Induced gravity in ZN orientifold models
NASA Astrophysics Data System (ADS)
Kohlprath, Emmanuel
2004-10-01
We consider non-compact Z orientifold models of type IIB superstring theory with four-dimensional gravity induced on a set of coincident D3-branes. For the models with odd N the contribution to the one-loop renormalization of the Planck mass is shown to come only from the torus and to be O(N) as the contributions from annulus, Moebius strip and Klein bottle cancel. One can therefore realize the Dvali-Gabadadze-Porrati idea that four-dimensional gravity is induced by quantum effects at the one-loop level by considering large N.
NASA Astrophysics Data System (ADS)
Oda, Ichiro
We propose a topological model of induced gravity (pregeometry) where both Newton’s coupling constant and the cosmological constant appear as integration constants in solving field equations. The matter sector of a scalar field is also considered, and by solving field equations it is shown that various types of cosmological solutions in the Friedmann-Robertson-Walker (FRW) universe can be obtained. A detailed analysis is given of the meaning of the BRST transformations, which make the induced gravity be a topological field theory, by means of the canonical quantization analysis, and the physical reason why such BRST transformations are needed in the present formalism is clarified. Finally, we propose a dynamical mechanism for fixing the Lagrange multiplier fields by following the Higgs mechanism. The present study clearly indicates that the induced gravity can be constructed at the classical level without recourse to quantum fluctuations of matter and suggests an interesting relationship between the induced gravity and the topological quantum-field theory (TQFT).
Cosmology of a holographic induced gravity model with curvature effects
Bouhmadi-Lopez, Mariam; Errahmani, Ahmed; Ouali, Taoufiq
2011-10-15
We present a holographic model of the Dvali-Gabadadze-Porrati scenario with a Gauss-Bonnet term in the bulk. We concentrate on the solution that generalizes the normal Dvali-Gabadadze-Porrati branch. It is well known that this branch cannot describe the late-time acceleration of the universe even with the inclusion of a Gauss-Bonnet term. Here, we show that this branch in the presence of a Gauss-Bonnet curvature effect and a holographic dark energy with the Hubble scale as the infrared cutoff can describe the late-time acceleration of the universe. It is worthwhile to stress that such an energy density component cannot do the same job on the normal Dvali-Gabadadze-Porrati branch (without Gauss-Bonnet modifications) nor in a standard four-dimensional relativistic model. The acceleration on the brane is also presented as being induced through an effective dark energy which corresponds to a balance between the holographic one and geometrical effects encoded through the Hubble parameter.
Extended Holography: Double-Trace Deformation and Brane-Induced Gravity Models
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2017-03-01
We put forward a conjecture that for a special class of models - models of the double-trace deformation and brane-induced gravity types - the principle of holographic dualitiy can be extended beyond conformal invariance and anti-de Sitter (AdS) isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on the boundary.
Extended Holography: Double-Trace Deformation and Brane-Induced Gravity Models
NASA Astrophysics Data System (ADS)
Barvinsky, A. O.
2017-03-01
We put forward a conjecture that for a special class of models - models of the double-trace deformation and brane-induced gravity types - the principle of holographic dualitiy can be extended beyond conformal invariance and anti-de Sitter (AdS) isometry. Such an extension is based on a special relation between functional determinants of the operators acting in the bulk and on the boundary.
NASA Astrophysics Data System (ADS)
Boy, Jean-Paul; Longuevergne, Laurent; Boudin, Frédéric; Jacob, Thomas; Lyard, Florent; Llubes, Muriel; Florsch, Nicolas; Esnoult, Marie-France
2009-12-01
We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals. We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges.
A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Holton, James R.
1997-01-01
A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.
Modeling of jet-induced geyser formation in a reduced gravity environment
NASA Technical Reports Server (NTRS)
Wendl, M. C.; Hochstein, J. I.; Sasmal, G. P.
1991-01-01
Flow patterns predicted by a computational model of jet-induced geyser formation in a reduced gravity environment are presented and comparison is made to patterns predicted by experimentally based correlations. The configuration studied is an idealization of a forthcoming flight experiment to examine cryogenic propellant management issues. A transitional version of the ECLIPSE code used as a computational tool for the analyses is described. It is shown that computationally predicted flow patterns are in qualitative agreement with the correlation-based predictions, and some details of the predicted flow fields are given.
Induced gravity II: grand unification
NASA Astrophysics Data System (ADS)
Einhorn, Martin B.; Jones, D. R. Timothy
2016-05-01
As an illustration of a renormalizable, asymptotically-free model of induced gravity, we consider an SO(10) gauge theory interacting with a real scalar multiplet in the adjoint representation. We show that dimensional transmutation can occur, spontaneously breaking SO(10) to SU(5)⊗U(1), while inducing the Planck mass and a positive cosmological constant, all proportional to the same scale v. All mass ratios are functions of the values of coupling constants at that scale. Below this scale (at which the Big Bang may occur), the model takes the usual form of Einstein-Hilbert gravity in de Sitter space plus calculable corrections. We show that there exist regions of parameter space in which the breaking results in a local minimum of the effective action giving a positive dilaton (mass)2 from two-loop corrections associated with the conformal anomaly. Furthermore, unlike the singlet case we considered previously, some minima lie within the basin of attraction of the ultraviolet fixed point. Moreover, the asymptotic behavior of the coupling constants also lie within the range of convergence of the Euclidean path integral, so there is hope that there will be candidates for sensible vacua. Although open questions remain concerning unitarity of all such renormalizable models of gravity, it is not obvious that, in curved backgrounds such as those considered here, unitarity is violated. In any case, any violation that may remain will be suppressed by inverse powers of the reduced Planck mass.
Baby universes with induced gravity.
NASA Astrophysics Data System (ADS)
Gao, Yihong; Gao, Hongbo
1989-12-01
Some quantum effects of baby universes with induced gravity are discussed. The authors prove that the interactions between the baby-parent universes are non-local, and argue that the induced low-energy cosmological constant is zero. This argument does not depend on the detail of the induced potential.
Phenomenological Model of Multiphase Cosmological Scenario in Theory of Induced Gravity
NASA Astrophysics Data System (ADS)
Zaripov, F. Sh.
2017-03-01
Equations that describe the theory have solutions that can both match with the solutions of the standard theory of gravity as well as can differ from it. This is due to the fact that the fundamental constants of the theory, such as gravitational and cosmological, can evolve over time and also depend on the coordinates. Thus, in a rather general case the theory describes the two systems (stages): Einstein and evolving. This process is similar to the phenomenon of phase transition, where different phases (Einstein gravity system, but with different constants) transit into each other. This article is a continuation of the author research with application to the cosmological model.
CMB and BAO constraints for an induced gravity dark energy model with a quartic potential
Umiltà, C.; Ballardini, M.
2015-08-01
We study the predictions for structure formation in an induced gravity dark energy model with a quartic potential. By developing a dedicated Einstein-Boltzmann code, we study self-consistently the dynamics of homogeneous cosmology and of linear perturbations without using any parametrization. By evolving linear perturbations with initial conditions in the radiation era, we accurately recover the quasi-static analytic approximation in the matter dominated era. We use PLANCK 2013 data and a compilation of baryonic acoustic oscillation (BAO) data to constrain the coupling γ to the Ricci curvature and the other cosmological parameters. By connecting the gravitational constant in the Einstein equation to the one measured in a Cavendish-like experiment, we find γ < 0.0012 at 95% CL with PLANCK 2013 and BAO data. This is the tightest cosmological constraint on γ and on the corresponding derived post-Newtonian parameters. Because of a degeneracy between γ and the Hubble constant H{sub 0}, we show how larger values for γ are allowed, but not preferred at a significant statistical level, when local measurements of H{sub 0} are combined in the analysis with PLANCK 2013 data.
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
atmosphere of the Earth. Supercomputers can calculate the effect of gravity for specific locations in space following a mathematical process known as spherical harmonics, which quantifies the gravity field of a planetary body. The process is based on Laplace's fundamental differential equation of gravity. The accuracy of a spherical harmonic solution is rated by its degree and order. Minute variations in gravity are measured against the geoid, a surface of constant gravity acceleration at mean sea level. The geoid reference gravity model strength includes the central body gravitational attraction (9.8 m/sq s) and a geopotential variation in latitude partially caused by the rotation of the Earth. The rotational effect modifies the shape of the geoid to be more like an ellipsoid, rather than a perfect, circle. Variations of gravity strength from the ellipsoidal reference model are measured in units called milli-Galileos (mGals). One mGal equals 10(exp -5) m/sq s. Research projects have also measured the gravity fields of other planetary bodies, as noted in the user profile that follows. From this information, we may make inferences about our own planet's internal structure and evolution. Moreover, mapping the gravity fields of other planets can help scientists plot the most fuel-efficient course for spacecraft expeditions to those planets.
Nicole Lautze
2015-12-15
Gravity model for the state of Hawaii. Data is from the following source: Flinders, A.F., Ito, G., Garcia, M.O., Sinton, J.M., Kauahikaua, J.P., and Taylor, B., 2013, Intrusive dike complexes, cumulate cores, and the extrusive growth of Hawaiian volcanoes: Geophysical Research Letters, v. 40, p. 3367–3373, doi:10.1002/grl.50633.
NASA Astrophysics Data System (ADS)
Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien
2017-01-01
The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM); therefore, we developed an unprecedented 3-D turbulence-resolving large-eddy simulations (LES) Venusian model using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates: two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique Venus GCM using two different cloud models. Thus, we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1-D radiative-convective model. The resolved layer, taking place between 1.0 × 105 and 3.8 × 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.
NASA Astrophysics Data System (ADS)
Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien
2017-04-01
The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM), therefore we developed an unprecedented 3D turbulence-resolving Large-Eddy Simulations (LES) Venusian model (Lefèvre et al, 2016 JGR Planets) using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates : two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique (LMD) Venus GCM using two different cloud models. Thus we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1D radiative-convective model. The resolved layer, taking place between 1.0 105 and 3.8 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of Kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.
Induced gauge theories and W gravity
Schoutens, K. . Inst. for Theoretical Physics); Sevrin, A. ); van Nieuwenhuizen, P. . Theory Div. State Univ. of New York, Stony Brook, NY . Inst. for Theoretical Physics)
1991-11-01
We review some aspects of induced gauge theories in two dimensions. We focus on W{sub 3} gravity, paying particular attention to the treatment of the non-linearities inherent to W gravity. We show that the induced action {Gamma}{sub ind}(h,b) for chiral W{sub 3} in the c {yields} {plus minus}infinity limit is obtained from the induced action of a gauged Sl(3,R) Wess-Zumino-Witten model by imposing constraints on some of the affine currents. Subsequently we investigate the effective action, which is obtained by integrating the induced action over the gauge fields. We show perturbatively that certain subleading terms which appear in the induced action for finite c (and which are related to nonlocal terms in the Ward identifies) get canceled by similar terms due to loop corrections, and we propose an all-order result for the effective action.
Induced gauge theories and W gravity
Schoutens, K.; Sevrin, A.; van Nieuwenhuizen, P. |
1991-11-01
We review some aspects of induced gauge theories in two dimensions. We focus on W{sub 3} gravity, paying particular attention to the treatment of the non-linearities inherent to W gravity. We show that the induced action {Gamma}{sub ind}[h,b] for chiral W{sub 3} in the c {yields} {plus_minus}infinity limit is obtained from the induced action of a gauged Sl(3,R) Wess-Zumino-Witten model by imposing constraints on some of the affine currents. Subsequently we investigate the effective action, which is obtained by integrating the induced action over the gauge fields. We show perturbatively that certain subleading terms which appear in the induced action for finite c (and which are related to nonlocal terms in the Ward identifies) get canceled by similar terms due to loop corrections, and we propose an all-order result for the effective action.
A comparison between models of gravity induced decoherence of the wavefunction
NASA Astrophysics Data System (ADS)
Bera, S.; Donadi, S.; Lochan, K.; Singh, TP
2015-07-01
It has already been suggested that quantum theory needs to be reformulated or modified in order to explain the measurement process and the successive collapse of the wave- function. However, there are also models of another type which keep quantum theory intact and instead modify the classical gravity by introducing stochasticity to it. These models suggest that there is a fluctuation in the background gravitational field which eventually results in the decoherence of the wavefunction. These fluctuations limit the precision with which one can measure the properties of a spacetime geometry with a quantum probe. Two similar models along this line have been suggested by Karolyhazy (K-model) and Diósi(D-model). They are based upon apparently different spacetime bounds. The results obtained for the coherence length are also somewhat different. In this article, we show that, given certain conditions apply, the minimal spacetime bounds in these two models are equivalent. We also derive the two-point correlation for the fluctuation potential in K-model which turns out to be non-white, unlike in D-model, where the corresponding correlation is white noise in time. In our opinion, this is the origin of discrepancy in the predictions of the two models. We argue that the noise correlation cannot be determined uniquely from a given spacetime bound.
A model of gravity-induced distribution of material in plasma polymerized aerosols and films
NASA Astrophysics Data System (ADS)
Zyn, V. I.
2008-01-01
A mathematical model of the volumetric part of plasma polymerization influenced by gravity is presented. Plasma-activated adhesion of monomer molecules to a surface of a germinal particle is assumed as a basic mechanism of particulate growth. The continuity equation for the flow of matter through the discharge has been formulated and solved in two extreme asymptotic approximations --for small and major duration of the process. Several non-equilibrium distribution functions of the polymer were obtained, for instance, an amount of the particles as a function of their size or time of fall. Within the adopted model this function demonstrates a sharp downward increase inside a discharge. In addition it contains such parameters as the free fall acceleration or reaction rate coefficients, variations of which enable control of the discharge and properties of the disperse medium.
Distinguishing modified gravity models
Brax, Philippe
2015-10-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed in both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.
Terrestrial gravity data analysis for interim gravity model improvement
NASA Technical Reports Server (NTRS)
1987-01-01
This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.
Model selection for modified gravity.
Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N
2011-12-28
In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity.
Cosmology from a gauge induced gravity
NASA Astrophysics Data System (ADS)
Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.
2017-09-01
The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.
Induced gravity from two occurrences of actions
NASA Astrophysics Data System (ADS)
El-Nabulsi, Rami Ahmad
2017-07-01
Modified gravity theories have gained recently an increasing interest in cosmology since they offer some solutions to a number of cosmological puzzles. All these theories are formulated by means of one occurrence of action that group geometry and fields in one single package. In this communication, we introduce a simple modified gravity based on the occurrence of two independent actions. We show that their combination divulge some properties that bear a resemblance to induced gravity and offer new insights in astrophysics and cosmology.
Quantum-gravity effects on a Higgs-Yukawa model
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Held, Aaron; Pawlowski, Jan M.
2016-11-01
A phenomenologically viable theory of quantum gravity must accommodate all observed matter degrees of freedom and their properties. Here, we explore whether a toy model of the Higgs-Yukawa sector of the Standard Model is compatible with asymptotically safe quantum gravity. We discuss the phenomenological implications of our result in the context of the Standard Model. We analyze the quantum scaling dimension of the system and find an irrelevant Yukawa coupling at a joint gravity-matter fixed point. Further, we explore the impact of gravity-induced couplings between scalars and fermions, which are nonvanishing in asymptotically safe gravity.
Modelling Hydrological Effects on Gravity
NASA Astrophysics Data System (ADS)
Pálinkás, V.
2009-04-01
Hydrological effects on gravity have sizeable impact on the accurate terrestrial gravity observations with superconducting (SG) and absolute gravimeters (AG). These effects, that contain strong seasonal signals, represent important problem in AG and SG observation feasibility in current geodynamic studies (Earth recent dynamics, post-glacial rebound, long-period tides, etc.). At present, hydrological effects are reliably estimated only at few SG stations, where detailed hydro-geological studies of station vicinity and many hydro-meteorological observations are being realized. However, the knowledge of hydrological effects with an accuracy of about 1 microgal are also very important at many sites, where accurate repeated absolute gravity measurements are performed. Unfortunately, very expensive detailed hydrological studies of such stations are unrealistic. Presented are the results of hydrological effects on gravity computed on basis of widespread WGHM and LaDWorld hydrological models. For Europe a global contribution of hydrological effects (distance>2 km) is computed. The local contribution of hydrological effects (distance<2 km) is modelled for the station Pecný based on the nearest WGHM data and variable information about station vicinity. The modelled hydrological effects are compared with combined SG and AG gravity series at the station.
Starobinsky model in rainbow gravity
NASA Astrophysics Data System (ADS)
Chatrabhuti, Auttakit; Yingcharoenrat, Vicharit; Channuie, Phongpichit
2016-02-01
In this paper, we study the Starobinsky model of inflation in the context of gravity's rainbow theory. We propose that gravity rainbow functions can be written in the power-law form of the Hubble parameter. We present a detailed derivation of the spectral index of curvature perturbation and the tensor-to-scalar ratio and compare the predictions of our models with Planck 2015 data. We discover that in order to be consistent with Planck data up to 2 σ C.L., the viable values of Nk e -folds would satisfy 42 ≲Nk≲87 and the rainbow parameter λ is nicely constrained to be λ ≲6.0 .
Perturbations of nested branes with induced gravity
NASA Astrophysics Data System (ADS)
Sbisà, Fulvio; Koyama, Kazuya
2014-06-01
We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ``ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.
Perturbations of nested branes with induced gravity
Sbisà, Fulvio; Koyama, Kazuya E-mail: kazuya.koyama@port.ac.uk
2014-06-01
We study the behaviour of weak gravitational fields in models where a 4D brane is embedded inside a 5D brane equipped with induced gravity, which in turn is embedded in a 6D spacetime. We consider a specific regularization of the branes internal structures where the 5D brane can be considered thin with respect to the 4D one. We find exact solutions corresponding to pure tension source configurations on the thick 4D brane, and study perturbations at first order around these background solutions. To perform the perturbative analysis, we adopt a bulk-based approach and we express the equations in terms of gauge invariant and master variables using a 4D scalar-vector-tensor decomposition. We then propose an ansatz on the behaviour of the perturbation fields when the thickness of the 4D brane goes to zero, which corresponds to configurations where gravity remains finite everywhere in the thin limit of the 4D brane. We study the equations of motion using this ansatz, and show that they give rise to a consistent set of differential equations in the thin limit, from which the details of the internal structure of the 4D brane disappear. We conclude that the thin limit of the ''ribbon'' 4D brane inside the (already thin) 5D brane is well defined (at least when considering first order perturbations around pure tension configurations), and that the gravitational field on the 4D brane remains finite in the thin limit. We comment on the crucial role of the induced gravity term on the 5D brane.
NASA Astrophysics Data System (ADS)
Ajala, R. A.; Mann, P.
2016-12-01
We used gravity data constrained by deep-penetration seismic reflection lines to determine the crustal structure beneath the Mississippi delta, the seventh-largest deltaic accumulation on Earth. The observed gravity anomaly at the margin consist of a high of 50 mGal over the shelf with a low of -27 mGal at a landward distance of 250 km, a low of -18 mGal at a seaward distance of 136 km, and another high of 23 mGal at a seaward distance of 178 km from the shelf edge. The gravity high is centered over the thickest part of the delta, much of which has been deposited since the Miocene. The elastic thickness of the underlying crust is estimated by comparing the amplitude and wavelength of the observed gravity anomaly to the predicted anomaly based on simple elastic plate models. The process-oriented gravity modeling approach has been used to flexurally backstrip the sediments and add the present-day water depth to obtain the total tectonic subsidence (TTS). The gravity effect due to the initial rift structure obtained from the TTS known as the "rifting anomaly" and sediment loading called the "sedimentation anomaly" are used to compute the present-day gravity anomaly. The best fit result is for a margin which sediments were deposited on thinned transitional crust with an elastic thickness of 48 km. Results from flexural modeling show that top of basement has been flexed up to 8 km over a lateral distance of more than 500 km by the deltaic load. The map-view shape of the uplifted rim with a predicted, maximum topographic expression of 40 m is egg-shaped with its northern, more narrow tip crossing the Mississippi Valley near Memphis, its northwestern part running parallel to the northern Ouachita Mountains, its western part tracking parallel to the Mexia-Balcones fault system of Texas, and its eastern edge parallel to the west coast of Florida. While the overall magnitude of the topographic flexure is low, delta-related flexure may have contributed to the Miocene
Nonmetricity and torsion induced by dilaton gravity in two dimension
NASA Astrophysics Data System (ADS)
Adak, M.
2006-05-01
We develop a theory in which there are couplings amongst Dirac spinor, dilaton and non-Riemannian gravity and explore the nature of connection-induced dilaton couplings to gravity and Dirac spinor when the theory is reformulated in terms of the Levi-Civita connection. After presenting some exact solutions without spinors, we investigate the minimal spinor couplings to the model and in conclusion we cannot find any nontrivial dilaton couplings to spinor.
Gravity-Induced Gene Expression in Plants.
NASA Astrophysics Data System (ADS)
Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.
Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high
Analogue gravity models of emergent gravity: lessons and pitfalls
NASA Astrophysics Data System (ADS)
Liberati, Stefano
2017-08-01
Analogue models of gravity have provided a test bed for many classical and quantum field theory effects in curve spacetime. Here we present a review of some relevant results towards their extension as toy models of emergent gravity scenarios. From these models we shall try to draw general lessons about the emergent gravity tackle on the cosmological constant problem as well as about the characteristic phenomenological signatures they suggest. Finally, we shall discuss current constraints on these signatures and the field’s future perspectives.
Brane-induced-gravity shock waves.
Kaloper, Nemanja
2005-05-13
We construct exact gravitational field solutions for a relativistic particle localized on a tensional brane in brane-induced gravity. They are a generalization of gravitational shock waves in 4D de Sitter space. We provide the metrics for both the normal branch and the self-inflating branch Dvali-Gabadadze-Porrati brane worlds, and compare them to the 4D Einstein gravity solution and to the case when gravity resides only in the 5D bulk, without any brane-localized curvature terms. At short distances the wave profile looks the same as in four dimensions. The corrections appear only far from the source, where they differ from the long distance corrections in 4D de Sitter space. We also discover a new nonperturbative channel for energy emission into the bulk from the self-inflating [corrected] branch, when gravity is modified at the de Sitter radius.
Escherichia coli growth under modeled reduced gravity
NASA Technical Reports Server (NTRS)
Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.
2004-01-01
Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.
Escherichia coli growth under modeled reduced gravity
NASA Technical Reports Server (NTRS)
Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.
2004-01-01
Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.
Holographic chiral induced W-gravities
NASA Astrophysics Data System (ADS)
Poojary, Rohan R.; Suryanarayana, Nemani V.
2015-10-01
We study boundary conditions for 3-dimensional higher spin gravity that admit asymptotic symmetry algebras expected of 2-dimensional induced higher spin theories in the light-cone gauge. For the higher spin theory based on sl(3,{R})oplus sl(3,{R}) algebra, our boundary conditions give rise to one copy of classical W 3 and a copy of sl(3,{R}) or su(1 , 2) Kac-Moody as the asymptotic symmetry algebra. We propose that the higher spin theories with these boundary conditions describe appropriate chiral induced W-gravity theories on the boundary. We also consider boundary conditions of spin-3 higher spin gravity that admit a u(1) ⊕ u(1) current algebra.
Gravity-induced stresses in finite slopes
Savage, W.Z.
1994-01-01
An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.
Modeling of zero gravity venting
NASA Technical Reports Server (NTRS)
Merte, H., Jr.
1984-01-01
The venting of cylindrical containers partially filled with initially saturated liquids was conducted under zero gravity conditions and compared with an analytical model which determined the effect of interfacial mass transfer on the ullage pressure response during venting. A model is proposed to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated in this analysis to approximate the transient temperature response of the interface, treating the liquid as a semiinfinite solid with conduction heat transfer. This approach to estimating interfacial mass transfer gives improved response when compared to previous models. The model still predicts a pressure decrease greater than those in the experiments reported.
Gravity-Induced Vacuum Dominance
Lima, William C. C.; Vanzella, Daniel A. T.
2010-04-23
It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.
Gravity-induced vacuum dominance.
Lima, William C C; Vanzella, Daniel A T
2010-04-23
It has been widely believed that, except in very extreme situations, the influence of gravity on quantum fields should amount to just small, subdominant contributions. This view seemed to be endorsed by the seminal results obtained over the last decades in the context of renormalization of quantum fields in curved spacetimes. Here, however, we argue that this belief is false by showing that there exist well-behaved spacetime evolutions where the vacuum energy density of free quantum fields is forced, by the very same background spacetime, to become dominant over any classical energy-density component. By estimating the time scale for the vacuum energy density to become dominant, and therefore for backreaction on the background spacetime to become important, we argue that this (infrared) vacuum dominance may bear unexpected astrophysical and cosmological implications.
Curvature and gravity actions for matrix models
NASA Astrophysics Data System (ADS)
Blaschke, Daniel N.; Steinacker, Harold
2010-08-01
We show how gravitational actions, in particular the Einstein-Hilbert action, can be obtained from additional terms in Yang-Mills matrix models. This is consistent with recent results on induced gravitational actions in these matrix models, realizing spacetime as four-dimensional brane solutions. It opens up the possibility for a controlled non-perturbative description of gravity through simple matrix models, with interesting perspectives for the problem of vacuum energy. The relation with UV/IR mixing and non-commutative gauge theory is discussed.
NASA Astrophysics Data System (ADS)
Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola
2016-11-01
Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as "glowing avalanches", have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.
NASA Astrophysics Data System (ADS)
Occhipinti, G.; Bablet, A.; Makela, J. J.
2015-12-01
The detection of the tsunami related internal gravity waves (IGWtsuna) by airglow camera has been recently validated by observation (Makela et al., 2011) and modeling (Occhipinti et al., 2011) in the case of the Tohoku event (11 March 2011, Mw 9.0). The airglow is measuring the photon emission at 630 nm, indirectly linked to the plasma density of O2+ (Link & Cogger, 1988) and it is commonly used to detect transient event in the ionosphere (Kelley et al., 2002, Makela et al., 2009, Miller et al., 2009). The modeling of the IGWtsuna clearly reproduced the pattern of the airglow measurement observed over Hawaii and the comparison between the observation and the modeling allows to recognize the wave form and allow to explain the IGWtsuna arriving before the tsunami wavefront at the sea level (Occhipinti et al., 2011). Approaching the Hawaiian archipelagos the tsunami propagation is slowed down (reduction of the sea depth), instead, the IGWtsuna, propagating in the atmosphere/ionosphere, conserves its speed. In this work, we present the modeling of the new airglow observation following the Queen Charlotte event (27 October 2012, Mw 7.8) that has been recently detected, proving that the technique can be generalized for smaller events. Additionally, the effect of the wind on the IGWtsuna, already evocated in the past, is included in the modeling to better reproduce the airglow observations. All ref. here @ www.ipgp.fr/~ninto
Gravity induced from quantum spacetime
NASA Astrophysics Data System (ADS)
Beggs, Edwin J.; Majid, Shahn
2014-02-01
We show that tensoriality constraints in noncommutative Riemannian geometry in the two-dimensional bicrossproduct model quantum spacetime algebra [x, t] = λx drastically reduce the moduli of possible metrics g up to normalization to a single real parameter, which we interpret as a time in the past from which all timelike geodesics emerge and a corresponding time in the future at which they all converge. Our analysis also implies a reduction of moduli in n-dimensions and we study a suggested spherically symmetric classical geometry in n = 4 in detail, identifying two one-parameter subcases where the Einstein tensor matches that of a perfect fluid for (a) positive pressure, zero density and (b) negative pressure and positive density with ratio w_Q=-{1\\over 2}. The classical geometry is conformally flat and its geodesics motivate new coordinates which we extend to the quantum case as a new description of the quantum spacetime model as a quadratic algebra. The noncommutative Riemannian geometry is fully solved for n = 2 and includes the quantum Levi-Civita connection and a second, nonperturbative, Levi-Civita connection which blows up as λ → 0. We also propose a ‘quantum Einstein tensor’ which is identically zero for the main part of the moduli space of connections (as classically in 2D). However, when the quantum Ricci tensor and metric are viewed as deformations of their classical counterparts there would be an O(λ2) correction to the classical Einstein tensor and an O(λ) correction to the classical metric.
Simulation of Jet-Induced Geysers in Reduced Gravity
NASA Astrophysics Data System (ADS)
Marchetta, Jeffrey G.; Benedetti, Robert H.
2010-02-01
Control of cryogenic propellant tank pressure during tank refueling and expulsion in low gravity is an important technical challenge to overcome for future long duration missions in space. One method proposed to control tank pressurization involves the use of jet-induced geysers. Two-dimensional computational models have been developed and used with limited success in previous efforts to predict geyser heights in microgravity. A three-dimensional flow simulation is used to model jet-induced geysers in reduced gravity. Geyser flows are commonly characterized by the presence of turbulent jets, transient flow, deforming free surfaces, and surface tension effects. As is the case for many turbulent flow applications, accuracy in simulating complex turbulent flows is critically dependent on the selection of a suitable turbulence model. The sensitivity of the simulation geyser predictions to a suite of popular turbulence models is assessed. Simulation results are compared to available experiment results. By expanding upon the work already completed, the model is used to simulate a broad range of cases within the experiment test matrix. Simulation results suggest the two dimensional simulation using the k- ɛ turbulence model provides the most accurate results for jet-induced geysers in reduced gravity when compared to available experiment data.
AdS Chern-Simons gravity induces conformal gravity
NASA Astrophysics Data System (ADS)
Aros, Rodrigo; Díaz, Danilo E.
2014-04-01
The leitmotif of this paper is the question of whether four- and higher even-dimensional conformal gravities do have a Chern-Simons pedigree. We show that Weyl gravity can be obtained as the dimensional reduction of a five-dimensional Chern-Simons action for a suitable (gauge-fixed, tractorlike) five-dimensional anti-de Sitter connection. The gauge-fixing and dimensional reduction program readily admits a generalization to higher dimensions for the case of certain conformal gravities obtained by contractions of the Weyl tensor.
High-resolution gravity model of Venus
NASA Technical Reports Server (NTRS)
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Consistent anomalies of the induced W gravities
NASA Astrophysics Data System (ADS)
Abud, Mario; Ader, Jean-Pierre; Cappiello, Luigi
1996-02-01
The BRST anomaly which may be present in the induced Wn gravity quantized on the light-cone is evaluated in the geometrical framework of Zucchini. The cocycles linked by the cohomology of the BRST operator to the anomaly are straightforwardly calculated thanks to the analogy between this formulation and the Yang-Mills theory. We give also a conformally covariant formulation of these quantities including the anomaly, which is valid on arbitrary Riemann surfaces. The example of the W3 theory is discussed and a comparison with other candidates for the anomaly available in the literature is presented.
NASA Astrophysics Data System (ADS)
Sarti, P.; Abbondanza, C.; Negusini, M.; Vittuari, L.
2009-09-01
During the measurement sessions gravity might induce significant deformations in large VLBI telescopes. If neglected or mismodelled, these deformations might bias the phase of the incoming signal thus corrupting the estimate of some crucial geodetic parameters (e.g. the height component of VLBI Reference Point). This paper describes a multi-technique approach implemented for measuring and quantifying the gravity-dependent deformations experienced by the 32-m diameter VLBI antenna of Medicina (Northern Italy). Such an approach integrates three different methods: Terrestrial Triangulations and Trilaterations (TTT), Laser Scanning (LS) and a Finite Element Model (FEM) of the antenna. The combination of the observations performed with these methods allows to accurately define an elevation-dependent model of the signal path variation which appears to be, for the Medicina telescope, non negligible. In the range [0,90] deg the signal path increases monotonically by almost 2 cm. The effect of such a variation has not been introduced in actual VLBI analysis yet; nevertheless this is the task we are going to pursue in the very next future.
Cosmological models of modified gravity
NASA Astrophysics Data System (ADS)
Bloomfield, Jolyon Keith
The recent discovery of dark energy has prompted an investigation of ways in which the accelerated expansion of the universe can be realized. In this dissertation, we present two separate projects related to dark energy. The first project analyzes a class of braneworld models in which multiple branes float in a five-dimensional anti-de Sitter bulk, while the second investigates a class of dark energy models from an effective field theory perspective. Investigations of models including extra dimensions have led to modifications of gravity involving a number of interesting features. In particular, the Randall-Sundrum model is well-known for achieving an amelioration of the hierarchy problem. However, the basic model relies on Minkowski branes and is subject to solar system constraints in the absence of a radion stabilization mechanism. We present a method by which a four-dimensional low-energy description can be obtained for braneworld scenarios, allowing for a number of generalizations to the original models. This method is applied to orbifolded and uncompactified N-brane models, deriving an effective four-dimensional action. The parameter space of this theory is constrained using observational evidence, and it is found that the generalizations do not weaken solar system constraints on the original model. Furthermore, we find that general N-brane systems are qualitatively similar to the two-brane case, and do not naturally lead to a viable dark energy model. We next investigate dark energy models using effective field theory techniques. We describe dark energy through a quintessence field, employing a derivative expansion. To the accuracy of the model, we find transformations to write the description in a form involving no higher-order derivatives in the equations of motion. We use a pseudo-Nambu-Goldstone boson construction to motivate the theory, and find the regime of validity and scaling of the operators using this. The regime of validity is restricted to a
Brane induced gravity: Ghosts and naturalness
NASA Astrophysics Data System (ADS)
Eglseer, Ludwig; Niedermann, Florian; Schneider, Robert
2015-10-01
Linear stability of brane induced gravity in two codimensions on a static pure tension background is investigated. The brane is regularized as a ring of finite circumference in extra space. By explicitly calculating the vacuum persistence amplitude of the corresponding quantum theory, we show that the parameter space is divided into two regions—one corresponding to a stable Minkowski vacuum on the brane and one being plagued by ghost instabilities. This analytical result affirms a recent nonlinear, but mainly numerical analysis. The main result is that the ghost is absent for a sufficiently large brane tension, in perfect agreement with a value expected from a natural effective field theory point of view. Unfortunately, the linearly stable parameter regime is either ruled out phenomenologically or becomes unstable for nontrivial cosmologies. We argue that supercritical brane backgrounds constitute the remaining window of opportunity. In the special case of a tensionless brane, we find that the ghost exists for all phenomenologically relevant values of the induced gravity scale. Regarding this case, there are contradicting results in the literature, and we are able to fully resolve this controversy by explicitly uncovering the errors made in the "no-ghost" analysis. Finally, a Hamiltonian analysis generalizes the ghost result to more than two codimensions.
Cosmological implications of modified gravity induced by quantum metric fluctuations
NASA Astrophysics Data System (ADS)
Liu, Xing; Harko, Tiberiu; Liang, Shi-Dong
2016-08-01
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a non-minimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For each considered model we obtain the gravitational field equations, and the generalized Friedmann equations for the case of a flat homogeneous and isotropic geometry. In some of these models the divergence of the matter energy-momentum tensor is non-zero, indicating a process of matter creation, which corresponds to an irreversible energy flow from the gravitational field to the matter fluid, and which is direct consequence of the non-minimal curvature-matter coupling. The cosmological evolution equations of these modified gravity models induced by the quantum fluctuations of the metric are investigated in detail by using both analytical and numerical methods, and it is shown that a large variety of cosmological models can be constructed, which, depending on the numerical values of the model parameters, can exhibit both accelerating and decelerating behaviors.
Induced matter brane gravity and Einstein static universe
Heydarzade, Y.; Darabi, F. E-mail: f.darabi@azaruniv.edu
2015-04-01
We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and the stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.
Gravity-induced stresses in stratified rock masses
Amadei, B.; Swolfs, H.S.; Savage, W.Z.
1988-01-01
This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.
Gravity-wave induced CO2 clouds on Mars
NASA Astrophysics Data System (ADS)
Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul
2016-07-01
We present the first general circulation model simulations that quantify and reproduce patches of extremely cold air required for CO2 condensation and cloud formation in the Martian mesosphere. They are created by subgrid-scale gravity waves (GWs) accounted for in the model with the whole atmosphere GW parameterization of Yiǧit et al. (2008)}. Distributions of GW-induced temperature fluctuations and occurrences of supersaturation conditions are in a good agreement with observations of high-altitude CO2 ice clouds. Our study confirms the key role of GWs in facilitating CO2 cloud formation, discusses their tidal modulation, and predicts clouds at altitudes higher than have been observed to date. Reference: Yiǧit, E., A. D. Aylward, and A. S. Medvedev (2008), Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study, J. Geophys. Res., 113, D19106, doi:10.1029/2008JD010135.
Goldstone models of modified gravity
NASA Astrophysics Data System (ADS)
Brax, Philippe; Valageas, Patrick
2017-02-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic
Schwarzschild solution in brane induced gravity
Gabadadze, Gregory; Iglesias, Alberto
2005-10-15
The metric of a Schwarzschild solution in brane induced gravity in five dimensions is studied. We find a nonperturbative solution for which an exact expression on the brane is obtained. We also find a linearized solution in the bulk and argue that a nonsingular exact solution in the entire space should exist. The exact solution on the brane is highly nontrivial as it interpolates between different distance scales. This part of the metric is enough to deduce an important property--the Arnowitt-Deser-Misner canonical formalism (ADM) mass of the solution is suppressed compared to the bare mass of a static source. This screening of the mass is due to nonlinear interactions which give rise to a nonzero curvature outside the source. The curvature extends away from the source to a certain macroscopic distance that coincides with the would-be strong interaction scale. The very same curvature shields the source from strong coupling effects. The four-dimensional law of gravity, including the correct tensorial structure, is recovered at observable distances. We find that the solution has no van Dam-Veltman-Zakharov discontinuity and show that the gravitational field on the brane is always weak, in spite of the fact that the solution is nonperturbative.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
On the impact of airborne gravity data to fused gravity field models
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander
2016-06-01
In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.
Astrophysical constraints on extended gravity models
Lambiase, Gaetano; Stabile, Antonio; Sakellariadou, Mairi; Stabile, Arturo E-mail: mairi.sakellariadou@kcl.ac.uk E-mail: arturo.stabile@gmail.com
2015-07-01
We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.
Gravity and geoid model for South America
NASA Astrophysics Data System (ADS)
Blitzkow, Denizar; Oliveira Cancoro de Matos, Ana Cristina; do Nascimento Guimarães, Gabriel; Pacino, María Cristina; Andrés Lauría, Eduardo; Nunes, Marcelo; Castro Junior, Carlos Alberto Correia e.; Flores, Fredy; Orihuela Guevara, Nuris; Alvarez, Ruber; Napoleon Hernandez, José
2016-04-01
In the last 20 years, South America Gravity Studies (SAGS) project has undertaken an ongoing effort in establishing the fundamental gravity network (FGN); terrestrial, river and airborne relative gravity densifications; absolute gravity surveys and geoid (quasi-geoid) model computation for South America. The old FGN is being replaced progressively by new absolute measurements in different countries. In recent years, Argentina, Bolivia, Brazil, Ecuador, Paraguay and Venezuela organizations participated with relative gravity surveys. Taking advantage of the large amount of data available, GEOID2015 model was developed for 15°N and 57°S latitude and 30 ° W and 95°W longitude based on EIGEN-6C4 until degree and order 200 as a reference field. The ocean area was completed with mean free air gravity anomalies derived from DTU10 model. The short wavelength component was estimated using FFT. The global gravity field models EIGEN-6C4, DIR_R5 were used for comparison with the new model. The new geoid model has been evaluated against 1,319 GPS/BM, in which 592 are located in Brazil and the reminder in other countries. The preliminary RMS difference between GPS/BM and GEOID2015 throughout South America and in Brazil is 46 cm and 17 cm, respectively. New activities are carrying out with the support of the IGC (Geographic and Cartographic Institute) under the coordination of EPUSP/LTG and CENEGEO (Centro de Estudos de Geodesia). The new project aims to establish new gravity points with the A-10 absolute gravimeter in South America. Recent such surveys occurred in São Paulo state, Argentina and Venezuela.
Modeling void abundance in modified gravity
NASA Astrophysics Data System (ADS)
Voivodic, Rodrigo; Lima, Marcos; Llinares, Claudio; Mota, David F.
2017-01-01
We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f (R ) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surveys, the combination of void and halo statistics including their abundances, profiles and correlations should be effective in distinguishing modified gravity models that display different screening mechanisms.
Gravity Modeling for Variable Fidelity Environments
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2006-01-01
Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.
Brane induced gravity, its ghost and the cosmological constant problem
Hassan, S.F.; Strauss, Mikael von; Hofmann, Stefan E-mail: stefan.hofmann@physik.lmu.de
2011-01-01
''Brane Induced Gravity'' is regarded as a promising framework for addressing the cosmological constant problem, but it also suffers from a ghost instability for parameter values that make it phenomenologically viable. We carry out a detailed analysis of codimension > 2 models employing gauge invariant variables in a flat background approximation. It is argued that using instead a curved background sourced by the brane would not resolve the ghost issue, unless a very specific condition is satisfied (if satisfiable at all). As for other properties of the model, from an explicit analysis of the 4-dimensional graviton propagator we extract a mass, a decay width and a momentum dependent modification of the gravitational coupling for the spin 2 mode. In the flat space approximation, the mass of the problematic spin 0 ghost is instrumental in filtering out a brane cosmological constant. The mass replaces a background curvature that would have had the same function. The optical theorem is used to demonstrate the suppression of graviton leakage into the uncompactified bulk. Then, we derive the 4-dimensional effective action for gravity and show that general covariance is spontaneously broken by the bulk-brane setup. This provides a natural realization of the gravitational Higgs mechanism. We also show that the addition of extrinsic curvature dependent terms has no bearing on linearized brane gravity.
Gravity-derived High-resolution Moho Model for Greenland
NASA Astrophysics Data System (ADS)
Steffen, R.; Strykowski, G.; Lund, B.
2016-12-01
Obtaining knowledge of the depth of the crust-mantle boundary (Mohorovičić discontinuity, Moho) beneath Greenland is important for the understanding of ice mass losses as those estimates depend on earth model parameters. However, the ice sheet on Greenland impedes the access and installation of seismological stations as well as the gathering of reflection and refraction seismic data, making the use of the most common methods to determine the crust-mantle boundary difficult. However, the Moho depth can be estimated also from gravity data through an inversion procedure and such data can, on the contrary, be obtained not only through ground measurements, but also through airborne campaigns as well as from satellite missions. Here, we use the Parker-Oldenburg algorithm together with the most recent EIGEN-6C4 gravity model to estimate the crust-mantle boundary beneath Greenland and surroundings. The available gravity data are corrected for the topographic effect, the gravity effect of sediments and the gravity effect of the ice load induced deformation. The resulting Moho model for Greenland shows maximum depths below east Greenland of up to 55 km and and values less than 20 km offshore east Greenland. The northern part of Greenland has a shallower Moho of only 30 km compared to southern Greenland, indicating a change in the crustal structures and the presence of two different crustal blocks in Greenland. An uncertainty of ±2.5 km is determined for the final model, which has a spatial resolution of 0.1°. The results of the gravity inversion are consistent with previous Moho models determined by seismological and seismic data mainly, where those are available. The comparison to previously estimated models based on older gravity data and using different inversion algorithms shows only small differences.
Circulation-based Modeling of Gravity Currents
NASA Astrophysics Data System (ADS)
Meiburg, E. H.; Borden, Z.
2013-05-01
Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related
Observed and Modeled Stratospheric Gravity Waves above Hurricane Humberto
NASA Astrophysics Data System (ADS)
Kuester, M.; Alexander, J.; Ray, E.
2004-05-01
A three-dimensional model can be a very powerful tool to the study of various properties of hurricanes including areas of deep convection as possible sources of internal gravity waves. Data collected by aircraft, although extremely useful, does not give a full picture of the dynamics of the system because only a few slices through the storm can be sampled within the limitations of the campaign. A validated model can help to fill in the gaps where the sampled data cannot. In this study, a three-dimensional MM5 model is used to study the characteristics of Hurricane Humberto, a category 2 hurricane observed in September 2001 during the the fourth field campaign in the Convection and Moisture Experiment series (CAMEX4). Of particular interest to this study are internal gravity waves induced by the convective activity within the rain bands of the hurricane. Further understanding of the sources for these waves and their effects on the large-scale circulation is an ongoing topic of research. Vertical velocity perturbations and potential temperature contours are used to pinpoint vertically propagating gravity waves in the stratosphere. Possible correlations between areas of deep convection as gravity wave sources within the storm and observed vertically propagating gravity waves are presented. Comparison of model results to data collected during the CAMEX4 on board the high-altitude NASA ER-2 aircraft with the ER-2 Doppler Radar (EDOP) and Microwave Temperature Profiler (MTP) will also be presented.
Global gravity field models and their use for geophysical modelling
NASA Astrophysics Data System (ADS)
Pail, R.
2015-12-01
During the last decade, the successful operation of the dedicated satellite missions GOCE and GRACE have revolutionized our picture of the Earth's gravity field. They delivered static global gravity field maps with high and homogeneous accuracy for spatial length-scales down to 70-80 km. The current satellite-only models of the fifth generation including GOCE data have reached accuracies of about 2 cm in geoid height and less than 0.7 mGal in gravity anomalies at 100 km spatial half-wavelength. However, the spatial resolution of gravity models derived from satellite data is limited. Since precise knowledge of the Earth's gravity field structure with very high resolution is essential in solid Earth applications such as lithospheric modelling, geological interpretation and exploration geophysics, satellite-only models are complemented by combined gravity field models, which contain very high-resolution gravity field information obtained by terrestrial gravity measurements over continents, and satellite altimetry over the oceans. To further increase the spatial resolution beyond 10-20 km, measured terrestrial and satellite data can also be augmented by high-resolution gravity field signals synthesized from topographic models. In this contribution an overview of the construction of satellite-only and combined global gravity field models is given. The specific characteristics of the individual input data and the resulting models will be assessed, and their impact for geophysical modelling will be discussed. On the basis of selected case studies, commission and omission errors and thus the contribution and impact of satellite gravity data on gravity field applications will be quantified, and the benefit of current satellite gravity data shall be investigated and demonstrated. Future gravity field missions beyond GRACE Follow-On will provide global gravity field information with further increased accuracy, spatial and temporal resolution. In an international initiative
Conformal Loop quantization of gravity coupled to the standard model
NASA Astrophysics Data System (ADS)
Pullin, Jorge; Gambini, Rodolfo
2016-03-01
We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.
Some Aspects of Generalized Modified Gravity Models
NASA Astrophysics Data System (ADS)
Myrzakulov, R.; Sebastiani, L.; Zerbini, S.
2013-07-01
In this paper, we review some general aspects of modified gravity theories, investigating mathematical and physical properties and, more specifically, the feature of viable and realistic models able to reproduce the dark energy (DE) epoch and the early-time inflation. We will discuss the black hole (BH) solutions in generalized theories of gravity: it is of fundamental interest to understand how properties and laws of BHs in General Relativity (GR) can be addressed in the framework of modified theories. In particular, we will discuss the energy issue and the possibility to derive the First Law of thermodynamics from the field equations. Then, in the analysis of cosmological solutions, we will pay particular attention to the occurrence of finite-time future singularities and to the possibility to avoid them in F(R,G)-gravity. Furthermore, realistic models of F(R)-gravity will be analyzed in detail. A general feature occurring in matter era will be shown, namely, the high derivatives of Hubble parameter may be influenced by the high frequency oscillation of the DE and some correction term may be required in order to stabilize the theory at high redshift. The inflationary scenario is also carefully analyzed and a unified description of the universe is evolved. In the final part of the work, we will look at the last developments in modified gravity, namely, we will investigate cosmological and BH solutions in a covariant field theory of gravity and we will introduce the extended "teleparallel" F(T)-gravity theories. A nice application to the dark matter (DM) problem will be presented.
An Atlas of Earth Gravity Model 2008
NASA Astrophysics Data System (ADS)
Melvin, P. J.
2009-12-01
The Earth Gravity Model 2008 (Pavlis, et al.) is a 2190th order and degree spherical harmonic model. Software developed by the author in the 1980s and currently used for orbit determination is employed to evaluate and map 10 different fields on the ellipsoid: the undulation of the geoid, radial (free air) gravity anomaly, East-West and North-South deflections of the vertical and radial-radial, radial-longitude, radial-latitude, longitude-longitude, longitude-latitude and latitude-latitude gravity gradient components. Although of less detail than other surface level data sets (e.g., Sandwell: global gravity for Google earth), these evaluations have the advantage of being global and in stunning (10 arc minute) detail, and could be used to provide insights in studies of, say, isostasy, plate tectonics, or orogeny especially with lineations highlighted by the derivative fields. A variety of projections are used: plate carre, transverse Mercator, spherical and animated spherical. The gray scale of the images is optimized by use of histograms. Undulation of the Geoid Radial Gravity Anomaly
Gravity model studies of Newberry Volcano, Oregon
Gettings, M.E.; Griscom, A.
1988-01-01
Newberry Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7-0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data. -Authors
Gravity model studies of Newberry Volcano, Oregon
Gettings, M.E.; Griscom, A.
1988-09-10
Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.
The spherically symmetric Standard Model with gravity
NASA Astrophysics Data System (ADS)
Balasin, H.; Böhmer, C. G.; Grumiller, D.
2005-08-01
Spherical reduction of generic four-dimensional theories is revisited. Three different notions of "spherical symmetry" are defined. The following sectors are investigated: Einstein-Cartan theory, spinors, (non-)abelian gauge fields and scalar fields. In each sector a different formalism seems to be most convenient: the Cartan formulation of gravity works best in the purely gravitational sector, the Einstein formulation is convenient for the Yang-Mills sector and for reducing scalar fields, and the Newman-Penrose formalism seems to be the most transparent one in the fermionic sector. Combining them the spherically reduced Standard Model of particle physics together with the usually omitted gravity part can be presented as a two-dimensional (dilaton gravity) theory.
The Gravity Model for High School Students
ERIC Educational Resources Information Center
Tribble, Paul; Mitchell, William A.
1977-01-01
The authors suggest ways in which the gravity model can be used in high school geography classes. Based on Newton's Law of Molecular Gravitation, the law states that gravitation is in direct ratio to mass and inverse ratio to distance. One activity for students involves determination of zones of influence of cities of various sizes. (Author/AV)
Modeling quantum gravity effects in inflation
NASA Astrophysics Data System (ADS)
Martinec, Emil J.; Moore, Wynton E.
2014-07-01
Cosmological models in 1+1 dimensions are an ideal setting for investigating the quantum structure of inflationary dynamics — gravity is renormalizable, while there is room for spatial structure not present in the minisuperspace approximation. We use this fortuitous convergence to investigate the mechanism of slow-roll eternal inflation. A variant of 1+1 Liouville gravity coupled to matter is shown to model precisely the scalar sector of cosmological perturbations in 3+1 dimensions. A particular example of quintessence in 1+1d is argued on the one hand to exhibit slow-roll eternal inflation according to standard criteria; on the other hand, a field redefinition relates the model to pure de Sitter gravity coupled to a free scalar matter field with no potential. This and other examples show that the standard logic leading to slow-roll eternal inflation is not invariant under field redefinitions, thus raising concerns regarding its validity. Aspects of the quantization of Liouville gravity as a model of quantum de Sitter space are also discussed.
The Gravity Model for High School Students
ERIC Educational Resources Information Center
Tribble, Paul; Mitchell, William A.
1977-01-01
The authors suggest ways in which the gravity model can be used in high school geography classes. Based on Newton's Law of Molecular Gravitation, the law states that gravitation is in direct ratio to mass and inverse ratio to distance. One activity for students involves determination of zones of influence of cities of various sizes. (Author/AV)
Supersymmetric structure of the induced W gravities
NASA Astrophysics Data System (ADS)
Ader, Jean-Pierre; Biet, Franck; Noirot, Yves
1999-03-01
We derive the supersymmetric structure present in W-gravities which has been already observed in various contexts as Yang-Mills theory, topological field theories, bosonic string and chiral 0264-9381/16/3/029/img2-gravity. This derivation which is made in the geometrical framework of Zucchini, necessitates the introduction of an appropriate new basis of variables which replace the canonical fields and their derivatives. This construction is used, in the 0264-9381/16/3/029/img3-case, to deduce from the Chern-Simons action the Wess-Zumino-Polyakov action.
Modeling Candle Flame Behavior In Variable Gravity
NASA Technical Reports Server (NTRS)
Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.
2003-01-01
The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process
Self-Gravity Modeling for LISA
NASA Technical Reports Server (NTRS)
Merkowitz, Stephen
2004-01-01
The Laser Interferometer Space Antenna (LISA) mission, a space based gravitational wave detector, uses laser metrology to measure distance fluctuations between proof masses aboard three spacecraft. The total acceleration disturbance to each proof mass is required to be below 3 x 10(exp 15) m/sq square root of Hz. Self-gravity noise due to spacecraft distortion and spacecraft motion is expected to be a significant contributor to the acceleration noise budget. To minimize these effects, the gravitational field at each proof mass must be kept as small, flat, and constant as possible. It is estimated that the static field must be kept below 5 x 10(exp -10) m/sq s with a gradient below 3 x 10(exp -8)/sq s in order to meet the required noise levels. Most likely it will not be possible to directly verify by measurements that the LISA spacecraft meets these requirements; they must be verified by models. The LISA Integrated Modeling team developed a new self-gravity tool that calculates the gravitational forces and moments on the proof masses to aid in the design and verification of the LISA spacecraft. We present here an overview of&e tool and the latest self-gravity results calculated using the current baseline design of LISA. We also present results of a self-gravity analysis of the ST-7 DRS package that will fly on the LISA Pathfinder mission.
The gravity model of labor migration behavior
NASA Astrophysics Data System (ADS)
Alexandr, Tarasyev; Alexandr, Tarasyev
2017-07-01
In this article, we present a dynamic inter-regional model, that is based on the gravity approach to migration and describes in continuous time the labor force dynamics between a number of conjugate regions. Our modification of the gravity migration model allows to explain the migration processes and to display the impact of migration on the regional economic development both for regions of origin and attraction. The application of our model allows to trace the dependency between salaries levels, total workforce, the number of vacancies and the number unemployed people in simulated regions. Due to the gravity component in our model the accuracy of prediction for migration flows is limited by the distance range between analyzed regions, so this model is tested on a number of conjugate neighbor regions. Future studies will be aimed at development of a multi-level dynamic model, which allows to construct a forecast for unemployment and vacancies trends on the first modeling level and to use these identified parameters on the second level for describing dynamic trajectories of migration flows.
Gravity Induced Formation of Concentration Gradients in Supersaturated Binary Solutions
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1996-01-01
Experimental and theoretical studies of the formation of solute concentration gradient in supersaturated binary solutions in a gravitational field were carried out. The formation of solute concentration gradient was associated with the gravity induced redistribution of subcritical solute clusters. The birth-death process of the new solute-rich phase domains (subcritical solute clusters) was described in terms of the time-dependent Ginzburg Landau model developed for metastable state relaxation in binary (solute + solvent) non-critical solutions in the presence of a gravitational field. A new mathematical Ansatz was developed for solution of the model equations. This Ansatz has allowed to approach for the first time the following important problems: (1) Microstructure of solute distribution inside of the subcritical solute clusters. The analytical results obtained demonstrate that solute inside of the subcritical solute clusters is heterogeneously distributed with a spatially periodic structure. (2) Macrostructure of the solute subcritical clusters distribution in a gravitational field. The subcritical solute clusters are found to be distributed heterogeneously in a gravitational field. This heterogeneity, which is due to the heterogeneous birth-death process of the subcritical solute clusters in a gravitational field, initiates a noticeable solute concentration gradient in vertical columns of supersaturated binary solutions. An analysis and comparison of theoretical results and experimental data related to the solute concentration gradient formation in a gravitational field are presented. It is also demonstrated that the critical radius of solute clusters (radius of nucleation) and induction time are gravity-dependent.
NASA Astrophysics Data System (ADS)
Chouza, Fernando; Reitebuch, Oliver; Jähn, Michael; Rahm, Stephan; Weinzierl, Bernadett
2016-04-01
This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL) during SALTRACE. First, the instrumental corrections required for the retrieval of high spatial resolution vertical wind measurements from an airborne DWL are presented and the measurement accuracy estimated by means of two different methods. The estimated systematic error is below -0.05 m s-1 for the selected case of study, while the random error lies between 0.1 and 0.16 m s-1 depending on the estimation method. Then, the presented method is applied to two measurement flights during which the presence of island induced gravity waves was detected. The first case corresponds to a research flight conducted on 17 June 2013 in the Cabo Verde islands region, while the second case corresponds to a measurement flight on 26 June 2013 in the Barbados region. The presence of trapped lee waves predicted by the calculated Scorer parameter profiles was confirmed by the lidar and in situ observations. The DWL measurements are used in combination with in situ wind and particle number density measurements, large-eddy simulations (LES), and wavelet analysis to determine the main characteristics of the observed island induced trapped waves.
Gravity model improvement investigation. [improved gravity model for determination of ocean geoid
NASA Technical Reports Server (NTRS)
Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.
1973-01-01
This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake.
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-09-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10(-8) m/s²), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately -1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth's surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution.
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-01-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10−8 m/s2), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately −1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth’s surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution. PMID:27598158
Measured and modelled absolute gravity in Greenland
NASA Astrophysics Data System (ADS)
Nielsen, E.; Forsberg, R.; Strykowski, G.
2012-12-01
Present day changes in the ice volume in glaciated areas like Greenland will change the load on the Earth and to this change the lithosphere will respond elastically. The Earth also responds to changes in the ice volume over a millennial time scale. This response is due to the viscous properties of the mantle and is known as Glaical Isostatic Adjustment (GIA). Both signals are present in GPS and absolute gravity (AG) measurements and they will give an uncertainty in mass balance estimates calculated from these data types. It is possible to separate the two signals if both gravity and Global Positioning System (GPS) time series are available. DTU Space acquired an A10 absolute gravimeter in 2008. One purpose of this instrument is to establish AG time series in Greenland and the first measurements were conducted in 2009. Since then are 18 different Greenland GPS Network (GNET) stations visited and six of these are visited more then once. The gravity signal consists of three signals; the elastic signal, the viscous signal and the direct attraction from the ice masses. All of these signals can be modelled using various techniques. The viscous signal is modelled by solving the Sea Level Equation with an appropriate ice history and Earth model. The free code SELEN is used for this. The elastic signal is modelled as a convolution of the elastic Greens function for gravity and a model of present day ice mass changes. The direct attraction is the same as the Newtonian attraction and is calculated as this. Here we will present the preliminary results of the AG measurements in Greenland. We will also present modelled estimates of the direct attraction, the elastic and the viscous signals.
The inverse gravimetric problem in gravity modelling
NASA Technical Reports Server (NTRS)
Sanso, F.; Tscherning, C. C.
1989-01-01
One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.
Degeneracies in parametrized modified gravity models
Hojjati, Alireza
2013-01-01
We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters and to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.
Effective cosmological equations of induced f(R) gravity
Apostolopoulos, Pantelis S.; Tetradis, Nikolaos; Brouzakis, Nikolaos E-mail: nbruzak@ifae.es
2010-08-01
We expand the study of generalized brane cosmologies by allowing for an f( R-tilde ) gravity term on the brane, with R-tilde the curvature scalar derived from the induced metric. We also include arbitrary matter components on the brane and in the five-dimensional bulk. At low energies, the effect of the bulk on the brane evolution can be described through a mirage component, termed generalized dark radiation, in the effective four-dimensional field equations. Using the covariant formalism, we derive the exact form of these equations. We also derive an effective conservation equation involving the brane matter and the generalized dark radiation. At low energies the coupled brane-bulk system has a purely four-dimensional description. The applications of the formalism include generalizations of the Starobinsky model and the Dvali-Gabadadze-Porrati cosmology.
On the Chemical Mixing Induced by Internal Gravity Waves
NASA Astrophysics Data System (ADS)
Rogers, T. M.; McElwaine, J. N.
2017-10-01
Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.
Cosmological models in higher-order gravity
NASA Astrophysics Data System (ADS)
Cotsakis, Spiros
presented which provides a direct test for deciding about the existence or non-existence of chaotic behavior in a very large class of physical systems. We apply this test to the Yang-Mills system and to the Bianchi IX spacetime in the context of general relativity. We briefly discuss what is presently known about the chaotic behavior of Kaluza-Klein theories. Finally, by using most of the available methods we examine the chaotic properties of higher-order gravity theories. The results obtained indicate that, contrary to what happens in general relativity, chaotic oscillations near the singularity disappear in diagonal models in these theories and another non-chaotic, monotonic evolution of the universe takes place. However, this chaotic behavior is reestablished in more general, non-diagonal models in higher-order gravity theories.
Quantum gravity model with fundamental spinor fields
NASA Astrophysics Data System (ADS)
Obukhov, Yu. N.; Hehl, F. W.
2014-01-01
We discuss the possibility that gravitational potentials (metric, coframe and connection) may emerge as composite fields from more fundamental spinor constituents. We use the formalism of Poincaré gauge gravity as an appropriate theoretical scheme for the rigorous development of such an approach. We postulate the constitutive relations of an elastic Cosserat type continuum that models spacetime. These generalized Hooke and MacCullagh type laws consistently take into account the translational and Lorentz rotational deformations, respectively. The resulting theory extends the recently proposed Diakonov model. An intriguing feature of our theory is that in the lowest approximation it reproduces Heisenberg's nonlinear spinor model.
Systematic simulations of modified gravity: chameleon models
Brax, Philippe; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo E-mail: a.c.davis@damtp.cam.ac.uk E-mail: h.a.winther@astro.uio.no
2013-04-01
In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.
SO(2, 3) noncommutative gravity model
NASA Astrophysics Data System (ADS)
Dimitrijević, M.; Radovanović, V.
2014-12-01
In this paper the noncommutative gravity is treated as a gauge theory of the non-commutative SO(2, 3)★ group, while the noncommutativity is canonical. The Seiberg-Witten (SW) map is used to express noncommutative fields in terms of the corresponding commutative fields. The commutative limit of the model is the Einstein-Hilbert action plus the cosmological term and the topological Gauss-Bonnet term. We calculate the second order correction to this model and obtain terms that are zeroth, first, ... and fourth power of the curvature tensor. Finally, we discuss physical consequences of those correction terms in the limit of big cosmological constant.
Modeling wormholes in f (R ,T ) gravity
NASA Astrophysics Data System (ADS)
Moraes, P. H. R. S.; Sahoo, P. K.
2017-08-01
In this work, we propose the modeling of static wormholes within the f (R ,T ) extended theory of gravity perspective. We present some models of wormholes, which are constructed from different hypotheses for their matter content, i.e., different relations for their pressure components (radial and lateral) and different equations of state. The solutions obtained for the shape function of the wormholes obey the necessary metric conditions. They show a behavior similar to those found in previous references about wormholes, which also happens to our solutions for the energy density of such objects. We also apply the energy conditions for the wormholes' physical content.
Characterization of Gravity Regulated Osteoprotegerin Expression in Fish Models
NASA Astrophysics Data System (ADS)
Renn, J.; Nourizadeh-Lillabadi, R.; Alestrom, P.; Seibt, D.; Goerlich, R.; Schartl, M.; Winkler, C.
Human osteoprotegerin (opg) is a secreted protein of 401 amino acids that acts as a decoy receptor for RANKL (receptor activator of NFB ligand). Opg prevents binding of RANKL to its receptor, which is present on osteoclasts and their precursors. Thereby, opg blocks the formation, differentiation and activation of osteoclasts and stimulates apoptosis of mature osteoclasts. As a consequence, opg regulates the degree of bone resorption in order to keep a constant bone mass under normal gravity conditions. Recently, clinorotation experiments using mammalian cell cultures have shown that the opg gene is down-regulated in simulated microgravity at the transcriptional level (Kanematsu et al., Bone 30, 2002). We have identified opg genes in the fish models Medaka and zebrafish to study gravity regulation of opg expression in these models at the organismal level. In Medaka embryos, opg expression starts at stages when first skeletal elements are already detectable. Putative consensus binding sites for transcription factors were identified in the promoter region of the Medaka opg gene indicating possible evolutionary conservation of gene regulatory mechanisms between fish and mammals. To analyze, whether model fish species are suitable tools to study microgravity induced changes at the molecular level in vivo, we investigated regulation of fish opg genes as a consequence of altered gravity. For this, we performed centrifugation and clinorotation experiments, subjecting fish larvae to hypergravity and simulated microgravity, and analyzed expression profiles of skeletal genes by real-time PCR. Our data represent the first experiments using whole animal model organisms to study gravity induced alteration of skeletal factors at the molecular level. Acknowledgement: This work is supported by the German Aerospace Center (DLR) (50 WB 0152) and the European Space Agency (AO-LS-99-MAP-LSS-003).
A framework for modelling kinematic measurements in gravity field applications
NASA Technical Reports Server (NTRS)
Schwarz, K. P.; Wei, M.
1989-01-01
To assess the resolution of the local gravity field from kinematic measurements, a state model for motion in the gravity field of the earth is formulated. The resulting set of equations can accommodate gravity gradients, specific force, acceleration, velocity and position as input data and can take into account approximation errors as well as sensor errors.
Higher-order brane gravity models
Dabrowski, Mariusz P.; Balcerzak, Adam
2010-06-23
We discuss a very general theory of gravity, of which Lagrangian is an arbitrary function of the curvature invariants, on the brane. In general, the formulation of the junction conditions (except for Euler characteristics such as Gauss-Bonnet term) leads to the powers of the delta function and requires regularization. We suggest the way to avoid such a problem by imposing the metric and its first derivative to be regular at the brane, the second derivative to have a kink, the third derivative of the metric to have a step function discontinuity, and no sooner as the fourth derivative of the metric to give the delta function contribution to the field equations. Alternatively, we discuss the reduction of the fourth-order gravity to the second order theory by introducing extra scalar and tensor fields: the scalaron and the tensoron. In order to obtain junction conditions we apply two methods: the application of the Gauss-Codazzi formalism and the application of the generalized Gibbons-Hawking boundary terms which are appended to the appropriate actions. In the most general case we derive junction conditions without assuming the continuity of the scalaron and the tensoron on the brane. The derived junction conditions can serve studying the cosmological implications of the higher-order brane gravity models.
Analogue gravity models from conformal rescaling
NASA Astrophysics Data System (ADS)
Hossenfelder, Sabine; Zingg, Tobias
2017-08-01
Analogue gravity is based on a mathematical identity between quantum field theory in curved space-time and the propagation of perturbations in certain condensed matter systems. But not every curved space-time can be simulated in such a way. For analogue gravity to work, one needs not only a condensed matter system that generates the desired metric tensor, but this system then also has to obey its own equations of motion. However, the relation to the metric tensor usually overdetermines the equations of the underlying condensed matter system, such that they in general cannot be fulfilled. In this case the desired metric does not have an analogue. Here, we show that the class of metrics that have an analogue is larger than previously thought. The reason is that the analogue metric is only defined up to a choice of parametrization of the perturbation in the underlying condensed matter system. In this way, the class of analogue gravity models can be vastly expanded.
Global gravity field modeling based on GOCE and complementary gravity data
NASA Astrophysics Data System (ADS)
Fecher, Thomas; Pail, Roland; Gruber, Thomas
2015-03-01
A combined high-resolution global gravity field model up to degree/order (d/o) 720, including error estimates in terms of a full variance-covariance matrix, is determined from GOCE (Gravity field and steady-state Ocean Circulation Explorer) and complementary gravity field data. GOCE observations, highly accurate in the low to medium wavelength part (∼d/o 40-220), are supplemented by GRACE (Gravity Recovery and Climate Experiment) with high accuracy in the low wavelength part (∼d/o 2-150), and altimetric and terrestrial gravity field observations to enhance the spectral resolution of the combined gravity field model. The theory of combining different data sets by least-squares techniques, applying optimum weighting strategies, is illustrated. Full normal equation systems are used to enable stochastic modeling of all individual observations. High performance computing techniques are applied in order to handle normal equations of enormous size (about 2 TB). The quality of the resulting gravity field solution is analyzed by comparisons with independent gravity field models and GPS/leveling observations, and also in the frame of the computation of a mean dynamic topography. The validation shows that the new combined model TUM2013C achieves the quality level of established high-resolution models. Compared to EGM2008, the improvements due to the inclusion of GOCE are clearly visible.
NASA Astrophysics Data System (ADS)
Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli
2014-05-01
Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.
Signature change in loop quantum gravity: Two-dimensional midisuperspace models and dilaton gravity
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Brahma, Suddhasattwa
2017-06-01
Models of loop quantum gravity based on real connections have a deformed notion of general covariance, which leads to the phenomenon of signature change. This result is confirmed here in a general analysis of all midisuperspace models without local degrees of freedom. As a subclass of models, two-dimensional theories of dilaton gravity appear, but a larger set of examples is possible based only on the condition of anomaly freedom. While the classical dilaton gravity models are the only such systems without deformed covariance, they do give rise to signature change when holonomy modifications are included.
Realistic inflation models and primordial gravity waves
NASA Astrophysics Data System (ADS)
Rehman, Mansoor Ur
We investigate both supersymmetric and non-supersymmetric realistic models of inflation. In non-supersymmetric models, inflation is successfully realized by employing both Coleman Weinberg and Higgs potentials in GUTs such as SU(5) and SO(10). The quantum smearing of tree level predictions is discussed in the Higgs inflation. These quantum corrections can arise from the inflaton couplings to other particles such as GUT scalars. As a result of including these corrections, a reduction in the tensor-to-scalar ratio r, a canonical measure of gravity waves produced during inflation, is observed. In a simple phi4 chaotic model, we reconsider a non-minimal (xi > 0) gravitationalcoupling of inflaton φ arising from the interaction xi R phi2, where R is the Ricci scalar. In estimating bounds on various inflationaryparameters we also include quantum corrections. We emphasize that while working with high precision observations such as the current Planck satellite experiment we cannot ignore these radiative and gravitational corrections in analyzing the predictions of various inflationary models. In supersymmetric hybrid inflation with minimal Kahler potential, the soft SUSY breaking terms are shown to play an important role in realizing inflation consistent with the latest WMAP data. The SUSY hybrid models which we consider here predict exceedingly small values of r. However, to obtain observable gravity waves the non-minimal Kahler potential turns out to be a necessary ingredient. A realistic model of flipped SU(5) model, which benefits from the absence of topological defects, is considered in the standard SUSY hybrid inflation. We also present a discussion of shifted hybrid inflation in a realistic model of SUSY SU(5) GUT.
Generalized model for a Moho inversion from gravity and vertical gravity-gradient data
NASA Astrophysics Data System (ADS)
Ye, Zhourun; Tenzer, Robert; Sneeuw, Nico; Liu, Lintao; Wild-Pfeiffer, Franziska
2016-10-01
Seismic data are primarily used in studies of the Earth's lithospheric structure including the Moho geometry. In regions, where seismic data are sparse or completely absent, gravimetric or combined gravimetric-seismic methods could be applied to determine the Moho depth. In this study, we derive and present generalized expressions for solving the Vening Meinesz-Moritz's (VMM) inverse problem of isostasy for a Moho depth determination from gravity and vertical gravity-gradient data. By solving the (non-linear) Fredholm's integral equation of the first kind, the linearized observation equations, which functionally relate the (given) gravity/gravity-gradient data to the (unknown) Moho depth, are derived in the spectral domain. The VMM gravimetric results are validated by using available seismic and gravimetric Moho models. Our results show that the VMM Moho solutions obtained by solving the VMM problem for gravity and gravity-gradient data are almost the same. This finding indicates that in global applications, using the global gravity/gravity-gradient data coverage, the spherical harmonic expressions for the gravimetric forward and inverse modelling yield (theoretically) the same results. Globally, these gravimetric solutions have also a relatively good agreement with the CRUST1.0 and GEMMA GOCE models in terms of their rms Moho differences (4.7 km and 4.1 km, respectively).
Spin foam models for quantum gravity
NASA Astrophysics Data System (ADS)
Perez, Alejandro
The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be
Estimating the gravity induced three dimensional deformation of the breast.
Mills, Chris; Sanchez, Amy; Scurr, Joanna
2016-12-08
As human breast tissue is continuously deformed by gravity, it is difficult to identify the non-loaded neutral breast position from which to take measurements. To estimate the neutral nipple position, this study proposed a simple novel method to counteract the three dimensional effect of gravity on the breast using the buoyant forces from water and soybean oil (ρWATER = 994kgm(-3); ρOIL = 909kgm(-3)). Fourteen female participants with breast sizes ranging from 30 to 34in. under band and B to E cup size took part in this study. Each participant had their static gravity-loaded nipple position measured and their neutral nipple position estimated (as the midpoint between the nipple position during water and soybean oil immersion). Participants were asked to sit in each fluid and fully submerge their torso and breasts. The mean gravity-induced nipple displacements from the neutral nipple position were 15.3mm in the posterior direction, 7.4mm in the lateral direction, and 25.7mm in the inferior direction. Gravity had a significant (p < 0.05, r > 0.82) measurable effect on the static nipple position, particularly in the inferior and posterior directions. Furthermore the density difference between water and soybean oil produced a significant difference (p < 0.05, r = 0.72) in superior-inferior nipple position (5.6mm). These findings suggest that neglect of gravity-induced breast deformations may lead to errors when assessing breast position and its relationship to possible breast pain, and that water alone may not be sufficient to estimate the neutral nipple position. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Regional gravity field modelling from GOCE observables
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert
2017-01-01
In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.
Evaluating spread of invaders from gravity scores--a way of using gravity models in ecology.
Järemo, Johannes
2009-11-01
This study is a theoretical excursion into gravity models and their usability in evaluating importance of spatial structure and population development for the spread of colonizing organisms. A so called "gravity score" for sites is deduced, and such a score could be used for predicting risk of colonization once one site in an area has been subject to introduction of a new species. The analysis further suggests that factors deciding spread between sites differs from those that govern expected population sizes. Gravity models of the kind presented here includes both population dynamics and spatial structure and could be a complement to other models describing organism spread.
Absolute observations of the GIA induced gravity change in Fennoscandia
NASA Astrophysics Data System (ADS)
Olsson, Per-Anders; Bilker-Koivula, Miriam; Breili, Kristian; Nielsen, Emil; Ophaug, Vegard
2017-04-01
The Nordic Geodetic Commission (NKG) has decided to compile and publish all repeated absolute gravity observations in the Fennoscandian land uplift area. For the last 25 years many different organizations have been collecting data during different epochs in this region. Some of the data have been published before but this is the first compilation of the whole data set. We present and evaluate the data and give recommendations for how these data can be used for further studies and thereby contribute to earth system modelling, for example as ground truth for satellite missions, for constraining GIA models, evaluation of GNSS reference frames and for reducing gravity data to a certain epoch.
Evaluation of recent Earth's global gravity field models with terrestrial gravity data
NASA Astrophysics Data System (ADS)
Karpik, Alexander P.; Kanushin, Vadim F.; Ganagina, Irina G.; Goldobin, Denis N.; Kosarev, Nikolay S.; Kosareva, Alexandra M.
2016-03-01
In the context of the rapid development of environmental research technologies and techniques to solve scientific and practical problems in different fields of knowledge including geosciences, the study of Earth's gravity field models is still important today. The results of gravity anomaly modelling calculated by the current geopotential models data were compared with the independent terrestrial gravity data for the two territories located in West Siberia and Kazakhstan. Statistical characteristics of comparison results for the models under study were obtained. The results of investigations show that about 70% of the differences between the gravity anomaly values calculated by recent global geopotential models and those observed at the points in flat areas are within ±10 mGal, in mountainous areas are within ±20 mGal.
Gravity, Lorentz violation, and the standard model
NASA Astrophysics Data System (ADS)
Kostelecký, V. Alan
2004-05-01
The role of the gravitational sector in the Lorentz- and CPT-violating standard-model extension (SME) is studied. A framework is developed for addressing this topic in the context of Riemann-Cartan spacetimes, which include as limiting cases the usual Riemann and Minkowski geometries. The methodology is first illustrated in the context of the QED extension in a Riemann-Cartan background. The full SME in this background is then considered, and the leading-order terms in the SME action involving operators of mass dimension three and four are constructed. The incorporation of arbitrary Lorentz and CPT violation into general relativity and other theories of gravity based on Riemann-Cartan geometries is discussed. The dominant terms in the effective low-energy action for the gravitational sector are provided, thereby completing the formulation of the leading-order terms in the SME with gravity. Explicit Lorentz symmetry breaking is found to be incompatible with generic Riemann-Cartan geometries, but spontaneous Lorentz breaking evades this difficulty.
Anisotropic singularities in modified gravity models
NASA Astrophysics Data System (ADS)
Figueiró, Michele Ferraz; Saa, Alberto
2009-09-01
We show that the common singularities present in generic modified gravity models governed by actions of the type S=∫d4x-gf(R,ϕ,X), with X=-(1)/(2)gab∂aϕ∂bϕ, are essentially the same anisotropic instabilities associated to the hypersurface F(ϕ)=0 in the case of a nonminimal coupling of the type F(ϕ)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface (∂f)/(∂R)=0 is attained. Some examples are explicitly discussed.
NASA Astrophysics Data System (ADS)
Kruglov, S. I.
2015-05-01
The new model of modified F(R)-gravity theory with the function F(R) = R + (a/γ) arcsin(γR) is suggested and investigated. Constant curvature solutions corresponding to the extremum of the effective potential are obtained. We consider both the Jordan and Einstein frames, and the potential and the mass of the scalar degree of freedom are found. It was shown that the de Sitter space-time is unstable but the flat space-time is stable. We calculate the slow-roll parameters ɛ, η, and the e-fold number of the model. Critical points of autonomous equations for the de Sitter phase and the matter dominated epoch are obtained and learned.
Model-independent tests of cosmic gravity.
Linder, Eric V
2011-12-28
Gravitation governs the expansion and fate of the universe, and the growth of large-scale structure within it, but has not been tested in detail on these cosmic scales. The observed acceleration of the expansion may provide signs of gravitational laws beyond general relativity (GR). Since the form of any such extension is not clear, from either theory or data, we adopt a model-independent approach to parametrizing deviations to the Einstein framework. We explore the phase space dynamics of two key post-GR functions and derive a classification scheme, and an absolute criterion on accuracy necessary for distinguishing classes of gravity models. Future surveys will be able to constrain the post-GR functions' amplitudes and forms to the required precision, and hence reveal new aspects of gravitation.
NASA Technical Reports Server (NTRS)
Vincent, S.; Marsh, J. G.
1973-01-01
A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.
Quantum gravity and Standard-Model-like fermions
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Lippoldt, Stefan
2017-04-01
We discover that chiral symmetry does not act as an infrared attractor of the renormalization group flow under the impact of quantum gravity fluctuations. Thus, observationally viable quantum gravity models must respect chiral symmetry. In our truncation, asymptotically safe gravity does, as a chiral fixed point exists. A second non-chiral fixed point with massive fermions provides a template for models with dark matter. This fixed point disappears for more than 10 fermions, suggesting that an asymptotically safe ultraviolet completion for the standard model plus gravity enforces chiral symmetry.
Modeling human perception of orientation in altered gravity
Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.
2015-01-01
Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822
Modeling human perception of orientation in altered gravity.
Clark, Torin K; Newman, Michael C; Oman, Charles M; Merfeld, Daniel M; Young, Laurence R
2015-01-01
Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.
Higgs-induced spectroscopic shifts near strong gravity sources
Onofrio, Roberto
2010-09-15
We explore the consequences of the mass generation due to the Higgs field in strong gravity astrophysical environments. The vacuum expectation value of the Higgs field is predicted to depend on the curvature of spacetime, potentially giving rise to peculiar spectroscopic shifts, named hereafter 'Higgs shifts'. Higgs shifts could be searched through dedicated multiwavelength and multispecies surveys with high spatial and spectral resolution near strong gravity sources such as Sagittarius A* or broad searches for signals due to primordial black holes. The possible absence of Higgs shifts in these surveys should provide limits to the coupling between the Higgs particle and the curvature of spacetime, a topic of interest for a recently proposed Higgs-driven inflationary model. We discuss some conceptual issues regarding the coexistence between the Higgs mechanism and gravity, especially for their different handling of fundamental and composite particles.
High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data
NASA Astrophysics Data System (ADS)
Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš
2016-11-01
We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.
Gravity in a lattice Boltzmann model
Buick; Greated
2000-05-01
In this paper we consider the introduction of a body force, in the incompressible limit, into the lattice Boltzmann model. A number of methods are considered and their suitability to our objectives determined. When there is no density variation across the fluid, gravity can be introduced in the form of an altered pressure gradient. This method correctly satisfies the Navier-Stokes equation; however, if there is a non-negligible density variation present (produced by the body force or otherwise) this method becomes less accurate as the density variation increases and the constant density approximation becomes less valid. Three other methods are also considered for application when there is a non-negligible density variation. The equations of motion satisfied by these models are found up to second order in the Knudsen number and it is seen that only one of these methods satisfies the true Navier-Stokes equation. Numerical simulations are performed to compare the different models and to assess the range of application of each.
Laser-Induced Incandescence Measurements in Low Gravity
NASA Technical Reports Server (NTRS)
VanderWal, R. L.
1997-01-01
A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.
Gravity-induced stresses near a vertical cliff
Savage, W.Z.
1993-01-01
The exact solution for gravity-induced stresses beneath a vertical cliff presented here has application to the design of cut slopes in rock, compares favorably with published photoelastic and finite-element results for this problem, and satisfies the condition that shear and normal stresses vanish on the ground surface, except at the bottom corner where stress concentrations exist. The solution predicts that horizontal stresses are tensile away from the bottom of the cliff-effects caused by movement below the cliff in response to the gravity loading of the cliff. Also, it is shown that along the top of the cliff normal stresses reduce to those predicted for laterally constrained flat-lying topography. ?? 1993.
Toward an Internal Gravity Wave Spectrum in Global Ocean Models
2015-05-14
14 MAY 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Toward an Internal Gravity Wave Spectrum in Global...resolution global ocean models forced by atmospheric fields and tides are beginning to display realistic internal gravity wave spectra, especially as
A dynamic model of Venus's gravity field
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
Sequential orbit determination with auto-correlated gravity modeling errors
NASA Astrophysics Data System (ADS)
Wright, J. R.
1980-01-01
A sequential orbit determination algorithm is given which models auto-correlated gravity errors for near circular orbits. Using results from geodesy theory (Kaula, 1959; Heiskanen, 1967), it is demonstrated that gravity modeling error auto-correlation cannot be approximated with the Kalman white process noise model. The resulting auto-correlated orbit error process is transformed from the status of non-Markov to Markov at the expense of an assumption which imposes symmetries on certain covariance functions. It is emphasized that the character of the trajectory estimation problem is significantly changed by recognizing and using the auto-correlation property associated with gravity modeling errors.
NASA Astrophysics Data System (ADS)
Tsoulis, Dimitrios; Patlakis, Konstantinos
2014-08-01
The availability of digital elevation databases representing the topographic and bathymetric relief with global homogeneous coverage and increasing resolution permits the computation of crust-related Earth gravity models, the so-called topographic/isostatic Earth gravity models (henceforth T/I models). Although expressing the spherical harmonic content of the topographic masses, the interpretation purpose of T/I models has not been given the attention it deserves, apart from the fact that they express some degree of compensation to the observed spectrum of the topographic heights, depending on the kind of the applied compensation mechanism. The present contribution attempts to improve the interpretation aspects of T/I Earth gravity models. To this end, a rigorous spectral assessment is performed to a standard Airy/Heiskanen T/I model against different CHAllenging Minisatellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), Gravity field and steadystate Ocean Circulation Explorer (GOCE) satellite-only, and combined gravity models. Different correlation bandwidths emerge for these four groups of satellite-based gravity models. The band-limited forward computation of the models using these bandwidths reproduces nicely the main features of the applied T/I model.
Adaptative gravity modelling from GOCE gradient data over the Himalaya
NASA Astrophysics Data System (ADS)
Hayn, M.; Holschneider, M.; Panet, I.
2013-12-01
GOCE data deliver information about the static gravity anomalies with a spatial resolution of about 90km. The derived gravity models are used to investigate the Earth's interior structure. Most models for the GOCE data are limited by the facts 1. that they have a uniform resolution and 2. that this resolution is defined with respect to a sphere. One can improve the stability and decrease the numerical costs by adapting the resolution to the local scales of variability of the modelled field. Furthermore, respecting the ellipsoidal shape of the Earth and even its topography allows to increase the resolution of the models. We thus propose a new adaptative modelling approach. In this approach, the modelled gravity potential is represented as a superposition of potentials of poles, located closely below the Earth's surface. The distribution of the poles below the surface determines the local scale of the model. It is adapted to prior knowledge on the local roughness of the gravity field. The prior knowledge is built by estimating characteristic local scales from the wavelet transform of a prior gravity model, EGM2008. After positioning the poles by means of an iterative approach, we build a gravity model by maximising the Bayesian posterior distribution of the model. This Bayesian approach also allows estimating the model's uncertainty. We apply this modelling approach on an area over the Himalaya and show our preliminary results. The model will be used to study the dynamic processes in this active area.
Internal model of gravity influences configural body processing.
Barra, Julien; Senot, Patrice; Auclair, Laurent
2017-01-01
Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies.
Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster
NASA Technical Reports Server (NTRS)
Bhattacharya, Sharmila; Hosamani, Ravikumar
2015-01-01
Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2016-07-01
It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.
New Gravity Wave Treatments for GISS Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2010-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.
New Gravity Wave Treatments for GISS Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye
2011-01-01
Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.
Gravity and Flexure Modelling of Subducting Plates
NASA Astrophysics Data System (ADS)
Hunter, J. A.; Watts, A. B.; SO 215 Shipboard Scientific Party
2012-04-01
The long-term strength of the lithosphere is determined by its flexural rigidity, which is commonly expressed through the effective elastic thickness, Te. Flexure studies have revealed a dependence of Te on thermal age. In the oceans, loads formed on young (70 Ma) seafloor. In the continents, loads on young (1000 Ma) lithosphere. Recent studies have questioned the relationship of Te with age, especially at subduction zones, where oceanic and continental lithosphere are flexed downwards by up to ~6 km over horizontal distances of up to ~350 km. We have therefore used free-air gravity anomaly and topography profile data, combined with forward and inverse modelling techniques, to re-assess Te in these settings. Preliminary inverse modelling results from the Tonga-Kermadec Trench - Outer Rise system, where the Pacific plate is subducting beneath the Indo-Australian plate, show large spatial variations in Te that are unrelated to age. In contrast to the southern end of the system, where Te is determined by the depth to the 600° C and 900° C isotherms, the northern end of the system shows a reduction in strength. Results also suggest a reduction in Te trenchward of the outer rise that is coincident with a region of pervasive extensional faulting visible in swath bathymetry data. In a continental setting, the Ganges foreland basin has formed by flexure of the Indo-Australian plate in front of the migrating loads of the Himalaya. Preliminary forward modelling results, using the Himalaya as a known surface topographic load, suggest that Te is high - consistent with the great age of Indian cratonic lithosphere. However, results from inverse modelling that solves for unknown loads (vertical shear force and bending moment) show significant scatter and display trade-offs between Te and these driving loads.
Multi-scale gravity field modeling in space and time
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2016-04-01
The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.
Cosmological data analysis of f(R) gravity models
Gironés, Z.; Marchetti, A.; Mena, O.; Peña-Garay, C.; Rius, N. E-mail: alida.marchetti@unimi.it E-mail: carlos.penya@ific.uv.es
2010-11-01
A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the ΛCDM model.
Constraining f(R) gravity models with disappearing cosmological constant
Thongkool, I.; Sami, M.; Jhingan, S.; Gannouji, R.
2009-08-15
The f(R) gravity models proposed by Hu-Sawicki and Starobinsky are generic for local gravity constraints to be evaded. The large deviations from these models result in either violation of local gravity constraints or the modifications indistinguishable from cosmological constant. The curvature singularity in these models is generic but can be avoided, provided that proper fine-tuning is imposed on the evolution of scalaron in the high curvature regime. In principle, the problem can be circumvented by incorporating quadratic curvature correction in the Lagrangian, though it might be quite challenging to probe the relevant region numerically.
NASA Technical Reports Server (NTRS)
Rios, J.
1982-01-01
The settling behavior of the liquid and gaseous phases of a fluid in a propellant and in a zero-g environment, when such settling is induced through the use of a dynamic device, in this particular case, a helical screw was studied. Particular emphasis was given to: (1) the description of a fluid mechanics model which seems applicable to the system under consideration, (2) a First Law of Thermodynamics analysis of the system, and (3) a discussion of applicable scaling rules.
Looking for sedimentary basins using global gravity and crustal models
NASA Astrophysics Data System (ADS)
Colpani, Stefano; Strykowski, Gabriel
2014-05-01
Publically available and newly released global crustal model, CRUST 1.0 (Laske et al., 2013) in combination with satellite based global gravity models GOCO3s (Mayer-Gürr T. et al., 2012) yield a possibility of combining global source models with global gravity models. The depths to the top and to the base of the geological units obtained from the global crust model are used to fix the source geometry. This information is subsequently used to forward compute the global gravity signature of these units in different heights above the sources and for unit mass density. The average global mass density for the geological unit acts like a scaling factor and the relation to the gravity signal becomes linear. The computations are done both for Tz (gravity disturbances) and for some chosen gravity gradient components Tzz, Tzx and Tzy, where x,y and z refer to a local east-north-up Cartesian reference frame. The above setup allows constructing a model of the regional (gravity) field both for Tz and for the above gradient components Tzz, Tzx and Tzy and to improve it on regional scale. In principle, the method allows to keep track of the relation between the regional (gravity) signal and the source model. Subsequently, a generalized Nettleton's method can be used to fine-tune density values for the sediments from any above type of gravity data and a combination of it. Finally, for the well-surveyed areas, the results can be compared with the independent information about the basin geometry. This experience can be used for quantifying the information about the sedimentary basin in areas where the information is limited.
Application of gravity model on the Korean urban bus network
NASA Astrophysics Data System (ADS)
Hong, Inho; Jung, Woo-Sung
2016-11-01
Mobility models have been studied to describe the underlying mechanism of human mobility. The mobility patterns in various transportation systems were understood with the gravity model by estimating the traffic as a simple function of population and distance. Compared to most studies on large-scale systems, we focused on the validity and characteristics of gravity model for intraurban mobility. Several variations of gravity model are applied on the urban bus systems of five medium-sized cities in Korea. The gravity model successfully estimates the intraurban traffic without universal exponents for cities. From the change of exponents by predictor types, we figure out the effect by a non-trivial relation between traffic and population in the urban areas.
FFT and Wavelet analysis for the study of gravity wave activity over a modeled hurricane environment
NASA Astrophysics Data System (ADS)
Kuester, M. A.; Alexander, J.; Ray, E.
2005-12-01
Understanding of gravity waves and their sources are important for driving global circulations in climate and weather forecasting models. Temperature fluctuations associated with gravity waves near the tropopause also affect cirrus cloud formation, which is important to the study of radiative forcing in the atmosphere. Deep convection is believed to be a major source for these waves and hurricanes may be particularly long-lived and intense sources. Simulations of Hurricane Humberto have been studied using the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Humberto is simulated at both tropical storm and hurricane stages. Information about gravity waves and their sources can be inferred from horizontal wind and temperature variances in the troposphere and lower stratosphere. Both Fast Fourier Transform (FFT) and Wavelet analyses are employed to investigate wave properties and behavior in the lower stratosphere. FFT analysis gives an overall view of storm affects while Wavelet analysis gives a local picture of gravity wave activity. It is found that a hurricane can be a significant source of deep heating which actively triggers gravity waves from the hot tower region of the storm eye wall. Convectively generated gravity waves are observed in the lower stratosphere of this model with horizontal scales of 10-250 km, vertical scales around 5 km and with intrinsic periods of approximately 20 minutes. Some specific characteristics of gravity waves found above the storm will be presented along with further discussion from the wave activity observed with the model. Deep convection over the oceans is thought to play a key role in atmospheric forcing via the creation of vertically propagating gravity waves and hurricane induced gravity waves may play a role in stratospheric forcing during the hurricane season.
Model-independent constraints on possible modifications of Newtonian gravity
NASA Technical Reports Server (NTRS)
Talmadge, C.; Berthias, J.-P.; Hellings, R. W.; Standish, E. M.
1988-01-01
New model-independent constraints on possible modifications of Newtonian gravity over solar-system distance scales are presented, and their implications discussed. The constraints arise from the analysis of various planetary astrometric data sets. The results of the model-independent analysis are then applied to set limits on a variation in the l/r-squared behavior of gravity, on possible Yukawa-type interactions with ranges of the order of planetary distance scales, and on a deviation from Newtonian gravity of the type discussed by Milgrom (1983).
Venus gravity and topography: 60th degree and order model
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Borderies, N. J.; Chodas, P. W.; Christensen, E. J.; Sjogren, W. L.; Williams, B. G.; Balmino, G.; Barriot, J. P.
1993-01-01
We have combined the most recent Pioneer Venus Orbiter (PVO) and Magellan (MGN) data with the earlier 1978-1982 PVO data set to obtain a new 60th degree and order spherical harmonic gravity model and a 120th degree and order spherical harmonic topography model. Free-air gravity maps are shown over regions where the most marked improvement has been obtained (Ishtar-Terra, Alpha, Bell and Artemis). Gravity versus topography relationships are presented as correlations per degree and axes orientation.
Lithospheric Stress Tensor from Gravity and Lithospheric Structure Models
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Tenzer, Robert
2017-07-01
In this study we investigate the lithospheric stresses computed from the gravity and lithospheric structure models. The functional relation between the lithospheric stress tensor and the gravity field parameters is formulated based on solving the boundary-value problem of elasticity in order to determine the propagation of stresses inside the lithosphere, while assuming the horizontal shear stress components (computed at the base of the lithosphere) as lower boundary values for solving this problem. We further suppress the signature of global mantle flow in the stress spectrum by subtracting the long-wavelength harmonics (below the degree of 13). This numerical scheme is applied to compute the normal and shear stress tensor components globally at the Moho interface. The results reveal that most of the lithospheric stresses are accumulated along active convergent tectonic margins of oceanic subductions and along continent-to-continent tectonic plate collisions. These results indicate that, aside from a frictional drag caused by mantle convection, the largest stresses within the lithosphere are induced by subduction slab pull forces on the side of subducted lithosphere, which are coupled by slightly less pronounced stresses (on the side of overriding lithospheric plate) possibly attributed to trench suction. Our results also show the presence of (intra-plate) lithospheric loading stresses along Hawaii islands. The signature of ridge push (along divergent tectonic margins) and basal shear traction resistive forces is not clearly manifested at the investigated stress spectrum (between the degrees from 13 to 180).
Gravity Modeling for Precise Terrestrial Inertial Navigation
1977-06-01
same type data. Transform techniques have only recently been considered for gravity survey purposes. Heiskanen and Moritz make no mention of this... Heiskanen and Moritz (Ref 14:18-35) give a lucid description of this method. The general solu- tion can be written as V(r, 0, X) =E’’ 1 ’ E [an, mcos(mX...Hill Book Company, 1964. 13. Heiskanen , W. A. and F. A. Vening Meinesz. The Earth and Its Gravity Field. The McGraw-Hill Book Company, Inc., 1958. 14
Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions
NASA Astrophysics Data System (ADS)
Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele
2016-04-01
The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.
Patterns of gravity induced aggregate migration during casting of fluid concretes
Spangenberg, J.; Roussel, N.; Hattel, J.H.; Sarmiento, E.V.; Zirgulis, G.; Geiker, M.R.
2012-12-15
In this paper, aggregate migration patterns during fluid concrete castings are studied through experiments, dimensionless approach and numerical modeling. The experimental results obtained on two beams show that gravity induced migration is primarily affecting the coarsest aggregates resulting in a decrease of coarse aggregates volume fraction with the horizontal distance from the pouring point and in a puzzling vertical multi-layer structure. The origin of this multi layer structure is discussed and analyzed with the help of numerical simulations of free surface flow. Our results suggest that it finds its origin in the non Newtonian nature of fresh concrete and that increasing casting rate shall decrease the magnitude of gravity induced particle migration.
On modeling internal gravity wave dynamics from infrasound propagation
NASA Astrophysics Data System (ADS)
Ribstein, Bruno; Millet, Christophe; Lott, Francois
2017-04-01
Low frequency acoustic waves (infrasounds) are generally used to remotely detect strong explosions, using their possibility of long-distance and coherent propagation. Numerical prediction of infrasounds is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although it is well-known that part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect both the temperature and the wind, yet the process by which the gravity wave field changes some infrasound arrivals remains not well understood. In the present work, we use a stochastic parameterization to model the subgrid scale gravity wave field from atmospheric states provided by ECMWF. Numerical evidence are presented showing that regardless of whether the superimposed gravity wave field possesses relatively small or large features the sensitivity of ground-based infrasound signals can be significantly different. A version of the gravity wave parameterization previously tuned by co-authors for climate modeling purpose is shown to not retrieve the duration of recorded acoustic signals. A new version of the wave-parameterization is here proposed which more accurately predict the small scale content of gravity wave fields, especially in the middle atmosphere. Compare to other semi-empirical approaches one value of this new parameterization is that the gravity wave drag obtained is in agreement with observations.
Acoustic Gravity Wave Chemistry Model for the RAYTRACE Code.
2014-09-26
AU)-AI56 850 ACOlUSTIC GRAVITY WAVE CHEMISTRY MODEL FOR THE IAYTRACE I/~ CODE(U) MISSION RESEARCH CORP SANTA BARBIARA CA T E OLD Of MAN 84 MC-N-SlS...DNA-TN-S4-127 ONAOOI-BO-C-0022 UNLSSIFIlED F/O 20/14 NL 1-0 2-8 1111 po 312.2 1--I 11111* i •. AD-A 156 850 DNA-TR-84-127 ACOUSTIC GRAVITY WAVE...Hicih Frequency Radio Propaoation Acoustic Gravity Waves 20. ABSTRACT (Continue en reveree mide if tteceeemr and Identify by block number) This
Intraspecific differences in bacterial responses to modelled reduced gravity
NASA Technical Reports Server (NTRS)
Baker, P. W.; Leff, L. G.
2005-01-01
AIMS: Bacteria are important residents of water systems, including those of space stations which feature specific environmental conditions, such as lowered effects of gravity. The purpose of this study was to compare responses with modelled reduced gravity of space station, water system bacterial isolates with other isolates of the same species. METHODS AND RESULTS: Bacterial isolates, Stenotrophomonas paucimobilis and Acinetobacter radioresistens, originally recovered from the water supply aboard the International Space Station (ISS) were grown in nutrient broth under modelled reduced gravity. Their growth was compared with type strains S. paucimobilis ATCC 10829 and A. radioresistens ATCC 49000. Acinetobacter radioresistens ATCC 49000 and the two ISS isolates showed similar growth profiles under modelled reduced gravity compared with normal gravity, whereas S. paucimobilis ATCC 10829 was negatively affected by modelled reduced gravity. CONCLUSIONS: These results suggest that microgravity might have selected for bacteria that were able to thrive under this unusual condition. These responses, coupled with impacts of other features (such as radiation resistance and ability to persist under very oligotrophic conditions), may contribute to the success of these water system bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Water quality is a significant factor in many environments including the ISS. Efforts to remove microbial contaminants are likely to be complicated by the features of these bacteria which allow them to persist under the extreme conditions of the systems.
Intraspecific differences in bacterial responses to modelled reduced gravity.
Baker, P W; Leff, L G
2005-01-01
Bacteria are important residents of water systems, including those of space stations which feature specific environmental conditions, such as lowered effects of gravity. The purpose of this study was to compare responses with modelled reduced gravity of space station, water system bacterial isolates with other isolates of the same species. Bacterial isolates, Stenotrophomonas paucimobilis and Acinetobacter radioresistens, originally recovered from the water supply aboard the International Space Station (ISS) were grown in nutrient broth under modelled reduced gravity. Their growth was compared with type strains S. paucimobilis ATCC 10829 and A. radioresistens ATCC 49000. Acinetobacter radioresistens ATCC 49000 and the two ISS isolates showed similar growth profiles under modelled reduced gravity compared with normal gravity, whereas S. paucimobilis ATCC 10829 was negatively affected by modelled reduced gravity. These results suggest that microgravity might have selected for bacteria that were able to thrive under this unusual condition. These responses, coupled with impacts of other features (such as radiation resistance and ability to persist under very oligotrophic conditions), may contribute to the success of these water system bacteria. Water quality is a significant factor in many environments including the ISS. Efforts to remove microbial contaminants are likely to be complicated by the features of these bacteria which allow them to persist under the extreme conditions of the systems.
Intraspecific differences in bacterial responses to modelled reduced gravity
NASA Technical Reports Server (NTRS)
Baker, P. W.; Leff, L. G.
2005-01-01
AIMS: Bacteria are important residents of water systems, including those of space stations which feature specific environmental conditions, such as lowered effects of gravity. The purpose of this study was to compare responses with modelled reduced gravity of space station, water system bacterial isolates with other isolates of the same species. METHODS AND RESULTS: Bacterial isolates, Stenotrophomonas paucimobilis and Acinetobacter radioresistens, originally recovered from the water supply aboard the International Space Station (ISS) were grown in nutrient broth under modelled reduced gravity. Their growth was compared with type strains S. paucimobilis ATCC 10829 and A. radioresistens ATCC 49000. Acinetobacter radioresistens ATCC 49000 and the two ISS isolates showed similar growth profiles under modelled reduced gravity compared with normal gravity, whereas S. paucimobilis ATCC 10829 was negatively affected by modelled reduced gravity. CONCLUSIONS: These results suggest that microgravity might have selected for bacteria that were able to thrive under this unusual condition. These responses, coupled with impacts of other features (such as radiation resistance and ability to persist under very oligotrophic conditions), may contribute to the success of these water system bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Water quality is a significant factor in many environments including the ISS. Efforts to remove microbial contaminants are likely to be complicated by the features of these bacteria which allow them to persist under the extreme conditions of the systems.
Anisotropic stress and stability in modified gravity models
Saltas, Ippocratis D.; Kunz, Martin
2011-03-15
The existence of anisotropic stress of a purely geometrical origin seems to be a characteristic of higher order gravity models, and has been suggested as a probe to test these models observationally, for example, in weak lensing experiments. In this paper, we seek to find a class of higher order gravity models of f(R,G) type that would give us a zero anisotropic stress and study the consequences for the viability of the actual model. For the special case of a de Sitter background, we identify a subclass of models with the desired property. We also find a direct link between anisotropic stress and the stability of the model as well as the presence of extra degrees of freedom, which seems to be a general feature of higher order gravity models. Particularly, setting the anisotropic stress equal to zero for a de Sitter background leads to a singularity that makes it impossible to reach the de Sitter evolution.
NASA Astrophysics Data System (ADS)
Puchwein, Ewald; Baldi, Marco; Springel, Volker
2013-11-01
We present a new massively parallel code for N-body and cosmological hydrodynamical simulations of modified gravity models. The code employs a multigrid-accelerated Newton-Gauss-Seidel relaxation solver on an adaptive mesh to efficiently solve for perturbations in the scalar degree of freedom of the modified gravity model. As this new algorithm is implemented as a module for the P-GADGET3 code, it can at the same time follow the baryonic physics included in P-GADGET3, such as hydrodynamics, radiative cooling and star formation. We demonstrate that the code works reliably by applying it to simple test problems that can be solved analytically, as well as by comparing cosmological simulations to results from the literature. Using the new code, we perform the first non-radiative and radiative cosmological hydrodynamical simulations of an f (R)-gravity model. We also discuss the impact of active galactic nucleus feedback on the matter power spectrum, as well as degeneracies between the influence of baryonic processes and modifications of gravity.
Theoretical modeling of mechanical homeostasis of a mammalian cell under gravity-directed vector.
Zhou, Lüwen; Zhang, Chen; Zhang, Fan; Lü, Shouqin; Sun, Shujin; Lü, Dongyuan; Long, Mian
2017-08-17
Translocation of dense nucleus along gravity vector initiates mechanical remodeling of a eukaryotic cell. In our previous experiments, we quantified the impact of gravity vector on cell remodeling by placing an MC3T3-E1 cell onto upward (U)-, downward (D)-, or edge-on (E)- orientated substrate. Our experimental data demonstrate that orientation dependence of nucleus longitudinal translocation is positively correlated with cytoskeletal (CSK) remodeling of their expressions and structures and also is associated with rearrangement of focal adhesion complex (FAC). However, the underlying mechanism how CSK network and FACs are reorganized in a mammalian cell remains unclear. In this paper, we developed a theoretical biomechanical model to integrate the mechanosensing of nucleus translocation with CSK remodeling and FAC reorganization induced by a gravity vector. The cell was simplified as a nucleated tensegrity structure in the model. The cell and CSK filaments were considered to be symmetrical. All elements of CSK filaments and cytomembrane that support the nucleus were simplified as springs. FACs were simplified as an adhesion cluster of parallel bonds with shared force. Our model proposed that gravity vector-directed translocation of the cell nucleus is mechanically balanced by CSK remodeling and FAC reorganization induced by a gravitational force. Under gravity, dense nucleus tends to translocate and exert additional compressive or stretching force on the cytoskeleton. Finally, changes of the tension force acting on talin by microfilament alter the size of FACs. Results from our model are in qualitative agreement with those from experiments.
Joint analysis of the seismic data and velocity gravity model
NASA Astrophysics Data System (ADS)
Belyakov, A. S.; Lavrov, V. S.; Muchamedov, V. A.; Nikolaev, A. V.
2016-03-01
We performed joint analysis of the seismic noises recorded at the Japanese Ogasawara station located on Titijima Island in the Philippine Sea using the STS-2 seismograph at the OSW station in the winter period of January 1-15, 2015, over the background of a velocity gravity model. The graphs prove the existence of a cause-and-effect relation between the seismic noise and gravity and allow us to consider it as a desired signal.
Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2
NASA Technical Reports Server (NTRS)
Nerem, R. S.; Lerch, F. J.; Marshall, J. A.; Pavlis, E. C.; Putney, B. H.; Tapley, B. D.; Eanes, R. J.; Ries, J. C.; Schutz, B. E.; Shum, C. K.
1994-01-01
The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-1) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being +/- 25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3-4 cm root mean square (RMS), a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.
The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling
NASA Astrophysics Data System (ADS)
Choi, Sungchan; Götze, Hans-Jürgen; Meyer, Uwe; Desire-Group
2010-05-01
This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. The results of the 3D gravity modelling based the GPS analysis, magnetic field characters, seismic researches and analysis of earthquake data allow us to propose that (1) the DSB is divided into two tectonic blocks by the region between the Lisan peninsula and the southern margin of the northern DSB and (2) the tectonic system in the DSB is defined as a counter-clockwise rotating pull
Classifying linearly shielded modified gravity models in effective field theory.
Lombriser, Lucas; Taylor, Andy
2015-01-23
We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime.
NASA Astrophysics Data System (ADS)
Jiang, Tao; Wang, Yan Ming
2016-12-01
One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.
Dark-energy cosmological models in f(G) gravity
Shamir, M. F.
2016-10-15
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G{sup 5/6} support expansion of universe while those with f(G) = G{sup 1/2} do not favor the current expansion.
Dark-energy cosmological models in f( G) gravity
NASA Astrophysics Data System (ADS)
Shamir, M. F.
2016-10-01
We discuss dark-energy cosmological models in f( G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f( G) model are explored. One general solution is discussed using a power-law f( G) gravity model and physical quantities are calculated. In particular, Kasner's universe is recovered and the corresponding f( G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f( G) = G 5/6 support expansion of universe while those with f( G) = G 1/2 do not favor the current expansion.
Fourier transform methods in local gravity modeling
NASA Technical Reports Server (NTRS)
Harrison, J. C.; Dickinson, M.
1989-01-01
New algorithms were derived for computing terrain corrections, all components of the attraction of the topography at the topographic surface and the gradients of these attractions. These algoriithms utilize fast Fourier transforms, but, in contrast to methods currently in use, all divergences of the integrals are removed during the analysis. Sequential methods employing a smooth intermediate reference surface were developed to avoid the very large transforms necessary when making computations at high resolution over a wide area. A new method for the numerical solution of Molodensky's problem was developed to mitigate the convergence difficulties that occur at short wavelengths with methods based on a Taylor series expansion. A trial field on a level surface is continued analytically to the topographic surface, and compared with that predicted from gravity observations. The difference is used to compute a correction to the trial field and the process iterated. Special techniques are employed to speed convergence and prevent oscillations. Three different spectral methods for fitting a point-mass set to a gravity field given on a regular grid at constant elevation are described. Two of the methods differ in the way that the spectrum of the point-mass set, which extends to infinite wave number, is matched to that of the gravity field which is band-limited. The third method is essentially a space-domain technique in which Fourier methods are used to solve a set of simultaneous equations.
NASA Technical Reports Server (NTRS)
Mulugeta, L.; Werner, C. R.; Pennline, J. A.
2015-01-01
During exploration class missions, such as to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Data has shown that astronauts lose bone mass at a rate of 1% to 2% a month in microgravity, particularly in lower extremities such as the proximal femur. Exercise countermeasures have not completely eliminated bone loss from long duration spaceflight missions, which leaves astronauts susceptible to early onset osteoporosis and greater risk of fracture. Introduction of the Advanced Resistive Exercise Device and other large exercise devices on the International Space Station (ISS), coupled with improved nutrition, has further minimized bone loss. However, unlike the ISS, exploration vehicles will have very limited volume and power available to accommodate such capabilities. Therefore, novel concepts like artificial gravity systems are being explored as a means to provide sufficient load stimulus to the musculoskeletal system to mitigate bone changes that may lead to early onset osteoporosis and increased risk of fracture. Currently, there is minimal data available to drive further research and development efforts to appropriately explore such options. Computational modeling can be leveraged to gain insight on the level of osteoprotection that may be achieved using artificial gravity produced by a spinning spacecraft or centrifuge. With this in mind, NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone both for gravitational unloading condition and the equivalent of 1g daily load stimulus. Using this model, it is possible to simulate vBMD changes in trabecular and cortical bone under different gravity conditions. In this presentation, we will discuss our preliminary findings regarding if and how artificial gravity may be used to mitigate spaceflight induced bone loss.
The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling
NASA Astrophysics Data System (ADS)
Choi, S.; Goetze, H.; Meyer, U.; Group, D.
2008-12-01
This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. Using that combined gravity dataset and DESIRE wide angle refractions seismic interpretation we modified density structures in the DSB. As results we estimated that (1) the Moho depth varies from 26 km in the Israel side to 34 km in the Jordan side. (2) The maximum thickness of the Dead Sea sediment Basin is about 15 km. (3) The salt rock with an average thickness of about 5 km is
Gravity model improvement using GEOS-3 (GEM 9 and 10)
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Klosko, S. M.; Laubscher, R. E.; Wagner, C. A.
1977-01-01
The use of collocation permitted GEM 9 to be a larger field than previous derived satellite models, GEM 9 having harmonics complete to 20 x 20 with selected higher degree terms. The satellite data set has approximately 840,000 observations, of which 200,000 are laser ranges taken on 9 satellites equipped with retroreflectors. GEM 10 is complete to 22 x 22 with selected higher degree terms out to degree and order 30 amounting to a total of 592 coefficients. Comparisons with surface gravity and altimeter data indicate a substantial improvement in GEM 9 over previous satellite solutions; GEM 9 is in even closer agreement with surface data than the previously published GEM 6 solution which contained surface gravity. In particular the free air gravity anomalies calculated from GEM 9 and a surface gravity solution are in excellent agreement for the high degree terms.
The XY model coupled to two-dimensional quantum gravity
NASA Astrophysics Data System (ADS)
Baillie, C. F.; Johnston, D. A.
1992-09-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.
A new spin foam model for 4D gravity
NASA Astrophysics Data System (ADS)
Freidel, Laurent; Krasnov, Kirill
2008-06-01
Starting from Plebanski formulation of gravity as a constrained BF theory we propose a new spin foam model for 4D Riemannian quantum gravity that generalizes the well-known Barrett Crane model and resolves the inherent to it ultra-locality problem. The BF formulation of 4D gravity possesses two sectors: gravitational and topological ones. The model presented here is shown to give a quantization of the gravitational sector, and is dual to the recently proposed spin foam model of Engle et al which, we show, corresponds to the topological sector. Our methods allow us to introduce the Immirzi parameter into the framework of spin foam quantization. We generalize some of our considerations to the Lorentzian setting and obtain a new spin foam model in that context as well.
Gravity wave-induced variability of the middle thermosphere
NASA Astrophysics Data System (ADS)
Forbes, Jeffrey M.; Bruinsma, Sean L.; Doornbos, Eelco; Zhang, Xiaoli
2016-07-01
Contemporary theory, modeling, and first-principles simulations indicate that dissipation of gravity waves (GW) plays an important role in modifying the mean circulation, thermal structure, and composition of the thermosphere. GW can propagate into the thermosphere from various sources in the lower atmosphere, deposit energy, and momentum into the thermosphere, and thereby modify its mean circulation, thermal structure and composition. However, measurements that verify or constrain predictions of GW propagation well into the thermosphere, especially on a global basis, are extremely limited. In this paper total mass densities and cross-track winds between 230 and 280 km derived from accelerometer measurements on the Gravity Field and Ocean Circulation Earth Explorer (GOCE) satellite between November 2009 and October 2013 are used to reveal the global morphology of horizontal structures between 128 km and 640 km, which are assumed to mainly reflect the presence of GW. The zonal-mean RMS variability at these scales is quantified in terms of seasonal-latitudinal dependences and dawn-dusk differences, which are interpreted in terms of current theoretical and modeling results. Little evidence is found for any longitude variability that can be attributed to specific source regions, except at high latitudes where polar/auroral sources and magnetic control dominate and near the Andes and the Antarctic Peninsula during local winter.
Incorporating gravity into trace dynamics: the induced gravitational action
NASA Astrophysics Data System (ADS)
Adler, Stephen L.
2013-10-01
We study the incorporation of gravity into the trace dynamics framework for classical matrix-valued fields, from which we have proposed that quantum field theory is the emergent thermodynamics, with state vector reduction arising from fluctuation corrections to this thermodynamics. We show that the metric must be incorporated as a classical, not a matrix-valued, field, with the source for gravity the exactly covariantly conserved trace stress-energy tensor of the matter fields. We then study corrections to the classical gravitational action induced by the dynamics of the matrix-valued matter fields, by examining the average over the trace dynamics canonical ensemble of the matter field action, in the presence of a general background metric. Using constraints from global Weyl scaling and three-space general coordinate transformations, we show that to zeroth order in derivatives of the metric, the induced gravitational action in the preferred rest frame of the trace dynamics canonical ensemble must have the form \\begin{equation} \\fl\\Delta S=\\int d^4x (^{(4)}g)^{1/2}(g_{00})^{-2} A (g_{0i}g_{0j}g^{ij}/g_{00},D^ig_{ij}D^j/g_{00},g_{0i}D^i/g_{00} ) , \\end{equation} with Di defined through the co-factor expansion of (4)g by (4)g/(3)g = g00 + g0iDi, and with A(x, y, z) a general function of its three arguments. This action has ‘chameleon-like’ properties: for the Robertson-Walker cosmological metric, it exactly reduces to a cosmological constant, but for the Schwarzschild metric it diverges as (1 - 2M/r)-2 near the Schwarzschild radius, indicating that it may substantially affect the horizon structure.
Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation
NASA Technical Reports Server (NTRS)
Ramachandran, N.
2005-01-01
What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.
Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation
NASA Technical Reports Server (NTRS)
Ramachandran, N.
2005-01-01
What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
de Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2016-04-01
The GPS instruments on-board the three Earth's Magnetic Field and Environment Explorer (Swarm) satellites provide the opportunity to measure the gravity field model at basin-wide spatial scales. In spite of being a geo-magnetic satellite mission, Swarm's GPS receiver collects highly accurate hl-SST data (van den IJssel et al., 2015), which has been exploited to produce gravity field models at a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2014), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2015) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015). With the help of GRACE gravity field models, which are derived from much more accurate ll-SST data, we investigate the best combination strategy for producing a superior model on the basis of the solutions produced by the three institutes, similarly to the approach taken by the European Gravity Service for Improved Emergency Management project (http://egsiem.eu). We demonstrate that the Swarm-derived gravity field models are able to resolve monthly solutions with 1666km spatial resolutions (roughly up to degree 12). We illustrate how these monthly solutions correlate with GRACE-derived monthly solutions, for the period of 2014 - 2015, as well as indicate which geographical areas are measured more or less accurately.
Static spherical wormhole models in f (R, T) gravity
NASA Astrophysics Data System (ADS)
Yousaf, Z.; Ilyas, M.; Zaeem-ul-Haq Bhatti, M.
2017-06-01
This paper explores the possibility of the existence of wormhole geometries coupled with relativistic matter configurations by taking a particular model of f(R,T) gravity (where T is the trace of energy-momentum tensor). For this purpose, we take the static form of spherically symmetric spacetime and after assuming a specific form of matter and combinations of shape function, the validity of energy conditions is checked. We have discussed our results through graphical representation and studied the equilibrium background of wormhole models by taking an anisotropic fluid. The extra curvature quantities coming from f(R,T) gravity could be interpreted as a gravitational entity supporting these non-standard astrophysical wormhole models. We have shown that in the context of anisotropic fluid and R+α R^2+λ T gravity, wormhole models could possibly exist in few zones in the space of parameters without the need for exotic matter.
Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation
NASA Technical Reports Server (NTRS)
Ramachandran, N.
2005-01-01
What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.
Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation
NASA Technical Reports Server (NTRS)
Ramachandran, N.
2005-01-01
What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.
NASA Astrophysics Data System (ADS)
Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin
2011-05-01
The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is
Simulation of combined rapid gravity filtration and backwash models.
Han, S J; Fitzpatrick, C S B; Wetherill, A
2009-01-01
Combined rapid gravity filtration and backwash models are applied to simulate filtration and backwash cycles. The simulated results from the backwash model suggest that air flow rate can be optimised to maximise particle removal efficiency in the backwash for a particular system. The simulation of combined rapid gravity filtration and backwash models suggests that efficient backwash operation is essential for maintaining the life time of a filter. However, the filter is not advised to be completely cleaned up in the backwash and the particles retained on filter grains after the backwash can be beneficial for subsequent filtration runs.
Simulation on combined rapid gravity filtration and backwash models.
Han, S J; Fitzpatrick, C S B; Wetherill, A
2009-01-01
Combined rapid gravity filtration and backwash models have been applied to simulate filtration and backwash cycles. The simulated results from the backwash model suggest that an optimum air flow rate exists to maximise particle removal efficiency in the backwash operation for a certain backwash system. The simulation of combined rapid gravity filtration and backwash models suggests that the filter should not be completely cleaned up in the backwash and a certain amount of particles retained on filter grains after backwash can be beneficial for subsequent filtration runs. This is consistent with the experimental results in the literature.
Gravity modeling of a reef in Allegan County, Michigan
Wong, M.L.; Smith, W.A.; Harrison, W.B. III . Dept. of Geology)
1993-03-01
The study of the Diamond Springs oil field in Allegan County focuses on the use of gravity to delineate a patch reef. The reef is approximately 1,400 feet deep and is located within the Middle Devonian Traverse Limestone. Its depositional environment was an open shelf, carbonate platform and lagoonal environment. The area of the reef is approximately one square mile and has a vertical relief of about 30 to 80 feet. Porous reef materials are commonly buried by muds or evaporites resulting in ideal conditions for the generation and entrapment of hydrocarbons. Reefs in the Traverse Limestone has produced over 100 million barrels of oil. Using data from cores and well logs available at the Michigan Basin Core Repository at Western Michigan University, a stratigraphic cross section of the reef was constructed. Based on this cross section, a theoretical gravity model is produced using a computer modeling program. Field work was then conducted. The gravity stations were 200 feet apart along a paved road. As the expected anomaly is small, repeat gravity measurements, using a Lacoste-Romberg gravimeter, were made in order to minimize the error, thus allowing the authors to discern the anomaly from the regional. The gravity models obtained from the reduced field data will then be compared with the theoretically determined models.
An improved model for the Earth's gravity field
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.
1989-01-01
An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.
Consistency of f(R) gravity models around solar polytropes
NASA Astrophysics Data System (ADS)
Henttunen, K.; Vilja, I.
2014-04-01
It is stated that a class of f(R) gravity models seem to obtain ΛCDM behavior for high redshifts and general relativistic behavior locally at high curvatures. In the present Letter, we numerically study polytropic configurations that resemble stars like young sun with Hu and Sawicki's f(R) gravity field equations and compare the spacetime at the boundary to the general relativistic counterpart. These polytropes are stationary spherically symmetric configurations and have regular metrics at the origin. Since Birkhoff's theorem does not apply for modified gravity, the solution outside may deviate from Schwarzschild-de Sitter spacetime. At the boundary, Post-Newtonian parametrization was used to determine how much the studied model deviates from the general relativistic ΛCDM model.
Changes in Gene Expression of E. coli under Conditions of Modeled Reduced Gravity
NASA Astrophysics Data System (ADS)
Vukanti, Raja; Mintz, Eric; Leff, Laura
2008-06-01
Relatively few studies have examined bacterial responses to the reduced gravity conditions that are experienced by bacteria grown in space. In this study, whole genome expression of Escherichia coli K12 under clinorotation (which models some of the conditions found under reduced gravity) was analyzed. We hypothesized that phenotypic differences at cellular and population levels under clinorotation (hereafter referred to as modeled reduced gravity) are directly coupled to changes in gene expression. Further, we hypothesized that these responses may be due to indirect effects of these environmental conditions on nutrient accessibility for bacteria. Overall, 430 genes were identified as significantly different between modeled reduced gravity conditions and controls. Up-regulated genes included those involved in the starvation response ( csiD, cspD, ygaF, gabDTP, ygiG, fliY, cysK) and redirecting metabolism under starvation ( ddpX, acs, actP, gdhA); responses to multiple stresses, such as acid stress ( asr, yhiW), osmotic stress ( yehZYW), oxidative stress ( katE, btuDE); biofilm formation ( lldR, lamB, yneA, fadB, ydeY); curli biosynthesis ( csgDEF), and lipid biosynthesis ( yfbEFG). Our results support the previously proposed hypothesis that under conditions of modeled reduced gravity, zones of nutrient depletion develop around bacteria eliciting responses similar to entrance into stationary phase which is generally characterized by expression of starvation inducible genes and genes associated with multiple stress responses.
Particle creation phenomenology, Dirac sea and the induced Weyl and Einstein-dilaton gravity
NASA Astrophysics Data System (ADS)
Berezin, V. A.; Dokuchaev, V. I.; Eroshenko, Yu. N.
2017-01-01
We constructed the conformally invariant model for scalar particle creation induced by strong gravitational fields. Starting from the "usual" hydrodynamical description of the particle motion written in the Eulerian coordinates we substituted the particle number conservation law (which enters the formalism) by "the particle creation law", proportional to the square of the Weyl tensor (following the famous result by Ya.B. Zel'dovich and A.A. Starobinsky). Then, demanding the conformal invariance of the whole dynamical system, we have got both the (Weyl)-conformal gravity and the Einstein-Hilbert gravity action integral with dilaton field. Thus, we obtained something like the induced gravity suggested first by A.D. Sakharov. It is shown that the resulting system is self-consistent. We considered also the vacuum equations. It is shown that, beside the "empty vacuum", there may exist the "dynamical vacuum", which is nothing more but the Dirac sea. The latter is described by the unexpectedly elegant equation which includes both the Bach and Einstein tensors and the cosmological terms.
Parameter sensitivity in satellite-gravity-constrained geothermal modelling
NASA Astrophysics Data System (ADS)
Pastorutti, Alberto; Braitenberg, Carla
2017-04-01
The use of satellite gravity data in thermal structure estimates require identifying the factors that affect the gravity field and are related to the thermal characteristics of the lithosphere. We propose a set of forward-modelled synthetics, investigating the model response in terms of heat flow, temperature, and gravity effect at satellite altitude. The sensitivity analysis concerns the parameters involved, as heat production, thermal conductivity, density and their temperature dependence. We discuss the effect of the horizontal smoothing due to heat conduction, the superposition of the bulk thermal effect of near-surface processes (e.g. advection in ground-water and permeable faults, paleoclimatic effects, blanketing by sediments), and the out-of equilibrium conditions due to tectonic transients. All of them have the potential to distort the gravity-derived estimates.We find that the temperature-conductivity relationship has a small effect with respect to other parameter uncertainties on the modelled temperature depth variation, surface heat flow, thermal lithosphere thickness. We conclude that the global gravity is useful for geothermal studies.
Interior Models and Gravity Field of Jupiter's Moon Amalthea
NASA Astrophysics Data System (ADS)
Weinwurm, G.; Weber, R.
2003-12-01
Before its final plunge into Jupiter in September 2003, GALILEO made a last visit to Jupiters moon Amalthea. This final flyby of the spacecrafts successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amaltheas gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEOs velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amaltheas gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Based on these numbers we calculated the impact on the trajectory of GALILEO and compared it to existing Doppler data. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the calculated gravity field models of Amalthea can be a basis for further exploration of the Jupiter system. Furthermore, the model approach can be used for any planetary body.
Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.
ERIC Educational Resources Information Center
Stimpson, B.
1979-01-01
Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)
Rhea gravity field and interior modeling from Cassini data analysis
NASA Astrophysics Data System (ADS)
Tortora, Paolo; Zannoni, Marco; Hemingway, Doug; Nimmo, Francis; Jacobson, Robert A.; Iess, Luciano; Parisi, Marzia
2016-01-01
During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity investigations, the first in November 2005 and the second in March 2013. This paper presents an estimation of Rhea's fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the two Cassini flybys. Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 × 106 = 946.0 ± 13.9, C22 × 106 = 242.1 ± 4.0 (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor directly using the Radau-Darwin approximation. The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and topography, under different plausible geophysical assumptions. The observed gravity is consistent with that generated by the observed shape for an undifferentiated (uniform density) body. However, because the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the observations.
Ghost Dark Energy in f(R) Model of Gravity
NASA Astrophysics Data System (ADS)
Saaidi, Kh.; Aghamohammadi, A.; Sabet, B.; Farooq, O.
We study a correspondence between f(R) model of gravity in the Jordan frame and a phenomenological kind of dark energy (DE), which is known as QCD ghost DE. Since this kind of DE is not stable in the context of Einsteinian theory of gravity and Brans-Dicke model of gravity, we consider two kinds of correspondence between modified gravity and DE. By studding the dynamical evolution of model and finding relevant quantities such as, equation of state parameter, deceleration parameter, dimensionless density parameter, we show that the model can describe the present Universe and also the EoS parameter can cross the phantom divide line without needs to any kinetic energy with negative sign. Furthermore, by obtaining the adiabatic squared sound speed of the model for different cases of interaction, we show that this model is stable. Finally, we fit this model with supernova observational data in a noninteraction case and we find the best values of parameter at 1σ confidence interval as; f0 = 0.958+0.07-0.25, β = -0, 256+0.2-0.1 and {Ω }m0 = 0.23+0.3-0.15. These best-fit values show that DE equation of state parameter, ωd0, can cross the phantom divide line at the present time.
Approaches to Validation of Models for Low Gravity Fluid Behavior
NASA Technical Reports Server (NTRS)
Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad
2005-01-01
This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.
Influence of modification of gravity on spherical wormhole models
NASA Astrophysics Data System (ADS)
Yousaf, Z.; Ilyas, M.; Bhatti, M. Z.
2017-09-01
This paper explores some wormhole (WH) solutions in the background of additional matter contents of f(R, T) modified gravity. For this purpose, we have considered WH geometry filled with two physically different fluid configurations: one is anisotropic and another is anisotropic characterized by the barotropic equation of state. The energy conditions are examined with particular modified gravity model and found the existence of WH solutions even in the absence of exotic matter. Also, we have analyzed the behavior of shape function in this framework. The stability and physical existence of these solutions is studied with different fluid configurations. We conclude that in the absence of exotic matter, one can find WH solutions with particular model of modified gravity.
NASA Astrophysics Data System (ADS)
Kennedy, Jeffrey; Ferré, Ty P. A.; Creutzfeldt, Benjamin
2016-09-01
Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).
Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin
2016-01-01
Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).
Christian, Joshua M.; Ho, Clifford Kuofei
2010-04-01
Understanding the effects of gravity and wind loads on concentrating solar power (CSP) collectors is critical for performance calculations and developing more accurate alignment procedures and techniques. This paper presents a rigorous finite-element model of a parabolic trough collector that is used to determine the impact of gravity loads on bending and displacements of the mirror facets and support structure. The geometry of the LUZ LS-2 parabolic trough collector was modeled using SolidWorks, and gravity-induced loading and displacements were simulated in SolidWorks Simulation. The model of the trough collector was evaluated in two positions: the 90{sup o} position (mirrors facing upward) and the 0{sup o} position (mirrors facing horizontally). The slope errors of the mirror facet reflective surfaces were found by evaluating simulated angular displacements of node-connected segments along the mirror surface. The ideal (undeformed) shape of the mirror was compared to the shape of the deformed mirror after gravity loading. Also, slope errors were obtained by comparing the deformed shapes between the 90{sup o} and 0{sup o} positions. The slope errors resulting from comparison between the deformed vs. undeformed shape were as high as {approx}2 mrad, depending on the location of the mirror facet on the collector. The slope errors resulting from a change in orientation of the trough from the 90{sup o} position to the 0{sup o} position with gravity loading were as high as {approx}3 mrad, depending on the location of the facet.
Gravity-induced cellular and molecular processes in plants studied under altered gravity conditions
NASA Astrophysics Data System (ADS)
Vagt, Nicole; Braun, Markus
With the ability to sense gravity plants possess a powerful tool to adapt to a great variety of environmental conditions and to respond to environmental changes in a most beneficial way. Gravity is the only constant factor that provides organisms with reliable information for their orientation since billions of years. Any deviation of the genetically determined set-point angle of the plants organs from the vector of gravity is sensed by specialized cells, the statocytes of roots and shoots in higher plants. Dense particles, so-called statoliths, sediment in the direction of gravity and activate membrane-bound gravireceptors. A physiological signalling-cascade is initiated that eventually results in the gravitropic curvature response, namely, the readjust-ment of the growth direction. Experiments under microgravity conditions have significantly contributed to our understanding of plant gravity-sensing and gravitropic reorientation. For a gravity-sensing lower plant cell type, the rhizoid of the green alga Chara, and for statocytes of higher plant roots, it was shown that the interactions between statoliths and the actomyosin system consisting of the actin cytoskeleton and motor proteins (myosins) are the basis for highly efficient gravity-sensing processes. In Chara rhizoids, the actomyosin represents a guid-ing system that directs sedimenting statoliths to a specific graviperception site. Parabolic flight experiments aboard the airbus A300 Zero-G have provided evidence that lower and higher plant cells use principally the same statolith-mediated gravireceptor-activation mechanism. Graviper-ception is not dependent on mechanical pressure mediated through the weight of the sedimented statoliths, but on direct interactions between the statoliths's surface and yet unknown gravire-ceptor molecules. In contrast to Chara rhizoids, in the gravity-sensing cells of higher plants, the actin cytoskeleton is not essentially involved in the early phases of gravity sensing. Dis
An improved gravity model for Mars: Goddard Mars Model 1
NASA Technical Reports Server (NTRS)
Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.
1993-01-01
Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, Goddard Mars Model 1 (GMM-1). This model employs nearly all available data, consisting of approximately 1100 days of S band tracking data collected by NASA's Deep Space Network from the Mariner 9 and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of otpimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X band tracking data from the 379-km altitude, nnear-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolve the gravitational signature of the planet.
An improved gravity model for Mars: Goddard Mars Model 1
NASA Technical Reports Server (NTRS)
Smith, D. E.; Lerch, F. J.; Nerem, R. S.; Zuber, M. T.; Patel, G. B.; Fricke, S. K.; Lemoine, F. G.
1993-01-01
Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, Goddard Mars Model 1 (GMM-1). This model employs nearly all available data, consisting of approximately 1100 days of S band tracking data collected by NASA's Deep Space Network from the Mariner 9 and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of otpimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X band tracking data from the 379-km altitude, nnear-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolve the gravitational signature of the planet.
A gravity model for the Coso geothermal area, California
Feighner, M.A.; Goldstein, N.E.
1990-08-01
Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 {times} 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity variations can be explained by two lithologic units: (1) low density wedges of Quarternary alluvium with interbedded thin basalts (2.4 g/cm{sup 3}) filling the Rose Valley and Coso Basin/Indian Wells Valley, and (2) low density cover of Tertiary volcanic rocks and intercalated Coso Formation (2.49 g/cm{sup 3}). A 3-D iterative approach was used to find the thicknesses of both units. The gravity anomaly remaining after effects from Units 1 and 2 are removed is a broad north-south-trending low whose major peak lies 5 km north of Sugarloaf Mountain, the largest of the less than 0.3 m.y. old rhyolite domes in the Coso Range. Most of this residual anomaly can be accounted for by a deep, low-density (2.47 g/cm{sup 3}) prismatic body extending from 8 to about 30 km below the surface. While some of this anomaly might be associated with fractured Sierran granitic rocks, its close correlation to a low-velocity zone with comparable geometry suggests that the residual anomaly is probably caused a large zone of partial melt underlying the rhyolite domes of the Coso Range. 12 refs., 9 figs.
ELIASSI,MEHDI; GLASS JR.,ROBERT J.
2000-03-08
The authors consider the ability of the numerical solution of Richards equation to model gravity-driven fingers. Although gravity-driven fingers can be easily simulated using a partial downwind averaging method, they find the fingers are purely artificial, generated by the combined effects of truncation error induced oscillations and capillary hysteresis. Since Richards equation can only yield a monotonic solution for standard constitutive relations and constant flux boundary conditions, it is not the valid governing equation to model gravity-driven fingers, and therefore is also suspect for unsaturated flow in initially dry, highly nonlinear, and hysteretic media where these fingers occur. However, analysis of truncation error at the wetting front for the partial downwind method suggests the required mathematical behavior of a more comprehensive and physically based modeling approach for this region of parameter space.
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.
3-D GRACE gravity model for the 2011 Japan earthquake
NASA Astrophysics Data System (ADS)
Sastry, Rambhatla G.; Sonker, Mahendra K.
2017-02-01
The GRACE mission has contributed to the seismic characterization of major earthquakes in offshore regions of the world. Here, we isolate satellite gravity signal (μGal range) for the Japan Earthquake of 2011 using a difference method. Contrary to the existing gravity models, we propose a unit vertical pyramid based five-layer 3-D thrust fault model, which extends to the hypocenter and honors the ocean water layer and sea floor upheaval also. Our model partly uses existing seismological information (hypocenter depth of 32 km, rupture length of 300 km and vertical slip of 4 m), provides a snapshot of episodic subduction of the Pacific Plate below the Atlantic Plate and its gravity response closely matches the observed gravity (RMS error of 3.4012×10-13μGal), fully accounting for co-seismic mass redistribution including sea surface deformation. Our inferred rupture length, rupture velocity, average seismic moment magnitude and momentum, respectively, are 300 km, 4.49 km/s, 1.152×1021-1.8816×1021 N m and 2.319×106 GNs, which fairly agree with the literature. Further, our model inferred momentum at the sea floor corresponds to an area pulse that led to Tsunami generation.
Quantum-gravity induced Lorentz violation and dynamical mass generation
Mavromatos, Nick E.
2011-01-15
In the eprint by Jean Alexandre [arXiv:1009.5834], a minimal extension of (3+1)-dimensional quantum electrodynamics has been proposed, which includes Lorentz violation (LV) in the form of higher-(spatial)-derivative isotropic terms in the gauge sector, suppressed by a mass scale M. The model can lead to dynamical mass generation for charged fermions. In this article, I elaborate further on this idea and I attempt to connect it to specific quantum-gravity models, inspired from string/brane theory. Specifically, in the first part of the article, I comment briefly on the gauge dependence of the dynamical mass generation in the approximations of J. Alexandre [arXiv:1009.5834.], and I propose a possible avenue for obtaining the true gauge-parameter-independent value of the mass by means of pinch technique argumentations. In the second part of the work, I embed the LV QED model into multibrane world scenarios with a view to provide a geometrical way of enhancing the dynamical mass to phenomenologically realistic values by means of bulk warp metric factors, in an (inverse) Randall-Sundrum hierarchy. Finally, in the third part of this paper, I demonstrate that such Lorentz-violating QED models may represent parts of a low-energy effective action (of Finsler-Born-Infeld type) of open strings propagating in quantum D0-particle stochastic space-time foam backgrounds, which are viewed as consistent quantum-gravity configurations. To capture correctly the quantum-fluctuating nature of the foam background, I replace the D0-recoil-velocity parts of this action by appropriate gradient operators in three-space, keeping the photon field part intact. This is consistent with the summation over world-sheet genera in the first-quantized string approach. I identify a class of quantum orderings which leads to the LV QED action of J. Alexandre, arXiv:1009.5834. In this way I argue, following the logic in that work, that the D-foam can lead to dynamically generated masses for charged
Centrifuge modeling and analysis of concrete gravity dams. Final report
1995-11-01
This report contains general background information on centrifuge experimentation and linear elastic fracture mechanics pertaining to concrete gravity dam models, and explains in detail the experimental methodology and procedures developed for testing concrete gravity dam models in centrifuges. An important detail in the experimental procedure is that the models are loaded upstream with water and, at fracture, have water uplift pressure within any cracks. Finally, test results and comparisons to analytical/numerical models on two types of dam specimens, that is monolithic concrete dam models and rock foundation/concrete dam models, are reported. The experimental results show good agreement with the numerical finite element analysis predictions, in terms of strains and crest displacements versus upstream water levels. Also, the monolithic concrete specimen`s crack trajectories illustrate curvilinear orientation, qualitatively verifying theoretical predictions.
Constraints on gravity wave induced diffusion in the middle atmosphere
NASA Technical Reports Server (NTRS)
Strobel, Darrell F.
1988-01-01
A review of the important constraints on gravity wave induced diffusion of chemical tracers, heat and momentum is given. Ground-based microwave spectroscopy measurements of H2O and CO and rocket-based mass spectrometer measurements of Ar constrain the eddy diffusion coefficient for constituent transport (K sub zz) to be (1-3) x 10 to the 5th sq cm/sec in the upper mesosphere. Atomic oxygen data also limits K sub zz to a comparable value in the mesopause. From the energy balance of the upper mesosphere the eddy diffusion coefficient for heat transport (D sub H) is, at most, 6 x 10 to the 5th sq cm/sec at the mesopause and decreasing substantially with decreasing altitude. The available evidence for mean wind deceleration and the corresponding eddy diffusion coefficient for momentum stresses (D sub M) suggests that it is at least 1 x 10 to the 6th sq cm/sec in the upper mesosphere. Consequently the eddy Prandtl number for macroscopic scale lengths is greater than 3.
New isostatic model of the lithosphere and gravity field
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Schwintzer, P.; Reigber, Ch.
2003-04-01
A new global model of the isostatic gravity field based on the up-to-date data sets is computed in terms of gravity and geoid. The initial gravity field model is improved using the new CHAMP data. For a construction of the isostatic model of the lithosphere we use the latest compilation of crustal data. Globally this is the CRUST2.0 model, which is supplemented by detailed original data for large parts of North America and North Eurasia. The long-wavelengths of the computed isostatic anomalies up to spherical harmonic degree 20 reflect deep density heterogeneities and the influence of mantle convection through the dynamic topography. The signal contribution of the isostatically balanced lithosphere to the observed gravity or geoid is still significant also for the long-wavelengths: -30- +60 mGal and -15- +40 m peak-to-peak, respectively. Generally the long-wavelength isostaticaly reduced gravity field has much less correlation with the lithosphere patterns than the observed field. This demonstrates that the long-wavelength isostatic gravity field is more appropriate for a modelling of mantle convection than the observed one. The smaller scale isostatic anomalies (wavelengths less than 2000 km) on the other hand are highly sensitive to the quality of the input data used for their computation. To a large extent they reflect internal crustal density inhomogeneities, not included in the isostatic compensation scheme, and uncertainties in the initial crustal data. Thus, small-scale isostatic anomalies may not be always interpreted as a measure of the disturbances of isostatic balance of the lithosphere. Instead we suggest to compute for the smaller scale spectral part the non-isostatic residual topography. The initial crust - upper mantle density model is corrected by gravity inversion in a least squares adjustment. Then, the residual (unbalanced) topography computed with the corrected density distribution represents the isostatic state of the lithosphere. The maximum
Structure formation in a nonlocally modified gravity model
Park, Sohyun; Dodelson, Scott
2013-01-01
We study a nonlocally modified gravity model proposed by Deser and Woodard which gives an explanation for current cosmic acceleration. By deriving and solving the equations governing the evolution of the structure in the Universe, we show that this model predicts a pattern of growth that differs from standard general relativity (+dark energy) at the 10-30% level. These differences will be easily probed by the next generation of galaxy surveys, so the model should be tested shortly.
NASA Astrophysics Data System (ADS)
Rothacher, M.; Reigber, C.; Schmidt, R.; Foerste, C.; Koenig, R.; Flechtner, F.; Meyer, U.; Stubenvoll, R.; Barthelmes, F.; Neumayer, K. H.; Biancale, R.; Bruinsma, S.; Lemoine, J.
2005-12-01
High-resolution global mean gravity field models can be derived from the combination of satellite tracking and surface data. With the CHAMP and GRACE satellite missions, a new generation of such global gravity field models became available. Here the latest results of the processing of GRACE, CHAMP and SLR satellite tracking are presented and compared with outcomes of former analyses. The gravity field parameters obtained are the result of a substantial satellite data reprocessing, based on recently improved processing standards and models. On the other hand, surface gravity data derived from altimetry and gravimetry are globally available, providing a higher resolution than pure satellite data but lacking the high precision in the long-wavelength part. In an optimal approach the satellite-based data are combined with latest, partially newly processed surface gravity data sets to derive a global high-resolution gravity field model combining the high precision and homogeneity in the long- to medium-wavelength part from the satellite data with the short-wavelength resolution of the surface data. The obtained Earth gravity field model is an update of former EIGEN models of a resolution corresponding to a wavelength of 100 km and degree/order 360, respectively.
The effect of gravity-induced pressure gradient on bubble luminescence
NASA Astrophysics Data System (ADS)
Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed
2014-11-01
The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.
Comprehensive Gravity and Dynamics Model Determination of Binary Asteroid Systems
NASA Astrophysics Data System (ADS)
Fahnestock, Eugene G.
2009-09-01
I present the development of additional tools within the framework of JPL's in-house Mirage / Orbit Determination Program (ODP) software to allow the determination of a comprehensive gravity and dynamics model for any binary asteroid system potentially visited by a spacecraft rendezvous mission. This involves a concurrent global solution for the gravity fields of both components, sufficient parametric description of their fully-coupled translational and rotational dynamics, the spacecraft state, and all other relevant force model parameters. This estimation process primarily uses spacecraft radio tracking data (range and Doppler measurements), supplemented by in-situ imaging observations data types. A solution for the gravity field (gravity analysis) and a simultaneous solution for the spacecraft motion and other system properties has been performed before using the ODP for solitary irregular small solar system bodies (e.g. Eros, visited by the NEAR mission), but never for any closely gravitationally bound pair of irregular small solar system bodies. I am expanding NASA's tool set to allow the latter, in preparation for potential future spacecraft rendezvous missions. This is nontrivial, because of the need to incorporate propagation of the binary system's fully-coupled rigid-body dynamical model either along with the spacecraft state within Mirage/ODP or "offline", followed by interpolating an appropriate "binary dynamics ephemeris” representation. Further, this model optionally incorporates formulations for body gravity fields not previously used in this context, and it can be computationally very expensive. However, successfully performing this model determination at a binary asteroid yields valuable science results concerning internal mass distributions and structures of the components and insight into the system's formation and evolution. In this poster I present my current progress in the development of this capability and results for the quality of science
Further stable neutron star models from f(R) gravity
Astashenok, Artyom V.; Capozziello, Salvatore; Odintsov, Sergei D. E-mail: capozziello@na.infn.it
2013-12-01
Neutron star models in perturbative f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R) = R+R(e{sup −R/R{sub 0}}−1) model and for R{sup 2} models with logarithmic and cubic corrections are obtained. In the case of R{sup 2} gravity with cubic corrections, we obtain that at high central densities (ρ > 10ρ{sub ns}, where ρ{sub ns} = 2.7 × 10{sup 14} g/cm{sup 3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ∼ 1.9M{sub ⊙} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints)
High-resolution gravity field modeling using GRAIL mission data
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.
2015-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.
Chameleon halo modeling in f(R) gravity
Li Yin; Hu, Wayne
2011-10-15
We model the chameleon effect on cosmological statistics for the modified gravity f(R) model of cosmic acceleration. The chameleon effect, required to make the model compatible with local tests of gravity, reduces force enhancement as a function of the depth of the gravitational potential wells of collapsed structure and so is readily incorporated into a halo model by including parameters for the chameleon mass threshold and rapidity of transition. We show that the abundance of halos around the chameleon mass threshold is enhanced by both the merging from below and the lack of merging to larger masses. This property also controls the power spectrum in the nonlinear regime and we provide a description of the transition to the linear regime that is valid for a wide range of f(R) models.
High resolution gravity models combining terrestrial and satellite data
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Pavlis, Nikolaos K.; Wang, Yan M.
1992-01-01
Spherical harmonic expansions to degree 360 have been developed that combine satellite potential coefficient information, terrestrial gravity data, satellite altimeter information as a direct tracking data type and topographic information. These models define improved representations of the Earth's gravitational potential beyond that available from just satellite or terrestrial data. The development of the degree 360 models, however, does not imply a uniform accuracy in the determination of the gravity field as numerous geographic areas are devoid of terrestrial data or the resolution of such data is limited to, for example, 100 km. This paper will consider theoretical and numerical questions related to the combination of the various data types. Various models of the combination process are discussed with a discussion of various correction terms for the different models. Various sources of gravity data will be described. The new OSU91 360 model will be discussed with comparisons made to previous 360 models and to other potential coefficient models that are complete to degree 50. Future directions in high degree potential coefficient models will be discussed.
Rapid 3-D forward modeling of gravity and gravity gradient tensor fields
NASA Astrophysics Data System (ADS)
Longwei, C.; Dai, S.; Zhang, Q.
2014-12-01
Three-dimensional inversion are the key process in gravity exploration. In the commonly used scheme of inversion, the subsurface of the earth is usually divided into many small prism blocks (or grids) with variable density values. A key task in gravity inversion is to calculate the composite fields (gravity and gravity gradient tensor) generated by all these grids, this is known as forward modeling. In general forward modeling is memory-demanding and time-consuming. One scheme to rapidly calculate the fields is to implement it in Fourier domain and use fast Fourier transform algorithm. The advantage of the Fourier domain method is, obviously, much faster. However, the intrinsic edge effect of the Fourier domain method degrades the precision of the calculated fields. We have developed an innovative scheme to directly calculate the fields in spatial domain. There are two key points in this scheme. One key point is spatial discretization. Spatial convolution formula is discretized using an approach similar to normal difference method. A key idea during discretization is to use the analytical formula of a cubic prism, and this makes the resultant discrete formula have clear physical meaning: it embodies the superposition principle of the fields and is the exact formula to calculate the fields generated by all grids. The discretization only requires the grids have the same dimension in horizontal directions, and grids in different layers may have different dimension in vertical direction, and this offers more flexibility for inversion. Another key point is discrete convolution calculation. We invoke a high efficient two-dimensional discrete convolution algorithm, and it guarantees both time-saving and memory-saving. Its memory cost has the same order as the number of grids. Numerical test result shows that for a model with a dimension of 1000x1000x201 grids, it takes about 300s to calculate the fields on 1000x1000 field points in a personal computer with 3.4-GHz CPU
New thermal and gravity models of the North American lithosphere
NASA Astrophysics Data System (ADS)
Tesauro, M.; Kaban, M. K.; Cloetingh, S.; Mooney, W. D.
2011-12-01
We present a new thermal model for the North American lithosphere obtained from inversion of NA07 tomography model, following the method described in Cammarano et al. (2003). The advantage of using this seismic model is that it was calculated using an a priori crustal model, which minimizes trade-offs between the velocity structure in the crust and the upper mantle. We first estimate the mantle temperature distribution using a uniform composition and anelasticity model for the entire North American continent. The new results are in contrast with those obtained by previous studies based on interpretation of mantle xenoliths, predicting higher temperature and stronger thermal variability beneath the North American cratons. The reason of this disagreement might be related to the composition assumed and in particular to the iron depletion, characterizing the shallow mantle lithosphere of the cratons, which is neglected in this model. Furthermore, the comparison between the thermal model and the gravity mantle anomalies, which are obtained after removing the crustal effect from the observed gravity field, demonstrates that mantle density heterogeneity is controlled not only by temperature variations but also by compositional changes. We use the new thermal model to estimate the pure thermal component of the mantle gravity anomalies. In the next step we obtain the compositional component, subtracting the former field from the latter. The compositional gravity anomalies are used to estimate lateral and vertical compositional changes of the mantle lithosphere (e.g., percentage of iron depletion beneath the cratons), which are considered in the implementation of more robust thermal models.
NASA Astrophysics Data System (ADS)
Rouvinskaya, Ekaterina; Kurkin, Andrey; Kurkina, Oxana
2017-04-01
Intensive internal gravity waves influence bottom topography in the coastal zone. They induce substantial flows in the bottom layer that are essential for the formation of suspension and for the sediment transport. It is necessary to develop a mathematical model to predict the state of the seabed near the coastline to assess and ensure safety during the building and operation of the hydraulic engineering constructions. There are many models which are used to predict the impact of storm waves on the sediment transport processes. Such models for the impact of the tsunami waves are also actively developing. In recent years, the influence of intense internal waves on the sedimentation processes is also of a special interest. In this study we adapt one of such models, that is based on the advection-diffusion equation and allows to study processes of resuspension under the influence of internal gravity waves in the coastal zone, for solving the specific practical problems. During the numerical simulation precomputed velocity values are substituted in the advection - diffusion equation for sediment concentration at each time step and each node of the computational grid. Velocity values are obtained by the simulation of the internal waves' dynamics by using the IGW Research software package for numerical integration of fully nonlinear two-dimensional (vertical plane) system of equations of hydrodynamics of inviscid incompressible stratified fluid in the Boussinesq approximation bearing in mind the impact of barotropic tide. It is necessary to set the initial velocity and density distribution in the computational domain, bottom topography, as well as the value of the Coriolis parameter and, if necessary, the parameters of the tidal wave to carry out numerical calculations in the software package IGW Research. To initialize the background conditions of the numerical model we used data records obtained in the summer in the southern part of the shelf zone of Sakhalin Island
A high resolution gravity model for Venus - GVM-1
NASA Technical Reports Server (NTRS)
Nerem, R. S.; Bills, B. G.; Mcnamee, J. B.
1993-01-01
A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.
Precise Determination of the Zero-Gravity Surface Figure of a Mirror without Gravity-Sag Modeling
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.; Lam, Jonathan C.; Feria, V. Alfonso; Chang, Zensheu
2007-01-01
The zero-gravity surface figure of optics used in spaceborne astronomical instruments must be known to high accuracy, but earthbound metrology is typically corrupted by gravity sag. Generally, inference of the zero-gravity surface figure from a measurement made under normal gravity requires finite-element analysis (FEA), and for accurate results the mount forces must be well characterized. We describe how to infer the zero-gravity surface figure very precisely using the alternative classical technique of averaging pairs of measurements made with the direction of gravity reversed. We show that mount forces as well as gravity must be reversed between the two measurements and discuss how the St. Venant principle determines when a reversed mount force may be considered to be applied at the same place in the two orientations. Our approach requires no finite-element modeling and no detailed knowledge of mount forces other than the fact that they reverse and are applied at the same point in each orientation. If mount schemes are suitably chosen, zero-gravity optical surfaces may be inferred much more simply and more accurately than with FEA.
Halo model and halo properties in Galileon gravity cosmologies
Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Lombriser, Lucas; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: llo@roe.ac.uk E-mail: silvia.pascoli@durham.ac.uk
2014-04-01
We investigate the performance of semi-analytical modelling of large-scale structure in Galileon gravity cosmologies using results from N-body simulations. We focus on the Cubic and Quartic Galileon models that provide a reasonable fit to CMB, SNIa and BAO data. We demonstrate that the Sheth-Tormen mass function and linear halo bias can be calibrated to provide a very good fit to our simulation results. We also find that the halo concentration-mass relation is well fitted by a power law. The nonlinear matter power spectrum computed in the halo model approach is found to be inaccurate in the mildly nonlinear regime, but captures reasonably well the effects of the Vainshtein screening mechanism on small scales. In the Cubic model, the screening mechanism hides essentially all of the effects of the fifth force inside haloes. In the case of the Quartic model, the screening mechanism leaves behind residual modifications to gravity, which make the effective gravitational strength time-varying and smaller than the standard value. Compared to normal gravity, this causes a deficiency of massive haloes and leads to a weaker matter clustering on small scales. For both models, we show that there are realistic halo occupation distributions of Luminous Red Galaxies that can match both the observed large-scale clustering amplitude and the number density of these galaxies.
Shear-free anisotropic cosmological models in {f (R)} gravity
NASA Astrophysics Data System (ADS)
Abebe, Amare; Momeni, Davood; Myrzakulov, Ratbay
2016-04-01
We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f( R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f( R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in f( R) gravity. For the Starobinsky model of f( R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.
Breast tissue stiffness estimation for surgical guidance using gravity-induced excitation
NASA Astrophysics Data System (ADS)
Griesenauer, Rebekah H.; Weis, Jared A.; Arlinghaus, Lori R.; Meszoely, Ingrid M.; Miga, Michael I.
2017-06-01
Tissue stiffness interrogation is fundamental in breast cancer diagnosis and treatment. Furthermore, biomechanical models for predicting breast deformations have been created for several breast cancer applications. Within these applications, constitutive mechanical properties must be defined and the accuracy of this estimation directly impacts the overall performance of the model. In this study, we present an image-derived computational framework to obtain quantitative, patient specific stiffness properties for application in image-guided breast cancer surgery and interventions. The method uses two MR acquisitions of the breast in different supine gravity-loaded configurations to fit mechanical properties to a biomechanical breast model. A reproducibility assessment of the method was performed in a test-retest study using healthy volunteers and was further characterized in simulation. In five human data sets, the within subject coefficient of variation ranged from 10.7% to 27% and the intraclass correlation coefficient ranged from 0.91-0.944 for assessment of fibroglandular and adipose tissue stiffness. In simulation, fibroglandular content and deformation magnitude were shown to have significant effects on the shape and convexity of the objective function defined by image similarity. These observations provide an important step forward in characterizing the use of nonrigid image registration methodologies in conjunction with biomechanical models to estimate tissue stiffness. In addition, the results suggest that stiffness estimation methods using gravity-induced excitation can reliably and feasibly be implemented in breast cancer surgery/intervention workflows.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2017-04-01
The Swarm satellites, with primary mission to measure Earth's Magnetic Field, continue to provide high-quality hl-SST data. We use these data to derive the time-varying gravity field of the Earth up to Spherical Harmonic degree and order 12, on a monthly basis since December 2013. We combine the gravity field solutions computed with the data of all three satellites, as provided by a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2016), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2016) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015) and demonstrate that this uninterrupted time series of gravity field models are in good agreement with the temporal variations observed by the GRACE satellites. Therefore, these data can be used to study large-scale mass changes globally, e.g. i) in the context of low-latency applications, such as the European Gravity Service for Improved Emergency Management project (http://egsiem.eu), ii) in those months where GRACE solutions are not available, and iii) as an important source of independent information for mitigating the GRACE/GRACE Follow-On gap.
Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity
NASA Technical Reports Server (NTRS)
Merte, H., Jr.
1986-01-01
The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.
ORBSIM- ESTIMATING GEOPHYSICAL MODEL PARAMETERS FROM PLANETARY GRAVITY DATA
NASA Technical Reports Server (NTRS)
Sjogren, W. L.
1994-01-01
The ORBSIM program was developed for the accurate extraction of geophysical model parameters from Doppler radio tracking data acquired from orbiting planetary spacecraft. The model of the proposed planetary structure is used in a numerical integration of the spacecraft along simulated trajectories around the primary body. Using line of sight (LOS) Doppler residuals, ORBSIM applies fast and efficient modelling and optimization procedures which avoid the traditional complex dynamic reduction of data. ORBSIM produces quantitative geophysical results such as size, depth, and mass. ORBSIM has been used extensively to investigate topographic features on the Moon, Mars, and Venus. The program has proven particulary suitable for modelling gravitational anomalies and mascons. The basic observable for spacecraft-based gravity data is the Doppler frequency shift of a transponded radio signal. The time derivative of this signal carries information regarding the gravity field acting on the spacecraft in the LOS direction (the LOS direction being the path between the spacecraft and the receiving station, either Earth or another satellite). There are many dynamic factors taken into account: earth rotation, solar radiation, acceleration from planetary bodies, tracking station time and location adjustments, etc. The actual trajectories of the spacecraft are simulated using least squares fitted to conic motion. The theoretical Doppler readings from the simulated orbits are compared to actual Doppler observations and another least squares adjustment is made. ORBSIM has three modes of operation: trajectory simulation, optimization, and gravity modelling. In all cases, an initial gravity model of curved and/or flat disks, harmonics, and/or a force table are required input. ORBSIM is written in FORTRAN 77 for batch execution and has been implemented on a DEC VAX 11/780 computer operating under VMS. This program was released in 1985.
NASA Technical Reports Server (NTRS)
Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.
2004-01-01
The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.
Tornadolike gravity-driven vortex model
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Boldman, D. R.
1974-01-01
The buoyancy-induced vorticity concentration produced as the fluid in a vortex accelerates vertically was studied. The boiloff from liquid nitrogen, to which a small amount of initial vorticity was added, provided a source of cool, heavy gas in which a concentration of vorticity took place. Condensation streamers made the flow visible. It is shown that the presence of a surface boundary layer is not necessary for the effective concentration of vorticity. A simple theoretical analysis of the phenomenon was also made. A radial contraction of the flow with vertical position and a characteristic hook shape in the top view of the streamlines were observed in both theory and experiment. The vorticity concentration observed may be similar to that which occurs in tornadoes.
Gravity dual for a model of perception
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2011-01-01
One of the salient features of human perception is its invariance under dilatation in addition to the Euclidean group, but its non-invariance under special conformal transformation. We investigate a holographic approach to the information processing in image discrimination with this feature. We claim that a strongly coupled analogue of the statistical model proposed by Bialek and Zee can be holographically realized in scale invariant but non-conformal Euclidean geometries. We identify the Bayesian probability distribution of our generalized Bialek-Zee model with the GKPW partition function of the dual gravitational system. We provide a concrete example of the geometric configuration based on a vector condensation model coupled with the Euclidean Einstein-Hilbert action. From the proposed geometry, we study sample correlation functions to compute the Bayesian probability distribution.
Gravity dual for a model of perception
Nakayama, Yu
2011-01-15
One of the salient features of human perception is its invariance under dilatation in addition to the Euclidean group, but its non-invariance under special conformal transformation. We investigate a holographic approach to the information processing in image discrimination with this feature. We claim that a strongly coupled analogue of the statistical model proposed by Bialek and Zee can be holographically realized in scale invariant but non-conformal Euclidean geometries. We identify the Bayesian probability distribution of our generalized Bialek-Zee model with the GKPW partition function of the dual gravitational system. We provide a concrete example of the geometric configuration based on a vector condensation model coupled with the Euclidean Einstein-Hilbert action. From the proposed geometry, we study sample correlation functions to compute the Bayesian probability distribution.
The GRAVITY metrology system: modeling a metrology in optical fibers
NASA Astrophysics Data System (ADS)
Blind, N.; Huber, Heinrich; Eisenhauer, F.; Weber, J.; Gillessen, S.; Lippa, M.; Burtscher, L.; Hans, O.; Haug, M.; Haussmann, F.; Huber, S.; Janssen, A.; Kellner, S.; Kok, Y.; Ott, T.; Pfuhl, O.; Sturm, E.; Wieprecht, E.; Amorim, A.; Brandner, W.; Perrin, G.; Perraut, K.; Straubmeier, C.
2014-07-01
GRAVITY is the second generation VLT Interferometer (VLTI) instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging. The laser metrology system of GRAVITY is at the heart of its astrometric mode, which must measure the distance of 2 stars with a precision of 10 micro-arcseconds. This means the metrology has to measure the optical path difference between the two beam combiners of GRAVITY to a level of 5 nm. The metrology design presents some non-common paths that have consequently to be stable at a level of 1 nm. Otherwise they would impact the performance of GRAVITY. The various tests we made in the past on the prototype give us hints on the components responsible for this error, and on their respective contribution to the total error. It is however difficult to assess their exact origin from only OPD measurements, and therefore, to propose a solution to this problem. In this paper, we present the results of a semi-empirical modeling of the fibered metrology system, relying on theoretical basis, as well as on characterisations of key components. The modeling of the metrology system regarding various effects, e.g., temperature, waveguide heating or mechanical stress, will help us to understand how the metrology behave. The goals of this modeling are to 1) model the test set-ups and reproduce the measurements (as a validation of the modeling), 2) determine the origin of the non-common path errors, and 3) propose modifications to the current metrology design to reach the required 1nm stability.
Computer modeling describes gravity-related adaptation in cell cultures.
Alexandrov, Ludmil B; Alexandrova, Stoyana; Usheva, Anny
2009-12-16
Questions about the changes of biological systems in response to hostile environmental factors are important but not easy to answer. Often, the traditional description with differential equations is difficult due to the overwhelming complexity of the living systems. Another way to describe complex systems is by simulating them with phenomenological models such as the well-known evolutionary agent-based model (EABM). Here we developed an EABM to simulate cell colonies as a multi-agent system that adapts to hyper-gravity in starvation conditions. In the model, the cell's heritable characteristics are generated and transferred randomly to offspring cells. After a qualitative validation of the model at normal gravity, we simulate cellular growth in hyper-gravity conditions. The obtained data are consistent with previously confirmed theoretical and experimental findings for bacterial behavior in environmental changes, including the experimental data from the microgravity Atlantis and the Hypergravity 3000 experiments. Our results demonstrate that it is possible to utilize an EABM with realistic qualitative description to examine the effects of hypergravity and starvation on complex cellular entities.
Transcendental Political Systems and the Gravity Model
NASA Technical Reports Server (NTRS)
Lock, Connor
2012-01-01
This summer I have been working on an Army Deep Futures Model project named Themis. Themis is a JPL based modeling framework that anticipates possible future states for the world within the next 25 years. The goal of this framework is to determine the likelihood that the US Army will need to intervene on behalf of the US strategic interests. Key elements that are modeled within this tool include the world structure and major decisions that are made by key actors. Each actor makes decisions based on their goals and within the constraints of the structure of the system in which they are located. In my research I have focused primarily on the effects of structures upon the decision-making processes of the actors within them. This research is a natural extension of my major program at Georgetown University, where I am studying the International Political Economy and the structures that make it up. My basic goal for this summer project was to be a helpful asset to the Themis modeling team, with any research done or processes learned constituting a bonus.
Transcendental Political Systems and the Gravity Model
NASA Technical Reports Server (NTRS)
Lock, Connor
2012-01-01
This summer I have been working on an Army Deep Futures Model project named Themis. Themis is a JPL based modeling framework that anticipates possible future states for the world within the next 25 years. The goal of this framework is to determine the likelihood that the US Army will need to intervene on behalf of the US strategic interests. Key elements that are modeled within this tool include the world structure and major decisions that are made by key actors. Each actor makes decisions based on their goals and within the constraints of the structure of the system in which they are located. In my research I have focused primarily on the effects of structures upon the decision-making processes of the actors within them. This research is a natural extension of my major program at Georgetown University, where I am studying the International Political Economy and the structures that make it up. My basic goal for this summer project was to be a helpful asset to the Themis modeling team, with any research done or processes learned constituting a bonus.
Cylindrically symmetric cosmological model of the universe in modified gravity
NASA Astrophysics Data System (ADS)
Mishra, B.; Vadrevu, Samhita
2017-02-01
In this paper, we have constructed the cosmological models of the universe in a cylindrically symmetric space time in two classes of f(R,T) gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). We have discussed two cases: one in the linear form and the other in the quadratic form of R. The matter is considered to be in the form of perfect fluid. It is observed that in the first case, the pressure and energy density remain the same, which reduces to a Zeldovich fluid. In the second case we have studied the quadratic function of f(R,T) gravity in the form f(R)=λ(R+R2) and f(T)=λ T. In the second case the pressure is in the negative domain and the energy density is in the positive domain, which confirms that the equation of state parameter is negative. The physical properties of the constructed models are studied.
Domain decomposition methods in FVM approach to gravity field modelling.
NASA Astrophysics Data System (ADS)
Macák, Marek
2017-04-01
The finite volume method (FVM) as a numerical method can be straightforwardly implemented for global or local gravity field modelling. This discretization method solves the geodetic boundary value problems in a space domain. In order to obtain precise numerical solutions, it usually requires very refined discretization leading to large-scale parallel computations. To optimize such computations, we present a special class of numerical techniques that are based on a physical decomposition of the global solution domain. The domain decomposition (DD) methods like the Multiplicative Schwarz Method and Additive Schwarz Method are very efficient methods for solving partial differential equations. We briefly present their mathematical formulations and we test their efficiency. Presented numerical experiments are dealing with gravity field modelling. Since there is no need to solve special interface problems between neighbouring subdomains, in our applications we use the overlapping DD methods.
Satellite laser ranging and gravity field modeling accuracy
NASA Technical Reports Server (NTRS)
Rosborough, George W.
1990-01-01
Gravitational field mismodeling procedures errors in the estimated orbital motion of near Earth satellites. This effect is studied using a linear perturbation approach following the analysis of Kaula. The perturbations in the orbital position as defined by either orbital elements or Cartesian components are determined. From these perturbations it is possible to ascertain the expected signal due to gravitational mismodeling that would be present in station-to-satellite laser ranging measurements. This expected signal has been estimated for the case of the Lageos satellite and using the predicted uncertainties of the GEM-T1 and GEM-T2 gravity field models. The results indicate that observable signal still exists in the laser range residuals given the current accuracy of the range measurements and the accuracy of the gravity field models.
Conformal loop quantum gravity coupled to the standard model
NASA Astrophysics Data System (ADS)
Campiglia, Miguel; Gambini, Rodolfo; Pullin, Jorge
2017-01-01
We argue that a conformally invariant extension of general relativity coupled to the standard model is the fundamental theory that needs to be quantized. We show that it can be treated by loop quantum gravity techniques. Through a gauge fixing and a modified Higgs mechanism particles acquire mass and one recovers general relativity coupled to the standard model. The theory suggests new views with respect to the definition of the Hamiltonian constraint in loop quantum gravity, the semi-classical limit and the issue of finite renormalization in quantum field theory in quantum space-time. It also gives hints about the elimination of ambiguities that arise in quantum field theory in quantum space-time in the calculation of back-reaction.
Gravity monitoring of CO2 movement during sequestration: Model studies
Gasperikova, E.; Hoversten, G.M.
2008-07-15
We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic
Multiple Potts models coupled to two-dimensional quantum gravity
NASA Astrophysics Data System (ADS)
Baillie, C. F.; Johnston, D. A.
1992-07-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.
Neutron star models in frames of f (R) gravity
Astashenok, Artyom V.
2009-01-01
Neutron star models in perturbative f (R) gravity are considered with realistic equations of state. In particular, we consider the FPS and SLy equations of state. The mass-radius relations for f(R)=R+βR(e{sup -R/R₀}₋1) model and for R² models with cubic corrections are obtained. In the case of R2 gravity with cubic corrections, we obtain that at high central densities (ρ > 10 ρ{sub ns} = 2.7 × 10¹⁴ g/cm³ is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 9 km with maximal mass ~ 1.9M{sub ⊙}(SLy equation) or to 8.5 km with mass ~ 1.7M{sub ⊙} (FPS equation). This effect can give rise to more compact stars than in GR. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level.
Analog model for quantum gravity effects: phonons in random fluids.
Krein, G; Menezes, G; Svaiter, N F
2010-09-24
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.
Unified model of loop quantum gravity and matter
NASA Astrophysics Data System (ADS)
Gambini, Rodolfo; Olson, S. Jay; Pullin, Jorge
2006-04-01
We reconsider the unified model of gravitation and Yang Mills interactions proposed by Chakraborty and Peldán, in the light of recent formal developments in loop quantum gravity. In particular, we show that one can promote the Hamiltonian constraint of the unified model to a well defined anomaly-free quantum operator using the techniques introduced by Thiemann, at least for the Euclidean theory. The Lorentzian version of the model can be consistently constructed, but at the moment appears to yield a correct weak field theory only under restrictive assumptions, and its quantization appears problematic.
Using the IRC model to quantize gravity
NASA Astrophysics Data System (ADS)
Stubbs, Aran
2017-01-01
In the IRC model, gravitons are low-energy tachyons trapped between and within sub-atomic particles by the Lorentz contraction. They perceive the tardyons trapping them as having length LV L0*V/c, which is > the graviton's wavelength λ. Their frequency ν is minimal when V -> ∞ , so νV =v∞ *(1 +c2/2V2+c4/6V4 + ...). Within a quark or lepton, the proto-matter's orbit is always tangent to the orbit of the graviton, while external gravitons are only tangent for 10-21 of the proto-matter's orbit. With a 3-dimensional orbit, this gives the proto-matter a diameter 8*10-26 m. From the frequency locking assumed by the theory, this gives the gravitons a base frequency 1.2*1033/sec. From the calculated diameter of the electron, 853 fm, the gravitons there have a V 1013c and energy of 38.6 KeV. This gives a rest energy of -4*1017 i eV.
Equivalence principle implications of modified gravity models
Hui, Lam; Nicolis, Alberto; Stubbs, Christopher W.
2009-11-15
Theories that attempt to explain the observed cosmic acceleration by modifying general relativity all introduce a new scalar degree of freedom that is active on large scales, but is screened on small scales to match experiments. We demonstrate that if such screening occurs via the chameleon mechanism, such as in f(R) theory, it is possible to have order unity violation of the equivalence principle, despite the absence of explicit violation in the microscopic action. Namely, extended objects such as galaxies or constituents thereof do not all fall at the same rate. The chameleon mechanism can screen the scalar charge for large objects but not for small ones (large/small is defined by the depth of the gravitational potential and is controlled by the scalar coupling). This leads to order one fluctuations in the ratio of the inertial mass to gravitational mass. We provide derivations in both Einstein and Jordan frames. In Jordan frame, it is no longer true that all objects move on geodesics; only unscreened ones, such as test particles, do. In contrast, if the scalar screening occurs via strong coupling, such as in the Dvali-Gabadadze-Porrati braneworld model, equivalence principle violation occurs at a much reduced level. We propose several observational tests of the chameleon mechanism: 1. small galaxies should accelerate faster than large galaxies, even in environments where dynamical friction is negligible; 2. voids defined by small galaxies would appear larger compared to standard expectations; 3. stars and diffuse gas in small galaxies should have different velocities, even if they are on the same orbits; 4. lensing and dynamical mass estimates should agree for large galaxies but disagree for small ones. We discuss possible pitfalls in some of these tests. The cleanest is the third one where the mass estimate from HI rotational velocity could exceed that from stars by 30% or more. To avoid blanket screening of all objects, the most promising place to look is in
Quantum gravity and Lorentz invariance violation in the standard model.
Alfaro, Jorge
2005-06-10
The most important problem of fundamental physics is the quantization of the gravitational field. A main difficulty is the lack of available experimental tests that discriminate among the theories proposed to quantize gravity. Recently, Lorentz invariance violation by quantum gravity (QG) has been the source of growing interest. However, the predictions depend on an ad hoc hypothesis and too many arbitrary parameters. Here we show that the standard model itself contains tiny Lorentz invariance violation terms coming from QG. All terms depend on one arbitrary parameter alpha that sets the scale of QG effects. This parameter can be estimated using data from the ultrahigh energy cosmic ray spectrum to be |alpha|< approximately 10(-22)-10(-23).
Spin foam models of matter coupled to gravity
NASA Astrophysics Data System (ADS)
Mikovic, A.
2002-05-01
We construct a class of spin foam models describing matter coupled to gravity, such that the gravitational sector is described by the unitary irreducible representations of the appropriate symmetry group, while the matter sector is described by the finite-dimensional irreducible representations of that group. The corresponding spin foam amplitudes in the four-dimensional gravity case are expressed in terms of the spin network amplitudes for pentagrams with additional external and internal matter edges. We also give a quantum field theory formulation of the model, where the matter degrees of freedom are described by spin network fields carrying the indices from the appropriate group representation. In the non-topological Lorentzian gravity case, we argue that the matter representations should be appropriate SO(3) or SO(2) representations contained in a given Lorentz matter representation, depending on whether one wants to describe a massive or a massless matter field. The corresponding spin network amplitudes are given as multiple integrals of propagators which are matrix spherical functions.
Cluster abundance in f(R) gravity models
Ferraro, Simone; Hu, Wayne; Schmidt, Fabian
2011-03-15
As one of the most powerful probes of cosmological structure formation, the abundance of massive galaxy clusters is a sensitive probe of modifications to gravity on cosmological scales. In this paper, we present results from N-body simulations of a general class of f(R) models, which self-consistently solve the nonlinear field equation for the enhanced forces. Within this class we vary the amplitude of the field, which controls the range of the enhanced gravitational forces, both at the present epoch and as a function of redshift. Most models in the literature can be mapped onto the parameter space of this class. Focusing on the abundance of massive dark matter halos, we compare the simulation results to a simple spherical collapse model. Current constraints lie in the large-field regime, where the chameleon mechanism is not important. In this regime, the spherical collapse model works equally well for a wide range of models and can serve as a model-independent tool for placing constraints on f(R) gravity from cluster abundance. Using these results, we show how constraints from the observed local abundance of X-ray clusters on a specific f(R) model can be mapped onto other members of this general class of models.
Cascading Gravity: Extending the Dvali-Gabadadze-Porrati Model to Higher Dimension
Rham, Claudia de; Dvali, Gia; Hofmann, Stefan; Khoury, Justin; Tolley, Andrew J.; Pujolas, Oriol; Redi, Michele
2008-06-27
We present a generalization of the Dvali-Gabadadze-Porrati scenario to higher codimensions which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law ''cascades'' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales.
Surface state decoherence in loop quantum gravity, a first toy model
NASA Astrophysics Data System (ADS)
Feller, Alexandre; Livine, Etera R.
2017-02-01
The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation à la Lindblad underlining its merits and limitations. The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers.
Nonlinear structure formation in the cubic Galileon gravity model
Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: c.m.baugh@durham.ac.uk
2013-10-01
We model the linear and nonlinear growth of large scale structure in the Cubic Galileon gravity model, by running a suite of N-body cosmological simulations using the ECOSMOG code. Our simulations include the Vainshtein screening effect, which reconciles the Cubic Galileon model with local tests of gravity. In the linear regime, the amplitude of the matter power spectrum increases by ∼ 20% with respect to the standard ΛCDM model today. The modified expansion rate accounts for ∼ 15% of this enhancement, while the fifth force is responsible for only ∼ 5%. This is because the effective unscreened gravitational strength deviates from standard gravity only at late times, even though it can be twice as large today. In the nonlinear regime (k∼>0.1h Mpc{sup −1}), the fifth force leads to only a modest increase (∼<8%) in the clustering power on all scales due to the very efficient operation of the Vainshtein mechanism. Such a strong effect is typically not seen in other models with the same screening mechanism. The screening also results in the fifth force increasing the number density of halos by less than 10%, on all mass scales. Our results show that the screening does not ruin the validity of linear theory on large scales which anticipates very strong constraints from galaxy clustering data. We also show that, whilst the model gives an excellent match to CMB data on small angular scales (l∼>50), the predicted integrated Sachs-Wolfe effect is in tension with Planck/WMAP results.
Affine group formulation of the Standard Model coupled to gravity
Chou, Ching-Yi; Ita, Eyo; Soo, Chopin
2014-04-15
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Trob, D.; Porter, H. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Special Session: SA03 The mesosphere/lower thermosphere region: Structure, dynamics, composition, and emission. Ground based and satellite observations in the upper mesosphere and lower thermosphere (MLT) reveal large seasonal variations in the horizontal wind fields of the diurnal and semidiurnal tides. To provide an understanding of the observations, we discuss results obtained with our Numerical Spectral Model (NMS) that incorporates the gravity wave Doppler Spread Parameterization (DSP) of Hines. Our model reproduces many of the salient features observed, and we discuss numerical experiments that delineate the important processes involved. Gravity wave momentum deposition and the seasonal variations in the tidal excitation contribute primarily to produce the large equinoctial amplitude maxima in the diurnal tide. Gravity wave induced variations in eddy viscosity, not accounted for in the model, have been shown by Akmaev to be important too. For the semidiurnal tide, with amplitude maximum observed during winter solstice, these processes also contribute, but filtering by the mean zonal circulation is more important. A deficiency of our model is that it cannot reproduce the observed seasonal variations in the phase of the semidiurnal tide, and numerical experiments are being carried out to diagnose the cause and to alleviate this problem. The dynamical components of the upper mesosphere are tightly coupled through non-linear processes and wave filtering, and this may constrain the model and require it to reproduce in detail the observed phenomenology.
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Trob, D.; Porter, H. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Special Session: SA03 The mesosphere/lower thermosphere region: Structure, dynamics, composition, and emission. Ground based and satellite observations in the upper mesosphere and lower thermosphere (MLT) reveal large seasonal variations in the horizontal wind fields of the diurnal and semidiurnal tides. To provide an understanding of the observations, we discuss results obtained with our Numerical Spectral Model (NMS) that incorporates the gravity wave Doppler Spread Parameterization (DSP) of Hines. Our model reproduces many of the salient features observed, and we discuss numerical experiments that delineate the important processes involved. Gravity wave momentum deposition and the seasonal variations in the tidal excitation contribute primarily to produce the large equinoctial amplitude maxima in the diurnal tide. Gravity wave induced variations in eddy viscosity, not accounted for in the model, have been shown by Akmaev to be important too. For the semidiurnal tide, with amplitude maximum observed during winter solstice, these processes also contribute, but filtering by the mean zonal circulation is more important. A deficiency of our model is that it cannot reproduce the observed seasonal variations in the phase of the semidiurnal tide, and numerical experiments are being carried out to diagnose the cause and to alleviate this problem. The dynamical components of the upper mesosphere are tightly coupled through non-linear processes and wave filtering, and this may constrain the model and require it to reproduce in detail the observed phenomenology.
Flagellates as model system for gravity detection of single cells
NASA Astrophysics Data System (ADS)
Lebert, Michael; Richter, Peter; Daiker, Viktor; Schuster, Martin; Tebart, Jenny; Strauch, Sebastian M.; Donat-Peter, H.
Euglena gracilis is a unicellular, photosynthetic organism which uses light and gravity as en-vironmental hints to reach and stay in horizons of the water column which are optimal for growth and reproduction. The orientation in respect to light (so called positive and nega-tive phototaxis, i.e. movement toward or away of a light source) was well known and fairly good understood. In contrast, knowledge about the movement away from the centre of gravity (negative gravitaxis) was rather scarce. Over a century it was unclear whether orientation in respect to the gravity vector is based on a physical or a physiological mechanism. Recent results clearly favour the latter. Knock-down mutants (RNAi) were characterized which define certain key components of the gravitactic signal transduction chain. These key components include a TRP-like channel, a gravitaxis-specific calmodulin and a protein kinase A. The molecular characterization of these components is currently performed and will be presented. Euglena is not only a model system for the close understanding of gravity detection in single cells, but can also be used as photosynthetic component, i.e. oxygen source and carbon dioxide as well as nitrogenic components sink in Closed Environmental Systems (CES). Due CES are systems of choice in times of scarce flight opportunities. They allow a massive sample sharing and combine possibilities to do microgravity research for biologists but also for engineers, physicists and material scientists. Recent attempts include Aquacells and Omegahab. In the near future miniaturized systems (Chinese ShenZhou) as well as advanced CES will be flown or tested, respectively. Current attempts and plans will be presented.
The model of lithospheric thickness beneath China from gravity data
NASA Astrophysics Data System (ADS)
Zhang, H.; Ravat, D.
2015-12-01
We compare estimates of lithospheric thickness from several studies in China and examine whether the available gravity field anomalies can constrain these estimates. Ma (1987) suggested based on integrated geophysics that the lithospheric thickness varies from ~130 km in Qinling Dabie orogenic belt to ~60 km in Beijing, and ~50 km in Bohai bay. Lebedev and Nolet (2003) determined the lithospheric thickness in Bohai bay to be ~140 km from S wave tomography. Sodoudi et al.'s (2006) estimate of the lithospheric thickness is 72 km in Qinling Dabie orogenic belt and ~60 km in north China block. Since physical character differences exist between lithosphere and asthenosphere, it is possible to determine the thickness of lithospheric though gravity data. In this study, we use the crustal thickness obtained from teleseismic receiver functions (Li et al., 2014) to model the Moho gravity field variation and then remove this variation from the observed gravity field. Based on the residual field, the lithospheric thickness is obtained by the Parker inversion. Results show that the lithospheric thickness beneath China varies from ~80 km in the north of XinJiang to ~140 km in Tibet, and it changes to ~100 km in Eastern China. The residual field used for inversion is smooth which results in a smooth lithosphere-asthenosphere boundary (LAB). The LAB is generally in agreement with the previous seismic inversion result along profiles in eastern China (e.g. Li et al., 2011) and suggests that our method could be used to estimate the regional lithospheric variation in other areas in China, and somewhere else.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.
Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-22
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators
NASA Astrophysics Data System (ADS)
Belenchia, Alessio; Benincasa, Dionigi M. T.; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello
2016-04-01
Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.
Solar system constraints on f(G) gravity models
De Felice, Antonio; Tsujikawa, Shinji
2009-09-15
We discuss solar system constraints on f(G) gravity models, where f is a function of the Gauss-Bonnet term G. We focus on cosmologically viable f(G) models that can be responsible for late-time cosmic acceleration. These models generally give rise to corrections of the form {epsilon}(r/r{sub s}){sup p} to the vacuum Schwarzschild solution, where {epsilon}=H{sub *}{sup 2}r{sub s}{sup 2}<<1, r{sub s} is the Schwarzschild radius of the Sun, and H{sub *} is the Hubble parameter today. We generally estimate the strength of modifications to general relativity in order to confront models with a number of experiments, such as the deflection of light and the perihelion shift. We show that cosmologically viable f(G) models can be consistent with solar system constraints for a wide range of model parameters.
Constraining f (T ,T ) gravity models using type Ia supernovae
NASA Astrophysics Data System (ADS)
Sáez-Gómez, Diego; Carvalho, C. Sofia; Lobo, Francisco S. N.; Tereno, Ismael
2016-07-01
We present an analysis of an f (T ,T ) extension of the Teleparallel Equivalent of General Relativity, where T denotes the torsion and T denotes the trace of the energy-momentum tensor. This extension includes nonminimal couplings between torsion and matter. In particular, we construct two specific models that recover the usual continuity equation, namely, f (T ,T )=T +g (T ) and f (T ,T )=T ×g (T ). We then constrain the parameters of each model by fitting the predicted distance modulus to that measured from type Ia supernovae and find that both models can reproduce the late-time cosmic acceleration. We also observe that one of the models satisfies well the observational constraints and yields a goodness-of-fit similar to the Λ CDM model, thus demonstrating that f (T ,T ) gravity theory encompasses viable models that can be an alternative to Λ CDM .
Interacting dark energy models in f(T) gravity
NASA Astrophysics Data System (ADS)
Khurshudyan, M.; Myrzakulov, R.; Khurshudyan, As.
2017-06-01
The accelerated expansion of the large-scale universe can be explained in various ways. There are various modifications, and each of them makes an attempt to give its own explanation of the physics behind it. It is well known that modern cosmology is full of various phenomenological assumptions to obtain comprehensive results comparable with observational data. General Relativity is the main theory of gravity and proposed modifications compared to it, giving a hope to find explanations of phenomenological assumptions. f(T) theory of gravity is one of the options. In this paper, we will consider a particular example of f(T) theory and study the effects of various interactions on a cosmological model. Phase space analysis is used to have a qualitative understanding of the late-time behavior of the suggested cosmological models. During our study, we found that among phenomenological models suggested in this paper, we have cosmological models being in good agreement with the observational data. Moreover, study of the behavior of the deceleration parameter q showed a phase transition from a decelerated expanding universe to the accelerated (recent) expanding universe. On the other hand, for the parameters of the models giving the mentioned phase transition, we have estimated the present day values of statefinder parameters (r, s).
A finite difference model for free surface gravity drainage
Couri, F.R.; Ramey, H.J. Jr.
1993-09-01
The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.
High-degree Gravity Models from GRAIL Primary Mission Data
NASA Technical Reports Server (NTRS)
Lemoine, Frank G.; Goossens, Sander J.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2013-01-01
We have analyzed Ka?band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance?component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root?mean?square error in the gravity anomalies computed from the error covariance to 320×320 is 0.77 mGal, compared to 29.0 mGal with the pre?GRAIL model derived with the SELENE mission data, SGM150J, only to 140×140. The global correlations with the Lunar Orbiter Laser Altimeter?derived topography are larger than 0.985 between l = 120 and 330. The free?air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre?GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit?track?related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S?band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 micrometers/s for GRGM420A and from 0.03 to 0.06 micrometers/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k20=0.024615+/-0.0000914, k21=0.023915+/-0.0000132, and k22=0.024852+/-0.0000167, and a preliminary solution for the k30 Love number of k30=0.00734+/-0.0015, where the Love number error sigmas are those obtained with VCE.
Spherical collapse and the halo model in braneworld gravity
NASA Astrophysics Data System (ADS)
Schmidt, Fabian; Hu, Wayne; Lima, Marcos
2010-03-01
We present a detailed study of the collapse of a spherical perturbation in Dvali-Gabadadze-Porrati (DGP) braneworld gravity for the purpose of modeling simulation results for the halo mass function, bias, and matter power spectrum. The presence of evolving modifications to the gravitational force in the form of the scalar brane-bending mode leads to qualitative differences to the collapse in ordinary gravity. In particular, differences in the energetics of the collapse necessitate a new, generalized method for defining the virial radius which does not rely on strict energy conservation. These differences and techniques apply to smooth dark energy models with w≠-1 as well. We also discuss the impact of the exterior of the perturbation on collapse quantities due to the lack of a Birkhoff theorem in DGP. The resulting predictions for the mass function, halo bias, and power spectrum are in good overall agreement with DGP N-body simulations on both the self-accelerating and normal branch. In particular, the impact of the Vainshtein mechanism as measured in the full simulations is matched well. The model and techniques introduced here can serve as practical tools for placing consistent constraints on braneworld models using observations of large-scale structure.
Depth Estimation for Magnetic/Gravity Anomaly Using Model Correction
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Liu, Tianyou; Zhu, Peimin; Yang, Yushan; Zhou, Qiaoli; Zhang, Henglei; Chen, Guoxiong
2017-04-01
The Tilt-depth method has been widely used to determinate the source depth of a magnetic anomaly. In the present study, we deduce similar Tilt-depth methods for both magnetic and gravity data based on the contact and sphere models and obtain the same equation for a gravity anomaly as that for a magnetic anomaly. The theoretical equations and the model tests show that the routine Tilt-depth method would result in unreliable depth estimation for deep sources. This is due to that the contact model is no longer valid for causative sources under the condition in which the depths of causative sources are significantly larger than their horizontal lengths. Accordingly, we suggest that the Tilt-depth derived from the contact model can be used to detect a shallow source, whereas the Tilt-depth derived from the sphere model can be used to detect a deep source. We propose a weighting method based on the estimated depths from both the contact model and the sphere model to estimate the depth for real data. The model tests suggest that the determined depths from the contact model and the sphere model are shallower and deeper, respectively, than the real depth, while the estimated depth from the proposed method is more close to the actual depth. In the application to the Weigang iron ore located in Jiangsu province, China, the routine Tilt-depth method results in -76% relative error, whereas the proposed method obtains the reliable depth estimation compared with the drill holes. In addition, the proposed method works well in the application for the Shijiaquan iron ore located in Shandong province, China. These results indicate that the proposed weighting equation is a general improvement.
Depth Estimation for Magnetic/Gravity Anomaly Using Model Correction
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Liu, Tianyou; Zhu, Peimin; Yang, Yushan; Zhou, Qiaoli; Zhang, Henglei; Chen, Guoxiong
2017-03-01
The Tilt-depth method has been widely used to determinate the source depth of a magnetic anomaly. In the present study, we deduce similar Tilt-depth methods for both magnetic and gravity data based on the contact and sphere models and obtain the same equation for a gravity anomaly as that for a magnetic anomaly. The theoretical equations and the model tests show that the routine Tilt-depth method would result in unreliable depth estimation for deep sources. This is due to that the contact model is no longer valid for causative sources under the condition in which the depths of causative sources are significantly larger than their horizontal lengths. Accordingly, we suggest that the Tilt-depth derived from the contact model can be used to detect a shallow source, whereas the Tilt-depth derived from the sphere model can be used to detect a deep source. We propose a weighting method based on the estimated depths from both the contact model and the sphere model to estimate the depth for real data. The model tests suggest that the determined depths from the contact model and the sphere model are shallower and deeper, respectively, than the real depth, while the estimated depth from the proposed method is more close to the actual depth. In the application to the Weigang iron ore located in Jiangsu province, China, the routine Tilt-depth method results in -76% relative error, whereas the proposed method obtains the reliable depth estimation compared with the drill holes. In addition, the proposed method works well in the application for the Shijiaquan iron ore located in Shandong province, China. These results indicate that the proposed weighting equation is a general improvement.
Leptogenesis from gravity waves in models of inflation.
Alexander, Stephon H S; Peskin, Michael E; Sheikh-Jabbari, M M
2006-03-03
We present a new mechanism for creating the observed cosmic matter-antimatter asymmetry which satisfies all three Sakharov conditions from one common thread, gravitational waves. We generate lepton number through the gravitational anomaly in the lepton number current. The source term comes from elliptically polarized gravity waves that are produced during inflation if the inflaton field contains a CP-odd component. The amount of matter asymmetry generated in our model can be of realistic size for the parameters within the range of some inflationary scenarios and grand unified theories.
Ghost dark energy models in specific modified gravity
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Salako, Ines G.; Sohail, Ayesha
2016-09-01
The paper is devoted to the study of the cosmic acceleration through ghost dark energy models (its simple and generalized form) in the dynamical Chern-Simons modified gravity. In order to check the reliability of this scenario, we explore different cosmological parameters, such as deceleration, equation of state parameters and squared speed of sound. The cosmological planes ωD - 'D and r- s are also investigated in this framework. The obtained results are consistent with observational data of various schemes (WMAP+eCAMB+BAO+H0).
NASA Astrophysics Data System (ADS)
Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri
2016-04-01
Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are
Gravity-induced birefringence within the framework of Poincare gauge theory
Preuss, Oliver; Solanki, Sami K.; Haugan, Mark P.; Jordan, Stefan
2005-08-15
Gauge theories of gravity provide an elegant and promising extension of general relativity. In this paper we show that the Poincare gauge theory exhibits gravity-induced birefringence under the assumption of a specific gauge invariant nonminimal coupling between torsion and Maxwell's field. Furthermore we give for the first time an explicit expression for the induced phase shift between two orthogonal polarization modes within the Poincare framework. Since such a phase shift can lead to a depolarization of light emitted from an extended source this effect is, in principle, observable. We use white dwarf polarimetric data to constrain the essential coupling constant responsible for this effect.
NASA Astrophysics Data System (ADS)
Hatam Chavari, Yaghoub; Bayer, Roger; Djamour, Yahya; Vanicek, Petr
2010-05-01
In order to model the earth gravity field and its temporal variations, different gravity data with terrestrial, airborne and satellite gathered kinds are necessary. It is possible to recover by them the short, medium and long wavelengths of the gravity field respectively. Terrestrial gravity data, especially for the regions with highly variations, are useful for different purposes, i.e. to estimate the actual gravity range in the country, to extend the gravity calibration line, to study the isostasy status (Aboghasem et al., EGU10), to modify the numerical density models, to ameliorate the local geoid models, to prepare a background for geodynamical researches, and so on. The Multi-purpose Physical Geodesy and Geodynamics Network of Iran has recently established over Iran with 700 stations of 30' by 30' distribution (MPGGNI05, Hatam et al., EGU08). About 2000 precise relative gravity measurements gathered between the neighbour stations are prepared the possibility to compute the accurate, confident and homogeneous gravity values for the mentioned network. The MPGGNI is connected to the new 24-stations established national absolute gravity base network of Iran (NGBI09, Hatam et al., EGU09) to unify the reference system and to strengthen the accuracy and confident over the country. All 6 used relative gravimeters were regularly calibrated by the recently established tele cabin/ land national gravity calibration line (TC/L NGCLI, Hatam et al., EGU07). In addition, precise levelling measurements have tied the MPGGNI stations and have connected the new network to the existed national precise levelling network of Iran. Also, precise GPS measurements have been done at each station of MPGGNI with 24 hours duration. The MPGGNI can be understood typically as a precise gravity and GPS/Levelling network, and by repeating it, it is possible to model the changes of different components of the gravity field. In order to improve the precision of old gravity data, each station of
Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)
NASA Technical Reports Server (NTRS)
Kim, Yeong E.; Braswell, W. Danny
1989-01-01
Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.
Comparison of Alternative Gravity Models in Dwarf Galaxy Rotation Curves
NASA Astrophysics Data System (ADS)
Harrington, Justin; Saintable, Taylor; O'Brien, James
2017-01-01
Galactic rotation curves have proven to be the testing ground for dark matter bounds in spiral galaxies of all morphologies. Dwarf Galaxies serve as an increasingly interesting testing ground of rotation curve dynamics due to their increased stellar formation and typically rising rotation curve. These galaxies usually are not dominated by typical stellar structure and mostly terminate at small radial distances. This, coupled with the fact that Cold Dark Matter theories such as NFW (∧ CDM) struggle with the universality of galactic rotation curves, allow for exclusive features of alternative gravitational models to be analyzed. Here, we present a thorough application of alternative gravitational models (conformal gravity and MOND) to a 2010 dwarf galaxy sample from Swaters et al. An analysis and discussion of the results of the fitting procedure of the two alternative gravitational models are explored. We posit here that both the Conformal Gravity and MOND can provide an accurate description of the galactic dynamics without the need for copious dark matter.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.
Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E
2016-11-10
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves
NASA Astrophysics Data System (ADS)
Ripepe, M.; Barfucci, G.; de Angelis, S.; Delle Donne, D.; Lacanna, G.; Marchetti, E.
2016-11-01
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves
Ripepe, M.; Barfucci, G.; De Angelis, S.; Delle Donne, D.; Lacanna, G.; Marchetti, E.
2016-01-01
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models. PMID:27830768
Establishing a Near Term Lunar Farside Gravity Model via Inexpensive Add-on Navigation Payload
NASA Technical Reports Server (NTRS)
Folta, David; Mesarch, Michael; Miller, Ronald; Bell, David; Jedrey, Tom; Butman, Stanley; Asmar, Sami
2007-01-01
The Space Communications and Navigation, Constellation Integration Project (SCIP) is tasked with defining, developing, deploying and operating an evolving multi-decade communications and navigation (C/N) infrastructure including services and subsystems that will support both robotic and human exploration activities at the Moon. This paper discusses an early far side gravitational mapping service and related telecom subsystem that uses an existing spacecraft (WIND) and the Lunar Reconnaissance Orbiter (LRO) to collect data that would address several needs of the SCIP. An important aspect of such an endeavor is to vastly improve the current lunar gravity model while demonstrating the navigation and stationkeeping of a relay spacecraft. We describe a gravity data acquisition activity and the trajectory design of the relay orbit in an Earth-Moon L2 co-linear libration orbit. Several phases of the transfer from an Earth-Sun to the Earth-Moon region are discussed along with transfers within the Earth-Moon system. We describe a proposed, but not integrated, add-on to LRO scheduled to be launched in October of 2008. LRO provided a real host spacecraft against which we designed the science payload and mission activities. From a strategic standpoint, LRO was a very exciting first flight opportunity for gravity science data collection. Gravity Science data collection requires the use of one or more low altitude lunar polar orbiters. Variations in the lunar gravity field will cause measurable variations in the orbit of a low altitude lunar orbiter. The primary means to capture these induced motions is to monitor the Doppler shift of a radio signal to or from the low altitude spacecraft, given that the signal is referenced to a stable frequency reference. For the lunar far side, a secondary orbiting radio signal platform is required. We provide an in-depth look at link margins, trajectory design, and hardware implications. Our approach posed minimum risk to a host mission while
NASA Astrophysics Data System (ADS)
Guo, Zhikui; Chen, Chao; Tao, Chunhui
2016-04-01
Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model
Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere
2014-10-15
Observation and modeling of tsunami -generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...ABSTRACT Build a compatible set of models which 1) calculate the atmospheric gravity waves (GWs) excited by a tsunami , 2) propagate these GWs into...modeling of tsunami -generated gravity waves in the earth’s upper atmosphere Sharon L. Vadas NWRA/CoRA 3380 S. Mitchell Lane Boulder, CO 80301, USA phone
Space-Wise approach for airborne gravity data modelling
NASA Astrophysics Data System (ADS)
Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.
2016-12-01
Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too
Space-Wise approach for airborne gravity data modelling
NASA Astrophysics Data System (ADS)
Sampietro, D.; Capponi, M.; Mansi, A. H.; Gatti, A.; Marchetti, P.; Sansò, F.
2017-05-01
Regional gravity field modelling by means of remove-compute-restore procedure is nowadays widely applied in different contexts: it is the most used technique for regional gravimetric geoid determination, and it is also used in exploration geophysics to predict grids of gravity anomalies (Bouguer, free-air, isostatic, etc.), which are useful to understand and map geological structures in a specific region. Considering this last application, due to the required accuracy and resolution, airborne gravity observations are usually adopted. However, due to the relatively high acquisition velocity, presence of atmospheric turbulence, aircraft vibration, instrumental drift, etc., airborne data are usually contaminated by a very high observation error. For this reason, a proper procedure to filter the raw observations in both the low and high frequencies should be applied to recover valuable information. In this work, a software to filter and grid raw airborne observations is presented: the proposed solution consists in a combination of an along-track Wiener filter and a classical Least Squares Collocation technique. Basically, the proposed procedure is an adaptation to airborne gravimetry of the Space-Wise approach, developed by Politecnico di Milano to process data coming from the ESA satellite mission GOCE. Among the main differences with respect to the satellite application of this approach, there is the fact that, while in processing GOCE data the stochastic characteristics of the observation error can be considered a-priori well known, in airborne gravimetry, due to the complex environment in which the observations are acquired, these characteristics are unknown and should be retrieved from the dataset itself. The presented solution is suited for airborne data analysis in order to be able to quickly filter and grid gravity observations in an easy way. Some innovative theoretical aspects focusing in particular on the theoretical covariance modelling are presented too
NASA Astrophysics Data System (ADS)
Watanabe, Shingo; Miyahara, Saburo
2009-04-01
The interaction of gravity waves (GWs) and the migrating diurnal tide are studied in a GW-resolving general circulation model (GCM) by calculating the tidal components of zonal wind accelerations and equivalent Rayleigh friction due to tidal induced GW dissipation. Two 15-day periods for perpetual equinoctial and solstice simulations are analyzed, which are performed with the Japanese Atmospheric General circulation model for Upper Atmosphere Research (JAGUAR) high-resolution GCM. The model can directly simulate GWs with horizontal wavelengths greater than about 190 km, and, thus reproduce the general features of the mean winds and temperatures from the surface to the mesosphere and lower thermosphere (MLT). The amplitudes of the migrating diurnal tide are successfully simulated during both seasons, and the tidal winds affect the altitudes of GW dissipation in the low-latitude MLT. The tidal component of GW forcing has maximal values of about 15 m s-1 d-1 near the maximal vertical shears of the tidal winds and generally works to shorten the vertical wavelength of the migrating diurnal tide. The phase relationship between the tidal winds and the tidal induced GW forcing is not exactly 90° out of phase, causing amplification/suppression of the tide. The GW forcing amplifies the migrating diurnal tide during the equinox, while during the solstice, it suppresses the tidal winds in the upper mesosphere of both hemispheres. This difference in behavior can be attributed to a seasonal variation of the mean zonal winds, because combination of the mean and tidal winds affects the altitudes of GW dissipation.
Decay of sandstone monuments in Petra (Jordan): Gravity-induced stress as a stabilizing factor
NASA Astrophysics Data System (ADS)
Řihošek, Jaroslav; Bruthans, Jiří; Mašín, David; Filippi, Michal; Schweigstillova, Jana
2016-04-01
As demonstrated by physical experiments and numerical modeling the gravity-induced stress (stress in further text) in sandstone massive reduces weathering and erosion rate (Bruthans et al. 2014). This finding is in contrast to common view that stress threatens stability of man-made monuments carved to sandstone. Certain low- levels of gravity-induced stress can in fact stabilize and protect these forms against weathering and disintegration. The purpose of this investigation is to evaluate the effect of the stress on weathering of sandstone monuments at the Petra World Heritage Site in Jordan via field observations, salt weathering experiments, and physical and numerical modeling. Previous studies on weathering of Petra monuments have neglected the impact of stress, but the ubiquitous presence of stress-controlled landforms in Petra suggests that it has a substantial effect on weathering and erosion processes on man-made monuments and natural surfaces. Laboratory salt weathering experiments with cubes of Umm Ishrin sandstone from Petra demonstrated the inverse relationship between stress magnitude and decay rate. Physical modeling with Strelec locked sand from the Czech Republic was used to simulate weathering and decay of Petra monuments. Sharp forms subjected to water erosion decayed to rounded shapes strikingly similar to tombs in Petra subjected to more than 2000 years of weathering and erosion. The physical modeling results enabled visualization of the recession of monument surfaces in high spatial and temporal resolution and indicate that the recession rate of Petra monuments is far from constant both in space and time. Numerical modeling of stress fields confirms the physical modeling results. This novel approach to investigate weathering clearly demonstrates that increased stress decreases the decay rate of Petra monuments. To properly delineate the endangered zones of monuments, the potential damage caused by weathering agents should be combined with stress
NASA Astrophysics Data System (ADS)
Lefevre, Maxence; Spiga, Aymeric; Lebonnois, Sebastien
2016-10-01
One of the main questions that remains unclear about the dynamics of the atmosphere of Venus and its interaction with the photochemistry is the characterization of the cloud convective layer which mixes momentum, heat, chemical species and generates gravity waves observed by Venus Express. This dynamical forcing induced by the cloud layer has been proposed as a significant contribution to the maintenance of the super-rotation. However these waves develop from regional to local scales and can not be resolved by global circulation models (GCM) developed insofar. Therefore we developed an unprecedented 3D Venusian mesoscale model based on the Martian mesoscale model using the Weather Research and Forecast terrestrial model. We report the first application of this model : simulating convection in the Venusian cloud layer and associated gravity waves by 3D turbulent-resolving simulations (Large-Eddy Simulations). The model employs an offline radiative forcing based on heating rates extracted from the LMD Venus GCM consisting of three distinct kind of rates. Two radiative ones for short wave (solar) and long wave (IR) and one for the adiabatic cooling/warming due to the global dynamics of the atmosphere (mainly the Hadley cell) with 2 different cloud models. Therefore we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the general circulation on the convection we ran simulations with forcing from a 1D radiative model.The resolved convective layer takes place between 1.0 105 and 3.8 104 Pa with vertical wind between ± 3 m/s, is organized as polygonal closed cells of about 8x8km2, and emits gravity waves on either side with temperature perturbations of about 0.5 K with vertical wavelength of 1 km and horizontal wavelength from 1 to almost 20 km. The order of magnitude of the resolved plumes is consistent with observations though underestimated.We are working on coupling the model with a
New Technology for Density Model Construction Using Gravity Data
NASA Astrophysics Data System (ADS)
Martyshko, P. S.
2010-12-01
The construction process of density sections using gravity data leads to solution of linear inverse problem, which is the classical example of ill-posed problem as its solution is not unique and unstable. It is possible to choose the specific variant of density distribution if additional information is presented. In this article we discuss one approach for constructing three-dimensional density sections using gravity data. Here we suggest the algorithm of finding density distribution in the area of investigations using prior information about geological structures in the region, for example, obtained with seismic methods. This problem appears during constructing earth-crust and mantle models, and, also oil and gas exploration. As the practical investigation involve non-plate layers, new method for searching density distributions inside curve-edged layers was developed. Calculate two-dimension density distribution in these layers if there are no other density anomalies outside given layers. Technology of gravity field sources separation was completely described in [1,2]. Initial data for investigations are located usually on a non-regular grid. As far as all following procedures are developed for data arrays located on regular grids we have to calculate data onto a regular grid (with a uniform nodes spacing). For separating sources of gravity field in depths we based on upward and downward continuation by means Poisson’s formula. The problem of definition of density values in the layer leads to integral equation of the first kind Δg(x,y,0)=Bσ(x,y,), where B - is integral operator, density σ(x,y) is seeking function. Consider double integral in equation above as a sum of integrals over elementary rectangles Δx by Δy, i.e. we imagine layer separated into bars Δx Δy (H2(x,y)-H1(x,y)), each having constant density, and use discrete integral formula (for example, trapeziums formula). Then calculation of the integral comes to the multiplication of vector of
New analytic solutions for modeling vertical gravity gradient anomalies
NASA Astrophysics Data System (ADS)
Kim, Seung-Sep; Wessel, Paul
2016-05-01
Modern processing of satellite altimetry for use in marine gravimetry involves computing the along-track slopes of observed sea-surface heights, projecting them into east-west and north-south deflection of the vertical grids, and using Laplace's equation to algebraically obtain a grid of the vertical gravity gradient (VGG). The VGG grid is then integrated via overlapping, flat Earth Fourier transforms to yield a free-air anomaly grid. Because of this integration and associated edge effects, the VGG grid retains more short-wavelength information (e.g., fracture zone and seamount signatures) that is of particular importance for plate tectonic investigations. While modeling of gravity anomalies over arbitrary bodies has long been a standard undertaking, similar modeling of VGG anomalies over oceanic features is not commonplace yet. Here we derive analytic solutions for VGG anomalies over simple bodies and arbitrary 2-D and 3-D sources. We demonstrate their usability in determining mass excess and deficiency across the Mendocino fracture zone (a 2-D feature) and find the best bulk density estimate for Jasper seamount (a 3-D feature). The methodologies used herein are implemented in the Generic Mapping Tools, available from gmt.soest.hawaii.edu.
Spectral action models of gravity on packed swiss cheese cosmology
NASA Astrophysics Data System (ADS)
Ball, Adam; Marcolli, Matilde
2016-06-01
We present a model of (modified) gravity on spacetimes with fractal structure based on packing of spheres, which are (Euclidean) variants of the packed swiss cheese cosmology models. As the action functional for gravity we consider the spectral action of noncommutative geometry, and we compute its expansion on a space obtained as an Apollonian packing of three-dimensional spheres inside a four-dimensional ball. Using information from the zeta function of the Dirac operator of the spectral triple, we compute the leading terms in the asymptotic expansion of the spectral action. They consist of a zeta regularization of the divergent sum of the leading terms of the spectral actions of the individual spheres in the packing. This accounts for the contribution of points 1 and 3 in the dimension spectrum (as in the case of a 3-sphere). There is an additional term coming from the residue at the additional point in the real dimension spectrum that corresponds to the packing constant, as well as a series of fluctuations coming from log-periodic oscillations, created by the points of the dimension spectrum that are off the real line. These terms detect the fractality of the residue set of the sphere packing. We show that the presence of fractality influences the shape of the slow-roll potential for inflation, obtained from the spectral action. We also discuss the effect of truncating the fractal structure at a certain scale related to the energy scale in the spectral action.
Aspects of cosmological expansion in F(R) gravity models
Appleby, Stephen A; Battye, Richard A E-mail: rbattye@jb.man.ac.uk
2008-05-15
We study cosmological expansion in F(R) gravity using the trace of the field equations. High frequency oscillations in the Ricci scalar, whose amplitude increases as one evolves backward in time, have been predicted in recent works. We show that the approximations used to derive this result very quickly break down in any realistic model due to the non-linear nature of the underlying problem. Using a combination of numerical and semi-analytic techniques, we study a range of models which are otherwise devoid of known pathologies. We find that high frequency asymmetric oscillations and a singularity at finite time appear to be present for a wide range of initial conditions. We show that this singularity can be avoided with a certain range of initial conditions, which we find by evolving the models forwards in time. In addition we show that the oscillations in the Ricci scalar are highly suppressed in the Hubble parameter and scale factor.
Singular boundary method for global gravity field modelling
NASA Astrophysics Data System (ADS)
Cunderlik, Robert
2014-05-01
The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.
Earth-Atmosphere system modeling for acoustic and gravity wave propagation
NASA Astrophysics Data System (ADS)
Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.
2016-12-01
Acoustic and gravity waves generated, for example, by seismic surface waves or explosions in the atmosphere could lead to a significant step into the understanding of the atmosphere dynamics but also of the interior structure of planets. Thus an accurate numerical modeling of the solid-fluid coupling and the atmosphere dynamics is thus important to properly understand the coupled solid-fluid system. We therefore introduce a numerical modeling tool that takes into account the propagation of both acoustic and gravity waves in a non-linear atmosphere (Navier-stokes equations) coupled to a linear viscoelastic solid Earth. The implementation is performed based on both discontinuous and continuous Galerkin methods and implemented in the SPECFEM 2D software package. Validation cases are presented by comparison with analytical solutions and with linear wave propagation simulated based on a finite difference technique in time domain. Simulations are presented to illustrate the ability of the tool to infer wave conversions between acoustic and gravity waves in a windy atmosphere, and non linear effects induced by large-amplitude waves.
NASA Astrophysics Data System (ADS)
Alemdar, S.; Mahatsente, R.; Cemen, I.
2015-12-01
The neotectonics of the Anatolian and Aegean regions is the result of the African plate subduction along the Hellenic and Cyprus trenches and the Anatolian plate collision with the Eurosian plate. The African slab, as imaged by seismic tomography, penetrates the lower mantle and exhibits two major lateral tears below the Anatolian plate. The tears in the slab are related to low velocity structures in the sub-lithospheric mantle. The presence of low velocity structures in the upper mantle is a clear indication of anomalous asthenosphere (asthenospheric windows). What remains unclear is, however, how and to what extent the crust and upper mantle structure beneath the Anatolian region has been modified by the upwelling hot asthenospheric material. To determine the effects of the upwelling hot asthenospheric material in the region, we developed a 3-D gravity model of the crust and upper mantle structure of the Aegean and Anatolian regions (24°-33° E and 34°-40° N). The gravity model is based on satellite-derived gravity data from GRACE, LAGEOS and GOCE missions (EIGEN 6C2). The results of the gravity modelling, as constrained by seismic tomography, shows that the crust above the asthenospheric window, where the subducted African slab exhibits major lateral tears, is relatively thin. The crustal thickness variation within the asthenospheric window area is between 24 & 29 km. In contrast, the regions outside the asthenospheric window area exhibit by far the largest crustal thickness (30 - 42 km). We therefore conclude that the observed crustal thinning in the asthenospheric window area might be attributed to thermal erosion induced by the upwelling hot asthenospheric material and extensional tectonics related to the Southwest retreating Hellenic trench and westward movement of the Anatolian micro plate. The thinning may also be responsible for the high geothermal gradient in the Denizli graben area where two major grabens (i.e., Alaşehir and Bűyűk Menderes Grabens
Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake
Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe
2016-01-01
Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves. PMID:27874858
Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake.
Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe
2016-11-22
Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.
Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake
NASA Astrophysics Data System (ADS)
Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe
2016-11-01
Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.
Three dimensional gravity field modelling of the Chicxulub impact crater
NASA Astrophysics Data System (ADS)
Hildebrand, A.; Millar, J.; Pilkington, M.; Lawton, D.
2003-04-01
Three dimensional gravity field modeling of the Chicxulub crater’s gravity field has refined our working structural model [e.g. 1, 2], and differs somewhat from the results of [3]. The 3D gravity model establishes that the central uplift is within reach of scientific drilling. The 3D gravity modeling method employed is that of [4]. Modelling results particularly reveal the crater’s central structures. The central uplift is a twin peaked structural high with vergence towards the southwest as previously indicated by 2D models [1] and consistent with seismic refraction results [5]. An arm extends towards the northeast, in contrast to the steep gradients that bound the central uplift to the southwest. The width of the uplift at 4 km depth is ~45 km broadening to ~60 km at 5 km depth consistent with 2D modeling. The central uplift rises into the melt sheet to ~2 km depth in contrast to the results of [4] where a top of ~4 km was obtained. However, as refraction results [5] independently constrain the central uplift width and the central uplift density contrast is limited (+0.11gcm-3 here), this is probably a realistic result. The shape of the modeled central uplift is radically different from that advocated by [6] who, based on seismic refraction results, proposed a cup-shaped central uplift (concave top) with a top at ~3 km depth, but of similar width. This interpretation requires substantial departure from density velocity proportionality, and we doubt that the central uplift has an annular top. The filling of the CDC, which we interpret as melt, is revealed as a body slightly elongated in a NE-SW sense with a size consistent with previous 2D model results. With the density contrast measured from the top of the melt sheet, its base lies near ~4 km is obtained consistent with the result of [4]. This depth is dependent upon the density contrast used (-0.15 g/cc), however, and all the mass deficiency need not be melt. The derived melt volume is 1.5 X 104 km3
Brane induced gravity: From a no-go to a no-ghost theorem
NASA Astrophysics Data System (ADS)
Berkhahn, Felix; Hofmann, Stefan; Niedermann, Florian
2012-12-01
Numerous claims in the literature suggest that gravity induced on a higher codimensional surface violates unitarity in the weak coupling regime. However, it remained unclear, why a conserved source localized on this surface and giving rise to an induced gravity term at low energies would absorb and emit the associated ghost, given a consistent source-free theory. In this article it is shown that the appearance of the induced Einstein-Hilbert term does not threaten the unitarity of the theory. It is shown that the would-be ghost highlighted in previous works is nondynamical and therefore not associated with a state in the Hilbert space. The physics arguments behind this statement are presented in a semicovariant language, but the detailed proof is given using Dirac’s constraint analysis. The Hamiltonian on the constraint surface of the linearized theory is derived and turns out to be manifestly positive definite. As a result of these investigations, brane-induced gravity goes without a ghost, opening an exciting window of opportunity for consistent deformations of gravity at the largest observable distances.
NASA Astrophysics Data System (ADS)
Alexander, M. Joan; Stephan, Claudia
2015-04-01
In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional
Performance of FFT methods in local gravity field modelling
NASA Technical Reports Server (NTRS)
Forsberg, Rene; Solheim, Dag
1989-01-01
Fast Fourier transform (FFT) methods provide a fast and efficient means of processing large amounts of gravity or geoid data in local gravity field modelling. The FFT methods, however, has a number of theoretical and practical limitations, especially the use of flat-earth approximation, and the requirements for gridded data. In spite of this the method often yields excellent results in practice when compared to other more rigorous (and computationally expensive) methods, such as least-squares collocation. The good performance of the FFT methods illustrate that the theoretical approximations are offset by the capability of taking into account more data in larger areas, especially important for geoid predictions. For best results good data gridding algorithms are essential. In practice truncated collocation approaches may be used. For large areas at high latitudes the gridding must be done using suitable map projections such as UTM, to avoid trivial errors caused by the meridian convergence. The FFT methods are compared to ground truth data in New Mexico (xi, eta from delta g), Scandinavia (N from delta g, the geoid fits to 15 cm over 2000 km), and areas of the Atlantic (delta g from satellite altimetry using Wiener filtering). In all cases the FFT methods yields results comparable or superior to other methods.
Solving the standard model problems in softened gravity
NASA Astrophysics Data System (ADS)
Salvio, Alberto
2016-11-01
The Higgs naturalness problem is solved if the growth of Einstein's gravitational interaction is softened at an energy ≲1 011 GeV (softened gravity). We work here within an explicit realization where the Einstein-Hilbert Lagrangian is extended to include terms quadratic in the curvature and a nonminimal coupling with the Higgs. We show that this solution is preserved by adding three right-handed neutrinos with masses below the electroweak scale, accounting for neutrino oscillations, dark matter and the baryon asymmetry. The smallness of the right-handed neutrino masses (compared to the Planck scale) and the QCD θ -term are also shown to be natural. We prove that a possible gravitational source of C P violation cannot spoil the model, thanks to the presence of right-handed neutrinos. Inflation is approximately described by the Starobinsky model in this context and can occur even if we live in a metastable vacuum.
Spin foam models for quantum gravity from lattice path integrals
Bonzom, Valentin
2009-09-15
Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case, the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.
Thermodynamic behavior of particular f(R,T)-gravity models
Sharif, M. Zubair, M.
2013-08-15
We investigate the thermodynamics at the apparent horizon of the FRW universe in f(R, T) theory in the nonequilibrium description. The laws of thermodynamics are discussed for two particular models of the f(R, T) theory. The first law of thermodynamics is expressed in the form of the Clausius relation T{sub h} dS-circumflex{sub h} = {delta} Q , where {delta}Q is the energy flux across the horizon and dS-circumflex is the entropy production term. Furthermore, the conditions for the generalized second law of thermodynamics to be preserved are established with the constraints of positive temperature and attractive gravity. We illustrate our results for some concrete models in this theory.
Gravity surveys and geoid models in South America - Present status
NASA Astrophysics Data System (ADS)
Blitzkow, D.; Oliveira Cancoro de Matos, A. O.; Guimaraes, G.; Pacino, M. C.; Barzaghi, R.
2013-05-01
The last effort for a geoid model in South America (GEOID2013) was carried out in the area limited by 15 N and 57 S in latitude and 30 W and 95 W in longitude by the Laboratório de Topografia e Geodesia (LTG), University of São Paulo. The model was based on GOCO03S up to degree and order 200 as a reference field. The oceanic region was completed with the mean free-air gravity anomalies derived from a satellite altimetry model from the Danish National Space Center, called DTU10. The complete Bouguer, Helmert gravity anomalies and primary indirect topographical effect have been derived through the Canadian package SHGEO. The short wavelength component was estimated via FFT with the modified Stokes kernel proposed by Featherstone. The GGMs EIGEN-6C2, DGM-1S, GOCO03S, GO_CONS_GCF_2_DIR_R3 and GO_CONS_GCF_2_TIM_R3 and the geoid models have been evaluated against GPS observations on Bench Marks of the spirit leveling network (GPS/BM). In the last four years a special project in the state of São Paulo and surrounding areas was undertaken with surveys on a basic distance of 5km. New versions of the geoid in the state were derived by Stokes' Integral applying FFT and Least Squares Collocation for comparison. EGM2008, GO_CONS_GCF_2_DIR_R3 and GO_CONS_GCF_2_TIM_R3 have been used as reference field in this case. This is the result of the so called FAPESP Thematic Project that involves several organizations in the state of São Paulo.
Ultralocal models of modified gravity without kinetic term
NASA Astrophysics Data System (ADS)
Brax, Philippe; Rizzo, Luca Alberto; Valageas, Patrick
2016-08-01
We present a class of modified-gravity theories which we call ultralocal models. We add a scalar field, with negligible kinetic terms, to the Einstein-Hilbert action. We also introduce a conformal coupling to matter. This gives rise to a new screening mechanism which is not entirely due to the nonlinearity of the scalar-field potential or the coupling function but to the absence of the kinetic term. As a result this removes any fifth force between isolated objects in vacuum. It turns out that these models are similar to chameleon-type theories with a large mass when considered outside the Compton wavelength but differ on shorter scales. The predictions of these models only depend on a single free function, as the potential and the coupling function are degenerate, with an amplitude given by a parameter α ≲10-6 , whose magnitude springs from requiring a small modification of Newton's potential astrophysically and cosmologically. This singles out a redshift zα˜α-1 /3≳100 where the fifth force is the greatest. The cosmological background follows the Λ cold dark matter (Λ CDM ) history within a 10-6 accuracy, while cosmological perturbations are significantly enhanced (or damped) on small scales, k ≳2 h Mpc-1 at z =0 . The spherical collapse and the halo mass function are modified in the same manner. We find that the modifications of gravity are greater for galactic or subgalactic structures. We also present a thermodynamic analysis of the nonlinear and inhomogeneous fifth-force regime where we find that the Universe is not made more inhomogeneous before zα when the fifth force dominates, and does not lead to the existence of clumped matter on extra small scales inside halos for large masses while this possibility exists for masses M ≲1 011M⊙ where the phenomenology of ultralocal models would be most different from Λ CDM .
NASA Technical Reports Server (NTRS)
McFadden, J. J.; Poovaiah, B. W.
1988-01-01
The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.
NASA Technical Reports Server (NTRS)
McFadden, J. J.; Poovaiah, B. W.
1988-01-01
The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.
Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W.
1995-01-01
A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced
Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W.
1995-01-01
A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced
The hidden flat like universe. Starobinsky-like inflation induced by f (T) gravity
NASA Astrophysics Data System (ADS)
El Hanafy, W.; Nashed, G. G. L.
2015-06-01
We study a single-fluid component in a flat like universe (FLU) governed by f( T) gravity theories, where T is the teleparallel torsion scalar. The FLU model, regardless of the value of the spatial curvature k, identifies a special class of f( T) gravity theories. Remarkably, FLU f( T) gravity does not reduce to teleparallel gravity theory. In large Hubble spacetime the theory is consistent with the inflationary universe scenario and respects the conservation principle. The equation of state evolves similarly in all models . We study the case when the torsion tensor consists of a scalar field, which enables to derive a quintessence potential from the obtained f( T) gravity theory. The potential produces Starobinsky-like model naturally without using a conformal transformation, with higher orders continuously interpolate between Starobinsky and quadratic inflation models. The slow-roll analysis shows double solutions, so that for a single value of the scalar tilt (spectral index) the theory can predict double tensor-to-scalar ratios r of E-mode and B-mode polarizations.
Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2007-01-01
A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.
IGMAS+ a new 3D Gravity, FTG and Magnetic Modeling Software
NASA Astrophysics Data System (ADS)
Götze, Hans-Jürgen; Schmidt, Sabine; Fichler, Christine; Planka, Christian
2010-05-01
Modern geophysical interpretation requires an interdisciplinary approach, particularly when considering the available amount of 'state of the art' information contained in comprehensive data bases. A combination of different geophysical surveys employing seismics, gravity and geoelectrics, together with geological and petrological studies, can provide new insights into the structures and tectonic evolution of the lithosphere and natural deposits. Interdisciplinary interpretation is essential for any numerical modelling of these structures and the processes acting on them Three-dimensional (3D) interactive modeling with the IGMAS+ software provides means for integrated processing and interpretation of geoid, gravity and magnetic fields and their gradients (full tensor), yielding improved geological interpretation. IGMAS+ is an acronym standing for "Interactive Geophysical Modelling Application System". It bases on the existing software IGMAS (http://www.gravity.uni-kiel.de/igmas), a tool developed during the past twenty years for potential field modelling. The new IGMAS+, however, will comprise the advantages of the "old" IGMAS (e.g. flexible geometry concept and a fast and stable algorithm) with automated interpretation tools and a modern graphical GUI based on leading edge insights from psychological computer graphics research and thus provide optimal man machine communication. IGMAS+ fully three-dimensional models are constructed using triangulated polyhedra and/or triangulated grids, to which constant density and/or induced and remanent susceptibility are assigned. Interactive modifications of model parameters (geometry, density, susceptibility, magnetization), access to the numerical modeling process, and direct visualization of both calculated and measured fields of gravity and magnetics, enable the interpreter to design the model as realistically as possible. IGMAS+ allows easy integration of constraining data into interactive modeling processes
IGMAS+ A New 3D Gravity, FTG and Magnetic Modeling Software
NASA Astrophysics Data System (ADS)
Goetze, H.; Schmidt, S.; Fichler, C.; Alvers, M. R.
2007-12-01
Modern geophysical interpretation requires an interdisciplinary approach, particularly when considering the available amount of 'state of the art' information contained in comprehensive data bases. A combination of different geophysical surveys employing seismics, gravity and geoelectrics, together with geological and petrological studies, can provide new insights into the structures and tectonic evolution of the lithosphere and natural deposits. Interdisciplinary interpretation is essential for any numerical modelling of these structures and the processes acting on them. Three-dimensional (3D) interactive modeling with the IGMAS+ software provides means for integrated processing and interpretation of geoid, gravity and magnetic fields and their gradients (full tensor), yielding improved geological interpretation. IGMAS+ is an acronym standing for "Interactive Geophysical Modelling Application System". It bases on the existing software IGMAS (http://www.gravity.uni-kiel.de/igmas), a tool developed during the past twenty years for potential field modelling. The new IGMAS+, however, will comprise the advantages of the "old" IGMAS (e.g. flexible geometry concept and a fast and stable algorithm) with automated interpretation tools and a modern graphical GUI based on leading edge insights from psychological computer graphics research and thus provide optimal man machine communication. IGMAS+ fully three-dimensional models are constructed using triangulated polyhedra and/or triangulated grids, to which constant density and/or induced and remanent susceptibility are assigned. Interactive modifications of model parameters (geometry, density, susceptibility, magnetization), access to the numerical modeling process, and direct visualization of both calculated and measured fields of gravity and magnetics, enable the interpreter to design the model as realistically as possible. IGMAS+ allows easy integration of constraining data into interactive modeling processes
One technique for refining the global Earth gravity models
NASA Astrophysics Data System (ADS)
Koneshov, V. N.; Nepoklonov, V. B.; Polovnev, O. V.
2017-01-01
The results of the theoretical and experimental research on the technique for refining the global Earth geopotential models such as EGM2008 in the continental regions are presented. The discussed technique is based on the high-resolution satellite data for the Earth's surface topography which enables the allowance for the fine structure of the Earth's gravitational field without the additional gravimetry data. The experimental studies are conducted by the example of the new GGMplus global gravity model of the Earth with a resolution about 0.5 km, which is obtained by expanding the EGM2008 model to degree 2190 with the corrections for the topograohy calculated from the SRTM data. The GGMplus and EGM2008 models are compared with the regional geoid models in 21 regions of North America, Australia, Africa, and Europe. The obtained estimates largely support the possibility of refining the global geopotential models such as EGM2008 by the procedure implemented in GGMplus, particularly in the regions with relatively high elevation difference.
Vector field models of modified gravity and the dark sector
Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.
2010-05-15
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.
Detection of gravity-induced polarity of cytoplasmic streaming in Chara
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1995-01-01
Gravity induces a polarity of cytoplasmic streaming in vertically-oriented internodal cells of characean algae. The motive force that powers cytoplasmic streaming is generated at the ectoplasmic/endoplasmic interface. The velocity of streaming, which is about 100 micrometers/s at this interface, decreases with distance from the interface on either side of the cell to 0 micrometers/s near the middle. Therefore, when discussing streaming velocity it is necessary to specify the tangential plane through the cell in which streaming is being measured. This is easily done with a moderate resolution light microscope (which has a lateral resolution of 0.6 micrometers and a depth of field of 1.4 micrometers), but is obscured when using any low resolution technique, such as low magnification light microscopy or laser Doppler spectroscopy. In addition, the effect of gravity on the polarity of cytoplasmic streaming declines with increasing physiological age of isolated cells. Using a classical mechanical analysis, we show that the effect of gravity on the polarity of cytoplasmic streaming cannot result from the effect of gravity acting directly on individual cytoplasmic particles. We suggest that gravity may best be perceived by the entire cell at the plasma membrane-extracellular matrix junction.
Detection of gravity-induced polarity of cytoplasmic streaming in Chara
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1995-01-01
Gravity induces a polarity of cytoplasmic streaming in vertically-oriented internodal cells of characean algae. The motive force that powers cytoplasmic streaming is generated at the ectoplasmic/endoplasmic interface. The velocity of streaming, which is about 100 micrometers/s at this interface, decreases with distance from the interface on either side of the cell to 0 micrometers/s near the middle. Therefore, when discussing streaming velocity it is necessary to specify the tangential plane through the cell in which streaming is being measured. This is easily done with a moderate resolution light microscope (which has a lateral resolution of 0.6 micrometers and a depth of field of 1.4 micrometers), but is obscured when using any low resolution technique, such as low magnification light microscopy or laser Doppler spectroscopy. In addition, the effect of gravity on the polarity of cytoplasmic streaming declines with increasing physiological age of isolated cells. Using a classical mechanical analysis, we show that the effect of gravity on the polarity of cytoplasmic streaming cannot result from the effect of gravity acting directly on individual cytoplasmic particles. We suggest that gravity may best be perceived by the entire cell at the plasma membrane-extracellular matrix junction.
A simple nearly analytic model of a gravity wave driven middle atmospheric circulation
NASA Technical Reports Server (NTRS)
Barnes, Jeffrey R.
1991-01-01
A nearby analytic model of a gravity wave driven middle atmosphere circulation is formulated. The simplified model represents the one-dimensional interaction of a single gravity wave mode with a zonal-mean flow. Solutions of this model are shown to agree very well with numerical results from a more complete mean-flow/gravity-wave model (essentially the model developed by Holton, 1982). A single nondimensional parameter, the ratio of a mean flow radiative forcing parameter, and the gravity wave momentum flux incident into the middle atmosphere from below largely determine the solution of the model. For typical middle atmosphere parameter values, an approximate solution can be obtained, and this solution permits the parameter dependence of the circulation to be characterized very simply. The gravity wave driven circulation extends downward from the level (the breaking level, approximately) where the momentum flux equals the mean flow radiative forcing.
On the model structure of the gravity field of Mars
NASA Astrophysics Data System (ADS)
Zharkov, V. N.; Gudkova, T. V.
2016-07-01
A discussion is presented about the constraints used in constructing a model for the internal structure of Mars. The most important fact is that the Martian chemical model proposed by Wänke and Dreibus (WD) has stood the test of time. This means that the chondritic ratio Fe/Si = 1.71 can be used as a constraint in constructing an interior structure model of the planet. Consideration is given to the constructing of the reference surface of Mars. It is concluded that the effectively hydrostatic-equilibrium model of Mars is well suited for this purpose. The areoid heights and gravity anomalies in the model of Mars are calculated. The results are shown in the figures (maps) and comments made. The results are compared with the similar data for the Earth. Mars deviates much more strongly from the hydrostatic equilibrium than the Earth. It is suggested that the average thickness of the Martian elastic lithosphere should exceed that of the Earth's continental lithosphere.
Zago, Myrka; Lacquaniti, Francesco
2005-08-01
Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.
Sevrin, A.
1993-06-01
After reviewing some aspects of gravity in two dimensions, I show that non-trivial embeddings of sl(2) in a semi-simple (super) Lie algebra give rise to a very large class of extensions of 2D gravity. The induced action is constructed as a gauged WZW model and an exact expression for the effective action is given.
NASA Astrophysics Data System (ADS)
Matthews, Samuel J.; O'Neill, Craig; Lackie, Mark A.
2017-06-01
Gravity gradiometry has a long legacy, with airborne/marine applications as well as surface applications receiving renewed recent interest. Recent instrumental advances has led to the emergence of downhole gravity gradiometry applications that have the potential for greater resolving power than borehole gravity alone. This has promise in both the petroleum and geosequestration industries; however, the effect of inherent uncertainties in the ability of downhole gravity gradiometry to resolve a subsurface signal is unknown. Here, we utilise the open source modelling package, Fatiando a Terra, to model both the gravity and gravity gradiometry responses of a subsurface body. We use a Monte Carlo approach to vary the geological structure and reference densities of the model within preset distributions. We then perform 100 000 simulations to constrain the mean response of the buried body as well as uncertainties in these results. We varied our modelled borehole to be either centred on the anomaly, adjacent to the anomaly (in the x-direction), and 2500 m distant to the anomaly (also in the x-direction). We demonstrate that gravity gradiometry is able to resolve a reservoir-scale modelled subsurface density variation up to 2500 m away, and that certain gravity gradient components (Gzz, Gxz, and Gxx) are particularly sensitive to this variation in gravity/gradiometry above the level of uncertainty in the model. The responses provided by downhole gravity gradiometry modelling clearly demonstrate a technique that can be utilised in determining a buried density contrast, which will be of particular use in the emerging industry of CO2 geosequestration. The results also provide a strong benchmark for the development of newly emerging prototype downhole gravity gradiometers.
A 10 km-resolution synthetic Venus gravity field model based on topography
NASA Astrophysics Data System (ADS)
Li, Fei; Yan, Jianguo; Xu, Luyuan; Jin, Shuanggen; Rodriguez, J. Alexis P.; Dohm, James H.
2015-02-01
A high resolution gravity field model is extremely important in the exploration of Venus. In this paper, we present a 3-dimensional Venus gravity field VGM2014 constructed by using the latest gravity and topography models, residual terrain model (RTM) and the Airy-Heiskanen isostatic compensation model. The VGM2014 is the first 10 km scale Venus gravity field model; the final results are representations of the 3-dimensional surface gravity accelerations and gravity disturbances for Venus. We found that the optimal global compensation depth of Venus is about 60 km, and the crustal density is potentially less than the commonly accepted value of 2700-2900 kg m-3. This model will be potentially beneficial for the precise orbit determination and landing navigation of spacecraft around Venus, and may be utilized as a priori model for Venus gravity field simulation and inversion studies. The VGM2014 does not incorporate direct gravity information beyond degree 70 and it is not recommended for small-scale geophysical interpretation.
New model of inflation with nonminimal derivative coupling of standard model Higgs boson to gravity.
Germani, Cristiano; Kehagias, Alex
2010-07-02
In this Letter we show that there is a unique nonminimal derivative coupling of the standard model Higgs boson to gravity such that it propagates no more degrees of freedom than general relativity sourced by a scalar field, reproduces a successful inflating background within the standard model Higgs parameters, and finally does not suffer from dangerous quantum corrections.
Entropy corrected holographic dark energy models in modified gravity
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Azhar, Nadeem; Rani, Shamaila
We consider the power law and the entropy corrected holographic dark energy (HDE) models with Hubble horizon in the dynamical Chern-Simons modified gravity. We explore various cosmological parameters and planes in this framework. The Hubble parameter lies within the consistent range at the present and later epoch for both entropy corrected models. The deceleration parameter explains the accelerated expansion of the universe. The equation of state (EoS) parameter corresponds to quintessence and cold dark matter (ΛCDM) limit. The ωΛ‑ωΛ‧ approaches to ΛCDM limit and freezing region in both entropy corrected models. The statefinder parameters are consistent with ΛCDM limit and dark energy (DE) models. The generalized second law of thermodynamics remain valid in all cases of interacting parameter. It is interesting to mention here that our results of Hubble, EoS parameter and ωΛ‑ωΛ‧ plane show consistency with the present observations like Planck, WP, BAO, H0, SNLS and nine-year WMAP.
The g-2 of the Muon in Localized Gravity Models
Rizzo, Thomas G.
2001-07-23
The (g 2) of the muon is well known to be an important model building constraint on theories beyond the Standard Model. In this paper, we examine the contributions to (g 2){sub {mu}} arising in the Randall-Sundrum model of localized gravity for the case where the Standard Model gauge fields and fermions are both in the bulk. Using the current experimental world average measurement for (g 2){sub {mu}}, we find that strong constraints can be placed on the mass of the lightest gauge Kaluza-Klein excitation for a narrow part of the allowed range of the assumed universal 5-dimensional fermion mass parameter, {nu}. However, employing both perturbativity and fine-tuning constraints we find that we can further restrict the allowed range of the parameter {nu} to only one fourth of its previous size. The scenario with the SM in the RS bulk is thus tightly constrained, being viable for only a small region of the parameter space.
Gauss-Bonnet modified gravity models with bouncing behavior
NASA Astrophysics Data System (ADS)
Escofet, Anna; Elizalde, Emilio
2016-06-01
The following issue is addressed: How the addition of a Gauss-Bonnet term (generically coming from most fundamental theories, as string and M theories), to a viable model, can change the specific properties, and even the physical nature, of the corresponding cosmological solutions? Specifically, brand new original dark energy models are obtained in this way with quite interesting properties, which exhibit, in a unified fashion, the three distinguished possible cosmological phases corresponding to phantom matter, quintessence and ordinary matter, respectively. A model, in which the equation of state (EoS) parameter, w, is a function of time, is seen to lead either to a singularity of the Big Rip kind or to a bouncing solution which evolves into a de Sitter universe with w = -1. Moreover, new Gauss-Bonnet modified gravity models with bouncing behavior in the early stages of the universe evolution are obtained and tested for the validity and stability of the corresponding solutions. They allow for a remarkably natural, unified description of a bouncing behavior at early times and accelerated expansion at present.
A marked correlation function for constraining modified gravity models
NASA Astrophysics Data System (ADS)
White, Martin
2016-11-01
Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a `generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbation theory. We encourage groups developing modified gravity theories to see whether such statistics provide discriminatory power for their models.
Gravity modeling: the Jacobian function and its approximation
NASA Astrophysics Data System (ADS)
Strykowski, G.; Lauritsen, N. L. B.
2012-04-01
In mathematics, the elements of a Jacobian matrix are the first-order partial derivatives of a scalar function or a vector function with respect to another vector. In inversion theory of geophysics the elements of a Jacobian matrix are a measure of the change of the output signal caused by a local perturbation of a parameter of a given (Earth) model. The elements of a Jacobian matrix can be determined from the general Jacobian function. In gravity modeling this function consists of the "geometrical part" (related to the relative location in 3D of a field point with respect to the source element) and the "source-strength part" (related to the change of mass density of the source element). The explicit (functional) expressions for the Jacobian function can be quite complicated and depend both on the coordinates used (Cartesian, spherical, ellipsoidal) and on the mathematical parametrization of the source (e.g. the homogenous rectangular prism). In practice, and irrespective of the exact expression for the Jacobian function, its value on a computer will always be rounded to a finite number of digits. In fact, in using the exact formulas such finite representation may cause numerical instabilities. If the Jacobian function is smooth enough, it is an advantage to approximate it by a simpler function, e.g. a piecewise-polynomial, which numerically is more robust than the exact formulas and which is more suitable for the subsequent integration. In our contribution we include a whole family of the Jacobian functions which are associated with all the partial derivatives of the gravitational potential of order 0 to 2, i.e. including all the elements of the gravity gradient tensor. The quality of the support points for the subsequent polynomial approximation of the Jacobian function is ensured by using the exact prism formulas in quadruple precision. We will show some first results. Also, we will discuss how such approximated Jacobian functions can be used for large scale
NASA Astrophysics Data System (ADS)
Dehghani, Ali
2016-04-01
In the year 2010 extensive geophysical researches were carried out in the area of Hecataeus Rise using the German research vessel Maria S. Merian. Beside the bathymetry, refraction and reflection seismic data, marine gravity and marine magnetic data were acquired during this cruise. The result of the research along one Wide-Angle reflection/refraction seismic line of this cruise is published 2015 by K. Welford et al.. Based on interpretation of reflection seismic and bathymetry data across the Hecataeus Rise, S. Reiche published 2015 the crustal structure and bathymetric features along some seismic profiles of this cruise. The focus of this work is to use the available sediments and crustal structures inferred by seismic information together with real marine gravity and marine magnetic data in order to produce gravity and magnetic 2-D models along all seismic profiles. While Welford et al. used the altimetry gravity data and magnetic data from EMAG3 database for their modelling, the real gravity and magnetic data measured exactly along the seismic profiles will be used in this work. The advantage of the real marine gravity and real marine magnetic data used for the modelling is that they have higher accuracy in the values as well as in the positions. Furthermore, Welford et al. calculated the gravity and Magnetic models along some seismic profiles, while in this work the result of gravity and magnetic modelling along all seismic profiles of this cruise will be presented. The marine gravity and marine magnetic data along all seismic profiles were recorded continuously. The accuracy of marine gravity data is about ± 1 mGal, while the accuracy of Marine magnetic data is in the range of ± 3 nT. The results of 2-D gravity and magnetic modelling will be presented and discussed in this work.
Stability of modulated-gravity-induced thermal convection in magnetic fields.
Li, B Q
2001-04-01
A stability analysis is presented of modulated-gravity-induced thermal convection in a heated fluid layer subject to an applied magnetic field. The nearest correction to the critical Rayleigh number for both single and multiple frequency oscillating-gravity components is obtained by solving the linearized magnetohydrodynamic equations using the small parameter perturbation technique. The correction depends on both the applied magnetic field and the oscillating frequency. In the absence of an applied magnetic field, the correction depends on the Prandtl number only when the exciting frequency is small. However, it asymptotically approaches zero as the frequency increases, with or without the presence of a magnetic field. The heated fluid layer is more stable with gravity modulation than with any type of wall temperature modulation. The difference becomes smaller with decreasing Prandtl number Pr. This finding is of critical importance in that ground-based experiments with appropriate wall temperature modulations may be conducted to simulate the oscillating-gravity effects on the onset of thermal convection in lower-Prandtl-number fluids. For conducting melts considered for microgravity applications, it is possible to apply an external magnetic field to further inhibit the onset of modulated-gravity-induced thermal convection. This effectiveness increases with the Hartmann number Ha. For large Ha, the nearest correction term R02 approximately Ha2 as the magnetic Prandtl number Pm<1. However, R02 approximately Ha(4/3) for Ha>1 and Pm>1, provided that Ha<0.5pi(Pm/Pr(3/2)), which is satisfied by a majority of space melt experiments. Thus, under normal laboratory conditions applied magnetic fields are more effective in stabilizing a conducting fluid subject to an oscillating-gravity field than one subject to a constant field. If Ha>0.5pi(Pm/Pr(3/2)), R02 approximately -Ha2 for Ha>1 and Pm>1 and the magnetic field becomes less effective in stabilizing thermal convection
Farside lunar gravity from a mass point model
NASA Technical Reports Server (NTRS)
Ananda, M.
1975-01-01
A mass point representation of the lunar gravity field was determined from the long-period orbital variations of the Apollo 15 and 16 subsatellites and Lunar Orbiter V. A radial acceleration contour map, evaluated at 100 km altitude from the lunar surface, shows that the nearside is in close agreement with the result derived from the line of sight method by Muller and Sjogren. The farside map shows the highland regions as broad positive gravity anomaly areas and the basins such as Korolev, Hertzsprung, Moscoviense, Mendeleev, and Tsiolkovsky as localized, negative gravity anomaly regions. The farside map has a first-order agreement with the result derived from the harmonic field method by Ferrari. The mass points analysis indicates that the nearside is almost all negative gravity anomaly regions except for the known positive mass anomaly basins (mascons) and the farside is almost all positive gravity anomaly regions except for some localized negative areas near the basins.
NASA Astrophysics Data System (ADS)
Bruntz, R. J.; Paxton, L. J.; Miller, E. S.; Bust, G. S.; Mayr, H. G.
2015-12-01
The Transfer Function Model (TFM) has been used in numerous studies to simulate gravity waves. In the TFM, the time dependence is formulated in terms of frequencies, and the horizontal wave pattern on the globe is formulated in terms of vector spherical harmonics. For a wide range of frequencies, the equations of mass, energy and momentum conservation are solved to compile a transfer function. The transfer function can then be easily combined with a time-dependent source whose spatial extent is also expressed in spherical harmonics, to produce a global atmospheric response, including gravity waves. This approach has significant benefits in that the solution is grid-independent (without any inherent limits on resolution), and the solutions do not suffer from singularities at the poles. We will show results from our simulations that couple the output of the TFM to an ionospheric model, to predict traveling ionospheric disturbances (TIDs) driven by the simulated gravity waves.
Gravity-induced asymmetric distribution of a plant growth hormone
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Schulze, A.; Momonoki, Y.
1984-01-01
Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.
Gravity-induced asymmetric distribution of a plant growth hormone
NASA Technical Reports Server (NTRS)
Bandurski, R. S.; Schulze, A.; Momonoki, Y.
1984-01-01
Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.
Ray Tracing Modeling of Gravity Wave Propagation and Dissipation
NASA Astrophysics Data System (ADS)
Vadas, Sharon; Crowley, Geoff
In this paper, we describe a ray trace model which calculates the wavevector, location and phase of a gravity wave (GW) as it propagates in the lower atmosphere and thermosphere. If used for a discreet transient source (such as a deep convective plume), we describe how this model can calculate the body forcing and the heat/cooling that are created when the GWs within a wave packet dissipate in the thermosphere from kinematic viscosity and thermal diffusivity. Although the body force calculation requires only the divergence of the momentum flux, the heat/cooling calculation requires the reconstructed GW field (e.g., density, velocity perturbations), which in turn requires the GW dissipative polarization relations. We describe these relations. We then describe the results of a recent study involving GWs identified from TIDDBIT HF Doppler sounder data taken at Wallops Island, VI, USA. Using this ray trace model, we determine if the unusual neutral wind profile measured by a rocket experiment at high altitudes (~290-370 km) could have been caused by the propagation and dissipation of several waves observed by TIDDBIT at lower altitudes.
Island sheltering of surface gravity waves: model and experiment
NASA Astrophysics Data System (ADS)
Pawka, S. S.; Inman, D. L.; Guza, R. T.
A field experiment is used to evaluate a numerical model of the sheltering of gravity waves by islands offshore of the Southern California region. The sheltering model considered here includes only the effects of island blocking and wave refraction over the island bathymetry. Wave frequency and directional spectra measured in the deep ocean (unsheltered region west of the islands) were used as input to the sheltering model and compared with coastal observations. An airborne L-band synthetic aperture radar was used to image the directional properties of the waves in the deep ocean. In addition to the unsmoothed spectra, a unimodal directional spectrum model obtained from fits to the radar spectra was also employed to suppress the high noise level of this system. Coastal measurements were made in about 10 m depth at Torrey Pines Beach with a high resolution array of pressure sensors. The model predictions and data at Torrey Pines Beach agree well in a limited frequency range (0.082 to 0.114 Hz) where the unimodal deep ocean model is appropriate. The prediction that unimodal northern swell in the deep ocean results in a bimodal directional spectrum at Torrey Pines Beach is quantitatively verified. The northern peak of the bimodal spectra is due to waves coming through the window between San Clemente and San Miguel-Santa Rosa Islands. The southerly peak is due to wave refraction over Cortez and Tanner Banks. For lower frequency waves, the effects of strong refraction in the island vicinity are shown qualitatively. Refraction can theoretically supply up to approximately 10% of the deep ocean energy that is otherwise blocked at this site. The modifications of the island shadows due to wave refraction become theoretically negligible for wave frequencies 0.11Hz. Also, local wave generation effects, which are not included in this sheltering model, are shown to be occasionally important for waves with frequencies 0.12Hz.
Development of a Synthetic Earth Gravity Model by 3D mass optimisation based on forward modelling
NASA Astrophysics Data System (ADS)
Fellner, J. J.; Kuhn, M.; Featherstone, W. E.
2012-01-01
Several previous Synthetic Earth Gravity Model (SEGM) simulations are based on existing information about the Earth's internal mass distribution. However, currently available information is insufficient to model the Earth's anomalous gravity field on a global scale. The low-frequency information is missing when modelling only topography, bathymetry and crust (including the Mohorovičić discontinuity), but the inclusion of information on the mantle and core does not seem to significantly improve this situation. This paper presents a method to determine a more realistic SEGM by considering simulated 3D mass distributions within the upper mantle as a proxy for all unmodelled masses within the Earth. The aim is to improve an initial SEGM based on forward gravity modelling of the topography, bathymetry and crust such that the missing low-frequency information is now included. The simulated 3D mass distribution has been derived through an interactive and iterative mass model optimisation algorithm, which minimises geoid height differences with respect to a degree-360 spherical harmonic expansion of the EGM2008 global external gravity field model. We present the developed optimisation algorithm by applying it to the development of a global SEGM that gives a reasonably close fit to EGM2008, and certainly closer than a SEGM based only on the topography, bathymetry and crust.
NASA Astrophysics Data System (ADS)
Aoki, Arata; Soda, Jiro
2017-07-01
We study the ultralight axion dark matter with mass around 10-22 eV in f (R ) gravity which might resolve the dark energy problem. In particular, we focus on the fact that the pressure of the axion field oscillating in time produces oscillations of gravitational potentials. We show that the oscillation of the gravitational potential is sensitive to the model of gravity. Remarkably, we find that the detectability of the oscillation through the gravitational wave detectors can be significantly enhanced due to the nonlinear resonance between the ultralight axion and the scalaron.
NASA Astrophysics Data System (ADS)
Antunes, V.; Novello, M.
2017-04-01
In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.
Neutron interference induced by gravity: New results and interpretations
NASA Astrophysics Data System (ADS)
Werner, S. A.; Kaiser, H.; Arif, M.; Clothier, R.
1988-07-01
We report the results of neutron interferometric experiments, extending the range and precision of the COW gravitationally-induced quantum interference experiment of Staudenmann and co-workers. These experiments provide a test of the principle of equivalence in the quantum limit. High precision data (1 part in 1000) is presented. The frequency of the quantum interference oscillations, and the loss of contrast observed as a function of increasing gravitational potential energy difference are compared with the recent interferometer dynamical diffraction calculations of Bonse and Wroblewski and of Horne. Theory and experiment are found to differ by 0.8%.
A model for adjustment of differential gravity measurements with simultaneous gravimeter calibration
NASA Astrophysics Data System (ADS)
Dias, F. J. S. S.; Escobar, Í. P.
2001-05-01
A mathematical model is proposed for adjustment of differential or relative gravity measurements, involving simultaneously instrumental readings, coefficients of the calibration function, and gravity values of selected base stations. Tests were performed with LaCoste and Romberg model G gravimeter measurements for a set of base stations located along a north-south line with 1750 mGal gravity range. This line was linked to nine control stations, where absolute gravity values had been determined by the free-fall method, with an accuracy better than 10 wGal. The model shows good consistence and stability. Results show the possibility of improving the calibration functions of gravimeters, as well as a better estimation of the gravity values, due to the flexibility admitted to the values of the calibration coefficients.
Isostatic gravity map of the Death Valley ground-water model area, Nevada and California
Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.
2001-01-01
An isostatic gravity map of the Death Valley groundwater model area was prepared from over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.
NASA Technical Reports Server (NTRS)
Smith, S. A.; Fritts, D. C.; Vanzandt, T. E.
1986-01-01
The results of a comparison of mesospheric wind fluctuation spectra computed from radial wind velocity estimates made by the Poker Flat mesosphere-stratosphere-troposphere (MST) radar are compared with a gravity-wave model developed by VanZandt (1982, 1985). The principal conclusion of this comparison is that gravity waves can account for 80% of the mesospheric power spectral density.
NASA Technical Reports Server (NTRS)
Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.
1995-01-01
At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.
NASA Astrophysics Data System (ADS)
Ghosh, Kirtiman; Huitu, Katri
2012-06-01
We discuss the collider phenomenology of Universal Extra Dimension models with gravity mediated decays. We concentrate on diphoton associated with large missing transverse energy signature. At the collider, level-1 Kaluza-Klein (KK) particles are produced in pairs due to the conservation of KK-parity. Subsequently, KK-particles decay via cascades involving lighter KK-particles until reaching the lightest KK-particle (LKP). Finally, gravity induced decay of the LKP into photons gives rise to the diphoton signature. The search for diphoton events with large missing transverse energy was recently communicated by the ATLAS collaboration for 7 TeV center-of-mass energy and 3.1 inverse femtobarn integrated luminosity of the Large Hadron Collider. Above the Standard Model background prediction, no excess of such events was reported. We translate the absence of any excess of the diphoton events to constrain the model parameters, namely, the radius of compactification ( R) and the fundamental Planck mass ( M D ).
Emergent semiclassical time in quantum gravity: I. Mechanical models
NASA Astrophysics Data System (ADS)
Anderson, Edward
2007-06-01
The emergent semiclassical time approach to resolving the problem of time in quantum gravity is considered in the arena of relational particle toy models. In situations with 'heavy' and 'light' degrees of freedom, two notions of emergent semiclassical WKB time emerge; these are furthermore equivalent to two notions of emergent classical 'Leibniz-Mach-Barbour' time. I study the semiclassical approach, in a geometric phase formalism, extended to include linear constraints, and with particular care to make explicit the approximations and assumptions used, which are an important part of the semiclassical approach. I propose a new iterative scheme for the semiclassical approach in the cosmologically motivated case with one heavy degree of freedom. I find that the usual semiclassical quantum cosmology emergence of time comes hand in hand with the emergence of other qualitatively significant terms, including back-reactions on the heavy subsystem and second time derivatives. I take my analysis further for relational particle models with linearly coupled harmonic oscillator potentials, which, being exactly soluble by means outside the semiclassical approach to quantum cosmology, are additionally useful for testing the justifiability of some of the approximations and assumptions habitually made therein. Finally, I contrast emergent semiclassical time with its hidden dilational Euler time counterpart. Work started at Department of Physics, Avadh Bhatia Physics Laboratory, University of Alberta, Edmonton, Canada.
Toward an internal gravity wave spectrum in global ocean models
NASA Astrophysics Data System (ADS)
Müller, Malte; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Kunze, Eric L.; Scott, Robert B.; Wallcraft, Alan J.; Zamudio, Luis
2015-05-01
High-resolution global ocean models forced by atmospheric fields and tides are beginning to display realistic internal gravity wave spectra, especially as model resolution increases. This paper examines internal waves in global simulations with 0.08° and 0.04° (~8 and 4 km) horizontal resolutions, respectively. Frequency spectra of internal wave horizontal kinetic energy in the North Pacific lie closer to observations in the 0.04° simulation than in the 0.08° simulation. The horizontal wave number and frequency (K-ω) kinetic energy spectra contain peaks in the semidiurnal tidal band and near-inertial band, along with a broadband frequency continuum aligned along the linear dispersion relations of low-vertical-mode internal waves. Spectral kinetic energy transfers describe the rate at which nonlinear mechanisms remove or supply kinetic energy in specific K-ω ranges. Energy is transferred out of low-mode inertial and semidiurnal internal waves into a broad continuum of higher-frequency and higher-wave number internal waves.
New models for perfect fluids in EGB gravity
NASA Astrophysics Data System (ADS)
Chilambwe, Brian; Hansraj, Sudan; Maharaj, Sunil D.
2015-04-01
We obtain new exact solutions to the field equations in the Einstein-Gauss-Bonnet (EGB) modified theory of gravity for a five-dimensional spherically symmetric static matter distribution. By using a coordinate transformation, the study is reduced to the analysis of a single first-order nonlinear differential equation which is an Abel equation of the second kind. Three classes of exact models are generated. The first solution has a constant density and a nonlinear equation-of-state; it contains the familiar Einstein static universe as a special case. The second solution has variable energy density and is expressible in terms of elementary functions. The third solution has vanishing Gauss-Bonnet coupling constant and is a five-dimensional generalization of the Durgapal-Bannerji model. The solution is briefly examined for physical admissibility. In particular, a set of constants is found which ensures that a pressure-free hypersurface exists which in turn defines the boundary of the distribution. The matter distribution is well behaved and the adiabatic sound speed criterion is also satisfied within the fluid ensuring a subluminal sound speed. Furthermore, the weak, strong and dominant conditions hold throughout the distribution.
A Comparison Between Gravity Wave Momentum Fluxes in Observations and Climate Models
NASA Technical Reports Server (NTRS)
Geller, Marvin A.; Alexadner, M. Joan; Love, Peter T.; Bacmeister, Julio; Ern, Manfred; Hertzog, Albert; Manzini, Elisa; Preusse, Peter; Sato, Kaoru; Scaife, Adam A.; Zhou, Tiehan
2013-01-01
For the first time, a formal comparison is made between gravity wave momentum fluxes in models and those derived from observations. Although gravity waves occur over a wide range of spatial and temporal scales, the focus of this paper is on scales that are being parameterized in present climate models, sub-1000-km scales. Only observational methods that permit derivation of gravity wave momentum fluxes over large geographical areas are discussed, and these are from satellite temperature measurements, constant-density long-duration balloons, and high-vertical-resolution radiosonde data. The models discussed include two high-resolution models in which gravity waves are explicitly modeled, Kanto and the Community Atmosphere Model, version 5 (CAM5), and three climate models containing gravity wave parameterizations,MAECHAM5, Hadley Centre Global Environmental Model 3 (HadGEM3), and the Goddard Institute for Space Studies (GISS) model. Measurements generally show similar flux magnitudes as in models, except that the fluxes derived from satellite measurements fall off more rapidly with height. This is likely due to limitations on the observable range of wavelengths, although other factors may contribute. When one accounts for this more rapid fall off, the geographical distribution of the fluxes from observations and models compare reasonably well, except for certain features that depend on the specification of the nonorographic gravity wave source functions in the climate models. For instance, both the observed fluxes and those in the high-resolution models are very small at summer high latitudes, but this is not the case for some of the climate models. This comparison between gravity wave fluxes from climate models, high-resolution models, and fluxes derived from observations indicates that such efforts offer a promising path toward improving specifications of gravity wave sources in climate models.
Constraints on modified gravity models from white dwarfs
NASA Astrophysics Data System (ADS)
Banerjee, Srimanta; Shankar, Swapnil; Singh, Tejinder P.
2017-10-01
Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.
Modeling the QBO and SAO Driven by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.
1999-01-01
Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW) is applied in a global scale numerical spectral model (NSM) to describe the semi-annual and quasi-biennial oscillations (SAO and QBO) as well as the long term interannual variations that are driven by wave mean flow interactions. This model has been successful in simulating the salient features observed near the equator at altitudes above 20 km, including the QBO extension into the upper mesosphere inferred from UARS measurements. The model has now been extended to describe also the mean zonal and meridional circulations of the upper troposphere and lower stratosphere that affect the equatorial QBO and its global scale extension. This is accomplished in part through tuning of the GW parameterization, and preliminary results lead to the following conclusions: (1) To reproduce the upwelling at equatorial latitudes associated with the Brewer/Dobson circulation that in part is modulated in the model by the vertical component of the Coriolis force, the eddy diffusivity in the lower stratosphere had to be enhanced and the related GW spectrum modified to bring it in closer agreement with the form recommended for the DSP. (2) To compensate for the required increase in the diffusivity, the observed QBO requires a larger GW source that is closer to the middle of the range recommended for the DSP. (3) Through global scale momentum redistribution, the above developments are conducive to extending the QBO and SAO oscillations to higher latitudes. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. (4) In a 3D version of the model, wave momentum is absorbed and dissipated by tides and planetary waves. Thus, a somewhat larger GW source is required to generate realistic amplitudes for the QBO and SAO.
Reconciling induced-gravity inflation in supergravity with the Planck 2013 & BICEP2 results
Pallis, C.
2014-10-23
We generalize the embedding of induced-gravity inflation beyond the no-scale Supergravity presented in ref. http://dx.doi.org/10.1088/1475-7516/2014/08/057 employing two gauge singlet chiral superfields, a superpotential uniquely determined by applying a continuous R and a discrete ℤ{sub n} symmetries, and a logarithmic Kähler potential including all the allowed terms up to fourth order in powers of the various fields. We show that, increasing slightly the prefactor (−3) encountered in the adopted Kähler potential, an efficient enhancement of the resulting tensor-to-scalar ratio can be achieved rendering the predictions of the model consistent with the recent BICEP2 results, even with subplanckian excursions of the original inflaton field. The remaining inflationary observables can become compatible with the data by mildly tuning the coefficient involved in the fourth order term of the Kähler potential which mixes the inflaton with the accompanying non-inflaton field. The inflaton mass is predicted to be close to 10{sup 14} GeV.
Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating
NASA Technical Reports Server (NTRS)
Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura
2015-01-01
The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.
Neuroplastic reactivity of fish induced by altered gravity conditions: a review of recent results
NASA Astrophysics Data System (ADS)
Rahmann, H.; Anken, R. H.
A review is being presented concerning behavioural, biochemical, histochemical and electronmicroscopical data on the influence of altered gravitational forces on the swimming performance and on the neuronal differentiation of the brain of cichlid fish larvae and adult swordtail fish that had been exposed to hyper-gravity (3g in laboratory centrifuges), hypo-gravity (>10^-2g in a fast-rotating clinostat) and to near weightlessness (10^-4g aboard the spacelab D-2 mission). After long-term alterations of gravity (and parallel light deprivation), initial disturbances in the swimming behaviour followed by a stepwise regain of normal swimming modes are induced. Parallely, neuroplastic reactivities on different levels of investigation were found, such as adaptive alterations of activities of various enzymes in whole brain as well as in specific neuronal integration centers and an intraneuronal reactivity on ultrastructural level in individual brain parts and in the sensory epithelia of the inner ear. Taken together, these data reveal distinct adaptive neuroplastic reactions of fish to altered gravity conditions.
Towards quantitative quasi-static elastography with a gravity-induced deformation source
NASA Astrophysics Data System (ADS)
Griesenauer, Rebekah H.; Weis, Jared A.; Arlinghaus, Lori R.; Meszoely, Ingrid M.; Miga, Michael I.
2017-03-01
Biomechanical breast models have been employed for applications in image registration and analysis, breast augmentation simulation, and for surgical and biopsy guidance. Accurate applications of stress-strain relationships of tissue within the breast can improve the accuracy of biomechanical models that attempt to simulate breast movements. Reported stiffness values for adipose, glandular, and cancerous tissue types vary greatly. Variations in reported stiffness properties are mainly due to differences in testing methodologies and assumptions, measurement errors, and natural inter patient differences in tissue elasticity. Therefore, patient specific, in vivo determination of breast tissue properties is ideal for these procedural applications. Many in vivo elastography methods are not quantitative and/or do not measure material properties under deformation conditions that are representative of the procedure being simulated in the model. In this study, we developed an elasticity estimation method that is performed using deformations representative of supine therapeutic procedures. Reconstruction of material properties was performed by iteratively fitting two anatomical images before and after tissue stimulation. The method proposed is work flow friendly, quantitative, and uses a non-contact, gravity-induced deformation source. We tested this material property optimization procedure in a healthy volunteer and in simulation. In simulation, we show that the algorithm can reconstruct properties with errors below 1% for adipose and 5.6% for glandular tissue regardless of the starting stiffness values used as initial guesses. In clinical data, reconstruction errors are higher (3.6% and 24.2%) due to increased noise in the system. In a clinical context, the elastography method was shown to be promising for use in biomechanical model assisted supine procedures.
NASA Astrophysics Data System (ADS)
Michel, V.
2005-12-01
A spherical wavelet analysis of monthly GRACE gravity data is presented. We observe strong correlations to gravity variations predicted by some common hydrology models, in particular in the Amazon, Zambezi and Ganges area. A time series analysis of the predicted gravity due to surface density changes in comparison to spherical wavelet coefficients of the GRACE potential demonstrates the advantages of spherical wavelets. Whereas a spherical harmonics expansion always implicitly includes a global averaging process, wavelets represent localizing basis functions that are much better able to analyze regional variations of a considered data set. Moreover, it is demonstrated that the spherical wavelet approach due to W. Freeden and U. Windheuser can be extended to a larger set of problems including the modelling of functions on balls, i.e. not only on the spherical surface. Examples of applications, such as the volume density recovery from simulated SGG gravity data (cf. planned satellite mission GOCE) are demonstrated. References: M.J. Fengler, W. Freeden, A. Kohlhaas, V. Michel, T. Peters: Wavelet Modelling of Regional and Temporal Variations of the Earth's Gravitational Potential Observed by GRACE, Schriften zur Funktionalanalysis und Geomathematik, 21 (2005), preprint, article submitted to Journal of Geodesy, 2005. V. Michel: Regularized Wavelet--based Multiresolution Recovery of the Harmonic Mass Density Distribution from Data of the Earth's Gravitational Field at Satellite Height, Inverse Problems, 21 (2005), 997-1025.
NASA Astrophysics Data System (ADS)
Neumeyer, Jürgen; Schäfer, Uwe; Kremer, Jens; Pflug, Hartmut; Xu, Guochang
2009-04-01
For testing the performance of the upgraded LaCoste and Romberg airborne gravimeter S124 and evaluating the newly updated software, an airborne gravity test campaign has been carried out in the northern part of Germany by GFZ Potsdam in autumn 2006 using the aircraft Cessna 404 of "Hansa Luftbild" Company, Münster. We present the results of a profile flown SW-NE in both directions at a nearly constant mean altitude of ˜1100 m with a ground speed of ˜230 km/h, crossing one of the most pronounced gravity anomalies in Central Europe with peak-to-peak amplitude of about 70 mgal. The scalar gravity anomalies along the flight trajectories have been derived from the airborne gravimeter taking into account platform recordings and data from the GPS-controlled Inertial Measurement Unit (IMU) Aerocontrol IIb. All common corrections have been performed on the raw gravity data. Due to problems in GPS recording, we used the IMU data only. To verify the airborne gravity results, ground-based and satellite-derived gravity data have been used to compute local analytical gravity field models in a new methodological approach that allows the calculation of gravity anomalies at flight altitudes. For the most part there is a good agreement between the INS-airborne-derived and the independently modelled gravity anomalies, yielding best results of about 3.5 mgal RMS.
Gravity-induced swirl of nanoparticles in microfluidics.
Zhao, Chao; Oztekin, Alparslan; Cheng, Xuanhong
2013-04-01
Parallel flows of two fluids in microfluidic devices are used for miniaturized chemistry, physics, biology and bioengineering studies, and the streams are often considered to remain parallel. However, as the two fluids do not always have the same density, interface reorientation induced by density stratification is unavoidable. In this paper, flow characteristics of an aqueous polystyrene nanofluid and a sucrose-densified aqueous solution flowing parallel in microchannels are examined. Nanoparticles 100 nm in diameter are used in the study. The motion of the nanoparticles is simulated using the Lagrangian description and directly observed by a confocal microscope. Matched results are obtained from computational and empirical analysis. Although solution density homogenizes rapidly resulting from a fast diffusion of sucrose in water, the nanofluid is observed to rotate for an extended period. Angular displacement of the nanofluid depends on the ratio of gravitational force to viscous force, Re/Fr(2), where Re is the Reynolds number and Fr is the Froude number. In the developing region at the steady state, the angular displacement is related to y/Dh, the ratio between distance from the inlet and the hydraulic diameter of the microfluidic channel. The development of nanofluid flow feature also depends on h/w, the ratio of microfluidic channel's height to width. The quantitative description of the angular displacement of nanofluid will aid rational designs of microfluidic devices utilizing multistream, multiphase flows.
Gravity-induced swirl of nanoparticles in microfluidics
Zhao, Chao; Oztekin, Alparslan
2013-01-01
Parallel flows of two fluids in microfluidic devices are used for miniaturized chemistry, physics, biology and bioengineering studies, and the streams are often considered to remain parallel. However, as the two fluids do not always have the same density, interface reorientation induced by density stratification is unavoidable. In this paper, flow characteristics of an aqueous polystyrene nanofluid and a sucrose-densified aqueous solution flowing parallel in microchannels are examined. Nanoparticles 100 nm in diameter are used in the study. The motion of the nanoparticles is simulated using the Lagrangian description and directly observed by a confocal microscope. Matched results are obtained from computational and empirical analysis. Although solution density homogenizes rapidly resulting from a fast diffusion of sucrose in water, the nanofluid is observed to rotate for an extended period. Angular displacement of the nanofluid depends on the ratio of gravitational force to viscous force, Re/Fr2, where Re is the Reynolds number and Fr is the Froude number. In the developing region at the steady state, the angular displacement is related to y/Dh, the ratio between distance from the inlet and the hydraulic diameter of the microfluidic channel. The development of nanofluid flow feature also depends on h/w, the ratio of microfluidic channel’s height to width. The quantitative description of the angular displacement of nanofluid will aid rational designs of microfluidic devices utilizing multistream, multiphase flows. PMID:24563612
Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models
Kauahikaua, J.; Hildenbrand, T.; Webring, M.
2000-01-01
A simplified three-dimensional model for the island of Hawai'i, based on 3300 gravity measurements, provides new insights on magma pathways within the basaltic volcanoes. Gravity anomalies define dense cumulates and intrusions beneath the summits and known rift zones of every volcano. Linear gravity anomalies project southeast from Kohala and Mauna Kea summits and south from Huala??lai and Mauna Loa; these presumably express dense cores of previously unrecognized rift zones lacking surface expression. The gravity-modeled dense cores probably define tholeiitic shield-stage structures of the older volcanoes that are now veneered by late alkalic lavas. The three-dimensional gravity method is valuable for characterizing the magmatic systems of basaltic oceanic volcanoes and for defining structures related to landslide and seismic hazards.
Three-dimensional gravity modeling of the geologic structure of Long Valley caldera
Carle, S.F.
1988-11-10
A 48-mGal gravity low coincides with Long Valley caldera and is mainly attributed to low-density caldera fill. Gravity measurements by Unocal Geothermal have been integrated with U.S. Geological Survey data, vastly improving gravity station coverage throughout the caldera. A strong regional gravity trend is mainly attributed to isostasy. A ''best fitting'' (based on regional control of basement densities) Airy-Heiskanen isostatic model was used for the regional correction. A three-dimensional, multiple-unit gravity modeling program with iterative capabilities was developed to model the residual gravity. The density structure of Long Valley caldera and vicinity was modeled with 22 discrete density units, most of which were based on geologic units. Information from drill hole lithologies, surface geology, and structural geology interpretations constrain the model. Some important points revealed by the three-dimensional gravity modeling are that (1) the volume of ejected magma associated with the Bishop Tuff eruption is greater than previously thought, (2) the caldera structure is strongly influenced by precaldera topography and the extensions of major, active faults, (3) the main west ring fracture is coincident with the Inyo Domes--Mono Craters fracture system, (4) a relatively low-density region probably underlies the caldera, and (5) a silicic magma chamber may underlie Devils Postpile. copyright American Geophysical Union 1988
Three-Dimensional Gravity Modeling of the Geologic Structure of Long Valley Caldera
NASA Astrophysics Data System (ADS)
Carle, Steven F.
1988-11-01
A 48-mGal gravity low coincides with Long Valley caldera and is mainly attributed to low-density caldera fill. Gravity measurements by Unocal Geothermal have been integrated with U.S. Geological Survey data, vastly improving gravity station coverage throughout the caldera. A strong regional gravity trend is mainly attributed to isostasy. A "best fitting" (based on regional control of basement densities) Airy-Heiskanen isostatic model was used for the regional correction. A three-dimensional, multiple-unit gravity modeling program with iterative capabilities was developed to model the residual gravity. The density structure of Long Valley caldera and vicinity was modeled with 22 discrete density units, most of which were based on geologic units. Information from drill hole lithologies, surface geology, and structural geology interpretations constrain the model. Some important points revealed by the three-dimensional gravity modeling are that (1) the volume of ejected magma associated with the Bishop Tuff eruption is greater than previously thought, (2) the caldera structure is strongly influenced by precaldera topography and the extensions of major, active faults, (3) the main west ring fracture is coincident with the Inyo Domes-Mono Craters fracture system, (4) a relatively low-density region probably underlies the caldera, and (5) a silicic magma chamber may underlie Devils Postpile.
Topographic/isostatic evaluation of new-generation GOCE gravity field models
NASA Astrophysics Data System (ADS)
Hirt, C.; Kuhn, M.; Featherstone, W. E.; GöTtl, F.
2012-05-01
We use gravity implied by the Earth's rock-equivalent topography (RET) and modeled isostatic compensation masses to evaluate the new global gravity field models (GGMs) from European Space Agency (ESA)'s Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite gravimetry mission. The topography is now reasonably well-known over most of the Earth's landmasses, and also where conventional GGM evaluation is prohibitive due to the lack (or unavailability) of ground-truth gravity data. We construct a spherical harmonic representation of Earth's RET to derive band-limited topography-implied gravity, and test the somewhat simplistic Airy/Heiskanen and Pratt/Hayford hypotheses of isostatic compensation, but which did not improve the agreement between gravity from the uncompensated RET and GOCE. The third-generation GOCE GGMs (based on 12 months of space gravimetry) resolve the Earth's gravity field effectively up to spherical harmonic degree ˜200-220 (˜90-100 km resolution). Such scales could not be resolved from satellites before GOCE. From the three different GOCE processing philosophies currently in use by ESA, the time-wise and direct approaches exhibit the highest sensitivity to short-scale gravity recovery, being better than the space-wise approach. Our topography-implied gravity comparisons bring evidence of improvements from GOCE to gravity field knowledge over the Himalayas, Africa, the Andes, Papua New Guinea and Antarctic regions. In attenuated form, GOCE captures topography-implied gravity signals up to degree ˜250 (˜80 km resolution), suggesting that other signals (originating, e.g., from the crust-mantle boundary and buried loads) are captured as well, which might now improve our knowledge on the Earth's lithosphere structure at previously unresolved spatial scales.
Chronology protection in Galileon models and massive gravity
Burrage, Clare; Rham, Claudia de; Heisenberg, Lavinia; Tolley, Andrew J. E-mail: claudia.deRham@case.edu E-mail: andrew.j.tolley@case.edu
2012-07-01
Galileon models are a class of effective field theories that have recently received much attention. They arise in the decoupling limit of theories of massive gravity, and in some cases they have been treated in their own right as scalar field theories with a specific nonlinearly realized global symmetry (Galilean transformation). It is well known that in the presence of a source, these Galileon theories admit superluminal propagating solutions, implying that as quantum field theories they must admit a different notion of causality than standard local Lorentz invariant theories. We show that in these theories it is easy to construct closed timelike curves (CTCs) within the naive regime of validity of the effective field theory. However, on closer inspection we see that the CTCs could never arise since the Galileon inevitably becomes infinitely strongly coupled at the onset of the formation of a CTC. This implies an infinite amount of backreaction, first on the background for the Galileon field, signaling the break down of the effective field theory, and subsequently on the spacetime geometry, forbidding the formation of the CTC. Furthermore the background solution required to create CTCs becomes unstable with an arbitrarily fast decay time. Thus Galileon theories satisfy a direct analogue of Hawking's chronology protection conjecture.
Covariance in models of loop quantum gravity: Spherical symmetry
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Brahma, Suddhasattwa; Reyes, Juan D.
2015-08-01
Spherically symmetric models of loop quantum gravity have been studied recently by different methods that aim to deal with structure functions in the usual constraint algebra of gravitational systems. As noticed by Gambini and Pullin, a linear redefinition of the constraints (with phase-space dependent coefficients) can be used to eliminate structure functions, even Abelianizing the more difficult part of the constraint algebra. The Abelianized constraints can then easily be quantized or modified by putative quantum effects. As pointed out here, however, the method does not automatically provide a covariant quantization, defined as an anomaly-free quantum theory with a classical limit in which the usual (off-shell) gauge structure of hypersurface deformations in space-time appears. The holonomy-modified vacuum theory based on Abelianization is covariant in this sense, but matter theories with local degrees of freedom are not. Detailed demonstrations of these statements show complete agreement with results of canonical effective methods applied earlier to the same systems (including signature change).
Spherical systems in models of nonlocally corrected gravity
Bronnikov, K. A.; Elizalde, E.
2010-02-15
The properties of static, spherically symmetric configurations are considered in the framework of two models of nonlocally corrected gravity, suggested in S. Deser and R. Woodard, Phys. Rev. Lett. 99, 111301 (2007) and S. Capozziello et al., Phys. Lett. B 671, 193 (2009). For the first case, where the Lagrangian of nonlocal origin represents a scalar-tensor theory with two massless scalars, an explicit condition is found under which both scalar fields are canonical (nonphantom). If this condition does not hold, one of the fields exhibits a phantom behavior. Scalar-vacuum configurations then behave in a manner known for scalar-tensor theories. In the second case, the Lagrangian of nonlocal origin exhibits a scalar field interacting with the Gauss-Bonnet (GB) invariant and contains an arbitrary scalar field potential. It is found that the GB term, in general, leads to violation of the well-known no-go theorems valid for minimally coupled scalar fields in general relativity. It is shown, however, that some configurations of interest are still forbidden--whatever be the scalar field potential and the GB-scalar coupling function, namely, 'force-free' wormholes (such that g{sub tt}=const) and black holes with higher-order horizons.
Modeling and estimation of a low degree geopotential model from terrestrial gravity data
NASA Technical Reports Server (NTRS)
Pavlis, Nikolaos K.
1988-01-01
The development of appropriate modeling and adjustment procedures for the estimation of harmonic coefficients of the geopotential, from surface gravity data was studied, in order to provide an optimum way of utilizing the terrestrial gravity information in combination solutions currently developed at NASA/Goddard Space Flight Center, for use in the TOPEX/POSEIDON mission. The mathematical modeling was based on the fundamental boundary condition of the linearized Molodensky boundary value problem. Atmospheric and ellipsoidal corrections were applied to the surface anomalies. Terrestrial gravity solutions were found to be in good agreement with the satellite ones over areas which are well surveyed (gravimetrically), such as North America or Australia. However, systematic differences between the terrestrial only models and GEMT1, over extended regions in Africa, the Soviet Union, and China were found. In Africa, gravity anomaly differences on the order of 20 mgals and undulation differences on the order of 15 meters, over regions extending 2000 km in diameter, occur. Comparisons of the GEMT1 implied undulations with 32 well distributed Doppler derived undulations gave an RMS difference of 2.6 m, while corresponding comparison with undulations implied by the terrestrial solution gave RMS difference on the order of 15 m, which implies that the terrestrial data in that region are substantially in error.
NASA Astrophysics Data System (ADS)
Brissaud, Quentin; Garcia, Raphael; Martin, Roland; Komatitsch, Dimitri; Sladen, Anthony
2016-04-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite- difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including 3D variations of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from finite-fault dislocation simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.
NASA Astrophysics Data System (ADS)
Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.
2016-12-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.
Time evolution in deparametrized models of loop quantum gravity
NASA Astrophysics Data System (ADS)
Assanioussi, Mehdi; Lewandowski, Jerzy; Mäkinen, Ilkka
2017-07-01
An important aspect in understanding the dynamics in the context of deparametrized models of loop quantum gravity (LQG) is to obtain a sufficient control on the quantum evolution generated by a given Hamiltonian operator. More specifically, we need to be able to compute the evolution of relevant physical states and observables with a relatively good precision. In this article, we introduce an approximation method to deal with the physical Hamiltonian operators in deparametrized LQG models, and we apply it to models in which a free Klein-Gordon scalar field or a nonrotational dust field is taken as the physical time variable. This method is based on using standard time-independent perturbation theory of quantum mechanics to define a perturbative expansion of the Hamiltonian operator, the small perturbation parameter being determined by the Barbero-Immirzi parameter β . This method allows us to define an approximate spectral decomposition of the Hamiltonian operators and hence to compute the evolution over a certain time interval. As a specific example, we analyze the evolution of expectation values of the volume and curvature operators starting with certain physical initial states, using both the perturbative method and a straightforward expansion of the expectation value in powers of the time variable. This work represents a first step toward achieving the goal of understanding and controlling the new dynamics developed in Alesci et al. [Phys. Rev. D 91, 124067 (2015), 10.1103/PhysRevD.91.124067] and Assanioussi et al. [Phys. Rev. D 92, 044042 (2015), 10.1103/PhysRevD.92.044042].
FIO-ESM: the Earth System Model with surface gravity waves
NASA Astrophysics Data System (ADS)
Song, Zhenya; Qiao, Fangli; Bao, Ying
2017-04-01
The critical role of oceanic surface waves in climate system is receiving more and more attention. We set up an Earth System Model (ESM) in 2013, which is the first climate model with surface gravity waves and named as the First Institute of Oceanography-Earth System Model (FIO-ESM), composed of a coupled physical climate model and a coupled carbon cycle model. In the coupled physical climate model, a surface wave model is introduced through coupler by including the non-breaking wave-induced vertical mixing into the ocean circulation model. Surface waves can improve the performance of climate model especially in the simulation of upper ocean mixed layer depth in the Southern Ocean, and in the reduction of tropical biases. The FIO-ESM version 1.0 was employed to conduct Coupled Model Intercomparison Project Phase 5 (CMIP5) experiments. Now, the new version of FIO-ESM (FIO-ESM version 2) is under development. Its framework is similar to FIO-ESM version 1, but the model components, physical processes and resolution will be much improved. It will be employed to take part in CMIP6.
An axion-induced SM/MSSM Higgs landscape and the Weak Gravity Conjecture
NASA Astrophysics Data System (ADS)
Herráez, Alvaro; Ibáñez, Luis E.
2017-02-01
We construct models in which the SM Higgs mass scans in a landscape. This is achieved by coupling the SM to a monodromy axion field through Minkowski 3-forms. The Higgs mass scans with steps given by δm H 2 ≃ ημf, where μ and f are the axion mass and periodicity respectively, and η measures the coupling of the Higgs to the associated 3-form. The observed Higgs mass scale could then be selected on anthropic grounds. The monodromy axion may have a mass μ in a very wide range depending on the value of η, and the axion periodity f . For η ≃ 1 and f ≃ 1010 GeV , one has 10-3 eV ≲ μ ≲ 103 eV, but ultralight axions with e.g. μ ≃ 10-17 eV are also possible. In a different realization we consider landscape models coupled to the MSSM. In the context of SUSY, 4-forms appear as being part of the auxiliary fields of SUSY multiplets. The scanning in the 4-forms thus translate into a landscape of vevs for the N = 1 auxiliary fields and hence as a landscape for the soft terms. This could provide a rationale for the MSSM fine-tuning suggested by LHC data. In all these models there are 3-forms coupling to membranes which induce transitions between different vacua through bubble nucleation. The Weak Gravity Conjecture (WGC) set limits on the tension of these membranes and implies new physics thresholds well below the Planck scale. More generaly, we argue that in the case of string SUSY vacua in which the Goldstino multiplet contains a monodromy axion the WGC suggests a lower bound on the SUSY breaking scale m 3/2 ≳ M s 2 / M p .
NASA Astrophysics Data System (ADS)
Barantseva, Olga; Artemieva, Irina; Thybo, Hans
2016-04-01
We study the link between deep geodynamic processes and their surface expression in the North Atlantic region which has an anomalous, complex structure compared to other oceans. We calculate a model of residual mantle gravity between the Charlie Gibbs Fracture Zone and Svalbard. The calculations are based on GOCE satellite data the regional crustal model EUNAseis (Artemieva and Thybo, 2013) ; for the crustal and topography effects, and the global totpgraphy and bathymetry model ETOPO1 from NOAA (Amante and Eakis, 2009). Results are complemented by sensitivity analysis of the various parameters' effects on the models. Our results identify strong heterogeneity in the upper mantle residual gravity, expressed as a sharp contrasts at the continent-ocean transition, positive mantle gravity below the continental blocks and negative - below oceanic blocks; the MOR has low-gravity anomaly. By introducing regional geochemical data and analysis of the tectonical history, we identify a strong correlation between residual mantle gravity anomalies and geochemical anomalies in ɛNd and Mg#. This analysis identifies three zones of North Atlantic mantle based on the correlation between upper mantle gravity and ocean floor age. In the area around Iceland, the residual mantle gravity is systematically lower than predicted from the half-space cooling model, and we estimate the thermal anomaly that could cause this shift.
Thermo-hydro-dynamic characteristics of a zero-gravity, spherical model of the troposphere
NASA Technical Reports Server (NTRS)
Srivatsangam, S.
1976-01-01
A model that exploits the radial inertia forces of a rotating fluid contained in a spherical annulus is described. The model would be flown in a satellite and experiments would be performed in very low or zero gravity. In such a model it would not be necessary to artificially simulate a radial gravity field. Thus small amounts of electrical energy would be sufficient to perform experiments. Since the only forces involved are thermo-hydro-dynamic ones, electromagnetic equations need not be considered.
Observation and Modeling of Tsunami-Generated Gravity Waves in the Earth’s Upper Atmosphere
2015-10-08
Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...for public release; distribution is unlimited. Observation and modeling of tsunami-generated gravity waves in the earth’s upper atmosphere Sharon...viscosity), and reconstruct the GW field. We would then apply our models to several observed tsunamis, and calculate the GW field in the
How delicate are the f(R) gravity models with a disappearing cosmological constant?
Thongkool, I.; Sami, M.; Choudhury, S. Rai
2009-12-15
We consider stability of spherically symmetric solutions in f(R) gravity model proposed by Starobinsky. We find that the model suffers from a severe fine-tuning problem when applied to compact objects like neutron stars. The problem can be remedied by introducing a cutoff on the mass of the scalar degree of freedom present in the model. A new mass scale associated with neutron stars density is then required for the stabilities of f(R) gravity solutions inside relativistic stars.
Thermo-hydro-dynamic characteristics of a zero-gravity, spherical model of the troposphere
NASA Technical Reports Server (NTRS)
Srivatsangam, S.
1976-01-01
A model that exploits the radial inertia forces of a rotating fluid contained in a spherical annulus is described. The model would be flown in a satellite and experiments would be performed in very low or zero gravity. In such a model it would not be necessary to artificially simulate a radial gravity field. Thus small amounts of electrical energy would be sufficient to perform experiments. Since the only forces involved are thermo-hydro-dynamic ones, electromagnetic equations need not be considered.
NASA Astrophysics Data System (ADS)
Serafimovich, A.; Zülicke, Ch.; Hoffmann, P.; Peters, D.; Dalin, P.; Singer, W.
2006-11-01
We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHF radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya Rocket Range (ARR) near Andenes (69.3° N, 16° E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR Fifth-Generation Mesoscale Model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of ~4.5-5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity.
NASA Astrophysics Data System (ADS)
Hicks, F. B.; van Vechten, Thomas C.; Franck, Carl
1996-03-01
As noted by Kayser, Moldover, and Schmidt, the varying thicknesses of gravity thinned wetting layers reported in the literature may be due to the presence of perturbing forces, such as accidental temperature gradients. In order to study the effect of such forces, we observed the long time evolution of gravity-induced concentration gradients in the presence of small perturbing horizontal temperature gradients (<= 50 mK/cm) in a system of aniline and cyclohexane near its consolute critical point. These measurements are unique since previous studies of gravity-induced concentration gradients in binary liquid mixtures have focused only on fast developing gradients created by sedimentation or on the measurement of the equilibrium barodiffusion gradient. Our results reveal large variations in the steady state concentration gradients which arise, even in the absence of applied temperature gradients. Furthermore, in the presence of nonzero temperature gradients, we observe the formation of concentration gradients which are significantly larger than the equilibrium barodiffusion gradient. No theory currently exists which explains these surprising results. Supported by the NSF under DMR-9320910 and by the central facilities of the Materials Science Center at Cornell University.
The moving boundary approach to modeling gravity-driven stable and unstable flow in soils
NASA Astrophysics Data System (ADS)
Brindt, Naaran; Wallach, Rony
2016-04-01
Many field and laboratory studies in the last 40 years have found that water flow in homogeneous soil profiles may occur in preferential flow pathways rather than in a laterally uniform wetting front, as expected from classical soil physics theory and expressed by the Richards equation. The water-content distribution within such gravity-driven fingers was found to be nonmonotonic due to water accumulation behind a sharp wetting front (denoted as saturation overshoot). The unstable flow was first related to soil coarseness. However, its appearance in water-repellent soils led the authors to hypothesize that gravity-driven unstable flow formation is triggered by a non-zero contact angle between water and soil particles. Despite its widespread occurrence, a macroscopic-type model describing the nonmonotonic water distribution and sharp wetting front is still lacking. The moving boundary approach, which divides the flow domain into two well-defined subdomains with a sharp change in fluid saturation between them, is suggested to replace the classical approach of solving the Richards equation for the entire flow domain. The upper subdomain consists of water and air, whose relationship varies with space and time following the imposed boundary condition at the soil surface as calculated by the Richards equation. The lower subdomain also consists of water and air, but their relationship remains constant following the predetermined initial condition. The moving boundary between the two subdomains is the sharp wetting front, whose location is part of the solution. As such, the problem is inherently nonlinear. The wetting front's movement is controlled by the dynamic water-entry pressure of the soil, which depends on soil wettability and the front's propagation rate. A lower soil wettability, which hinders the spontaneous invasion of dry pores and increases the water-entry pressure, induces a sharp wetting front and water accumulation behind it. The wetting front starts to
2D Forward Modeling of Gravity Data Using Geostatistically Generated Subsurface Density Variations
NASA Astrophysics Data System (ADS)
Phelps, G. A.
2015-12-01
Two-dimensional (2D) forward models of synthetic gravity anomalies are calculated and compared to observed gravity anomalies using geostatistical models of density variations in the subsurface, constrained by geologic data. These models have an advantage over forward gravity models generated using polygonal bodies of homogeneous density because the homogeneous density restriction is relaxed, allowing density variations internal to geologic bodies to be considered. By discretizing the subsurface and calculating the cumulative gravitational effect of each cell, multiple forward models can be generated for a given geologic body, which expands the exploration of the solution space. Furthermore, the stochastic models can be designed to match the observed statistical properties of the internal densities of the geologic units being modeled. The results of such stochastically generated forward gravity models can then be compared with the observed data. To test this modeling approach, we compared stochastic forward gravity models of 2D geologic cross-sections to gravity data collected along a profile across the Vaca Fault near Fairfield, California. Three conceptual geologic models were created, each representing a distinct fault block scenario (normal, strike-slip, reverse) with four rock units in each model. Using fixed rock unit boundaries, the units were populated with geostatistically generated density values, characterized by their respective histogram and vertical variogram. The horizontal variogram could not be estimated because of lack of data, and was therefore left as a free parameter. Each fault block model had multiple geostatistical realizations of density associated with it. Forward models of gravity were then generated from the fault block model realizations, and rejection sampling was used to determine viable fault block density models. Given the constraints on subsurface density, the normal and strike-slip fault model were the most likely.
Impact erosion model for gravity-dominated planetesimals
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Fujita, Tomoaki; Kobayashi, Hiroshi; Tanaka, Hidekazu; Suetsugu, Ryo; Abe, Yutaka
2017-09-01
Disruptive collisions have been regarded as an important process for planet formation, while non-disruptive, small-scale collisions (hereafter called erosive collisions) have been underestimated or neglected by many studies. However, recent studies have suggested that erosive collisions are also important to the growth of planets, because they are much more frequent than disruptive collisions. Although the thresholds of the specific impact energy for disruptive collisions (QRD*) have been investigated well, there is no reliable model for erosive collisions. In this study, we systematically carried out impact simulations of gravity-dominated planetesimals for a wide range of specific impact energy (QR) from disruptive collisions (QR ∼ QRD*) to erosive ones (QR << QRD*) using the smoothed particle hydrodynamics method. We found that the ejected mass normalized by the total mass (Mej/Mtot) depends on the numerical resolution, the target radius (Rtar) and the impact velocity (vimp), as well as on QR, but that it can be nicely scaled by QRD* for the parameter ranges investigated (Rtar = 30-300 km, vimp = 2-5 km/s). This means that Mej/Mtot depends only on QR/QRD* in these parameter ranges. We confirmed that the collision outcomes for much less erosive collisions (QR < 0.01 QRD*) converge to the results of an impact onto a planar target for various impact angles (θ) and that Mej/Mtot ∝ QR/QRD* holds. For disruptive collisions (QR ∼ QRD*), the curvature of the target has a significant effect on Mej/Mtot. We also examined the angle-averaged value of Mej/Mtot and found that the numerically obtained relation between angle-averaged Mej/Mtot and QR/QRD* is very similar to the cases for θ = 45° impacts. We proposed a new erosion model based on our numerical simulations for future research on planet formation with collisional erosion.
Gravity effects on Soret-induced non-equilibrium fluctuations in ternary mixtures.
Martínez Pancorbo, Pablo; Ortiz de Zárate, José M; Bataller, Henri; Croccolo, Fabrizio
2017-02-01
We discuss the gravity effects on the dynamics of composition fluctuations in a ternary mixture around the non-equilibrium quiescent state induced by thermodiffusion when subjected to a stationary temperature gradient. We found that the autocorrelation matrix of concentration fluctuations can be expressed as the sum of two exponentially decaying concentration modes. Without accounting for confinement, we obtained exact analytical expressions for the two decay rates which, as a consequence of gravity, display a wave-number-dependent mixing. The stability of the quiescent solution is also examined, as a function of the two solutal Rayleigh numbers used to express the decay rates. After having discussed the dynamics of the two concentration modes, we calculate the corresponding amplitudes. Consequences for optical experiments are discussed.
Regularized cosmological power spectrum and correlation function in modified gravity models
NASA Astrophysics Data System (ADS)
Taruya, Atsushi; Nishimichi, Takahiro; Bernardeau, Francis; Hiramatsu, Takashi; Koyama, Kazuya
2014-12-01
Based on the multipoint propagator expansion, we present resummed perturbative calculations for cosmological power spectra and correlation functions in the context of modified gravity. In a wide class of modified gravity models that have a screening mechanism to recover general relativity (GR) on small scales, we apply the eikonal approximation to derive the governing equation for resummed propagator that partly includes the nonperturbative effect in the high-k limit. The resultant propagator in the high-k limit contains the new corrections arising from the screening mechanism as well as the standard exponential damping. We explicitly derive the expression for new high-k contributions in specific modified gravity models, and find that in the case of f (R ) gravity for a currently constrained model parameter, the corrections are basically of the subleading order and can be neglected. Thus, in f (R ) gravity, similarly to the GR case, we can analytically construct the regularized propagator that reproduces both the resummed high-k behavior and the low-k results computed with standard perturbation theory, consistently taking account of the nonlinear modification of gravity valid at large scales. With the regularized multipoint propagators, we give predictions for power spectrum and correlation function at one-loop order, and compare those with N -body simulations in f (R ) gravity model. As an important application, we also discuss the redshift-space distortions and compute the anisotropic power spectra and correlation functions.
Integrated gravity and topography analysis in analog models: Intraplate deformation in Iberia
NASA Astrophysics Data System (ADS)
FernáNdez-Lozano, Javier; Sokoutis, Dimitrios; Willingshofer, Ernst; Dombrádi, Endre; MartíN, Alfonso M.; de Vicente, Gerardo; Cloetingh, Sierd
2012-12-01
Trends in the topography of the Iberian Peninsula show a pronounced contrast. In the western part of the Iberian microplate the main topographic highs trend E-W to NE-SW and are periodically spaced with wavelengths of 250 km. Conversely, in the northeastern part, the region of the Iberian Chain, topography is more irregular and strike directions vary from NW-SE to E-W and NE-SW. We relate this phenomenon to shortening of a continental lithosphere, which contains two different, well-defined domains of lithospheric strength. Our hypothesis is supported by physical analog models. A new processing method has been developed to assist the interpretation of the model results. It utilizes spectral analysis of gravity and topography data derived from the experiments. Folding of the crust and mantle lithosphere yields periodic gravity fluctuations, while thickening processes lead to localized gravity lows. In this way gravity data can be used to distinguish between the two forms of lithosphere deformation and to correlate areas that underwent the same type of deformation. Gravity modeling has been performed under full in-depth control of the experimental lithosphere structure. As such, gravity signals from the models may be compared to field gravity data for better understanding the underlying deformation mechanism.
Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models
NASA Astrophysics Data System (ADS)
Sakumura, C.; Bettadpur, S.; Bruinsma, S.
2014-03-01
Precise measurements of the Earth's time-varying gravitational field from the NASA/Deutsches Zentrum für Luft- und Raumfahrt Gravity Recovery and Climate Experiment (GRACE) mission allow unprecedented tracking of the transport of mass across and underneath the surface of the Earth and give insight into secular, seasonal, and subseasonal variations in the global water supply. Several groups produce these estimates, and while the various gravity fields are similar, differences in processing strategies and tuning parameters result in solutions with regionally specific variations and error patterns. This study examined the spatial, temporal, and spectral variations between the different gravity field products and developed an ensemble gravity field solution from the products of four such analysis centers. The solutions were found to lie within a certain analysis scatter regardless of the local relative water height variation, and the ensemble model is clearly seen to reduce the noise in the gravity field solutions within the available scatter of the solutions.
The use of satellites in gravity field determination and model adjustment
NASA Astrophysics Data System (ADS)
Visser, Petrus Nicolaas Anna Maria
1992-06-01
Methods to improve gravity field models of the Earth with available data from satellite observations are proposed and discussed. In principle, all types of satellite observations mentioned give information of the satellite orbit perturbations and in conjunction the Earth's gravity field, because the satellite orbits are affected most by the Earth's gravity field. Therefore, two subjects are addressed: representation forms of the gravity field of the Earth and the theory of satellite orbit perturbations. An analytical orbit perturbation theory is presented and shown to be sufficiently accurate for describing satellite orbit perturbations if certain conditions are fulfilled. Gravity field adjustment experiments using the analytical orbit perturbation theory are discussed using real satellite observations. These observations consisted of Seasat laser range measurements and crossover differences, and of Geosat altimeter measurements and crossover differences. A look into the future, particularly relating to the ARISTOTELES (Applications and Research Involving Space Techniques for the Observation of the Earth's field from Low Earth Orbit Spacecraft) mission, is given.
Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes
NASA Technical Reports Server (NTRS)
Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)
2001-01-01
In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.
Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes
NASA Technical Reports Server (NTRS)
Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)
2001-01-01
In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.
Cytoplasmic pH Dynamics in Maize Pulvinal Cells Induced by Gravity Vector Changes1[w
Johannes, Eva; Collings, David A.; Rink, Jochen C.; Allen, Nina Strömgren
2001-01-01
In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pHc) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291–1298). The question arises whether pHc has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pHc in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pHc changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pHc changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pHc has an important role in the early signaling pathways of maize stem gravitropism. PMID:11553740
Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes.
Johannes, E; Collings, D A; Rink, J C; Allen, N S
2001-09-01
In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.
Across-canyon movement of earthquake-induced sediment gravity flow offshore southwestern Taiwan.
NASA Astrophysics Data System (ADS)
Chen, Yen-Ting; Su, Chih-Chieh; Lu, Yi-Wei; Cheng, Yiya
2017-04-01
Caused by the origin of oblique collision between the Eurasian and Philippine Sea Plate, Taiwan Island inevitably faces the destiny to be continuously influenced by frequent and severe earthquake activities. Thus, earthquake-induced sediment gravity flows are common marine geo-hazards in the submarine region of Taiwan. The Pingtung Doublet earthquakes occurred in Dec. 2006 offshore Fangliao Township and two submarine cables were broken at the Fangliao Submarine Canyon (FLSC) head, simultaneously. On the eastern side of the FLSC head, chirp sonar profiles and high-resolution bathymetry data revealed linear seafloor failures along the northwest direction and merged into the FLSC. Moreover, cores taken from the seafloor failure area and in the FLSC also observed thick debrite and turbidite layers at core tops. Nevertheless, in the western side of the FLSC head, local fishermen reported disturbed water just after the Pingtung Doublet earthquakes. Hence series of cores and chirp sonar data were collected at the western side of the FLSC, trying to figure out the linkage of Pingtung Doublet earthquakes induced gravity flow deposits on both sides of the FLSC. The analysis results suggest that the deposits of disturbed water at the western side of FLSC head was caused by the finer suspended sediments separated from the main body at the top of the gravity flow. Our results point out besides the traditional well-known downward transportation in the canyon, the across-canyon movement may also leave stratigraphic records and help us to establish a more complete transportation process of a sediment gravity flow.
NASA Astrophysics Data System (ADS)
Imamura, Takeshi; Watanabe, Ayuka; Maejima, Yasumitsu
2016-03-01
Generation of gravity waves by convection was studied using a nonlinear two-dimensional model. A boundary-layer convection forced by a horizontally-uniform heating and a plume forced by a localized heating representing a local dust storm were tested. The results suggest that vigorous convection occurs due to the low density of the martian atmosphere and that short-period waves having frequencies near the buoyancy frequency can be preferentially generated. The propagation of those gravity waves to thermospheric heights was studied using a linearized one-dimensional model. Because of the fast vertical propagation the waves attain large amplitudes in the lower thermosphere, being consistent with Mars Global Surveyor and Mars Odyssey's accelerometer measurements and MAVEN's neutral and ion measurements. The heating and cooling caused by the waves are expected to be significant in the energy budget of the thermosphere, and the vertical mixing induced by those gravity waves should influence the homopause height. Since the thermospheric densities of light, minor species increase with the lowering of the homopause, a lower homopause may have enhanced the escape of such species to space for early Mars, where slower, weaker gravity waves should dominate.
Bouncing universes in scalar-tensor gravity models admitting negative potentials
Boisseau, B.; Giacomini, H.; Starobinsky, A.A. E-mail: hector.giacomini@lmpt.univ-tours.fr E-mail: alstar@landau.ac.ru
2015-07-01
We consider the possibility to produce a bouncing universe in the framework of scalar-tensor gravity models in which the scalar field potential may be negative, and even unbounded from below. We find a set of viable solutions with nonzero measure in the space of initial conditions passing a bounce, even in the presence of a radiation component, and approaching a constant gravitational coupling afterwards. Hence we have a model with a minimal modification of gravity in order to produce a bounce in the early universe with gravity tending dynamically to general relativity (GR) after the bounce.
Thermo-electric transport in gauge/gravity models with momentum dissipation
NASA Astrophysics Data System (ADS)
Amoretti, Andrea; Braggio, Alessandro; Maggiore, Nicola; Magnoli, Nicodemo; Musso, Daniele
2014-09-01
We present a systematic definition and analysis of the thermo-electric linear response in gauge/gravity systems focusing especially on models with massive gravity in the bulk and therefore momentum dissipation in the dual field theory. A precise treatment of finite counter-terms proves to be essential to yield a consistent physical picture whose hydrodynamic and beyond-hydrodynamics behaviors noticeably match with field theoretical expectations. The model furnishes a possible gauge/gravity description of the crossover from the quantum-critical to the disorder-dominated Fermi-liquid behaviors, as expected in graphene.
Simulation of the Indonesian land gravity data using a digital terrain model data
NASA Astrophysics Data System (ADS)
Heliani, L. S.; Fukuda, Y.; Takemoto, S.
2004-01-01
The Indonesian gravity field is neither accurately nor comprehensively determined, especially due to inadequacy of land gravity data. This study deals with determination of Indonesian land gravity and proposes the solution to data unavailability by means of a simulation technique. The simulation was carried out by combining short wavelength topographic effects from GTOPO30 and long wavelength information from EGM96\\@. The simulated result was then compared with the observed gravity data. Over Java, Sumatra and Sulawesi islands, using three methods commonly used on the computation of topographic effect; topography, isostatic and RTM (Residual Terrain Model), it was estimated that error propagation by the GTOPO30 into the simulated gravity is about 4.5 to 11.7 mgal, with the RTM method was affected less than others. It was also shown that the simulated gravity from the RTM method gave the best agreement with STD (Standard Deviation) differences of 17 to 42 mgal compared to the observed data. This result was achieved after applying optimal RTM parameters over the Indonesian area: a reference field of 25'-27.5' and density of 2-2.2 gr/cm3. Compared to STD differences between EGM96 and observed data, that between the simulated gravity and observed data improved by 2.5-7 mgal, and gave more detailed gravity features, especially over areas of high topography.
NASA Astrophysics Data System (ADS)
Tsoulis, Dimitrios; Patlakis, Konstantinos
2017-04-01
Gravity reductions and gravity anomalies express important tools for the analysis and interpretation of real gravity measurements at all spatial scales. Simple geometries of planar or spherical slabs for the topographic masses underlying the computation point down to a reference height surface produce the traditional definition of simple Bouguer anomalies. However, especially for gravity measurements obtained from local gravity surveys stretching up to only a few tens of kilometers, a detailed consideration of the deviations of the surface topographic relief from the ideal slab geometry is required and necessary in order to obtain the so-called refined Bouguer anomalies. The present contribution examines the further refinement of these computations depending on the exact geometric representation of the topographic surface and the corresponding masses defining the terrain correction quantity. Using as input data 328 surface gravity observations and a 20 km x 15 km Digital Terrain Model with a 50 m x 50 m spatial resolution of a steep terrain area in the Bavarian Alps different sets of gravity anomalies were computed from different geometrical and mathematical approximations of the topographic masses and its corresponding gravitational effect. Right rectangular prisms, polyhedrons, bilinear surfaces, mass-line and mass-prism FFT representations of the terrain effect have been implemented for the evaluation of refined Bouguer gravity anomalies over the 20 km x 15 km region and the computed grids have been compared both against each other as well as with respect to the topographic height.
Recent results on modelling the spatial and temporal structure of the Earth's gravity field.
Moore, P; Zhang, Q; Alothman, A
2006-04-15
The Earth's gravity field plays a central role in sea-level change. In the simplest application a precise gravity field will enable oceanographers to capitalize fully on the altimetric datasets collected over the past decade or more by providing a geoid from which absolute sea-level topography can be recovered. However, the concept of a static gravity field is now redundant as we can observe temporal variability in the geoid due to mass redistribution in or on the total Earth system. Temporal variability, associated with interactions between the land, oceans and atmosphere, can be investigated through mass redistributions with, for example, flow of water from the land being balanced by an increase in ocean mass. Furthermore, as ocean transport is an important contributor to the mass redistribution the time varying gravity field can also be used to validate Global Ocean Circulation models. This paper will review the recent history of static and temporal gravity field recovery, from the 1980s to the present day. In particular, mention will be made of the role of satellite laser ranging and other space tracking techniques, satellite altimetry and in situ gravity which formed the basis of gravity field determination until the last few years. With the launch of Challenging Microsatellite Payload and Gravity and Circulation Experiment (GRACE) our knowledge of the spatial distribution of the Earth's gravity field is taking a leap forward. Furthermore, GRACE is now providing insight into temporal variability through 'monthly' gravity field solutions. Prior to this data we relied on satellite tracking, Global Positioning System and geophysical models to give us insight into the temporal variability. We will consider results from these methodologies and compare them to preliminary results from the GRACE mission.
New Interpretations of the Rayn Anticlines in the Arabian Basin Inferred from Gravity Modelling
NASA Astrophysics Data System (ADS)
AlMogren, S. M.; Mukhopadhyay, M.
2014-12-01
The Ryan Anticlines comprise of a regularly-spaced set of super-giant anticlines oriented NNW, developed due to E-W compression in the Arabian Basin. Most prominent of these being: the Ghawar Anticline, followed by the Summan, Khurais Anticlines and Qatar Arch. Gravity anomaly is largely characteristic for both Ryan Anticlines and its smaller size version the Jinadriah Anticline in the Riyadh Salt Basin. It displays a bipolar gravity field - a zone of gravity high running along the fold axis that is flanked by asymmetric gravity lows. Available structural models commonly infer structural uplift for the median gravity high but ignore the flanking lows. Here we interpret the bipolar gravity anomaly due primarily to such anticline structures, while, the flanking gravity lows are due to greater sediment thickness largely compacted and deformed over the basement depressions. Further complexities are created due to the salt layer and its migration at the lower horizons of sediment strata. Such diagnostic gravity anomaly pattern is taken here as an evidence for basement tectonics due to prevailing crustal dynamics in the Arabian Basin. Density inversion provides details on the subsurface density variation due to the folding and structural configuration for the sediment layers, including the salt layer, affected by basement deformation. This interpretation is largely supported by gravity forward and inversion models given in the present study what is partly constrained by the available seismic, MT and deep resistivity lines and surface geologic mapping. Most of the oil-gas fields in this part of the Arabian Basin are further known for salt diapirism. In this study the gravity interpretation help in identification of salt diapirism directly overlying the basement is firstly given here for Jinadriah Anticline; that is next extended to a regional geologic cross-section traversing the Ryan Anticlines to infer probable subsurface continuation of salt diapirs directly overlying
Forward modeling of gravity data using geostatistically generated subsurface density variations
Phelps, Geoffrey
2016-01-01
Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.
NASA Astrophysics Data System (ADS)
Schwering, P. C.; Karlin, R. E.
2012-12-01
The Dixie Meadows geothermal prospect, located ~150 km east of Reno, Nevada, lies within an active NNE-trending fault zone between the Stillwater Range to the east and Dixie Valley to the west, at the northern extent of the 1954 Dixie Valley earthquake rupture. Geothermal surface expressions consist of extensive advanced argillic alteration, steam vents, and hot springs. Interpretation of existing gravity and magnetic datasets indicates that normal faults control geothermal fluid flow. Some faults exhibit little or no surface expression (i.e. blind faults). This study incorporates data from 80 aeromagnetic transects flown by the USGS in 2002 and 516 gravity stations acquired by Zonge Geosciences, Inc. in 2010 for a total of ~150 square kilometers of coverage. Forward modeling of the gravity data, supported by available exploration well data, indicate a basin thickness of ~2 km in the basin center, abruptly decreasing to within 500 m in the intrabasin - a 1-2 km wide zone on the basin margin, adjacent to the range front. A reduced-to-pole map of the magnetic data reveals normal fault-bounded magnetic anomalies. The horizontal derivative of the gravity data delineates the strike of normal faults, and vertical derivatives of the gravity data indicate the dip. The integrated analyses of the gravity and magnetic datasets indicate that steeply-dipping, NW-striking faults are intersected by younger, moderate- to steeply-dipping, NNE-striking, right-stepping faults. Normal faults primarily strike NNE and dip ESE, orthogonal to regional WNW extension that characterizes the northwestern Basin and Range province. A 2 km right-step in the range front is kinematically accommodated by offset of the intrabasin normal faults, resulting in ENE- and NNE-striking, anastomosing faults that intersect at hot springs and accompanying steam vents. In addition, NW-striking, SW-dipping normal faults cut through the Stillwater Range and into the intrabasin. The NW-striking faults exhibit
NASA Astrophysics Data System (ADS)
Rexer, Moritz; Hirt, Christian; Pail, Roland; Claessens, Sten
2014-04-01
In March 2013, the fourth generation of European Space Agency's (ESA) global gravity field models, DIR4 (Bruinsma et al. in Proceedings of the ESA living planet symposium, 28 June-2 July, Bergen, ESA, Publication SP-686, 2010b) and TIM4 (Migliaccio et al. in Proceedings of the ESA living planet symposium, 28 June-2 July, Bergen, ESA, Publication SP-686, 2010), generated from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity observation satellite was released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with Gravity Recovery and Climate Experiment (GRACE) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude ( km) show both fourth generation models to improve significantly w.r.t. their predecessors. Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100 km (degree 200). In terms of absolute errors, TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly
Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin
2014-11-01
The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.
Multi-Scale Modeling of Liquid Phase Sintering Affected by Gravity: Preliminary Analysis
NASA Technical Reports Server (NTRS)
Olevsky, Eugene; German, Randall M.
2012-01-01
A multi-scale simulation concept taking into account impact of gravity on liquid phase sintering is described. The gravity influence can be included at both the micro- and macro-scales. At the micro-scale, the diffusion mass-transport is directionally modified in the framework of kinetic Monte-Carlo simulations to include the impact of gravity. The micro-scale simulations can provide the values of the constitutive parameters for macroscopic sintering simulations. At the macro-scale, we are attempting to embed a continuum model of sintering into a finite-element framework that includes the gravity forces and substrate friction. If successful, the finite elements analysis will enable predictions relevant to space-based processing, including size and shape and property predictions. Model experiments are underway to support the models via extraction of viscosity moduli versus composition, particle size, heating rate, temperature and time.
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.
2010-01-01
As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.
Explicit solutions of a gravity-induced film flow along a convectively heated vertical wall.
Raees, Ammarah; Xu, Hang
2013-01-01
The gravity-driven film flow has been analyzed along a vertical wall subjected to a convective boundary condition. The Boussinesq approximation is applied to simplify the buoyancy term, and similarity transformations are used on the mathematical model of the problem under consideration, to obtain a set of coupled ordinary differential equations. Then the reduced equations are solved explicitly by using homotopy analysis method (HAM). The resulting solutions are investigated for heat transfer effects on velocity and temperature profiles.
Explicit Solutions of a Gravity-Induced Film Flow along a Convectively Heated Vertical Wall
Raees, Ammarah
2013-01-01
The gravity-driven film flow has been analyzed along a vertical wall subjected to a convective boundary condition. The Boussinesq approximation is applied to simplify the buoyancy term, and similarity transformations are used on the mathematical model of the problem under consideration, to obtain a set of coupled ordinary differential equations. Then the reduced equations are solved explicitly by using homotopy analysis method (HAM). The resulting solutions are investigated for heat transfer effects on velocity and temperature profiles. PMID:24453862
Isostatic gravity map of the Death Valley ground-water model area, Nevada and California
Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.
2002-03-12
Gravity investigations of the Death Valley ground-water model area are part of an interagency effort by the U.S. Geological Survey (USGS) and the U.S. Department of Energy (Interagency agreement DE-AI08-96NV11967) to help characterize the geology and hydrology of southwestern Nevada and parts of California. The Death Valley ground-water model is located between lat 35 degrees 00' and 38 degrees 15' N., and long 115 degrees and 118 degrees W. An isostatic gravity map of the Death Valley ground-water model was prepared from over 40,000 gravity stations, most of which are publicly available on a CD-ROM of gravity data of Nevada (Ponce, 1997). The map also includes gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1998; Morin and Blakely, 1999). A subset of these gravity data in the Nevada Test Site and vicinity were described in detail by Harris and others (1989) who included information on gravity meters used, dates of collection, sources, descriptions of base stations, plots of data, and digital and paper lists of principal facts. For display purposes only, gravity data within Yucca Flat were thinned by a factor of 10. The digital gravity data set was gridded at an interval of 400 m using a computer program (Webring, 1981) based on a minimum curvature algorithm by Briggs (1974). The resulting grid was then interpolated to a 200-m grid to minimize pixel size, and then it was color contoured.
Creed, R.; Edwards, A.
1997-08-01
Gravity gradiometry forward models have been developed at the Idaho National Engineering and Environmental laboratory (INEEL) that can characterize gravity gradient changes with the development of a cone of depression or injection mound in water table aquifers. Difference measurements at long time intervals reduce delayed drainage effects and eliminate the need for determining an initial density structure. Qualitative or semi-quantitative analysis of the gradient signal to determine changes in groundwater distribution with injection or pumping may be possible, particularly if the time varying nature of the signal is of interest. Gravity gradiometer instruments (such as the Gravity Gradient Survey System) have progressed to the point where the complete second order gravity gradient tensor can be measured with an instrument noise level of less than 1 Eotvos (0.1 microgals/meter). Modeling indicates direct gravity measurements for the injection mound perched aquifier case could produce similar signal to noise ratios. However gravity gradients provide 5 independent measurements and due to the common mode nature of the instruments are less susceptible to other effects (tide, latitude, elevation, etc.). The gradients also provide a sharper image of the edge of the anomaly. The systematic identification and removal of specific retention, rainfall and subsidence or uplift effects may be required to make gradiometry difference imaging practical for field use.
Liu, Mei; Gao, Hong; Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin
2011-01-01
Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD(245 nm). The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena.
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.
1993-01-01
A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.
1993-01-01
A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.
Comparison of theories for gravity wave induced fluctuations in airglow emissions
NASA Technical Reports Server (NTRS)
Walterscheid, R. L.; Schubert, G.; Hickey, M. P.
1994-01-01
A comparison is undertaken of theories for the gravity wave induced fluctuations in the intensity of airglow emissions and the associated temperature of the source region. The comparison is made in terms of Krassovsky's ratio eta(sub E) for a vertically extended emission region (eta(sub E) is the ratio of the vertically integrated normalized intensity perturbation to the vertically integrated intensity-weighted temperature perturbation). It is shown that the formulas for eta(sub E) in the works by Tarasick and Hines (1990) and Schubert et al. (1991) are in agreement for the case of an inviscid atmosphere. The calculation of eta(sub E) using the theory of Tarasick and Hines (1990) requires determination of their function chi; we show that chi is simply related to the 'single-level' Krassovsky's ratio eta of Schubert et al. (1991). The general relationship between chi and eta is applied to a simple chemical-dynamical model of the O2 atmospheric airglow and the altitude dependence of these quantities is evaluated for nonsteady state chemistry. Though the Tarasick and Hines (1990) formula for eta(sub E) does not explicitly depend on the scale heights of the minor constituents involved in airglow chemistry, eta(sub E) implicitly depends upon these scale heights through its dependences on chemical production and loss contained in chi. We demonstrate this dependence of eta(sub E) for the OH nightglow on atomic oxygen scale height by direct numerical evaluation of eta(sub E) in this case the dependence originates in the chemical production of perturbed ozone.
Comparison of theories for gravity wave induced fluctuations in airglow emissions
NASA Technical Reports Server (NTRS)
Walterscheid, R. L.; Schubert, G.; Hickey, M. P.
1994-01-01
A comparison is undertaken of theories for the gravity wave induced fluctuations in the intensity of airglow emissions and the associated temperature of the source region. The comparison is made in terms of Krassovsky's ratio eta(sub E) for a vertically extended emission region (eta(sub E) is the ratio of the vertically integrated normalized intensity perturbation to the vertically integrated intensity-weighted temperature perturbation). It is shown that the formulas for eta(sub E) in the works by Tarasick and Hines (1990) and Schubert et al. (1991) are in agreement for the case of an inviscid atmosphere. The calculation of eta(sub E) using the theory of Tarasick and Hines (1990) requires determination of their function chi; we show that chi is simply related to the 'single-level' Krassovsky's ratio eta of Schubert et al. (1991). The general relationship between chi and eta is applied to a simple chemical-dynamical model of the O2 atmospheric airglow and the altitude dependence of these quantities is evaluated for nonsteady state chemistry. Though the Tarasick and Hines (1990) formula for eta(sub E) does not explicitly depend on the scale heights of the minor constituents involved in airglow chemistry, eta(sub E) implicitly depends upon these scale heights through its dependences on chemical production and loss contained in chi. We demonstrate this dependence of eta(sub E) for the OH nightglow on atomic oxygen scale height by direct numerical evaluation of eta(sub E) in this case the dependence originates in the chemical production of perturbed ozone.
Gravity research on plants: use of single-cell experimental models.
Chebli, Youssef; Geitmann, Anja
2011-01-01
Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.
Gravity Research on Plants: Use of Single-Cell Experimental Models
Chebli, Youssef; Geitmann, Anja
2011-01-01
Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single-celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided. PMID:22639598
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
NASA Technical Reports Server (NTRS)
Reasenberg, Robert D.
1993-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Gravity-induced rock mass damage related to large en masse rockslides: Evidence from Vajont
NASA Astrophysics Data System (ADS)
Paronuzzi, Paolo; Bolla, Alberto
2015-04-01
The Vajont landslide is a well-known, reservoir-induced slope failure that occurred on 9 October 1963 and was characterized by an 'en masse' sliding motion that triggered various large waves, determining catastrophic consequences for the nearby territory and adjacent villages. During the Vajont dam construction, and especially after the disaster, some researchers identified widespread field evidence of heavy rock mass damage involving the presumed prehistoric rockslide and/or the 1963 failed mass. This paper describes evidence of heavy gravitational damage, including (i) folding, (ii) fracturing, (iii) faulting, and (iv) intact rock disintegration. The gravity-induced rock mass damage (GRMD) characterizes the remnants of the basal shear zone, still resting on the large detachment surface, and the 1963 failed rock mass. The comprehensive geological study of the 1963 Vajont landslide, based on the recently performed geomechanical survey (2006-present) and on the critical analysis of the past photographic documentation (1959-1964), allows us to recognize that most GRMD evidence is related to the prehistoric multistage Mt. Toc rockslide. The 1963 catastrophic en masse remobilization induced an increase to the prehistoric damage, reworking preexisting structures and creating additional gravity-driven features (folds, fractures, faults, and rock fragmentation). The gravity-induced damage was formed during the slope instability phases that preceded the collapse (static or quasi-static GRMD) and also as a consequence of the sliding motion and of the devastating impact between the failed blocks (dynamic GRMD). Gravitational damage originated various types of small drag folds such as flexures, concentric folds, chevron, and kink-box folds, all having a radius of 1-5 m. Large buckle folds (radius of 10-50 m) are related to the dynamic damage and were formed during the en masse motion as a consequence of deceleration and impact processes that involved the sliding mass. Prior
Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles
NASA Technical Reports Server (NTRS)
Sack, F. D.; Leopold, A. C.
1985-01-01
Living maize (Zea mays L.) coleoptile cells were observed using a horizontal microscope to determine the interaction between cytoplasmic streaming and gravity-induced amyloplast sedimentation. Sedimentation is heavily influenced by streaming which may (1) hasten or slow the velocity of amyloplast movement and (2) displace the plastid laterally or even upwards before or after sedimentation. Amyloplasts may move through transvacuolar strands or through the peripheral cytoplasm which may be divided into fine cytoplasmic strands of much smaller diameter than the plastids. The results indicate that streaming may contribute to the dynamics of graviperception by influencing amyloplast movement.
Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles
NASA Technical Reports Server (NTRS)
Sack, F. D.; Leopold, A. C.
1985-01-01
Living maize (Zea mays L.) coleoptile cells were observed using a horizontal microscope to determine the interaction between cytoplasmic streaming and gravity-induced amyloplast sedimentation. Sedimentation is heavily influenced by streaming which may (1) hasten or slow the velocity of amyloplast movement and (2) displace the plastid laterally or even upwards before or after sedimentation. Amyloplasts may move through transvacuolar strands or through the peripheral cytoplasm which may be divided into fine cytoplasmic strands of much smaller diameter than the plastids. The results indicate that streaming may contribute to the dynamics of graviperception by influencing amyloplast movement.
NASA Astrophysics Data System (ADS)
Chamindu Deepagoda, T. K. K.; Jones, Scott B.; Tuller, Markus; de Jonge, Lis Wollesen; Kawamoto, Ken; Komatsu, Toshiko; Moldrup, Per
2014-08-01
Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA's advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 - g) were scaled to two reduced gravity conditions, Martian gravity (0.38 - g) and lunar gravity (0.16 - g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions.
COLA with scale-dependent growth: applications to screened modified gravity models
NASA Astrophysics Data System (ADS)
Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo
2017-08-01
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.
Model-based optimization of gravity sagging for a horizontally mounted optical flat.
Quan, Haiyang; Gu, Wei; Hou, Xi; Wu, Fan
2016-02-10
A practical and generalized model-based gravity sagging reconstruction method for a horizontally mounted optical flat is proposed. It is a practical and generalized approach based on the finite element method (FEM) model and real experiment results. Gravity sagging and misalignment parameters are retrieved by solving the multivariable unconstrained optimization problem with a least squares sense. Finally, the accurate true surface figure can be obtained by subtracting the optimized gravity sagging from the test result in the practical mounting state. A reasonable agreement with the outcomes of the FEM analysis and the real experiment is achieved through the proposed method. The effectiveness of the method was verified by comparison with the result measured by three-flat calibration. Experimental results demonstrated that this reverse optimization method can effectively reconstruct the sagging information due to gravity, is generalized, and is computationally efficient in practice.
Constraints of energy conditions and DK instability criterion on f(R, Lm) gravity models
NASA Astrophysics Data System (ADS)
Wu, Ya-Bo; Zhao, Yue-Yue; Jin, Yong-Yi; Lin, Liang-Liang; Lu, Jian-Bo; Zhang, Xue
2014-06-01
Some properties of f(R, Lm) gravity are studied in this paper. Concretely, the energy conditions and the Dolgov-Kawasaki (DK) instability criterion in f(R, Lm) gravity are obtained, which are quite general and can degenerate to the ones in General Relativity (GR) and pure f(R) gravity with non-coupling and non-minimal coupling as well as in [J. Wang and K. Liao, Class. Quantum Grav. 29, 215016 (2012)] as special cases. Furthermore, in order to get some insight on the meaning of the energy conditions and the DK instability criterion, we apply them to the concrete type of f(R, Lm) gravity models and the corresponding constraints on the models are given.
Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i
Carbone, Daniele; Poland, Michael P.
2012-01-01
Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.
Schatz, A; Linke-Hommes, A; Neubert, J
1996-01-01
Theoretical investigations involving the membrane-solution interface have revealed that the density of the solution varies appreciably within interfacial layers adjacent to charged membrane surfaces. The hypothesis that gravity interacts with this configuration and modifies transport rates across horizontal and vertical membranes differently was supported by initial experiments with gramicidin A channels in phosphatidylserine (PS) membranes in 0.1 M KCl. Channel conductivity was found to be about 1.6 times higher in horizontal membranes than in vertical membranes. Here we present the results of further experiments with gramicidin A channels (incorporated into charged PS- and uncharged phosphatidylcholine (PC) membranes in KCl- and CsCl-solutions) to demonstrate that the hypothesis is more generally applicable. Again, channel conductivity was found to be higher in horizontal PS membranes by a factor of between 1.20 and 1.75 in 0.1 M CsCl. No difference in channel conductivity was found for uncharged PC membranes in 0.1 M KCl and in 0.1 M CsCl. However, for PC membranes in 0.05 M KCl the channel conductivity was significantly higher in horizontal membranes by a factor of between 1.07 and 1.14. These results are consistent with the results of our model calculations of layer density and extension, which showed that the layer formation is enhanced by increasing membrane surface charge and decreasing electrolyte ion concentration. The mechanism of gravity interaction with membrane transport processes via interface reactions might be utilized by biological systems for orientational behaviour in the gravity field, which has been observed even for cellular systems.
Multisensory integration and internal models for sensing gravity effects in primates.
Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects.
Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates
Lacquaniti, Francesco; La Scaleia, Barbara; Maffei, Vincenzo
2014-01-01
Gravity is crucial for spatial perception, postural equilibrium, and movement generation. The vestibular apparatus is the main sensory system involved in monitoring gravity. Hair cells in the vestibular maculae respond to gravitoinertial forces, but they cannot distinguish between linear accelerations and changes of head orientation relative to gravity. The brain deals with this sensory ambiguity (which can cause some lethal airplane accidents) by combining several cues with the otolith signals: angular velocity signals provided by the semicircular canals, proprioceptive signals from muscles and tendons, visceral signals related to gravity, and visual signals. In particular, vision provides both static and dynamic signals about body orientation relative to the vertical, but it poorly discriminates arbitrary accelerations of moving objects. However, we are able to visually detect the specific acceleration of gravity since early infancy. This ability depends on the fact that gravity effects are stored in brain regions which integrate visual, vestibular, and neck proprioceptive signals and combine this information with an internal model of gravity effects. PMID:25061610
Progress in the development of the GMM-2 gravity field model for Mars
NASA Technical Reports Server (NTRS)
Lemoine, F. G.; Smith, D. E.; Lerch, F. J.; Zuber, M. T.; Patel, G. B.
1994-01-01
Last year we published the GMM-1 (Goddard Mars Model-1) gravity model for Mars. We have completely re-analyzed the Viking and Mariner 9 tracking data in the development of the new field, designated GMM-2. The model is complete to degree and order 70. Various aspects of the model are discussed.
Earth gravity model improvement - An alternative method for Doppler-tracked satellites
NASA Astrophysics Data System (ADS)
Lansard, E.; Biancale, R.
A new method of earth gravity model improvement based on an analytical formulation of Doppler residuals is presented here in prospect of future geodetic and altimetric missions (DORIS< TOPEX/POSEIDON, ERS1). After an intermediate step of orbit improvement, disturbing forces due to gravity field mismodeling are recovered above tracking statins at satellite altitude. Some significant simulation results for Seasat and DORIS are presented.
Spherical collapse model and cluster number counts in power-law f(T) gravity
NASA Astrophysics Data System (ADS)
Malekjani, M.; Basilakos, S.; Heidari, N.
2017-04-01
We study the spherical collapse model in the framework of spatially flat power law f(T) ∝ (- T)b gravity model. We find that the linear and non-linear growth of spherical overdensities of this particular f(T) model are affected by the power-law parameter b. Finally, we compute the predicted number counts of virialized haloes in order to distinguish the current f(T) model from the expectations of the concordance Λ cosmology. Specifically, the present analysis suggests that the f(T) gravity model with positive (negative) b predicts more (less) virialized objects with respect to those of Λ cold dark matter.
NASA Astrophysics Data System (ADS)
Maślanka, K.
A model of reality based on quantum fields, but with a classical treatment of gravity, is inconsistent. Finding a solution has proved extremely difficult, possibly due to the beauty and conceptual simplicity of general relativity. There is a variety of approaches to a consistent theory of quntum gravity. At present, it seems that superstring theory is the most promising candidate.
Dynamics and Control Modeling for Gravity Probe B
NASA Astrophysics Data System (ADS)
Pelivan, Ivanka
2010-03-01
A generic drag-free simulator has been developed to aid in the design, on-orbit and post-mission data analysis phases of increasingly complex future missions such as Gaia and STEP. Adaptation to the recent science mission Gravity Probe B (GP-B) has been carried out for a first simulator verification with actual flight data. Lessons learned from GP-B have shown that the controls simulator, developed concurrently with GP-B, has been invaluable to test flight control design and furthermore to resolve on-orbit anomalies in a time-saving manner. A complete mission software simulator including controls, full-body dynamics and comprehensive spacecraft environment disturbances has been established for Gravity Probe B. This simulator provides a reference and development platform for future mission design. The importance of this effort lies in the challenge to meet rising science requirements for future missions in the area of maximum disturbance rejection.
A Computer Model for Determining Operational Centers of Gravity
2002-05-31
rest of joint and service doctrine by equating centers of gravity with critical vulnerabilities. Despite this convergence, the preconception persists...Leyte, Malaya, Okinawa, Panama, Philippines, Sicily, and Somalia . Among these USAWC studies, the US invasion of Okinawa (1945) and Operation Just...leaving only “conclusions” that represent the end points of the various lines of reasoning. A graphical notation was used to record the task reduction
Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models
NASA Technical Reports Server (NTRS)
Carranza, Eric; Konopliv, Alex; Ryne, Mark
1999-01-01
The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.
Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models
NASA Technical Reports Server (NTRS)
Carranza, Eric; Konopliv, Alex; Ryne, Mark
1999-01-01
The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.
The latest GrazLGM lunar gravity field model: developments in the framework of project GRAZIL
NASA Astrophysics Data System (ADS)
Klinger, B.; Wirnsberger, H.; Mayer-Gürr, T.; Krauss, S.
2016-12-01
Project GRAZIL aims at recovering a high-accurate lunar gravity field based on the measurements collected by the Gravity Recovery and Interior Laboratory (GRAIL) mission. In order to achieve this objective we perform dynamic precise orbit determination from radio science observations (Doppler range-rates) in combination with the analysis of inter-satellite Ka-band ranging (KBR) observations. For gravity field recovery, we apply an integral equation approach using short orbital arcs (1 hour).We present our latest lunar gravity field model, derived from data collected during primary (March 1 to May 29, 2012) and extended (August 30 to December 14, 2012) mission phase.The extended mission phase improved the resolution due to a lower average altitude (23 km) of the spacecraft. As a result, the latest gravity field shows improvements especially in the shorter wavelengths compared to its predecessor GrazLGM300c.In this contribution we focus on the stepwise improvements of our gravity field solutions, achieved by a refinement of our processing strategy (e.g. incorporation of non-gravitational accelerations, covariance estimation, inclusion of extended mission data) in conjunction with an increase of the spectral resolution. We validate our results against prior GrazLGM models and recent GRAIL models computed at NASA-GSFC and NASA-JPL.
Geological model for oil gravity variations in Oriente Basin, Ecuador
Dashwood, M.F.; Abbotts, I.L.
1988-01-01
The Oriente basin is one of the major productive Subandean basins. Most of the fields produce 29/sup 0/-33/sup 0/ API paraffinic oils, but oils have been discovered with gravities ranging from 10/sup 0/to 35/sup 0/ API. All the oils have been recovered from multiple middle to Late Cretaceous sandstone reservoirs (Hollin and Napo Formations). Wells display a variety of oil gravities by reservoir. The origin of the Oriente oils is problematical and controversial, but structural, geochemical, and well evidence suggest a vast oil kitchen west of the present Andean foothills that was mature for oil generation by at least early Tertiary. Oil analyses indicate a single family of oils is present. Oil gravity variations can be explained systematically in terms of the various alteration processes suffered by the oil in each reservoir. Intermittent early Andean uplift (latest Cretaceous to Mid-Eocene) resulted in biodegradation and water-washing of oils, particularly in the uppermost Napo reservoirs. The main Andean orogeny (Pliocene) uplifted the Hollin reservoir to outcrop in the west, and tilted the basin down to the south. This movement resulted in water washing or flushing of the Hollin aquifer and a phase of northward remigration of oil. Late Andean structures postdated primary oil migration. Almost all structures displaying growth during the Late Cretaceous to early Eocene have been oil bearing, but some, particularly those located on the present-day basin flanks, were later severely biodegraded or breached.
Three-dimensional gravity modeling and focusing inversion using rectangular meshes.
Commer, M.
2011-03-01
Rectangular grid cells are commonly used for the geophysical modeling of gravity anomalies, owing to their flexibility in constructing complex models. The straightforward handling of cubic cells in gravity inversion algorithms allows for a flexible imposition of model regularization constraints, which are generally essential in the inversion of static potential field data. The first part of this paper provides a review of commonly used expressions for calculating the gravity of a right polygonal prism, both for gravity and gradiometry, where the formulas of Plouff and Forsberg are adapted. The formulas can be cast into general forms practical for implementation. In the second part, a weighting scheme for resolution enhancement at depth is presented. Modelling the earth using highly digitized meshes, depth weighting schemes are typically applied to the model objective functional, subject to minimizing the data misfit. The scheme proposed here involves a non-linear conjugate gradient inversion scheme with a weighting function applied to the non-linear conjugate gradient scheme's gradient vector of the objective functional. The low depth resolution due to the quick decay of the gravity kernel functions is counteracted by suppressing the search directions in the parameter space that would lead to near-surface concentrations of gravity anomalies. Further, a density parameter transformation function enabling the imposition of lower and upper bounding constraints is employed. Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the transform space can recover geologically meaningful models requiring a minimum of prior information and user interaction.
Can plume-induced internal gravity waves regulate the core rotation of subgiant stars?
NASA Astrophysics Data System (ADS)
Pinçon, C.; Belkacem, K.; Goupil, M. J.; Marques, J. P.
2017-09-01
Context. The seismic data provided by the space-borne missions CoRoT and Kepler enabled us to probe the internal rotation of thousands of evolved low-mass stars. Subsequently, several studies showed that current stellar evolution codes are unable to reproduce the low core rotation rates observed in these stars. These results indicate that an additional angular momentum transport process is necessary to counteract the spin up due to the core contraction during the post-main sequence evolution. For several candidates, the transport induced by internal gravity waves (IGW) could play a non-negligible role. Aims: We aim to investigate the effect of IGW generated by penetrative convection on the internal rotation of low-mass stars from the subgiant branch to the beginning of the red giant branch. Methods: A semi-analytical excitation model was used to estimate the angular momentum wave flux. The characteristic timescale associated with the angular momentum transport by IGW was computed and compared to the contraction timescale throughout the radiative region of stellar models at different evolutionary stages. Results: We show that IGW can efficiently counteract the contraction-driven spin up of the core of subgiant stars if the amplitude of the radial-differential rotation (between the center of the star and the top of the radiative zone) is higher than a threshold value. This threshold depends on the evolutionary stage and is comparable to the differential rotation rates inferred for a sample of subgiant stars observed by the satellite Kepler. Such an agreement can therefore be interpreted as the consequence of a regulation mechanism driven by IGW. This result is obtained under the assumption of a smooth rotation profile in the radiative region and holds true even if a wide range of values is considered for the parameters of the generation model. In contrast, on the red giant branch, we find that IGW remain insufficient, on their own, to explain the observations because
A 3D gravity and magnetic model for the Entenschnabel area (German North Sea)
NASA Astrophysics Data System (ADS)
Dressel, Ingo; Barckhausen, Udo; Heyde, Ingo
2017-06-01
In this study, we focus on structural configuration of the Entenschnabel area, a part of the German exclusive economic zone within the North Sea, by means of gravity and magnetic modelling. The starting point of the 3D modelling approach is published information on subseafloor structures for shallow depths, acquired by wells and seismic surveys. Subsequent gravity and magnetic modelling of the structures of the deeper subsurface builds on this geophysical and geological information and on gravity and magnetic data acquired during a research cruise to the Entenschnabel area. On the one hand, our 3D model shows the density and susceptibility distribution of the sediments and the crust. In addition, the potential field modelling provides evidence for a differentiation between lower and upper crust. The thickness distribution of the crust is also discussed with respect to the tectonic framework. Furthermore, gravity as well as magnetic modelling points to an intrusive complex beneath the Central Graben within the Entenschnabel area. On the other hand, this work provides a geological-geophysical consistent 3D gravity and magnetic model that can be used as a starting point for further investigation of this part of the German North Sea.
Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation
NASA Astrophysics Data System (ADS)
Knudsen, Per; Andersen, Ole; Honecker, Johanna; Maximenko, Nikolai
2015-04-01
The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from GOCE are combined with the DTU13MSS mean sea surface to derive models for the Mean Dynamic Topography (MDT). The series of GOCE based MDT models are compared in regional analyses to identify differences and to quantify quality measures associated with the models. By using Fourier techniques the spectral characteristics are obtained as well as their anisotropic patterns. Then, regional analyses are carried out using in-situ observations of the geostrophic surface currents. This is done to analyse correlations and to derive resolution capacities of the MDT models. Also this information is used as quantified quality measures associated with the 23 GOCE gravity models.
A schematic model of crater modification by gravity
NASA Technical Reports Server (NTRS)
Melosh, H. J.
1982-01-01
The morphology of craters found on planets and moons of the solar system is examined and a development model which can account for the observed crater characteristics is discussed. The prompt collapse of craters to form flat floors, terraced walls, and central peak structures is considered to be the result of an approximate Bingham plastic rheology of the material surrounding the crater. This rheology is induced dynamically by the strong incoherent acoustic 'noise' accompanying excavation of the crater. Central pits, peak rings, and other multiple symmetric-profile rings originate by oscillation of this fluid. Large craters with transient depths comparable to the lithosphere thickness are subject to collapse by fragmentation of the lithosphere as well as fluidization. The considered concepts are developed mathematically. A model emerges which appears capable of explaining most of the qualitative features of large impact structures.
Novel roles of FKBP5 in muscle alteration induced by gravity change in mice.
Shimoide, Takeshi; Kawao, Naoyuki; Tamura, Yukinori; Morita, Hironobu; Kaji, Hiroshi
2016-10-21
Skeletal muscle hypertrophy and wasting are induced by hypergravity and microgravity, respectively. However, the mechanisms by which gravity change regulates muscle mass still remain unclear. We previously reported that hypergravity increases muscle mass via the vestibular system in mice. In this study, we performed comparative DNA microarray analysis of the soleus muscle from mice kept in 1 or 3 g environments with or without vestibular lesions. Mice were kept in 1 g or 3 g environment for 4 weeks by using a centrifuge 14 days after surgical bilateral vestibular lesions. FKBP5 was extracted as a gene whose expression was enhanced by hypergravity through the vestibular system. Stable FKBP5 overexpression increased the phosphorylations of Akt and p70 S6 kinase (muscle protein synthesis pathway) and myosin heavy chain, a myotube gene, mRNA level in mouse myoblastic C2C12 cells, although it reduced the mRNA levels of atrogin-1 and MuRF1, muscle protein degradation-related genes. In conclusion, we first showed that FKBP5 is induced by hypergravity through the vestibular system in anti-gravity muscle of mice. Our data suggest that FKBP5 might increase muscle mass through the enhancements of muscle protein synthesis and myotube differentiation as well as an inhibition of muscle protein degradation in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Gong-Bo
2014-04-01
Based on a suite of N-body simulations of the Hu-Sawicki model of f(R) gravity with different sets of model and cosmological parameters, we develop a new fitting formula with a numeric code, MGHalofit, to calculate the nonlinear matter power spectrum P(k) for the Hu-Sawicki model. We compare the MGHalofit predictions at various redshifts (z ≤ 1) to the f(R) simulations and find that the relative error of the MGHalofit fitting formula of P(k) is no larger than 6% at k ≤ 1 h Mpc{sup –1} and 12% at k in (1, 10] h Mpc{sup –1}, respectively. Based on a sensitivity study of an ongoing and a future spectroscopic survey, we estimate the detectability of a signal of modified gravity described by the Hu-Sawicki model using the power spectrum up to quasi-nonlinear scales.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
Increased efficiency of rf-induced evaporative cooling by utilizing gravity
NASA Astrophysics Data System (ADS)
Klinner, Julian; Wolke, Matthias; Hemmerich, Andreas
2010-04-01
We report on an efficient rf-induced forced evaporative cooling of an ensemble of Rb87 atoms in state |F=2,mF=2> magnetically trapped in a quadrupole-Ioffe configuration trap. The cigar-shaped trap is oriented with its weak confining axis along the direction of gravity leading to, first, a significant separation of the trapping positions for low-field-seeking atoms with different mF value and, second, a reduced resonance volume for rf-induced evaporation confined to a small region around the lower tip of the cigar-shaped ensemble. This results in an enhancement of the evaporation efficiency α≡dlnT/(dlnN) due to either reduced or completely vanishing scattering events between cooled and evaporated atoms. We present data illustrating this effect.
Cosmic censorship in quantum Einstein gravity
NASA Astrophysics Data System (ADS)
Bonanno, A.; Koch, B.; Platania, A.
2017-05-01
We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.
Modelling temporal gravity changes through the south of the Taiwan Orogen
NASA Astrophysics Data System (ADS)
Mouyen, Maxime; Masson, Frédéric; Mouthereau, Frédéric; Hwang, Cheinway; Cheng, Ching-Chung
2010-05-01
The Taiwan mountain belt results from the collision between Philippine Sea and Eurasian plates. Taiwan island experiences high tectonic deformation due to fast convergence between the two plates. It has been and is still widely studied and is often considered as a natural laboratory for orogeny studies. Since 2006, the French-Taiwanese scientific project AGTO (Absolute Gravity in the Taiwanese Orogen) measures the gravity change along a transect through the south of the island. It includes 10 absolute and 45 relative gravity measurements sites. The aim of this project is to validate the use of temporal gravity data for tectonic purposes. In particular, this method should be interesting to monitor deep mass transfers involved in the Taiwanese orogeny. Deep tectonic processes occuring in Taiwan are indeed still discussed, as shown by the existence of several tectonic hypotheses, and gravity can bring useful contribution to this discussion. The value of g in a particular place physically depends on the density distribution around this place. Change of this density distribution will result in a change of g, to which we try to give a tectonic meaning. However it is worth noting that other factors, like hydrology, might also be responsible for temporal g variations. Gravity modelling should therefore provide significant help in interpreting measurements. First, it can be used to estimate non-tectonic factors like hydrology, erosion or landslides, which both are supposed to modify g value through time. Albeit interesting, these effects must be properly removed from our measures before attempting any tectonic interpretation. Second, modelling is a valuable step in this study as it can help to propose deep mass transfers hypothesis constrained by gravity data and in accordance with Taiwan tectonic context. In this work, we present results of both types, computed for the south of the Taiwan orogen. Water effects on gravity have been estimated using rainfall data and global
Gravity Inversion with Geological Modeling Constraint and Its Application in the Okinawa Trough
NASA Astrophysics Data System (ADS)
Zhang, S.
2014-12-01
The satellite altimetry gravity data is used to recover the 3D distribution of oceanic lithosphere density in the Okinawa Trough and its neighbor region. It's difficult to use only gravity data to invert complex geological structure and density distribution by 3D gravity Inversion method. In order to improve the vertical resolution of the density inversion result, 3D geological modeling method is used to build structural model for the inversion, prior constraint conditions can be applied to solve the non-unique problem. In the Okinawa Trough, it is proved by earthquake data that the Philippine plate dives beneath the Okinawa Trough, which result in the upwelling of mantel material and decrease of the crust thickness. The Benioff zone clearly shows the plate's subduction parameter, such as direction, dip, transformation. Therefore, a structural subduction model is created by geological modeling method and works as the initial model and as constraint condition in gravity inversion. The 3D gravity inversion result and seismology CMT data are both used to explain the oceanic lithosphere structure in the Okinawa Trough. The inversion result illustrates high density anomaly under the Okinawa Trough. Affected by small scale mantle convections, the continental lithosphere is separated, which result in the spreading of back-arc basin and the formation of the Okinawa Trough.
Modeling study of the impacts of inertial gravity wave forcing in middle atmosphere polar region
NASA Astrophysics Data System (ADS)
Tan, B.; Liu, H.; Chu, X.
2012-12-01
The 'cold pole' problem refers to the cold bias of polar stratosphere temperature in the Southern Hemisphere in most general circulation models (GCMs) and chemistry climate models (CCMs) during the winter and spring. Accompanying the 'cold pole' is the excessively strong jet in the stratosphere and late vortex breaking. It is a long-standing problem in most models, implying the lack of wave forcing in the southern stratosphere. In current study we investigate the feasibility of using parameterized inertial gravity wave forcing to reduce the cold bias. The NCAR Whole Atmosphere Community Climate Model (WACCM 4.0) is used for this study. A new scheme that parameterizes inertial gravity waves is included in the WACCM. Although the inertial gravity waves are likely to break in the stratosphere and impact the middle atmosphere circulation, they are not well resolved by the model nor properly parameterized. Using the new gravity wave scheme, the simulated wintertime temperature is ~20 K warmer in the southern polar region while the simulated wintertime zonal wind jet is about 10 to 30 m/s slower than the originals. Also, the polar vortex in the Southern Hemisphere breaks earlier and the wind reversal level during spring is lower. All these changes make the WACCM simulations closer to ERA-40, suggesting that additional gravity waves are able to reduce the 'cold pole' bias.
The role of topography in geodetic gravity field modelling
NASA Technical Reports Server (NTRS)
Forsberg, R.; Sideris, M. G.
1989-01-01
Masses associated with the topography, bathymetry, and its isostatic compensation are a dominant source of gravity field variations, especially at shorter wavelengths. On global scales the topographic/isostatic effects are also significant, except for the lowest harmonics. In practice, though, global effects need not be taken into account as such effects are included in the coefficients of the geopotential reference fields. On local scales, the short-wavelength gravity variations due to the topography may, in rugged terrain, be an order of magnitude larger than other effects. In such cases, explicit or implicit terrain reduction procedures are mandatory in order to obtain good prediction results. Such effects may be computed by space-domain integration or by fast Fourier transformation (FFT) methods. Numerical examples are given for areas of the Canadian Rockies. In principle, good knowledge of the topographic densities is required to produce the smoothest residual field. Densities may be determined from sample measurements or by gravimetric means, but both are somewhat troublesome methods in practice. The use of a standard density, e.g., 2.67 g/cu cm, may often yield satisfactory results and may be put within a consistent theoretical framework. The independence of density assumptions is the key point of the classical Molodensky approach to the geodetic boundary value problem. The Molodensky solutions take into account that land gravity field observations are done on a non-level surface. Molodensky's problem may be solved by integral expansions or more effective FFT methods, but the solution should not be intermixed with the use of terrain reductions. The methods are actually complimentary and may both be required in order to obtain the smoothest possible signal, least prone to aliasing and other effects coming from sparse data coverage, typical of rugged topography.
NASA Astrophysics Data System (ADS)
Ripetskyj, R. T.; Kit, N. A.
Isolated leafy shoots of the moss Pottia intermedia positioned horizontally on the agar surface in vertically oriented petri dishes regenerate unbranching negatively gravitropic protonemata on upper side of the regenerant. Gravity determines the site of regeneration not the process itself. White light of low intensity unsufficient to induce positive phototropism of dark-grown protonemata can, however, provoke their branching and gametophore bud formation (Ripetskyj et al., 1998; 1999). The presented experiments have been carried out with red light in Biological Research in Canisters/Light Emitting Diode (BRIC/LED) hardware developed at Kennedy Space Center, USA. Seven-day-old dark-grown negatively gravitropic secondary P. intermedia protonemata were positioned differently with respect to gravity vector and to the source of red light of low, 1 or 2 μ mol\\cdot m-2\\cdot s-1, intensities. The light induced intensive branching of the protonemata and gametophore bud formation initiation site of both processes as well as the direction of growth of branches and buds being depent on the position of protonemata with respect to gravity and light vectors. Vertically positioned, i.e. ungravistimulated, dark grown protonemata illuminated from one side with red light of 2 μ mol\\cdot m-2\\cdot s-1 intensity produced 96,9 ± 2,2% of side branches and buds growing directly towards the light source from the lit protonema side. Horizontally disposed protonemata irradiated from below with red light of the same intensity regenerate 31,7 ± 3,9% of branches and buds on the upper, i.e. shaded protonemata side, the upward growth of which should undoubtedly be determined by gravity. In vertically disposed protonemata illuminated with red light of 1 μ mol\\cdot m-2\\cdot s-1 intensity from aside 31,9 ± 5,5% of side branches and buds arised on shaded protonema side and grew away from the light. Illumination of the protonemata in horizontal position from below increased the number of
Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars.
Shao, Lijing
2014-03-21
The standard model extension is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model and general relativity (GR). In the pure-gravity sector of minimal standard model extension, nine coefficients describe dominant observable deviations from GR. We systematically implemented 27 tests from 13 pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of minimal standard model extension with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for the convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravity.
NASA Technical Reports Server (NTRS)
Pierce, R. Bradley; Grant, William B.
1998-01-01
A method for evaluating the seasonal evolution of ozone laminae using ozonesonde data is discussed. The method uses the correlation between small-scale ozone and potential temperature variations to distinguish between laminae generated by quasi-isentropic filamentation by Rossby waves and by vertical displacements of material surfaces by gravity waves. Data from Wallops Island, Virginia show that Rossby wave induced ozone laminae are most frequently encountered at Wallops during the winter months near 15 km while statistically significant gravity wave induced laminae occur above 15 km during the early winter and at the tropopause from late winter through early spring.
The amphibian egg as a model system for analyzing gravity effects
NASA Astrophysics Data System (ADS)
Malacinski, G. M.; Neff, A. W.
Amphibian eggs provide several advantageous features as a model system for analyzing the effects of gravity on single cells. Those features include large size, readily tracked intracellular inclusions, and ease of experimental manipulation. Employing novel gravity orientation as a tool, a substantial data base is being developed. That information is being used to construct a 3-D model of the frog (Xenopus laevis) egg. Internal cytoplasmic organization (rather than surface features) are being emphasized. Several cytoplasmic compartments (domains) have been elucidated, and their behavior in inverted eggs monitored. They have been incorporated into the model, and serve as a point of departure for further inquiry and speculation.
The amphibian egg as a model system for analyzing gravity effects
NASA Technical Reports Server (NTRS)
Malacinski, G. M.; Neff, A. W.
1989-01-01
Amphibian eggs provide several advantageous features as a model system for analyzing the effects of gravity on single cells. Those features include large size, readily tracked intracellular inclusions, and ease of experimental manipulation. Employing novel gravity orientation as a tool, a substantial data base is being developed. That information is being used to construct a three-dimensional model of the frog (Xenopus laevis) egg. Internal cytoplasmic organization (rather than surface features) are being emphasized. Several cytoplasmic compartments (domains) have been elucidated, and their behavior in inverted eggs monitored. They have been incorporated into the model, and serve as a point of departure for further inquiry and speculation.
Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data
Shin, Young Hong; Shum, C.K.; Braitenberg, Carla; Lee, Sang Mook; Na, Sung -Ho; Choi, Kwang Sun; Hsu, Houtse; Park, Young-Sue; Lim, Mutaek
2015-01-01
The determination of the crustal structure is essential in geophysics, as it gives insight into the geohistory, tectonic environment, geohazard mitigation, etc. Here we present the latest advance on three-dimensional modeling representing the Tibetan Mohorovičić discontinuity (topography and ranges) and its deformation (fold), revealed by analyzing gravity data from GOCE mission. Our study shows noticeable advances in estimated Tibetan Moho model which is superior to the results using the earlier gravity models prior to GOCE. The higher quality gravity field of GOCE is reflected in the Moho solution: we find that the Moho is deeper than 65 km, which is twice the normal continental crust beneath most of the Qinghai-Tibetan plateau, while the deepest Moho, up to 82 km, is located in western Tibet. The amplitude of the Moho fold is estimated to be ranging from −9 km to 9 km with a standard deviation of ~2 km. The improved GOCE gravity derived Moho signals reveal a clear directionality of the Moho ranges and Moho fold structure, orthogonal to deformation rates observed by GPS. This geophysical feature, clearly more evident than the ones estimated using earlier gravity models, reveals that it is the result of the large compressional tectonic process. PMID:26114224
Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data.
Shin, Young Hong; Shum, C K; Braitenberg, Carla; Lee, Sang Mook; Na, Sung-Ho; Choi, Kwang Sun; Hsu, Houtse; Park, Young-Sue; Lim, Mutaek
2015-06-26
The determination of the crustal structure is essential in geophysics, as it gives insight into the geohistory, tectonic environment, geohazard mitigation, etc. Here we present the latest advance on three-dimensional modeling representing the Tibetan Mohorovičić discontinuity (topography and ranges) and its deformation (fold), revealed by analyzing gravity data from GOCE mission. Our study shows noticeable advances in estimated Tibetan Moho model which is superior to the results using the earlier gravity models prior to GOCE. The higher quality gravity field of GOCE is reflected in the Moho solution: we find that the Moho is deeper than 65 km, which is twice the normal continental crust beneath most of the Qinghai-Tibetan plateau, while the deepest Moho, up to 82 km, is located in western Tibet. The amplitude of the Moho fold is estimated to be ranging from -9 km to 9 km with a standard deviation of ~2 km. The improved GOCE gravity derived Moho signals reveal a clear directionality of the Moho ranges and Moho fold structure, orthogonal to deformation rates observed by GPS. This geophysical feature, clearly more evident than the ones estimated using earlier gravity models, reveals that it is the result of the large compressional tectonic process.
Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data
NASA Astrophysics Data System (ADS)
Shin, Young Hong; Shum, C. K.; Braitenberg, Carla; Lee, Sang Mook; Na, Sung-Ho; Choi, Kwang Sun; Hsu, Houtse; Park, Young-Sue; Lim, Mutaek
2015-06-01
The determination of the crustal structure is essential in geophysics, as it gives insight into the geohistory, tectonic environment, geohazard mitigation, etc. Here we present the latest advance on three-dimensional modeling representing the Tibetan Mohorovičić discontinuity (topography and ranges) and its deformation (fold), revealed by analyzing gravity data from GOCE mission. Our study shows noticeable advances in estimated Tibetan Moho model which is superior to the results using the earlier gravity models prior to GOCE. The higher quality gravity field of GOCE is reflected in the Moho solution: we find that the Moho is deeper than 65 km, which is twice the normal continental crust beneath most of the Qinghai-Tibetan plateau, while the deepest Moho, up to 82 km, is located in western Tibet. The amplitude of the Moho fold is estimated to be ranging from -9 km to 9 km with a standard deviation of ~2 km. The improved GOCE gravity derived Moho signals reveal a clear directionality of the Moho ranges and Moho fold structure, orthogonal to deformation rates observed by GPS. This geophysical feature, clearly more evident than the ones estimated using earlier gravity models, reveals that it is the result of the large compressional tectonic process.
Is scalar-tensor gravity consistent with polytropic stellar models?
Henttunen, K.; Vilja, I. E-mail: vilja@utu.fi
2015-05-01
We study the scalar field potential V(φ) in the scalar-tensor gravity with self-consistent polytropic stellar configurations. Without choosing a particular potential, we numerically derive the potential inside various stellar objects. We restrict the potential to conform to general relativity or to f(R) gravity inside and require the solution to arrive at SdS vacuum at the surface. The studied objects are required to obtain observationally valid masses and radii corresponding to solar type stars, white dwarfs and neutron stars. We find that the resulting scalar-tensor potential V(φ) for the numerically derived polytrope that conforms to general relativity, in each object class, is highly dependent on the matter configuration as well as on the vacuum requirement at the boundary. As a result, every stellar configuration arrives at a potential V(φ) that is not consistent with the other stellar class potentials. Therefore, a general potential that conforms to all these polytropic stellar classes could not be found.
NASA Astrophysics Data System (ADS)
Oliveira, T. C. A.; Kadri, U.
2016-02-01
An uplift of the ocean bottom caused by a submarine earthquake can generate Acoustic-Gravity Waves (AGW), progressive compression-type waves that travel at near the speed of sound in water. The role of AGW for oceans hydrodynamics has recently became a topic of increasing scientific interest. Kadri [Deep ocean water transport by acoustic-gravity waves, J.Geo. Res. Oceans, 119, (2014)] showed theoretically that AGW can contribute to deep ocean currents and circulation. We analyze and simulate the fundamental AGW modes generated by a submarine earthquake. We consider the first five AGW modes and show that they may all induce comparable temporal variations in water particle velocities at different depths in regions far from the epicenter. Results of temporal variations of horizontal and vertical fluid parcel velocities induced by AGW confirm chaotic flow trajectories at different water depths. A realistic example based on the 2004 Indian Ocean earthquake shows that vertical water particle displacements of O(10-2 ) m can be generated at 1 Km depth in a 4 km water depth ocean. We show that the velocity field depends on the presence of the leading AGW modes. Each AGW mode becomes evanescent at a critical time, at which energy is transferred to the next higher modes. Consequently, the main pattern of the velocity field changes as the leading mode change. As an example, for a reference point located at 1000 Km from the epicenter, the first five AGW become evanescent after 1.6, 4.6, 7.7, 10.8 and 13.8 hours, respectively. Our analysis and simulations shed light on the spatio-temporal evolution of the deep water velocities and particle displacements induced by AGW that radiate during submarine earthquakes. Thus, this work is a contribution to understand the role of high moment magnitude submarine earthquakes in deep water mixing mechanism.
Determination of the threshold of gravity for inducing kinetosis in fish: A drop-tower experiment
NASA Astrophysics Data System (ADS)
Anken, Ralf H.; Hilbig, R.
2004-06-01
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behaviour as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM droptower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish ( Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9g. Videographed controls will be housed outside of the centrifuge receiving 0g. Based on the videorecordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests which were undertaken to elucidate the feasibility
Determination of the threshold of gravity for inducing kinetosis in fish: a drop-tower experiment.
Anken, R H; Hilbig, R
2004-01-01
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behaviour as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish (Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the videorecordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests which were undertaken to elucidate the
NASA Astrophysics Data System (ADS)
Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin
2010-05-01
Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.
Benini, Marco Dappiaggi, Claudio; Murro, Simone
2014-08-01
We discuss the quantization of linearized gravity on globally hyperbolic, asymptotically flat, vacuum spacetimes, and the construction of distinguished states which are both of Hadamard form and invariant under the action of all bulk isometries. The procedure, we follow, consists of looking for a realization of the observables of the theory as a sub-algebra of an auxiliary, non-dynamical algebra constructed on future null infinity ℱ⁺. The applicability of this scheme is tantamount to proving that a solution of the equations of motion for linearized gravity can be extended smoothly to ℱ⁺. This has been claimed to be possible provided that a suitable gauge fixing condition, first written by Geroch and Xanthopoulos [“Asymptotic simplicity is stable,” J. Math. Phys. 19, 714 (1978)], is imposed. We review its definition critically, showing that there exists a previously unnoticed obstruction in its implementation leading us to introducing the concept of radiative observables. These constitute an algebra for which a Hadamard state induced from null infinity and invariant under the action of all spacetime isometries exists and it is explicitly constructed.
Variations of low-degree gravity coefficients induced by oceanic mass redistribution
NASA Astrophysics Data System (ADS)
Kao, Y.
2013-05-01
Sea level anomalies (SLA) are determined from TOPEX/POSEIDON satellite altimeter data. The Steric effect will be removed from SLA to compute low-degree gravity harmonic coefficients from 1992 to 2011, forming time series of low-frequency oceanic mass-induced gravity change. Wavelet coefficients is used to resolve the harmonic spectrum for the relationship between time and study the amplitude, frequency and time correlation. The preliminary results show that the sea level trend (SLT) of corrected sea level anomalies (CSLA) at multiple sea areas are contrary to the results of SLA and Steric. The SLA and Steric results shows that the years of the phase change in the equator as the boundary, the area is divided into north and south hemisphere opposite phase change, and the two results of the data trend is also consistent. The coefficient annual change rate is 1.16±0.07×10-10, amplitude is 5.13×10-10 and phase for -81.2 degrees. The wavelet spectrum analysis shows that the the CSLA J2 change cycle for 3-7 years. The change of is greater than coefficient and its mean pole motion in the y-direction movement is greater than the x-direction.
Experimental modeling of role of gravity and lateral shortening in Zagros mountain belt
Koyi, H.
1988-11-01
Dynamically scaled analogs of the geologic structures of the Zagros mountain belt are used to argue that different parts of the Zagros Mountains of Iran record different combinations of the effects of a gravity-driven overturn and a southwest-northeast lateral shortening superimposed on the Zagros overturn. Partially scaled material models have been used to simulate the Zagros geodynamics, which involve layer-parallel compression of a 6 to 7 km-thick Phanerozoic carbonate cover containing a pattern of preshortening diapirs. The folds in the Zagros form rapidly (1.5 mm/yr in a 20 to 30 km-wide zone), reactivate some of the preshortening diapirs, and generate new synshortening listric diapirs. A third set of postshortening diapirs rises from the Hormuz decollement behind the fold-thrust front. Model buckle folds superimposed on diapirs or pillows tend to avoid and curve around preshortening diapirs, which flatten in the synclines. Model profiles show that lateral shortening induces residual salt at depth to flow toward and rise through the anticlinal cores as synshortening or postshortening diapirs. The author suggests that any salt pillows in currently diapir-free zones of the Zagros fold-thrust belt may surface as diapirs through the anticlines in the future. 13 figures, 4 tables.
Model Investigation of Technique for Full Scale Landing Impact Tests at Simulated Lunar Gravity
NASA Technical Reports Server (NTRS)
1965-01-01
Model Investigation of Technique for Full Scale Landing Impact Tests at Simulated Lunar Gravity. An investigation of a 1/6-scale dynamic model has been made to develop and evaluate a technique for conducting full-scale landing-impact tests at simulated lunar gravity. Landings were made at touchdown pitch attitudes of -15 degrees, 0 degrees, and 15 degrees. All landings were made with two gear pads forward and at a roll attitude of 0 degrees. Both roll and yaw attitudes were constrained. Vertical landing speed was varied from 5 to 15 feet per second (1.5 to 4.6 m/s) and horizontal speed was varied from 0 to 10 feet per second (0 to 3.0 m/s). Most of the landings were made at a vertical and horizontal speed of 10 feet per second or 3.0 m/s (45 degree flight-path angle) while pitch attitude and surface characteristics, friction and topography, were varied. These parameters were investigated with the free-body earth-gravity and the simulated lunar-gravity test techniques. The landings were made at a model mass corresponding to a full-scale lunar weight (force due to gravity) of 1,440 pounds (6.41 kN) or an earth weight of 8,640 pounds (38.4 kN). [Entire movie available on DVD from CASI as Doc ID 20070030977. Contact help@sti.nasa.gov
Release 3 of the GOCE-only Gravity Field Model Applying the Time-wise Method
NASA Astrophysics Data System (ADS)
Brockmann, J.; Pail, R.; Mayer-Gürr, T.; Hoeck, E.; Krasbutter, I.; Fecher, T.; Schuh, W.; Mayrhofer, R.
2011-12-01
The release 3 of the time-wise global GOCE-only gravity field model, which has been processed as part of the GOCE High-Level Processing Facility, is based on data of the full nominal mission operation phase from November 2009 to April 2011. The time-wise processing strategy is based on the solution of full normal equations, where gravity field information from precise kinematic orbits is combined with the analysis of the gravity gradients. Special emphasis is given to a realistic stochastic modelling of the individual contributions, facilitating the consistent combination. The optimum relative weights are derived from variance component estimation. In this contribution, this new solution is compared with the previous two releases, in order to evaluate the improvements due to a substantially larger amount of input data, as well as with external gravity field information. Additionally, a performance prediction of the achievable final accuracy of GOCE-only gravity field models, provided that the satellite stays healthy in orbit at least until the end of the extended mission phase (December 2012), will be presented, and possible mission scenarios after 2012 and their impact on the performance will be discussed.
Using a Gravity Model to Predict Circulation in a Public Library System.
ERIC Educational Resources Information Center
Ottensmann, John R.
1995-01-01
Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…
Gravity Modeling Effects on Surface-Interacting Vehicles in Supersonic Flight
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2010-01-01
A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations per-form ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of these two models. A surface-interacting simulation cannot treat gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a supersonic aircraft in level flight under various start-ing conditions.
Further Investigations of Gravity Modeling on Surface-Interacting Vehicle Simulations
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2009-01-01
A vehicle simulation is "surface-interacting" if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. The dynamics of surface-interacting simulations are influenced by the modeling of gravity. Gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. Both components are functions of position relative to the world s center and that position for a given set of geodetic coordinates (latitude, longitude, and altitude) depends on the world model (world shape and dynamics). Thus, gravity fidelity depends on the fidelities of the gravitation model and the world model and on the interaction of the gravitation and world model. A surface-interacting simulation cannot treat the gravitation separately from the world model. This paper examines the actual performance of different pairs of world and gravitation models (or direct gravity models) on the travel of a subsonic civil transport in level flight under various starting conditions.
Gravity and Magnetotelluric Modeling of the Santo Domingo Basin, Northern New Mexico
NASA Astrophysics Data System (ADS)
Zamudio, K. D.; Keithline, N.; Blum, C.; Cunningham, E.; Fromont, A.; Jorgensen, M.; Lee, R.; McBride, K.; Saez Berrios, P.; Harper, C.; Pellerin, L.; McPhee, D.; Ferguson, J. F.
2015-12-01
The Santo Domingo Basin, one of a series of basins within the Rio Grande Rift, is located between Santa Fe and Albuquerque, NM, and has been the focus of research by the Summer of Geophysical Experience (SAGE) program since 2000. Gravity, magnetotelluric (MT), and seismic data have been collected throughout the region, although we are concentrating on gravity and MT data collected during SAGE 2014 and 2015. The study area is located in the center of the Santo Domingo basin, an extensional, Miocene age, rift basin, in an area that was minimally involved in the preceding local Laramide orogenic activity. Rift sediments (~3.5 km thick) are underlain by Eocene age sediments that were shed from adjacent uplifts. Up to 3 km of Mesozoic and Paleozoic sediments are preserved above the Precambrian basement. Geologic outcrop, borehole and seismic reflection data, and known density values were used in the construction of a ~100 km-long, generalized geologic cross section from which a gravity response was calculated. The modeled gravity response makes fairly definitive predictions about the geometry of the basin as well as the stratigraphy and faulting within and bounding the basin. MT data was collected at ten stations within the basin. The MT sounding curves exhibit one-dimensional behavior at short periods (<10 s), not surprisingly considering the relatively flat local structure in the area. Layered-earth MT models, without geologic constraints, show a conductive (<10 ohm-m) layer at ~1.5 km above a more resistive layer (>1000 ohm-m) at ~ 3.5-4 km. Conductivities of the major stratigraphic units have been determined from well logs and previous MT modeling. Forward and inverse MT models constrained by the gravity-modeled geologic cross section are used to develop a conductivity model consistent with the geology, and are a step towards a better unified treatment of MT, seismic and gravity data.
NASA Astrophysics Data System (ADS)
C. A. Oliveira, Tiago; Kadri, Usama
2016-10-01
An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1997-01-01
Gravity induces a polarity of cytoplasmic streaming in vertical internodal cells of Chara such that the downwardly directed stream moves faster than the upwardly directed stream. In order to determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best explain the gravity response in Chara internodal cells, we controlled the physical properties of the external medium, including density and osmolarity, with impermeant solutes and examined the effect on the polarity of cytoplasmic streaming. As the density of the external medium is increased, the polarity of cytoplasmic streaming decreases and finally disappears when the density of the external medium is equal to that of the cell (1015 kg/m3). A further increase in the density of the external medium causes a reversal of the gravity response. These results are consistent with the gravitational pressure theory of gravity sensing since the buoyancy of the protoplast is dependent on the difference between the density of the protoplast and the external medium, and are inconsistent with the statolith theory since the buoyancy of intracellular particles are unaffected by changes in the external medium.
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1997-01-01
Gravity induces a polarity of cytoplasmic streaming in vertical internodal cells of Chara such that the downwardly directed stream moves faster than the upwardly directed stream. In order to determine whether the statolith theory (in which intracellular sedimenting particles are responsible for gravity sensing) or the gravitational pressure theory (in which the entire protoplast acts as the gravity sensor) best explain the gravity response in Chara internodal cells, we controlled the physical properties of the external medium, including density and osmolarity, with impermeant solutes and examined the effect on the polarity of cytoplasmic streaming. As the density of the external medium is increased, the polarity of cytoplasmic streaming decreases and finally disappears when the density of the external medium is equal to that of the cell (1015 kg/m3). A further increase in the density of the external medium causes a reversal of the gravity response. These results are consistent with the gravitational pressure theory of gravity sensing since the buoyancy of the protoplast is dependent on the difference between the density of the protoplast and the external medium, and are inconsistent with the statolith theory since the buoyancy of intracellular particles are unaffected by changes in the external medium.
Modeling of Thermal Performance of Multiphase Nuclear Fuel Cell Under Variable Gravity Conditions
NASA Technical Reports Server (NTRS)
Ding, Z.; Anghaie, S.
1996-01-01
A unique numerical method has been developed to model the dynamic processes of bulk evaporation and condensation processes, associated with internal heat generation and natural convection under different gravity levels. The internal energy formulation, for the bulk liquid-vapor phase change proble