Data System (ADS)

    Trkov, A.; Capote, R.

    A new evaluation of the prompt fission neutron spectra (PFNS) for the neutron-induced fission of the U-235 nucleus is presented. By using differential data as "shape data" good consistency was achieved between selected sets of differential data. A fit of differential PFNS data with the generalised least-squares method using the GANDR code allowed the estimation of the uncertainties and correlations. All experimental data were consistently fitted in a model independent way giving a PFNS average energy of2.000 MeV with an estimated 9 keV uncertainty.

  13. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  14. Effect of projectile breakup on fission-fragment mass distributions in the Li,76 + 238U reactions

    NASA Astrophysics Data System (ADS)

    Santra, S.; Pal, A.; Rath, P. K.; Nayak, B. K.; Singh, N. L.; Chattopadhyay, D.; Behera, B. R.; Singh, Varinderjit; Jhingan, A.; Sugathan, P.; Golda, K. S.; Sodaye, S.; Appannababu, S.; Prasad, E.; Kailas, S.

    2014-12-01

    Background: Detailed studies on the effect of the breakup of weakly bound projectile on fission are scarce. Distinguishing the events of compound nuclear (CN) fission from the breakup or transfer induced fission to understand the properties of measured fission fragments is difficult but desirable. Purpose: To investigate the effect of projectile breakup and its breakup threshold energy on fission-fragment (FF) mass distributions and folding angle distributions for Li,76 + 238U reactions and find out the differences in the properties of the fission events produced by complete fusion (CF) from the total fusion (TF). Methods: The FF mass and folding angle distributions have been measured at energies around the Coulomb barrier using gas detectors by time-of-flight technique. The results are compared with the ones involving tightly bound projectiles as well as predictions from systematics to bring out the effect of the breakup. Results: A sharp increase in the peak to valley (P:V) ratio of FF mass distribution with the decrease in bombarding energy for Li,76 + 238U reactions is observed when all events are assumed to be CN fission. As the beam energy falls through the fusion barrier, the full width half maximum (FWHM) of the FF folding angle distribution is found to increase at sub-barrier energies, unlike the reactions involving tightly bound projectiles where a linear decrease in FWHM is expected. By selecting pure CN events from the scatter plot of the velocity components of the composite nuclei, the energy dependence of the deduced FWHM is found to be consistent with the ones involving tightly bound projectiles. Similarly, the P:V ratio obtained for the selected CN events is consistent with the theoretical calculations as well as the experimental data for the proton induced reaction forming similar CN. Conclusions: The presence of projectile breakup induced fission and a relatively low breakup threshold for 6Li compared to 7Li explains the observed differences in

  15. Single particle fluorescence burst analysis of epsin induced membrane fission.

    PubMed

    Brooks, Arielle; Shoup, Daniel; Kustigian, Lauren; Puchalla, Jason; Carr, Chavela M; Rye, Hays S

    2015-01-01

    Vital cellular processes, from cell growth to synaptic transmission, rely on membrane-bounded carriers and vesicles to transport molecular cargo to and from specific intracellular compartments throughout the cell. Compartment-specific proteins are required for the final step, membrane fission, which releases the transport carrier from the intracellular compartment. The role of fission proteins, especially at intracellular locations and in non-neuronal cells, while informed by the dynamin-1 paradigm, remains to be resolved. In this study, we introduce a highly sensitive approach for the identification and analysis of membrane fission machinery, called burst analysis spectroscopy (BAS). BAS is a single particle, free-solution approach, well suited for quantitative measurements of membrane dynamics. Here, we use BAS to analyze membrane fission induced by the potent, fission-active ENTH domain of epsin. Using this method, we obtained temperature-dependent, time-resolved measurements of liposome size and concentration changes, even at sub-micromolar concentration of the epsin ENTH domain. We also uncovered, at 37°C, fission activity for the full-length epsin protein, supporting the argument that the membrane-fission activity observed with the ENTH domain represents a native function of the full-length epsin protein.

  16. Isotopic resolution of fission fragments from 238U+12C transfer and fusion reactions

    NASA Astrophysics Data System (ADS)

    Caamaño, M.; Rejmund, F.; Derkx, X.; Schmidt, K.-H.; Andouin, L.; Bacri, C.-O.; Barreau, G.; Benlliure, J.; Casarejos, E.; Fernández-Domínguez, B.; Gaudefroy, L.; Golabek, C.; Jurado, B.; Lemasson, A.; Navin, A.; Rejmund, M.; Roger, T.; Shrivastava, A.; Schmitt, C.; Taieb, J.

    2009-10-01

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238U beam and a 12C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments.

  17. Fission fragment mass distributions in reactions forming the {sup 213}Fr compound nucleus

    SciTech Connect

    Appannababu, S.; Mukherjee, S.; Deshmukh, N. N.; Rath, P. K.; Singh, N. L.; Nayak, B. K.; Thomas, R. G.; Choudhury, R. K.; Sugathan, P.; Jhingan, A.; Negi, D.; Prasad, E.

    2011-03-15

    The fission fragment mass angle correlations and mass ratio distributions have been investigated for the two systems {sup 16}O+{sup 197}Au and {sup 27}Al+{sup 186}W, leading to the same compound nucleus {sup 213}Fr around the Coulomb barrier energies. Systematic analysis of the variance of the mass distributions as a function of temperature and angular momentum suggests true compound nuclear fission for both the reactions, indicating the absence of nonequilibrium fission processes.

  18. Fission fragment yield distribution in the heavy-mass region from the 239Pu (nth,f ) reaction

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Biswas, D. C.; Serot, O.; Bernard, D.; Litaize, O.; Julien-Laferrière, S.; Chebboubi, A.; Kessedjian, G.; Sage, C.; Blanc, A.; Faust, H.; Köster, U.; Ebran, A.; Mathieu, L.; Letourneau, A.; Materna, T.; Panebianco, S.

    2017-07-01

    The fission fragment yield distribution has been measured in the 239Pu(nth,f ) reaction in the mass region of A =126 to 150 using the Lohengrin recoil-mass spectrometer. Three independent experimental campaigns were performed, allowing a significant reduction of the uncertainties compared to evaluated nuclear data libraries. The long-standing discrepancy of around 10% for the relative yield of A =134 reported in JEF-2.2 and JEFF-3.1.1 data libraries is finally solved. Moreover, the measured mass distribution in thermal neutron-induced fission does not show any significant dip around the shell closure (A =136 ) as seen in heavy-ion fission data of 208Pb(18O, f ) and 238U(18O, f ) reactions. Lastly, comparisons between our experimental data and the predictions from Monte Carlo codes (gef and fifrelin) are presented and discussed.

  19. Energy dependence of the prompt γ -ray emission from the (d ,p ) -induced fission of *234U and *240Pu

    NASA Astrophysics Data System (ADS)

    Rose, S. J.; Zeiser, F.; Wilson, J. N.; Oberstedt, A.; Oberstedt, S.; Siem, S.; Tveten, G. M.; Bernstein, L. A.; Bleuel, D. L.; Brown, J. A.; Crespo Campo, L.; Giacoppo, F.; Görgen, A.; Guttormsen, M.; Hadyńska, K.; Hafreager, A.; Hagen, T. W.; Klintefjord, M.; Laplace, T. A.; Larsen, A. C.; Renstrøm, T.; Sahin, E.; Schmitt, C.; Tornyi, T. G.; Wiedeking, M.

    2017-07-01

    Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ -ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ -ray spectra were measured, and γ -ray multiplicities and average and total γ energies per fission were determined for the 233U(d ,p f ) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d ,p f ) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energy above the fission barrier, despite the fact that an extra ˜5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ -ray emission with the fission model code gef. Further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d ,p ) reaction.

  20. On the role of energy separated in fission process, excitation energy and reaction channels effects in the isomeric ratios of fission product 135Xe in photofission of actinide elements

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Mishinski, G. V.; Zhemenik, V. I.

    2016-07-01

    In this work we present the isomeric ratio of fission product 135Xe in the photo-fission of actinide elements 232Th, 233U and 237Np induced by end-point bremsstrahlung energies of 13.5, 23.5 and 25.0 MeV which were determined by the method of inert gaseous flow. The data were analyzed, discussed and compared with the similar data from literature to examine the role of energy separated in fission process, excitation energy and reaction channels effects.

  1. Fission induced swelling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Jeong, G. Y.; Park, J. M.; Robinson, A. B.

    2015-10-01

    Fission-induced swelling of U-Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U-Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U-Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U-Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U-Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  2. Developments for neutron-induced fission at IGISOL-4

    NASA Astrophysics Data System (ADS)

    Gorelov, D.; Penttilä, H.; Al-Adili, A.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Kolhinen, V. S.; Koponen, J.; Lantz, M.; Mattera, A.; Moore, I. D.; Pohjalainen, I.; Pomp, S.; Rakopoulos, V.; Reinikainen, J.; Rinta-Antila, S.; Simutkin, V.; Solders, A.; Voss, A.; Äystö, J.

    2016-06-01

    At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at different angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with preliminary results from the first neutron-induced fission experiment at IGISOL-4 are presented in this report.

  3. Prompt Gamma Emission in Resonance Neutron Induced Fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ruskov, I.; Kopatch, Yu. N.; Panteleev, Ts.; Skoy, V. R.; Shvetsov, V. N.; Dermendjiev, E.; Janeva, N.; Pikelner, L. B.; Grigoriev, Yu. V.; Mezentseva, Zh. V.; Ivanov, I.

    The scientific interest in the resonance neutron induced capture and fission reactions on 239Pu is continuously rising during the last decade. From a practical point of view, this is because more precise data on capture and fission cross sections, fission fragment mass and kinetic energy distributions, variation of prompt fission neutron and gamma yields in the resonance neutron region, are needed for the modelling of new generation nuclear power plants and for nuclear spent fuel and waste transmutation. From a heuristic and fundamental point of view, such a research improves our knowledge and understanding of the fission phenomena itself. To achieve these goals more powerful neutron sources and more precise fission product detectors have to be used. At the Joint Institute for Nuclear Research (JINR) Frank Laboratory of Neutron Physics (FLNP), where already half a century the thermal and resonance neutron induced nuclear reactions are studied, a new electron accelerator driven white spectrum pulsed neutron source IREN has been built and successfully tested. The improved characteristics of this facility, in comparison with those of the former pulse neutron fast reactor IBR-30, will allow measuring some of the neutron-nuclear reaction data with better precision and accuracy. A new experimental setup for detecting gamma rays (and neutrons) has been designed and is under construction. It will consist of 2 rings (arrays) of 12 NaI(Tl) detectors each (or 1 array of 24 detectors) with variable ring diameter and distance between both rings. Such a setup will make possible not only to measure the multiplicity, energy and angular anisotropy of prompt fission gammas, but also to separate the contribution of prompt fission neutrons by their longer time-of-flight from the fissile target to the detectors. The signals from all the 24 detectors will be recorded simultaneously in digitized form and will be stored on the hard disk of the personal computer for further off

  4. Investigation of the surrogate-reaction method via the simultaneous measurement of gamma-emission and fission probabilities

    NASA Astrophysics Data System (ADS)

    Jurado, B.; Marini, P.; Mathieu, L.; Aiche, M.; Czajkowski, S.; Tsekhanovich, I.; Audouin, L.; Boutoux, G.; Denis-Petit, D.; Guttormsen, M.; Kessedjian, G.; Lebois, M.; Méot, V.; Oberstedt, A.; Oberstedt, S.; Roig, O.; Sérot, O.; Tassan-Got, L.; Wilson, J. N.

    2017-09-01

    We present the results of two experiments where we have measured for the first time simultaneously the fission and gamma-decay probabilities induced by different surrogate reactions. In particular, we have investigated the 238U(d,p), 238U(3He,t) and 238U(3He,4He) reactions as surrogates for the neutron-induced n + 238U, n + 237Np and n + 236U reactions, respectively. In the region where gamma emission, neutron emission and fission compete, our results for the fission probabilities agree fairly well with the neutron-induced data, whereas our gamma-decay probabilities are significantly higher than the neutron-induced data. The interpretation of these results is not obvious and is discussed within the framework of the statistical model with preliminary results for calculated spin-parity distributions populated in surrogate reactions. We also present future plans for surrogate-reaction studies in inverse kinematics with radioactive-ion beams at storage rings.

  5. Measurements of charge distributions of the fragments in the low energy fission reaction

    NASA Astrophysics Data System (ADS)

    Wang, Taofeng; Han, Hongyin; Meng, Qinghua; Wang, Liming; Zhu, Liping; Xia, Haihong

    2013-01-01

    The measurement for charge distributions of fragments in spontaneous fission 252Cf has been performed by using a unique style of detector setup consisting of a typical grid ionization chamber and a ΔΕ-Ε particle telescope, in which a thin grid ionization chamber served as the ΔΕ-section and the E-section was an Au-Si surface barrier detector. The typical physical quantities of fragments, such as mass number and kinetic energies as well as the deposition in the gas ΔΕ detector and E detector were derived from the coincident measurement data. The charge distributions of the light fragments for the fixed mass number A2* and total kinetic energy (TKE) were obtained by the least-squares fits for the response functions of the ΔΕ detector with multi-Gaussian functions representing the different elements. The results of the charge distributions for some typical fragments are shown in this article which indicates that this detection setup has the charge distribution capability of Ζ:ΔΖ>40:1. The experimental method developed in this work for determining the charge distributions of fragments is expected to be employed in the neutron induced fissions of 232Th and 238U or other low energy fission reactions.

  6. Measurement of high-energy prompt gamma-rays from neutron induced fission of U-235

    NASA Astrophysics Data System (ADS)

    Makii, Hiroyuki; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Léguillon, Romain; Ogawa, Tatsuhiko; Soldner, Torsten; Hambsch, Franz-Josef; Astier, Alain; Pollitt, Andrew; Petrache, Costel; Tsekhanovich, Igor; Mathieu, Ludovic; Aïche, Mourad; Frost, Robert; Czajkowski, Serge; Guo, Song; Köster, Ulli

    2017-09-01

    We have developed a new setup to measure prompt γ-rays from the 235U(nth,f) reaction. The setup consists of two multi-wire proportional counters (MWPCs) to detect the fission fragments, two LaBr3(Ce) scintillators to measure the γ-rays. The highly efficient setup was installed at the PF1B beam line of the Institut Laue Langevin (ILL). We have successfully measured the γ-ray spectrum up to about 20 MeV for the fist time in neutron-induced fission.

  7. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, R; Randrup, J

    2007-12-13

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either deexcite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission prefragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  8. Event-by-Event Simulation of Induced Fission

    SciTech Connect

    Vogt, Ramona; Randrup, Joergen

    2008-04-17

    We are developing a novel code that treats induced fission by statistical (or Monte-Carlo) simulation of individual decay chains. After its initial excitation, the fissionable compound nucleus may either de-excite by evaporation or undergo binary fission into a large number of fission channels each with different energetics involving both energy dissipation and deformed scission pre-fragments. After separation and Coulomb acceleration, each fission fragment undergoes a succession of individual (neutron) evaporations, leading to two bound but still excited fission products (that may further decay electromagnetically and, ultimately, weakly), as well as typically several neutrons. (The inclusion of other possible ejectiles is planned.) This kind of approach makes it possible to study more detailed observables than could be addressed with previous treatments which have tended to focus on average quantities. In particular, any type of correlation observable can readily be extracted from a generated set of events. With a view towards making the code practically useful in a variety of applications, emphasis is being put on making it numerically efficient so that large event samples can be generated quickly. In its present form, the code can generate one million full events in about 12 seconds on a MacBook laptop computer. The development of this qualitatively new tool is still at an early stage and quantitative reproduction of existing data should not be expected until a number of detailed refinement have been implemented.

  9. Anomalies in the Charge Yields of Fission Fragments from the ^{238}U(n,f) Reaction.

    PubMed

    Wilson, J N; Lebois, M; Qi, L; Amador-Celdran, P; Bleuel, D; Briz, J A; Carroll, R; Catford, W; De Witte, H; Doherty, D T; Eloirdi, R; Georgiev, G; Gottardo, A; Goasduff, A; Hadyńska-Klęk, K; Hauschild, K; Hess, H; Ingeberg, V; Konstantinopoulos, T; Ljungvall, J; Lopez-Martens, A; Lorusso, G; Lozeva, R; Lutter, R; Marini, P; Matea, I; Materna, T; Mathieu, L; Oberstedt, A; Oberstedt, S; Panebianco, S; Podolyák, Zs; Porta, A; Regan, P H; Reiter, P; Rezynkina, K; Rose, S J; Sahin, E; Seidlitz, M; Serot, O; Shearman, R; Siebeck, B; Siem, S; Smith, A G; Tveten, G M; Verney, D; Warr, N; Zeiser, F; Zielinska, M

    2017-06-02

    Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

  10. Anomalies in the Charge Yields of Fission Fragments from the 238U (n ,f ) Reaction

    NASA Astrophysics Data System (ADS)

    Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; De Witte, H.; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyńska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyák, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.

    2017-06-01

    Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ -ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ -γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

  11. Towards an improved evaluation of neutron-induced fission cross sections on actinides

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Hilaire, S.; Koning, A. J.; Capote, R.

    2011-03-01

    Mean-field calculations can now provide all the nuclear ingredients required to describe the fission path from the equilibrium deformation up to the nuclear scission point. The information obtained from microscopic mean-field models has been included in the TALYS reaction code to improve the predictions of neutron-induced fission cross sections. The nuclear inputs concern not only the details of the energy surface along the fission path, but also the coherent estimate of the nuclear level density derived within the combinatorial approach on the basis of the same single-particle properties, in particular at the fission saddle points. The predictive power of such a microscopic approach is tested on the experimental data available for the uranium isotopic chain. It is also shown that the various inputs can be tuned to reproduce, at best, experimental data in one unique coherent framework, so that in a close future it should become possible to make, on the basis of such models, accurate fission-cross-section calculations and the corresponding estimates for nuclei, energy ranges, or reaction channels for which no data exist. Such model uncertainties are usually not taken into account in data evaluations.

  12. DEATH-STAR: Silicon and photovoltaic fission fragment detector arrays for light-ion induced fission correlation studies

    DOE PAGES

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; ...

    2017-02-20

    Here, the Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE–E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution ofmore » 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.« less

  13. DEATH-STAR: Silicon and Photovoltaic Fission Fragment Detector Arrays for Light-Ion Induced Fission Correlation Studies

    NASA Astrophysics Data System (ADS)

    Koglin, J. D.; Burke, J. T.; Fisher, S. E.; Jovanovic, I.

    2017-05-01

    The Direct Excitation Angular Tracking pHotovoltaic-Silicon Telescope ARray (DEATH-STAR) combines a series of 12 silicon detectors in a ΔE - E configuration for charged particle identification with a large-area array of 56 photovoltaic (solar) cells for detection of fission fragments. The combination of many scattering angles and fission fragment detectors allows for an angular-resolved tool to study reaction cross sections using the surrogate method, anisotropic fission distributions, and angular momentum transfers through stripping, transfer, inelastic scattering, and other direct nuclear reactions. The unique photovoltaic detectors efficiently detect fission fragments while being insensitive to light ions and have a timing resolution of 15.63±0.37 ns. Alpha particles are detected with a resolution of 35.5 keV 1σ at 7.9 MeV. Measured fission fragment angular distributions are also presented.

  14. Proton-induced fission of actinides at energies 26.5 and 62.9 MeV—Theoretical interpretation

    NASA Astrophysics Data System (ADS)

    Demetriou, P.; Keutgen, Th.; Prieels, R.; El Masri, Y.

    2011-10-01

    Fission properties of proton-induced fission on 232Th, 237Np, 238U, 239Pu and 241Am targets, measured at the Louvain-la-Neuve cyclotron facility at proton energies of 26.5 and 62.9 MeV, are compared with the predictions of the state-of-the-art nuclear reaction code TALYS. The sensitivity of the calculations to the input parameters of the code and possible improvements are discussed.

  15. Analytic computation of average energy of neutrons inducing fission

    SciTech Connect

    Clark, Alexander Rich

    2016-08-12

    The objective of this report is to describe how I analytically computed the average energy of neutrons that induce fission in the bare BeRP ball. The motivation of this report is to resolve a discrepancy between the average energy computed via the FMULT and F4/FM cards in MCNP6 by comparison to the analytic results.

  16. Mass yield distributions of fission products from photo-fission of 238U induced by 11.5-17.3 MeV bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Naik, H.; Carrel, Frédérick; Kim, G. N.; Laine, Frédéric; Sari, Adrien; Normand, S.; Goswami, A.

    2013-07-01

    The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of 238U have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley ( P/ V ratio, average light mass (< A L>) and heavy mass (< A H>) and average number of neutrons (< v>) in the bremsstrahlung-induced fission of 238U at different excitation energies were obtained from the mass yield data. From the present and literature data in the 238U ( γ, f ) and 238U ( n, f ) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the 238U ( γ, f ) reaction at various energies of the present work are double-humped, similar to those of the 238U ( n, f ) reaction of comparable excitation energy. ii) The yields of fission products for A = 133-134, A = 138-140, and A = 143-144 and their complementary products in the 238U ( γ, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133-134 and their complementary products are slightly higher in the 238U ( γ, f ) than in the 238U ( n, f ) , whereas for A = 138-140 and 143-144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley ( P/ V ratio in the 238U ( γ, f) reaction is similar to the 238U ( n, f) reaction. v) The increase of < v> with excitation energy is also similar between the 238U ( γ, f ) and 238U ( n, f) reactions. However, it is surprising to see that the < A L> and < A H> values with excitation energy behave entirely differently from the 238U ( γ, f ) and 238U ( n, f ) reactions.

  17. Prompt particle emission in fission - news on systematics and predictions for fission induced by fast neutrons

    NASA Astrophysics Data System (ADS)

    Oberstedt, Andreas; Oberstedt, Stephan

    2017-09-01

    As a consequence of recent experimental results, previously established systematics for prompt fission γ-ray spectra (PFGS) characteristics as function of both atomic and mass number of the compound system have been revised. Although based on purely empirical dependences, it allows estimating average gamma-ray multiplicity, mean and total photon energy in cases, where the target nuclei are either not available or not accessible experimentally. Based on this systematics, we show in this paper that PFGS characteristics may also be predicted for fission induced by fast neutrons. Our calculations were performed for the target nuclei 238U, 235U and 239Pu in the neutron energy range from 0 to 20 MeV, and the results are compared to existing experimental and theoretical values.

  18. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  19. Hard error generation by neutron-induced fission fragments

    SciTech Connect

    Browning, J.S.; Gover, J.E.; Wrobel, T.F.; Hass, K.J.; Nasby, R.D.; Simpson, R.L.; Posey, L.D.; Boos, R.E.; Block, R.C.

    1987-12-01

    The authors observed that neutron-induced fission of uranium contaminants present in alumina ceramic package lids results in the release of fission fragments that can cause hard errors in metal-nitride-oxide nonvolatile RAMs (MNOS NVRAMs). Hard error generation requires the simultaneous presence of (1) a fission fragment with a linear energy transfer (LET) greater than 20 MeV/mg/cm/sup **2/ moving at an angle of 30 degrees or less from the electric field in the high-field, gate region of the memory transistor, and (2) a WRITE or ERASE voltage on the oxide-nitride transistor gate. In reactor experiments, they observe these hard errors when a ceramic lid is used on both MNOS NVRAMs and polysilicon-nitride-oxide (SNOS) capacitors, but hard errors are not observed when a gold-plated kovar lid is used on the package containing these die. They mapped the tracks of the fission fragments released from the ceramic lids with a mica track detector and used a Monte Carlo model of fission fragment transport through the ceramic lid to measure the concentration of uranium present in the lids. The authors' concentration measurements are in excellent agreement with other's measurement of uranium concentration in ceramic lids. The authors' Monte Carlo analyses also agree closely with their measurements of hard error probability in MNOS NVRAMs.

  20. Anomalies in the Charge Yields of Fission Fragments from the U(n,f)238 Reaction

    DOE PAGES

    Wilson, J. N.; Lebois, M.; Qi, L.; ...

    2017-06-01

    Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fissionmore » fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. Finally, this has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.« less

  1. Cyclin C mediates stress-induced mitochondrial fission and apoptosis

    PubMed Central

    Wang, Kun; Yan, Ruilan; Cooper, Katrina F.; Strich, Randy

    2015-01-01

    Mitochondria are dynamic organelles that undergo constant fission and fusion cycles. In response to cellular damage, this balance is shifted dramatically toward fission. Cyclin C–Cdk8 kinase regulates transcription of diverse gene sets. Using knockout mouse embryonic fibroblasts (MEFs), we demonstrate that cyclin C directs the extensive mitochondrial scission induced by the anticancer drug cisplatin or oxidative stress. This activity is independent of transcriptional regulation, as Cdk8 is not required for this activity. Furthermore, adding purified cyclin C to unstressed permeabilized MEF cultures induced complete mitochondrial fragmentation that was dependent on the fission factors Drp1 and Mff. To regulate fission, a portion of cyclin C translocates from the nucleus to the cytoplasm, where it associates with Drp1 and is required for its enhanced mitochondrial activity in oxidatively stressed cells. In addition, although HeLa cells regulate cyclin C in a manner similar to MEF cells, U2OS osteosarcoma cultures display constitutively cytoplasmic cyclin C and semifragmented mitochondria. Finally, cyclin C, but not Cdk8, is required for loss of mitochondrial outer membrane permeability and apoptosis in cells treated with cisplatin. In conclusion, this study suggests that cyclin C connects stress-induced mitochondrial hyperfission and programmed cell death in mammalian cells. PMID:25609094

  2. Tables of Neutron-Induced Fission Cross Section for Various Pu, U, and Th Isotopes, Deduced from Measured Fission Probabilites

    SciTech Connect

    Younes, W; Britt, H C

    2003-03-31

    Cross sections for neutron-induced fission of {sup 231,233}Th, {sup 234,235,236,237,239}U, and {sup 240,241,243}Pu are presented in tabular form for incident neutron energies of 0.1 {le} E{sub n}(MeV) {le} 2.5. The cross sections were obtained by converting measured fission probabilities from (t,pf) reactions on mass-A targets to (n,f) cross sections on mass-A + 1 neutron targets, by using modeling to compensate for the differences in the reaction mechanisms. Data from Britt et al. were used for the {sup 234}U(t,pf) reaction, from Cramer et al. for the {sup 230,232}Th(t,pf), {sup 236,238}U(t,pf), and {sup 240,242}Pu(t,pf) reactions, and from Britt et al. for the {sup 233,235}U(t,pf) and {sup 239}Pu(t,pf) reactions. The fission probabilities P{sub (t,pf)}(E{sub x}), measured as a function of excitation energy E{sub x} of the compound system formed by the (t,p) reaction, are listed in the tables with the corresponding deduced cross sections as a function of incident neutron energy E{sub n}, {sigma}{sub (n,f)}(E{sub n}). The excitation energy and incident neutron energy are related by E{sub x} = E{sub n} + B{sub n}, where B{sub n}, where B{sub n} is the neutron binding energy. Comparison with ENDF/B-VI evaluations of the well-measured {sup 234,235,236}U(n,f) and {sup 240,241}Pu(n,f) cross sections confirms the accuracy of the present results within a 10% standard deviation above E{sub n} = 1 MeV. Below E{sub n} = 1 MeV, localized deviations of at most {+-} 20% are observed.

  3. Digital acquisition development for neutron induced fission studies at LANSCE

    NASA Astrophysics Data System (ADS)

    Richman, Debra; O'Donnell, John; Couture, Aaron; Mosby, Shea; Wender, Steve

    2013-10-01

    The Los Alamos Neutron Science Center (LANSCE) is a neutron time of flight facility with a diverse group of experiments dedicated to the study of neutron induced reactions. A powerful proton LINAC is used to produce multiple pulsed neutron beams for which monitoring is required to track the neutron flux and energy distribution for each pulse. Digital DAQ techniques lend themselves well to beam monitoring and many of the experiments. Significant effort is being put into transitioning several traditional analog DAQ systems to state of the art digital systems. The Irradiation of Chips and Electronics (ICE House) and the Total Kinetic Energy of Fission (TKE) experiments are both transitioning to digital for the fall 2013 LANSCE run cycle. These new DAQ systems were built using the CAEN VME digitizer family, and both systems will benefit from reduced module count and zero deadtime. The TKE experiment utilizes FPGA firmware to streamline the acquisition system, as well as provide additional data for further analysis. Details of the implementation process along with preliminary data from both experiments will be presented.

  4. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  5. Thermal-Neutron-Induced Fission of 243Cm: Light-Peak Data from the Lohengrin Mass Separator

    SciTech Connect

    Tsekhanovich, I.; Simpson, G.S.; Varapai, N.; Rochman, D.; Sokolov, V.; Fioni, G.; Al Mahamid, Ilham

    2005-05-24

    Thermal-neutron-induced fission of 243Cm was studied at the Lohengrin mass separator. The light-mass peak of the fission-yield curve was investigated, and mass (from A=72 to A=120) and independent-product (for Z=28-37) yields were obtained. A comparison was made of the results obtained on the mass yields with those from the fission of 245Cm as well as with the data given by the JEF-2.2 and ENDF/B-VI libraries. The yield of masses in the superasymmetric region was found to be identical to other fission reactions studied at Lohengrin. Experimental fission-product yields from the fission of 243Cm and 245Cm were able to be well described within a theoretical model, which incorporates standard and superasymmetric fission modes as well as a calculation of the charge-distribution parameters in isobaric chains and neutron multiplicities from primary fragments. A prediction of the yield of Ni isotopes in the fission of 243,245,247Cm was made.

  6. Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element

    SciTech Connect

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Manganaro, M.; Hanappe, F.; Heinz, S.; Hofmann, S.; Muminov, A. I.; Scheid, W.

    2009-02-15

    The yields of evaporation residues, fusion-fission, and quasifission fragments in the {sup 48}Ca+{sup 144,154}Sm and {sup 16}O+{sup 186}W reactions are analyzed in the framework of the combined theoretical method based on the dinuclear system concept and advanced statistical model. The measured yields of evaporation residues for the {sup 48}Ca+{sup 154}Sm reaction can be well reproduced. The measured yields of fission fragments are decomposed into contributions coming from fusion-fission, quasifission, and fast-fission. The decrease in the measured yield of quasifission fragments in {sup 48}Ca+{sup 154}Sm at the large collision energies and the lack of quasifission fragments in the {sup 48}Ca+{sup 144}Sm reaction are explained by the overlap in mass angle distributions of the quasifission and fusion-fission fragments. The investigation of the optimal conditions for the synthesis of the new element Z=120 (A=302) show that the {sup 54}Cr+{sup 248}Cm reaction is preferable in comparison with the {sup 58}Fe+{sup 244}Pu and {sup 64}Ni+{sup 238}U reactions because the excitation function of the evaporation residues of the former reaction is some orders of magnitude larger than that for the last two reactions.

  7. Predictions of characteristics of prompt-fission γ -ray spectra from the n +238U reaction up to En=20 MeV

    NASA Astrophysics Data System (ADS)

    Oberstedt, A.; Billnert, R.; Oberstedt, S.

    2017-09-01

    Systematics from 2001, describing prompt-fission γ -ray spectra (PFGS) characteristics as a function of mass and atomic number of the fissioning system, was revisited and parameters were revised, based on recent experimental results. Although originally expressed for spontaneous and thermal-neutron induced fission, validity for fast neutrons was assumed and applied to predict PFGS characteristics for the reaction n +238U up to incident neutron energies of En=20 MeV . The results from this work are in good agreement with corresponding results from both model calculations and experiments.

  8. Neutron induced fission cross section measurements of 240Pu and 242Pu

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Eykens, R.; Heyse, J.; Matei, C.; Moens, A.; Nolte, R.; Plompen, A. J. M.; Richter, S.; Sibbens, G.; Vanleeuw, D.; Wynants, R.

    2017-09-01

    Accurate neutron induced fission cross section of 240Pu and 242Pu are required in view of making nuclear technology safer and more efficient to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV). The probability for a neutron to induce such reactions figures in the NEA Nuclear Data High Priority Request List [1]. A measurement campaign to determine neutron induced fission cross sections of 240Pu and 242Pu at 2.51 MeV and 14.83 MeV has been carried out at the 3.7 MV Van De Graaff linear accelerator at Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig. Two identical Frisch Grid fission chambers, housing back to back a 238U and a APu target (A = 240 or A = 242), were employed to detect the total fission yield. The targets were molecular plated on 0.25 mm aluminium foils kept at ground potential and the employed gas was P10. The neutron fluence was measured with the proton recoil telescope (T1), which is the German primary standard for neutron fluence measurements. The two measurements were related using a De Pangher long counter and the charge as monitors. The experimental results have an average uncertainty of 3-4% at 2.51 MeV and for 6-8% at 14.81 MeV and have been compared to the data available in literature.

  9. Investigation of the 238U(d ,p ) surrogate reaction via the simultaneous measurement of γ -decay and fission probabilities

    NASA Astrophysics Data System (ADS)

    Ducasse, Q.; Jurado, B.; Aïche, M.; Marini, P.; Mathieu, L.; Görgen, A.; Guttormsen, M.; Larsen, A. C.; Tornyi, T.; Wilson, J. N.; Barreau, G.; Boutoux, G.; Czajkowski, S.; Giacoppo, F.; Gunsing, F.; Hagen, T. W.; Lebois, M.; Lei, J.; Méot, V.; Morillon, B.; Moro, A. M.; Renstrøm, T.; Roig, O.; Rose, S. J.; Sérot, O.; Siem, S.; Tsekhanovich, I.; Tveten, G. M.; Wiedeking, M.

    2016-08-01

    We investigated the 238U(d ,p ) reaction as a surrogate for the n +238U reaction. For this purpose we measured for the first time the γ -decay and fission probabilities of *239U simultaneously and compared them to the corresponding neutron-induced data. We present the details of the procedure to infer the decay probabilities, as well as a thorough uncertainty analysis, including parameter correlations. Calculations based on the continuum-discretized coupled-channels method and the distorted-wave Born approximation (DWBA) were used to correct our data from detected protons originating from elastic and inelastic deuteron breakup. In the region where fission and γ emission compete, the corrected fission probability is in agreement with neutron-induced data, whereas the γ -decay probability is much higher than the neutron-induced data. We have performed calculations of the decay probabilities with the statistical model and of the average angular momentum populated in the 238U(d ,p ) reaction with the DWBA to interpret these results.

  10. Proton induced fission of 232Th at intermediate energies

    NASA Astrophysics Data System (ADS)

    Gikal, K. B.; Kozulin, E. M.; Bogachev, A. A.; Burtebaev, N. T.; Edomskiy, A. V.; Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N.; Kovalchuk, K. V.; Kvochkina, T. N.; Piasecki, E.; Rubchenya, V. A.; Sahiev, S. K.; Trzaska, W. H.; Vardaci, E.

    2016-12-01

    The mass-energy distributions and cross sections of proton-induced fission of 232Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60-170 a.m.u. have been measured up to the level of 10-4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  11. Proton induced fission of {sup 232}Th at intermediate energies

    SciTech Connect

    Gikal, K. B. Kozulin, E. M.; Bogachev, A. A.; Burtebaev, N. T.; Edomskiy, A. V.; Itkis, I. M.; Itkis, M. G.; Knyazhev, G. N.; Kovalchuk, K. V.; Kvochkina, T. N.; Piasecki, E.; Rubchenya, V. A.; Sahiev, S. K.; Trzaska, W. H.; Vardaci, E.

    2016-12-15

    The mass-energy distributions and cross sections of proton-induced fission of {sup 232}Th have been measured at the proton energies of 7, 10, 13, 20, 40, and 55 MeV. Experiments were carried out at the proton beam of the K-130 cyclotron of the JYFL Accelerator Laboratory of the University of Jyväskylä and U-150m cyclotron of the Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan. The yields of fission fragments in the mass range A = 60–170 a.m.u. have been measured up to the level of 10−4%. The three humped shape of the mass distribution up has been observed at higher proton energies. The contribution of the symmetric component grows up with increasing proton incident energy; although even at 55 MeV of proton energy the shoulders in the mass energy distribution clearly indicate the asymmetric fission peaks. Evolution of shell structure was observed in the fission fragment mass distributions even at high excitation energy.

  12. Scaling phenomena of isobaric yields in projectile fragmentation, spallation, and fission reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Huang, Ling; Song, Yi-Dan

    2017-02-01

    Background: The isobaric ratio difference scaling phenomenon, which has been found for the fragments produced in projectile fragmentation reactions, is related to the nuclear density change in reaction systems. Purpose: To verify whether the isobaric ratio difference scaling exists in the fragments produced in the spallation and fission reactions. Methods: The isobaric ratio difference scaling, denoted by SΔ lnR21 , is in theory deduced within the framework of the canonical ensemble theory at the grand-canonical limitation. The fragments measured in a series of projectile fragmentation, spallation, and fission reactions have been analyzed. Results: A good SΔ lnR21 scaling phenomenon is shown for the fragments produced both in the projectile fragmentation reactions and in the spallation reactions, whereas the SΔ lnR21 scaling phenomenon for the fragments in the fission reaction is less obvious. Conclusions: The SΔ lnR21 scaling is used to probe the properties of the equilibrium system at the time of fragment formation. The good scaling of SΔ lnR21 suggests that the equilibrium state can be achieved in the projectile fragmentation and spallation reactions. Whereas in the fission reaction, the result of SΔ lnR21 indicates that the equilibrium of the system is hard to achieve.

  13. Fission-fragment mass yields of highly excited nuclei with 119 ≤ A ≤ 218 produced in various reactions

    NASA Astrophysics Data System (ADS)

    Denisov, V. Yu.; Sedykh, I. Yu.

    2017-07-01

    The characteristics of fission fragments of various highly-excited nuclei with 119 ≤ A ≤ 218, which are formed by γ- and α-captures, and by fusion-fission reactions, are discussed in details. The yields of fission fragments of these nuclei are related to the number of states of the two-fragment systems at the two-body saddle points. The various experimental distributions of fission fragments are well described in the model.

  14. Collinear cluster tripartition as sequential binary fission in the 235U(nth, f ) reaction

    NASA Astrophysics Data System (ADS)

    Tashkhodjaev, R. B.; Nasirov, A. K.; Scheid, W.

    2011-11-01

    The mechanism leading to the formation of the observed products of the collinear cluster tripartition (CCT) is carried out within the framework of the model based on the dinuclear system concept. The yield of fission products is calculated using the statistical model based on the driving potentials for the fissionable system. The minima of potential energy of the decaying system correspond to the charge numbers of the products which are produced with large probabilities in the sequential fission (partial case of CCT) of the compound nucleus. The realization of this mechanism supposes the asymmetric fission channel as the first stage of sequential mechanism. It is shown that only the use of the driving potential calculated by the binding energies with the shell correction allows us to explain the yield of the true ternary fission products. The theoretical model is applied to research CCT in the reaction 235U( n th, f). Calculations showed that the heavy products of two fission channels of 236U*, 82Ge* + 154Nd* and 86Se* + 150Ce*, can undergo sequential fission forming the CCT products 70Ni, 74, 76Zn, 80Ge and 84Se with relatively large probabilities which can be observed in coincidence with corresponding partner nucleus. The obtained results can explain some of the observed CCT products Ni and Ge in coincidence with the Ge and Se isotopes in the experiments of the FOBOS group in Joint Institute for Nuclear Research.

  15. Analysis of nucleon-induced fission cross sections of lead and bismuth at energies from 45 to 500 MeV

    SciTech Connect

    Prokofyev, A.V.; Mashnik, S.G.; Sierk, A.J.

    1998-08-01

    In order to investigate the applicability of the Cascade-Exciton model (CEM) of nuclear reactions to fission cross sections and hoping to learn more about intermediate-energy fission, the authors use an extended version of the CEM, as realized in the code CEM95 to perform a detailed analysis of proton- and neutron-induced fission cross sections of {sup 209}Bi and {sup 208}Pb nuclei and of the linear momentum transfer to the fissioning nuclei in the 45--500 meV energy range.

  16. Spallation and fission products in the (p+ 179Hf) and (p+ natHf) reactions

    NASA Astrophysics Data System (ADS)

    Karamian, S. A.; Ur, C. A.; Adam, J.; Kalinnikov, V. G.; Lebedev, N. A.; Vostokin, G. K.; Collins, C. B.; Popescu, I. I.

    2009-03-01

    Production of Hf and Lu high-spin isomers has been experimentally studied in spallation reactions induced by intermediate energy protons. Targets of enriched 179Hf (91%) and natHf were bombarded with protons of energy in the range from 90 to 650 MeV provided by the internal beam of the Dubna Phasotron synchrocyclotron. The activation yields of the reaction products were measured by using the γ-ray spectroscopy and radiochemistry methods. The production cross-sections obtained for the 179m2Hf, 178m2Hf and 177mLu isomers are similar to the previously measured values from the spallation of Ta, Re and W targets. Therefore, the reactions involving emission of only a few nucleons, like (p,p'), (p,p'n) and (p,2pn), can transfer high enough angular momentum to the final residual nuclei with reasonable large cross-sections. A significant gain in the isomeric yields was obtained when enriched 179Hf targets were used. The mass distribution of the residual nuclei was measured over a wide range of masses and the fission-to-spallation ratio could be deduced as a function of the projectile energy. Features of the reaction mechanism are briefly discussed.

  17. Auxin-inducible protein depletion system in fission yeast.

    PubMed

    Kanke, Mai; Nishimura, Kohei; Kanemaki, Masato; Kakimoto, Tatsuo; Takahashi, Tatsuro S; Nakagawa, Takuro; Masukata, Hisao

    2011-02-11

    Inducible inactivation of a protein is a powerful approach for analysis of its function within cells. Fission yeast is a useful model for studying the fundamental mechanisms such as chromosome maintenance and cell cycle. However, previously published strategies for protein-depletion are successful only for some proteins in some specific conditions and still do not achieve efficient depletion to cause acute phenotypes such as immediate cell cycle arrest. The aim of this work was to construct a useful and powerful protein-depletion system in Shizosaccaromyces pombe. We constructed an auxin-inducible degron (AID) system, which utilizes auxin-dependent poly-ubiquitination of Aux/IAA proteins by SCFTIR1 in plants, in fission yeast. Although expression of a plant F-box protein, TIR1, decreased Mcm4-aid, a component of the MCM complex essential for DNA replication tagged with Aux/IAA peptide, depletion did not result in an evident growth defect. We successfully improved degradation efficiency of Mcm4-aid by fusion of TIR1 with fission yeast Skp1, a conserved F-box-interacting component of SCF (improved-AID system; i-AID), and the cells showed severe defect in growth. The i-AID system induced degradation of Mcm4-aid in the chromatin-bound MCM complex as well as those in soluble fractions. The i-AID system in conjunction with transcription repression (off-AID system), we achieved more efficient depletion of other proteins including Pol1 and Cdc45, causing early S phase arrest. Improvement of the AID system allowed us to construct conditional null mutants of S. pombe. We propose that the off-AID system is the powerful method for in vivo protein-depletion in fission yeast.

  18. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis.

    PubMed

    Gou, Hongchao; Zhao, Mingqiu; Xu, Hailuan; Yuan, Jin; He, Wencheng; Zhu, Mengjiao; Ding, Hongxing; Yi, Lin; Chen, Jinding

    2017-06-13

    Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies.

  19. CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis

    PubMed Central

    Xu, Hailuan; Yuan, Jin; He, Wencheng; Zhu, Mengjiao; Ding, Hongxing; Yi, Lin; Chen, Jinding

    2017-01-01

    Classical swine fever virus (CSFV), which causes typical clinical characteristics in piglets, including hemorrhagic syndrome and immunosuppression, is linked to hepatitis C and dengue virus. Oxidative stress and a reduced mitochondrial transmembrane potential are disturbed in CSFV-infected cells. The balance of mitochondrial dynamics is essential for cellular homeostasis. In this study, we offer the first evidence that CSFV induces mitochondrial fission and mitophagy to inhibit host cell apoptosis for persistent infection. The formation of mitophagosomes and decline in mitochondrial mass relevant to mitophagy were detected in CSFV-infected cells. CSFV infection increased the expression and mitochondrial translocation of Pink and Parkin. Upon activation of the PINK1 and Parkin pathways, Mitofusin 2 (MFN2), a mitochondrial fusion mediator, was ubiquitinated and degraded in CSFV-infected cells. Mitophagosomes and mitophagolysosomes induced by CSFV were, respectively, observed by the colocalization of LC3-associated mitochondria with Parkin or lysosomes. In addition, a sensitive dual fluorescence reporter (mito-mRFP-EGFP) was utilized to analyze the delivery of mitophagosomes to lysosomes. Mitochondrial fission caused by CSFV infection was further determined by mitochondrial fragmentation and Drp1 translocation into mitochondria using a confocal microscope. The preservation of mitochondrial proteins, upregulated apoptotic signals and decline of viral replication resulting from the silencing of Drp1 and Parkin in CSFV-infected cells suggested that CSFV induced mitochondrial fission and mitophagy to enhance cell survival and viral persistence. Our data for mitochondrial fission and selective mitophagy in CSFV-infected cells reveal a unique view of the pathogenesis of CSFV infection and provide new avenues for the development of antiviral strategies. PMID:28455958

  20. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    SciTech Connect

    Pozzi, Sara; Haight, Robert

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  1. Fission dynamics within time-dependent Hartree-Fock: Deformation-induced fission

    NASA Astrophysics Data System (ADS)

    Goddard, Philip; Stevenson, Paul; Rios, Arnau

    2015-11-01

    Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring dynamical excitations of the fissioning nucleus and the daughter products. Purpose: We explore the ability of dynamic mean-field methods to describe fast fission processes beyond the fission barrier, using the nuclide Pu240 as an example. Methods: Time-dependent Hartree-Fock calculations based on the Skyrme interaction are used to calculate nonadiabatic fission paths, beginning from static constrained Hartree-Fock calculations. The properties of the dynamic states are interpreted in terms of the nature of their collective motion. Fission product properties are compared to data. Results: Parent nuclei constrained to begin dynamic evolution with a deformation less than the fission barrier exhibit giant-resonance-type behavior. Those beginning just beyond the barrier explore large-amplitude motion but do not fission, whereas those beginning beyond the two-fragment pathway crossing fission to final states which differ according to the exact initial deformation. Conclusions: Time-dependent Hartree-Fock is able to give a good qualitative and quantitative description of fast fission, provided one begins from a sufficiently deformed state.

  2. Modeling of Time-correlated Detection of Fast Neutrons Emitted in Induced SNM Fission

    NASA Astrophysics Data System (ADS)

    Guckes, Amber; Barzilov, Alexander; Richardson, Norman

    Neutron multiplicity methods are widely used in the assay of fissile materials. Fission reactions release multiple neutrons simultaneously. Time-correlated detection of neutrons provides a coincidence signature that is unique to fission,which enables distinguishing it from other events. In general, fission neutrons are fast. Thermal neutron sensors require the moderation of neutrons prior to a detection event; therefore, the neutron's energy and the event's timing information may be distorted, resulting in the wide time windows in the correlation analysis. Fastneutron sensing using scintillators allows shortening the time correlation window. In this study, four EJ-299-33A plastic scintillator detectors with neutron/photon pulse shape discrimination properties were modeled usingthe MCNP6 code. This sensor array was studied for time-correlated detection of fast neutrons emitted inthe induced fission of 239Pu and (α,n) neutron sources. This paper presents the results of computational modeling of arrays of these plastic scintillator sensors as well as3He detectors equipped with a moderator.

  3. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  4. Heavy-ion versus {sup 3}He/{sup 4}He fusion-fission reactions: Angular momentum dependence of dissipation in nuclear fission

    SciTech Connect

    Ye, W.

    2011-09-15

    The stochastic Langevin model is employed to study dissipation properties in fission in the {sup 16}O + {sup 181}Ta {yields}{sup 197}Tl system by analyzing prescission neutron yields measured in this reaction. It has been found that the {sup 197}Tl nuclei undergo fission that is not in accordance with the standard Bohr-Wheeler statistical theory. A detailed comparison with previously published work in which fission excitation functions measured in {sup 3,4}He + {sup 197}Au {yields}{sup 200,201}Tl are shown to be in excellent agreement with the fission width formula predicted by the traditional models of nuclear fission suggests that nuclear dissipation strength may have an angular momentum dependence in addition to the known deformation and temperature dependence. Implications for the basic understanding of the observed abnormal rise in prescission particles at high energy and the need for further experimental confirmations are discussed.

  5. Measurement of fission products yields in the quasi-mono-energetic neutron-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Naik, H.; Mukherji, Sadhana; Suryanarayana, S. V.; Jagadeesan, K. C.; Thakare, S. V.; Sharma, S. C.

    2016-08-01

    The cumulative yields of various fission products in the 232Th(n, f) reaction at average neutron energies of 5.42, 7.75, 9.35 and 12.53 MeV have been determined by using an off-line γ-ray spectrometric technique. The neutron beam was produced from the 7Li(p, n) reaction by using the proton energies of 7.8, 12, 16 and 20 MeV. The mass chain yields were obtained from the cumulative fission yields by using the charge distribution correction of medium energy fission. The fine structure in the mass yield distribution was interpreted from the point of nuclear structure effect. On the other hand, the higher yield around mass number 133-134 and 143-144 as well as their complementary products were explained based on the standard I and standard II asymmetric mode of fission. From the mass yield data, the average value of light mass (), heavy mass (), the average number of neutrons (< ν >) and the peak-to-valley (P / V) ratios at different neutron energies of present work and literature data were obtained in the 232Th(n, f) reaction. The different parameters of the mass yield distribution in the 232Th(n, f) reaction were compared with the similar data in the 232Th(γ, f) reaction at comparable excitation energy and a surprising difference was observed.

  6. Energy dependence of the prompt γ-ray emission from the (d,p)-induced fission of U*234 and Pu*240

    DOE PAGES

    Rose, Sunniva J.; Zeiser, Fabio; Wilson, J. N.; ...

    2017-07-05

    Prompt-fission γ rays are responsible for approximately 5% of the total energy released in fission, and therefore important to understand when modeling nuclear reactors. In this work we present prompt γ-ray emission characteristics in fission as a function of the nuclear excitation energy of the fissioning system. Emitted γ-ray spectra were measured, and γ-ray multiplicities and average and total γ energies per fission were determined for the 233U(d,pf) reaction for excitation energies between 4.8 and 10 MeV, and for the 239Pu(d,pf) reaction between 4.5 and 9 MeV. The spectral characteristics show no significant change as a function of excitation energymore » above the fission barrier, despite the fact that an extra ~5 MeV of energy is potentially available in the excited fragments for γ decay. The measured results are compared with model calculations made for prompt γ-ray emission with the fission model code gef. In conclusion, further comparison with previously obtained results from thermal neutron induced fission is made to characterize possible differences arising from using the surrogate (d,p) reaction.« less

  7. Study of nuclear fusion-fission dynamics in 16O+194Pt reaction

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Verma, S.; Sharma, P.; Mahajan, R.; Kaur, N.; Kaur, G.; Behera, B. R.; Singh, K. P.; Singh, H.; Dubey, R.; Saneesh, N.; Jhingan, A.; Sugathan, P.; Mohanto, G.; Nayak, B. K.; Saxena, A.; Sharma, H. P.; Chamoli, S. K.; Mukul, I.; Kumar, A.

    2017-06-01

    Pre- and post-scission α-particle multiplicities have been measured for the reaction 16O + 194Pt at 98.4 MeV forming compound nucleus 210Rn. The α-particle's yield has been measured in coincidence with the fission fragments at various angles. The moving source analysis was performed to extract the alpha particle multiplicity which yielded the contribution of pre- and post- scission components. The pre-scission α-particle multiplicity has been compared with JOANNE2 statistical model code predictions to extract fission time scale and which is observed to be around 55zs (1zs=10-21s).

  8. Fission barriers for Po nuclei produced in complete fusion reactions with heavy ions

    SciTech Connect

    Sagaidak, R. N.; Andreyev, A. N.

    2009-05-15

    Evaporation residues and fission excitation functions obtained in complete fusion reactions leading to Po compound nuclei have been analyzed in the framework of the standard statistical model. Macroscopic fission barriers deduced from the cross-section data analysis are compared with the predictions of various theoretical models and available data. A drop in the Po barriers with the decrease in a neutron number was found, which is stronger than predicted by any theory. The presence of entrance channel effects and collective excitations in the compound nucleus decay is considered as a possible reason for the barrier reduction.

  9. Uranium symmetric/asymmetric neutron-induced fission up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Maslov, V. M.

    The symmetric SL-mode and asymmetric lumped (S1 + S2)-mode fission cross-sections of 235U(n,F) and 233U(n,F) reactions are calculated up to E {n} = 200 MeV within a statistical model. For each U nuclide, emerging in ({n},x{nf}) reactions a separate triaxial outer fission barrier is assumed for the SL-mode. To reproduce the measured branching ratio of symmetric and asymmetric fission events for the 238U(n,F) reaction, more fissions coming from neutron-deficient nuclei were assumed. The damping of the triaxial collective modes contribution to the level density at the SL-mode outer saddle was essential for the branching ratio description. These assumptions allow to reproduce observed fission cross-sections of 235U(n,F) and 233U(n,F) reactions. The calculated branching ratio sensitivity to the target nuclide fissility is investigated.

  10. Plant geminivirus rep protein induces rereplication in fission yeast.

    PubMed

    Kittelmann, Katharina; Rau, Peter; Gronenborn, Bruno; Jeske, Holger

    2009-07-01

    The replication-associated protein (Rep) of geminiviruses, single-stranded DNA viruses of higher plants, is essential for virus replication. Since these viruses do not encode their own polymerases, Rep induces differentiated plant cells to reenter the cell cycle by interacting with the plant homologues of retinoblastoma proteins in order to activate the host DNA synthesis machinery. We have used fission yeast (Schizosaccharomyces pombe) as a model organism to analyze the impact of ectopically expressed African cassava mosaic virus Rep protein on the cell division cycle in closer detail. Upon expression, Rep showed its characteristic DNA cleavage activity, and about 10% of the cells exhibited morphological changes. They were elongated threefold, on average, and possessed a single but enlarged and less compact nucleus in comparison to noninduced or vector-only control cells. Flow cytometry of Rep-expressing cultures revealed a distinct subpopulation of Rep protein-containing cells with aberrant morphology. The other 90% of the cells were indistinguishable from control cells, and no Rep was detectable. Rep-expressing cells exhibited DNA contents beyond 2C, indicating ongoing replication without intervening mitosis. Because a second open reading frame (ORF), AC4, is present within the Rep gene, the role of AC4 was examined by destroying its start codon within the AC1 ORF. The results confirmed that Rep is necessary and sufficient to induce rereplication in fission yeast. The unique potential of this well-investigated model for dissecting the cell cycle control by geminiviral proteins is discussed.

  11. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  12. Effects of nuclear orientation on fusion and fission process for reactions using actinide target nuclei

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-04-30

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, triple-humped distribution was observed, which consists of symmetric fission and asymmetric fission peaked at A{sub L}/A{sub H}approx =90/178. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. We also report the results on the fragment mass distributions for {sup 36,34}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  13. Extended optical model for fission

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier ismore » used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.« less

  14. Extended optical model for fission

    SciTech Connect

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-07

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for 234,235U(n,f), while a double-humped fission barrier is used for 238U(n,f) and 239Pu(n,f) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n,f) reactions. The 239Pu(n,f) reaction can be calculated in the complete damping approximation. Calculated cross sections for 235,238U(n,f) and 239Pu(n,f) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. Lastly, the extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  15. Extended optical model for fission

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2016-03-01

    A comprehensive formalism to calculate fission cross sections based on the extension of the optical model for fission is presented. It can be used for description of nuclear reactions on actinides featuring multi-humped fission barriers with partial absorption in the wells and direct transmission through discrete and continuum fission channels. The formalism describes the gross fluctuations observed in the fission probability due to vibrational resonances, and can be easily implemented in existing statistical reaction model codes. The extended optical model for fission is applied for neutron induced fission cross-section calculations on 234,235,238U and 239Pu targets. A triple-humped fission barrier is used for U,235234(n ,f ) , while a double-humped fission barrier is used for 238U(n ,f ) and 239Pu(n ,f ) reactions as predicted by theoretical barrier calculations. The impact of partial damping of class-II/III states, and of direct transmission through discrete and continuum fission channels, is shown to be critical for a proper description of the measured fission cross sections for 234,235,238U(n ,f ) reactions. The 239Pu(n ,f ) reaction can be calculated in the complete damping approximation. Calculated cross sections for U,238235(n ,f ) and 239Pu(n ,f ) reactions agree within 3% with the corresponding cross sections derived within the Neutron Standards least-squares fit of available experimental data. The extended optical model for fission can be used for both theoretical fission studies and nuclear data evaluation.

  16. Neutron-induced fission of even- and odd-mass plutonium isotopes within a four-dimensional Langevin framework

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2017-07-01

    Neutron multiplicity prior to scission and evaluation of mass distribution of fission fragments with the fission time scale for neutron induced fission of plutonium isotopes are investigated using a dynamical Langevin approach. Also, mass yield of fragments and prompt neutron multiplicity in different time scales of the fission process are compared with experimental data. Reasonable agreement is achieved between calculated and available experimental data.

  17. T invariance and T-odd asymmetries for the cold-polarized-neutron-induced fission of nonoriented nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2014-12-15

    It is shown that the coefficients D{sup exp} for all T-odd asymmetries observed experimentally in the cross sections for the reactions of cold-polarized-neutron-induced fission of nonoriented target nuclei (which involves the emission of prescission and evaporated particles) comply in shape and scale with the coefficients D{sup theor} calculated for the analogous asymmetries on the basis of quantum-mechanical nuclear-fission theory for T-invariant Hamiltonians of fissile systems. It is also shown that the asymmetries in question arise upon taking into account the effect of (i) the interference between the fission amplitudes of s- and p-wave resonances of a polarized fissile compound nucleus formed in the aforementioned reactions; (ii) the collective rotation of the compound nucleus in question (this rotation entails a change in the angular distributions of fission fragments and third particles); and (iii) the wriggling vibrations of this compound nucleus in the vicinity of its scission point, which lead to the appearance of high aligned spins of fission fragments, with the result that the emission of neutrons and photons evaporated from these fragments becomes anisotropic. The possible contribution of T-noninvariant interactions to the formation of the T-odd asymmetries under analysis is estimated by using the results obtained in experimentally testing the detailed-balance principle, (P-A) theorem, and T invariance of cross sections for elastic proton-proton and proton-neutron scattering.

  18. Trap-induced photoconductivity in singlet fission pentacene diodes

    SciTech Connect

    Qiao, Xianfeng Zhao, Chen; Chen, Bingbing; Luan, Lin

    2014-07-21

    This paper reports a trap-induced photoconductivity in ITO/pentacene/Al diodes by using current-voltage and magneto-conductance measurements. The comparison of photoconductivity between pentacene diodes with and without trap clearly shows that the traps play a critical role in generating photoconductivity. It shows that no observable photoconductivity is detected for trap-free pentacene diodes, while significant photoconductivity is observed in diodes with trap. This is because the initial photogenerated singlet excitons in pentacene can rapidly split into triplet excitons with higher binding energy prior to dissociating into free charge carriers. The generated triplet excitons react with trapped charges to release charge-carriers from traps, leading to a trap-induced photoconductivity in the single-layer pentacene diodes. Our studies elucidated the formation mechanisms of photoconductivity in pentacene diodes with extremely fast singlet fission rate.

  19. Particle γ/fission studies of Uranium nuclei via (p,x) reactions

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Ross, T. J.; Beausang, C. W.; Burke, J. T.; Scielzo, N. D.; Allmond, J. M.; Basunia, M. S.; Campbell, C. M.; Casperson, R. J.; Crawford, H. L.; Munson, J.; Phair, L.; Ressler, J. J.; Stars-Liberace Collaboration

    2011-04-01

    An experiment was conducted at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory to study the structure and measure (n, γ) /(n,fission) cross-sections (via surrogate reactions) of Uranium isotopes. A 28 MeV proton beam incident on236U and 23 8U targets populated states in Uranium isotopes via (p,p'), (p,d) and (p,t) reactions. The STARS array was used for detection of the outgoing light ions for exit channel nucleus tagging (as well as nuclear excitation energy information), and included a detector at backward angles for fission events. Coincident γ rays were detected using the 6 Clover detectors of the LIBERACE array and both p- γ and p-fission events were collected. The data provide a number of results including internal surrogate ratio measurements of (n γ) /(n,fission) cross-sections, and detailed structure information for nuclear levels from the ground state to well above the neutron evaporation thresholds across a range of Uranium isotopes. Preliminary results will be presented. This work is supported in part by the U.S. Department of energy via grant numbers DE-FG02-05 ER41379 & DE-FG52-06 NA26206(University of Richmond), DE-AC52 07NA27344(LLNL) and DE-AC02 05CH11231(LBNL).

  20. Prompt fission neutron investigation in 235U(nth,f) reaction

    NASA Astrophysics Data System (ADS)

    Zeynalov, Shakir; Sedyshev, Pavel; Shvetsov, Valery; Sidorova, Olga

    2017-09-01

    The prompt neutron emission in thermal neutron induced fission of 235U has been investigated applying digital signal electronics. The goal was to compare the results of this digital data acquisition and digital signal processing analysis to the results of the pioneering work of Apalin et al. Using a twin Frisch grid ionization chamber for the fission fragment detection and a NE213 equivalent neutron detector in total about 106 neutron coincidences have been registered. The fission fragment kinetic energy, mass and angular distribution has been investigated along with prompt neutron time of flight and pulse shape using a six channel synchronous waveform digitizer with sampling frequency of 250 MHz and 12 bit resolution. The signals have been analyzed using digital pulse processing algorithms, developed by authors. The thermal neutron beam was transported from the IBR-2 reactor to the target with bent mirror neutron guide.

  1. Measurements of high-energy neutron-induced fission ofnatPb and 209Bi

    NASA Astrophysics Data System (ADS)

    Tarrío, D.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Paradela, C.; Stephan, C.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Becvár, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Gonçalves, I.; González-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsig, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-10-01

    The CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of natPb and 209Bi relative to 235U and 238U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV.

  2. Reducing Uncertainties in Neutron-Induced Fission Cross Sections Using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Manning, Brett; Niffte Collaboration

    2015-10-01

    Neutron-induced fission cross sections for actinides have long been of great interest for nuclear energy and stockpile stewardship. Traditionally, measurements were performed using fission chambers which provided limited information about the detected fission events. For the case of 239Pu(n,f), sensitivity studies have shown a need for more precise measurements. Recently the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed the fission Time Projection Chamber (fissionTPC) to measure fission cross sections to better than 1% uncertainty by providing 3D tracking of fission fragments. The fissionTPC collected data to calculate the 239Pu(n,f) cross section at the Weapons Neutron Research facility at the Los Alamos Neutron Science Center during the 2014 run cycle. Preliminary analysis has been focused on studying particle identification and target and beam non-uniformities to reduce the uncertainty on the cross section. Additionally, the collaboration is investigating other systematic errors that could not be well studied with a traditional fission chamber. LA-UR-15-24906.

  3. Neutron-induced fission measurements at the time-of-flight facility nELBE

    DOE PAGES

    Kögler, T.; Beyer, R.; Junghans, A. R.; ...

    2015-05-18

    Neutron-induced fission of ²⁴²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  4. Neutron-induced fission measurements at the time-of-flight facility nELBE

    SciTech Connect

    Kögler, T.; Junghans, A. R.; Massarczyk, R.; Schwengner, R.; Wagner, A.

    2015-05-18

    Neutron-induced fission of ²⁴²Pu is studied at the photoneutron source nELBE. The relative fast neutron fission cross section was determined using actinide fission chambers in a time-of-flight experiment. A good agreement of present nuclear data with evalua- tions has been achieved in the range of 100 keV to 10 MeV.

  5. Fission fragment mass distributions in 35Cl+Sm,154144 reactions

    NASA Astrophysics Data System (ADS)

    Tripathi, R.; Sodaye, S.; Sudarshan, K.; Nayak, B. K.; Jhingan, A.; Pujari, P. K.; Mahata, K.; Santra, S.; Saxena, A.; Mirgule, E. T.; Thomas, R. G.

    2015-08-01

    Background: A new type of asymmetric fission was observed in β -delayed fission of 180Tl [Phys. Rev. Lett. 105, 252502 (2010), 10.1103/PhysRevLett.105.252502] as symmetric mass distribution would be expected based on conventional shell effects leading to the formation of N =50 fragments. Following this observation, theoretical calculations were carried out which predict asymmetric mass distribution for several mercury isotopes around mass region of ˜180 at low and moderate excitation energies [Moller, Randrup, and Sierk, Phys. Rev. C 85, 024306 (2012), 10.1103/PhysRevC.85.024306; Andreev, Adamian, and Antonenko, Phys. Rev. C 86, 044315 (2012), 10.1103/PhysRevC.86.044315]. Studies on fission fragment mass distribution are required in this mass region to investigate this newly observed phenomenon. Purpose: The fission fragment mass distributions have been measured in 35Cl+Sm,154144 reactions at Elab=152.5 ,156.1 ,and 163.7 MeV populating compound nuclei in the mass region of ˜180 with variable excitation energy and neutron number to investigate the nature of mass distribution. Method: The fission fragment mass distribution has been obtained by measuring the "time of flight (TOF)" of fragments with respect to the beam pulse using two multiwire proportional counters placed at θlab=±65 .5∘ with respect to the beam direction. From the TOF of fragments, their velocities were determined, which were used to obtain mass distribution taking the compound nucleus as the fissioning system. Results: For both systems, mass distributions, although, appear to be symmetric, could not be fitted well by a single Gaussian. The deviation from a single Gaussian fit is more pronounced for the 35Cl+144Sm reaction. A clear flat top mass distribution has been observed for the 35Cl+144Sm reaction at the lowest beam energy. The mass distribution is very similar to that observed in the 40Ca+142Nd reaction, which populated a similar compound nucleus, but for the pronounced dip in the

  6. Comparative measurement of prompt fission γ -ray emission from fast-neutron-induced fission of 235U and 238U

    NASA Astrophysics Data System (ADS)

    Lebois, M.; Wilson, J. N.; Halipré, P.; Oberstedt, A.; Oberstedt, S.; Marini, P.; Schmitt, C.; Rose, S. J.; Siem, S.; Fallot, M.; Porta, A.; Zakari, A.-A.

    2015-09-01

    Prompt fission γ -ray (PFG) spectra have been measured in a recent experiment with the novel directional fast-neutron source LICORNE at the ALTO facility of the IPN Orsay. These first results from the facility involve the comparative measurement of prompt γ emission in fast-neutron-induced fission of 235U and 238U . Characteristics such as γ multiplicity and total and average radiation energy are determined in terms of ratios between the two systems. Additionally, the average photon energies were determined and compared with recent data on thermal-neutron-induced fission of 235U . PFG spectra are shown to be similar within the precision of the present measurement, suggesting that the extra incident energy does not significantly impact the energy released by prompt γ rays. The origins of some small differences, depending on either the incident energy or the target mass, are discussed. This study demonstrates the potential of the present approach, combining an innovative neutron source and new-generation detectors, for fundamental and applied research on fission in the near future.

  7. Prompt and Delayed Inelastic Scattering Reactions from Fission Neutron PGAA - First Results of FaNGaS

    SciTech Connect

    Rossbach, M.; Randriamalala, T.; Revay, Zs.; Kudejova, P.; Soelradel, S.; Wagner, F.

    2015-07-01

    The new instrument Fast Neutron Gamma Spectroscopy (FaNGaS) has been installed at the SR10 beam line of the FRM II Research Reactor in Garching and tested successfully. Complimentary to cold neutron PGAA, with FaNGaS inelastic scattering reactions induced by fission neutrons can be studied. Gamma lines from (n,n'γ) reactions up to now have been rarely studied and no adequate compilation of the emitted gamma energies exist. In developing nondestructive analytical techniques using neutron generator based PGAA such data are badly needed for quantification of heavy metals and actinides in e.g. nuclear waste or safeguards samples. A number of elements and relevant actinides have been irradiated in the fast neutron beam SR10 at the FRM II reactor in Garching, Germany. A heavily shielded 50% eff. HPGe detector perpendicular to the beam is looking at the samples exposed to 2.3 E8 cm{sup -2}s{sup -1} fission neutrons. Prompt gamma spectra have been taken and evaluated using the available data in scattered sources. Additional gamma lines have been detected and are being compiled to create a data base for (n,n') reactions. Particular emphasis is given on actinides including {sup 238}U, {sup 232}Th, {sup 237}Np, {sup 242}Pu and {sup 241}Am. Some examples will be given and first results will be discussed in this contribution. (authors)

  8. Active-Interrogation Measurements of Induced-Fission Neutrons from Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani; G. Nebbia

    2012-07-01

    Protection and control of nuclear fuels is paramount for nuclear security and safeguards; therefore, it is important to develop fast and robust controlling mechanisms to ensure the safety of nuclear fuels. Through both passive- and active-interrogation methods we can use fast-neutron detection to perform real-time measurements of fission neutrons for process monitoring. Active interrogation allows us to use different ranges of incident neutron energy to probe for different isotopes of uranium. With fast-neutron detectors, such as organic liquid scintillation detectors, we can detect the induced-fission neutrons and photons and work towards quantifying a sample’s mass and enrichment. Using MCNPX-PoliMi, a system was designed to measure induced-fission neutrons from U-235 and U-238. Measurements were then performed in the summer of 2010 at the Joint Research Centre in Ispra, Italy. Fissions were induced with an associated particle D-T generator and an isotopic Am-Li source. The fission neutrons, as well as neutrons from (n, 2n) and (n, 3n) reactions, were measured with five 5” by 5” EJ-309 organic liquid scintillators. The D-T neutron generator was available as part of a measurement campaign in place by Padova University. The measurement and data-acquisition systems were developed at the University of Michigan utilizing a CAEN V1720 digitizer and pulse-shape discrimination algorithms to differentiate neutron and photon detections. Low-enriched uranium samples of varying mass and enrichment were interrogated. Acquired time-of-flight curves and cross-correlation curves are currently analyzed to draw relationships between detected neutrons and sample mass and enrichment. In the full paper, the promise of active-interrogation measurements and fast-neutron detection will be assessed through the example of this proof-of-concept measurement campaign. Additionally, MCNPX-PoliMi simulation results will be compared to the measured data to validate the MCNPX-PoliMi code

  9. Exploratory study of fission product yields of neutron-induced fission of U235, U238, and Pu239 at 8.9 MeV

    DOE PAGES

    Bhatia, C.; Fallin, B. F.; Gooden, M. E.; ...

    2015-06-05

    Using dual-fission chambers each loaded with a thick (200–400–mg/cm2) actinide target of 235,238U or 239Pu and two thin (~10–100–μg/cm2) reference foils of the same actinide, the cumulative yields of fission products ranging from 92Sr to 147Nd have been measured at En = 8.9MeV. The 2H(d,n) 3He reaction provided the quasimonoenergetic neutron beam. Here, the experimental setup and methods used to determine the fission product yield (FPY) are described, and results for typically eight high-yield fission products are presented.

  10. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  11. Low-energy fission investigated in reactions of 750 AMeV238U-ions with Pb and Be targets. I. Nuclear charge distributions

    NASA Astrophysics Data System (ADS)

    Armbruster, P.; Bernas, M.; Czajkowski, S.; Geissel, H.; Aumann, T.; Dessagne, Ph.; Donzaud, C.; Hanelt, E.; Heinz, A.; Hesse, M.; Kozhuharov, C.; Miehe, Ch.; Münzenberg, G.; Pfützner, M.; Schmidt, K.-H.; Schwab, W.; Stéphan, C.; Sümmerer, K.; Tassan-Got, L.; Voss, B.

    1996-12-01

    Charge distributions of fragments from low energy nuclear fission are investigated in reactions of highly fissile238U projectiles at relativistic energies (750 A·MeV) with a heavy (Pb) and a light (Be) target. The fully stripped fission fragments are separated by the Fragment Separator (FRS). Their high kinetic energies in the laboratory system allow the identification of all atomic numbers by using Multiple-Sampling Ionization Chambers (MUSIC). The elemental distributions of fragments observed at larger magnetic rigidities than the238U projectiles show asymmetric break-up and odd-even effects. They indicate a low energy fission process, induced mainly by dissociation in the electro-magnetic field for the U/Pb-system, or by peripheral nuclear interactions for the U/Be-system.

  12. Fission of nuclei with Z=102-112 produced in reactions with {sup 22}Ne and {sup 48}Ca ions

    SciTech Connect

    Itkis, M. G.; Oganessian, Yu. Ts.; Kozulin, E. M.; Kondratiev, N. A.; Krupa, L.; Pokrovsky, I. V.; Polyakov, A. N.; Ponomarenko, V. A.; Prokhorova, E. V.; Pustylnik, B. I.; Vakatov, V. I.; Rusanov, A. Ya.

    1998-12-21

    The talk presents new results obtained in the study of fission of superheavy nuclei {sup 256}No, {sup 270}Sg and {sup 286}112 formed in reactions with {sup 22}Ne and {sup 48}Ca ions at energies near or considerably lower than the Coulomb barrier. The experiments have been performed at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (FLNR) with the use of the time-of-flight spectrometer of fission fragments CORSET.

  13. Role of ( n,2 n) reactions in transmutation of long-lived fission products

    NASA Astrophysics Data System (ADS)

    Apse, V. A.; Kulikov, G. G.; Kulikov, E. G.

    2016-12-01

    The conditions under which ( n,γ) and ( n,2 n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, 79Se, 93Zr, 99Tc, 107Pd, 126Sn, 129I, and 135Cs, are considered. The effect of ( n,2 n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of ( n,2 n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of ( n,2 n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes (126Sn, 129I, and 135Cs), ( n,γ) and ( n,2 n) reactions are partners facilitating neutron transmutation. The strongest effect of ( n,2 n) reaction is found for 126Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).

  14. Role of (n,2n) reactions in transmutation of long-lived fission products

    SciTech Connect

    Apse, V. A.; Kulikov, G. G. Kulikov, E. G.

    2016-12-15

    The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 and the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).

  15. Pairing-induced speedup of nuclear spontaneous fission

    SciTech Connect

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  16. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  17. Cross sections and barriers for nuclear fission induced by high-energy nucleons

    SciTech Connect

    Grudzevich, O. T.; Yavshits, S. G.

    2013-03-15

    The cross sections for the fission of {sup 232}Th, {sup 235,238}U, {sup 237}Np, and {sup 239}Pu target nuclei that was induced by 20- to 1000-MeV neutrons and protons were calculated. The respective calculations were based on the multiconfiguration-fission (MCFx) model, which was used to describe three basic stages of the interaction of high-energy nucleons with nuclei: direct processes (intranuclear cascade), equilibration of the emerging compound system, and the decay of the compound nucleus (statistical model). Fission barriers were calculated within the microscopic approach for isotopic chains formed by 15 to 20 nuclei of the required elements. The calculated fission cross sections were compared with available experimental data. It was shown that the input data set and the theoretical model used made it possible to predict satisfactorily cross section for nuclear fission induced by 20- to 1000-MeV nucleons.

  18. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of (238)U at the National Ignition Facility.

    PubMed

    Edwards, E R; Cassata, W S; Velsko, C A; Yeamans, C B; Shaughnessy, D A

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of (88)Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the (85m)Kr/(88)Kr ratio, which may be the result of incorrect nuclear data.

  19. Determination of relative krypton fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Edwards, E. R.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.

    2016-11-01

    Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of 88Kr and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the 85mKr/88Kr ratio, which may be the result of incorrect nuclear data.

  20. Prompt γ-ray production in neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Kawano, T.; Lee, H. Y.; O'Donnell, J. M.; Hayes, A. C.; Stetcu, I.; Taddeucci, T. N.; Talou, P.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Gostic, J.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2013-04-01

    Background: The prompt gamma-ray spectrum from fission is important for understanding the physics of nuclear fission, and also in applications involving fission. Relatively few measurements of the prompt gamma spectrum from 239Pu(n,f) have been published.Purpose: This experiment measured the multiplicity, individual gamma energy spectrum, and total gamma energy spectrum of prompt fission gamma rays from 239Pu(n,f) in the neutron energy range from thermal to 30 keV, to test models of fission and to provide information for applications.Method: Gamma rays from neutron-induced fission of 239Pu were measured using the DANCE gamma-ray calorimeter. Fission events were tagged by detecting fission products in a parallel-plate avalanche counter in the center of DANCE. The measurements were corrected for detector response using a geant4 model of DANCE. A detailed analysis for the gamma rays from the 1+ resonance complex at 10.93 eV is presented.Results: A six-parameter analytical parametrization of the fission gamma-ray spectrum was obtained. A Monte Carlo Hauser-Feshbach calculation provided good general agreement with the data, but some differences remain to be resolved.Conclusions: An analytic parametrization can be made of the gamma-ray multiplicity, energy distribution, and total-energy distribution for the prompt gamma rays following neutron-induced fission of 239Pu. This parametrization may be useful for applications. Modern Monte Carlo Hauser-Feshbach calculations can do a good job of calculating the fission gamma-ray emission spectrum, although some details remain to be understood.

  1. New prompt fission neutron spectra measurements in the 238U(n,f) reaction with a dedicated setup at LANSCE/WNR

    NASA Astrophysics Data System (ADS)

    Laurent, Benoit; Marini, Paola; Bélier, Gilbert; Bonnet, Thomas; Chatillon, Audrey; Taieb, Julien; Etasse, David; Devlin, Matthew; Haight, Robert

    2017-09-01

    A new prompt fission neutron spectra (PFNS) measurement in the 238U(n,f) reaction was performed at LANSCE/WNR facility. Evaluated data show discrepancies on the low (below 1 MeV) and high (above 5 MeV) energy parts in the PFNS for different major and minor actinides. The goal is to improve these measurements in a wide range of incident energy. The energy of the incoming neutron, inducing the fission, and the prompt neutron energies, are measured by time-of-flight method. A dedicated fission chamber was developed, in order to improve alpha-fission discrimination, timing resolution, actinide mass, and to reduce the amount of neutron scattering. To detect prompt neutrons, the 54 Chi-Nu scintillator cells array were surrounding the fission chamber. High statistics were recorded during this experiment, allowing a precise study of PFNS behavior as a function of incident neutron energy, from 1 MeV to 200 MeV. This experiment also showed that all the new tools developed to improve PFNS measurements are performing. Therefore, measurements of PFNS with others actinides such as 239Pu are planned.

  2. Photon-induced Fission Product Yield Measurements on 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Krishichayan, Fnu; Bhike, M.; Tonchev, A. P.; Tornow, W.

    2015-10-01

    During the past three years, a TUNL-LANL-LLNL collaboration has provided data on the fission product yields (FPYs) from quasi-monoenergetic neutron-induced fission of 235U, 238U, and 239Pu at TUNL in the 0.5 to 15 MeV energy range. Recently, we have extended these experiments to photo-fission. We measured the yields of fission fragments ranging from 85Kr to 147Nd from the photo-fission of 235U, 238U, and 239Pu using 13-MeV mono-energetic photon beams at the HIGS facility at TUNL. First of its kind, this measurement will provide a unique platform to explore the effect of the incoming probe on the FPYs, i.e., photons vs. neutrons. A dual-fission ionization chamber was used to determine the number of fissions in the targets and these samples (along with Au monitor foils) were gamma-ray counted in the low-background counting facility at TUNL. Details of the experimental set-up and results will be presented and compared to the FPYs obtained from neutron-induced fission at the same excitation energy of the compound nucleus. Work supported in part by the NNSA-SSAA Grant No. DE-NA0001838.

  3. P53/Drp1-dependent mitochondrial fission mediates aldosterone-induced podocyte injury and mitochondrial dysfunction.

    PubMed

    Yuan, Yanggang; Zhang, Aiqing; Qi, Jia; Wang, Hui; Liu, Xi; Zhao, Min; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying

    2017-06-28

    Mitochondrial dysfunction is increasingly recognized as an important factor in glomerular diseases. Previous study showed that mitochondrial fission contributed mitochondrial dysfunction. However, the mechanism of mitochondrial fission on mitochondrial dysfunction in aldosterone-induced podocyte injury remains ambiguous. This study aimed to investigate the pathogenic effect of mitochondrial fission both in vivo and in vitro. In an animal model of aldosterone-induced nephropathy, inhibition of the mitochondrial fission protein Drp1 (dynamin-related protein 1) suppressed aldosterone-induced podocyte injury. In cultured podocytes, aldosterone dose-dependently induced Drp1 expression. Knockdown of Drp1 inhibited aldosterone-induced mitochondrial fission, mitochondrial dysfunction and podocyte apoptosis. Furthermore, aldosterone dose-dependently induced p53 expression. Knockdown of p53 inhibited aldosterone-induced Drp1 expression, mitochondrial dysfunction and podocyte apoptosis. These findings implicated that aldosterone-induced mitochondrial dysfunction and podocyte injury mediated by p53/Drp1-dependent mitochondrial fission, which may provide opportunities for therapeutic intervention for podocyte injury. Copyright © 2017, American Journal of Physiology-Renal Physiology.

  4. Neutron-neutron angular correlations in spontaneous and neutron-induced fission

    NASA Astrophysics Data System (ADS)

    Vogt, Ramona; Randrup, Jorgen

    2015-04-01

    For many years, the state of the art for treating fission in radiation transport codes has involved sampling from average distributions. However, such average fission models have limited interaction-by-interaction capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted isotropically and independently. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. Such correlations are interesting for many modern applications, including detecting small amounts of material and detector development. Event-by-event generation of complete fission events are particularly useful because it is possible to obtain the fission products as well as the prompt neutrons and photons emitted during the fission process, all with complete kinematic information. It is therefore possible to extract any desired correlation observables. Such codes, when included in broader Monte Carlo transport codes, like MCNP, can be made broadly available. We compare results from our fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) with available neutron-neutron angular correlation data and study the sensitivities of these observables to the model inputs. This work was done under the auspices of the US DOE by (RV) LLNL, Contract DE-AC52-07NA27344, and by (JR) LBNL, Contract DE-AC02-05CH11231. We acknowledge support of the Office of Defense Nuclear Nonproliferation Research and Development in DOE/NNSA.

  5. The Arabidopsis CDC25 induces a short cell length when overexpressed in fission yeast: evidence for cell cycle function.

    PubMed

    Sorrell, D A; Chrimes, D; Dickinson, J R; Rogers, H J; Francis, D

    2005-02-01

    The putative mitotic inducer gene, Arath;CDC25 cloned in Arabidopsis thaliana, was screened for cell cycle function by overexpressing it in Schizosaccharomyces pombe (fission yeast). The expression pattern of Arath;CDC25 was also examined in different tissues of A. thaliana. Fission yeast was transformed with plasmids pREP1 and pREP81 with the Arath;CDC25 gene under the control of the thiamine-repressible nmt promoter. Using reverse transcription-polymerase chain reaction (RT-PCR), the expression of Arath;CDC25 was examined in seedlings, flower buds, mature leaves and stems of A. thaliana; actin (ACT2) was used as a control. In three independent transformants of fission yeast, cultured in the absence of thiamine (T), pREP1::Arath;CDC25 induced a highly significant reduction in mitotic cell length compared with wild type, pREP::Arath;CDC25 +T, and empty vector (pREP1 +/- T). The extent of cell shortening was greater using the stronger pREP1 compared with the weaker pREP81. However, Arath;CDC25 was expressed at low levels in all tissues examined. The data indicate that Arath;CDC25 can function as a mitotic accelerator in fission yeast. However, unlike other plant cell cycle genes, expression of Arath;CDC25 was not enhanced in rapidly dividing compared with non-proliferative Arabidopsis tissues.

  6. Non-statistical effects in bond fission reactions of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Schranz, Harold W.; Raff, Lionel M.; Thompson, Donald L.

    1991-08-01

    A microcanonical, classical variational transition-state theory based on the use of the efficient microcanonical sampling (EMS) procedure is applied to simple bond fission in 1,2-difluoroethane. Comparison is made with results of trajectory calculations performed on the same global potential-energy surface. Agreement between the statistical theory and trajectory results for CC CF and CH bond fissions is poor with differences as large as a factor of 125. Most importantly, at the lower energy studied, 6.0 eV, the statistical calculations predict considerably slower rates than those computed from trajectories. We conclude from these results that the statistical assumptions inherent in the transition-state theory method are not valid for 1,2-difluoroethane in spite of the fact that the total intramolecular energy transfer rate out of CH and CC normal and local modes is large relative to the bond fission rates. The IVR rate is not globally rapid and the trajectories do not access all of the energetically available phase space uniformly on the timescale of the reactions.

  7. Test of Deep-Space Propulsion Using Antiproton Induced Fission

    NASA Astrophysics Data System (ADS)

    Jackson, Gerald; Howe, Steven

    2004-05-01

    Unmanned scientific missions into deep space will require specific impulses greater than 20,000 s in order to accomplish their goals within the career lifetime of an individual. We have developed a propulsion system concept based on antiproton induced fission of uranium with a variable specific impulse up to one millions seconds. The basic idea is to illuminate the rear side of a uranium foil with low energy antiprotons. When the antiprotons are captured by, and annihilated with, the uranium nuclei, there is a 98daughter travels into the foil and is stopped, while the other daughter is lost into space. This process, along with sublimation of surface uranium atoms, generates the thrust. According to a recently completed design study, this technology can boost a 10 kg instrument payload to the Kuiper cometary cloud at 250 AU in 10 years using 30 mg of antihydrogen. Preliminary calculations show that this same concept could send a similar probe to Alpha Centauri in 40 years using 17 g of antimatter. We will present an overview of the design concept, followed by a description of the experimental program to validate this technology.

  8. Total Kinetic Energy Release in the Fast Neutron Induced Fission of 235U

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Yanez, Ricardo

    2016-09-01

    We have measured the total kinetic energy (TKE) release, its variance and associated fission product mass distributions for the neutron induced fission of 235U for En = 2-90 MeV using the 2E method. The neutron energies were determined,event by event, by time of flight measurements with the white spectrum neutron beam from LANSCE. The TKE decreases with increasing neutron energy. This TKE decrease is due to increasing symmetric fission (and decreasing asymmetric fission)with increasing neutron energy, in accord with Brosa model predictions. Our measurement of the TKE release for 235U(nth,f) is in excellent agreement with the known value, indicating our measurements are absolute measurements. The TKE variances are sensitive indicators of nth chance fission. Due to the occurrence of nth chance fission and pre-fission neutron emission, the average fissioning system and its excitation energy is a complex function of the incident neutron energy. Detailed comparisons of our data with previous measurements will be made. This work was supported, in part, by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Grant DE-SC0014380.

  9. Role of mitochondrial fission in neuronal injury in pilocarpine-induced epileptic rats.

    PubMed

    Qiu, X; Cao, L; Yang, X; Zhao, X; Liu, X; Han, Y; Xue, Y; Jiang, H; Chi, Z

    2013-08-15

    Mitochondrial fission has been reported to be involved in oxidative stress, apoptosis and many neurological diseases. However, the role of mitochondrial fission in seizures, which could induce oxidative stress and neuronal loss, remains unknown. In this study, we used pilocarpine to elicit seizures in rats. Meanwhile, we used mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of mitochondrial fission protein dynamin-related protein1 (Drp1), to suppress mitochondrial fission in epileptic model of rats in vivo. We found that mitochondrial fission was increased after seizures and the inhibition of mitochondrial fission by mdivi-1 significantly attenuated oxidative stress and reduced neuronal loss after seizures, shown by the decreased 8-hydroxy deoxyguanosine (8-oHdG) content, the increased superoxide dismutase (SOD) activity, the reduced expression of cytochrome c and caspase3 and the increased surviving neurons in the hippocampus. These results indicated that mitochondrial fission is up-regulated after seizures and the inhibition of mitochondrial fission is protective against neuronal injury in seizures, the underlying mechanism may be through the mitochondria/reactive oxygen species (ROS)/cytochrome c pathway. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Pre-fission neutron emission in {sup 19}F+{sup 209}Bi reaction

    SciTech Connect

    Singh, Hardev; Sugathan, P.; Shidling, P. D.; Behera, B. R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Jhingan, Akhil; Singh, R. P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2009-03-04

    The pre- and post-scission neutron multiplicities are measured for {sup 19}F+{sup 209}Bi reaction at E{sub lab} = 100, 104, 108, 112 and 116 MeV. The measured value of pre-scission neutron multiplicity was found to be increasing with the excitation energy. The comparison of experimental values with the statistical model calculations shows that the measured values are much larger than the model predictions. This difference in excess yield over the model predictions amounts to the survival time of 80{+-}5x10{sup -21} s for the {sup 228}U compound nucleus before it undergoes fission.

  11. On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.

    2017-01-01

    It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.

  12. Fission measurements with PPAC detectors using a coincidence technique

    SciTech Connect

    Paradela, C.; Duran, I.; Tarrio, D.; Audouin, L.; Tassan-Got, L.; Stephan, C.

    2011-07-01

    A fission detection setup based on Parallel Plate Avalanche Counters (PPAC) has been constructed and used at the CERN n-TOF facility. The setup takes advantage of the coincidence detection of both fission fragments to discriminate the background reactions produced by high energy neutrons and it allows obtaining neutron-induced fission cross section up to 1 GeV. (authors)

  13. Resveratrol Regulates Mitochondrial Biogenesis and Fission/Fusion to Attenuate Rotenone-Induced Neurotoxicity

    PubMed Central

    Peng, Kaige; Tao, Yuan; Zhang, Jun; Wang, Jian; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Cai, Ying; Zhao, Jiqing; Wu, Qiang; Zou, Zhongmin; Cao, Jia; Sai, Yan

    2016-01-01

    It has been confirmed that mitochondrial impairment may underlie both sporadic and familial Parkinson's disease (PD). Mitochondrial fission/fusion and biogenesis are key processes in regulating mitochondrial homeostasis. Therefore, we explored whether the protective effect of resveratrol in rotenone-induced neurotoxicity was associated with mitochondrial fission/fusion and biogenesis. The results showed that resveratrol could not only promote mitochondrial mass and DNA copy number but also improve mitochondrial homeostasis and neuron function in rats and PC12 cells damaged by rotenone. We also observed effects with alterations in proteins known to regulate mitochondrial fission/fusion and biogenesis in rotenone-induced neurotoxicity. Therefore, our findings suggest that resveratrol may prevent rotenone-induced neurotoxicity through regulating mitochondrial fission/fusion and biogenesis. PMID:26770656

  14. Yeast mitochondrial fission proteins induce antagonistic Gaussian membrane curvatures to regulate apoptosis

    NASA Astrophysics Data System (ADS)

    Lee, Michelle; Hwee Lai, Ghee; Schmidt, Nathan; Xian, Wujing; Wong, Gerard C. L.

    2013-03-01

    Mitochondria form a dynamic and interconnected network, which disintegrates during apoptosis to generate numerous smaller mitochondrial fragments. This process is at present not well understood. Yeast mitochondrial fission machinery proteins, Dnm1 and Fis1, are believed to regulate programmed cell death in yeast. Yeast Dnm1 has been previously shown to promote mitochondrial fragmentation and degradation characteristic of apoptotic cells, while yeast Fis1 inhibits cell death by limiting the mitochondrial fission induced by Dnm1 [Fannjiang et al, Genes & Dev. 2004. 18: 2785-2797]. To better understand the mechanisms of these antagonistic fission proteins, we use synchrotron small angle x-ray scattering (SAXS) to investigate their interaction with model cell membranes. The relationship between each protein, Dnm1 and Fis1, and protein-induced changes in membrane curvature and topology is examined. Through the comparison of the membrane rearrangement and phase behavior induced by each protein, we will discuss their respective roles in the regulation of mitochondrial fission.

  15. Fusion and quasi-fission dynamics in nearly-symmetric reactions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Zhao, Kai; Li, ZhuXia

    2015-11-01

    Some nearly-symmetric fusion reactions are systematically investigated with the improved quantum molecular dynamics (ImQMD) model. By introducing two-body inelastic scattering in the Fermi constraint procedure, the stability of an individual nucleus and the description of fusion cross sections at energies near the Coulomb barrier can be further improved. Simultaneously, the quasifission process in 154Sm+160Gd is also investigated with the microscopic dynamics model for the first time. We find that at energies above the Bass barrier, the fusion probability is smaller than 10-5 for this reaction, and the nuclear contact time is generally smaller than 1500 fm/ c. From the central collisions of Sm+Gd, the neutron-rich fragments such as 164,165Gd, 192W can be produced in the ImQMD simulations, which implies that the quasi-fission reaction could be an alternative way to synthesize new neutron-rich heavy nuclei.

  16. On fusion/fission chain reactions in the Fleischmann-Pons cold fusion experiment

    SciTech Connect

    Anghaie, S.; Froelich, P.; Monkhorst, H.J. )

    1990-05-01

    In this paper the possibility of fusion/fission chain reactions following d-d source reactions in electrochemical cold fusion experiments have been investigated. The recycling factors for the charged particles in fusion reactions with consumable nuclei deuteron, {sup 6}Li nd {sup 7}Li, are estimated. It is concluded that, based on the established nuclear fusion cross sections and electronic stopping power, the recycling factor is four to five orders of magnitude less than required for close to critical conditions. It is argued that the cross generation of charged particles by neutrons does not play a significant role in this process, even if increased densities at the surface of electrodes do occur.

  17. Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions

    SciTech Connect

    Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew; Cizewski, Jolie A; Krucken, Reiner; Clark, R M; Fallon, Paul; Lee, I Yang; Macchiavelli, Agusto O; Becker, John A; Younes, Walid

    2010-01-01

    Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin states between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.

  18. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  19. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs and 90Sr on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, H.; Otsu, H.; Sakurai, H.; Ahn, D. S.; Aikawa, M.; Doornenbal, P.; Fukuda, N.; Isobe, T.; Kawakami, S.; Koyama, S.; Kubo, T.; Kubono, S.; Lorusso, G.; Maeda, Y.; Makinaga, A.; Momiyama, S.; Nakano, K.; Niikura, M.; Shiga, Y.; Söderström, P.-A.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Taniuchi, R.; Watanabe, Ya.; Watanabe, Yu.; Yamasaki, H.; Yoshida, K.

    2016-03-01

    We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.

  20. Using Ultracold Neutrons to Characterize Fission Fragment Induced Sputtering

    NASA Astrophysics Data System (ADS)

    Broussard, Leah; Makela, Mark; Morris, Chris

    2015-10-01

    One of the modern challenges in nuclear science and technology is the understanding of the nature of fission fragment damage to material and the resulting ejection of matter as the fragments pass through the surface, with implications to stockpile stewardship and nuclear energy. We have demonstrated a new technique that can be used to characterize the sputtered material with knowledge of the location of the originating fission event. Due to their very high fission cross sections, ultracold neutrons (~100 neV energy) can be used to control the depth at which fission takes place using their energy or the material enrichment. This effort represents one of the first practical applications of ultracold neutrons, which to date have been primarily used to explore questions in fundamental particle physics. We will present results of demonstration measurements including first limits on the total and fission cross sections for 100 neV scale neutrons and the status of the development of this new capability. We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program, the G. T. Seaborg Institute, and LANL Science Campaign C1 for this work.

  1. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  2. Fusion-fission and quasifission in the reactions with heavy ions leading to the formation of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.

    2012-10-20

    Mass and energy distributions of binary reaction products obtained in the reactions {sup 22}Ne+{sup 249}Cf,{sup 26}Mg+{sup 248}Cm,{sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to Hs isotopes have been measured. At energies below the Coulomb barrier the bimodal fission of Hs*, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed. In the reaction {sup 36}S+{sup 238}U the considerable part of the symmetric fragments arises from the quasifission process. At energies above the Coulomb barrier the symmetric fragments originate mainly from fusion-fission process for both reactions with Mg and S ions. In the case of the {sup 58}Fe+{sup 208}Pb reaction the quasifission process dominates at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for the reactions studied.

  3. Characteristics of Symmetric and Asymmetric Fission Modes as a Function of the Compound Nucleus Excitation in the Proton-Induced Fission of 233Pa, 239Np and 243Am

    SciTech Connect

    Beresova, M.; Kliman, J.; Krupa, L.; Bogatchev, A. A.; Itkis, I. M.; Itkis, M. G.; Kniajeva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Pokrovsky, I. V.; Dorvaux, O.; Khlebnikov, S.; Lyapin, V.; Rubchenia, W.; Stuttge, L.; Trzaska, W.; Vakhtin, D.

    2007-05-22

    Average preequilibrium average statistical prescission and postscission neutron multiplicities as well as average {gamma}-ray multiplicity , average energy emitted by {gamma}-rays and average energy per one gamma quantum <{epsilon}{gamma}> as a function of mass and total kinetic energy (TKE) of fission fragments were measured in the proton-induced reactions p+232Th{yields}233Pa, p+238U{yields}239Np and p+242Pu{yields}243Am (at proton energy Ep=13, 20, 40 and 55 MeV). The fragment mass and energy distributions (MEDs) have been analyzed in terms of the multimodal fission. The decomposition of the experimental MEDs onto the MEDs of the distinct modes has been fulfilled in the framework of a method that is free from any parameterization of the distinct fission mode mass distribution shapes. The main characteristics for symmetric and asymmetric modes have been studied in their dependence on the compound nucleus composition and proton energy. The manifestation of multimodal fission in average {gamma}-ray multiplicities of fission fragments was also studied in this work.

  4. Competition between fusion-fission and quasifission processes in the {sup 32}S+{sup 184}W reaction

    SciTech Connect

    Zhang, H. Q.; Zhang, C. L.; Lin, C. J.; Liu, Z. H.; Yang, F.; Nasirov, A. K.; Mandaglio, G.; Manganaro, M.; Giardina, G.

    2010-03-15

    The angular distributions of fission fragments for the {sup 32}S+{sup 184}W reaction at center-of-mass energies of 118.8, 123.1, 127.3, 131.5, 135.8, 141.1, and 144.4 MeV are measured. The experimental fission excitation function is obtained. The anisotropy (A{sub exp}) is found by extrapolating each fission fragment angular distribution. The measured fission cross sections of the {sup 32}S+{sup 182,184}W reaction are decomposed into fusion-fission, quasifission, and fast-fission contributions by the dinuclear system model (DNS). The angular momentum distributions of the dinuclear system and compound nucleus calculated by the DNS model are used to reproduce the experimental capture and fusion excitation functions for both reactions and quantities K{sub 0}{sup 2}, , and A{sub exp}, which characterize angular distributions of the fission products at the considered range of beam energy. The total evaporation residue excitation function for the {sup 32}S+{sup 184}W reaction calculated in the framework of the advanced statistical model is close to the available experimental data only up to about E{sub c.m.}approx =160 MeV. The underestimation of the experimental data at high excitation energies E{sub c.m.}>160 MeV is explained by the fact that the statistical model cannot reproduce the cross section of evaporation residues formed by the nonequilibrium mechanism, that is, without formation of the compound nucleus in the statistical equilibrium state.

  5. Developing an in-situ Detector of Neutron-Induced Fission for Actinide Sputtering Characterization

    NASA Astrophysics Data System (ADS)

    Fellers, Deion

    2016-09-01

    The physical mechanism describing the transfer of large amounts of energy due to fission in a material is not well understood and represents one of the modern challenges facing nuclear scientists, with applications including nuclear energy and national defense. Fission fragments cause damage to the material from sputtering of matter as they pass through or near the material's surface. We have developed a new technique at the Los Alamos Neutron Science Center for characterizing the ejecta by using ultracold neutrons (neutrons with kinetic energy less than 300 neV) to induce fission at finely controlled depths in an actinide. This program will ultimately provide a detailed description of the properties of the sputtered particles as a function of the depth of the fission in the material. A key component of this project is accurately quantifying the number of neutron induced fissions in the sample. This poster depicts the development of an in-situ detector of neutron-induced fission for the AShES (Actinide Sputtering from ultracold neutron Exposure at the Surface) experiment.

  6. Dynamical simulation of the fission process and anisotropy of the fission fragment angular distributions of excited nuclei produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Eslamizadeh, H.

    2016-10-01

    Abstract. A stochastic approach based on four-dimensional Langevin equations was applied to calculate the anisotropy of fission fragment angular distributions, average prescission neutron multiplicity, and the fission probability in a wide range of fissile parameters for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf produced in fusion reactions. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis K were considered in the four-dimensional dynamical model. In the dynamical calculations, nuclear dissipation was generated through the chaos-weighted wall and window friction formula. Furthermore, in the dynamical calculations the dissipation coefficient of K ,γk was considered as a free parameter, and its magnitude inferred by fitting measured data on the anisotropy of fission fragment angular distributions for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf. Comparison of the calculated results for the anisotropy of fission fragment angular distributions with the experimental data showed that the results of the calculations are in good agreement with the experimental data by using values of the dissipation coefficient of K equal to (0.185-0.205), (0.175-0.192), (0.077-0.090), and (0.075-0.085) (MeVzs ) -1 /2 for the compound nuclei 197Tl,225Pa,248Cf , and 264Rf, respectively. It was also shown that the influence of the dissipation coefficient of K on the results of the calculations of the prescission neutron multiplicity and fission probability is small.

  7. Allowance for the tunnel effect in the entrance channel of fusion–fission reactions

    SciTech Connect

    Litnevsky, V. L. Kosenko, G. I.; Ivanyuk, F. A.

    2016-05-15

    A two-stage model is developed in order to describe fusion–fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.

  8. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    SciTech Connect

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  9. Spin distribution in neutron induced preequilibrium reactions

    SciTech Connect

    Dashdorj, D; Kawano, T; Chadwick, M; Devlin, M; Fotiades, N; Nelson, R O; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Macri, R; Younes, W

    2005-10-04

    The preequilibrium reaction mechanism makes an important contribution to neutron-induced reactions above E{sub n} {approx} 10 MeV. The preequilibrium process has been studied exclusively via the characteristic high energy neutrons produced at bombarding energies greater than 10 MeV. They are expanding the study of the preequilibrium reaction mechanism through {gamma}-ray spectroscopy. Cross-section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy (E{sub n} = 1 to 250 MeV) on a {sup 48}Ti sample. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the Los Alamos Neutron Science Center facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed Germanium Array for Neutron Induced Excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). Residual state population was predicted using the GNASH reaction code, enhanced for preequilibrium. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshback, Kerman, and Koonin (FKK). The multistep direct part of the FKK theory was calculated for a one-step process. The FKK preequilibrium spin distribution was incorporated into the GNASH calculations and the {gamma}-ray production cross sections were calculated and compared with experimental data. The difference in the partial {gamma}-ray cross sections using spin distributions with and without preequilibrium effects is significant.

  10. Scaling laws in {sup 3}He induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, K.X.; Moretto, L.G.; Phair, L.; Tso, K.; Wozniak, G.J.

    1996-12-01

    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. Furthermore, the method applied in this paper allows for the model-independent determination of the nuclear shell effects. {copyright} {ital 1996 The American Physical Society.}

  11. Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Bachmeier, Benjamin V; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W; Gylys, Karen H; Patterson, Emily R; Parisi, Joseph E; Diaz Brinton, Roberta; Salisbury, Jeffrey L; Trushina, Eugenia

    2016-01-05

    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival.

  12. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    DOE PAGES

    Diakaki, M.; Karadimos, D.; Vlastou, R.; ...

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, andmore » the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.« less

  13. Neutron-induced fission cross section of 237Np in the keV to MeV range at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2016-03-01

    The neutron-induced fission cross section of 237Np was experimentally determined at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the 235U(n ,f ) and 238U(n ,f ) cross section standards below and above 2 MeV, respectively. A fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of α spectroscopy and Rutherford backscattering spectroscopy respectively. Theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the empire code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  14. Reducing Uncertainties in Neutron Induced Fission Cross Sections via a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Magee, Joshua; Niffte Collaboration

    2016-09-01

    Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission Fragment Tracking Experiment collaboration (NIFFTE) designed and built a fission Time Project Chamber (fission TPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2015 run cycle, measurements of several actinides were performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as the current progress towards a sub-percent measurement of the 239Pu/235U (n,f) cross-section ratio. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Isotopic yield measurement in the heavy mass region for {sup 239}Pu thermal neutron induced fission

    SciTech Connect

    Bail, A.; Serot, O.; Mathieu, L.; Litaize, O.; Materna, T.; Koester, U.; Faust, H.; Letourneau, A.; Panebianco, S.

    2011-09-15

    Despite the huge number of fission yield data available in the different evaluated nuclear data libraries, such as JEFF-3.1.1, ENDF/B-VII.0, and JENDL-4.0, more accurate data are still needed both for nuclear energy applications and for our understanding of the fission process itself. It is within the framework of this that measurements on the recoil mass spectrometer Lohengrin (at the Institut Laue-Langevin, Grenoble, France) was undertaken, to determine isotopic yields for the heavy fission products from the {sup 239}Pu(n{sub th},f) reaction. In order to do this, a new experimental method based on {gamma}-ray spectrometry was developed and validated by comparing our results with those performed in the light mass region with completely different setups. Hence, about 65 fission product yields were measured with an uncertainty that has been reduced on average by a factor of 2 compared to that previously available in the nuclear data libraries. In addition, for some fission products, a strongly deformed ionic charge distribution compared to a normal Gaussian shape was found, which was interpreted as being caused by the presence of a nanosecond isomeric state. Finally, a nuclear charge polarization has been observed in agreement, with the one described on other close fissioning systems.

  16. Analysis of Neutron Fission Reaction Rate in the Nuclear Fuel Cell Using Collision Probability Method with Non Flat Flux Approach

    NASA Astrophysics Data System (ADS)

    Shafii, Mohammad Ali

    2017-07-01

    Neutron fission reaction rate in the nuclear reactor depends on macroscopic cross section and neutron flux distribution. The macroscopic cross section depends on the type of nuclide, the type of reaction, and the group energy of the neutrons relative to the nuclides. Flux distribution is very important in a nuclear reactor, because it is closely related to power distribution. In general, the integral neutron transport equation is solved using a collision probability (CP) method with a flat flux (FF) approach. Consequently, the CP matrix is also assumed constantly, therefore, the distribution of the neutron flux throughout the cell becomes flat. In the non-flat flux (NFF) approach, the neutron flux is modellled by linear interpolation as a function of mesh in the cylindrical nuclear fuel cell of a fast reactor type. This study uses the CP method with a NFF approach and it is applied to analyze the neutron fission reaction rate of a cylindrical nuclear fuel cell of a fast reactor type. Nuclear data library that is used in this study is JFS-3-J33 which belongs to the SLAROM computer code. Calculation results of the fission reaction rate shows that it is decrease in the high energy region due to the events of elastic collision that caused the neutron easier to lose of energy. The same fission reaction rate pattern occurs in the FF and NFF approaches.

  17. Mesoscale model for fission-induced recrystallization in U-7Mo alloy

    SciTech Connect

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo; Ye, Bei; Hofman, Gerard; Anitescu, Mihai; Yacout, Abdellatif M.

    2016-08-09

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grain size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.

  18. Mesoscale model for fission-induced recrystallization in U-7Mo alloy

    DOE PAGES

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo; ...

    2016-08-09

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  19. Modernizing the Fission Basis

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Henderson, Roger; Schunck, Nicolas; Sroyer, Mark; Vogt, Ramona

    2016-09-01

    In 1939, Niels Bohr and John Wheeler formulated a theory of neutron-induced nuclear fission based on the hypothesis of the compound nucleus. Their theory, the so-called ``Bohr hypothesis,'' is still at the heart of every theoretical fission model today and states that the decay of a compound nucleus for a given excitation energy, spin, and parity is independent of its formation. We propose the first experiment to validate to 1-2% absolute uncertainties the practical consequences of the Bohr hypothesis during induced nuclear fission. We will compare the fission product yields (FPYs) of the same 240Pu compound nucleus produced via two different reactions (i) n+239Pu and (ii) γ+240 Pu. These high-precision FPYs measurements will be extremely beneficial for our fundamental understanding of the nuclear fission process and nuclear reactions from first principles. This work was performed under the auspices of US DOE by LLNL under Contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  20. Fragment Angular Distributions in Neutron-Induced Fission of w235U and 239Pu using a Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Kleinrath, Verena

    2014-09-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for 235U and even more so for 239Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. Analysis of in-beam data collected at the Los Alamos Neutron Science Center with a 239Pu/235U target will provide angular distributions as a function of incident neutron energy for these isotopes. Preliminary angular distributions for 235U and 239Pu using the NIFFTE time projection chamber will be presented. Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for 235U and even more so for 239Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. Analysis of in-beam data collected at the Los Alamos Neutron Science Center with a 239Pu/235U target will provide angular distributions as a function of incident neutron energy for these isotopes. Preliminary angular distributions for 235U and

  1. Fission induced swelling and creep of U-Mo alloy fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.; Cheon, J. S.; Robinson, A. B.; Wachs, D. M.

    2013-06-01

    Tapering of U-Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U-Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical-mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  2. Fission induced swelling and creep of U–Mo alloy fuel

    SciTech Connect

    Yeon Soo Kim; G. L. Hofman; J. S. Cheon; A. B. Robinson; D. M. Wachs

    2013-06-01

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  3. Fast neutron-induced fission of Pu-240, Am-243 and W-nat

    NASA Astrophysics Data System (ADS)

    Laptev, A.; Haight, R.; Shcherbakov, O.; Vorobyev, A.; Carlson, A.

    2009-10-01

    The fast neutron-induced fission cross sections of Pu-240, Am-243, W-nat and Bi-209 have been obtained relative to the fission cross section of U-235 for incident neutrons from 1 MeV to 200 MeV in ``shape'' experiments. The measurements were done at the GNEIS facility simultaneously for each investigated isotopic target using two multiplate ionization chambers and the time-of-flight (TOF) technique on a 48-m flight path. The pulsed ``white spectrum'' neutron source GNEIS had an average intensity of 3 x 10^14 n/s, burst duration 10 ns and repetition rate 50 Hz. The statistical uncertainty of the measured cross section ratios for the actinide nuclei Pu-240 and Am-243 is about 2% at neutron energies above fission threshold and is less than 10% for the natW at energies above 150 MeV. The systematic error budget is discussed. In addition, the fission cross section of Bi-209 has been obtained to compare with results of previous experiments. The new fission cross section of U-235(n,f) from the international standards evaluation was used to convert the ratio data to fission cross-sections. Finally the shape fission cross section measurements were normalized using the new evaluations from the ENDF/B-VII.0 library for the actinides, while for the sub-actinides the normalization was done using the target thicknesses of investigated and reference (U-235) nuclei. The fission cross section of Am-243 above ˜40 MeV was measured for the first time and that of W-nat was measured for the first time with a ``white spectrum'' neutron source.

  4. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    NASA Astrophysics Data System (ADS)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  5. The fusion-fission process in the reaction {sup 34}S+{sup 186}W near the interaction barrier

    SciTech Connect

    Harca, I. M.; Dmitriev, S.; Itkis, J.; Kozulin, E. M.; Knyazheva, G.; Loktev, T.; Novikov, K.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Hanappe, F.; Piot, J.; Schmitt, C.; Vardaci, E.

    2015-02-24

    The reaction {sup 34}S+{sup 186}W at E{sub lab}=160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays in coincidence with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments (FF) registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. The coupling of the ORGAM and CORSET setups offers the unique opportunity of extracting details for characterizing the fusion-fission process and gives information regarding production of neutron-rich heavy nuclei. The FF–γ coincidence method is of better use then the γ – γ coincidence method when dealing with low statistic measurements and also offers the opportunity to precisely correct the Dopler shift for in-flight emitted gamma rays. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. Coincident measurements allow for discrimination between the gamma rays by accepting a specific range within the mass distribution of the reaction products. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  6. Angular distributions and anisotropy of fission fragments from neutron-induced fission in intermediate energy range 1-200 MeV

    NASA Astrophysics Data System (ADS)

    Vorobyev, Alexander S.; Gagarski, Alexei M.; Shcherbakov, Oleg A.; Vaishnene, Larisa A.; Barabanov, Alexei L.

    2017-09-01

    Angular distributions of fission fragments from the neutron-induced fission of 232Th, 233U, 235U, 238U and 209Bi have been measured in the energy range 1-200 MeV at the neutron TOF spectrometer GNEIS based on the spallation neutron source at 1 GeV proton synchrocyclotron of the PNPI (Gatchina, Russia). The multiwire proportional counters have been used as a position sensitive fission fragment detector. A description of the experimental equipment and measurement procedure is given. The anisotropy of fission fragments deduced from the data on measured angular distributions is presented in comparison with experimental data of other authors, first of all, the recent data from WNR at LANSCE (Los Alamos, USA) and n_TOF(CERN).

  7. Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium

    SciTech Connect

    J. L. Dolan; M. J. Marcath; M. Flaska; S. A. Pozzi; D. L. Chichester; A. Tomanin; P. Peerani

    2014-02-01

    A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.

  8. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    SciTech Connect

    Iwamoto, O. Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-15

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  9. The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions

    NASA Astrophysics Data System (ADS)

    Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.

    2016-01-01

    A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.

  10. Isotopic dependence of the cross section for the induced fission of heavy nuclei

    SciTech Connect

    Bolgova, O. N.; Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Ivanova, S. P.; Scheid, W.

    2009-06-15

    The cross sections for the induced fission of {sup 211-223}Ra, {sup 203-211}Rn, and {sup 221-231}Th nuclei undergoing peripheral collisions with {sup 208}Pb nuclei are calculated on the basis of the statistical model. The role of the N = 126 neutron shell is studied. The level density in excited nuclei is determined within the Fermi gas model and a model that takes into account the collective enhancement of the level density. The inclusion of a particle-hole excitation in addition to a collective Coulomb excitation makes it possible to obtain a satisfactory description of experimental cross sections for the fission of radium isotopes. The calculated ratios of the cross sections for the induced fission of {sup 236}U ({sup 237}U) and {sup 238}U ({sup 239}U) nuclei agree with experimental data.

  11. Spallation reaction study for fission products in nuclear waste: Cross section measurements for 137Cs, 90Sr and 107Pd on proton and deuteron

    NASA Astrophysics Data System (ADS)

    Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Chiga, Nobuyuki; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shupei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shinichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi

    2017-09-01

    Spallation reactions for the long-lived fission products 137Cs, 90Sr and 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. and the cross-section differences between the proton and deuteron are found to be larger for lighter fragments. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intra-nuclear cascade and evaporation processes.

  12. Nuclear Fission: A Review of Experimental Advances and Phenomenology.

    PubMed

    Andreyev, Andrei; Nishio, Katsuhisa; Schmidt, Karl-Heinz

    2017-07-28

    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies. This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams. The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed. A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion-fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around <sup>180</sup>Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined. The unprecedented high-quality data for fission fragments, completely identified in <i>Z</i> and <i>A</i>, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and

  13. Probing energy dissipation, γ-ray and neutron multiplicity in the thermal neutron-induced fission of 239Pu

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2016-04-01

    The incorporation of the four-dimensional Langevin equations led to an integrative description of fission cross-section, fragment mass distribution and the multiplicity and energy distribution of prompt neutrons and γ-rays in the thermal neutron-induced fission of 239Pu. The dynamical approach presented in this paper thoroughly reproduces several experimental observables of the fission process at low excitation energy.

  14. Multivariate High Order Statistics of Measurements of the Temporal Evolution of Fission Chain-Reactions

    SciTech Connect

    Mattingly, J.K.

    2001-03-08

    The development of high order statistical analyses applied to measurements of the temporal evolution of fission chain-reactions is described. These statistics are derived via application of Bayes' rule to conditional probabilities describing a sequence of events in a fissile system beginning with the initiation of a chain-reaction by source neutrons and ending with counting events in a collection of neutron-sensitive detectors. Two types of initiating neutron sources are considered: (1) a directly observable source introduced by the experimenter (active initiation), and (2) a source that is intrinsic to the system and is not directly observable (passive initiation). The resulting statistics describe the temporal distribution of the population of prompt neutrons in terms of the time-delays between members of a collection (an n-tuplet) of correlated detector counts, that, in turn, may be collectively correlated with a detected active source neutron emission. These developments are a unification and extension of Rossi-a, pulsed neutron, and neutron noise methods, each of which measure the temporal distribution of pairs of correlated events, to produce a method that measures the temporal distribution of n-tuplets of correlated counts of arbitrary dimension n. In general the technique should expand present capabilities in the analysis of neutron counting measurements.

  15. Observation of magnetic field-induced contraction of fission yeast cells using optical projection microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Beckwith, A. W.

    2005-03-01

    The charges in live cells interact with or produce electric fields, which results in enormous dielectric responses, flexoelectricity, and related phenomena. Here we report on a contraction of Schizosaccharomyces pombe (fission yeast) cells induced by magnetic fields, as observed using a phase-sensitive projection imaging technique. Unlike electric fields, magnetic fields only act on moving charges. The observed behavior is therefore quite remarkable, and may result from a contractile Lorentz force acting on diamagnetic screening currents. This would indicate extremely high intracellular charge mobilities. Besides, we observed a large electro-optic response from fission yeast cells.

  16. Fast-neutron-induced fission of 242Pu at nELBE

    NASA Astrophysics Data System (ADS)

    Kögler, Toni; Beyer, Roland; Dietz, Mirco; Junghans, Arnd R.; Lorenz, Christian; Müller, Stefan E.; Reinhardt, Tobias P.; Schmidt, Konrad; Schwengner, Ronald; Takacs, Marcell P.; Wagner, Andreas

    2017-09-01

    The fast neutron-induced fission cross section of 242Pu was determined in the range of 0.5 MeV to 10 MeV relative to 235U(n,f) at the neutron time-of-flight facility nELBE. The number of target nuclei was calculated by means of measuring the spontaneous fission rate of 242Pu. Neutron transport simulations with Geant4 and MCNP6 are used to correct the relative cross section for neutron scattering. The determined results are in good agreement with current experimental and evaluated data sets.

  17. Neutron-Induced Fission Cross Section Measurements for Uranium Isotopes and Other Actinides at LANSCE

    SciTech Connect

    Laptev, Alexander B.; Tovesson, Fredrik K.; Hill, Tony S.

    2012-08-16

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research center (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard {sup 235}U foil is translated into a fission cross section ratio. Thin actinide targets with deposits of <200 {micro}g/cm{sup 2} on stainless steel backing were loaded into a fission chamber. In addition to previously measured data for {sup 237}Np, {sup 239-242}Pu, {sup 243}Am, new measurements include the recently completed {sup 233,238}U isotopes, {sup 236}U data which is being analyzed, and {sup 234}U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. When analysis of the new measured data is completed, data will be delivered to evaluators. Having data for multiple Uranium isotopes will support theoretical modeling capabilities and strengthens nuclear data evaluation.

  18. Development of a “Fission-proxy” Method for the Measurement of 14-MeV Neutron Fission Yields at CAMS

    SciTech Connect

    Gharibyan, Narek

    2016-10-25

    Relative fission yield measurements were made for 50 fission products from 25.6±0.5 MeV alpha-induced fission of Th-232. Quantitative comparison of these experimentally measured fission yields with the evaluated fission yields from 14-MeV neutron-induced fission of U-235 demonstrates the feasibility of the proposed fission-proxy method. This new technique, based on the Bohr-independence hypothesis, permits the measurement of fission yields from an alternate reaction pathway (Th-232 + 25.6 MeV α → U-236* vs. U-235 + 14-MeV n → U-236*) given that the fission process associated with the same compound nucleus is independent of its formation. Other suitable systems that can potentially be investigated in this manner include (but are not limited to) Pu-239 and U-237.

  19. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  20. Stress-Induced Nuclear to Cytoplasmic Translocation of Cyclin C Promotes Mitochondrial Fission in Yeast

    PubMed Central

    Cooper, Katrina F.; Khakhina, Svetlana; Kim, Stephen K.; Strich, Randy

    2014-01-01

    SUMMARY Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyper-fission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, co-immunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C. PMID:24439911

  1. The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis

    PubMed Central

    Alirol, Emilie; James, Dominic; Huber, Denise; Marchetto, Andrea; Vergani, Lodovica

    2006-01-01

    Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca2+-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis. PMID:16914522

  2. Time delays in heavy-ion-induced fission of medium-Z nuclei, measured by crystal blocking

    SciTech Connect

    Andersen, J. U.; Chevallier, J.; Forster, J. S.; Karamian, S. A.; Vane, C Randy; Beene, James R; Gross, Carl J; Krause, Herbert F; Liang, J Felix; Shapira, Dan; Uguzzoni, A.

    2012-01-01

    Time delays in fission induced by bombardment of Mo with 170- and 180-MeV {sup 32}S, 225- and 240-MeV {sup 48}Ti, and 300-MeV {sup 58}Ni have been measured by observation of crystal blocking of fission fragments. In contrast to earlier measurements with a W target, the results are consistent with fission of a compound nucleus in competition with mainly neutron emission. Most of the fissions happen on a time scale much shorter than attoseconds but there is a significant component of fission with much longer lifetimes. The measurements are reproduced with a standard statistical model, including a Kramers correction to fission widths from the viscosity of hot nuclear matter. These new results support the interpretation of our earlier measurements with a W target, which indicate that there is a transition in heavy-ion-induced fission at large atomic number and mass, from multichance fission in the standard Bohr-Wheeler picture to fission without formation of a compound nucleus. The process is slowed down by nuclear viscosity, with measured delays of order attoseconds.

  3. Crosstalk between Mitochondrial Fission and Oxidative Stress in Paraquat-Induced Apoptosis in Mouse Alveolar Type II Cells.

    PubMed

    Zhao, Guangju; Cao, Kaiqiang; Xu, Changqin; Sun, Aifang; Lu, Wang; Zheng, Yi; Li, Haixiao; Hong, Guangliang; Wu, Bing; Qiu, Qiaomeng; Lu, Zhongqiu

    2017-01-01

    Paraquat (PQ), as a highly effective and nonselective herbicide, induces cell apoptosis through generation of superoxide anions which forms reactive oxygen species (ROS). Mitochondria, as regulators for cellular redox signaling, have been proved to play an important role in PQ-induced cell apoptosis. This study aimed to evaluate whether and how mitochondrial fission interacts with oxidative stress in PQ-induced apoptosis in mouse alveolar type II (AT-II) cells. Firstly, we demonstrated that PQ promoted apoptosis and release of cytochrome-c (Cyt-c). Furthermore, we showed that PQ broke down mitochondrial network, enhanced the expression of fission-related proteins, increased Drp1 mitochondrial translocation while decreased the expression of fusion-related proteins in AT-II cells. Besides, inhibiting mitochondrial fission using mdivi-1, a selective inhibitor of Drp1, markedly attenuated PQ-induced apoptosis, release of Cyt-c and the generation of ROS. These results indicate that mitochondrial fission involves in PQ-induced apoptosis. Further study demonstrated that antioxidant ascorbic acid inhibited Drp1 mitochondrial translocation, mitochondrial fission and attenuated PQ-induced apoptosis. Overall, our findings suggest that mitochondrial fission interplays with ROS in PQ-induced apoptosis in mouse AT-II cells and mitochondrial fission could serve as a potential therapeutic target in PQ poisoning.

  4. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  5. Dynamical Aspects of Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Kliman, J.; Itkis, M. G.; Gmuca, Š.

    2008-11-01

    Fission dynamics. Dependence of scission-neutron yield on light-fragment mass for [symbol]=1/2 [et al.]. Dynamics of capture quasifission and fusion-fission competition / L. Stuttgé ... [et al.] -- Fission-fission. The processes of fusion-fission and quasi-fission of superheavy nuclei / M. G. Itkis ... [et al.]. Fission and quasifission in the reactions [symbol]Ca+[symbol]Pb and [symbol]Ni+[symbol]W / G. N. Knyazheva ... [et al.]. Mass-energy characteristics of reactions [symbol]Fe+[symbol][symbol][symbol]266Hs and [symbol]Mg+[symbol]Cm[symbol][symbol]Hs at Coulomb barrier / L. Krupa ... [et al.]. Fusion of heavy ions at extreme sub-barrier energies / Ş. Mişicu and H. Esbensen. Fusion and fission dynamics of heavy nuclear system / V. Zagrebaev and W. Greiner. Time-dependent potential energy for fusion and fission processes / A. V. Karpov ... [et al.] -- Superheavy elements. Advances in the understanding of structure and production mechanisms for superheavy elements / W. Greiner and V. Zagrebaev. Fission barriers of heaviest nuclei / A. Sobiczewski ... [et al.]. Possibility of synthesizing doubly magic superheavy nuclei / Y Aritomo ... [et al.]. Synthesis of superheavy nuclei in [symbol]Ca-induced reactions / V. K. Utyonkov ... [et al.] -- Fragmentation. Production of neutron-rich nuclei in the nucleus-nucleus collisions around the Fermi energy / M. Veselský. Signals of enlarged core in [symbol]Al / Y. G. Ma ... [et al.] -- Exotic modes. New insight into the fission process from experiments with relativistic heavy-ion beams / K.-H. Schmidt ... [et al.]. New results for the intensity of bimodal fission in binary and ternary spontaneous fission of [symbol]Cf / C. Goodin ... [et al.]. Rare fission modes: study of multi-cluster decays of actinide nuclei / D. V. Kamanin ... [et al.]. Energy distribution of ternary [symbol]-particles in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Preliminary results of experiment aimed at searching for collinear cluster tripartition of

  6. Thorium-232 fission induced by light charged particles up to 70 MeV

    NASA Astrophysics Data System (ADS)

    Métivier, Vincent; Duchemin, Charlotte; Guertin, Arnaud; Michel, Nathalie; Haddad, Férid

    2017-09-01

    Studies have been devoted to the production of alpha emitters for medical application in collaboration with the GIP ARRONAX that possesses a high energy and high intensity multi-particle cyclotron. The productions of Ra-223, Ac-225 and U-230 have been investigated from the Th-232(p,x) and Th-232(d,x) reactions using the stacked-foils method and gamma spectrometry measurements. These reactions have led to the production of several fission products, including some with a medical interest like Mo-99, Cd-115g and I-131. This article presents cross section data of fission products obtained from these undedicated experiments. These data have been also compared with the TALYS code results.

  7. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    NASA Astrophysics Data System (ADS)

    Sagaidak, Roman

    2017-09-01

    The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion) model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop) fission barrier heights (FBHs) for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  8. Fusion-fission study at IUAC: Recent results

    NASA Astrophysics Data System (ADS)

    Pullanhiotan, Sugathan

    2016-10-01

    Several properties observed in heavy ion induced fission led to the conclusion that fission is not always originated from fully equilibrated compound nucleus. Soon after the collision of two nuclei, it forms a di-nuclear system than can fission before a compound nucleus is formed. This process termed quasi-fission is a major hurdle to the formation of heavier elements by fusion. Fission originated before complete equilibration showed anomalously large angular anisotropy and mass distribution wider than what is expected from compound nucleus fission. The standard statistical model fails to predict the outcome of quasi-fission and currently no dynamical model is fully developed to predict all the features of quasi-fission. Though much progress has been made in recent times, a full understanding of the fission dynamics is still missing. Experiments identifying the influence of entrance channel parameters on dynamics of fusion-fission showed contrasting results. At IUAC accelerator facility many experiments have been performed to make a systematic study of fission dynamics using mass distribution, angular distribution and neutron multiplicity measurements in mass region around A ∼ 200. Recent measurement on mass distribution of fission fragment from reaction 19 F +206,208 Pb around fusion barrier energy showed the influence of multi-mode fission in enhancing the mass variance at low excitation energy. In this talk I will present some of these results.

  9. Measurements of isomeric yield ratios of fission products from proton-induced fission on natU and 232Th via direct ion counting

    NASA Astrophysics Data System (ADS)

    Rakopoulos, Vasileios; Lantz, Mattias; Al-Adili, Ali; Gorelov, Dmitry; Jokinen, Ari; Kolhinen, Veli; Mattera, Andrea; Moore, Iain D.; Penttilä, Heikki; Prokofiev, Alexander V.; Solders, Andreas; Pomp, Stephan

    2017-09-01

    Independent isomeric yield ratios (IYR) of 81Ge, 96Y, 97Y, 97Nb, 128Sn and 130Sn have been determined in the 25 MeV proton-induced fission of natU and 232Th. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyväskylä. A direct ion counting measurement of the isomeric fission yield ratios was accomplished for the first time, registering the fission products in less than a second after their production. In addition, the IYRs of natU were measured by means of γ-spectroscopy in order to verify the consistency of the recently upgraded experimental setup. From the obtained results, indications of a dependence of the production rate on the fissioning system can be noticed. These data were compared with data available in the literature, whenever possible. Using the TALYS code and the experimentally obtained IYRs, we also deduced the average angular momentum of the fission fragments after scission.

  10. Determination of gaseous fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    DOE PAGES

    Cassata, W. S.; Velsko, C. A.; Stoeffl, W.; ...

    2016-01-14

    We determined fission yields of xenon (133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerable differencesmore » exist between our measured yields and the JEFF-3.1 database values.« less

  11. Charge distribution of light mass fission products in the fast neutron induced fission of (232)Th, (238)U, (240)Pu and (244)Cm.

    PubMed

    Naik, Haladhara; Singh, Ram Janam; Dange, Shrikant Pandurang

    2017-09-01

    Fractional cumulative yields (FCY) of various light mass fission products in the fast neutron induced fission of (232)Th, (238)U, (240)Pu and (244)Cm have been determined by using the off-line γ-ray spectrometric technique. From present and literature data, width of isobaric charge distribution (σZ), the most probable charge (ZP) and the experimental charge polarization (∆ΖEXPT) as a function of fragment mass were deduced. The ∆ΖEXPT values from the present work for light mass chains and earlier work for heavy mass chains show oscillating nature due to nuclear structure effect. The ∆ΖMPE values based on minimum potential energy surface were theoretically calculated, which shows a systematic decrease trend with the approach of symmetric split due to the liquid drop behaviour of the fissioning nucleus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of nuclear orientation on fusion and fission process for reactions using {sup 238}U target nucleus

    SciTech Connect

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Nishinaka, I.; Makii, H.; Nagame, Y.; Watanabe, Y.; Ohtsuki, T.; Hirose, K.; Hofmann, S.

    2010-06-01

    Fission fragment mass distributions in the reaction of {sup 30}Si+{sup 238}U were measured at the energies around the Coulomb barrier. At the above-barrier energies, the mass distribution showed Gaussian shape. At the sub-barrier energies, asymmetric fission mode peaked at A{sub L}/A{sub H}approx =90/178 was observed. The asymmetric fission should be attributed to quasifission from the results of the measured evaporation residue (ER) cross-sections produced by {sup 30}Si+{sup 238}U. The cross-section for {sup 263}Sg at the above-barrier energy agree with the statistical model calculation which assumes that the measured fission cross-sections are equal to the fusion cross-sections, whereas the one for {sup 264}Sg measured at the sub-barrier energy is smaller than the calculation, indicating the presence for quasifission. The fragment mass distributions are compared to those for {sup 36}S+{sup 238}U and {sup 40}Ar+{sup 238}U.

  13. Comparison of yields of neutron-rich nuclei in proton- and photon-induced 238U fission

    NASA Astrophysics Data System (ADS)

    Khan, F. A.; Bhowmick, Debasis; Basu, D. N.; Farooq, M.; Chakrabarti, Alok

    2016-11-01

    A comparative study of fission of actinides, especially 238U, by proton and bremsstrahlung photon is performed. The relative mass distribution of 238U fission fragments has been explored theoretically for both proton- and photon-induced fission. The integrated yield along with charge distribution of the products are calculated to find the neutron richness in comparison with the nuclei produced by the r process in nucleosynthesis. Some r -process nuclei in the intermediate-mass range for symmetric fission mode are found to be produced almost two orders of magnitude more for proton-induced fission than for photofission, although the rest of the neutron-rich nuclei in the asymmetric mode are produced in comparable proportion for both processes.

  14. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death.

    PubMed

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G; Bosnjak, Zeljko J

    2014-10-31

    Myocardial ischemia-reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of mitochondrial fission; and (2) the increased mitochondrial fission is resulted from both increased activation and decreased inactivation of Drp1 through Cdk1, PKCδ, and calcineurin-mediated pathways, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter

  16. Fission fragment angular distributions in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb

    SciTech Connect

    Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Reddy, A. V. R.; Pujari, P. K.; Goswami, A.; Ramachandran, K.

    2009-06-15

    Fission fragment angular distributions have been measured in the reactions {sup 16}O+{sup 188}Os and {sup 28}Si+{sup 176}Yb to investigate the contribution from noncompound nucleus fission. Parameters for statistical model calculations were fixed using fission cross section data in the {sup 16}O+{sup 188}Os reaction. Experimental anisotropies were in reasonable agreement with those calculated using the statistical saddle point model for both reactions. The present results are also consistent with those of mass distribution studies in the fission of {sup 202}Po, formed in the reactions with varying entrance channel mass asymmetry. However, the present studies do not show a large fusion hindrance as reported in the pre-actinide region based on the measurement of evaporation residue cross section.

  17. Mass distribution and mass resolved angular distribution of fission products in 28Si+232Th

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; John, B. V.; Ramachandran, K.; Pujari, P. K.

    2017-01-01

    Background: Fission process with heavier projectiles and actinide targets has contributions from processes, such as compound nucleus fission, transfer-induced fission, and noncompound nucleus fission. Mass distribution and mass-dependent anisotropy can be used to identify and delineate the contributions due to these different processes. Purpose: Mass distribution in 28Si+232Th has been studied at beam energies of 180 and 158 MeV to investigate the nature of mass distribution arising from complete and incomplete momentum-transfer fission events. Mass-dependent angular anisotropy has been measured at 166 MeV to investigate the dominant noncompound nucleus process contributing to the fission. Method: Mass distribution and mass resolved angular distribution of fission products were measured by the recoil catcher method followed by off-line γ -ray spectrometry. Results: Mass distributions for full momentum-transfer fission processes were found to be symmetric, and those for transfer-induced fission were found to be asymmetric at both beam energies. The relative contribution from transfer-induced fission was found to be higher at lower beam energy. The anisotropy of the fission product angular distribution was found to increase with decreasing mass asymmetry. Conclusions: The mass distribution indicates that, apart from the full momentum-transfer fission process, there is a significant contribution due to transfer-induced fission. The mass dependence of angular anisotropy indicated that preequilibrium fission is the dominant noncompound nucleus process in the present reaction system at near barrier energy (Ec .m ./VC=1.06 ) .

  18. Measurement of delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons

    SciTech Connect

    Gundorin, N. A.; Zhdanova, K. V.; Zhuchko, V. E.; Pikelner, L. B. Rebrova, N. V.; Salamatin, I. M.; Smirnov, V. I.; Furman, V. I.

    2007-06-15

    The delayed-neutron yield from thermal-neutron-induced fission of the {sup 237}Np nucleus was measured using a sample periodically exposed to a pulsed neutron beam with subsequent detection of neutrons during the time intervals between pulses. The experiment was realized on an Isomer-M setup mounted in the IBR-2 pulsed reactor channel equipped with a mirror neutron guide. The setup and the experimental procedure are described, the background sources are thoroughly analyzed, and the experimental data are presented. The total delayed-neutron yield from {sup 237}Np fission induced by thermal neutrons is {nu}{sub d} = 0.0110 {+-} 0.0009. This study was performed at the Frank Laboratory of Neutron Physics (JINR, Dubna)

  19. Assessment of fission-gas-induced transient swelling in metallic fuel

    SciTech Connect

    Sevy, R H; Cahalan, J E

    1985-03-01

    A model for fission-gas-induced transient swelling in metallic fuel is described. An observation that the strength of metallic fuel becomes very small at a temperature several hundred degrees below the solidus forms the basis for an assumption that, above this temperature, the fuel proceeds through a series of stress-free equilibrium states for a large range of heating rates. Gas bubble coalescence and growth and any effects from ingested sodium are ignored such that the model may tend to underestimate swelling in some circumstances. The fuel swelling model is used to predict the reactivity effect of fission-gas-induced axial expansion of metallic fuel during transient overpower excursions. Comparisons to oxide fuel behavior are made. Sensitivity of results to metallic fuel modeling assumptions are assessed in a parametric study.

  20. Quasifission and fission rates and their lifetimes in asymmetric reactions forming 216Ra within a dinuclear system approach

    NASA Astrophysics Data System (ADS)

    Khanlari, M. Varasteh; Soheyli, S.

    2017-02-01

    Background: The study of evolution of asymmetric dinuclear systems (DNSs) formed in heavy ion collisions is a topic of intense research. The DNS evolution leads to a variety of reaction channels such as deep inelastic, complete fusion, quasifission, fast fission, fusion-fission, and evaporation of particles. The time evolution of the DNS in the quasifission process and the role of relevant parameters are still not fully understood. Purpose: The influence of the entrance channel mass asymmetry on the time evolution of an excited and rotating DNS, populated via four reactions with different entrance channel mass asymmetry parameters which all lead to the compound nucleus 216Ra, is explored. Method: The driving potential, emission barriers for the binary decay (namely the quasifission and intrinsic fusion barriers), rate of the quasifission channel, and the lifetime of an excited DNS, as well as the fission rate and fission lifetime of the compound nucleus 216Ra formed in the 12C+204Pb,19F+197Au,30Si+186W , and 48Ca+168Er reactions, are calculated by the dinuclear system approach. Results: Our results show that the intrinsic fusion barrier values are equal to zero for the 12C+204Pb and 19F+197Au reactions. Therefore, the quasifission signature is extremely hindered for these reactions, while the 30Si+186W and 48Ca+168Er calculated results contain quasifission contributions. Provided the quasifission rate is nonzero, the quasifission rate increases with increasing orbital angular momentum ℓ of the composite system for a given excitation energy ECN * of the compound nucleus. On the other hand, the quasifission lifetime decreases moderately with increasing ℓ . Furthermore, both quasifission and fission rates increase with increasing excitation energy ECN *, while the quasifission and fission lifetimes decrease with increasing ECN * for a given ℓ . Conclusions: Although these reactions with different entrance channels populate the same compound nucleus 216Ra at

  1. Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications.

    PubMed

    Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe; Menlove, Howard O; Rael, Carlos D; LaFleur, Adrienne M; Browne, Michael C

    2016-09-01

    Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six (3)He tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, (252)Cf, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (α,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM×PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (~600g Pu).

  2. Evolution of nuclear shapes in odd-mass yttrium and niobium isotopes from lifetime measurements following fission reactions

    NASA Astrophysics Data System (ADS)

    Hagen, T. W.; Görgen, A.; Korten, W.; Grente, L.; Salsac, M.-D.; Farget, F.; Ragnarsson, I.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clément, E.; de France, G.; Delaune, O.; Dewald, A.; Dijon, A.; Hackstein, M.; Jacquot, B.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Rother, W.; Sahin, E.; Siem, S.; Sulignano, B.; Theisen, Ch.; Valiente-Dobon, J. J.

    2017-03-01

    Lifetimes of excited states in 99Y,101Y,101Nb,103Nb, and 105Nb were measured in an experiment using the recoil distance Doppler shift method at GANIL (Grand Accélérateur National d'Ions Lourds). The neutron-rich nuclei were produced in fission reactions between a 238U beam and a 9Be target. Prompt γ rays were measured with the EXOGAM array and correlated with fission fragments that were identified in mass and atomic number with the VAMOS++ spectrometer. The measured lifetimes, together with branching ratios, provide B (M 1 ) and B (E 2 ) values for the strongly coupled rotational bands built on the [422 ] 5 /2+ ground state in the Y and Nb nuclei with neutron number N ≥60 . The comparison of the experimental results with triaxial particle-rotor calculations provides information about the evolution of the nuclear shape in this mass region.

  3. Stress-induced nuclear-to-cytoplasmic translocation of cyclin C promotes mitochondrial fission in yeast.

    PubMed

    Cooper, Katrina F; Khakhina, Svetlana; Kim, Stephen K; Strich, Randy

    2014-01-27

    Mitochondrial morphology is maintained by the opposing activities of dynamin-based fission and fusion machines. In response to stress, this balance is dramatically shifted toward fission. This study reveals that the yeast transcriptional repressor cyclin C is both necessary and sufficient for stress-induced hyperfission. In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it is destroyed. Prior to its destruction, cyclin C both genetically and physically interacts with Mdv1p, an adaptor that links the GTPase Dnm1p to the mitochondrial receptor Fis1p. Cyclin C is required for stress-induced Mdv1p mitochondrial recruitment and the efficient formation of functional Dnm1p filaments. Finally, coimmunoprecipitation studies and fluorescence microscopy revealed an elevated association between Mdv1p and Dnm1p in stressed cells that is dependent on cyclin C. This study provides a mechanism by which stress-induced gene induction and mitochondrial fission are coordinated through translocation of cyclin C. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    SciTech Connect

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G.; Bosnjak, Zeljko J.

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  5. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    SciTech Connect

    Rest, J.

    1995-08-01

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products in both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.

  6. Dynamical Dipole Mode in Heavy-Ion Fusion-Evaporation and Fission Reactions in the {sup 192}Pb Mass Region

    SciTech Connect

    Silvestri, R.; Inglima, G.; La Commara, M.; Martin, B.; Sandoli, M.; Pierroutsakou, D.; Parascandolo, C.; Boiano, A.; Romoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Del Zoppo, A.; Maiolino, C.; Santonocito, D.; Baran, V.; De Filippo, E.; Di Toro, M.; Rizzo, C.

    2011-10-28

    The prompt {gamma}-ray emission related with the dynamical dipole mode decay was investigated in the {sup 192}Pb mass region by means of the {sup 40}Ca+{sup 152}Sm and {sup 48}Ca+{sup 144}Sm fusion-evaporation and fission reactions at E{sub lab} = 11 and 10.1 MeV/nucleon, respectively. The two reactions populate, through entrance channel having different charge asymmetries, the {sup 192}Pb compound nucleus at an excitation energy of 236 MeV with identical spin distribution. Preliminary results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole {gamma} radiation could be of interest for the synthesis of super-heavy elements through ''hot'' fusion reactions.

  7. Measurements of nuclide yields in neutron-induced fission of natural uranium for SPIRAL2

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Malkiewicz, T.; Trzaska, W. H.

    2014-01-01

    Cross-sections for nuclide production in fast-neutron induced fission of natural uranium are part of the input for predictions of yields of neutron-rich nuclides obtainable at Radioactive Ion Beam facilities. We first describe the neutron spectra produced according to the scheme once envisaged for SPES (protons on an enriched 13C target) and the one adopted for SPIRAL2 (deuterons on natural carbon), which both have been measured at JYFL. We then present the measurements of Z-splits in isobaric chains performed at IGISOL. When coupled with the fission cross-section and A-splits for the relevant neutron spectrum, they allow estimates of nuclide cross-sections. It looks that calculations, even those based on modern libraries, are too optimistic by about a factor of two.

  8. Neutron-induced fission-cross-section measurements and calculations of selected transplutonic isotopes

    SciTech Connect

    White, R.M.; Browne, J.C.

    1982-08-27

    The neutron-induced fission cross sections of /sup 242m/Am and /sup 245/Cm have been measured over an energy range of 10/sup -4/ eV to approx. 20 MeV in a series of experiments at three facilities during the past several years. The combined results of these measurements, in which only sub-milligram quantities of enriched isotopes were used, yield cross sections with uncertainties of approximately 5% below 10 MeV relative to the /sup 235/U standard cross section used to normalize the data. We summarize the resonance analysis of the /sup 242m/Am(n,f) cross section in the eV region. Hauser-Feshbach statistical calculations of the detailed fission cross sections of /sup 235/U and /sup 245/Cm have been carried out over the energy region from 0.1 to 5 MeV and these results are compared with our experimental data.

  9. Neutron-induced fission cross section of 233Pa between 1.0 and 3.0 MeV.

    PubMed

    Tovesson, F; Hambsch, F J; Oberstedt, A; Fogelberg, B; Ramström, E; Oberstedt, S

    2002-02-11

    The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with monoenergetic neutrons. This nuclide is an important intermediary in a thorium based fuel cycle, and its fission cross section is a key parameter in the modeling of future advanced fuel and reactor concepts. A first experiment resulted in four cross section values between 1.0 and 3.0 MeV, establishing a fission threshold in excess of 1 MeV. Significant discrepancies were found with a previous indirect experimental determination and with model estimates.

  10. Short-lived fission product measurements from >0.1 MeV neutron-induced fission using boron carbide.

    SciTech Connect

    Finn, Erin C.; Metz, Lori A.; Greenwood, Lawrence R.; Pierson, Bruce D.; Friese, Judah I.; Kephart, Rosara F.; Kephart, Jeremy D.

    2012-02-01

    A boron carbide shield was designed, custom fabricated, and used to create a fast fission energy neutron spectrum. The fissionable isotopes 233, 235, 238U, 237Np, and 239Pu were separately placed inside of this shield and irradiated under pulsed conditions at the Washington State University 1 MW TRIGA reactor. A unique set of fission product gamma spectra were collected at short times (4 minutes to 1 week) post-fission. Gamma spectra were collected on single-crystal high purity germanium detectors and on Pacific Northwest National Laboratory's (PNNL's) Direct Simultaneous Measurement (DSM) system composed of HPGe detectors connected in coincidence. This work defines the experimental methods used to produce and collect the gamma data, and demonstrates the validity of the measurements. It is important to fully document this information so the data can be used with high confidence for the advancement of nuclear science and non-proliferation applications. The gamma spectra collected in these and other experiments will be made publicly available at https://spcollab.pnl.gov/sites/gammadata or via the link at http://rdnsgroup.pnl.gov. A revised version of this publication will be posted with the data to make the experimental details available to those using the data.

  11. A fungicidal piperazine-1-carboxamidine induces mitochondrial fission-dependent apoptosis in yeast.

    PubMed

    Bink, Anna; Govaert, Gilmer; François, Isabelle E J A; Pellens, Klaartje; Meerpoel, Lieven; Borgers, Marcel; Van Minnebruggen, Geert; Vroome, Valérie; Cammue, Bruno P A; Thevissen, Karin

    2010-11-01

    To unravel the working mechanism of the fungicidal piperazine-1-carboxamidine derivative BAR0329, we found that its intracellular accumulation in Saccharomyces cerevisiae is dependent on functional lipid rafts. Moreover, BAR0329 induced caspase-dependent apoptosis in yeast, in which the mitochondrial fission machinery consisting of Fis1 (Whi2), Dnm1 and Mdv1 is involved. Our data are consistent with a prosurvival function of Fis1 (Whi2) and a proapoptotic function of Dnm1 and Mdv1 during BAR0329-induced yeast cell death.

  12. PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons

    NASA Astrophysics Data System (ADS)

    Köttig, F.; Tani, F.; Travers, J. C.; Russell, P. St. J.

    2017-06-01

    We identify a novel regime of soliton-plasma interactions in which high-intensity ultrashort pulses of intermediate soliton order undergo coherent plasma-induced fission. Experimental results obtained in gas-filled hollow-core photonic crystal fiber are supported by rigorous numerical simulations. In the anomalous dispersion regime, the cumulative blueshift of higher-order input solitons with ionizing intensities results in pulse splitting before the ultimate self-compression point, leading to the generation of robust pulse pairs with PHz bandwidths. The novel dynamics closes the gap between plasma-induced adiabatic soliton compression and modulational instability.

  13. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ

    PubMed Central

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A.; Formiggini, Fabio; Polishchuk, Roman S.; Corda, Daniela; Luini, Alberto

    2016-01-01

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself). PMID:27401954

  14. Golgi membrane fission requires the CtBP1-S/BARS-induced activation of lysophosphatidic acid acyltransferase δ.

    PubMed

    Pagliuso, Alessandro; Valente, Carmen; Giordano, Lucia Laura; Filograna, Angela; Li, Guiling; Circolo, Diego; Turacchio, Gabriele; Marzullo, Vincenzo Manuel; Mandrich, Luigi; Zhukovsky, Mikhail A; Formiggini, Fabio; Polishchuk, Roman S; Corda, Daniela; Luini, Alberto

    2016-07-12

    Membrane fission is an essential cellular process by which continuous membranes split into separate parts. We have previously identified CtBP1-S/BARS (BARS) as a key component of a protein complex that is required for fission of several endomembranes, including basolateral post-Golgi transport carriers. Assembly of this complex occurs at the Golgi apparatus, where BARS binds to the phosphoinositide kinase PI4KIIIβ through a 14-3-3γ dimer, as well as to ARF and the PKD and PAK kinases. We now report that, when incorporated into this complex, BARS binds to and activates a trans-Golgi lysophosphatidic acid (LPA) acyltransferase type δ (LPAATδ) that converts LPA into phosphatidic acid (PA); and that this reaction is essential for fission of the carriers. LPA and PA have unique biophysical properties, and their interconversion might facilitate the fission process either directly or indirectly (via recruitment of proteins that bind to PA, including BARS itself).

  15. Total fission cross section of {sup 181}Ta and {sup 208}Pb induced by protons at relativistic energies

    SciTech Connect

    Ayyad, Y.; Benlliure, J.; Casarejos, E.; Schmidt, K. H.; Jurado, B.; Pol, H. A.; Ricciardi, M. V.; Pleskac, R.; Enqvist, T.; Rejmund, F.; Giot, L.; Henzl, V.; Lukic, S.; Ngoc, S. N.; Boudard, A.; Leray, S.; Kurtukian, T.; Schmitt, C.; Henzlova, D.; Paradela, C.; Bacquias, A.; Loureiro, D. P.; Foehr, V.; Tarrio, D.; Kezzar, K.

    2011-07-01

    Total fission cross section induced by protons in {sup 181}Ta and {sup 208}Pb at energies in the range of 300 to 1000 A MeV have been measured at GSI (Germany) using the inverse kinematics technique. A dedicated setup with high efficiency made it possible to determine these cross sections with high accuracy. The new data seed light in the controversial results obtained so far and contribute to the understanding of the fission process at high excitation energies. (authors)

  16. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Couture, A.; Haight, R. C.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Stoyer, M. A.; Wu, C. Y.; Becker, J. A.; Haslett, R. J.; Henderson, R. A.

    2009-01-28

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) events from (n,f) events. The first direct observation of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  17. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    SciTech Connect

    Jandel, Marian

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  18. The Interaction of Mitochondrial Biogenesis and Fission/Fusion Mediated by PGC-1α Regulates Rotenone-Induced Dopaminergic Neurotoxicity.

    PubMed

    Peng, Kaige; Yang, Likui; Wang, Jian; Ye, Feng; Dan, Guorong; Zhao, Yuanpeng; Cai, Ying; Cui, Zhihong; Ao, Lin; Liu, Jinyi; Zou, Zhongmin; Sai, Yan; Cao, Jia

    2017-07-01

    Parkinson's disease is a common neurodegenerative disease in the elderly, and mitochondrial defects underlie the pathogenesis of PD. Impairment of mitochondrial homeostasis results in reactive oxygen species formation, which in turn can potentiate the accumulation of dysfunctional mitochondria, forming a vicious cycle in the neuron. Mitochondrial fission/fusion and biogenesis play important roles in maintaining mitochondrial homeostasis. It has been reported that PGC-1α is a powerful transcription factor that is widely involved in the regulation of mitochondrial biogenesis, oxidative stress, and other processes. Therefore, we explored mitochondrial biogenesis, mitochondrial fission/fusion, and especially PGC-1α as the key point in the signaling mechanism of their interaction in rotenone-induced dopamine neurotoxicity. The results showed that mitochondrial number and mass were reduced significantly, accompanied by alterations in proteins known to regulate mitochondrial fission/fusion (MFN2, OPA1, Drp1, and Fis1) and mitochondrial biogenesis (PGC-1α and mtTFA). Further experiments proved that inhibition of mitochondrial fission or promotion of mitochondrial fusion has protective effects in rotenone-induced neurotoxicity and also promotes mitochondrial biogenesis. By establishing cell models of PGC-1α overexpression and reduced expression, we found that PGC-1α can regulate MFN2 and Drp1 protein expression and phosphorylation to influence mitochondrial fission/fusion. In summary, it can be concluded that PGC-1α-mediated cross talk between mitochondrial biogenesis and fission/fusion contributes to rotenone-induced dopaminergic neurodegeneration.

  19. Systematic measurements of proton-induced reactions on enriched molybdenum

    NASA Astrophysics Data System (ADS)

    Lamere, Edward; Gilardy, Gwenaelle; Meisel, Zach; Moran, Michael; Seymore, Christopher; Skulski, Michael; Simonetti, Antonio; Couder, Manoel

    2016-09-01

    Between 2008 and 2010, shortages in the world-wide supply of Mo highlighted weaknesses in the current fission-based production method of mTc, a critical medical isotope. This crisis sparked interest in developing the direct production of mTc from proton-induced reactions on enriched Mo targets as an alternative. One complication with this method is that mTc must be chemically extracted from the irradiated target. Therefore, radiopharmaceuticals produced from proton bombardment will contain a mixture of all Tc-species with open production channels, affecting radiochemical purity, specific activity and total production yield of mTc-factors critical for the feasibility of this production method. Reactions on trace impurities in the enriched targets have been shown to impact these factors dramatically. Precise cross-section measurements for all Mo +p reactions that lead to Tc or Mo species are required for proper assessment of this production technique. Cross-section measurements for the main reaction of interest, mTc(p,2n), have been performed in recent years, however, other reactions producing Tc have been mostly neglected. We will introduce a systematic study of proton-induced reactionson 92, 94-98, 100 Mo currently being performed at Notre Dame. Preliminary results will be presented. NRC-HQ-12-G-38-0073.

  20. Feasibility of Traveling Wave Direct Energy Conversion of Fission Reaction Fragments

    NASA Technical Reports Server (NTRS)

    Tarditi, A. G.; George, J. A.; Miley, G. H.; Scott, J. H.

    2013-01-01

    Fission fragment direct energy conversion has been considered in the past for the purpose of increasing nuclear power plant efficiency and for advanced space propulsion. Since the fragments carry electric charge (typically in the order of 20 e) and have 100 MeV-range kinetic energy, techniques utilizing very high-voltage DC electrodes have been considered. This study is focused on a different approach: the kinetic energy of the charged fission fragments is converted into alternating current by means of a traveling wave coupling scheme (Traveling Wave Direct Energy Converter, TWDEC), thereby not requiring the utilization of high voltage technology. A preliminary feasibility analysis of the concept is introduced based on a conceptual level study and on a particle simulation model of the beam dynamics.

  1. Fission Systems for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, T.; Dorney, D. J.; Swint, Marion Shayne

    2012-01-01

    Fission systems are used extensively on earth, and 34 such systems have flown in space. The energy density of fission is over 10 million times that of chemical reactions, giving fission the potential to eliminate energy density constraints for many space missions. Potential safety and operational concerns with fission systems are well understood, and strategies exist for affordably developing such systems. By enabling a power-rich environment and highly efficient propulsion, fission systems could enable affordable, sustainable exploration of Mars.

  2. Probing the role of Skyrme interactions on the fission dynamics of the 6Li + 238U reaction

    NASA Astrophysics Data System (ADS)

    Sharma, Ishita; Kumar, Raj; Sharma, Manoj K.

    2017-06-01

    The performance of selected five Skyrme forces (out of a set of 240), tested by Dutra et al., is analyzed in view of fusion-fission dynamics. These forces are assumed to perform better for neutron-rich systems, so the choice of the reaction is accordingly made by opting for a neutron-rich target in 6Li + 238U reaction. This reaction is diagnosed further in reference to fusion hindrance within the dynamical approach of the cluster-decay model (DCM). In order to reduce the computational time, three Skyrme forces are figured out with the criteria that these forces cover the barrier characteristics of the remaining two forces as well. The fission cross-sections are successfully addressed at low energies for the 6Li + 238U reaction. However, at relatively higher energies, the excitation functions show theoretical suppression with respect to experimental data, which may be associated with the possible existence of incomplete fusion (ICF). For ICF, we have considered that the 6Li broke into 4He + 2H, as mentioned in the experimental work. The calculations of ICF are carried out for the 4He + 238U reaction with the selected Skyrme forces at E_{c.m.} = 26.20 and 27.51 MeV. These forces address the data nicely for the compound nucleus (CN) as well as ICF processes. Here, the NRAPR force seems to require lesser barrier modification as compared to the other forces, therefore it can be used as an alternate choice for calculating the interaction potential. Additionally, the prediction of cross-sections at lower energies has been done with DCM using the NRAPR force. The ℓ-dependent % barrier modification of the Skyrme forces undertaken is also worked out in reference to fusion hindrance at below barrier energies.

  3. Neutron-induced fission cross section of Np237 in the keV to MeV range at the CERN n_TOF facility

    SciTech Connect

    Diakaki, M.; Karadimos, D.; Vlastou, R.; Kokkoris, M.; Demetriou, P.; Skordis, E.; Tsinganis, A.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Ioannidis, K.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Konovalov, V.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2016-03-17

    We experimentally determined the neutron-induced fission cross section of Np-237 at the high-resolution and high-intensity facility n_TOF, at CERN, in the energy range 100 keV to 9 MeV, using the U-235(n, f) and U-238(n, f) cross section standards below and above 2 MeV, respectively. Moreover, a fast ionization chamber was used in order to detect the fission fragments from the reactions and the targets were characterized as far as their mass and homogeneity are concerned by means of a spectroscopy and Rutherford backscattering spectroscopy respectively. Finally, theoretical calculations within the Hauser-Feshbach formalism have been performed, employing the EMPIRE code, and the model parameters were tuned in order to successfully reproduce the experimental fission cross-sectional data and simultaneously all the competing reaction channels.

  4. Neutron-induced fission cross section of U234 measured at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Karadimos, D.; Vlastou, R.; Ioannidis, K.; Demetriou, P.; Diakaki, M.; Vlachoudis, V.; Pavlopoulos, P.; Konovalov, V.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Dorochenko, A.; Dridi, W.; Duran, I.; Eleftheriadis, Ch.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fuji, K.; Furman, W.; Goncalves, I.; Gallino, R.; Cennini, P.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Kolokolov, D.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Sedysheva, M.; Stamoulis, K.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K.; n TOF Collaboration

    2014-04-01

    The neutron-induced fission cross section of U234 has been measured at the CERN n_TOF facility relative to the standard fission cross section of U235 from 20 keV to 1.4 MeV and of U238 from 1.4 to 200 MeV. A fast ionization chamber (FIC) was used as a fission fragment detector with a detection efficiency of no less than 97%. The high instantaneous flux and the low background characterizing the n_TOF facility resulted in wide-energy-range data (0.02 to 200 MeV), with high energy resolution, high statistics, and systematic uncertainties bellow 3%. Previous investigations around the energy of the fission threshold revealed structures attributed to β-vibrational levels, which have been confirmed by the present measurements. Theoretical calculations have been performed, employing the talys code with model parameters tuned to fairly reproduce the experimental data.

  5. The Coincident Fission Fragment Detector (CFFD)

    NASA Astrophysics Data System (ADS)

    Wakhle, A.; Hammerton, K.; Kohley, Z.; Yurkon, J.; Stiefel, K.

    2017-08-01

    A Parallel Plate Avalanche Counter (PPAC) based fission detector system, called the Coincident Fission Fragment Detector (CFFD), has been developed for the ReA3 re-accelerator facility of the National Superconducting Cyclotron Laboratory (NSCL). Binary reaction kinematics are reconstructed based on position and time-of-flight measurements of fission fragments. Large area PPACs provide 1 ns level time resolution and mm level position resolution. The detectors allow measurements of fission product angular and mass distributions of heavy-ion induced fusion reactions. The 30 cm by 40 cm active area of each PPAC provides large solid angle coverage well suited for measurements of low intensity rare-isotope beams (RIBs).

  6. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis.

    PubMed

    Li, Guobing; Zhou, Jing; Budhraja, Amit; Hu, Xiaoye; Chen, Yibiao; Cheng, Qi; Liu, Lei; Zhou, Ting; Li, Ping; Liu, Ehu; Gao, Ning

    2015-01-30

    Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer.

  7. Mitochondrial translocation and interaction of cofilin and Drp1 are required for erucin-induced mitochondrial fission and apoptosis

    PubMed Central

    Budhraja, Amit; Hu, Xiaoye; Chen, Yibiao; Cheng, Qi; Liu, Lei; Zhou, Ting; Li, Ping; Liu, Ehu; Gao, Ning

    2015-01-01

    Cofilin is a member of the actin-depolymerizing factor (ADF) family protein, which plays an essential role in regulation of the mitochondrial apoptosis. It remains unclear how cofilin regulates the mitochondrial apoptosis. Here, we report for the first time that natural compound 4-methylthiobutyl isothiocyanate (erucin) found in consumable cruciferous vegetables induces mitochondrial fission and apoptosis in human breast cancer cells through the mitochondrial translocation of cofilin. Importantly, cofilin regulates erucin-induced mitochondrial fission by interacting with dynamin-related protein (Drp1). Knockdown of cofilin or Drp1 markedly reduced erucin-mediated mitochondrial translocation and interaction of cofilin and Drp1, mitochondrial fission, and apoptosis. Only dephosphorylated cofilin (Ser 3) and Drp1 (Ser 637) are translocated to the mitochondria. Cofilin S3E and Drp1 S637D mutants, which mimick the phosphorylated forms, suppressed mitochondrial translocation, fission, and apoptosis. Moreover, both dephosphorylation and mitochondrial translocation of cofilin and Drp1 are dependent on ROCK1 activation. In vivo findings confirmed that erucin-mediated inhibition of tumor growth in a breast cancer cell xenograft mouse model is associated with the mitochondrial translocation of cofilin and Drp1, fission and apoptosis. Our study reveals a novel role of cofilin in regulation of mitochondrial fission and suggests erucin as a potential drug for treatment of breast cancer. PMID:25595902

  8. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    SciTech Connect

    Nolen, J.A.; Ahmad, I.; Back, B.B.

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  9. Matching asteroid population characteristics with a model constructed from the YORP-induced rotational fission hypothesis

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.

    2016-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly

  10. An estradiol-inducible promoter enables fast, graduated control of gene expression in fission yeast.

    PubMed

    Ohira, Makoto J; Hendrickson, David G; Scott McIsaac, R; Rhind, Nicholas

    2017-08-01

    The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose-response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on β-estradiol-regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3 EV, turns on quickly, can reach a maximal induction of 20-fold, and exhibits a linear dose response over its entire induction range, with few off-target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by β-estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Determination of gaseous fission product yields from 14 MeV neutron induced fission of 238U at the National Ignition Facility

    SciTech Connect

    Cassata, W. S.; Velsko, C. A.; Stoeffl, W.; Jedlovec, D. R.; Golod, A. B.; Shaughnessy, D. A.; Yeamans, C. B.; Edwards, E. R.; Schneider, D. H. G.

    2016-01-14

    We determined fission yields of xenon (133mXe, 135Xe, 135mXe, 137Xe, 138Xe, and 139Xe) resulting from 14 MeV neutron induced fission of depleted uranium at the National Ignition Facility. Measurements begin approximately 20 s after shot time, and yields have been determined for nuclides with half-lives as short as tens of seconds. We determined the relative independent yields of 133mXe, 135Xe, and 135mXe to significantly higher precision than previously reported. The relative fission yields of all nuclides are statistically indistinguishable from values reported by England and Rider (ENDF-349. LA-UR-94-3106, 1994), with exception of the cumulative yield of 139Xe. Furthermore, considerable differences exist between our measured yields and the JEFF-3.1 database values.

  12. Measurement of {sup 235}U content and flow of UF{sub 6} using delayed neutrons or gamma rays following induced fission

    SciTech Connect

    Stromswold, D.C.; Peurrung, A.J.; Reeder, P.L.; Perkins, R.W.

    1996-06-01

    Feasibility experiments conducted at Pacific Northwest National Laboratory demonstrate that either delayed neutrons or energetic gamma rays from short-lived fission products can be used to monitor the blending of UF{sub 6} gas streams. A {sup 252}Cf neutron source was used to induce {sup 235}U fission in a sample, and delayed neutrons and gamma rays were measured after the sample moved {open_quotes}down-stream.{close_quotes} The experiments used a UO{sub 2} powder that was transported down the pipe to simulate the flowing UF{sub 6} gas. Computer modeling and analytic calculation extended the test results to a flowing UF{sub 6} gas system. Neutron or gamma-ray measurements made at two downstream positions can be used to indicate both the {sup 235}U content and UF{sub 6} flow rate. Both the neutron and gamma-ray techniques have the benefits of simplicity and long-term reliability, combined with adequate sensitivity for low-intrusion monitoring of the blending process. Alternatively, measuring the neutron emission rate from (a, n) reactions in the UF{sub 6} provides an approximate measure of the {sup 235}U content without using a neutron source to induce fission.

  13. Rejection of partial-discharge-induced pulses in fission chambers designed for sodium-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Hamrita, H.; Jammes, C.; Galli, G.; Laine, F.

    2017-03-01

    Under given temperature and bias voltage conditions, partial discharges can create pulses in fission chambers. Based on experimental results, this phenomenon is in-depth investigated and discussed. A pulse-shape-analysis technique is proposed to discriminate neutron-induced pulses from partial-discharge-induced ones.

  14. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  15. A new design of fission detector for prompt fission neutron investigation

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Nazarenko, M. A.; Hambsch, F.-J.; Oberstedt, S.

    2012-10-01

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy spectroscopy. Correlated FF kinetic energies, their masses and the angle of the fission axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical algorithms were provided along with formulae derived for fission axis angles determination. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event by event analysis of individual fission reactions from non point fissile source. Position sensitive neutron induced fission detector for neutron imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  16. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  17. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Isolde Collaboration; Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high-/Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC2/graphite and ThO2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  18. Radioactive ion beams produced by neutron-induced fission at ISOLDE

    NASA Astrophysics Data System (ADS)

    Catherall, R.; Lettry, J.; Gilardoni, S.; Köster, U.; Isolde Collaboration

    2003-05-01

    The production rates of neutron-rich fission products for the next-generation radioactive beam facility EURISOL [EU-RTD Project EURISOL (HPRI-CT-1999-50001)] are mainly limited by the maximum amount of power deposited by protons in the target. An alternative approach is to use neutron beams to induce fission in actinide targets. This has the advantage of reducing: the energy deposited by the proton beam in the target; contamination from neutron-deficient isobars that would be produced by spallation; and mechanical stress on the target. At ISOLDE CERN [E. Kugler, Hyperfine Interact. 129 (2000) 23], tests have been made on standard ISOLDE actinide targets using fast-neutron bunches produced by bombarding thick, high- Z metal converters with 1 and 1.4 GeV proton pulses. This paper reviews the first applications of converters used at ISOLDE. It highlights the different geometries and the techniques used to compare fission yields produced by the proton beam directly on the target with neutron-induced fission. Results from the six targets already tested, namely UC 2/graphite and ThO 2 targets with tungsten and tantalum converters, are presented. To gain further knowledge for the design of a dedicated target as required by the TARGISOL project [EU-RTD Project TARGISOL (HPRI-CT-2001-50033)], the results are compared to simulations, using the MARS [N.V. Mokhov, S.I. Striganov, A. Van Ginneken, S.G. Mashnik, A.J. Sierk, J. Ranft, MARS code developments, in: 4th Workshop on Simulating Accelerator Radiation Environments, SARE-4, Knoxville, USA, 14-15.9.1998, FERMILAB-PUB-98-379, nucl-th/9812038; N.V. Mokhov, The Mars Code System User's Guide, Fermilab-FN-628, 1995; N.V. Mokhov, MARS Code Developments, Benchmarking and Applications, Fermilab-Conf-00-066, 2000; O.E. Krivosheev, N.V. Mokhov, A New MARS and its Applications, Fermilab-Conf-98/43, 1998] code interfaced with MCNP [J.S. Hendrics, MCNP4C LANL Memo X-5; JSH-2000-3; J.F. Briemesteir (Ed.), MCNP - A General Montecarlo N

  19. New experimental approaches to investigate the fission dynamics

    SciTech Connect

    Benlliure, J. Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Ayyad, Y.; Cortina-Gil, D.; Paradela, C.; Pietras, B.; Ramos, D.; Vargas, J.; Audouin, L.; Boutoux, G.; Bélier, G.; Chatillon, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Taïeb, J.; Casarejos, E.; Heinz, A.; and others

    2016-07-07

    The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of {sup 208}Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.

  20. Membrane Shape at the Edge of the Dynamin Helix Sets Location and Duration of the Fission Reaction

    PubMed Central

    Morlot, Sandrine; Galli, Valentina; Klein, Marius; Chiaruttini, Nicolas; Manzi, John; Humbert, Frédéric; Dinis, Luis; Lenz, Martin; Cappello, Giovanni; Roux, Aurélien

    2013-01-01

    SUMMARY The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane. At this location, the considerable change in membrane curvature increases the local membrane elastic energy, reducing the energy barrier for fission. Fission kinetics depends on tension, bending rigidity, and the dynamin constriction torque. Indeed, we experimentally find that the fission rate depends on membrane tension in vitro and during endocytosis in vivo. By estimating the energy barrier from the increased elastic energy at the edge of dynamin and measuring the dynamin torque, we show that the mechanical energy spent on dynamin constriction can reduce the energy barrier for fission sufficiently to promote spontaneous fission. PMID:23101629

  1. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction.

    PubMed

    Morlot, Sandrine; Galli, Valentina; Klein, Marius; Chiaruttini, Nicolas; Manzi, John; Humbert, Frédéric; Dinis, Luis; Lenz, Martin; Cappello, Giovanni; Roux, Aurélien

    2012-10-26

    The GTPase dynamin polymerizes into a helical coat that constricts membrane necks of endocytic pits to promote their fission. However, the dynamin mechanism is still debated because constriction is necessary but not sufficient for fission. Here, we show that fission occurs at the interface between the dynamin coat and the uncoated membrane. At this location, the considerable change in membrane curvature increases the local membrane elastic energy, reducing the energy barrier for fission. Fission kinetics depends on tension, bending rigidity, and the dynamin constriction torque. Indeed, we experimentally find that the fission rate depends on membrane tension in vitro and during endocytosis in vivo. By estimating the energy barrier from the increased elastic energy at the edge of dynamin and measuring the dynamin torque, we show that the mechanical energy spent on dynamin constriction can reduce the energy barrier for fission sufficiently to promote spontaneous fission. :

  2. Effects of deformations and orientations in the fission of the actinide nuclear system 254Fm* formed in the 11B + 243Am reaction

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Sharma, Manoj K.; Gupta, Raj K.

    2012-12-01

    We have studied the decay of actinide nuclear system 254Fm* formed in 11B + 243Am reaction using the dynamical cluster decay model (DCM), with choices of spherical, quadrupole deformation β2 alone and higher multipole deformations β2-β4. For β2 deformations, the optimum orientations θiopt are used whereas for higher multipole deformations the compact orientations θic of decaying fragments are taken in to account. Besides static-β2 deformations, the effects of dynamical-β2 deformations are also explored. The calculated cross sections find excellent agreement with the available experimental data with spherical as well as deformed choices of fragmentations, enabling us to account for the role of important nuclear deformation effects in the 11B-induced nuclear reaction. Spontaneous decay of 254Fm with cold elongated configuration and optimum orientation is also worked out. The mass distributions of excited fermium isotopes in the neighborhood of 254Fm* are also explored. In addition, the roles of temperature, angular momentum, and fission fragment anisotropies are investigated in the context of the chosen reaction.

  3. Singlet Fission Reaction of Light-Exposed β-Carotene Bound to Bovine Serum Albumin. A Novel Mechanism in Protection of Light-Exposed Tissue by Dietary Carotenoids.

    PubMed

    Chang, Hui-Ting; Chang, Yu-Qiang; Han, Rui-Min; Wang, Peng; Zhang, Jian-Ping; Skibsted, Leif H

    2017-07-26

    We have attempted to investigate the role of carotenoids (Car) in protecting pigment-protein complexes against light-induced degradation. Upon direct photoexcitation of β-carotene (β-Car), nanosecond flash photolysis and femtosecond time-resolved spectroscopy detected a substantial population of triplet states for β-Car aggregates associated with bovine serum albumin (BSA) or dispersed in aqueous phase with 10% tetrahydrofuran (THF), but none were observed for monomeric β-Car in neat THF. The direct photogeneration of triplet states was on the time scale of <1 ps, indicating that the underlying reaction mechanism was singlet fission (SF). Efficient triplet-triplet annihilation in the time regime from picoseconds to microseconds resulted in a <1 μs triplet lifetime for β-Car aggregates, in contrast to a 20 μs lifetime for monomeric β-Car as determined by anthracene-sensitized flash photolysis. The short-lived triplet excitations of β-Car aggregates associated with BSA or dispersed in aqueous phase were found to be insensitive to the presence of oxygen, which are considered to be important for the protection of both protein and carotenoid against light-induced degradation via reaction with oxidative species.

  4. Dissipation of the tilting degree of freedom in heavy-ion-induced fission from four-dimensional Langevin dynamics

    NASA Astrophysics Data System (ADS)

    Nadtochy, P. N.; Ryabov, E. G.; Cheredov, A. V.; Adeev, G. D.

    2016-10-01

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to the calculation of a wide set of experimental observables of excited compound nuclei from 199Pb to 248Cf formed in reactions induced by heavy ions. In the model under investigation, the tilting degree of freedom ( K coordinate) representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of {c,h,α} parametrization. The evolution of the K coordinate is described by means of the Langevin equation in the overdamped regime. The friction tensor for the shape collective coordinates is calculated under the assumption of the modified version of the one-body dissipation mechanism, where the reduction coefficient ks of the contribution from the "wall" formula is introduced. The calculations are performed both for the constant values of the coefficient ks and for the coordinate-dependent reduction coefficient ks(q) which is found on the basis of the "chaos-weighted wall formula". Different possibilities of the deformation-dependent dissipation coefficient (γK) for the K coordinate are investigated. The presented results demonstrate that an impact of the ks and γK parameters on the calculated observable fission characteristics can be selectively probed. It was found that it is possible to describe the experimental data consistently with the deformation-dependent γK(q) coefficient for shapes featuring a neck, which predicts quite small values of γK=0.0077 (MeV zs)-1/2 and constant γK=0.1-0.4 (MeV zs)-1/2 for compact shapes featuring no neck.

  5. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    DOE PAGES

    Nishio, K.; Andreyev, A. N.; Chapman, R.; ...

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses more » $$\\overline{A}_L$$/$$\\overline{A}_H$$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$$\\overline{A}_L$$/$$\\overline{A}_H$$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.« less

  6. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-09-01

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190Hg formed in fusion reactions 36Ar + 144Sm and 36Ar + 154Sm, respectively, were measured at initial excitation energies of E* (180Hg) = 33- 66 MeV and E* (190Hg) = 48- 71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses AbarL /AbarH = 79 / 101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+ / EC -delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of AbarL /AbarH = 83 / 107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. This behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  7. Phonon-Induced Dephasing of Excitons in Semiconductor Quantum Dots: Multiple Exciton Generation, Fission, and Luminescence

    NASA Astrophysics Data System (ADS)

    Madrid, Angeline; Kim, Hyeon-Deuk; Habenicht, Bradley; Prezhdo, Oleg

    2010-03-01

    Phonon-induced dephasing processes that govern optical line widths, multiple exciton (ME) generation (MEG), and ME fission (MEF) in semiconductor quantum dots (QDs) are investigated by ab initio molecular dynamics simulation. Using Si QDs as an example, we propose that MEF occurs by phonon-induced dephasing and, for the first time, estimate its time scale to be 100 fs. In contrast, luminescence and MEG dephasing times are all sub-10 fs. Generally, dephasing is faster for higher-energy and higher-order excitons and increased temperatures. MEF is slow because it is facilitated only by low-frequency acoustic modes. Luminescence and MEG couple to both acoustic and optical modes of the QD, as well as ligand vibrations. The detailed atomistic simulation of the dephasing processes advances understanding of exciton dynamics in QDs and other nanoscale materials.

  8. Energy dependence of the neutron multiplicity P/sub nu/ in fast neutron induced fission of /sup 235,238/U and /sup 239/Pu

    SciTech Connect

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Certain applications require knowledge of the higher moments of the neutron multiplicity probability. It can be shown that the second factorial moment is proportional to the fission rate in the sample, and that the third factorial moment can be of use in disentangling spontaneous fission from induced fission. Using a source of unpublished work in which neutron multiplicities were derived for the fast neutron induced fission of U-235, U-238, and Pu-239, the multiplicity probability has been calculated as a function of neutron energy for the energy range 0 to 10 MeV. (DWL)

  9. Measurements of the neutron-induced fission cross section of sup 242 Cm and sup 238 Pu by lead slowing down time spectrometer

    SciTech Connect

    Alam, B.

    1987-01-01

    The neutron-induced fission cross section of {sup 242}Cm and {sup 238}Pu have been measured from 0.1 eV to 100 keV energy range using the Rensselaer Polytechnic Institute's Gaerttner Laboratory Electron Linac as a pulsed neutron source and the Rensselaer Intense Neutron Spectrometer (RINS) system to obtain an adequate ratio of the neutron-induced fission signal to that due to spontaneous fission background. A special fission chamber design employing multiple pairs of hemispherical electrodes coupled with fast electronics ({approx}nsec rise-time) combine to suppress the alpha pileup effects. The fission cross section of {sup 242}Cm and {sup 238}Pu reported in this thesis were obtained from simultaneous measurements on {sup 235}U, {sup 238}Pu and {sup 242}Cm, and these data were normalized to the resolution-broadened ENDF/B-V {sup 235} U fission cross section. The fission areas and the widths for the resolved low-energy resonances of {sup 242}Cm and {sup 238}Pu were determined. The resolution-broadened ENDF/B-V {sup 238}Pu fission data are generally in poor agreement with the measured fission data and a new evaluation on {sup 238}Pu has been recommended. The measured fission cross section of {sup 242}Cm cannot be compared because no evaluation or measurement on this nuclide is available in the energy region of the present measurements.

  10. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    NASA Astrophysics Data System (ADS)

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; de Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-04-01

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

  11. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    DOE PAGES

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; ...

    2016-04-15

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing themore » free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.« less

  12. TPC tracking software for NIFFTE: the Neutron Induced Fission Fragment Tracking Experiment

    NASA Astrophysics Data System (ADS)

    Kudo, Ryuho; Klay, J. L.

    2008-10-01

    Ever since the scientific community started analyzing and filtering data using computers, programming has become a crucial part for the success of many projects. The NIFFTE Collaboration, which is building a Time Projection Chamber (TPC) to study neutron-induced fission of the major actinides, naturally requires a comprehensive software framework to analyze the high volume of data it will collect. Following the traditional TPC reconstruction model, we have written a set of offline analysis algorithms to reconstruct tracks left by the fission fragments in the TPC and determine their (A,Z). We accomplish this by organizing the raw TPC voxel data into 2 dimensional planes, performing cluster and hit-finding within those planes and then connecting the hits to create 3-D tracks. Finally, track fitting and error correction are performed and the fragment A,Z are determined from the distribution of specific ionization along the track. Since one of the goals of this project is to create a re-usable library of TPC reconstruction code that can be adapted to other TPC projects, the software uses open source tools and is built as an object-oriented package in C++. This poster will present the current status of the TPC reconstruction algorithms and discuss the motivations behind our specific programming choices.

  13. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides

    SciTech Connect

    Husko, Chad; Wulf, Matthias; Lefrancois, Simon; Combrié, Sylvain; Lehoucq, Gaëlle; De Rossi, Alfredo; Eggleton, Benjamin J.; Kuipers, L.

    2016-04-15

    Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. Finally, these results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

  14. Fragment Angular Distributions in Neutron-Induced Fission of {sup 235}U and {sup 239}Pu using a Time Projection Chamber

    SciTech Connect

    Kleinrath, Verena

    2015-07-01

    Fission fragment angular distributions can lend insights into fission barrier shapes and level densities at the scission point, both important for fission theory development. Fragment emission anisotropies are also valuable for precision cross section ratio measurements, if the distributions are different for the two isotopes used in the ratio. Available angular data is sparse for {sup 235}U and even more so for {sup 239}Pu, especially at neutron energies above 5 MeV. The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) time projection chamber, which enables precise tracking of charged particles, can be used to study angular distributions and emission anisotropies of fission fragments in neutron-induced fission. In-beam data collected at the Los Alamos Neutron Science Center with a {sup 235}U/{sup 239}Pu target during the 2014 run-cycle will provide angular distributions as a function of incident neutron energy for these isotopes. (LA-UR-1426972). (authors)

  15. Late-time emission of prompt fission γ rays

    DOE PAGES

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; ...

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, asmore » well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.« less

  16. Late-time emission of prompt fission γ rays

    NASA Astrophysics Data System (ADS)

    Talou, P.; Kawano, T.; Stetcu, I.; Lestone, J. P.; McKigney, E.; Chadwick, M. B.

    2016-12-01

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ -ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ -ray energy, the average total γ -ray multiplicity, and the fragment-specific γ -ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μ s following fission, in the case of 235U and 239Pu(nth,f ) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ -ray energy increases by 2% to 5% in the same time interval. Finally, those results are shown to be robust against significant changes in the model input parameters.

  17. Monte Carlo simulation of γ and fission transfer-induced probabilities using extended ?-matrix theory: Application to the 237U∗ system

    NASA Astrophysics Data System (ADS)

    Bouland, Olivier; Jurado, Beatriz

    2017-09-01

    This paper deals with simultaneous neutron-induced average partial cross sections and surrogate-like probability simulations over several excitation and de-excitation channels of the compound nucleus. Present calculations, based on one-dimensional fission barrier extended ?-matrix theory using Monte Carlo samplings of both first and second well resonance parameters, avoid the surrogate-reaction method historically taken for surrogate data analyses that proved to be very poor in terms of extrapolated neutron-induced capture cross sections. Present theoretical approach is portrayed and subsequent results can be compared for the first time with experimental γ-decay probabilities; thanks to brand new simultaneous 238U(3He,4Heγ) and 238U(3He,4He f) surrogate measurements. Future integration of our strategy in standard neutron cross section data evaluation remains tied to the developments made in terms of direct reaction population probability calculations.

  18. Computational analysis of experimental results on spatial distributions of fission reaction rates in the annular core of a modular HTGR, obtained at the ASTRA critical facility

    SciTech Connect

    Boyarinov, V. F.; Glushkov, E. S.; Fomichenko, P. A.; Kompaniets, G. V.; Krutov, A. M.; Marova, E. V.; Nevinitsa, V. A.; Polyakov, D. N.; Smirnov, O. N.; Sukharev, Y. P.; Zimin, A. A.

    2006-07-01

    The paper presents computational analysis of some experimental results on spatial distribution of {sup 235}U fission reaction rates in a critical assembly with the annular core and different configurations of safety rods, placed into the inner reflector, made of graphite. Presented computational analysis of experimental data was performed with the set of codes used in HTGR design calculations. (authors)

  19. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function.

  20. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  1. Study of Neutron-Induced Fission Cross Sections of U, Am, and Cm at n_TOF

    NASA Astrophysics Data System (ADS)

    Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becčvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Heil, M.; Herrera-Martinez, A.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-08-01

    Neutron induced fission cross sections of several isotopes have been measured at the CERN n_TOF spallation neutron facility. Between them some measurements involve isotopes (233U, 241Am, 243Am, 245Cm) relevant for applications to nuclear technologies. The n_TOF facility delivers neutrons with high instantaneous flux and in a wide energy range, from thermal up to 250 MeV. The experimental apparatus consists of an ionization chamber that discriminates fission fragments and α particles coming from natural radioactivity of the samples. All the measurements were performed referring to the standard cross section of 235U.

  2. Measurements and models of synchronous growth of fission yeast induced by temperature oscillations. [Schizosaccharomyces pombe

    SciTech Connect

    Agar, D.W.; Bailey, J.E.

    1982-01-01

    Pulsing of temperature in a fermentor at intervals coincident with cell generation time was used to induce synchrony in a population of the fission yeast Schizosaccharomyces pombe. Measurements of culture protein, RNA, and DNA during synchronous growth confirm continuous synthesis of protein and RNA and discontinuous synthesis of DNA as previously reported. Flow microfluorometry of populations at different times during the synchrony cycle was used to monitor the changes in single-cell protein, RNA, and DNA frequency functions. These measurements illustrate very clearly the degree of synchrony and patterns of macromolecular synthesis and also confirm previous estimates of the cellular protein contents characteristic of dividing cells. Additional insights into single-cell kinetics and division controls are provided by two-parameter flow microfluorometry measurements and by mathematical modeling of population dynamics. Such data are necessary foundations for robust population balance models of microbial processes. (Refs. 31).

  3. Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers

    SciTech Connect

    Boreyko, Jonathan B; Mruetusatorn, Prachya; Sarles, Stephen A; Retterer, Scott T; Collier, Pat

    2013-01-01

    Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers ( DIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemi-spherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a bending moment corresponding to a critical shear stress, the buckling bilayer fissions a vesicle to regulate its shape and stress. The DIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.

  4. Fission and Properties of Neutron-Rich Nuclei - Proceedings of the Second International Conference

    NASA Astrophysics Data System (ADS)

    Hamilton, J. H.; Phillips, W. R.; Carter, H. K.

    The Table of Contents for the book is as follows: * Preface * Structure of Elementary Matter: Cold Valleys and Their Importance in Fission, Fusion and for Superheavy Nuclei * Tunnelling Phenomena in Nuclear Physics * Heavy Nuclei Studies Using Transfer Reactions * Isomeric Properties of Nuclei Near 78Ni * Investigation of Light Actinide Nuclei at Yale and Beyond * U-Projectile Fission at Relativistic Energies * Cluster Description of Cold Fission Modes in 252Cf * Neutron-pair Transfer Theory for Pear-shaped Ba Fission Fragments * New RMFA Parameters of Normal and Exotic Nuclei * Study of Fission Fragments from 12C+238U Reactions: Prompt and Delayed Spectroscopy * γ-Ray Angular Correlations in 252Cf and 248Cm Fission Fragments * Fragment Angular Momentum and Descent Dynamics in 252Cf Spontaneous Fission * The Experimental Investigation of Neutron-Rich Nuclei * High-Spin Structure of Some Odd-Z Nuclei with A ≈ 100 From Heavy-Ion Induced Fission * Coexistence of Symmetric and Asymmetric Nuclear Shapes and 10Be Ternary Fission * Octupole Effects in the Lanthanides * High Spin Structure of the 113-1l6Cd Isotopes Produced by Heavy-Ion Induced Fission Reaction * Temperature-Dependent Fission Barriers and Mass Distributions for 239U * Strength Distributions for Gamow Teller Transitions in Very Weakly Bound Systems * High Spin Fragmentation Spectroscopy * Search for a Four-Neutron Transfer From 8He to 4He * Microsecond Isomers in Fission Fragments in the Vicinity of the Doubly Magic 132Sn * Recent On-Line NMR/on Nuclear Magnetic Dipole Moments Near 132Sn: Meson Exchange Current Effects at the Shell Closure and Shell Model Treatment of Variation with Proton and Neutron Number * High-spin K-Isomers Beyond the Fusion Limit * High Energy Neutron Induced Fission: Charge Yield Distributions and Search and Spectroscopy of New Isomers * Hartree-Fock Mean-Field Models Using Separable Interactions * Variation of Fission Characteristics Over the Nuclear Chart * Investigation of

  5. Bimodal fission of Hs*

    NASA Astrophysics Data System (ADS)

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.; Loktev, T. A.; Novikov, K. V.; Hanappe, F.; Vardaci, E.

    2014-05-01

    Mass and energy distributions of fission fragments obtained in the reactions 22Ne + 249Cf, 26Mg + 248Cm, and 22Ne + 238U have been measured. A special attention will be paid on the properties of mass-energy distribution of fission fragments obtained in the reaction 26Mg + 248Cm at an excitation energy of 35 MeV. At this energy shell effects should become more effective in fission, the TKE distribution of symmetric fragments obtained in the reaction 26Mg + 248Cm differs strongly from a Gaussian shape. Besides a low-energy component, a high-energy component, not foreseen in the LDM, arises. This is attributed to the fact that both fission fragments are close to the spherical neutron shell N = 82. It means that for the compound nucleus 274Hs*, formed in the reaction 26Mg + 248Cm, the phenomenon of bimodal fission was observed for the first time. For the compound nucleus 260No* formed in the reaction 22Ne + 238U at the initial excitation energy of 41 MeV the bimodal fission as well as superasymmetric fission were observed.

  6. Reactions Induced by Platelet Transfusions

    PubMed Central

    Kiefel, Volker

    2008-01-01

    Summary Platelet transfusions play a central role in therapeutic regimens for patients with hematologic/oncologic diseases who develop severe thrombocytopenia either in the course of their disease or following cytostatic therapy. Like other blood components, platelet transfusions have achieved a high degree of safety as far as transmission of viral diseases is concerned. However, transfusion of platelet concentrates is accompanied by a high frequency of febrile and anaphylactoid reactions. In rare cases, recipients of platelet concentrates are threatened by severe reactions as septic complications due to bacterial contamination of platelet concentrates, transfusion-related acute lung injury and severe anaphylactic episodes. PMID:21512624

  7. Effects of YORP-induced rotational fission on the small size end of the Main Belt asteroid size distribution

    NASA Astrophysics Data System (ADS)

    Rossi, Alessandro; Jacobson, S.; Marzari, F.; Scheeres, D.; Davis, D. R.

    2013-10-01

    From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis has strong repercussions for the small size end of the Main Belt asteroid size frequency distribution. These results are consistent with observed asteroid population statistics. The foundation of this model is the asteroid rotation model of Marzari et al. (2011), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur). The YORP effect timescale for large asteroids with diameters D > ~6 km is longer than the collision timescale in the Main Belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ~6 km, the asteroid population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size frequency distribution. Using the outputs of the asteroid population evolution model and a 1-D collision evolution model, we can generate this new size frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated “Asteroids were Born Big” size frequency distribution (Weidenschilling 2010, Morbidelli 2009).

  8. Laser-induced tissue reactions and dermatology.

    PubMed

    Weber, Rebecca J; Taylor, Brent R; Engelman, Dendy E

    2011-01-01

    Knowledge of laser tissue reactions and tissue properties allows the practitioner to tailor a treatment to an individual patient's need and goals. A laser's power, spot size and pulse duration may be manipulated to yield different tissue reactions. Five tissue reactions, each the result of varying laser pulse durations and energy densities, may be achieved. They are photochemical, photothermal, photoablation, plasma-induced ablation and photomechanical. Of these, photothermal reactions are most utilized in dermatology. When higher powered pulses are applied, tissue often undergoes multiple reactions simultaneously. An understanding of these reactions allows their effects to be predicted. In this chapter, the various reactions are reviewed, and the reactions caused by many of the most commonly used lasers in dermatology are discussed.

  9. Ionization Chamber for Prompt Fission Neutron Investigations

    NASA Astrophysics Data System (ADS)

    Zeynalov, Sh.; Zeynalova, O.; Hambsch, F.-J.; Sedyshev, P.; Shvetsov, V.

    In this work we report recent achievements in design of twin back-to-back ionization chamber (TIC) for fission fragment (FF) mass and kinetic energy measurement. Correlated FF kinetic energies, their masses and the angle of FF in respect to the axes in 3D Cartesian coordinates can be determined from analysis of the heights and shapes of the pulses induced by the fission fragments on the anodes of TIC. Anodes of TIC were designed as consisting of isolated strips each having independent electronic circuitry and special multi-channel pulse processing apparatus. Mathematical formulae provided for FF angles measured in respect to the coordinate axes. It was shown how the point of fission fragments origin on the target plane may be determined using the same measured data. The last feature made the TIC a rather powerful tool for prompt fission neutron (PFN) emission investigation in event-by-event analysis of individual fission reactions from non- point fissile source. Position sensitive neutron induced fission detector for neutron-imaging applications with both thermal and low energy neutrons was found as another possible implementation of the designed TIC.

  10. Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235U and 238U with En =200 keV - 30 MeV

    NASA Astrophysics Data System (ADS)

    Duke, D. L.; Tovesson, F.; Brys, T.; Geppert-Kleinrath, V.; Hambsch, F.-J.; Laptev, A.; Meharchand, R.; Manning, B.; Mayorov, D.; Meierbachtol, K.; Mosby, S.; Perdue, B.; Richman, D.; Shields, D.; Vidali, M.

    2017-09-01

    The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV - 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data.

  11. Calculation of 239Pu fission observables in an event-by-event simulation

    SciTech Connect

    Vogt, R; Randrup, J; Pruet, J; Younes, W

    2010-03-31

    The increased interest in more exclusive fission observables has demanded more detailed models. We describe a new computational model, FREYA, that aims to meet this need by producing large samples of complete fission events from which any observable of interest can then be extracted consistently, including any interesting correlations. The various model assumptions are described and the potential utility of the model is illustrated. As a concrete example, we use formal statistical methods, experimental data on neutron production in neutron-induced fission of {sup 239}Pu, along with FREYA, to develop quantitative insights into the relation between reaction observables and detailed microscopic aspects of fission. Current measurements of the mean number of prompt neutrons emitted in fission taken together with less accurate current measurements for the prompt post-fission neutron energy spectrum, up to the threshold for multi-chance fission, place remarkably fine constraints on microscopic theories.

  12. Peroxisomal fission is induced during appressorium formation and is required for full virulence of the rice blast fungus.

    PubMed

    Chen, Xiao-Lin; Shen, Mi; Yang, Jun; Xing, Yunfei; Chen, Deng; Li, Zhigang; Zhao, Wensheng; Zhang, Yan

    2017-02-01

    Peroxisomes are involved in various metabolic processes and are important for virulence in different pathogenic fungi. How peroxisomes rapidly emerge in the appressorium during fungal infection is poorly understood. Here, we describe a gene, PEF1, which can regulate peroxisome formation in the appressorium by controlling peroxisomal fission, and is required for plant infection in the rice blast fungus Magnaporthe oryzae. Targeted deletion of PEF1 resulted in a reduction in virulence and a delay in penetration and invasive growth in host cells. PEF1 was particularly expressed during appressorial development, and its encoding protein was co-localized with peroxisomes during appressorial development. Compared with the massive vesicle-shaped peroxisomes formed in the wild-type appressorium, the Δpef1 mutant could only form stringy linked immature peroxisomes, suggesting that PEF1 was involved in peroxisomal fission during appressorium formation. We also found that the Δpef1 mutant could not utilize fatty acids efficiently, which can improve significantly the expression level of PEF1 and induce peroxisomal fission. As expected, the Δpef1 mutant showed reduced intracellular production of reactive oxygen species (ROS) during appressorium formation and induced ROS accumulation in host cells during infection. Taken together, PEF1-mediated peroxisomal fission is important for fungal infection by controlling the number of peroxisomes in the appressorium.

  13. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death

    PubMed Central

    Jain, Prashant; Luo, Zhao-Qing; Blanke, Steven R.

    2011-01-01

    A number of pathogenic bacteria target mitochondria to modulate the host's apoptotic machinery. Studies here revealed that infection with the human gastric pathogen Helicobacter pylori disrupts the morphological dynamics of mitochondria as a mechanism to induce host cell death. The vacuolating cytotoxin A (VacA) is both essential and sufficient for inducing mitochondrial network fragmentation through the mitochondrial recruitment and activation of dynamin-related protein 1 (Drp1), which is a critical regulator of mitochondrial fission within cells. Inhibition of Drp1-induced mitochondrial fission within VacA-intoxicated cells inhibited the activation of the proapoptotic Bcl-2–associated X (Bax) protein, permeabilization of the mitochondrial outer membrane, and cell death. Our data reveal a heretofore unrecognized strategy by which a pathogenic microbe engages the host's apoptotic machinery. PMID:21903925

  14. A model for the influence of microstructure, precipitate pinning and fission gas behavior on irradiation-induced recrystallization of nuclear fuels

    NASA Astrophysics Data System (ADS)

    Rest, J.

    2004-03-01

    Irradiation-induced recrystallization appears to be a general phenomenon in that it is observed to occur in a variety of nuclear fuel types, e.g. U-xMo, UO2, and U3O8. For temperatures below that where significant thermal annealing of defects occurs, an expression is derived for the fission density at which irradiation-induced recrystallization is initiated that is athermal and weakly dependent on fission rate. The initiation of recrystallization is to be distinguished from the subsequent progression and eventual consumption of the original fuel grain. The formulation takes into account the observed microstructural evolution of the fuel, the role of precipitate pinning and fission gas bubbles, and the triggering event for recrystallization. The calculated dislocation density, fission gas bubble-size distribution, and fission density at which recrystallization first appears are compared to measured quantities.

  15. Drp1, Mff, Fis1, and MiD51 are coordinated to mediate mitochondrial fission during UV irradiation-induced apoptosis.

    PubMed

    Zhang, Zhenzhen; Liu, Lei; Wu, Shengnan; Xing, Da

    2016-01-01

    Mitochondrial fission and proteins vital to this process play essential roles in apoptosis. Several mitochondrial outer membrane proteins, including mitochondrial fission protein 1 (Fis1), mitochondrial fission factor (Mff) and mitochondrial dynamics of 51 kDa protein (MiD51), also known as mitochondrial elongation factor 1 (MEIF1), have been reported to promote mitochondrial fission by recruiting the GTPase dynamin-related protein 1 (Drp1). However, it remains unclear how these fission factors coordinate to control apoptotic mitochondrial fission. Molecular studies have suggested the existence of interaction between Mff and Drp1, but fundamental questions remain concerning their function. In the present study, we reported that the phosphorylation status of Drp1-Ser(637) was essential for its interaction with Mff. UV stimulation induced a decrease in cytoplasmic and mitochondrial Drp1 phosphorylation on Ser(637) and enhanced the interaction between Drp1 and Mff, resulting in mitochondrial fragmentation. Simultaneously, the interaction increased markedly between Fis1 and MiD51/MIEF1, whereas the interaction between Drp1 and MiD51/MIEF1 decreased significantly after UV irradiation, which suggests that Fis1 competitively binds to MiD51/MIEF1 to activate Drp1 indirectly. Moreover, Mff-Drp1 binding and Mff-mediated recruitment of Drp1 to mitochondria did not require Bax during UV stimulation. Our study revealed a novel role of Mff in regulation of mitochondrial fission and showed how the fission proteins are orchestrated to mediate the fission process during apoptosis.

  16. Evaluation of the 239Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    NASA Astrophysics Data System (ADS)

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of 239Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  17. Angular momentum effects in multimodal fission of {sup 226}Th

    SciTech Connect

    Chubarian, G.G.; Hurst, B.J.; OKelly, D.; Schmitt, R.P.; Itkis, M.G.; Kondratiev, N.A.; Kozulin, E.M.; Oganessian, Y.T.; Pashkevich, V.V.; Pokrovsky, I.V.; Salamatin, V.S.; Rusanov, A.Y.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttge, L.

    1998-12-01

    The {gamma}-rays from the multimodal fission of the {sup 226}Th formed in {sup 18}O+{sup 208}Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, E{sub sp}{sup {asterisk}}, ranged from 23 to 26 MeV. The average {gamma}-ray multiplicities and relative {gamma}-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region. {copyright} {ital 1998 American Institute of Physics.}

  18. Angular momentum effects in multimodal fission of 226Th

    NASA Astrophysics Data System (ADS)

    Chubarian, G. G.; Hurst, B. J.; O'Kelly, D.; Schmitt, R. P.; Itkis, M. G.; Kondratiev, N. A.; Kozulin, E. M.; Oganessian, Yu. Ts.; Pashkevich, V. V.; Pokrovsky, I. V.; Salamatin, V. S.; Rusanov, A. Ya.; Calabretta, L.; Maiolino, C.; Lukashin, K.; Agodi, C.; Bellia, G.; Hanappe, F.; Liatard, E.; Huck, A.; Stuttgé, L.

    1998-12-01

    The γ-rays from the multimodal fission of the 226Th formed in 18O+208Pb was investigated at the near- and sub-barrier energies. The corresponding excitation energies at the saddle point, Esp*, ranged from 23 to 26 MeV. The average γ-ray multiplicities and relative γ-ray energies as a function of the mass of the fission fragments exhibits a complex structure and strong variations. Such strong variations have never been previously observed in heavy ion-induced fusion-fission reactions. Obtained results may be explained with the influence of shell effects on the properties of the fission fragments. Present work is the one in series of investigation of the multimodal fission phenomena in At-Th region.

  19. In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe.

    PubMed

    Horváth, Eszter; Papp, Gábor; Belágyi, József; Gazdag, Zoltán; Vágvölgyi, Csaba; Pesti, Miklós

    2010-07-01

    Patulin is a toxic metabolite produced by various species of Penicillium, Aspergillus and Byssochlamys. In the present study, its effects on the plasma membrane of fission yeast Schizosaccharomyces pombe were investigated. The phase-transition temperature (G) of untreated cells, measured by electron paramagnetic resonance spectrometry proved to be 14.1 degrees C. Treatment of cells for 20 min with 50, 500, or 1000 microM patulin resulted in a decrease of the G value of the plasma membrane to 13.9, 10.1 or 8.7 degrees C, respectively. This change in the transition temperature was accompanied by the loss of compounds absorbing light at 260 nm. Treatment of cells with 50, 500 or 1000 microM patulin for 20 min induced the efflux of 25%, 30.5% or 34%, respectively, of these compounds. Besides its cytotoxic effects an adaptation process was observed. This is the first study to describe the direct interaction of patulin with the plasma membrane, a process which could definitely contribute to the adverse toxic effects induced by patulin.

  20. Investigation of Shell Effects in the Fusion-Fission Process in the Reaction 34S + 186W Near the Interaction Barrier

    NASA Astrophysics Data System (ADS)

    Harca, I. M.; Kozulin, E. M.; Bogachev, A.; Dmitriev, S. N.; Itkis, J.; Knyazheva, G.; Loktev, T.; Novikov, K.; Vardaci, E.; Azaiez, F.; Gottardo, A.; Matea, I.; Verney, D.; Chubarian, G.; Hanappe, F.; Piot, J.; Schmitt, C.; Trzaska, W. H.

    2015-06-01

    The reaction 34S + 186W at Elab = 160 MeV was investigated with the aim of diving into the features of the fusion-fission process. Gamma rays coincident with binary reaction fragments were measured using the high efficiency gamma-ray spectrometer ORGAM at the TANDEM Accelerator facility of I.P.N., Orsay, and the time-of-flight spectrometer for fission fragments registration CORSET of the Flerov Laboratory of Nuclear Reactions (FLNR), Dubna. Evidence of symmetric and asymmetric fission modes were observed in the mass and TKE distributions, occurring due to shell effects in the fragments. The coupling of the ORGAM and CORSET setups enables the FF-γ coincident measurement which offers the opportunity to extract the isotopic distribution of the fragments of different masses formed in the aforementioned reaction and to find the exact neutron multiplicity, the average spin and average angular momenta. Details regarding the experimental setup, methods of processing the acquisitioned data and preliminary results are presented.

  1. Fission Measurements with Dance

    NASA Astrophysics Data System (ADS)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  2. Neutron-induced fission cross section measurements for uranium isotopes {sup 236}U and {sup 234}U at LANSCE

    SciTech Connect

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2013-04-19

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R and D). The incident neutron energy range spans from sub-thermal up to 200 MeV by combining two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR). The time-of-flight method is implemented to measure the incident neutron energy. A parallel-plate fission ionization chamber was used as a fission fragment detector. The event rate ratio between the investigated foil and a standard {sup 235}U foil is converted into a fission cross section ratio. In addition to previously measured data new measurements include {sup 236}U data which is being analyzed, and {sup 234}U data acquired in the 2011-2012 LANSCE run cycle. The new data complete the full suite of Uranium isotopes which were investigated with this experimental approach. Obtained data are presented in comparison with existing evaluations and previous data.

  3. Foxo3a inhibits mitochondrial fission and protects against doxorubicin-induced cardiotoxicity by suppressing MIEF2.

    PubMed

    Zhou, Luyu; Li, Ruibei; Liu, Cuiyun; Sun, Teng; Htet Aung, Lynn Htet; Chen, Chao; Gao, Jinning; Zhao, Yanfang; Wang, Kun

    2017-03-01

    Doxorubicin (DOX) as a chemotherapeutic drug is widely used to treat a variety of human tumors. However, a major factor limiting its clinical use is its cardiotoxicity. The molecular components and detailed mechanisms regulating DOX-induced cardiotoxicity remain largely unidentified. Here we report that Foxo3a is downregulated in the cardiomyocyte and mouse heart in response to DOX treatment. Foxo3a attenuates DOX-induced mitochondrial fission and apoptosis in cardiomyocytes. Cardiac specific Foxo3a transgenic mice show reduced mitochondrial fission, apoptosis and cardiotoxicity upon DOX administration. Furthermore, Foxo3a directly targets mitochondrial dynamics protein of 49kDa (MIEF2) and suppresses its expression at transcriptional level. Knockdown of MIEF2 reduces DOX-induced mitochondrial fission and apoptosis in cardiomyocytes and in vivo. Also, knockdown of MIEF2 protects heart from DOX-induced cardiotoxicity. Our study identifies a novel pathway composed of Foxo3a and MIEF2 that mediates DOX cardiotoxicity. This discovery provides a promising therapeutic strategy for the treatment of cancer therapy and cardioprotection.

  4. Correlation of Intermediate Energy Proton- and Neutron-Induced Fission Cross Sections in the Lead-Bismuth Region

    NASA Astrophysics Data System (ADS)

    Smirnov, Andrey N.; Eismont, Vilen P.; Filatov, Nikolay P.; Kirillov, Sergey N.; Blomgren, Jan; Condé, Henri; Olsson, Nils; Duijvestijn, Marieke; Koning, Arjan

    2005-05-01

    Neutron- and proton-induced fission cross-sections of the lead isotopes 204,206-208Pb and 205Tl in the intermediate energy region have been measured at the Svedberg Laboratory in Uppsala, Sweden. Average fissilities of the composite nuclei and the dependence on the nucleon energy and the parameter Z2/A were determined. On this basis, the correlation between the proton- and neutron-induced fission cross sections has been established in the atomic mass region A ˜ 200 and for nucleon energies above 50 MeV, where shell effects do not play a very significant role. The correlation is discussed in the frame of results from calculations by the code TALYS.

  5. In-beam Fission Study at JAEA

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and quasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  6. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe

    PubMed Central

    1995-01-01

    Elevated levels of certain membrane proteins, including the sterol biosynthetic enzyme HMG-CoA reductase, induce proliferation of the endoplasmic reticulum. When the amounts of these proteins return to basal levels, the proliferated membranes are degraded, but the molecular details of this degradation remain unknown. We have examined the degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. In this yeast, increased levels of the Saccharomyces cerevisiae HMG-CoA reductase isozyme encoded by HMG1 induced several types of membranes, including karmellae, which formed a cap of stacked membranes that partially surrounded the nucleus. When expression of HMG1 was repressed, the karmellae detached from the nucleus and formed concentric, multilayered membrane whorls that were then degraded. During the degradation process, CDCFDA-stained compartments distinct from preexisting vacuoles formed within the interior of the whorls. In addition to these compartments, particles that contained neutral lipids also formed within the whorl. As the thickness of the whorl decreased, the lipid particle became larger. When degradation was complete, only the lipid particle remained. Cycloheximide treatment did not prevent the formation of whorls. Thus, new protein synthesis was not needed for the initial stages of karmellae degradation. On the contrary, cycloheximide promoted the detachment of karmellae to form whorls, suggesting that a short lived protein may be involved in maintaining karmellae integrity. Taken together, these results demonstrate that karmellae membranes differentiated into self-degradative organelles. This process may be a common pathway by which ER membranes are turned over in cells. PMID:7559789

  7. Fission Fragment Mass Distributions and Total Kinetic Energy Release of 235-Uranium and 238-Uranium in Neutron-Induced Fission at Intermediate and Fast Neutron Energies

    SciTech Connect

    Duke, Dana Lynn

    2015-11-12

    This Ph.D. dissertation describes a measurement of the change in mass distributions and average total kinetic energy (TKE) release with increasing incident neutron energy for fission of 235U and 238U. Although fission was discovered over seventy-five years ago, open questions remain about the physics of the fission process. The energy of the incident neutron, En, changes the division of energy release in the resulting fission fragments, however, the details of energy partitioning remain ambiguous because the nucleus is a many-body quantum system. Creating a full theoretical model is difficult and experimental data to validate existing models are lacking. Additional fission measurements will lead to higher-quality models of the fission process, therefore improving applications such as the development of next-generation nuclear reactors and defense. This work also paves the way for precision experiments such as the Time Projection Chamber (TPC) for fission cross section measurements and the Spectrometer for Ion Determination in Fission (SPIDER) for precision mass yields.

  8. Water-Soluble Coenzyme Q10 Reduces Rotenone-Induced Mitochondrial Fission.

    PubMed

    Li, Hai-Ning; Zimmerman, Mary; Milledge, Gaolin Z; Hou, Xiao-Lin; Cheng, Jiang; Wang, Zhen-Hai; Li, P Andy

    2017-04-01

    Parkinson's disease is a neurodegenerative disorder characterized by mitochondrial dysfunction and oxidative stress. It is usually accompanied by an imbalance in mitochondrial dynamics and changes in mitochondrial morphology that are associated with impaired function. The objectives of this study were to identify the effects of rotenone, a drug known to mimic the pathophysiology of Parkinson's disease, on mitochondrial dynamics. Additionally, this study explored the protective effects of water-soluble Coenzyme Q10 (CoQ10) against rotenone-induced cytotoxicity in murine neuronal HT22 cells. Our results demonstrate that rotenone elevates protein expression of mitochondrial fission markers, Drp1 and Fis1, and causes an increase in mitochondrial fragmentation as evidenced through mitochondrial staining and morphological analysis. Water-soluble CoQ10 prevented mitochondrial dynamic imbalance by reducing Drp1 and Fis1 protein expression to pre-rotenone levels, as well as reducing rotenone treatment-associated mitochondrial fragmentation. Hence, water-soluble CoQ10 may have therapeutic potential in treating patients with Parkinson's disease.

  9. Unique properties of cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe

    SciTech Connect

    Hayashi, Y.; Nakagawa, C.W.; Murasugi, A.

    1986-03-01

    Metallothioneins, a class of low molecular weight cysteine-rich proteins that bind heavy metal ions, have been found in various eucaryotic organisms. When fission yeasts are grown in the presence of high concentration of CdCl/sub 2/, large amounts of Cd-binding peptides (Cd-BP1 and Cd-BP2) are synthesized. While Cd-BP2 shows similarities to mammalian Cd-thioneins in UV and CD spectra, Cd-BP1has a characteristic shoulder at 265 nm in the UV absorption spectrum and shows two marked Cotton bands at 257 nm (negative) and 275 nm (positive). These characteristics of Cd-BP1 are not found in the other Cd-thioneins. The UV and CD spectra differences between reconstituted and native Cd-BP1 suggest the requirement for some additional molecular architecture including another peptide-Cd/sup 2 +/ interaction. Induction of cadystin synthesis is almost exclusive for Cd, but an exception is a small amount of cadystin also induced by the higher concentration of CuCl/sub 2/ (2.5 mM). The UV spectrum of the natural Cu-cadystin complex was similar to that of Cd-BP1. On the basis of these findings the models for Cd-BP1 and Cd-BP2 are proposed.

  10. Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury

    PubMed Central

    Wang, Hui; Robichaux, William G.; Wang, Ziqing; Mei, Fang C.; Cai, Ming; Du, Guangwei; Chen, Ju; Cheng, Xiaodong

    2016-01-01

    Vascular smooth muscle cell (VSMC) activation in response to injury plays an important role in the development of vascular proliferative diseases, including restenosis and atherosclerosis. The aims of this study were to ascertain the physiological functions of exchange proteins directly activated by cAMP isoform 1 (Epac1) in VSMC and to evaluate the potential of Epac1 as therapeutic targets for neointima formation during vascular remodeling. In a mouse carotid artery ligation model, genetic knockdown of the Epac1 gene led to a significant reduction in neointima obstruction in response to vascular injury. Pharmacologic inhibition of Epac1 with an Epac specific inhibitor, ESI-09, phenocopied the effects of Epac1 null by suppressing neointima formation and proliferative VSMC accumulation in neointima area. Mechanistically, Epac1 deficient VSMCs exhibited lower level of PI3K/AKT signaling and dampened response to PDGF-induced mitochondrial fission and reactive oxygen species levels. Our studies indicate that Epac1 plays important roles in promoting VSMC proliferation and phenotypic switch in response to vascular injury, therefore, representing a therapeutic target for vascular proliferative diseases. PMID:27830723

  11. Feasibility of 99Mo production by proton-induced fission of 232Th

    NASA Astrophysics Data System (ADS)

    Abbas, Kamel; Holzwarth, Uwe; Simonelli, Federica; Kozempel, Jan; Cydzik, Izabela; Bulgheroni, Antonio; Cotogno, Giulio; Apostolidis, Christos; Bruchertseifer, Frank; Morgenstern, Alfred

    2012-05-01

    The current global crisis in supply of the medical isotope generator 99Mo/99mTc has triggered much research into alternative non-reactor based production methods for 99Mo including innovative radionuclide production techniques using ion accelerators. A novel method is presented here that has thus far not been considered: 232Th is used as target material to produce carrier-free 99Mo for 99Mo/99mTc generators by proton-induced fission (232Th (p, f) 99Mo). The thick target yields of 99Mo are estimated as 3.6 MBq/μA·h and 21 MBq/μA·h for proton energies of 22 MeV and 40 MeV, respectively, energies that are available from many cyclotrons. With respect to 99Mo reactor based methods using uranium targets, the presented concept using 232Th does not pose proliferation concerns, transport of highly radioactive target materials can be reduced and unused cyclotron capacities could be exploited. Radiochemical target processing could be based on existing technologies of extraction of 99Mo from reactor irradiated 235U. The presented method could be used for co-production of other radioisotopes of medical interest such as 131I.

  12. Induced Fission of 240Pu within a Real-Time Microscopic Framework

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; Stetcu, Ionel

    2016-03-01

    We describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  13. Induced fission of Pu240 within a real-time microscopic framework

    DOE PAGES

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; ...

    2016-03-25

    Here, we describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclearmore » dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).« less

  14. Induced Fission of (240)Pu within a Real-Time Microscopic Framework.

    PubMed

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J; Stetcu, Ionel

    2016-03-25

    We describe the fissioning dynamics of ^{240}Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of density functional theory extended to superfluid systems and real-time dynamics. The fission fragments emerge with properties similar to those determined experimentally, while the fission dynamics appears to be quite complex, with many excited shape and pairing modes. The evolution is found to be much slower than previously expected, and the ultimate role of the collective inertia is found to be negligible in this fully nonadiabatic treatment of nuclear dynamics, where all collective degrees of freedom (CDOF) are included (unlike adiabatic treatments with a small number of CDOF).

  15. Ternary particles with extreme N/Z ratios from neutron-induced fission

    SciTech Connect

    Koster, U.; Faust, H.; Friedrichs, T.; Oberstedt, S.; Fioni, G.; Grob, M.; Ahmad, I. J.; Devlin, M.; Heinz, A.; Kondev, F. G.; Lauritsen, T.; Sarantites, D. G.; Siem, S.; Sobotka, L. G.; Sonzogni, A.

    2000-05-16

    The existing ternary fission models can well reproduce the yields of the most abundant light charged particles. However, these models tend to significantly overestimate the yields of ternary particles with an extreme N/Z ratio: {sup 3}He, {sup 11}Li, {sup 14}Be, etc. The experimental yields of these isotopes were investigated with the recoil separator LOHENGRIN down to a level of 10{sup {minus}10} per fission. Results from the fissioning systems {sup 233}U (n{sub th}, f), {sup 235}U(n{sub th},f), {sup 239}Pu(n{sub th},f) {sup 241}Pu(n{sub th},f) and {sup 245}Cm(n{sub th},f) are presented and the implications for the ternary fission models are discussed.

  16. Dependence of Fission-Fragment Properties On Excitation Energy For Neutron-Rich Actinides

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M. D.; Schmitt, C.

    2016-03-01

    Experimental access to full isotopic fragment distributions is very important to determine the features of the fission process. However, the isotopic identification of fission fragments has been, in the past, partial and scarce. A solution based on the use of inverse kinematics to study transfer-induced fission of exotic actinides was carried out at GANIL, resulting in the first experiment accessing the full identification of a collection of fissioning systems and their corresponding fission fragment distribution. In these experiments, a 238U beam at 6.14 AMeV impinged on a carbon target to produce fissioning systems from U to Am by transfer reactions, and Cf by fusion reactions. Isotopic fission yields of 250Cf, 244Cm, 240Pu, 239Np and 238U are presented in this work. With this information, the average number of neutrons as a function of the atomic number of the fragments is calculated, which reflects the impact of nuclear structure around Z=50, N=80 on the production of fission fragments. The characteristics of the Super Long, Standard I, Standard II, and Standard III fission channels were extracted from fits of the fragment yields for different ranges of excitation energy. The position and contribution of the fission channels as function of excitation energy are presented.

  17. Measurement of the Am242m neutron-induced reaction cross sections

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2017-02-17

    The neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known 242mAm(n,f) cross section. The (n,γ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 tomore » set the absolute scale, and it agreed well with the (n,f) cross section from thermal energy to 1 keV. Lastly, the average absolute capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19% from the ENDF/B-VII.1 evaluation.« less

  18. Measurement of the Amm242 neutron-induced reaction cross sections

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2017-02-01

    The neutron-induced reaction cross sections of Amm242 were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known Amm242(n ,f ) cross section. The (n ,γ ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new Amm242 fission cross section was normalized to ENDF/B-VII.1 to set the absolute scale, and it agreed well with the (n ,f ) cross section reported by Browne et al. (1984) from thermal energy to 1 keV. The average absolute capture-to-fission ratio was determined from thermal energy to En=0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19 % from the ENDF/B-VII.1 evaluation.

  19. Measurement of Neutron-Induced Fission Cross Sections of {sup 229}Th and {sup 231}Pa Using Linac-Driven Lead Slowing-Down Spectrometer

    SciTech Connect

    Kobayashi, Katsuhei; Yamamoto, Shuji; Lee, Samyol; Cho, Hyun-Je; Yamana, Hajimu; Moriyama, Hirotake; Fujita, Yoshiaki; Mitsugashira, Toshiaki

    2001-11-15

    Use is made of a back-to-back type of double fission chamber and an electron linear accelerator-driven lead slowing-down spectrometer to measure the neutron-induced fission cross sections of {sup 229}Th and {sup 231}Pa below 10 keV relative to that of {sup 235}U. A measurement relative to the {sup 10}B(n, {alpha}) reaction is also made using a BF{sub 3} counter at energies below 1 keV and normalized to the absolute value obtained by using the cross section of the {sup 235}U(n,f) reaction between 200 eV and 1 keV.The experimental data of the {sup 229}Th(n,f) reaction, which was measured by Konakhovich et al., show higher cross-section values, especially at energies of 0.1 to 0.4 eV. The data by Gokhberg et al. seem to be lower than the current measurement above 6 keV. Although the evaluated data in JENDL-3.2 are in general agreement with the measurement, the evaluation is higher from 0.25 to 5 eV and lower above 10 eV. The ENDF/B-VI data evaluated above 10 eV are also lower. The current thermal neutron-induced fission cross section at 0.0253 eV is 32.4 {+-} 10.7 b, which is in good agreement with results of Gindler et al., Mughabghab, and JENDL-3.2.The mean value of the {sup 231}Pa(n,f) cross sections between 0.37 and 0.52 eV, which were measured by Leonard and Odegaarden, is close to the current measurement. The evaluated data in ENDF/B-VI are lower below 0.15 eV and higher above {approx}30 eV. The ENDF/B-VI and the JEF-2.2 are extremely higher above 1 keV. The JENDL-3.2 data are in general agreement with the measurement, although they are lower above {approx}100 eV.

  20. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy.

    PubMed

    Molina-Jijón, Eduardo; Aparicio-Trejo, Omar Emiliano; Rodríguez-Muñoz, Rafael; León-Contreras, Juan Carlos; Del Carmen Cárdenas-Aguayo, María; Medina-Campos, Omar Noel; Tapia, Edilia; Sánchez-Lozada, Laura Gabriela; Hernández-Pando, Rogelio; Reyes, José L; Arreola-Mendoza, Laura; Pedraza-Chaverri, José

    2016-11-12

    We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •(-) ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.

  1. Effect of electrical stimulation-induced resistance exercise on mitochondrial fission and fusion proteins in rat skeletal muscle.

    PubMed

    Kitaoka, Yu; Ogasawara, Riki; Tamura, Yuki; Fujita, Satoshi; Hatta, Hideo

    2015-11-01

    It is well known that resistance exercise increases muscle protein synthesis and muscle strength. However, little is known about the effect of resistance exercise on mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria exist as dynamic networks that are continuously remodeling through fusion and fission. The purpose of this study was to investigate the effect of acute and chronic resistance exercise, which induces muscle hypertrophy, on the expression of proteins related to mitochondrial dynamics in rat skeletal muscle. Resistance exercise consisted of maximum isometric contraction, which was induced by percutaneous electrical stimulation of the gastrocnemius muscle. Our results revealed no change in levels of proteins that regulate mitochondrial fission (Fis1 and Drp1) or fusion (Opa1, Mfn1, and Mfn2) over the 24-h period following acute resistance exercise. Phosphorylation of Drp1 at Ser616 was increased immediately after exercise (P < 0.01). Four weeks of resistance training (3 times/week) increased Mfn1 (P < 0.01), Mfn2 (P < 0.05), and Opa1 (P < 0.01) protein levels without altering mitochondrial oxidative phosphorylation proteins. These observations suggest that resistance exercise has little effect on mitochondrial biogenesis but alters the expression of proteins involved in mitochondrial fusion and fission, which may contribute to mitochondrial quality control and improved mitochondrial function.

  2. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  3. The use of the U(n,f) reaction dosimetry in the determination of the λf value through fission-track techniques

    NASA Astrophysics Data System (ADS)

    Guedes, S.; Hadler, J. C.; Iunes, P. J.; Zuñiga, A.; Tello, C. A.; Paulo, S. R.

    2003-01-01

    A new set of determinations of the decay constant for spontaneous fission of 238U, λf, using mica-uranium sandwich and thin films of natural uranium is presented. A value of λf=(8.37±0.17)×10 -17 a -1 has been determined. The use of uranium-based neutron dosimetry for the measurement of λf through fission-track techniques is discussed. Particularly, the λf measurement by Roberts et al. (Phys. Rev. 174 (1968) 4847), is analyzed, showing that the value obtained by these authors (7.03×10 -17 a -1) underestimated λf. It is concluded that the dosimetry based on U(n,f) reaction does not support a λf value around 7×10 -17 a -1 determined by various authors using mica-uranium sandwich.

  4. Nuclear Fission

    NASA Astrophysics Data System (ADS)

    Denschlag, J. O.

    This chapter first gives a survey on the history of the discovery of nuclear fission. It briefly presents the liquid-drop and shell models and their application to the fission process. The most important quantities accessible to experimental determination such as mass yields, nuclear charge distribution, prompt neutron emission, kinetic energy distribution, ternary fragment yields, angular distributions, and properties of fission isomers are presented as well as the instrumentation and techniques used for their measurement. The contribution concentrates on the fundamental aspects of nuclear fission. The practical aspects of nuclear fission are discussed in http://dx.doi.org/10.1007/978-1-4419-0720-2_57 of Vol. 6.

  5. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission.

    PubMed

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L; Medin, Carey L

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication.

  6. Unique properties of Cd-binding peptides induced in fission yeast, Schizosaccharomyces pombe.

    PubMed Central

    Hayashi, Y; Nakagawa, C W; Murasugi, A

    1986-01-01

    Metallothioneins, a class of low molecular weight cysteine-rich proteins that bind heavy metal ions, have been found in various eucaryotic organisms. When fission yeasts are grown in the presence of high concentration of CdCl2, large amounts of Cd-binding peptides (Cd-BP1 and Cd-BP2) are synthesized. Cd-BP1 (MW 4000) contains 4 mole of small unit peptide (cadystin, MW 771), 6 mole of Cd2+, and 1 mole of the labile sulfide; on the other hand, Cd-BP2 (MW 1800) contains 2 mole of cadystin and 2 mole of Cd2+. While Cd-BP2 shows similarities to mammalian Cd-thioneins in UV and CD spectra, Cd-BP1 has a characteristic shoulder at 265 nm in the UV absorption spectrum and shows two marked Cotton bands at 257 nm (negative) and 275 nm (positive). These characteristics of Cd-BP1 are not found in the other Cd-thioneins. When Cd-BP1 is acidified (pH 2.0) and successively neutralized, a shoulder of 265 nm in the UV spectrum and a Cotton band at 275 nm disappear, and the molecular weight changes from 4000 to 1800, with simultaneous loss of the labile sulfide. While the reconstituted complex without labile sulfide showed the characteristics of Cd-BP2, the reconstituted complex in the presence of labile sulfide indicated partial reconstitution of Cd-BP1. The UV and CD spectra differences between reconstituted and native Cd-BP1 suggest the requirement for some additional molecular architecture including another peptide-Cd2+ interaction. Induction of cadystin synthesis is almost exclusive for Cd, but an exception is a small amount of cadystin also induced by the higher concentration of CuCl2 (2.5 mM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3709432

  7. Proof of Principle for Active Detection of Fissionable Material Using Intense, Pulsed-Bremsstrahlung-Induced Photofission

    DTIC Science & Technology

    2014-10-07

    MCNPX) code 30 was used to model relevant nuclear reactions, neutron generation, and neutron transport . The measurements are also useful in... neutron spectrum emitted from the DU and transported to each He-3 detector. This calculation includes the delayed neutrons from the induced...that result from scattering in lead and concrete during transport . Only about 2700 neutrons integrated over time and energy are transmitted

  8. Accurate measurement of a fission chamber efficiency using the prompt fission neutron method

    NASA Astrophysics Data System (ADS)

    Mathieu, Ludovic; Aïche, Mourad; Kessedjian, Grégoire; Czajkowski, Serge; Jurado, Beatriz; Marini, Paola; Tsekhanovich, Igor

    2017-09-01

    Fission Chambers (FC) are often used to determine fission cross sections and to measure the neutron beam flux via standard neutron-induced fission reactions. Thus, the fission detection efficiency is a key parameter. Several methods exist to determine this efficiency, with a final accuracy not better than 1%. The detection of prompt fission neutrons allows events related to the fission process to be tagged, and enables the efficiency to be inferred with accuracy of the order of few 0.1%. This method is very robust since it is independent in first order to several factors like geometry, used materials or neutron contour selection. To obtain high accuracy, few corrections have still to be taken into account. In particular, the neutron detectors have to cover several detection angles. In addition, the background contribution of neutrons from cosmic rays or from an accelerator has to be removed. Several experiments based on the use of a 252Cf source are presented to describe all these points.

  9. Asymmetries of various P- and T-parities in angular distributions of products of cold-polarized-neutron-induced binary and ternary fission of oriented nuclei and T-invariance

    SciTech Connect

    Kadmensky, S. G. Kostryukov, P. V.

    2016-09-15

    It is shown that a quantum system whose Hamiltonian is independent of time is T -invariant if this Hamiltonian contains only those terms that do not change sign upon time reversal. It is also shown that the coincidence of the amplitudes for multistep direct and statistical nuclear reactions with the timereversed amplitudes for the reactions being studied is a condition that ensures the T -invariance of the amplitudes in question, the transition from the original amplitudes to their time-reversed counterparts being accomplished, first, upon introducing the inverse-reactionmatrices T instead of the original-reaction matrix T and, second, upon replacing the wave functions for the initial, final, and intermediate states of the system by the respective time-reversed functions. It is found that the T -even (T -odd) asymmetries in cross sections for nuclear reactions stem from the interference between the amplitudes characterizing these reactions and having identical (opposite) T -parities. It is shown that the T -invariance condition for the above T -even (T -odd) asymmetries is related to the conservation of (change in) the sign of these asymmetries upon going over from original to inverse nuclear reactions. Mechanisms underlying the appearance of possible T -even and T-odd asymmetries in the cross sections for the cold-polarizedneutron- induced binary and ternary fission of oriented target nuclei are analyzed for the case of employing T -invariant Hamiltonians for the systems under study. It is also shown that the asymmetries in question satisfy the T -invariance condition if the reactions being considered have a sequential multistep statistical character. It is concluded that T -invariance is violated in the limiting case where, in ternary nuclear fission, the emission of a light third particle froma fissile compound nucleus formed upon incident-neutron capture by a target nucleus and its separation to two fission fragments are simultaneous events.

  10. Asymmetries of various P- and T-parities in angular distributions of products of cold-polarized-neutron-induced binary and ternary fission of oriented nuclei and T-invariance

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.; Kostryukov, P. V.

    2016-09-01

    It is shown that a quantum system whose Hamiltonian is independent of time is T -invariant if this Hamiltonian contains only those terms that do not change sign upon time reversal. It is also shown that the coincidence of the amplitudes for multistep direct and statistical nuclear reactions with the timereversed amplitudes for the reactions being studied is a condition that ensures the T -invariance of the amplitudes in question, the transition from the original amplitudes to their time-reversed counterparts being accomplished, first, upon introducing the inverse-reactionmatrices T instead of the original-reaction matrix T and, second, upon replacing the wave functions for the initial, final, and intermediate states of the system by the respective time-reversed functions. It is found that the T -even ( T -odd) asymmetries in cross sections for nuclear reactions stem from the interference between the amplitudes characterizing these reactions and having identical (opposite) T -parities. It is shown that the T -invariance condition for the above T -even ( T -odd) asymmetries is related to the conservation of (change in) the sign of these asymmetries upon going over from original to inverse nuclear reactions. Mechanisms underlying the appearance of possible T -even and T-odd asymmetries in the cross sections for the cold-polarizedneutron- induced binary and ternary fission of oriented target nuclei are analyzed for the case of employing T -invariant Hamiltonians for the systems under study. It is also shown that the asymmetries in question satisfy the T -invariance condition if the reactions being considered have a sequential multistep statistical character. It is concluded that T -invariance is violated in the limiting case where, in ternary nuclear fission, the emission of a light third particle froma fissile compound nucleus formed upon incident-neutron capture by a target nucleus and its separation to two fission fragments are simultaneous events.

  11. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension.

    PubMed

    Tian, Lian; Neuber-Hess, Monica; Mewburn, Jeffrey; Dasgupta, Asish; Dunham-Snary, Kimberly; Wu, Danchen; Chen, Kuang-Hueih; Hong, Zhigang; Sharp, Willard W; Kutty, Shelby; Archer, Stephen L

    2017-04-01

    Right ventricular (RV) function determines prognosis in pulmonary arterial hypertension (PAH). We hypothesize that ischemia causes RV dysfunction in PAH by triggering dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. RV function was compared in control rats (n = 50) versus rats with monocrotaline-induced PAH (MCT-PAH; n = 60) both in vivo (echocardiography) and ex vivo (RV Langendorff). Mitochondrial membrane potential and morphology and RV function were assessed before or after 2 cycles of ischemia-reperfusion injury challenge (RV-IR). The effects of Mdivi-1 (25 μM), a Drp1 GTPase inhibitor, and P110 (1 μM), a peptide inhibitor of Drp1-Fis1 interaction, were studied. We found that MCT caused RV hypertrophy, RV vascular rarefaction, and RV dysfunction. Prior to IR, the mitochondria in MCT-PAH RV were depolarized and swollen with increased Drp1 content and reduced aconitase activity. RV-IR increased RV end diastolic pressure (RVEDP) and mitochondrial Drp1 expression in both control and MCT-PAH RVs. IR depolarized mitochondria in control RV but did not exacerbate the basally depolarized MCT-PAH RV mitochondria. During RV IR mdivi-1 and P110 reduced Drp1 translocation to mitochondria, improved mitochondrial structure and function, and reduced RVEDP. In conclusion, RV ischemia occurs in PAH and causes Drp1-Fis1-mediated fission leading to diastolic dysfunction. Inhibition of mitochondrial fission preserves RV function in RV-IR.

  12. A delayed neutron technique for measuring induced fission rates in fresh and burnt LWR fuel

    NASA Astrophysics Data System (ADS)

    Jordan, K. A.; Perret, G.

    2011-04-01

    The LIFE@PROTEUS program at the Paul Scherrer Institut is being undertaken to characterize the interfaces between burnt and fresh fuel assemblies in modern LWRs. Techniques are being developed to measure fission rates in burnt fuel following re-irradiation in the zero-power PROTEUS research reactor. One such technique utilizes the measurement of delayed neutrons. To demonstrate the feasibility of the delayed neutron technique, fresh and burnt UO 2 fuel samples were irradiated in different positions in the PROTEUS reactor, and their neutron outputs were recorded shortly after irradiation. Fission rate ratios of the same sample irradiated in two different positions (inter-positional) and of two different samples irradiated in the same position (inter-sample) were derived from the measurements and compared with Monte Carlo predictions. Derivation of fission rate ratios from the delayed neutron measured signal requires correcting the signal for the delayed neutron source properties, the efficiency of the measurement setup, and the time dependency of the signal. In particular, delayed neutron source properties strongly depend on the fissile and fertile isotopes present in the irradiated sample and must be accounted for when deriving inter-sample fission rate ratios. Measured inter-positional fission rate ratios generally agree within 1σ uncertainty (on the order of 1.0%) with the calculation predictions. For a particular irradiation position, however, a bias of about 2% is observed and is currently under investigation. Calculated and measured inter-sample fission rate ratios have C/E values deviating from unity by less than 1% and within 2σ of the statistical uncertainties. Uncertainty arising from delayed neutron data is also assessed, and is found to give an additional 3% uncertainty factor. The measurement data indicate that uncertainty is overestimated.

  13. Role of dynamical effects in the formation of T-Odd asymmetries for products of polarized-neutron-induced ternary fission of nuclei

    SciTech Connect

    Kadmensky, S. G.; Bunakov, V. E.; Titova, L. V.

    2015-07-15

    Basic dynamical effects that accompany the cold-polarized-neutron-induced binary and ternary fission of actinide nuclei and which determine the properties of T -odd asymmetries in angular distributions of various prescission and evaporated light third particles emitted in true and delayed ternary fission are analyzed on the basis of quantum-mechanical fission theory. It is emphasized that effects associated with the conservation of axial symmetry of the fissioning system under study at all stages of its evolution from the formation of neutron resonance states of the fissile compound nucleus to the separation of its fission fragments, including the appearance of zero wriggling vibrations of the cold compound nucleus in the vicinity of its scission point, are of particular importance, the influence of quantum collective rotation of the polarized fissile system on the asymmetry of the angular distribution of both fission fragments and third particles being taken into account. It is shown that the difference in the behavior of the coefficients characterizing the T -odd asymmetries under analysis for the target nuclei being studied can be explained, upon taking into account the interference between the fission amplitudes for the neutron resonance states of fissile compound nuclei, by the difference in the contributions of even and odd components of the amplitudes of angular distributions of third particles to the coefficients in question.

  14. Nuclear Reactions Induced by a Pyroelectric Accelerator

    SciTech Connect

    Geuther, Jeffrey; Danon, Yaron; Saglime, Frank

    2006-02-10

    This work demonstrates the use of pyroelectric crystals to induce nuclear reactions. A system based on a pair of pyroelectric crystals is used to ionize gas and accelerate the ions to energies of up to 200 keV. The system operates above room temperature by simply heating or cooling the pyroelectric crystals. A D-D fusion reaction was achieved with this technique, and 2.5 MeV neutrons were detected. The measured neutron yield is in good agreement with the calculated yield. This work also verifies the results published by Naranjo, Gimzewski, and Putterman [Nature (London) 434, 1115 (2005)].

  15. Calibration factors for determination of relativistic particle induced fission rates in natU, 235U, 232Th, natPb and 197Au foils

    NASA Astrophysics Data System (ADS)

    Hashemi-Nezhad, S. R.; Zhuk, Igor; Potapenko, A.; Kievets, M.; Krivopustov, M. I.

    2012-02-01

    Calibration factors w, for determination of fission rate in metallic foils of natU, 235U, 232Th, natPb and 197Au were determined for foils in contact with synthetic mica track detectors. Proton-induced fission at proton energies of 0.7 GeV and 1.5 GeV were used. Using our experimental results as well as those of the other authors, w for different foil-mica systems were determined. Two methods were used to calculate w, relative to the calibration factor for uranium-mica system, which has been obtained in a standard neutron field of energy 14.7 MeV. One of these methods requires the knowledge of the mean range of the fission fragments in the foils of interest and other method needs information on the values of the fission cross-sections at the required energies as well as the density of the tracks recorded in the track detectors in contact with the foil surfaces. The obtained w-values were compared with Monte Carlo calculations and good agreements were found. It is shown that a calibration factor obtained at low energy neutron induced fissions in uranium isotopes deviates only by less than 10% from those obtained at relativistic proton induced fissions.

  16. Fission and quasifission of composite systems with Z =108 -120 : Transition from heavy-ion reactions involving S and Ca to Ti and Ni ions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.

    2016-11-01

    Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.

  17. Microscopic Theory of Fission

    SciTech Connect

    Younes, W.; Gogny, D.

    2008-04-17

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented.

  18. Systemic immunotoxicity reactions induced by adjuvanted vaccines.

    PubMed

    Batista-Duharte, Alexander; Portuondo, Deivys; Pérez, O; Carlos, Iracilda Zeppone

    2014-05-01

    Vaccine safety is a topic of concern for the treated individual, the family, the health care personnel, and the others involved in vaccination programs as recipients or providers. Adjuvants are necessary components to warrant the efficacy of vaccines, however the overstimulation of the immune system is also associated with adverse effects. Local reactions are the most frequent manifestation of toxicity induced by adjuvanted vaccines and, with the exception of the acute phase response (APR), much less is known about the systemic reactions that follow vaccination. Their low frequency or subclinical expression meant that this matter has been neglected. In this review, various systemic reactions associated with immune stimulation will be addressed, including: APR, hypersensitivity, induction or worsening of autoimmune diseases, modification of hepatic metabolism and vascular leak syndrome (VLS), with an emphasis on the mechanism involved. Finally, the authors analyze the current focus of discussion about vaccine safety and opportunities to improve the design of new adjuvanted vaccines in the future.

  19. Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s Disease

    PubMed Central

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A.; Bachmeier, Benjamin V.; Gateno, Benjamin; Schroeder, Andreas; Yao, Jia; Itoh, Kie; Sesaki, Hiromi; Poon, Wayne W.; Gylys, Karen H.; Patterson, Emily R.; Parisi, Joseph E.; Diaz Brinton, Roberta; Salisbury, Jeffrey L.; Trushina, Eugenia

    2016-01-01

    Altered brain metabolism is associated with progression of Alzheimer’s Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, “mitochondria-on-a-string” (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival. PMID:26729583

  20. Using a Time Projection Chamber to Measure High Precision Neutron-Induced Fission Cross Sections

    SciTech Connect

    Manning, Brett

    2015-08-06

    2014 LANSCE run cycle data will provide a preliminary 239Pu(n,f) cross section and will quantify uncertainties: PID and Target/beam non-uniformities. Continued running during the 2015 LANSCE run cycle: Thin targets to see both fission fragments and 239Pu(n,f) cross section and fully quantified uncertainties

  1. Measurement of neutron-induced reactions on 242mAm

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C.-Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration

    2016-09-01

    Neutron-induced reaction cross sections of 242mAm were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined relative to a simultaneous measurement of the well-known 242mAm(n,f) cross section. The (n, γ) cross section was measured from thermal to an incident energy of 1 eV. Our new 242mAm fission cross section was normalized to ENDF/B-VII.1 and agreed well with the (n,f) cross section reported in the literature from thermal energy to 1 keV. The capture-to-fission ratio was determined from thermal energy to En = 0.1 eV, and it was found to be (n, γ)/(n,f) = 26(4)% compared to 19% from ENDF/B-VII.1. Our latest results will be reported. US Department of Energy by Lawrence Livermore National Security, LLC Contract DE-AC52-07NA27344 and Los Alamos National Security, LLC Contract DE-AC52-06NA25396 and U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development.

  2. Late-time emission of prompt fission γ rays

    SciTech Connect

    Talou, Patrick; Kawano, Toshihiko; Stetcu, Ionel; Lestone, John Paul; McKigney, Edward Allen; Chadwick, Mark Benjamin

    2016-12-22

    The emission of prompt fission γ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and γ-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before β decay, is analyzed. The time evolution of the average total γ-ray energy, the average total γ-ray multiplicity, and the fragment-specific γ-ray spectra is presented in the case of neutron-induced fission reactions of 235U and 239Pu, as well as spontaneous fission of 252Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission γ rays are predicted to be emitted between 10 ns and 5 μs following fission, in the case of 235U and 239Pu(nth,f) reactions, and up to 3% in the case of 252Cf spontaneous fission. The cumulative average total γ-ray energy increases by 2% to 5% in the same time interval. Lastly, those results are shown to be robust against significant changes in the model input parameters.

  3. Fluid transport in reaction induced fractures

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders

    2015-04-01

    The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the

  4. Characterization of the Medley setup for measurements of neutron-induced fission cross sections at the GANIL-NFS facility

    NASA Astrophysics Data System (ADS)

    Tarrío, Diego; Prokofiev, Alexander V.; Gustavsson, Cecilia; Jansson, Kaj; Andersson-Sundén, Erik; Al-Adili, Ali; Pomp, Stephan

    2017-09-01

    Neutron-induced fission cross sections of 235U and 238U are widely used as standards for monitoring of neutron beams and fields. An absolute measurement of these cross sections at an absolute scale, i.e., versus the H(n,p) scattering cross section, is planned with the white neutron beam under construction at the Neutrons For Science (NFS) facility in GANIL. The experimental setup, based on PPACs and ΔE-ΔE-E telescopes containing Silicon and CsI(Tl) detectors, is described. The expected uncertainties are discussed.

  5. Fission fragment driven neutron source

    DOEpatents

    Miller, Lowell G.; Young, Robert C.; Brugger, Robert M.

    1976-01-01

    Fissionable uranium formed into a foil is bombarded with thermal neutrons in the presence of deuterium-tritium gas. The resulting fission fragments impart energy to accelerate deuterium and tritium particles which in turn provide approximately 14 MeV neutrons by the reactions t(d,n).sup.4 He and d(t,n).sup.4 He.

  6. Fission cross section calculations of actinides with EMPIRE code

    SciTech Connect

    Sin, M.; Oblozinsky, P.; Herman,M.; Capote,R.

    2010-04-30

    The cross sections of the neutron induced reactions on {sup 233,234,236}U, {sup 237}Np, {sup 238,242}Pu, {sup 241,243}Am, {sup 242,246}Cm carried out in the energy range 1 keV-20 MeV with EMPIRE code are presented, emphasizing the fission channel. Beside a consistent, accurate set of evaluations, the paper contains arguments supporting the choice of the reaction models and input parameters. A special attention is paid to the fission parameters and their uncertainties.

  7. Constraining the level density using fission of lead projectiles

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Taïeb, J.; Vargas, J.; Voss, B.

    2015-10-01

    The nuclear level density is one of the main ingredients for the statistical description of the fission process. In this work, we propose to constrain the description of this parameter by using fission reactions induced by protons and light ions on 208Pb at high kinetic energies. The experiment was performed at GSI (Darmstadt), where the combined use of the inverse kinematics technique with an efficient detection setup allowed us to measure the atomic number of the two fission fragments in coincidence. This measurement permitted us to obtain with high precision the partial fission cross sections and the width of the charge distribution as a function of the atomic number of the fissioning system. These data and others previously measured, covering a large range in fissility, are compared to state-of-the-art calculations. The results reveal that total and partial fission cross sections cannot unambiguously constrain the level density at ground-state and saddle-point deformations and additional observables, such as the width of the charge distribution of the final fission fragments, are required.

  8. Reactions induced by beams of neutron and proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    1997-02-01

    Within the collaboration Dubna-GANIL (Caen, France) - IPN (Orsay, France) - NPI (Rez, Czech Republic) - IAP (Bucharest, Romania) at GANIL and the Dubna U400M accelerator, experiments have been carried out to study elastic scattering, fusion and fission using secondary ion beams of 6He, 11Li and 8B. The fission cross-section for the 6He isotopes has been found to be significantly higher than for the 4He nuclei. This enhancement depends mainly on the entrance channel and it is connected with the neutron skin of the 6He nuclei. Also, investigation of the elastic scattering of 11Li (neutron halo), 7Be and 8B (proton halo) has been performed. The microscopic analysis supports the existence of a neutron halo in 11Li and the proton skin in 8B and 7Be. Perspectives for investigations in this field at the Laboratory of Nuclear Reactions JINR are also discussed.

  9. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    SciTech Connect

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  10. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  11. Spontaneous Fission

    DOE R&D Accomplishments Database

    Segre, Emilio

    1950-11-22

    The first attempt to discover spontaneous fission in uranium was made by [Willard] Libby, who, however, failed to detect it on account of the smallness of effect. In 1940, [K. A.] Petrzhak and [G. N.] Flerov, using more sensitive methods, discovered spontaneous fission in uranium and gave some rough estimates of the spontaneous fission decay constant of this substance. Subsequently, extensive experimental work on the subject has been performed by several investigators and will be quoted in the various sections. [N.] Bohr and [A.] Wheeler have given a theory of the effect based on the usual ideas of penetration of potential barriers. On this project spontaneous fission has been studied for the past several years in an effort to obtain a complete picture of the phenomenon. For this purpose the spontaneous fission decay constants {lambda} have been measured for separated isotopes of the heavy elements wherever possible. Moreover, the number {nu} of neutrons emitted per fission has been measured wherever feasible, and other characteristics of the spontaneous fission process have been studied. This report summarizes the spontaneous fission work done at Los Alamos up to January 1, 1945. A chronological record of the work is contained in the Los Alamos monthly reports.

  12. Fission Detection Using the Associated Particle Technique

    SciTech Connect

    R.P. Keegan, J.P. Hurley, J.R. Tinsley, R. Trainham, S.C. Wilde

    2008-09-18

    A beam of tagged 14 MeV neutrons from the deuterium-tritium (DT) reaction is used to induce fission in a target composed of depleted uranium. The generator yield is 107 neutrons/second radiated into a 4π solid angle. Two 4 in.×4 in. NaI detectors are used for gamma-ray detection. The fission process is known to produce multiple gamma-rays and neutrons. Triple coincidences (α-γ-γ) are measured as a function of neutron flight time up to 90 ns after fission, where the α-particle arises from the DT reaction. A sudden increase in the triple coincidence rate at the location of the material is used to localize and detect fission in the interrogated target. Comparisons are made with experiment runs where lead, tungsten, and iron were used as target materials. The triple coincidence response profile from depleted uranium is noted to be different to those observed from the other target materials. The response from interrogation targets composed of fissile material is anticipated to be even more unique than that observed from depleted uranium.

  13. Reaction balance and efficiency analysis of a D-D fusion/fission hybrid with satellite D-3He reactors

    NASA Astrophysics Data System (ADS)

    Schoepf, K. F.; Pantis, G.; Harms, A. A.

    1982-06-01

    Selected reactor physics and isotope balance characteristics of a fusion hybrid supported D-3He satellite nuclear energy system are formulated and investigated. The system consists of two types of reactors: a parent D-fueled fusion device and a number of smaller reactors optimized for D-3He fusion. The parent hybrid station breeds the helium-3 for the satellites and also breeds fissile fuel for an existing fission reactor economy. Various hybrid operational regimes are examined in order to determine favorable reactor Q values and effective fusion and fission efficiencies. A number of analytical correlations between power output, plasma energetics, blanket neutronics, breeding capacity, and energy conversion cycles are established and evaluated. Numerical examples of performance parameters such as fission-to-fusion power, overall conversion efficiency, and the ratio of satellite to parent fusion power are presented. The range of reactor efficiencies is elucidated as affected by the internal plasma power balances. As an upper bound based on optimistic injection and direct conversion efficiencies, we find the D-3He satellite system power output attaining at best 1/3 of the parent fusion power.

  14. Neutron-induced fission cross-section measurement of 234U with quasi-monoenergetic beams in the keV and MeV range using micromegas detectors

    NASA Astrophysics Data System (ADS)

    Tsinganis, A.; Kokkoris, M.; Vlastou, R.; Kalamara, A.; Stamatopoulos, A.; Kanellakopoulos, A.; Lagoyannis, A.; Axiotis, M.

    2017-09-01

    Accurate data on neutron-induced fission cross-sections of actinides are essential for the design of advanced nuclear reactors based either on fast neutron spectra or alternative fuel cycles, as well as for the reduction of safety margins of existing and future conventional facilities. The fission cross-section of 234U was measured at incident neutron energies of 560 and 660 keV and 7.5 MeV with a setup based on `microbulk' Micromegas detectors and the same samples previously used for the measurement performed at the CERN n_TOF facility (Karadimos et al., 2014). The 235U fission cross-section was used as reference. The (quasi-)monoenergetic neutron beams were produced via the 7Li(p,n) and the 2H(d,n) reactions at the neutron beam facility of the Institute of Nuclear and Particle Physics at the `Demokritos' National Centre for Scientific Research. A detailed study of the neutron spectra produced in the targets and intercepted by the samples was performed coupling the NeuSDesc and MCNPX codes, taking into account the energy spread, energy loss and angular straggling of the beam ions in the target assemblies, as well as contributions from competing reactions and neutron scattering in the experimental setup. Auxiliary Monte-Carlo simulations were performed with the FLUKA code to study the behaviour of the detectors, focusing particularly on the reproduction of the pulse height spectra of α-particles and fission fragments (using distributions produced with the GEF code) for the evaluation of the detector efficiency. An overview of the developed methodology and preliminary results are presented.

  15. Significant role of level-density parameters in probing nuclear dissipation with light-ion-induced fission excitation functions

    NASA Astrophysics Data System (ADS)

    Ye, W.; Wang, N.

    2013-01-01

    We study the influence of the ratio of level-density parameters at saddle to that at ground-state configuration (af/an) on the sensitivity of fission cross sections (σfiss) to presaddle dissipation effects by comparing fission excitation functions measured in the 3He + 197Au (208Pb) reactions with three distinct types of model calculations: the standard Bohr-Wheeler theory with af/an = 1 (i) and af/an ≠ 1 (ii) as well as the Langevin approach with af/an ≠ 1 (iii). It is shown that both cases (i) and (ii) cannot provide a reasonable, satisfactory description of the measured σfiss. A presaddle friction strength (β) of (4-4.5) × 1021 s-1 is extracted through reproducing data with Langevin simulations. We find from the comparison of the experimental and calculated σfiss in cases (ii) and (iii) that a precise determination of β depends sensitively on af/an. The finding indicates that level-density parameters play a significant role in accurately probing presaddle friction; that is, to stringently constrain β it is important to take into account a realistic and an elaborate evaluation of af/an in theoretical calculations. We further find that high energy increases the sensitivity of σfiss to β, suggesting that in experiments, to obtain precise information of presaddle dissipation by measuring σfiss, it is best to populate a compound nucleus with high energy.

  16. Theory of photon and electron induced reactions

    SciTech Connect

    Onley, D.S.; Wright, L.E.

    1992-01-01

    During the first year and half of the current grant from the Department of Energy we have made considerable progress on the following aspects of the general investigation of electron and photon induced reactions: (1) photo- and electro-production of mesons; (2) Coulomb distortion effects on (e,e{prime}{gamma}) and (e,e{prime}) and (e,e{prime}p) in the quasi-elastic region, (3) studies involving the relativistic shell model, and (4) quark models. We will report on each of these developments in this paper.

  17. Systematic Study of Technetium Production by Proton-Induced Reactions on Molybdenum

    NASA Astrophysics Data System (ADS)

    Lamere, Edward; Gilardy, Gwenaelle; Meisel, Zach; Moran, Michael; Skulski, Michael; Couder, Manoel

    2015-10-01

    Recent shortages in the world-wide supply of 99mTc have sparked interest in developing alternative production methods which do not rely on fission based 99Mo. The direct production of 99mTc from proton induced reactions on enriched 100Mo targets is one such approach. With this approach, 99mTc must be chemically extracted from the irradiated target and therefore radiopharmaceuticals will contain a mixture of all Tc-species produced from the proton bombardment. Commercial viability of cyclotron-produced 99mTc will depend on a number of factors including, production yield, radiochemical purity, and specific activity. Reactions on trace impurities in the targets has been shown to impact these factors dramatically. Precise cross-section measurements for not just the main reaction, 99mTc(p,2n), but for all Mo + p reactions that lead to Tc or Mo species are required for proper assessment of this 99mTc production technique. We will introduce a systematic study of proton-induced reactions on 92, 94-98, 100 Mo currently being performed at the University of Notre Dame. First results of 96Mo + p reactions will be presented. NRC-HQ-12-G-38-0073.

  18. Measurement of the temporal characteristics of delayed neutrons from neutron induced fission of 237Np in the energy range from 14.2 to 18 MeV

    NASA Astrophysics Data System (ADS)

    Gremyachkin, Dmitrii E.; Piksaikin, Vladimir M.; Egorov, Andrey S.; Mitrofanov, Konstantin V.

    2017-09-01

    Analysis of existing database on the relative abundances of delayed neutrons and half-lives of their precursors measured for neutron induced fission of heavy nuclei in the energy range above 14 MeV shows that such data are not available for many nuclides, which are important for nuclear fuel cycle. In the present work for the first time the time dependence of delayed neutron activity for the neutron-induced fission of 237Np in the energy range above 14 MeV was obtained using T(d,n)4He.

  19. Role of nuclear dissipation and entrance channel mass asymmetry in pre-scission neutron multiplicity enhancement in fusion-fission reactions

    SciTech Connect

    Singh, Hardev; Sandal, Rohit; Behera, Bivash R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Ranjeet,; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2008-08-15

    Pre-scission neutron multiplicities are measured for {sup 12}C + {sup 204}Pb and {sup 19}F + {sup 197}Au reactions at laboratory energies of 75-95 MeV for the {sup 12}C beam and 98-118 MeV for the {sup 19}F beam. The chosen projectile-target combinations in the present study lie on either side of the Businaro-Gallone mass asymmetry ({alpha}{sub BG}) and populate the {sup 216}Ra compound nucleus. The dissipation strength is deduced after comparing the experimentally measured neutron yield with the statistical model predictions which contains the nuclear viscosity as a free parameter. Present results demonstrate the combined effects of entrance channel mass asymmetry and the dissipative property of nuclear matter on the pre-scission neutron multiplicity in fusion-fission reactions.

  20. Absolute cross section measurements of neutron-induced fission of 242Pu from 1 to 2.5 MeV

    NASA Astrophysics Data System (ADS)

    Matei, C.; Belloni, F.; Heyse, J.; Plompen, A. J. M.; Thomas, D. J.

    2017-02-01

    The absolute neutron-induced fission cross section of 242Pu was measured at five energies between 1 and 2.5 MeV at the low-scatter neutron measurement facility of the National Physical Laboratory, UK. The measurements are part of an effort to reduce uncertainties of nuclear data related to fast spectrum reactors. The neutron-induced fission results are in good agreement with the Evaluated Nuclear Data File/B-VII.1 but disagree with several recent measurements near the resonance-like structure around 1.1 MeV. Within the same experimental campaign, the spontaneous fission half-life of 242Pu was measured and it is in good agreement with previous results.

  1. Neutron multiplicity for neutron induced fission of /sup 235/U, /sup 238/U, and /sup 239/Pu as a function of neutron energy

    SciTech Connect

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Recent development in the theory and practice of neutron correlation (''coincidence'') counting require knowledge of the higher factorial moments of the P/sub ..nu../ distribution (the probability that (..nu..) neutrons are emitted in a fission) for the case where the fission is induced by bombarding neutrons of more than thermal energies. In contrast to the situation with spontaneous and thermal neutron induced fission, where with a few exceptions the P/sub ..nu../ is reasonably well known, in the fast neutron energy region, almost no information is available concerning the multiplicity beyond the average value, (..nu..), even for the most important nuclides. The reason for this is the difficulty of such experiments, with consequent statistically poor and physically inconsistent results.

  2. Nε-(carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells.

    PubMed

    Lo, Mei-Chen; Chen, Ming-Hong; Lee, Wen-Sen; Lu, Chin-I; Chang, Chuang-Rung; Kao, Shu-Huei; Lee, Horng-Mo

    2015-11-15

    Nε-(carboxymethyl) lysine-conjugated bovine serum albumin (CML-BSA) is a major component of advanced glycation end products (AGEs). We hypothesised that AGEs reduce insulin secretion from pancreatic β-cells by damaging mitochondrial functions and inducing mitophagy. Mitochondrial morphology and the occurrence of autophagy were examined in pancreatic islets of diabetic db/db mice and in the cultured CML-BSA-treated insulinoma cell line RIN-m5F. In addition, the effects of α-lipoic acid (ALA) on mitochondria in AGE-damaged tissues were evaluated. The diabetic db/db mouse exhibited an increase in the number of autophagosomes in damaged mitochondria and receptor for AGEs (RAGE). Treatment of db/db mice with ALA for 12 wk increased the number of mitochondria with well-organized cristae and fewer autophagosomes. Treatment of RIN-m5F cells with CML-BSA increased the level of RAGE protein and autophagosome formation, caused mitochondrial dysfunction, and decreased insulin secretion. CML-BSA also reduced mitochondrial membrane potential and ATP production, increased ROS and lipid peroxide production, and caused mitochondrial DNA deletions. Elevated fission protein dynamin-related protein 1 (Drp1) level and mitochondrial fragmentation demonstrated the unbalance of mitochondrial fusion and fission in CML-BSA-treated cells. Additionally, increased levels of Parkin and PTEN-induced putative kinase 1 protein suggest that fragmented mitochondria were associated with increased mitophagic activity, and ALA attenuated the CML-BSA-induced mitophage formation. Our study demonstrated that CML-BSA induced mitochondrial dysfunction and mitophagy in pancreatic β-cells. The findings from this study suggest that increased concentration of AGEs may damage β-cells and reduce insulin secretion.

  3. Neutrino-induced reactions on nuclei

    NASA Astrophysics Data System (ADS)

    Gallmeister, K.; Mosel, U.; Weil, J.

    2016-09-01

    Background: Long-baseline experiments such as the planned deep underground neutrino experiment (DUNE) require theoretical descriptions of the complete event in a neutrino-nucleus reaction. Since nuclear targets are used this requires a good understanding of neutrino-nucleus interactions. Purpose: Develop a consistent theory and code framework for the description of lepton-nucleus interactions that can be used to describe not only inclusive cross sections, but also the complete final state of the reaction. Methods: The Giessen-Boltzmann-Uehling-Uhlenbeck (GiBUU) implementation of quantum-kinetic transport theory is used, with improvements in its treatment of the nuclear ground state and of 2p2h interactions. For the latter an empirical structure function from electron scattering data is used as a basis. Results: Results for electron-induced inclusive cross sections are given as a necessary check for the overall quality of this approach. The calculated neutrino-induced inclusive double-differential cross sections show good agreement data from neutrino and antineutrino reactions for different neutrino flavors at MiniBooNE and T2K. Inclusive double-differential cross sections for MicroBooNE, NOvA, MINERvA, and LBNF/DUNE are given. Conclusions: Based on the GiBUU model of lepton-nucleus interactions a good theoretical description of inclusive electron-, neutrino-, and antineutrino-nucleus data over a wide range of energies, different neutrino flavors, and different experiments is now possible. Since no tuning is involved this theory and code should be reliable also for new energy regimes and target masses.

  4. Reaction induced fractures in 3D

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders

    2014-05-01

    The process of fracture formation due to volume changing processes has been studied numerically in a variety of different settings, e.g. fracture initiation in general volume increasing reactions by Ulven et al.[4], weathering of dolerites by Røyne et al.[2], and volume reduction during chemical decomposition prosesses by Malthe-Sørenssen et al.[1]. Common to many previous works is that the simulations were performed in a 2D setting, due to computational limitations. Fractures observed both in field studies and in experiments are in many cases three dimensional. It remains an open question in what cases the simplification to 2D systems is applicable, and when a full 3D simulation is necessary. In this study, we use a newly developed 3D code combining elements from the discrete element model (DEM) with elements from Peridynamics[3]. We study fracture formation in fully three dimensional simulations, and compare them with simulation results from 2D DEM, thus gaining insight in both qualitative and quantitative differences between results from 2D and 3D simulations. References [1] Malthe-Sørenssen, A., Jamtveit, B., and Meakin, P., 'Fracture Patterns Generated by Diffusion Controlled Volume Changing Reactions,' Phys. Rev. Lett. 96, 2006, pp. 245501-1 - 245501-4. [2] Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., 'Controls on rock weathering rates by reaction-induced hierarchial fracturing,' Earth Planet. Sci. Lett. 275, 2008, pp. 364 - 369. [3] Silling, S. A., 'Reformulation of elasticity theory for discontinuities and long-range forces,' J. Mech. Phys. Solids, 48, Issue 1, 2000, pp. 175 - 209 [4] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A., 'Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration', Earth Planet. Sci. Lett. 389C, 2014, pp. 132 - 142.

  5. Experimental Progress Report--Modernizing the Fission Basis

    SciTech Connect

    Macri, R A

    2012-02-17

    In 2010 a proposal (Modernizing the Fission Basis) was prepared to 'resolve long standing differences between LANL and LLNL associated with the correct fission basis for analysis of nuclear test data'. Collaboration between LANL/LLNL/TUNL has been formed to implement this program by performing high precision measurements of neutron induced fission product yields as a function of incident neutron energy. This new program benefits from successful previous efforts utilizing mono-energetic neutrons undertaken by this collaboration. The first preliminary experiment in this new program was performed between July 24-31, 2011 at TUNL and had 2 main objectives: (1) demonstrating the capability to measure characteristic {gamma}-rays from specific fission products; (2) studying background effects from room scattered neutrons. In addition, a new dual fission ionization chamber has been designed and manufactured. The production design of the chamber is shown in the picture below. The first feasibility experiment to test this chamber is scheduled at the TUNL Tandem Laboratory from September 19-25, 2011. The dual fission chamber design will allow simultaneous exposure of absolute fission fragment emission rate detectors and the thick fission activation foils, positioned between the two chambers. This document formalizes the earlier experimental report demonstrating the experimental capability to make accurate (< 2 %) precision gamma-ray spectroscopic measurements of the excitation function of high fission product yields of the 239Pu(n,f) reaction (induced by quasimonoenergetic neutrons). A second experiment (9/2011) introduced an compact double-sided fission chamber into the experimental arrangement, and so the relative number of incident neutrons striking the sample foil at each bombarding energy is limited only by statistics. (The number of incident neutrons often limits the experimental accuracy.) Fission chamber operation was so exceptional that 2 more chambers have been

  6. Neutron-induced fission: properties of prompt neutron and γ rays as a function of incident energy

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Talou, P.; Kawano, T.

    2016-06-01

    We have applied the Hauser-Feshbach statistical theory, in a Monte-Carlo implementation, to the de-excitation of fission fragments, obtaining a reasonable description of the characteristics of neutrons and gamma rays emitted before beta decays toward stability. Originally implemented for the spontaneous fission of 252Cf and the neutroninduced fission of 235U and 239Pu at thermal neutron energy, in this contribution we discuss the extension of the formalism to incident neutron energies up to 20 MeV. For the emission of pre-fission neutrons, at incident energies beyond second-chance fission, we take into account both the pre-equilibrium and statistical pre-fission components. Phenomenological parameterizations of mass, charge and TKE yields are used to obtain the initial conditions for the fission fragments that subsequently decay via neutron and emissions. We illustrate this approach for 239Pu(n,f).

  7. A new method to efficiently induce a site-specific double-strand break in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Sunder, Sham; Greeson-Lott, Nikole T; Runge, Kurt W; Sanders, Steven L

    2012-07-01

    Double-strand DNA breaks are a serious threat to cellular viability and yeast systems have proved invaluable in helping to understand how these potentially toxic lesions are sensed and repaired. An important method to study the processing of DNA breaks in the budding yeast Saccharomyces cerevisiae is to introduce a unique double-strand break into the genome by regulating the expression of the site-specific HO endonuclease with a galactose inducible promoter. Variations of the HO site-specific DSB assay have been adapted to many organisms, but the methodology has seen only limited use in the fission yeast Schizosaccharomyces pombe because of the lack of a promoter capable of inducing endonuclease expression on a relatively short time scale (~1 h). We have overcome this limitation by developing a new assay in which expression of the homing endonuclease I-PpoI is tightly regulated with a tetracycline-inducible promoter. We show that induction of the I-PpoI endonuclease produces rapid cutting of a defined cleavage site (> 80% after 1 h), efficient cell cycle arrest and significant accumulation of the checkpoint protein Crb2 at break-adjacent regions in a manner that is analogous to published findings with DSBs produced by an acute exposure to ionizing irradiation. This assay provides an important new tool for the fission yeast community and, because many aspects of mammalian chromatin organization have been well-conserved in Sz. pombe but not in S. cerevisiae, also offers an attractive system to decipher the role of chromatin structure in modulating the repair of double-stranded DNA breaks. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    NASA Astrophysics Data System (ADS)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  9. Simulations of the stopping efficiencies of fission ion guides

    NASA Astrophysics Data System (ADS)

    Solders, Andreas; Al-Adili, Ali; Gorelov, Dmitry; Jansson, Kaj; Jokinen, Ari; Kolhinen, Veli; Lantz, Mattias; Mattera, Andrea; Moore, Ian; Nilsson, Niklas; Norlin, Martin; Penttilä, Heikki; Pomp, Stephan; Prokofiev, Alexander V.; Rakopoulos, Vasileios; Rinta-Antila, Sami; Simutkin, Vasily

    2017-09-01

    With the Ion Guide Isotope Separator On-Line (IGISOL) facility, located at the University of Jyväskylä, products of nuclear reactions are separated by mass. The high resolving power of the JYFLTRAP Penning trap, with full separation of individual nuclides, capacitates the study of nuclides far from the line of stability. For the production of neutron-rich medium-heavy nuclides, fissioning of actinides is a feasible reaction. This can be achieved with protons from an in-house accelerator or, alternatively, with neutrons through the addition of a newly developed Be(p,xn)-converter. The hereby-obtained fission products are used in nuclear data measurements, for example fission yields, nuclear masses, Q-values and decay spectroscopy. Prior to separation, the ionized reaction products are stopped in a helium-filled gas cell, referred to as the ion-guide. In this work we present simulations of the stopping of fission products in an ion guide developed for neutron-induced fission. The production and extraction rates are evaluated and compared against experimental values.

  10. Fission yield studies at the IGISOL facility

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V.; Saastamoinen, A.; Weber, C.; Äystö, J.

    2012-04-01

    Low-energy-particle-induced fission is a cost-effective way to produce neutron-rich nuclei for spectroscopic studies. Fission has been utilized at the IGISOL to produce isotopes for decay and nuclear structure studies, collinear laser spectroscopy and precision mass measurements. The ion guide technique is also very suitable for the fission yield measurements, which can be performed very efficiently by using the Penning trap for fission fragment identification and counting. The proton- and neutron-induced fission yield measurements at the IGISOL are reviewed, and the independent isotopic yields of Zn, Ga, Rb, Sr, Cd and In in 25MeV deuterium-induced fission are presented for the first time. Moving to a new location next to the high intensity MCC30/15 light-ion cyclotron will allow also the use of the neutron-induced fission to produce the neutron rich nuclei at the IGISOL in the future.

  11. Fission fragment angular distributions in pre-actinide nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Jhingan, A.; Kaur, Gurpreet; Dubey, R.; Yadav, Abhishek; Laveen, P. V.; Shamlath, A.; Shareef, M.; Gehlot, J.; Saneesh, N.; Prasad, E.; Sugathan, P.; Pal, Santanu

    2016-10-01

    Background: Complete fusion of two nuclei leading to formation of a heavy compound nucleus (CN) is known to be hindered by various fission-like processes, in which the composite system reseparates after capture of the target and the projectile inside the potential barrier. As a consequence of these non-CN fission (NCNF) processes, fusion probability (PCN) starts deviating from unity. Despite substantial progress in understanding, the onset and the experimental signatures of NCNF and the degree of its influence on fusion have not yet been unambiguously identified. Purpose: This work aims to investigate the presence of NCNF, if any, in pre-actinide nuclei by systematic study of fission angular anisotropies and fission cross sections (σfis) in a number of nuclear reactions carried out at and above the Coulomb barrier (VB) . Method: Fission fragment angular distributions were measured for six 28Si-induced reactions involving isotopically enriched targets of 169Tm,176Yb,175Lu,180Hf,181Ta, and 182W leading to probable formation of CN in the pre-actinide region, at a laboratory energy (Elab) range of 129-146 MeV. Measurements were performed with large angular coverage (θlab=41∘ -170∘) in which fission fragments (FFs) were detected by nine hybrid telescope (E -Δ E ) detectors. Extracted fission angular anisotropies and σfis were compared with statistical model (SM) predictions. Results: Barring two reactions involving targets with large non-zero ground state spin (J ) , viz., 175Lu(7/2+) and 181Ta(7/2+) , experimental fission angular anisotropies were found to be higher in comparison with predictions of the statistical saddle point model (SSPM), at Ec .m . near VB. Comparison of present results with those from neighboring systems revealed that experimental anisotropies increasingly deviated from SSPM predictions as one moved from pre-actinide to actinide nuclei. For reactions involving targets with large nonzero J , this deviation was subdued. Comparison between

  12. Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis.

    PubMed

    Kim, Dah Ihm; Lee, Ki Hoon; Gabr, Amr Ahmed; Choi, Gee Euhn; Kim, Jun Sung; Ko, So Hee; Han, Ho Jae

    2016-11-01

    Mitochondrial dysfunction is known as one of causative factors in Alzheimer's disease (AD), inducing neuronal cell death. Mitochondria regulate their functions through changing their morphology. The present work was undertaken to investigate whether Amyloid β (Aβ) affects mitochondrial morphology in neuronal cells to induce apoptosis. Aβ treatment induced not only the fragmentation of mitochondria but also neuronal apoptosis in association with an increase in caspase-9 and -3 activity. Calcium influx induced by Aβ up-regulated the activation of Akt through CaMKII resulting in changes to the phosphorylation level of Drp1 in a time-dependent manner. Translocation of Drp1 from the cytosol to mitochondria was blocked by CB-124005 (an Akt inhibitor). Recruitment of Drp1 to mitochondria led to ROS generation and mitochondrial fission, accompanied by dysfunction of mitochondria such as loss of membrane potential and ATP production. ROS generation and mitochondrial dysfunction by Aβ were attenuated when treated with Mdivi-1, a selective Drp1 inhibitor. Furthermore, the sustained Akt activation induced not only the fragmentation of mitochondria but also the activation of mTOR, eventually suppressing autophagy. Inhibition of autophagic clearance of Aβ led to increased ROS levels and aggravating mitochondrial defects, which were blocked by Rapamycin (an mTOR inhibitor). In conclusion, sustained phosphorylation of Akt by Aβ directly activates Drp1 and inhibits autophagy through the mTOR pathway. Together, these changes elicit abundant mitochondrial fragmentation resulting in ROS-mediated neuronal apoptosis.

  13. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    SciTech Connect

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; Kahler, Albert Comstock; Rising, Michael Evan; White, Morgan Curtis

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmark calculations using this evaluation are briefly discussed.

  14. Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons

    DOE PAGES

    Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...

    2016-03-15

    We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmarkmore » calculations using this evaluation are briefly discussed.« less

  15. Neutron-induced fission cross-section of 233U in the energy range 0.5 < En < 20 MeV

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Calviani, M.; Colonna, N.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martınez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2011-01-01

    The neutron-induced fission cross-section of 233U has been measured at the CERN n_TOF facility relative to the standard fission cross-section of 235U between 0.5 and 20MeV. The experiment was performed with a fast ionization chamber for the detection of the fission fragments and to discriminate against α -particles from the natural radioactivity of the samples. The high instantaneous flux and the low background of the n_TOF facility result in data with uncertainties of ≈ 3% , which were found in good agreement with previous experiments. The high quality of the present results allows to improve the evaluation of the 233U (n,f) cross-section and, consequently, the design of energy systems based on the Th/U cycle.

  16. Measurement of the neutron-induced fission cross-section of 241Am at the time-of-flight facility n_TOF

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Calviani, M.; Colonna, N.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tarrio, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2013-01-01

    The neutron-induced fission cross-section of 241Am has been measured relative to the standard fission cross-section of 235U between 0.5 and 20MeV. The experiment was performed at the CERN n_TOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the α-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the n_TOF facility enabled us to obtain uncertainties of ≈ 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up.

  17. Fission-fragment detector for DANCE based on thin scintillating films

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-12-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a trigger/veto detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing 4 π detection of the fission fragments. The scintillation photons were registered with silicon photomultipliers. A measurement of the 235U (n , f) reaction with this detector at DANCE revealed a correct time-of-flight spectrum and provided an estimate for the efficiency of the prototype detector of 11.6(7)%. Design and test measurements with the detector are described.

  18. Fission dynamics at high excitation energies investigated in complete kinematics measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Álvarez-Pol, H.; Audouin, L.; Ayyad, Y.; B´elier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J. F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Simon, H.; Vargas, J.

    2017-06-01

    Light-charged particles emitted in proton-induced fission reactions on 208Pb have been measured at different kinetic energies: 370A, 500A, and 650A MeV. The experiment was performed by the SOFIA collaboration at the GSI facilities in Darmstadt (Germany). The inverse kinematics technique was combined with a setup especially designed to measure light-charged particles in coincidence with fission fragments. The data were compared with different model calculations to assess the ground-to-saddle dynamics. The results confirm that transient and dissipative effects are required for an accurate description of the fission observables.

  19. Confinement-induced orbital breathing, fusion, fission and re-ordering in semifilled shell atoms

    NASA Astrophysics Data System (ADS)

    Dolmatov, V. K.

    2013-05-01

    Alternate contraction and drastic expansion, i.e., ‘breathing’ of electronic subshells, the effects of the fusion of two subshells into one subshell and its subsequent fission (splitting) into the original subshells, as well as multiple alteration of the order of subshells in confined semifilled shell atoms with a progressively narrowing confinement are theoretically discovered. The confinement is represented by a repulsive penetrable spherical potential of an inner radius r0. The effects are exemplified by calculated data for confined semifilled shell atoms from the second, third and fourth rows of Mendeleev's table—Li, N, P and Cr atoms with semifilled 2s1, 2p3, 3p3 and 3d5 subshells, respectively—for the completeness of the study. The underlying physics behind the discovered effects is explained.

  20. Scaling laws, transient times and shell effects in helium induced nuclear fission

    SciTech Connect

    Rubehn, T.; Jing, Kexing; Moretto, L.G.; Phair, L.; Tso, Kin; Wozniak, G.J.

    1996-02-01

    Fission excitation functions are analyzed and discussed according to a method which allows one to check the validity of the transition state rate predictions over a large range of excitation energies and a regime of compound nuclei masses characterized by strong shell effects. Once these shell effects are accounted for, no deviation from transition state rates can be observed. Furthermore, shell effects can be determined directly from the experiment by using the above described procedure. In contrast to the standard method, there is no need to include liquid drop model calculations. Finally, plotting the quantity R{sub f} allows one to search for evidence of transition times (discussed in a series of papers): our results set an upper limit of 10{sup {minus}20} seconds.

  1. Neutron Emission in Fission And Quasi-Fission of Hs

    SciTech Connect

    Itkis, I. M.; Itkis, M. G.; Knyazheva, G. N.; Kozulin, E. M.; Krupa, L.; Hanappe, F.; Dorvaux, O.; Stuttge, L.

    2010-04-30

    Mass and energy distributions of fission-like fragments obtained in the reactions {sup 26}Mg+{sup 248}Cm, {sup 36}S+{sup 238}U and {sup 58}Fe+{sup 208}Pb leading to the formation of {sup 266,274}Hs are reported. From the analysis of TKE distributions for symmetric fragment it was found that at energies below the Coulomb barrier the bimodal fission of {sup 274}Hs, formed in the reaction {sup 26}Mg+{sup 248}Cm, is observed, while in the reaction {sup 36}S+{sup 238}U at these energies the main part of the symmetric fragments arises from the quasi-fission process. At energies above the Coulomb barrier the fusion-fission is a main process leading to the formation of symmetric fragment for the both reactions. In the case of {sup 58}Fe+{sup 208}Pb reaction the quasi-fission process is the main reaction mechanism at all measured energies. The pre- and post-scission neutron multiplicities as a function of the fragment mass have been obtained for all studied reactions.

  2. TRPM2-mediated rise in mitochondrial Zn(2+) promotes palmitate-induced mitochondrial fission and pancreatic β-cell death in rodents.

    PubMed

    Li, Fangfang; Munsey, Tim S; Sivaprasadarao, Asipu

    2017-07-28

    Rise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C16-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear. Using the INS1-832/13 β-cell line, here we demonstrate that palmitate generates the ROS required for mitochondrial fission by activating NOX (NADPH oxidase)-2. More importantly, we show that chemical inhibition, RNAi-mediated silencing and knockout of ROS-sensitive TRPM (transient receptor potential melastatin)-2 channels prevent palmitate-induced mitochondrial fission. Although TRPM2 activation affects the intracellular dynamics of Ca(2+) and Zn(2+), chelation of Zn(2+) alone was sufficient to prevent mitochondrial fission. Consistent with the role of Zn(2+), palmitate caused a rise in mitochondrial Zn(2+), leading to Zn(2+)-dependent mitochondrial recruitment of Drp-1 (a protein that catalyses mitochondrial fission) and loss of mitochondrial membrane potential. In agreement with the previous reports, Ca(2+) caused Drp-1 recruitment, but it failed to induce mitochondrial fission in the absence of Zn(2+). These results indicate a novel role for Zn(2+) in mitochondrial dynamics. Inhibition or knockout of TRPM2 channels in mouse islets and RNAi-mediated silencing of TRPM2 expression in human islets prevented FFA/cytokine-induced β-cell death, findings that are consistent with the role of abnormal mitochondrial fission in cell death. To conclude, our results reveal a novel, potentially druggable signalling pathway for FFA-induced β-cell death. The cascade involves NOX-2-dependent production of ROS, activation of TRPM2 channels, rise in mitochondrial Zn(2+), Drp-1 recruitment and abnormal mitochondrial fission

  3. Isorefractive high internal phase emulsion organogels for light induced reactions.

    PubMed

    Zhang, Tao; Guo, Qipeng

    2016-03-25

    Isorefractive high internal phase emulsion (HIPE) organogels have been fabricated and investigated for light induced reactions. High transparency facilitates both the UV and visible light induced reactions within HIPE organogels. Transparent HIPE organogels are advantageous for light induced polymerizations, accelerating such polymerizations and enabling the preparation of large polyHIPE monoliths.

  4. Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca(2+)/calcineurin-Drp1-dependent mitochondrial fission.

    PubMed

    Park, Junghyung; Choi, Hoonsung; Kim, Bokyung; Chae, Unbin; Lee, Dong Gil; Lee, Sang-Rae; Lee, Seunghoon; Lee, Hyun-Shik; Lee, Dong-Seok

    2016-10-01

    Microglial activation is a hallmark of neurodegenerative diseases. ROS activates microglia by regulating transcription factors to express pro-inflammatory genes and is associated with disruption of Ca(2+) homeostasis through thiol redox modulation. Recently, we reported that Prx5 can regulate activation of microglia cells by governing ROS. In addition, LPS leads to excessive mitochondrial fission, and regulation of mitochondrial dynamics involved in a pro-inflammatory response is important for the maintenance of microglial activation. However, the precise relationship among these signals and the role of Prx5 in mitochondrial dynamics and microglial activation is still unknown. In this study, we demonstrated that Ca(2+)/calcineurin-dependent de-phosphorylation of Drp1 induces mitochondrial fission and regulates mitochondrial ROS production, which influences the expression of pro-inflammatory mediators in LPS-induced microglia cells. Moreover, it is likely that cytosolic and Nox-derived ROS were upstream of mitochondrial fission and mitochondrial ROS generation in activated microglia cells. Prx5 regulates LPS-induced mitochondrial fission through modulation of Ca(2+)/calcineurin-dependent Drp1 de-phosphorylation by eliminating Nox-derived and cytosolic ROS. Therefore, we suggest that mitochondrial dynamics may be essential for understanding pro-inflammatory responses and that Prx5 may be used as a new therapeutic target to prevent neuroinflammation and neurodegenerative diseases.

  5. Multi-channel probes to understand fission dynamics

    SciTech Connect

    Mosby, Shea Morgan

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fission output channels.

  6. In-beam fission study for Heavy Element Synthesis

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa

    2013-12-01

    Fission fragment mass distributions were measured in heavy-ion induced fissions using 238U target nucleus. The measured mass distributions changed drastically with incident energy. The results are explained by a change of the ratio between fusion and qasifission with nuclear orientation. A calculation based on a fluctuation dissipation model reproduced the mass distributions and their incident energy dependence. Fusion probability was determined in the analysis. Evaporation residue cross sections were calculated with a statistical model in the reactions of 30Si + 238U and 34S + 238U using the obtained fusion probability in the entrance channel. The results agree with the measured cross sections for seaborgium and hassium isotopes.

  7. The SPIDER fission fragment spectrometer for fission product yield measurements

    SciTech Connect

    Meierbachtol, K.; Tovesson, F.; Shields, D.; Arnold, C.; Blakeley, R.; Bredeweg, T.; Devlin, M.; Hecht, A. A.; Heffern, L. E.; Jorgenson, J.; Laptev, A.; Mader, D.; O׳Donnell, J. M.; Sierk, A.; White, M.

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission products from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.

  8. The SPIDER fission fragment spectrometer for fission product yield measurements

    DOE PAGES

    Meierbachtol, K.; Tovesson, F.; Shields, D.; ...

    2015-04-01

    We developed the SPectrometer for Ion DEtermination in fission Research (SPIDER) for measuring mass yield distributions of fission products from spontaneous and neutron-induced fission. The 2E–2v method of measuring the kinetic energy (E) and velocity (v) of both outgoing fission products has been utilized, with the goal of measuring the mass of the fission products with an average resolution of 1 atomic mass unit (amu). Moreover, the SPIDER instrument, consisting of detector components for time-of-flight, trajectory, and energy measurements, has been assembled and tested using 229Th and 252Cf radioactive decay sources. For commissioning, the fully assembled system measured fission productsmore » from spontaneous fission of 252Cf. Individual measurement resolutions were met for time-of-flight (250 ps FWHM), spacial resolution (2 mm FHWM), and energy (92 keV FWHM for 8.376 MeV). Finally, these mass yield results measured from 252Cf spontaneous fission products are reported from an E–v measurement.« less

  9. Benchmarking nuclear fission theory

    DOE PAGES

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; ...

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  10. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  11. Chemotherapy and biotherapy-induced hypersensitivity reactions.

    PubMed

    Van Gerpen, Ruth

    2009-01-01

    Nearly all chemotherapy and biotherapy drugs used in cancer treatment today can cause hypersensitivity reactions. Certain groups of drugs frequently associated with these reactions include the asparaginases, taxanes, platinum compounds, epipodophyllotoxins, and the monoclonal antibodies. Recognizing and managing hypersensitivity reactions are critical when caring for patients receiving these drugs because the reactions are potentially life-threatening. A thorough understanding of the drugs is necessary to assist the nurse in prevention, early recognition, and timely management.

  12. Future research program on prompt γ-ray emission in nuclear fission

    NASA Astrophysics Data System (ADS)

    Oberstedt, S.; Billnert, R.; Hambsch, F.-J.; Lebois, M.; Oberstedt, A.; Wilson, J. N.

    2015-12-01

    In recent years the measurement of prompt fission γ-ray spectra (PFGS) has gained renewed interest, after about forty years since the first comprehensive studies of the reactions 235U(n th , f), 239Pu(n th ,f) and 252Cf(sf). The renaissance was initiated by requests for new values especially for γ-ray multiplicity and average total energy release per fission in neutron-induced fission of 235U and 239Pu. Both isotopes are considered the most important ones with respect to the modeling of innovative cores required for the Generation-IV reactors, the majority working with fast neutrons. During the last 5 years we have conducted a systematic study of spectral data for thermal-neutron-induced fission on 235U and 241Pu as well as for the spontaneous fission of 252Cf with unprecedented accuracy. From the new data we conclude that those reactions do not considerably contribute to the observed heat excess and suspect other reactions playing a significant role. Possible contributions may originate from fast-neutron-induced reactions on 238U, which is largely present in the fuel, or from γ-induced fission from neutron capture in the construction material. A first experiment campaign on prompt γ-ray emission from fast-neutron-induced fission on 235,238U was successfully performed in order to test our assumptions. In the following we attempt to summarize, what has been done in the field to date, and to motivate future measurement campaigns exploiting dedicated neutron and photon beams as well as upcoming highly efficient detector assemblies.

  13. Phonon-induced pure-dephasing of luminescence, multiple exciton generation, and fission in silicon clusters

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Neukirch, Amanda J.; Prezhdo, Oleg V.

    2013-10-01

    The size and temperature dependence of the pure-dephasing processes involved in luminescence, multiple exciton generation (MEG), and multiple exciton fission (MEF) are investigated for Sin clusters (n = 5-10, 15) using ab initio molecular dynamics and optical response function theory. The cluster bandgaps correlate with two types of binding energy, indicating that bandgaps can be used to characterize cluster stability. Ranging from 5 to 100 fs, the dephasing times are found to be longest for MEF and shortest for MEG, with luminescence falling in the middle range. Generally, the dephasing is fast, if the orbitals supporting the pair of states involved in the superpositions differ in energy, atomic localization, and number of nodes. The dephasing accelerates with temperature, because more phonon modes are activated, and lower frequency acoustic modes are able to explore the anhamonic part of the potential energy surface. The temperature dependence is stronger for larger clusters, since they possess a wider range of low-frequency anharmonic modes. Our research indicates that rapid dephasing in Si clusters favors generation of independent charge carriers from single and multiple excitons, making the clusters a promising material for photon energy conversion. The simulations of the dephasing processes reported in this work assist in understanding of the exciton evolution pathways in inorganic semiconductor clusters and other nanoscale materials.

  14. Possible error-prone repair of neoplastic transformation induced by fission-spectrum neutrons

    SciTech Connect

    Hill, C.K.; Han, A.; Elkind, M.M.

    1983-07-18

    We have examined the effect of fission-spectrum neutrons from the JANUS reactor at Argonne National Laboratory, delivered either as acute or protracted irradiation, on the incidence of neoplastic transformation in the C3H 1OT1/2 mouse embryo cell line. Acute exposures were delivered at 10 to 38 rads/min, protracted exposures at 0.086 or 0.43 rad/min. The total doses for both ranged from 2.4 to 350 rads. In the low dose region (2.4 to 80 rads), there was a large enhancement in transformation frequency when the neutrons were delivered at the low dose rates compared with the high dose rates, but the survival of the cells was not significantly different between the two exposure conditions. Analysis of the initial parts of the curves shows that the regression line for protracted doses is about 9 times steeper than that for single acute exposures. Finally, the possibility is discussed that an error-prone repair process may be causing the enhanced transformation frequency by protracted neutron exposures. 12 references, 2 figures, 1 table.

  15. Epidemiology of cutaneous drug-induced reactions.

    PubMed

    Naldi, L; Crotti, S

    2014-04-01

    Cutaneous reactions represent in many surveillance systems, the most frequent adverse events attributable to drugs. The spectrum of clinical manifestations is wide and virtually encompasses any known dermatological disease. The introduction of biological agents and so-called targeted therapies has further enlarged the number of reaction patterns especially linked with cytokine release or in balance. The frequency and clinical patterns of cutaneous reactions are influenced by drug use, prevalence of specific conditions (e.g., HIV infection) and pharmacogenetic traits of a population, and they may vary greatly among the different populations around the world. Studies of reaction rates in cohorts of hospitalized patients revealed incidence rates ranging from, 1 out 1000 to 2 out 100 of all hospitalized patients. For drugs such as aminopenicillines and sulfamides the incidence of skin reactions is in the order of 3-5 cases out of 100 exposed people. Although the majority of cutaneous reactions are mild and self-limiting, there are reactions such as Stevens Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) which are associated with significant morbidity and mortality. Surveillance systems routed on sound epidemiologic methodology, are needed to raise signals and to assess risks associated with specific reactions and drug exposures. Identification of risk factors for adverse reactions and appropriate genetic screening of groups at higher risk may improve the outcomes of skin reactions.

  16. Fifty years with nuclear fission

    SciTech Connect

    Behrens, J.W.; Carlson, A.D. )

    1989-01-01

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately.

  17. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions

    PubMed Central

    Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse

  18. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    SciTech Connect

    Neudecker, D.; Talou, P.; Kawano, T.; Smith, D. L.; Capote, R.; Rising, M. E.; Kahler, A. C.

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.

  19. Evaluation of the (PU)-P-239 prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    SciTech Connect

    Neudecker, D; Talou, P; Kawano, T; Smith, D. L.; Capote, R; Rising, M. E.; Kahler, A C

    2015-08-11

    We present evaluations of the prompt fission neutron spectrum (PFNS) of (PU)-P-239 induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talon et al. (2010), surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted values and experimental shape data These improvements lead to changes in the evaluated PENS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented. which lead to more reasonable evaluated uncertainties. The calculated k(eff) of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The k(eff) one standard deviations overlap with some of those obtained using ENDF/B-VILl, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,) and (n,f) reactions, and show improvements for highenergy threshold (n,2n) reactions compared to ENDF/B-VII.l. (C) 2015 Elsevier B.V. All rights reserved.

  20. Evaluation of the ²³⁹Pu prompt fission neutron spectrum induced by neutrons of 500 keV and associated covariances

    DOE PAGES

    Neudecker, D.; Talou, P.; Kawano, T.; ...

    2015-08-01

    We present evaluations of the prompt fission neutron spectrum (PFNS) of ²³⁹Pu induced by 500 keV neutrons, and associated covariances. In a previous evaluation by Talou et al. 2010, surprisingly low evaluated uncertainties were obtained, partly due to simplifying assumptions in the quantification of uncertainties from experiment and model. Therefore, special emphasis is placed here on a thorough uncertainty quantification of experimental data and of the Los Alamos model predicted values entering the evaluation. In addition, the Los Alamos model was extended and an evaluation technique was employed that takes into account the qualitative differences between normalized model predicted valuesmore » and experimental shape data. These improvements lead to changes in the evaluated PFNS and overall larger evaluated uncertainties than in the previous work. However, these evaluated uncertainties are still smaller than those obtained in a statistical analysis using experimental information only, due to strong model correlations. Hence, suggestions to estimate model defect uncertainties are presented, which lead to more reasonable evaluated uncertainties. The calculated keff of selected criticality benchmarks obtained with these new evaluations agree with each other within their uncertainties despite the different approaches to estimate model defect uncertainties. The keff one standard deviations overlap with some of those obtained using ENDF/B-VII.1, albeit their mean values are further away from unity. Spectral indexes for the Jezebel critical assembly calculated with the newly evaluated PFNS agree with the experimental data for selected (n,γ) and (n,f) reactions, and show improvements for high-energy threshold (n,2n) reactions compared to ENDF/B-VII.1.« less

  1. Excitation Energy Deposition and the Fission Process in the Reactions COPPER-63 + MOLYBDENUM-92, 100 AT 10, 17, 25 and 35 Amev and NEON-20 + SAMARIUM-144, 148, 154 AT 20 Amev.

    NASA Astrophysics Data System (ADS)

    Lou, Yunian

    Excitation energy deposition and light particle emission for fissioning nuclei with excitation energies from 2 to 6 MeV/nucleon are studied for the reaction of 20 AMeV ^{20}Ne with ^{144,148,154}Sm and 10, 17, 25 and 35 AMeV ^{63}Cu with ^{92,100}Mo using the Texas A&M Neutron Ball detector. Linear momentum transfers (LMT) are determined from fission fragment folding angle measurements and used to estimate excitation energies. The associated multiplicities of neutrons, protons and alpha particles are obtained, together with their average energies. These data are used to reconstruct the initial excitation energies of the compound nucleus. With increasing beam energy, an increasing discrepancy between the excitation energy derived from the LMT measurements and the reconstructed one is observed attributed to intermediate mass fragment (IMF) emission. The measured neutron multiplicities show a strong increase with increasing neutron to proton ratio of composite system, as well as increasing beam energy. The experimental data for particle multiplicities are compared with calculations using the statistical model GEMINI. The effect of the dynamic fission delay on the light particle multiplicities is explored. The neutron multiplicities are relatively insensitive to the dynamic fission delay. The calculated charged particle multiplicities are more sensitive, but the comparisons between the calculation and experiment indicate that the light charged particle multiplicity data are not a good measure of dynamic fission delay.

  2. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  3. Indirect Methods for Nuclear Reaction Data

    SciTech Connect

    Escher, J E; Dietrich, F S

    2005-11-18

    Several indirect approaches for obtaining reaction cross sections are briefly reviewed. The Surrogate Nuclear Reactions method, which aims at determining cross sections for compound-nuclear reactions, is discussed in some detail. The validity of the Weisskopf-Ewing approximation in the Surrogate approach is studied for the example of neutron-induced fission of an actinide nucleus.

  4. First inverse-kinematics fission measurements in a gaseous active target

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tajes, C.; Farget, F.; Acosta, L.; Alvarez-Pol, H.; Babo, M.; Boulay, F.; Caamaño, M.; Damoy, S.; Fernández-Domínguez, B.; Galaviz, D.; Grinyer, G. F.; Grinyer, J.; Harakeh, M. N.; Konczykowski, P.; Martel, I.; Pancin, J.; Randisi, G.; Renzi, F.; Roger, T.; Sánchez-Benítez, A. M.; Teubig, P.; Vandebrouck, M.

    2017-02-01

    The fission of a variety of actinides was induced by fusion and transfer reactions between a 238U beam and 12C nuclei, in the active target MAYA. The performance of MAYA was studied, as well as its capability to reconstruct the fission-fragment trajectories. Furthermore, a full characterization of the different transfer reactions was achieved, and the populated excitation-energy distributions were investigated as a function of the kinetic energy in the entrance channel. The ratio between transfer- and fusion-induced fission cross-sections was also determined, in order to investigate the competition between both reaction types and its evolution with the incident energy. The experimental results will be discussed with a view to forthcoming radioactive-ion beam facilities, and next-generation active-target setups.

  5. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission.

    PubMed

    Mattila, Juha-Pekka; Shnyrova, Anna V; Sundborger, Anna C; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E; Schmid, Sandra L; Frolov, Vadim A

    2015-08-06

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate, characterized by a 'stalk' in which only the outer membrane monolayers of the two compartments have merged to form a localized non-bilayer connection. Formation of the hemi-fission intermediate requires energy input from proteins catalysing membrane remodelling; however, the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analysed how the GTPase cycle of human dynamin 1, the prototypical membrane fission catalyst, is directly coupled to membrane remodelling. We used intramolecular chemical crosslinking to stabilize dynamin in its GDP·AlF4(-)-bound transition state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fuelled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent, drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction, the force bimodality might constitute a general paradigm for leakage-free membrane remodelling.

  6. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission

    PubMed Central

    Sundborger, Anna C.; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E.; Schmid, Sandra L.; Frolov, Vadim A.

    2015-01-01

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate1,2, characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection1-3. Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analyzed how the GTPase cycle of dynamin, the prototypical membrane fission catalyst4-6, is directly coupled to membrane remodeling. We used intra-molecular chemical cross-linking to stabilize dynamin in its GDP•AlF4--bound transition-state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fueled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction7-8, the force bimodality might constitute a general paradigm for leakage-free membrane remodeling. PMID:26123023

  7. Neutron threshold activation detectors (TAD) for the detection of fissions

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi; Stevenson, John; King, Michael J.

    2011-10-01

    Prompt fission neutrons are one of the strongest signatures of the fission process. Depending on the fission inducing radiation, their average number ranges from 2.5 to 4 neutrons per fission. They are more energetic and abundant, by about 2 orders of magnitude, than the delayed neutrons (≈3 vs. ≈0.01) that are commonly used as indicators for the presence of fissionable materials. The detection of fission prompt neutrons, however, has to be done in the presence of extremely intense probing radiation that stimulated them. During irradiation, the fission stimulation radiation, X-rays or neutrons, overwhelms the neutron detectors and temporarily incapacitate them. Consequently, by the time the detectors recover from the source radiation, fission prompt neutrons are no longer emitted. In order to measure the prompt fission signatures under these circumstances, special measures are usually taken with the detectors such as heavy shielding with collimation, use of inefficient geometries, high pulse height bias and gamma-neutron separation via pulse-shape discrimination with an appropriate organic scintillator. These attempts to shield the detector from the flash of radiation result in a major loss of sensitivity. It can lead to a complete inability to detect the fission prompt neutrons. In order to overcome the blinding induced background from the source radiation, the detection of prompt fission neutrons needs to occur long after the fission event and after the detector has fully recovered from the source overload. A new approach to achieve this is to detect the delayed activation induced by the fission neutrons. The approach demonstrates a good sensitivity in adverse overload situations (gamma and neutron "flash") where fission prompt neutrons could normally not be detected. The new approach achieves the required temporal separation between the detection of prompt neutrons and the detector overload by the neutron activation of the detector material. The technique

  8. Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells.

    PubMed

    Parra, Valentina; Bravo-Sagua, Roberto; Norambuena-Soto, Ignacio; Hernández-Fuentes, Carolina P; Gómez-Contreras, Andrés G; Verdejo, Hugo E; Mellado, Rosemarie; Chiong, Mario; Lavandero, Sergio; Castro, Pablo F

    2017-07-22

    Chronic hypoxia exacerbates proliferation of pulmonary arterial smooth muscle cells (PASMC), thereby reducing the lumen of pulmonary arteries. This leads to poor blood oxygenation and cardiac work overload, which are the basis of diseases such as pulmonary artery hypertension (PAH). Recent studies revealed an emerging role of mitochondria in PAH pathogenesis, as key regulators of cell survival and metabolism. In this work, we assessed whether hypoxia-induced mitochondrial fragmentation contributes to the alterations of both PASMC death and proliferation. In previous work in cardiac myocytes, we showed that trimetazidine (TMZ), a partial inhibitor of lipid oxidation, stimulates mitochondrial fusion and preserves mitochondrial function. Thus, here we evaluated whether TMZ-induced mitochondrial fusion can prevent human PASMC proliferation in an in vitro hypoxic model. Using confocal fluorescence microscopy, we showed that prolonged hypoxia (48h) induces mitochondrial fragmentation along with higher levels of the mitochondrial fission protein DRP1. Concomitantly, both mitochondrial potential and respiratory rates decreased, indicative of mitochondrial dysfunction. In accordance with a metabolic shift towards non-mitochondrial ATP generation, mRNA levels of glycolytic markers HK2, PFKFB2 and GLUT1 increased during hypoxia. Incubation of PASMC with TMZ, prior to hypoxia, prevented all these changes and precluded the increase in PASMC proliferation. These findings were also observed using Mdivi-1 (a pharmacological DRP1 inhibitor) or a dominant negative DRP1 K38A as pre-treatments. Altogether, our data indicate that TMZ exerts a protective role against hypoxia-induced PASMC proliferation, by preserving mitochondrial function, thus highlighting DRP1-dependent morphology as a novel therapeutic approach for diseases such as PAH. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol.

    PubMed

    Breckenridge, David G; Stojanovic, Marina; Marcellus, Richard C; Shore, Gordon C

    2003-03-31

    Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731-6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8-induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.

  10. Pediatric bupropion-induced serum sicknesslike reaction.

    PubMed

    Hack, Sabine

    2004-01-01

    This reports the first 2 cases of serum sicknesslike reaction to bupropion in children (age 12 and 14). Serum sicknesslike reactions are an example of immune-complex medicated disease. The cardinal symptoms of serum sickness are fever, lymphadenopathy, arthralgias or arthritis, and urticaria. Symptoms usually resolve without long-term sequela following discontinuation of the exogenous antigen. It is likely that serum sicknesslike reactions to bupropion are either relatively rare or underrecognized and underreported. Between May 1998 and May 2001, GlaxoSmith Kline received 172 reports of seizures (a well-known adverse drug reaction) and only 37 reports of serum sicknesslike reactions (Wooltorton 2002). We do not know if children and adolescents are more prone than adults to develop serum sicknesslike reactions to bupropion. Luckily, the reported cases of serum sicknesslike reactions to bupropion have not caused irreversible morbidity or mortality. Nevertheless, the symptoms are painful, temporarily disfiguring and disabling, and warrant prompt medical attention. Parents and patients should be educated about this potential side effect at the onset of treatment, because symptoms are similar to many infectious childhood illnesses, and the treatment of serum sicknesslike reactions to bupropion should include the discontinuation of bupropion.

  11. Fission at intermediate nucleon energies

    NASA Astrophysics Data System (ADS)

    Lo Meo, S.; Mancusi, D.; Massimi, C.; Vannini, G.; Ventura, A.

    2014-07-01

    In the present work Monte Carlo calculations of fission of actinides and pre- actinides induced by protons and neutrons in the energy range from 100 MeV to 1 GeV are carried out by means of a recent version of the Liège Intranuclear Cascade Model, INCL++, coupled with different evaporation-fission codes, in particular GEMINI++ and ABLA07. Fission model parameters are adjusted on experimental (p, f) cross sections and used to predict (n, f) cross sections, in order to provide a theoretical support to the campaign of neutron cross section measurements at the n_TOF facility at CERN.

  12. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  13. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

    NASA Astrophysics Data System (ADS)

    Penttilä, H.; Gorelov, D.; Elomaa, V.-V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I. D.; Parkkonen, J.; Peräjärvi, K.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Rubchenya, V. A.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Äystö, J.

    2016-04-01

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {}^{nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {}^{nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution.

  14. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; hide

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  15. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Williams, Eric; Harper, Roger; Salvail, Pat; Hrbud, Ivana; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep spare or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start - addressing this issue through proper system design is straightforward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission system. While space fission system were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if Ae are to reap the benefits of advanced space fission systems.

  16. Electron-induced hydration of an alkene: alternative reaction pathways.

    PubMed

    Warneke, Jonas; Wang, Ziyan; Swiderek, Petra; Bredehöft, Jan Hendrik

    2015-03-27

    Electron-induced reactions in condensed mixtures of ethylene and water lead to the synthesis of ethanol, as shown by post-irradiation thermal desorption spectrometry (TDS). Interestingly, this synthesis is not only induced by soft electron impact ionization similar to a previously observed electron-induced hydroamination but also, at low electron energy, by electron attachment to ethylene and a subsequent acid/base reaction with water.

  17. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  18. Adverse drug reactions induced by valproic acid.

    PubMed

    Nanau, Radu M; Neuman, Manuela G

    2013-10-01

    Valproic acid is a widely-used first-generation antiepileptic drug, prescribed predominantly in epilepsy and psychiatric disorders. VPA has good efficacy and pharmacoeconomic profiles, as well as a relatively favorable safety profile. However, adverse drug reactions have been reported in relation with valproic acid use, either as monotherapy or polytherapy with other antiepileptic drugs or antipsychotic drugs. This systematic review discusses valproic acid adverse drug reactions, in terms of hepatotoxicity, mitochondrial toxicity, hyperammonemic encephalopathy, hypersensitivity syndrome reactions, neurological toxicity, metabolic and endocrine adverse events, and teratogenicity. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Erythropoietin-induced iritis-like reaction.

    PubMed

    Beiran, I; Krasnitz, I; Mezer, E; Meyer, E; Miller, B

    1996-01-01

    The present report describes an iritis-like reaction found in 13 patients treated with recombinant human erythropoietin (Eprex), a drug given to hemodialysis patients for their chronic anemia. Among 120 patients being treated by hemodialysis in two centers affiliated with our medical center, ten out of 30 Eprex-treated patients but none of 90 not being treated with Eprex developed this reaction. The observations described support a causal relation between Eprex treatment and the iritis-like reaction. Further investigative effort is needed to establish the mechanism.

  20. Evaluated Mean Values and Covariances for the Prompt Fission Neutron Spectrum of 239Pu induced by neutrons of 500 keV

    SciTech Connect

    Neudecker, Denise

    2014-07-10

    This document provides the numerical values of the evaluated prompt fission neutron spectrum for 239Pu induced by neutrons of 500 keV as well as relative uncertainties and correlations. This document also contains a short description how these data were obtained and shows plots comparing the evaluated results to experimental information as well as the corresponding ENDF/B-VII.1 evaluation.

  1. The Need for Precise and Well-documented Experimental Data on Prompt Fission Neutron Spectra from Neutron-induced Fission of {sup 239}Pu

    SciTech Connect

    Neudecker, D. Taddeucci, T.N.; Haight, R.C.; Lee, H.Y.; White, M.C.; Rising, M.E.

    2016-01-15

    The spectrum of neutrons emitted promptly after {sup 239}Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the {sup 239}Pu PFNS as a ratio to either the {sup 235}U or {sup 252}Cf PFNS.

  2. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    DOE PAGES

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; ...

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with themore » improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.« less

  3. The need for precise and well-documented experimental data on prompt fission neutron spectra from neutron-induced fission of 239Pu

    SciTech Connect

    Neudecker, Denise; Taddeucci, Terry Nicholas; Haight, Robert Cameron; Lee, Hye Young; White, Morgan Curtis; Rising, Michael Evans

    2016-01-06

    The spectrum of neutrons emitted promptly after 239Pu(n,f)—a so-called prompt fission neutron spectrum (PFNS)—is a quantity of high interest, for instance, for reactor physics and global security. However, there are only few experimental data sets available that are suitable for evaluations. In addition, some of those data sets differ by more than their 1-σ uncertainty boundaries. We present the results of MCNP studies indicating that these differences are partly caused by underestimated multiple scattering contributions, over-corrected background, and inconsistent deconvolution methods. A detailed uncertainty quantification for suitable experimental data was undertaken including these effects, and test-evaluations were performed with the improved uncertainty information. The test-evaluations illustrate that the inadequately estimated effects and detailed uncertainty quantification have an impact on the evaluated PFNS and associated uncertainties as well as the neutron multiplicity of selected critical assemblies. A summary of data and documentation needs to improve the quality of the experimental database is provided based on the results of simulations and test-evaluations. Furthermore, given the possibly substantial distortion of the PFNS by multiple scattering and background effects, special care should be taken to reduce these effects in future measurements, e.g., by measuring the 239Pu PFNS as a ratio to either the 235U or 252Cf PFNS.

  4. 3-Nitropropionic acid induces autophagy by forming mitochondrial permeability transition pores rather than activatiing the mitochondrial fission pathway

    PubMed Central

    Solesio, Maria E; Saez-Atienzar, Sara; Jordan, Joaquin; Galindo, Maria F

    2013-01-01

    BACKGROUND AND PURPOSE Huntington's disease is a neurodegenerative process associated with mitochondrial alterations. Inhibitors of the electron–transport channel complex II, such as 3-nitropropionic acid (3NP), are used to study the molecular and cellular pathways involved in this disease. We studied the effect of 3NP on mitochondrial morphology and its involvement in macrophagy. EXPERIMENTAL APPROACH Pharmacological and biochemical methods were used to characterize the effects of 3NP on autophagy and mitochondrial morphology. SH-SY5Y cells were transfected with GFP-LC3, GFP-Drp1 or GFP-Bax to ascertain their role and intracellular localization after 3NP treatment using confocal microscopy. KEY RESULTS Untreated SH-SY5Y cells presented a long, tubular and filamentous net of mitochondria. After 3NP (5 mM) treatment, mitochondria became shorter and rounder. 3NP induced formation of mitochondrial permeability transition pores, both in cell cultures and in isolated liver mitochondria, and this process was inhibited by cyclosporin A. Participation of the mitochondrial fission pathway was excluded because 3NP did not induce translocation of the dynamin-related protein 1 (Drp1) to the mitochondria. The Drp1 inhibitor Mdivi-1 did not affect the observed changes in mitochondrial morphology. Finally, scavengers of reactive oxygen species failed to prevent mitochondrial alterations, while cyclosporin A, but not Mdivi-1, prevented the generation of ROS. CONCLUSIONS AND IMPLICATIONS There was a direct correlation between formation of mitochondrial permeability transition pores and autophagy induced by 3NP treatment. Activation of autophagy preceded the apoptotic process and was mediated, at least partly, by formation of reactive oxygen species and mitochondrial permeability transition pores. LINKED ARTICLE This article is commented on by González-Polo et al., pp. 60–62 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02203.x PMID

  5. 3-Nitropropionic acid induces autophagy by forming mitochondrial permeability transition pores rather than activating the mitochondrial fission pathway.

    PubMed

    Solesio, Maria E; Saez-Atienzar, Sara; Jordan, Joaquin; Galindo, Maria F

    2013-01-01

    Huntington's disease is a neurodegenerative process associated with mitochondrial alterations. Inhibitors of the electron-transport channel complex II, such as 3-nitropropionic acid (3NP), are used to study the molecular and cellular pathways involved in this disease. We studied the effect of 3NP on mitochondrial morphology and its involvement in macrophagy. Pharmacological and biochemical methods were used to characterize the effects of 3NP on autophagy and mitochondrial morphology. SH-SY5Y cells were transfected with GFP-LC3, GFP-Drp1 or GFP-Bax to ascertain their role and intracellular localization after 3NP treatment using confocal microscopy. Untreated SH-SY5Y cells presented a long, tubular and filamentous net of mitochondria. After 3NP (5 mM) treatment, mitochondria became shorter and rounder. 3NP induced formation of mitochondrial permeability transition pores, both in cell cultures and in isolated liver mitochondria, and this process was inhibited by cyclosporin A. Participation of the mitochondrial fission pathway was excluded because 3NP did not induce translocation of the dynamin-related protein 1 (Drp1) to the mitochondria. The Drp1 inhibitor Mdivi-1 did not affect the observed changes in mitochondrial morphology. Finally, scavengers of reactive oxygen species failed to prevent mitochondrial alterations, while cyclosporin A, but not Mdivi-1, prevented the generation of ROS. There was a direct correlation between formation of mitochondrial permeability transition pores and autophagy induced by 3NP treatment. Activation of autophagy preceded the apoptotic process and was mediated, at least partly, by formation of reactive oxygen species and mitochondrial permeability transition pores. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  6. Reactions of buffers in cyanogen bromide-induced ligations.

    PubMed

    Vogel, Heike; Gerlach, Claudia; Richert, Clemens

    2013-01-01

    Rapid, template-directed ligation reactions between a phosphate-terminated oligonucleotide and an unphosphorylated reaction partner may be induced by cyanogen bromide (BrCN). Frequently, however, the reaction is low yielding, and even a large excess of the condensing agent can fail to induce quantitative conversions. In this study, we used BrCN to induce chemical primer extension reactions. Here, we report that buffers containing hydroxyl groups react with short oligodeoxynucleotides in the presence of BrCN. One stable adduct between HEPBS buffer and cytosine was characterized by mass spectrometry and NMR after HPLC purification, indicating that a side reaction occurred at this nucleobase. Further, a first example of a primer extension reaction between an unmodified oligodeoxynucleotide as primer and dGMP is reported. Together, our results shed light on the potency, as well as the drawbacks of BrCN as a highly reactive condensing reagent for the ligation of unmodified nucleic acids.

  7. The Microscopic Theory of Fission

    SciTech Connect

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  8. Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation.

    PubMed

    Salabei, Joshua K; Hill, Bradford G

    2013-01-01

    Vascular smooth muscle cells (VSMCs) develop a highly proliferative and synthetic phenotype in arterial diseases. Because such phenotypic changes are likely integrated with the energetic state of the cell, we hypothesized that changes in cellular metabolism regulate VSMC plasticity. VSMCs were exposed to platelet-derived growth factor-BB (PDGF) and changes in mitochondrial morphology, proliferation, contractile protein expression, and mitochondrial metabolism were examined. Exposure of VSMCs to PDGF resulted in mitochondrial fragmentation and a 50% decrease in the abundance of mitofusin 2. Synthetic VSMCs demonstrated a 20% decrease in glucose oxidation, which was accompanied by an increase in fatty acid oxidation. Results of mitochondrial function assays in permeabilized cells showed few changes due to PDGF treatment in mitochondrial respiratory chain capacity and coupling. Treatment of VSMCs with Mdivi-1-an inhibitor of mitochondrial fission-inhibited PDGF-induced mitochondrial fragmentation by 50% and abolished increases in cell proliferation; however, it failed to prevent PDGF-mediated activation of autophagy and removal of contractile proteins. In addition, treatment with Mdivi-1 reversed changes in fatty acid and glucose oxidation associated with the synthetic phenotype. These results suggest that changes in mitochondrial morphology and bioenergetics underlie the hyperproliferative features of the synthetic VSMC phenotype, but do not affect the degradation of contractile proteins. Mitochondrial fragmentation occurring during the transition to the synthetic phenotype could be a therapeutic target for hyperproliferative vascular disorders.

  9. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  10. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239Pu induced by thermal neutrons

    NASA Astrophysics Data System (ADS)

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-01

    The average of fragment kinetic energy (E*) and the multiplicity of prompt neutrons (ν) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of 239Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation σE*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass (σE(A)). As a result of the simulation we obtain the dependence σE*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  11. Fission meter

    DOEpatents

    Rowland, Mark S [Alamo, CA; Snyderman, Neal J [Berkeley, CA

    2012-04-10

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly into information that a first responder can use to discriminate materials. The system comprises counting neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source.

  12. Freshly induced short-lived gamma-ray activity as a measure of fission rates in lightly re-irradiated spent fuel

    NASA Astrophysics Data System (ADS)

    Kröhnert, H.; Perret, G.; Murphy, M. F.; Chawla, R.

    2010-12-01

    A new measurement technique has been developed to determine fission rates in burnt fuel, following re-irradiation in a zero-power research reactor. The development has been made in the frame of the LIFE@PROTEUS program at the Paul Scherrer Institute, which aims at characterizing the interfaces between fresh and highly burnt fuel assemblies in modern LWRs. To discriminate against the high intrinsic gamma-ray activity of the burnt fuel, the proposed measurement technique uses high-energy gamma-rays, above 2000 keV, emitted by short-lived fission products freshly produced in the fuel. To demonstrate the feasibility of this technique, a fresh UO 2 sample and a 36 GWd/t burnt UO 2 sample were irradiated in the PROTEUS reactor and their gamma-ray activities were recorded directly after irradiation. For both fresh and the burnt fuel samples, relative fission rates were derived for different core positions, based on the short-lived 142La (2542 keV), 89Rb (2570 keV), 138Cs (2640 keV) and 95Y (3576 keV) gamma-ray lines. Uncertainties on the inter-position fission rate ratios were mainly due to the uncertainties on the net-area of the gamma-ray peaks and were about 1-3% for the fresh sample, and 3-6% for the burnt one. Thus, for the first time, it has been shown that the short-lived gamma-ray activity, induced in burnt fuel by irradiation in a zero-power reactor, can be used as a quantitative measure of the fission rate. For both fresh and burnt fuel, the measured results agreed, within the uncertainties, with Monte Carlo (MCNPX) predictions.

  13. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    NASA Astrophysics Data System (ADS)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  14. Excitation energy dependence of fragment-mass distributions from fission of 180,190Hg formed in fusion reactions of 36Ar + 144,154Sm

    SciTech Connect

    Nishio, K.; Andreyev, A. N.; Chapman, R.; Derkx, X.; Düllmann, Ch. E.; Ghys, L.; Heßberger, F. P.; Hirose, K.; Ikezoe, H.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Makii, H.; Nishinaka, I.; Ohtsuki, T.; Pain, S. D.; Sagaidak, R.; Tsekhanovich, I.; Venhart, M.; Wakabayashi, Y.; Yan, S.

    2015-06-30

    Mass distributions of fission fragments from the compound nuclei 180Hg and 190 Hg formed in fusion reactions 36Ar + 144 Smand 36Ar + 154Sm, respectively, were measured at initial excitation energies of E*(180Hg) = 33-66 MeV and E*(190Hg) = 48-71 MeV. In the fission of 180Hg, the mass spectra were well reproduced by assuming only an asymmetric-mass division, with most probable light and heavy fragment masses $\\overline{A}_L$/$\\overline{A}_H$ = 79/101. The mass asymmetry for 180Hg agrees well with that obtained in the low-energy β+/EC-delayed fission of 180Tl, from our earlier ISOLDE(CERN) experiment. Fission of 190Hg is found to proceed in a similar way, delivering the mass asymmetry of$\\overline{A}_L$/$\\overline{A}_H$ = 83/107, throughout the measured excitation energy range. The persistence as a function of excitation energy of the mass-asymmetric fission for both proton-rich Hg isotopes gives strong evidence for the survival of microscopic effects up to effective excitation energies of compound nuclei as high as 40 MeV. In conclusion, this behavior is different from fission of actinide nuclei and heavier mercury isotope 198Hg.

  15. Neutron-induced reaction studies using stored ions

    NASA Astrophysics Data System (ADS)

    Glorius, Jan; Litvinov, Yuri A.; Reifarth, René

    2015-11-01

    Storage rings provide unique possibilities for investigations of nuclear reactions. Radioactive ions can be stored if the ring is connected to an appropriate facility and reaction studies are feasible at low beam intensities because of the recycling of beam particles. Using gas jet or droplet targets, charged particle-induced reactions on short-lived isotopes can be studied in inverse kinematics. In such a system a high-flux reactor could serve as a neutron target extending the experimental spectrum to neutron-induced reactions. Those could be studied over a wide energy range covering the research fields of nuclear astrophysics and reactor safety, transmutation of nuclear waste and fusion.

  16. Morphological changes of amphiphilic molecular assemblies induced by chemical reactions.

    PubMed

    Nakagawa, Koh M; Noguchi, Hiroshi

    2015-02-04

    Shape transformations of amphiphilic molecular assemblies induced by chemical reactions are studied using coarse-grained molecular simulations. A binding reaction between hydrophilic and hydrophobic molecules is considered. It is found that the reaction induces transformation of an oil droplet to a tubular vesicle via bicelles and vesicles with discoidal arms. The discoidal arms close into vesicles, which are subsequently fused into the tubular vesicle. Under the chemical reaction, the bicelle-to-vesicle transition occurs at smaller sizes than in the absence of the hydrophobic molecules. It is revealed that the enhancement of this transition is due to embedded hydrophobic particles that reduce the membrane bending rigidity.

  17. Thinking in Different Ways to Combine Fusion with Fission

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2007-06-01

    The common goal of CTR, but in particular of ICF, is low yield-high gain. Fission triggered large TN explosive devices meet the second but not the first of these conditions. These devices depend on the rare isotopes U235, Pu239, or U233, but for them the fusion energy output greatly exceeds the output from fission, limiting the fallout. In thinking about different ways to combine fusion with fission, there are three questions: (1) Are there ways where both conditions can be met, and where the fallout from fission is small? (2) Can the conditions be met without the use of U235, Pu239, or U233, but with U238, Th232, and perhaps with the fission of light nuclei like B10 or Li6, the latter having no fallout? (3) Are there concepts for MF, combining fusion with fission, without U235, Pu239 or U233? In my talk I will present reasons why under the above stated conditions two things seem to be possible: (1) The greatly facilitated fast ignition of thermonuclear microexplosions with a small amount of U238 or Th232. (2) The greatly enhanced pulsed MF burn aided by the fission of light nuclei such as B10, but also of the U238 and Th232 and with a neutron moderator. In either one of these cases the burn is "autocatalytic" in the sense that neutron-induced nuclear reactions in a halo surrounding the fusion plasma drive thermomagnetic currents compressing and increasing its neutron production rate.

  18. Fission-like events in the 12C+169Tm system at low excitation energies

    NASA Astrophysics Data System (ADS)

    Sood, Arshiya; Singh, Pushpendra P.; Sahoo, Rudra N.; Kumar, Pawan; Yadav, Abhishek; Sharma, Vijay R.; Shuaib, Mohd.; Sharma, Manoj K.; Singh, Devendra P.; Gupta, Unnati; Kumar, R.; Aydin, S.; Singh, B. P.; Wollersheim, H. J.; Prasad, R.

    2017-07-01

    Background: Fission has been found to be a dominating mode of deexcitation in heavy-ion induced reactions at high excitation energies. The phenomenon of heavy-ion induced fission has been extensively investigated with highly fissile actinide nuclei, yet there is a dearth of comprehensive understanding of underlying dynamics, particularly in the below actinide region and at low excitation energies. Purpose: Prime objective of this work is to study different aspects of heavy-ion induced fission ensuing from the evolution of composite system formed via complete and/or incomplete fusion in the 12C+169Tm system at low incident energies, i.e., Elab≈6.4 , 6.9, and 7.4 A MeV, as well as to understand charge and mass distributions of fission fragments. Method: The recoil-catcher activation technique followed by offline γ spectroscopy was used to measure production cross sections of fission-like events. The evaporation residues were identified by their characteristic γ rays and vetted by the decay-curve analysis. Charge and mass distributions of fission-like events were studied to obtain dispersion parameters of fission fragments. Results: In the present work, 26 fission-like events (32 ≤Z ≤49 ) were identified at different excitation energies. The mass distribution of fission fragments is found to be broad and symmetric, manifesting their production via compound nuclear processes. The dispersion parameters of fission fragments obtained from the analysis of mass and isotopic yield distributions are found to be in good accord with the reported values obtained for different fissioning systems. A self-consistent approach was employed to determine the isobaric yield distribution. Conclusions: The present work suggests that fission is one of the competing modes of deexcitation of complete and/or incomplete fusion composites at low excitation energies, i.e., E*≈57 , 63, and 69 MeV, where evaporation of light nuclear particle(s) and/or γ rays are assumed to be the sole

  19. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  20. Space Fission Propulsion System Development Status

    NASA Technical Reports Server (NTRS)

    Houts, M.; Van Dyke, M. K.; Godfroy, T. J.; Pedersen, K. W.; Martin, J. J.; Dickens, R.; Williams, E.; Harper, R.; Salvail, P.; Hrbud, I.

    2001-01-01

    The world's first man-made self-sustaining fission reaction was achieved in 1942. Since then fission has been used to propel submarines, generate tremendous amounts of electricity, produce medical isotopes, and provide numerous other benefits to society. Fission systems operate independently of solar proximity or orientation, and are thus well suited for deep space or planetary surface missions. In addition, the fuel for fission systems (enriched uranium) is virtually non-radioactive. The primary safety issue with fission systems is avoiding inadvertent system start. Addressing this issue through proper system design is straight-forward. Despite the relative simplicity and tremendous potential of space fission systems, the development and utilization of these systems has proven elusive. The first use of fission technology in space occurred 3 April 1965 with the US launch of the SNAP-10A reactor. There have been no additional US uses of space fission systems. While space fission systems were used extensively by the former Soviet Union, their application was limited to earth-orbital missions. Early space fission systems must be safely and affordably utilized if we are to reap the benefits of advanced space fission systems. NASA's Marshall Space Flight Center, working with Los Alamos National Laboratory (LANL), Sandia National Laboratories, and others, has conducted preliminary research related to a Safe Affordable Fission Engine (SAFE). An unfueled core has been fabricated by LANL, and resistance heaters used to verify predicted core thermal performance by closely mimicking heat from fission. The core is designed to use only established nuclear technology and be highly testable. In FY01 an energy conversion system and thruster will be coupled to the core, resulting in an 'end-to-end' nuclear electric propulsion demonstrator being tested using resistance heaters to closely mimic heat from fission. Results of the SAFE test program will be presented. The applicability

  1. Ofloxacin Induced Cutaneous Reactions in Children.

    PubMed

    Ramani, Yerramalli Roja; Mishra, Sailen Kumar; Rath, Bandana; Rath, Saroj Sekhar

    2015-06-01

    Cutaneous adverse effects to antimicrobials are a major health problem. Though majority of them are mild and self-limiting, severe variants like Steven Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN) are not uncommon. Ofloxacin, a fluoroquinolone widely used for the treatment of urinary tract infections, acute bacterial diarrheas, enteric fever, STDs and other soft tissue infections either as a single drug or in combination with other drugs. Earlier a case of mucocutaneous maculopapular rash with oral ofloxacin and was reported in an adult. In the present hospital set up there were few reports of such reactions to adults. Here we report three different variants of reactions associated with oral ofloxacin in chlidren. Early detection of cutaneous lesions and immediate withdrawal of the offending drug can prevent progression of such reactions to their severe variants as well as morbidity and mortality.

  2. Active Target-Time Projection Chambers for Reactions Induced by Rare Isotope Beams: Physics and Technology

    NASA Astrophysics Data System (ADS)

    Mittig, Wolfgang

    2013-04-01

    Weakly bound nuclear systems can be considered to represent a good testing-ground of our understanding of non-perturbative quantum systems. Great progress in experimental sensitivity has been attained by increase in rare isotope beam intensities and by the development of new high efficiency detectors. It is now possible to study reactions leading to bound and unbound states in systems with very unbalanced neutron to proton ratios. Application of Active Target-Time Projection Chambers to this domain of physics will be illustrated by experiments performed with existing detectors. The NSCL is developing an Active Target-Time Projection Chamber (AT-TPC) to be used to study reactions induced by rare isotope beams at the National Superconducting Cyclotron Facility (NSCL) and at the future Facility for Rare Isotope Beams (FRIB). The AT-TPC counter gas acts as both a target and detector, allowing investigations of fusion, isobaric analog states, cluster structure of light nuclei and transfer reactions to be conducted without significant loss in resolution due to the thickness of the target. The high efficiency and low threshold of the AT-TPC will allow investigations of fission barriers and giant resonances with fast fragmentation rare isotope beams. This detector type needs typically a large number of electronic channels (order of magnitude 10,000) and a high speed DAQ. A reduced size prototype detector with prototype electronics has been realized and used in several experiments. A short description of other detectors of this type under development will be given.

  3. Artificial Force Induced Reaction Method for Systematic Determination of Complex Reaction Mechanisms.

    PubMed

    Sameera, W M C; Kumar Sharma, Akhilesh; Maeda, Satoshi; Morokuma, Keiji

    2016-10-01

    Nowadays, computational studies are very important for the elucidation of reaction mechanisms and selectivity of complex reactions. However, traditional computational methods usually require an estimated reaction path, mainly driven by limited experimental implications, intuition, and assumptions of stationary points. However, the artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy can be used for unbiased and automatic reaction path searches for complex reactions. In this account, we highlight applications of the AFIR method to a variety of reactions (organic, organometallic, enzymatic, and photochemical) of complex molecular systems. In addition, the AFIR method has been successfully used to rationalise the origin of stereo- and regioselectivity. The AFIR method can be applied from small to large molecular systems, and will be a very useful tool for the study of complex molecular problems in many areas of chemistry, biology, and material sciences.

  4. [Adverse reactions induced by food additives: sulfites].

    PubMed

    Montaño García, M L

    1989-01-01

    Many chemicals are used to preserve, color and flavor foods and drugs. There have been numerous reports of adverse reactions, including urticaria, angioneurotic edema, asthma an anaphylaxis following the ingestion of food additives such as tartrazine, monosodium glutamate and benzoic acid. Recently the food and drug additives reaching medical awareness as a cause of sensitivity are the sulfiting agents. Sulfites are widely used in the food and beverage industry as preservatives and antioxidants. They are also used by the pharmaceutical industry. This work describes the common uses of sulfiting agents, the mechanisms of sulfite sensitivity, the diagnosis, prevention and treatment of adverse reactions to sulfites.

  5. Prompt fission γ-ray data from spontaneous fission and the mechanism of fission-fragment de-excitation

    NASA Astrophysics Data System (ADS)

    Oberstedt, Stephan; Dragic, Aleksandar; Gatera, Angelique; Göök, Alf; Hambsch, Franz-Josef; Oberstedt, Andreas

    2017-09-01

    The investigation of prompt γ-ray emission in nuclear fission has a great relevance for the assessment of prompt heat generation in a reactor core and for the better understanding of the de-excitation mechanism of fission fragments. Some years ago experimental data was scarce and available only from a few fission reactions, 233,235U(nth, f), 239Pu(nth, f), and 252Cf(sf). Initiated by a high priority data request published by the OECD/NEA a dedicated prompt fission γ-ray measurement program is being conducted at the Joint Research Centre Geel. In recent years we obtained new and accurate prompt fission γ-ray spectrum (PFGS) characteristics (average number of photons per fission, average total energy per fission and mean photon energy) from 252Cf(sf), 235U(nth, f) and 239,241Pu(nth, f) within 2% of uncertainty. In order to understand the dependence of prompt fission γ-ray emission on the compound nuclear mass and excitation energy, we started a first measurement campaign on spontaneously fissioning plutonium and curium isotopes. Results on PFGS characteristics from 240,242Pu(sf) show a dependence on the fragment mass distribution rather than on the average prompt neutron multiplicity, pointing to a more complex competition between prompt fission γ-ray and neutron emission.

  6. Regulation of oxidative stress-induced cytotoxic processes of citrinin in the fission yeast Schizosaccharomyces pombe.

    PubMed

    Máté, Gábor; Gazdag, Zoltán; Mike, Nóra; Papp, Gábor; Pócsi, István; Pesti, Miklós

    2014-11-01

    In this study, the citrinin (CTN)-induced accumulation of reactive oxygen species (ROS) and the regulation of the activities of antioxidant enzymes were investigated in acute toxicity tests in Schizosaccharomyces pombe. 30% of the CTN was accumulated by the cells in 1000 μM CTN solution. In comparison with the control, exposure of 10(7) cells ml(-1) to 1000 μM CTN for 60 min at pH = 4.5 induced significantly (p < 1%) elevated levels of peroxides and total ROS, but not of superoxide or hydroxyl radicals, while there was a 3-fold increase in the concentration of glutathione. ROS-induced adaptation processes at cell and molecular levels via activation of the redox-sensitive transcription factors Pap1 and (in part) Atf1 resulted in significantly increased specific activities of glutathione peroxidases, glucose-6-phosphate dehydrogenase and glutathione S-transferase and in decreased levels of catalase and glutathione reductase, but no changes were detected in the activities of superoxide dismutases. This treatment caused a G2/M cell cycle arrest and elevated the number of fragmented nuclei, which is one of the markers of apoptosis. Comparison of these results with those for the positive control, 200 μM H2O2, suggested that CTN induced a medium level of oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. I. Fission probabilities, fission barriers, and shell effects. II. Particle structure functions

    NASA Astrophysics Data System (ADS)

    Jing, Kexing

    1999-11-01

    In Part I, fission excitation functions of osmium isotopes 185,186,187,189 Os produced in 3He + 182,183,184,186W reactions, and of polonium isotopes 209,210,211,212Po produced in 3He/4He + 206,207,208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15 × 10-21 sec and 25 × 10-21 sec for Os and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the α- particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that substracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  8. I. Fission Probabilities, Fission Barriers, and Shell Effects. II. Particle Structure Functions

    SciTech Connect

    Jing, Kexing

    1999-05-01

    In Part I, fission excitation functions of osmium isotopes 185,186, 187, 189 Os produced in 3He +182,183, 184, 186W reactions, and of polonium isotopes 209,210, 211, 212Po produced in 3He/4He + 206, 207, 208Pb reactions, were measured with high precision. These excitation functions have been analyzed in detail based upon the transition state formalism. The fission barriers, and shell effects for the corresponding nuclei are extracted from the detailed analyses. A novel approach has been developed to determine upper limits of the transient time of the fission process. The upper limits are constrained by the fission probabilities of neighboring isotopes. The upper limits for the transient time set with this new method are 15x 10–21 sec and 25x 10–21 sec for 0s and Po compound nuclei, respectively. In Part II, we report on a search for evidence of the optical modulations in the energy spectra of alpha particles emitted from hot compound nuclei. The optical modulations are expected to arise from the ~-particle interaction with the rest of the nucleus as the particle prepares to exit. Some evidence for the modulations has been observed in the alpha spectra measured in the 3He-induced reactions, 3He + natAg in particular. The identification of the modulations involves a technique that subtracts the bulk statistical background from the measured alpha spectra, in order for the modulations to become visible in the residuals. Due to insufficient knowledge of the background spectra, however, the presented evidence should only be regarded as preliminary and tentative.

  9. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein

    PubMed Central

    Xu, Shan; Cherok, Edward; Das, Shweta; Li, Sunan; Roelofs, Brian A.; Ge, Shealinna X.; Polster, Brian M.; Boyman, Liron; Lederer, W. Jonathan; Wang, Chunxin; Karbowski, Mariusz

    2016-01-01

    Ubiquitin- and proteasome-dependent outer mitochondrial membrane (OMM)-associated degradation (OMMAD) is critical for mitochondrial and cellular homeostasis. However, the scope and molecular mechanisms of the OMMAD pathways are still not well understood. We report that the OMM-associated E3 ubiquitin ligase MARCH5 controls dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and cell sensitivity to stress-induced apoptosis. MARCH5 knockout selectively inhibited ubiquitination and proteasomal degradation of MiD49, a mitochondrial receptor of Drp1, and consequently led to mitochondrial fragmentation. Mitochondrial fragmentation in MARCH5−/− cells was not associated with inhibition of mitochondrial fusion or bioenergetic defects, supporting the possibility that MARCH5 is a negative regulator of mitochondrial fission. Both MARCH5 re-expression and MiD49 knockout in MARCH5−/− cells reversed mitochondrial fragmentation and reduced sensitivity to stress-induced apoptosis. These findings and data showing MARCH5-dependent degradation of MiD49 upon stress support the possibility that MARCH5 regulation of MiD49 is a novel mechanism controlling mitochondrial fission and, consequently, the cellular response to stress. PMID:26564796

  10. Mitochondrial E3 ubiquitin ligase MARCH5 controls mitochondrial fission and cell sensitivity to stress-induced apoptosis through regulation of MiD49 protein.

    PubMed

    Xu, Shan; Cherok, Edward; Das, Shweta; Li, Sunan; Roelofs, Brian A; Ge, Shealinna X; Polster, Brian M; Boyman, Liron; Lederer, W Jonathan; Wang, Chunxin; Karbowski, Mariusz

    2016-01-15

    Ubiquitin- and proteasome-dependent outer mitochondrial membrane (OMM)-associated degradation (OMMAD) is critical for mitochondrial and cellular homeostasis. However, the scope and molecular mechanisms of the OMMAD pathways are still not well understood. We report that the OMM-associated E3 ubiquitin ligase MARCH5 controls dynamin-related protein 1 (Drp1)-dependent mitochondrial fission and cell sensitivity to stress-induced apoptosis. MARCH5 knockout selectively inhibited ubiquitination and proteasomal degradation of MiD49, a mitochondrial receptor of Drp1, and consequently led to mitochondrial fragmentation. Mitochondrial fragmentation in MARCH5(-/-) cells was not associated with inhibition of mitochondrial fusion or bioenergetic defects, supporting the possibility that MARCH5 is a negative regulator of mitochondrial fission. Both MARCH5 re-expression and MiD49 knockout in MARCH5(-/-) cells reversed mitochondrial fragmentation and reduced sensitivity to stress-induced apoptosis. These findings and data showing MARCH5-dependent degradation of MiD49 upon stress support the possibility that MARCH5 regulation of MiD49 is a novel mechanism controlling mitochondrial fission and, consequently, the cellular response to stress.

  11. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    SciTech Connect

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-08-12

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the {sup 18}F+p{yields}{sup 15}O+{alpha} process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  12. Nuclear Power from Fission Reactors. An Introduction.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  13. Both size-frequency distribution and sub-populations of the main-belt asteroid population are consistent with YORP-induced rotational fission

    NASA Astrophysics Data System (ADS)

    Jacobson, S.; Scheeres, D.; Rossi, A.; Marzari, F.; Davis, D.

    2014-07-01

    From the results of a comprehensive asteroid-population-evolution model, we conclude that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution and is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. The foundation of this model is the asteroid-rotation model of Marzari et al. (2011) and Rossi et al. (2009), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; Scheeres 2007) and binary-asteroid evolution (Jacobson & Scheeres, 2011). The YORP-effect timescale for large asteroids with diameters D > ˜ 6 km is longer than the collision timescale in the main belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ˜ 6 km, the asteroid-population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size-frequency distribution. Using the outputs of the asteroid-population evolution model and a 1-D collision evolution model, we can generate this new size-frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated ''Asteroids were Born Big'' size-frequency distribution

  14. Neutron-induced fission cross section of natPb and Bi209 from threshold to 1 GeV: An improved parametrization

    NASA Astrophysics Data System (ADS)

    Tarrío, D.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Paradela, C.; Stephan, C.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lederer, C.; Lindote, A.; Lopes, I.; Losito, R.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2011-04-01

    Neutron-induced fission cross sections for natPb and Bi209 were measured with a white-spectrum neutron source at the CERN Neutron Time-of-Flight (n_TOF) facility. The experiment, using neutrons from threshold up to 1 GeV, provides the first results for these nuclei above 200 MeV. The cross sections were measured relative to U235 and U238 in a dedicated fission chamber with parallel plate avalanche counter detectors. Results are compared with previous experimental data. Upgraded parametrizations of the cross sections are presented, from threshold energy up to 1 GeV. The proposed new sets of fitting parameters improve former results along the whole energy range.

  15. Double-strand break-induced mitotic intrachromosomal recombination in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Osman, F.; Fortunato, E.A.; Subramani, S.

    1996-02-01

    The Saccharomyces cerevisiae HO gene and MATa cutting site were used to introduce site-specific double-strand breaks (DSBs) within intrachromosomal recombination substrates in Schizosaccharomyces pombe. The recombination substrates consisted of nontandem direct repeats of ade6 heteroalleles. DSB induction stimulated the frequency of recombinants 2000-fold. The spectrum of DSB-induced recombinants depended on whether the DSB was introduced within one of the ade6 repeats or in intervening unique DNA. When the DSB was introduced within unique DNA, over 99.8% of the recombinants lacked the intervening DNA but retained one copy of ade6 that was wild type or either one of the heteroalleles. When the DSB was located in duplicated DNA, 77% of the recombinants were similar to the deletion types described above, but the single ade6 copy was either wild type or exclusively that of the uncut repeat. The remaining 23% of the induced recombinants were gene convertants with two copies of ade6 and the intervening sequences; the ade6 heteroallele in which the DSB was induced was the recipient of genetic information. Half-sectored colonies were isolated, analyzed and interpreted as evidence of heteroduplex DNA formation. The results are discussed in terms of current models for recombination. 81 refs., 9 figs., 3 tabs.

  16. Laser-induced reactions in energetic materials

    NASA Astrophysics Data System (ADS)

    Ling, Ping

    1999-07-01

    Several energetic materials have been investigated under shock wave loading, heating, and photodissociation. This dissertation highlights some efforts to understand energetic material from an angle of basic physical processes and elementary chemical reactions. The first series of experiments was performed to study laser-generated shock waves in energetic materials. Shock waves are generated by pulsed laser vaporization of thin aluminum films. The rapidly expanding aluminum plasma launches a shock wave into the adjacent layer of energetic material, initiating chemical reactions. The shock velocity has been measured by a velocity interferometer. Shock pressures as high as 8 GPa have been generated in this manner. A simple model is proposed to predict laser-generated shock pressure. Several energetic materials have been studied under laser- generated shock wave. The second series of experiments was conducted to study thermal decomposition and photodissociation of energetic materials. Glycidyl azide polymer (GAP) and poly(glycidyl nitrate) (PGN) have been investigated by pulsed infrared laser pyrolysis and ultraviolet laser photolysis of thin films at 17-77 K. Reactions are monitored by transmission infrared spectroscopy. Photolysis of GAP at 266 nm shows that the initial reaction steps are elimination of molecular nitrogen with subsequent formation of imines. Thermal decomposition of GAP by infrared laser pyrolysis reveals products similar to the UV experiments after warming. Laser pyrolysis of PGN indicated that the main steps of decomposition are elimination of NO2 and CH2O from the nitrate ester functional group. It seems that the initial thermal decomposition mechanism of GAP and PGN are the same from heating rate of several degrees per second to 107 oC/s. The third series of experiments is about detailed study of photodissociation mechanism of methyl nitrate. Photodissociation of methyl nitrate isolated in an argon matrix at 17 K has been investigated by 266 nm

  17. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells.

    PubMed

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    PubMed

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  19. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    SciTech Connect

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  20. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  1. Production of fissioning uranium plasma to approximate gas-core reactor conditions

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.

    1974-01-01

    The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.

  2. Trojan Horse Method for neutrons-induced reaction studies

    NASA Astrophysics Data System (ADS)

    Gulino, M.; Asfin Collaboration

    2017-09-01

    Neutron-induced reactions play an important role in nuclear astrophysics in several scenario, such as primordial Big Bang Nucleosynthesis, Inhomogeneous Big Bang Nucleosynthesis, heavy-element production during the weak component of the s-process, explosive stellar nucleosynthesis. To overcome the experimental problems arising from the production of a neutron beam, the possibility to use the Trojan Horse Method to study neutron-induced reactions has been investigated. The application is of particular interest for reactions involving radioactive nuclei having short lifetime.

  3. Preliminary Results on Direct Observation of True Ternary fission in the reaction {sup 232}Th+d (10 MeV)

    SciTech Connect

    Pyatkov, Yu.; Kamanin, D.; Alexandrov, A.; Alexandrova, I.; Kondratyev, N.; Kuznetsova, E.; Tyukavkin, A.; Zhuchko, V.; Krasznohorkay, A.; Csatlos, M.; Csige, L.; Gulyas, J.; Naqvi, F.; Tornyi, T.

    2010-04-30

    Results of the first direct observation of the true ternary fission of {sup 234}Pa* nucleus are presented. The yield of the effect depending of the experimental geometry is about 10{sup -5}/binary fission. Mass of the lightest fragment in the triplet lies mainly in the range of (20 divide 40) a.m.u. Connection between the effect and known heavy ion or lead radioactivity is discussed.

  4. Noise-induced transition in human reaction times

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-09-01

    The human reaction/response time can be defined as the time elapsed from the onset of stimulus presentation until a response occurs in many sensory and cognitive processes. A reaction time model based on Piéron’s law is investigated. The model shows a noise-induced transition in the moments of reaction time distributions due to the presence of strong additive noise. The model also demonstrates that reaction times do not follow fluctuation scaling between the mean and the variance but follow a generalized version between the skewness and the kurtosis. The results indicate that noise-induced transitions in the moments govern fluctuations in sensory-motor transformations and open an insight into the macroscopic effects of noise in human perception and action. The conditions that lead to extreme reaction times are discussed based on the transfer of information in neurons.

  5. On laser-induced harpooning reactions

    NASA Astrophysics Data System (ADS)

    Weiner, J.

    1980-05-01

    In the present paper, the switching of chemical reactivity by a nonresonant laser field in simple gas-phase collisions of the type A + BC to AB + C is discussed in terms of a second-order optical/collision perturbation. A simple expression relating laser-induced harpooning cross sections to the laser power density is derived and is applied to Hg/Cl2 collisions.

  6. Prompt fission neutron spectra of n+235U above the (n,nf) fission threshold

    NASA Astrophysics Data System (ADS)

    Shu, Neng-Chuan; Jia, Min; Chen, Yong-Jing; Liu, Ting-Jin

    2015-05-01

    Calculations of prompt fission neutron spectra (PFNS) from the 235U(n, f) reaction were performed with a semi-empirical method for En = 7.0 and 14.7 MeV neutron energies. The total PFNS were obtained as a superposition of (n,xnf) pre-fission neutron spectra and post-fission spectra of neutrons which were evaporated from fission fragments, and these two kinds of spectra were taken as an expression of the evaporation spectrum. The contributions of (n,xnf) fission neutron spectra on the calculated PFNS were discussed. The results show that emission of one or two neutrons in the (n,nf) or (n,2nf) reactions influences the PFNS shape, and the neutron spectra of the (n,xnf) fission-channel are soft compared with the neutron spectra of the (n,f) fission channel. In addition, analysis of the multiple-chance fission component showed that second-chance fission dominates the PFNS with an incident neutron energy of 14.7 MeV whereas first-chance fission dominates the 7 MeV case. Supported by National Natural Science Foundation of China (11205246, 91126010, U1230127, 91226102), IAEA CRP (15905), and Defense Industrial Technology Development Program (B0120110034)

  7. Fundamental Fission Research with the NIFFTE Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Kleinrath, Verena; Niffte Collaboration

    2013-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) has developed a novel instrument for fission research - a Time Projection Chamber (TPC), which enables detailed tracking of charged particles emitted in neutron-induced fission. While the primary goal of the project is to measure fission cross sections with unprecedented precision, the TPC can also facilitate more fundamental fission studies. The detector's high efficiency (4-pi acceptance) and precise tracking capabilities (including energy deposition) provide a large amount of valuable information. Recent data collected during engineering runs using a U238/U235 target will be used to generate fission fragment angular distributions and yields as a function of incident neutron energy. These experimental results can lend insight into the evolution of nuclear shapes with respect to energy on the path to scission and therefore immediately drive fission theory development. Preliminary angular distributions and yields using the NIFFTE TPC will be presented. Neutron Induced Fission Fragment Tracking Experiment.

  8. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe.

    PubMed

    Blaskó, Ágnes; Mike, Nóra; Gróf, Pál; Gazdag, Zoltán; Czibulya, Zsuzsanna; Nagy, Lívia; Kunsági-Máté, Sándor; Pesti, Miklós

    2013-09-01

    Citrinin (CTN) is a toxic fungal metabolite that is a hazardous contaminant of foods and feeds. In the present study, its acute toxicity and effects on the plasma membrane of Schizosaccharomyces pombe were investigated. The minimum inhibitory concentration of CTN against the yeast cells proved to be 500 μM. Treatment with 0, 250, 500 or 1000 μM CTN for 60 min resulted in a 0%, 2%, 21% or 100% decrease, respectively, in the survival rate of the cell population. Treatment of cells with 0, 100, 500 or 1000 μM CTN for 20 min induced decrease in the phase-transition temperature of the 5-doxylstearic acid-labeled plasma membrane to 16.51, 16.04, 14.18 or 13.98°C, respectively as measured by electron paramagnetic resonance spectroscopy. This perturbation was accompanied by the efflux of essential K⁺ from the cells. The existence of an interaction between CTN and glutathione was detected for the first time by spectrofluorometry. Our observations may suggest a direct interaction of CTN with the free sulfhydryl groups of the integral proteins of the plasma membrane, leading to dose-dependent membrane fluidization. The change in fluidity disturbed the ionic homeostasis, contributing to the death of the cells, which is a novel aspect of CTN cytotoxicity.

  9. Cinnamon-induced Oral Mucosal Contact Reaction

    PubMed Central

    Vivas, Ana P. M; Migliari, Dante A

    2015-01-01

    Contact stomatitis associated with consumption of cinnamon flavoring agents is a relatively uncommon disorder. Of relevance, both clinical features and the histopathologic findings of this condition are nonspecific, and, more importantly, may resemble some other inflammatory oral mucosa disorders, eventually making diagnosis difficult. Usually a patient exhibits a combination of white and erythematous patches of abrupt onset, accompanied by a burning sensation. To shed some light on this subject, a case of a 64-year-old woman with hypersensitivity contact reaction on the oral mucosa due to cinnamon mints is presented, with emphasis on differential diagnosis and the process for confirmation of the diagnosis. The treatment consists of discontinuing the use of cinnamon products. Clinicians will be able to recognize this disorder following a careful clinical examination and detailed history. This recognition is important in order to avoid invasive and expensive diagnostic procedures. PMID:26312097

  10. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  11. Conservation of Isospin in Neutron-rich Fission Fragments

    SciTech Connect

    Jain, A.K.; Choudhury, D.; Maheshwari, B.

    2014-06-15

    On the occasion of the 75{sup th} anniversary of the fission phenomenon, we present a surprisingly simple result which highlights the important role of isospin and its conservation in neutron rich fission fragments. We have analysed the fission fragment mass distribution from two recent heavyion reactions {sup 238}U({sup 18}O,f) and {sup 208}Pb({sup 18}O,f) as well as a thermal neutron fission reaction {sup 245}Cm(n{sup th},f). We find that the conservation of the total isospin explains the overall trend in the observed relative yields of fragment masses in each fission pair partition. The isospin values involved are very large making the effect dramatic. The findings open the way for more precise calculations of fission fragment distributions in heavy nuclei and may have far reaching consequences for the drip line nuclei, HI fusion reactions, and calculation of decay heat in the fission phenomenon.

  12. Measuring Neutron-Induced Reaction Cross Sections without Neutrons

    NASA Astrophysics Data System (ADS)

    Bernstein, L. A.; Schiller, A.; Cooper, J. R.; Hoffman, R. D.; McMahan, M. A.; Fallon, P.; Macchiavelli, A. O.; Mitchell, G.; Tavukcu, E.; Guttormsen, M.

    2003-04-01

    Neutron-induced reactions on radioactive nuclei play a significant role in nuclear astrophysics and many other applied nuclear physics topics. However, the majority of these cross sections are impossible to measure due to the high-background of the targets and the low-intensity of neutron beams. We have explored the possibility of using charged-particle transfer reactions to form the same "pre-compound" nucleus as one formed in a neutron-induced reaction in order to measure the relative decay probabilities of the nucleus as a function of energy. Multiplying these decay probabilities by the neutron absorption cross section will then produce the equivalent neutron-induced reaction cross section. In this presentation I will explore the validity of this "surrogate reaction" technique by comparing results from the recent 157Gd(3He,axng)156-xGd experiment using STARS (Silicon Telescope Array for Reaction Studies) at GAMMASPHERE with reaction model calculations for the 155Gd(n,xng)156-xGd. This work was funded by the US Department of Energy under contracts number W-7405-ENG-48 (LLNL), AC03-76SF00098 (LBNL) and the Norwegian Research Council (Oslo).

  13. Low-energy electron-induced reactions in condensed matter

    NASA Astrophysics Data System (ADS)

    Arumainayagam, Christopher R.; Lee, Hsiao-Lu; Nelson, Rachel B.; Haines, David R.; Gunawardane, Richard P.

    2010-01-01

    The goal of this review is to discuss post-irradiation analysis of low-energy (≤50 eV) electron-induced processes in nanoscale thin films. Because electron-induced surface reactions in monolayer adsorbates have been extensively reviewed, we will instead focus on low-energy electron-induced reactions in multilayer adsorbates. The latter studies, involving nanoscale thin films, serve to elucidate the pivotal role that the low-energy electron-induced reactions play in high-energy radiation-induced chemical reactions in condensed matter. Although electron-stimulated desorption (ESD) experiments conducted during irradiation have yielded vital information relevant to primary or initial electron-induced processes, we wish to demonstrate in this review that analyzing the products following low-energy electron irradiation can provide new insights into radiation chemistry. This review presents studies of electron-induced reactions in nanoscale films of molecular species such as oxygen, nitrogen trifluoride, water, alkanes, alcohols, aldehydes, ketones, carboxylic acids, nitriles, halocarbons, alkane and phenyl thiols, thiophenes, ferrocene, amino acids, nucleotides, and DNA using post-irradiation techniques such as temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS), gel electrophoresis, and microarray fluorescence. Post-irradiation temperature-programmed desorption, in particular, has been shown to be useful in identifying labile radiolysis products as demonstrated by the first identification of methoxymethanol as a reaction product of methanol radiolysis. Results of post-irradiation studies have been used not only to identify radiolysis products, but also to determine the dynamics of electron-induced reactions. For example, studies of the radiolysis yield as a function of incident electron energy have shown that dissociative

  14. Nuclear fission with diffusive dynamics

    NASA Astrophysics Data System (ADS)

    Cha, D.; Bertsch, G. F.

    1992-07-01

    We investigate the dynamics of nuclear fission, assuming purely diffusive motion up to the saddle point. The resulting Smoluchowski equation is solved for conditions appropriate to the 16O+142Nd-->158Er reaction at 207 MeV. The solution is characterized by an equilibration time τ0 for the system to reach steady state, and the fission decay rate in steady state, Λ. We find that the equilibration time τ0 plays a very small role in determining the number of prescission neutrons. The diffusion coefficient extracted from the experimental data is larger than the theoretical in the work of Bush, Bertsch, and Brown by a factor of 5-11.

  15. Yields of neutron-rich isotopes around Z = 28 produced in 30 MeV proton-induced fission of 238U

    NASA Astrophysics Data System (ADS)

    Kruglov, K.; Andreyev, A.; Bruyneel, B.; Dean, S.; Franchoo, S.; Górska, M.; Helariutta, K.; Huyse, M.; Kudryavtsev, Yu.; Mueller, W. F.; Prasad, N. V. S. V.; Raabe, R.; Schmidt, K.-H.; Van Duppen, P.; Van Roosbroeck, J.; Van de Vel, K.; Weissman, L.

    Heavy 65-70Co, 68-74Ni, 70-76Cu and 74-81Ga isotopes were produced at the LISOL facility by means of 30 MeV proton-induced fission of 238U. Production rates were deduced and compared to two types of cross-section calculations: the empirical model (V. Rubchenya, private communication) and the PROFI code. Comparison with experimental data favors the latter model. Yields using different beam-target combinations and different energies are calculated and discussed.

  16. Measurement of the neutron-induced fission cross-section of 243Am relative to 235U from 0.5 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Calviani, M.; Colonna, N.; Mastinu, P.; Milazzo, P. M.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Barbagallo, M.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Meaze, M. H.; Mengoni, A.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tarrio, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2011-12-01

    The ratio of the neutron-induced fission cross-sections of 243Am and 235U was measured in the energy range from 0.5 to 20 MeV with uncertainties of ≈ 4%. The experiment was performed at the CERN n_TOF facility using a fast ionization chamber. With the good counting statistics that could be achieved thanks to the high instantaneous flux and the low backgrounds, the present results are useful for resolving discrepancies in previous data sets and are important for future reactors with improved fuel burn-up.

  17. Neutron-induced fission cross section of U234 and Np237 measured at the CERN Neutron Time-of-Flight (n_TOF) facility

    NASA Astrophysics Data System (ADS)

    Paradela, C.; Tassan-Got, L.; Audouin, L.; Berthier, B.; Duran, I.; Ferrant, L.; Isaev, S.; Le Naour, C.; Stephan, C.; Tarrío, D.; Trubert, D.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Álvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Eleftheriadis, C.; Embid-Segura, M.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; González-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krtička, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martínez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Tagliente, G.; Tain, J. L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.

    2010-09-01

    A high-resolution measurement of the neutron-induced fission cross section of U234 and Np237 has been performed at the CERN Neutron Time-of-Flight facility. The cross sections have been determined in a wide energy range from 1 eV to 1 GeV using the evaluated U235 cross section as reference. In these measurements the energy determination for the U234 resonances could be improved, whereas previous discrepancies for the Np237 resonances were confirmed. New cross-section data are provided for high neutron energies that go beyond the limits of prior evaluations, obtaining important differences in the case of Np237.

  18. Nuclear reactions induced by high-energy alpha particles

    NASA Technical Reports Server (NTRS)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  19. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  20. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis

    NASA Astrophysics Data System (ADS)

    Moran, J. L.; Wheat, P. M.; Posner, J. D.

    2010-06-01

    Bimetallic rod-shaped nanomotors swim autonomously in hydrogen peroxide solutions. Here, we present a scaling analysis, computational simulations, and experimental data that show that the nanomotor locomotion is driven by fluid slip around the nanomotor surface due to electrical body forces. The body forces are generated by a coupling of charge density and electric fields induced by electrochemical reactions occurring on the nanomotor surface. We describe the dependence of nanomotor motion on the nanomotor surface potential and reaction-driven flux.

  1. On reaction mechanisms involved in the deuteron–induced surrogate reactions

    SciTech Connect

    Avrigeanu, M.; Avrigeanu, V.; Mănăilescu, C.

    2015-02-24

    An extended analysis of the nuclear reaction mechanisms involved within deuteron interaction with nuclei, namely the breakup, stripping, pick-up, pre-equilibrium emission, and evaporation from fully equilibrated compound nucleus, is presented in order to highlight the importance of the direct mechanisms still neglected in the analysis of deuteron-induced surrogate reactions. Particularly, the dominance of the breakup mechanism at low energies around the Coulomb barrier should be considered in the case of (d,x) surrogate reactions on actinide target nuclei.

  2. [Reaction mechanism studies of heavy ion induced nuclear reactions]. Annual progress report, [January 1992--February 1993

    SciTech Connect

    Mignerey, A.C.

    1993-02-01

    Completed work is summarized on the topics of excitation energy division in deep-inelastic reactions and the onset of multifragmentation in La-induced reactions at E/A = 45 MeV. Magnetic fields are being calculated for the PHOBOS detector system, a two-arm multiparticle spectrometer for studying low-transverse-momentum particles produced at the Relativistic Heavy Ion Collider. The Maryland Forward Array is being developed for detection of the reaction products from very peripheral collisions; it consists of two individual units of detectors: the annular silicon detector in front and the plastic phoswich detector at back.

  3. Dynamics of synchrotron VUV-induced intracluster reactions

    SciTech Connect

    Grover, J.R.

    1993-12-01

    Photoionization mass spectrometry (PIMS) using the tunable vacuum ultraviolet radiation available at the National Synchrotron Light Source is being exploited to study photoionization-induced reactions in small van der Waals mixed complexes. The information gained includes the observation and classification of reaction paths, the measurement of onsets, and the determination of relative yields of competing reactions. Additional information is obtained by comparison of the properties of different reacting systems. Special attention is given to finding unexpected features, and most of the reactions investigated to date display such features. However, understanding these reactions demands dynamical information, in addition to what is provided by PIMS. Therefore the program has been expanded to include the measurement of kinetic energy release distributions.

  4. Cavitation-induced reactions in high-pressure carbon dioxide.

    PubMed

    Kuijpers, M W A; van Eck, D; Kemmere, M F; Keurentjes, J T F

    2002-12-06

    The feasibility of ultrasound-induced in situ radical formation in liquid carbon dioxide was demonstrated. The required threshold pressure for cavitation could be exceeded at a relatively low acoustic intensity, as the high vapor pressure of CO2 counteracts the hydrostatic pressure. With the use of a dynamic bubble model, the formation of hot spots upon bubble collapse was predicted. Cavitation-induced radical formation was used for the polymerization of methyl methacrylate in CO2, yielding high-molecular-weight polymers. These results show that sonochemical reactions can be performed in dense-phase fluids, which allows the environmentally benign CO2 to replace conventional organic solvents in many reaction systems.

  5. Modelling Neutron-induced Reactions on 232–237U from 10 keV up to 30 MeV

    DOE PAGES

    Sin, M.; Capote, R.; Herman, M. W.; ...

    2017-01-17

    Comprehensive calculations of cross sections for neutron-induced reactions on 232–237U targets are performed in this paper in the 10 keV–30 MeV incident energy range with the code EMPIRE–3.2 Malta. The advanced modelling and consistent calculation scheme are aimed at improving our knowledge of the neutron scattering and emission cross sections, and to assess the consistency of available evaluated libraries for light uranium isotopes. The reaction model considers a dispersive optical potential (RIPL 2408) that couples from five (even targets) to nine (odd targets) levels of the ground-state rotational band, and a triple-humped fission barrier with absorption in the wells describedmore » within the optical model for fission. A modified Lorentzian model (MLO) of the radiative strength function and Enhanced Generalized Superfluid Model nuclear level densities are used in Hauser-Feschbach calculations of the compound-nuclear decay that include width fluctuation corrections. The starting values for the model parameters are retrieved from RIPL. Excellent agreement with available experimental data for neutron emission and fission is achieved, giving confidence that the quantities for which there is no experimental information are also accurately predicted. Finally, deficiencies in existing evaluated libraries are highlighted.« less

  6. Modelling Neutron-induced Reactions on 232-237U from 10 keV up to 30 MeV

    NASA Astrophysics Data System (ADS)

    Sin, M.; Capote, R.; Herman, M. W.; Trkov, A.

    2017-01-01

    Comprehensive calculations of cross sections for neutron-induced reactions on 232-237U targets are performed in the 10 keV-30 MeV incident energy range with the code EMPIRE-3.2 Malta. The advanced modelling and consistent calculation scheme are aimed at improving our knowledge of the neutron scattering and emission cross sections, and to assess the consistency of available evaluated libraries for light uranium isotopes. The reaction model considers a dispersive optical potential (RIPL 2408) that couples from five (even targets) to nine (odd targets) levels of the ground-state rotational band, and a triple-humped fission barrier with absorption in the wells described within the optical model for fission. A modified Lorentzian model (MLO) of the radiative strength function and Enhanced Generalized Superfluid Model nuclear level densities are used in Hauser-Feschbach calculations of the compound-nuclear decay that include width fluctuation corrections. The starting values for the model parameters are retrieved from RIPL. Excellent