Science.gov

Sample records for induced hypertension pih

  1. Pregnancy-Induced hypertension.

    PubMed

    Kintiraki, Evangelia; Papakatsika, Sophia; Kotronis, George; Goulis, Dimitrios G; Kotsis, Vasilios

    2015-01-01

    Pregnancy-induced hypertension (PIH) complicates 6-10% of pregnancies. It is defined as systolic blood pressure (SBP) >140 mmHg and diastolic blood pressure (DBP) >90 mmHg. It is classified as mild (SBP 140-149 and DBP 90-99 mmHg), moderate (SBP 150-159 and DBP 100-109 mmHg) and severe (SBP ≥ 160 and DBP ≥ 110 mmHg). PIH refers to one of four conditions: a) pre-existing hypertension, b) gestational hypertension and preeclampsia (PE), c) pre-existing hypertension plus superimposed gestational hypertension with proteinuria and d) unclassifiable hypertension. PIH is a major cause of maternal, fetal and newborn morbidity and mortality. Women with PIH are at a greater risk of abruptio placentae, cerebrovascular events, organ failure and disseminated intravascular coagulation. Fetuses of these mothers are at greater risk of intrauterine growth retardation, prematurity and intrauterine death. Ambulatory blood pressure monitoring over a period of 24 h seems to have a role in predicting deterioration from gestational hypertension to PE. Antiplatelet drugs have moderate benefits when used for prevention of PE. Treatment of PIH depends on blood pressure levels, gestational age, presence of symptoms and associated risk factors. Non-drug management is recommended when SBP ranges between 140-149 mmHg or DBP between 90-99 mmHg. Blood pressure thresholds for drug management in pregnancy vary between different health organizations. According to 2013 ESH/ESC guidelines, antihypertensive treatment is recommended in pregnancy when blood pressure levels are ≥ 150/95 mmHg. Initiation of antihypertensive treatment at values ≥ 140/90 mmHg is recommended in women with a) gestational hypertension, with or without proteinuria, b) pre-existing hypertension with the superimposition of gestational hypertension or c) hypertension with asymptomatic organ damage or symptoms at any time during pregnancy. Methyldopa is the drug of choice in pregnancy. Atenolol and metoprolol appear to be

  2. Oxidative Stress Marker and Pregnancy Induced Hypertension

    PubMed Central

    Draganovic, Dragica; Lucic, Nenad; Jojic, Dragica

    2016-01-01

    Background: Pregnancy induced hypertension (PIH) is a state of extremely increased oxidative stress. Hence, research and test of role and significance of oxidative stress in hypertensive disturbance in pregnancy is very important. Aim: Aims of this research were to determine a level of thiobarbituric acid reactive substance (TBARS) as oxidative stress marker in blood of pregnant woman with pregnancy induced hypertension and to analyze correlation of TBARS values with blood pressure values in pregnancy induced hypertensive pregnant women. Patients and methods: Research has been performed at the Clinic of Gynecology and Obstetrics, University Clinical Centre in the Republic of Srpska. It covered 100 pregnant women with hypertension and 100 healthy pregnant women of gestation period from 28 to 40 weeks. Level of TBARS is determined as an equivalent of malondialdehyde standard, in accordance with recommendations by producer (Oxi Select TBARS Analisa Kit). Results: Pregnancy induced hypertension is a state of extremely increased oxidative stress. All pregnant women experiencing hypertension had increased TBARS values in medium value interval over 20 µmol, 66%, whereas in group of healthy pregnant women, only 1% experienced increased TBARS value. Pregnant women with difficult preeclampsia (32%) had high TBARS values, over 40 µmol, and with mild PIH, only 4.9% pregnant women. Conclusion: Pregnant women with pregnancy induced hypertension have extremely increased degree of oxidative stress and lipid peroxidation. TBARS values are in positive correlation with blood pressure values, respectively the highest TBARS value were present in pregnant women with the highest blood pressure values. PMID:28210016

  3. Increased risk of systemic lupus erythematosus in pregnancy-induced hypertension

    PubMed Central

    Lin, Li-Te; Wang, Peng-Hui; Tsui, Kuan-Hao; Cheng, Jiin-Tsuey; Cheng, Jin-Shiung; Huang, Wei-Chun; Tang, Pei-Ling; Hu, Li-Yu

    2016-01-01

    Abstract Dysregulation of the immune system plays a role in the pathogenesis of both, pregnancy-induced hypertension (PIH) and systemic lupus erythematosus (SLE). It is well known that SLE predisposes to be complicated with PIH. However, few studies have attempted to investigate whether PIH increased subsequent SLE risk. The objectives of this study were to assess the association between PIH and subsequent SLE risk and identify predictive risk factors. Patients with newly diagnosed PIH were selected from the Taiwan National Health Insurance Research Database (NHIRD) and compared with a matched cohort without PIH based on age and the year of delivery. The incidence of new-onset SLE was evaluated in both cohorts. The overall observational period was from January 1, 2000 to December 31, 2013. Among the 23.3 million individuals registered in the NHIRD, 29,091 patients with PIH and 116,364 matched controls were identified. The incidence of SLE was higher among patients with PIH than in the matched controls (incidence rate ratio [IRR] = 4.02, 95% confidence interval [CI] 3.98–4.05, P < 0.0001). The IRR for subsequent SLE development remained significantly higher in all stratifications during the follow-up years. The multivariate Cox regression model was performed and the results showed that PIH may be an independent risk factors for the development of subsequent SLE (hazard ratio [HR] = 2.87, 95% CI 2.07–3.98, P < 0.0001). Moreover, multivariate Cox regression model was used again among the PIH cohort only in order to identify the possible risk factors for subsequent SLE in the population with PIH. Patients with PIH may have higher risk of developing newly diagnosed SLE than those without PIH. In addition, among individuals who have experienced PIH, those younger than 30 years, having experienced preeclampsia/eclampsia, single parity, preterm birth, or chronic kidney disease, may display an increased subsequent risk of SLE. PMID:27472738

  4. Prediction of pregnancy-induced hypertension by a shift of blood pressure class according to the JSH 2009 guidelines.

    PubMed

    Jwa, Seung Chik; Arata, Naoko; Sakamoto, Naoko; Watanabe, Noriyoshi; Aoki, Hiroaki; Kurauchi-Mito, Asako; Dongmei, Qiu; Ohya, Yukihiro; Ichihara, Atsuhiro; Kitagawa, Michihiro

    2011-11-01

    Elevated blood pressure (BP) at early or mid pregnancy is a known risk factor for pregnancy-induced hypertension (PIH). However, the association between BP changes during the first half of pregnancy and subsequent PIH development is unknown. We used changes in maternal BP between 16 and 20 weeks of gestation to evaluate the risk of PIH. A total of 976 pregnant women with BP estimations recorded before 16 weeks and at 20 weeks of gestation participated in this study. BPs were classified by the Japanese Society of Hypertension 2009 Hypertension Treatment Guidelines (JSH 2009). There was a significant trend for future PIH in women whose JSH 2009 BP class increased between 16 and 20 weeks of gestation, and the risk of PIH was highest among women whose BP was Class IV Hypertension (systolic BP≥140 mm Hg and/or diastolic BP≥90 mm Hg). The risk of PIH increased in women whose BPs shifted from Classes I Optimal (systolic BP<120 mm Hg and diastolic BP<80 mm Hg) and II Normal (systolic BP 120-129 mm Hg and/or diastolic BP 80-84 mm Hg) before 16 weeks to Class III High-Normal (systolic BP 130-139 mm Hg and/or diastolic BP 85-89 mm Hg) at 20 weeks of gestation. These shifts in BP class were significantly correlated with the risk of PIH after adjustments for variables (P-value for trend <0.05). Within JSH 2009 Classes I, II and III, a shift in BP from a low to a high class between 16 and 20 weeks of gestation predicts the subsequent development of PIH.

  5. Decreased baroreflex sensitivity is linked to sympathovagal imbalance, low-grade inflammation, and oxidative stress in pregnancy-induced hypertension.

    PubMed

    Subha, M; Pal, Pravati; Pal, G K; Habeebullah, S; Adithan, C; Sridhar, M G

    Pregnancy-induced hypertension (PIH) has been reported as a cardiovascular (CV) risk. We assessed the sympathovagal imbalance (SVI) and the association of inflammation and oxidative stress (OS) with CV risks in PIH. A total of 125 pregnant women having a risk factor for PIH were followed till term and the incidence of PIH was observed. Retrospectively, they were divided into two groups: Group I (those who did not develop PIH, n = 82) and Group II (those who developed PIH, n = 43). Blood pressure variability (BPV) parameters including baroreflex sensitivity (BRS), spectral heart rate variability (HRV), autonomic function tests (AFTs), inflammatory markers (interleukin-6, TNF-α, interferon-γ), and OS markers were measured in both the groups. Alterations in parasympathetic and sympathetic components of AFTs were analyzed. Link of various parameters to BRS was assessed by correlation and multiple regression analysis. Parasympathetic components of AFTs were decreased from the early part of pregnancy and sympathetic components were increased toward the later part of pregnancy. Decreased BRS, the marker of CV risk, was more prominent in Group II subjects. Independent contribution of interleukin-6 (β = 0.276, P = 0.020), TNF-α (β = 0.408, P = 0.002), interferon-γ (β = 0.355, P = 0.008), and thiobarbituric-acid reactive substance (β = 0.287, P = 0.015) to BRS was found to be significant. It was concluded that sympathetic overactivity that develops more in the later part (third trimester) of pregnancy contributes to SVI and genesis of PIH. In PIH women, CV risks are present from the beginning of pregnancy that intensifies in the later part of pregnancy. Retrograde inflammation and oxidative stress contribute to the decreased BRS in PIH.

  6. Posterior Reversible Encephelopathy Syndrome Presenting as Quadriparesis in Pregnancy Induced Hypertension

    PubMed Central

    Pranita; Kumar, Ajit; Shahi, Seema

    2015-01-01

    Pregnancy Induced Hypertension (PIH) is a condition characterised by raised blood pressure in pregnancy. It affects approximately one out of every 14 pregnant women. Although PIH more commonly occurs during first pregnancy, it can also occur in subsequent pregnancies. It can present with variable complications related to vasospasm. But focal neurologic deficits are extremely rare in patients with PIH. We report a case of quadriparesis due to posterior reversible encephalopathy syndrome (PRES). A 36 year old full term pregnant female was admitted for emergency lower segment caesarean section (LSCS) as a result of uncontrolled PIH with early clinical signs of left ventricular failure. She was recovering well from pulmonary oedema after being provided with mechanical ventilation. However on 4th day she developed sudden onset quadriparesis without any alteration in sensorium, bladder & bowel disturbance or any sensory deficit. Diffusion weighted neuroimaging (DWI) was carried out which revealed finding suggestive of PRES. The patient was treated with antihypertensive which followed improvement in neurological deficit. Although rare, PRES should be considered as a potential cause of acute onset focal neurological deficit in pregnant females with PIH. With this case report we have tried to create awareness and vigilance about rare but potentially serious yet salvageable condition like PRES. PMID:26023585

  7. Increased Risk of Intracranial Hemorrhage in Patients With Pregnancy-Induced Hypertension

    PubMed Central

    Lin, Li-Te; Tsui, Kuan-Hao; Cheng, Jiin-Tsuey; Cheng, Jin-Shiung; Huang, Wei-Chun; Liou, Wen-Shiung; Tang, Pei-Ling

    2016-01-01

    Abstract Pregnancy-induced hypertension (PIH) may be a major predictor of pregnancy-associated intracranial hemorrhage (ICH). However, the relationship between PIH and long-term ICH risk is unknown. The objective of the study was to determine the association between PIH and ICH and to identify the predictive risk factors. Patients with newly diagnosed PIH were recruited from the Taiwan National Health Insurance Research Database. PIH patients were divided into gestational hypertension (GH) and preeclampsia groups. The 2 groups were separately compared with matched cohorts of patients without PIH based on age and date of delivery. The occurrence of ICH was evaluated in both cohorts. The overall observational period was from January 1, 2000 to December 31, 2013. Among the 23.3 million individuals registered in the National Health Insurance Research Database, 28,346 PIH patients, including 7390 with GH and 20,956 with preeclampsia, were identified. The incidences of ICH were increased in both groups (incidence rate ratio [IRR] = 3.72 in the GH group, 95% confidence interval [CI] 3.63–3.81, P < 0.0001 and IRR = 8.21 in the preeclampsia group, 95% CI 8.12–8.31, P < 0.0001, respectively). In addition, according to the results of stratification of follow-up years, both groups were associated with a highest risk of ICH at 1 to 5 years of follow-up (IRR = 11.99, 95% CI 11.16–12.88, P < 0.0001 and IRR = 21.83, 95% CI 21.24–22.44, P < 0.0001, respectively). After adjusting for age, parity, severity of PIH, number of PIH occurrences, gestational age, and comorbidities in the multivariate survival analysis using Cox regression model, age ≥30 years (hazard ratio [HR] 1.99, 95% CI 1.27–3.10, P = 0.0026), patients with preeclampsia (HR 2.18, 95% CI 1.22–3.90, P = 0.0089), multiple PIH occurrences (HR 4.08, 95% CI 1.85–9.01, P = 0.0005), hypertension (HR 4.51, 95% CI 1.89–10.74, P = 0.0007), and obesity (HR 7.21, 95

  8. Inhaled Corticosteroids Use Is Not Associated With an Increased Risk of Pregnancy-Induced Hypertension and Gestational Diabetes Mellitus

    PubMed Central

    Lee, Chang-Hoon; Kim, Jimin; Jang, Eun Jin; Lee, Joon-Ho; Kim, Yun Jung; Choi, Seongmi; Kim, Deog Kyeom; Yim, Jae-Joon; Yoon, Ho Il

    2016-01-01

    Abstract There have been concerns that systemic corticosteroid use is associated with pregnancy-induced hypertension (PIH) and diabetes mellitus. However, the relationship between inhaled corticosteroids (ICSs) and the risk of PIH has not been fully examined, and there was no study investigating the association between ICS use and the development of gestational diabetes mellitus (GDM). The aims of the study are to determine whether the use of ICSs during pregnancy increases the risk of PIH and GDM in women. We conducted 2 nested case-control studies utilizing the nationwide insurance claims database of the Health Insurance Review and Assessment Service (Seoul, Republic of Korea), in which 1,306,281 pregnant women who delivered between January 1, 2009 and December 31, 2011 were included. Among them, PIH cases and GDM cases were identified and matched controls were included. Conditional logistic regression analyses adjusted by other concomitant drugs use during and before pregnancy and confounding covariates including comorbidities were performed. Total 43,908 PIH cases and 219,534 controls, and 34,190 GDM cases and 170,934 control subjects were identified. When other concomitant drugs use during pregnancy was adjusted, ICS use was associated with an increased rate of PIH (adjusted odds ratio, 1.40 [95% CI, 1.05–1.87]). ICS medication possession ratios and cumulative doses were associated with an increased risk of PIH. However, the statistical significance was not found in other models. In both unadjusted and adjusted multivariable models, ICSs use was not associated with increase in the risk of GDM. ICSs use is not associated with an increased risk of PIH and GDM. PMID:27258493

  9. A fetal variant in the GCM1 gene is associated with pregnancy induced hypertension in a predominantly hispanic population.

    PubMed

    Wilson, Melissa L; Brueggmann, Doerthe; Desmond, Daniel H; Mandeville, John E; Goodwin, T Murphy; Ingles, Sue Ann

    2011-08-30

    The aim of the study was to determine whether polymorphism in the GCM1 gene is associated with pregnancy induced hypertension (PIH) in a case-control study of mother-baby dyads. Predominantly Hispanic women, ages 15-45, with (n=136) and without (n=169) PIH were recruited. We genotyped four polymorphisms in the GCM1 gene and examined the association with PIH using both logistic regression and likelihood expectation maximization (LEM) to adjust for intra-familial correlation between genotypes. Maternal genotype was not associated with PIH for any polymorphisms examined. Fetal genotype, however, was associated with maternal risk of PIH. Mothers carrying a fetus with ≥1 copy of the minor (C) allele for rs9349655 were less likely to develop PIH than women carrying a fetus with the GG genotype (parity-adjusted OR=0.44, 95% Cl: 0.21, 0.94). The trend of decreasing risk with increasing C alleles was also statistically significant (OR(trend)=0.41 95% Cl: 0.20, 0.85). The minor alleles for the other three SNPs also appear to be associated with protection. Multilocus analyses of fetal genotypes showed that the protective effect of carrying minor alleles at rs9349655 and rs13200319 (non-significant) remained unchanged when adjusting for genotypes at the other loci. However, the apparent (non-significant) effect of rs2816345 and rs2518573 disappeared when adjusting for rs9349655. In conclusion, we found that a fetal GCM1 polymorphism is significantly associated with PIH in a predominantly Hispanic population. These results suggest that GCM1 may represent a fetal-effect gene, where risk to the mother is conferred only through carriage by the fetus.

  10. A fetal variant in the GCM1 gene is associated with pregnancy induced hypertension in a predominantly hispanic population

    PubMed Central

    Wilson, Melissa L; Brueggmann, Doerthe; Desmond, Daniel H; Mandeville, John E; Goodwin, T Murphy; Ingles, Sue Ann

    2011-01-01

    The aim of the study was to determine whether polymorphism in the GCM1 gene is associated with pregnancy induced hypertension (PIH) in a case-control study of mother-baby dyads. Predominantly Hispanic women, ages 15-45, with (n=136) and without (n=169) PIH were recruited. We genotyped four polymorphisms in the GCM1 gene and examined the association with PIH using both logistic regression and likelihood expectation maximization (LEM) to adjust for intra-familial correlation between genotypes. Maternal genotype was not associated with PIH for any polymorphisms examined. Fetal genotype, however, was associated with maternal risk of PIH. Mothers carrying a fetus with ≥1 copy of the minor (C) allele for rs9349655 were less likely to develop PIH than women carrying a fetus with the GG genotype (parity-adjusted OR=0.44, 95% Cl: 0.21, 0.94). The trend of decreasing risk with increasing C alleles was also statistically significant (ORtrend=0.41 95% Cl: 0.20, 0.85). The minor alleles for the other three SNPs also appear to be associated with protection. Multilocus analyses of fetal genotypes showed that the protective effect of carrying minor alleles at rs9349655 and rs13200319 (non-significant) remained unchanged when adjusting for genotypes at the other loci. However, the apparent (non-significant) effect of rs2816345 and rs2518573 disappeared when adjusting for rs9349655. In conclusion, we found that a fetal GCM1 polymorphism is significantly associated with PIH in a predominantly Hispanic population. These results suggest that GCM1 may represent a fetal-effect gene, where risk to the mother is conferred only through carriage by the fetus. PMID:21915358

  11. Inhaled Corticosteroids Use Is Not Associated With an Increased Risk of Pregnancy-Induced Hypertension and Gestational Diabetes Mellitus: Two Nested Case-Control Studies.

    PubMed

    Lee, Chang-Hoon; Kim, Jimin; Jang, Eun Jin; Lee, Joon-Ho; Kim, Yun Jung; Choi, Seongmi; Kim, Deog Kyeom; Yim, Jae-Joon; Yoon, Ho Il

    2016-05-01

    There have been concerns that systemic corticosteroid use is associated with pregnancy-induced hypertension (PIH) and diabetes mellitus. However, the relationship between inhaled corticosteroids (ICSs) and the risk of PIH has not been fully examined, and there was no study investigating the association between ICS use and the development of gestational diabetes mellitus (GDM). The aims of the study are to determine whether the use of ICSs during pregnancy increases the risk of PIH and GDM in women.We conducted 2 nested case-control studies utilizing the nationwide insurance claims database of the Health Insurance Review and Assessment Service (Seoul, Republic of Korea), in which 1,306,281 pregnant women who delivered between January 1, 2009 and December 31, 2011 were included. Among them, PIH cases and GDM cases were identified and matched controls were included. Conditional logistic regression analyses adjusted by other concomitant drugs use during and before pregnancy and confounding covariates including comorbidities were performed.Total 43,908 PIH cases and 219,534 controls, and 34,190 GDM cases and 170,934 control subjects were identified. When other concomitant drugs use during pregnancy was adjusted, ICS use was associated with an increased rate of PIH (adjusted odds ratio, 1.40 [95% CI, 1.05-1.87]). ICS medication possession ratios and cumulative doses were associated with an increased risk of PIH. However, the statistical significance was not found in other models. In both unadjusted and adjusted multivariable models, ICSs use was not associated with increase in the risk of GDM.ICSs use is not associated with an increased risk of PIH and GDM.

  12. Assessment of Serum Vascular Endothelial Growth Factor Levels in Pregnancy-Induced Hypertension Patients

    PubMed Central

    Tandon, Vibha; Hiwale, Swati; Amle, Dnyanesh; Nagaria, Tripti

    2017-01-01

    Objective. The objective of the study was to assess the serum vascular endothelial growth factor (VEGF) levels in peripheral blood of patients with pregnancy-induced hypertension (PIH) and find association between serum VEGF levels and PIH. Methods. Thirty-five PIH subjects, 35 normal pregnant females, and 20 normal healthy females were included in the study. Detailed history, clinical examination, and relevant biochemical parameters were assessed; serum VEGF levels were estimated using Double-antibody enzyme-linked immunosorbent assay. Results. The study groups were found to be age matched (p = 0.38). VEGF level in the pregnancy-induced hypertensive group (median = 109.19 (3.38 ± 619)) was significantly higher than the normal pregnant (median = 20.82 (1.7–619)) and control (median = 4.92 (1.13–13.07)) group and the difference between these three groups was significant (p < 0.0001). The 3 groups are found to be significantly different in terms of RBS (p = 0.01), urea (p < 0.0001), creatinine (p = 0.0005), AST (p = 0.0032), ALT (p = 0.0007), total protein (p = 0.0004), albumin (p < 0.0001), calcium (p = 0.001), and sodium (p = 0.02), while no statistically significant difference was found between total bilirubin (p = 0.167), direct bilirubin (p = 0.07), uric acid (p = 0.16), and potassium (p = 0.14). Conclusion. Significantly higher levels of serum VEGF were noted in PIH subjects compared to normal pregnant and control subjects. PMID:28133548

  13. Maternal chronic HBV infection would not increase the risk of pregnancy-induced hypertension--results from pregnancy cohort in Liuyang rural China.

    PubMed

    Huang, Xin; Tan, Hongzhuan; Li, Xun; Zhou, Shujin; Wen, Shi Wu; Luo, Meiling

    2014-01-01

    The relationship between maternal HBV (hepatitis B virus) infection and pregnancy-induced hypertension (PIH) is inconclusive. Few studies have been conducted in rural areas of China. In order to examine the association between maternal chronic HBV infection and risk of PIH in Liuyang rural area China, we enrolled 6,195 eligible pregnant women in 2010-2011 in selected 14 towns of Liuyang on their first prenatal visit to local maternity care unit. A total of 461 subjects (7.44% (95%CI: 6.79%, 8.10%)) were identified with positive HBsAg status (exposed group) and 5734 were non-HBV carriers (unexposed group). Multivariate log-binomial regression models were used to estimate the risk of PIH, gestational hypertension (GH), and preeclampsia (PE) in relation to maternal chronic HBV infection. There are total of 455 subjects diagnosed with PIH (7.34% (95%CI: 6.70%, 7.99%)), including 371 GH (5.99% (95%CI: 5.40%, 6.58%)) and 81 PE (1.31% (95%CI: 1.07%, 1.64%)). The crude risk ratio between PIH, GH, PE and maternal HBV infection were 1.20 (95%CI: 0.88, 1.64), 1.30(95%CI: 0.93, 1.81) and 0.79 (95%CI: 0.32, 1.93), respectively. After adjustment for gravidity history, abortion history, family history of Diabetes Mellitus (DM) and family history of hypertension, positive HBsAg status was still not significantly associated with PIH (RR = 1.18, 95%CI: 0.87, 1.62), GH (RR = 1.27, 95%CI: 0.91, 1.78) or PE (RR = 0.79, 95%CI: 0.32, 1.95). Additional adjustment for maternal age, marital status, parity history, family history of DM, Body Mass Index at first antenatal visit, folic acid supplementation, smoking status during pregnancy and economic status of living area, multivariate analysis provided similar results. In conclusion, our study found that maternal chronic HBV infection prevalence rate is 7.4% among Liuyang rural area and there is no significant association between maternal HBV infection and the risk of PIH, GH or PE.

  14. Spectrum of Factors Triggering Endothelial Dysfunction in PIH

    PubMed Central

    Jammalamadaga, Visala Sree

    2016-01-01

    Introduction Pre-eclampsia (PE) is a major cause of maternal and fetal/neonatal mortality and morbidity. The aetiology and pathogenesis of PE is yet to be completely understood. Evidence shows that, Endothelial Dysfunction (ED) plays a pivotal role in the genesis of this multi-system disorder that develops in PE and eclampsia. Aim To determine the circulating levels of factors Malondialdehyde (MDA), Ferric Reducing Ability of Plasma-α (FRAP), Tumour Necrosis Factor (TNF-α), sFlt-1, VEGF, PlGF, Nitric Oxide (NO) that influence the ED. Materials and Methods Study groups consisted of Normotensive pregnant women (N), preeclamptic women (PE) and eclamptic women (E) with 100 subjects in each group in the 3rd trimester of pregnancy. They were investigated for MDA, FRAP, TNF-α, sFlt-1, VEGF, PlGF, NO. Statistical analysis was done using Analysis of Variance (ANOVA). Results When compared to controls MDA, TNF-α, sFlt-1 levels were found to be significantly high and FRAP, VEGF, PIGF and NO levels were significantly low in PE and E group. E showed a significantly high level of MDA, TNF-α, sFlt-1 and low levels of FRAP, VEGF, PIGF, NO when compared to PE group. Conclusion Our study substantiated the fact, that oxidative stress, imbalance between anti-angiogenic factors and pro- angiogenic factors exists in Pregnancy Induced Hypertension (PIH) condition. This imbalance is directly related to the ED, the hallmark of PE. So oxidative stress, VEGF, PlGF and sFlt-1 can be used as markers to analyze the onset and progression of the disease. PMID:28208844

  15. A Retrospective Study of the Health Profile of Neonates of Mothers with Anemia in Pregnancy and Pregnancy Induced Hypertension in Lagos, Nigeria

    PubMed Central

    Sanni, Silifat Ajoke; Onabanjo, Oluseye Olusegun; Olayiwola, Ibiyemi O.; Agbonlahor, Mure

    2014-01-01

    Our study assessed the health profile of neonates in relation to anemia in pregnancy and pregnancy induced hypertension (PIH). This was a retrospective study where a systematic random sampling technique was used to select a total of 1046 case records of pregnant women registered for ante-natal care at Lagos Island Maternity Hospital, Lagos, Nigeria, between 2005 and 2009. Socio-demographic characteristics of the mothers, prevalence of anemia and PIH, and neonatal health profile were obtained from the case records and were analyzed using both descriptive and inferential statistics. Pearson product moment correlation was used to show the relationship (P≤0.05) between maternal complications and neonatal health profile. Majority (68.8%) of the mothers had anemia and 6.7 % had PIH. Majority (97.12%) of the neonates were live births and 2.88% of the neonates were still births, 65.4% of the women with still birth pregnancy outcome had anemia, and 34.6% had PIH. Majority (74%) of the neonates had birth weight within normal range (2.5-4.0 kg) and majority (68%) had normal Apgar score at 5 min of birth (7-10). A positive correlation existed between the packed cell volume of the mother and the birth weight of the neonates (r=0.740, P≤0.05). A negative correlation existed between the incidence of PIH and the birth weight of the neonates (r= 0.781, P≤0.05), head circumference (r=–0.491, P≤0.05) and the length of the neonates(r=–0.480, P≤0.05). We conclude that nutritional and health care intervention programmes for pregnant women should be intensified especially during ante-natal visits to hospitals. PMID:28299124

  16. [Anesthetic Management of a Parturient with Eclampsia, Posterior Reversible Encephalopathy Syndrome and Pulmonary Edema due to Pregnancy-induced Hypertension].

    PubMed

    Aida, Junko; Okutani, Hiroai; Oda, Yutaka; Okutani, Ryu

    2015-08-01

    A 27-year-old woman with mental retardation was admitted to a nearby hospital for an abrupt onset of seizure. Physical examination revealed remarkable hypertension and pregnancy with estimated gestational age of 28th week. Severe pulmonary edema and hypoxia led to a diagnosis of pregnancy-induced hypertension (PIH) accompanied by eclampsia. She was orotracheally intubated because of refractory seizure and hypoxemia, and transferred to our hospital for further treatment. Besides severe hypoxia and hypercapnea, an enhanced lesion was detected in the left posterior cerebrum by brain MRI. No abnormal findings were detected in the fetus, with heart rate of 150 beats x min. She was diagnosed with posterior reversible encephalopathy syndrome (PRES) caused by PIH and emergency cesarean section under general anesthesia was scheduled. A male newborn was delivered with Apgar score of 1/4 (1/5 min), followed by starting continuous infusion of nicardipine for controlling hypertension. Chest X-P on completion of surgery revealed remarkably alleviated pulmonary edema. She received intensive treatment and continued positive pressure ventilation for four days after delivery. She recovered with no neurological deficits and her child was well without any complications.

  17. Drug induced hypertension--An unappreciated cause of secondary hypertension.

    PubMed

    Grossman, Alon; Messerli, Franz H; Grossman, Ehud

    2015-09-15

    Most patients with hypertension have essential hypertension or well-known forms of secondary hypertension, such as renal disease, renal artery stenosis, or common endocrine diseases (hyperaldosteronism or pheochromocytoma). Physicians are less aware of drug induced hypertension. A variety of therapeutic agents or chemical substances may increase blood pressure. When a patient with well controlled hypertension is presented with acute blood pressure elevation, use of drug or chemical substance which increases blood pressure should be suspected. Drug-induced blood pressure increases are usually minor and short-lived, although rare hypertensive emergencies associated with use of certain drugs have been reported. Careful evaluation of prescription and non-prescription medications is crucial in the evaluation of the hypertensive individual and may obviate the need for expensive and unnecessary evaluations. Discontinuation of the offending agent will usually achieve adequate blood pressure control. When use of a chemical agent which increases blood pressure is mandatory, anti-hypertensive therapy may facilitate continued use of this agent. We summarize the therapeutic agents or chemical substances that elevate blood pressure and their mechanisms of action.

  18. Quantitative peptidomic analysis by a newly developed one-step direct transfer technology without depletion of major blood proteins: its potential utility for monitoring of pathophysiological status in pregnancy-induced hypertension.

    PubMed

    Araki, Yoshihiko; Nonaka, Daisuke; Tajima, Atsushi; Maruyama, Mayuko; Nitto, Takeaki; Ishikawa, Hitoshi; Yoshitake, Hiroshi; Yoshida, Emiko; Kuronaka, Noriko; Asada, Kyoichi; Yanagida, Mitsuaki; Nojima, Michio; Yoshida, Koyo; Takamori, Kenji; Hashiguchi, Teruto; Maruyama, Ikuro; Lee, Lyang-Ja; Tanaka, Kenji

    2011-07-01

    We have recently developed a new target plate (BLOTCHIP®) for MALDI-MS. An advantage of this procedure is that it does not require the lowering of protein concentrations in test samples prior to analysis. Accordingly, this new technology enables the detection of peptides present in blood samples, including those that would otherwise be adsorbed to abundant blood proteins and would thus escape detection. Using this technology, we analyzed the peripheral blood of patients with pregnancy-induced hypertension (PIH; the most common serious complication of pregnancy) to test a potential utility of the technology for monitoring of the pathophysiological status. In the present study, we found 23 characteristic peptides for PIH in the blood serum of pregnant women. Offline LC-MALDI MS/MS identified 7 of the 23 peptides as fragments derived from kininogen-1 (three peptides), fibrinogen-α, complement component C4-A/B, α-2-HS-glycoprotein and inter-α-trypsin inhibitor heavy chain H4. 2-D scatter plots with combinations of the peptides found in the present study can be grouped for pregnant women with/without PIH, which would be satisfactory reflected for their status. Additionally, the levels of most of these peptides found were significantly decreased by albumin/IgG depletion prior to BLOTCHIP® analysis in accordance with conventional proteomics procedures. These results indicated that BLOTCHIP® analysis can be applied for discovery study of PIH biomarker candidates.

  19. Paroxysmal Hypertension Induced by an Insulinoma

    PubMed Central

    Harada, Ko; Hanayama, Yoshihisa; Hasegawa, Kou; Iwamuro, Masaya; Hagiya, Hideharu; Yoshida, Ryuichi; Otsuka, Fumio

    2017-01-01

    Insulinoma is a rare, usually benign, pancreatic neuroendocrine tumor. The clinical features of an insulinoma are fasting hypoglycemia with neuroglycopenic symptoms including confusion and unusual behavior, while hypertension is usually not associated with the disease. We herein report a patient with insulinoma who manifested paroxysmal hypertension and neuroglycopenic symptoms. The possible etiology of hypertension induced by an insulinoma is catecholamine release in response to hypoglycemia, which may cause acute hypertension through activation of the sympatho-adrenal system. This case implies that sustained hyperinsulinemia due to insulinoma can be functionally linked to the induction of paroxysmal hypertension. PMID:28202863

  20. Carbamazepine-induced hypertension: A rare case

    PubMed Central

    Kharb, Preeti; Mittal, Niti; Gupta, Mahesh C.

    2015-01-01

    A 74-year-old female with trigeminal neuralgia developed hypertension after the initiation of carbamazepine therapy. The time sequence of start of the suspected drug and onset of hypertension are consistent with the diagnosis. The hypertension did not resolve with antihypertensive therapy or dose reduction of carbamazepine. Patient recovered after the carbamazepine therapy was discontinued. The positive rechallenge and positive dechallenge showed association of carbamazepine therapy with hypertension as its adverse effect. This is a rare case that we report of carbamazepine-induced hypertension and this report may act as alerting mechanism to the health care professionals especially neurologists. PMID:26816475

  1. [Steroid induced ocular hypertension and glaucoma].

    PubMed

    Călugăru, D; Călugăru, M

    2009-01-01

    Steroid induced ocular hypertension and glaucoma represent iatrogenic changes of pharmacogenic nature. They are mainly due to exogenous steroids following ocular periocular, intravitreal and systemic administration. Elevated ocular pressure is brought about by structural trabecular changes as well as obstruction of the outflow ways of the aqueous humor localized within the trabecular juxtacanalicular area. Although mostly raised ocular pressure spontaneously descends to basal values after ceasing the steroid therapy, progressive optic nerve damages and glaucomatous visual field defects may occur. Therapy of steroid induced ocular hypertension and glaucoma is similar to that of ocular hypertension and primary open-angle glaucoma.

  2. [Liquorice-induced hypertension and hypokalaemia].

    PubMed

    Nielsen, Mette Lundgren; Pareek, Manan; Andersen, Inger

    2012-04-09

    Consumption of large amounts of liquorice can cause hypertension and hypokalaemia. Liquorice contains glycyrrhetinic acid, which inhibits the enzyme 11 beta-hydroxysteroid dehydrogenase type 2, and ultimately leads to an apparent mineralocorticoid excess syndrome. This case report describes a 50 year-old woman presenting with hypertension and hypokalaemia-induced limb paresis due to chronic liquorice ingestion. The patient was treated with potassium supplementation and spironolactone. Her blood pressure and electrolyte status normalised within a month after cessation of liquorice intake.

  3. Concentration of chosen oxycholesterols in plasma of pregnant women with pregnancy-induced hypertension.

    PubMed

    Bodzek, Piotr; Janoszka, Beata; Wielkoszyński, Tomasz; Bodzek, Danuta; Sieroń, Aleksander

    2002-02-01

    Solid-phase extraction (SPE) was applied for isolation of oxycholesterols from plasma lipid extract from pregnant women with hypertension and from a control group. Separation of oxycholesterols fraction was performed in an SD II horizontal chamber (Chromdes, Poland) using silica gel and octadecyl RPC18 silica gel TLC plates (Merck and Machery Nagel). Visualization was carried out under UV light after Liebermann-Burchard reaction specific for cholesterol and its derivatives. The oxycholesterols (5-cholestene-3beta-ol-7-one, sum of 5-cholestene-3beta, 7beta-diol and 5-cholestene-3beta, 7alpha-diol and sum of 5alpha,6alpha-epoxycholestan-3beta-ol and 5beta, 6beta-epoxycholestan-3beta-ol) were quantified by chromatograms scanning in reflectance and fluorescence mode using a CS 9301 densitometer (Shimadzu). The total concentration of the investigated oxycholesterols in the plasma of pregnant women was up to 5000 ng/mL and was statistically significantly higher in women with pregnancy induced hypertension (PIH).

  4. The Proteasome Subunit Rpn8 Interacts with the Small Nucleolar RNA Protein (snoRNP) Assembly Protein Pih1 and Mediates Its Ubiquitin-independent Degradation in Saccharomyces cerevisiae.

    PubMed

    Paci, Alexandr; Liu, Peter X H; Zhang, Lingjie; Zhao, Rongmin

    2016-05-27

    Pih1 is a scaffold protein of the Rvb1-Rvb2-Tah1-Pih1 (R2TP) protein complex, which is conserved in fungi and animals. The chaperone-like activity of the R2TP complex has been implicated in the assembly of multiple protein complexes, such as the small nucleolar RNA protein complex. However, the mechanism of the R2TP complex activity in vivo and the assembly of the complex itself are still largely unknown. Pih1 is an unstable protein and tends to aggregate when expressed alone. The C-terminal fragment of Pih1 contains multiple destabilization factors and acts as a degron when fused to other proteins. In this study, we investigated Pih1 interactors and identified a specific interaction between Pih1 and the proteasome subunit Rpn8 in yeast Saccharomyces cerevisiae when HSP90 co-chaperone Tah1 is depleted. By analyzing truncation mutants, we identified that the C-terminal 30 amino acids of Rpn8 are sufficient for the binding to Pih1 C terminus. With in vitro and in vivo degradation assays, we showed that the Pih1 C-terminal fragment Pih1(282-344) is able to induce a ubiquitin-independent degradation of GFP. Additionally, we demonstrated that truncation of the Rpn8 C-terminal disordered region does not affect proteasome assembly but specifically inhibits the degradation of the GFP-Pih1(282-344) fusion protein in vivo and Pih1 in vitro We propose that Pih1 is a ubiquitin-independent proteasome substrate, and the direct interaction with Rpn8 C terminus mediates its proteasomal degradation.

  5. Renin–angiotensin–aldosterone system gene polymorphisms in gestational hypertension and preeclampsia: A case–control gene-association study

    PubMed Central

    Li, Xun; Tan, Hongzhuan; Zhou, Shujin; Hu, Shimin; Zhang, Tianyi; Li, Yangfen; Dou, Qianru; Lai, Zhiwei; Chen, Fenglei

    2016-01-01

    Pregnancy-induced hypertension (PIH, including preeclampsia [PE] and gestational hypertension [GH]) and cardiovascular diseases (CVDs) have some metabolic changes and risk factors in common. Many studies have reported associations between single nucleotide polymorphisms (SNPs) of renin–angiotensin–aldosterone system (RAAS) genes and CVDs (particularly hypertension), and their findings have provided candidate SNPs for research on genetic correlates of PIH. We explored the association between hypertension-related RAAS SNPs and PIH in a Chinese population. A total of 130 cases with PE, 67 cases with GH, and 316 controls were recruited. Six candidate SNPs of the RAAS system were selected. Multiple logistic regression analysis adjusting for maternal age, fetal sex, and gestational diabetes mellitus showed significant associations between angiotensinogen (AGT) rs3789678 T/C and GH (p = 0.0088) and between angiotensin II receptor type 1 (AGTR1) rs275645 G/A and PE (p = 0.0082). The study population was further stratified by maternal age (<30 and ≥30 years), and stratified and crossover analyses were conducted to determine genetic associations in different age groups. Our findings suggest that the impacts of different SNPs might be affected by maternal age; however, the effect of this potential gene–age interaction on PIH needs further exploration. PMID:27910864

  6. [Hypertensive disorders during pregnancy: Cardiovascular long-term outcomes].

    PubMed

    Alvarez-Alvarez, B; Martell-Claros, N; Abad-Cardiel, M; García-Donaire, J A

    2016-07-06

    Pregnancy-induced hypertension (PIH) induces maternal and fetal damage, but it can also be the beginning of future metabolic and vascular disorders. The relative risk of chronic hypertension after PIH is between 2.3 and 11, and the likelihood of subsequent development of type 2 diabetes is multiplied by 1.8. Women with prior preeclampsia/eclampsia have a twofold risk of stroke and a higher frequency of arrhythmias and hospitalization due to heart failure. Furthermore, a tenfold greater risk for long-term chronic kidney disease is observed as well. The relative risk of cardiovascular death is 2.1 times higher compared to the group without pregnancy-induced hypertension problems, although the risk is between 4 and 7 times higher in preterm birth associated with gestational hypertension or pre-existing hypertension The postpartum period is a great opportunity to intervene on lifestyle, obesity, make an early diagnosis of chronic hypertension and DM and provide the necessary treatments to prevent cardiovascular complications in women.

  7. Endothelial dysfunction in cold-induced hypertensive rats.

    PubMed

    Zhu, Zhiming; Zhu, Shanjun; Zhu, Jijun; van der Giet, Markus; Tepel, Martin

    2002-02-01

    Endothelial dysfunction can be observed in preatherosclerotic conditions. However, its pathogenetic role in hypertension is still controversial. Endothelial-dependent changes of blood pressure (BP) and expression of endothelial nitric oxide synthase (eNOS) were evaluated in cold-induced hypertensive rats. Wistar rats were exposed to cold stress for 8 weeks. Exposure to cold stress significantly increased the systolic BP in rats. The infusion of acetylcholine significantly lowered mean arterial BP in control rats by 48 +/- 2% and by 32 +/- 1% in cold-induced hypertensive rats. The acetylcholine-induced reduction of mean arterial BP was significantly attenuated in cold-induced hypertensive rats (control rats, 45 +/- 2 mm Hg; cold-induced hypertensive rats, 34 +/- 3 mm Hg; P < .05). Administration of N(G)-nitro-L-arginine-methyl ester for 1 week significantly increased BP in control rats, whereas no effect could be observed in cold-induced hypertensive rats. In cold-induced hypertensive rats eNOS in aortic vessels was significantly reduced compared to control rats. In this nongenetic, nonsurgical animal model of cold-induced hypertensive rats an endothelial dysfunction can be observed due to reduced eNOS.

  8. Mechanisms of intermittent hypoxia induced hypertension

    PubMed Central

    Bosc, Laura V González; Resta, Thomas; Walker, Benjimen; Kanagy, Nancy L

    2010-01-01

    Abstract Exposing rodents to brief episodes of hypoxia mimics the hypoxemia and the cardiovascular and metabolic effects observed in patients with obstructive sleep apnoea (OSA), a condition that affects between 5% and 20% of the population. Apart from daytime sleepiness, OSA is associated with a high incidence of systemic and pulmonary hypertension, peripheral vascular disease, stroke and sudden cardiac death. The development of animal models to study sleep apnoea has provided convincing evidence that recurrent exposure to intermittent hypoxia (IH) has significant vascular and haemodynamic impact that explain much of the cardiovascular morbidity and mortality observed in patients with sleep apnoea. However, the molecular and cellular mechanisms of how IH causes these changes is unclear and under investigation. This review focuses on the most recent findings addressing these mechanisms. It includes a discussion of the contribution of the nervous system, circulating and vascular factors, inflammatory mediators and transcription factors to IH-induced cardiovascular disease. It also highlights the importance of reactive oxygen species as a primary mediator of the systemic and pulmonary hypertension that develops in response to exposure to IH. PMID:19818095

  9. New developments in the pathogenesis of obesity-induced hypertension.

    PubMed

    Kotsis, Vasilios; Nilsson, Peter; Grassi, Guido; Mancia, Giuseppe; Redon, Josep; Luft, Frank; Schmieder, Roland; Engeli, Stefan; Stabouli, Stella; Antza, Christina; Pall, Denes; Schlaich, Markus; Jordan, Jens

    2015-08-01

    Obesity is a disorder that develops from the interaction between genotype and environment involving social, behavioral, cultural, and physiological factors. Obesity increases the risk for type 2 diabetes mellitus, hypertension, cardiovascular disease, cancer, musculoskeletal disorders, chronic kidney and pulmonary disease. Although obesity is clearly associated with an increased prevalence of hypertension, many obese individuals may not develop hypertension. Protecting factors may exist and it is important to understand why obesity is not always related to hypertension. The aim of this review is to highlight the knowledge gap for the association between obesity, hypertension, and potential genetic and racial differences or environmental factors that may protect obese patients against the development of hypertension and other co-morbidities. Specific mutations in the leptin and the melaninocortin receptor genes in animal models of obesity without hypertension, the actions of α-melanocyte stimulating hormone, and SNS activity in obesity-related hypertension may promote recognition of protective and promoting factors for hypertension in obesity. Furthermore, gene-environment interactions may have the potential to modify gene expression and epigenetic mechanisms could also contribute to the heritability of obesity-induced hypertension. Finally, differences in nutrition, gut microbiota, exposure to sun light and exercise may play an important role in the presence or absence of hypertension in obesity.

  10. Relationship between lupus anticoagulant (LAC) and pregnancy-induced hypertension.

    PubMed

    Matsumoto, T; Sagawa, N; Ihara, Y; Kobayashi, F; Itoh, H; Mori, T

    1995-01-01

    Lupus anticoagulant (LAC), a serum antiphospholipid autoantibody, is believed to be one of the causes of infertility or fetal loss. The purpose of the present study was to evaluate the role of LAC in the pathogenesis of hypertension during pregnancy. In this study, 20 pregnant women with hypertension were classified into two groups: 14 patients who did not have hypertension before the pregnancy but developed it during the pregnancy (pregnancy-induced hypertension; Group A) and 6 patients who had hypertensive or renal disease before the pregnancy, and developed further hypertension during the pregnancy (pregnancy-aggravated hypertension; Group B). A LAC coagulation assay was performed, and the presence of LAC in each group was compared. All 14 patients in group A were LAC-negative. In contrast, 3 of the 6 patients in group B were LAC-positive, and had clinical autoimmune diseases. The incidence of pregnancy-induced hypertension was also examined in 15 pregnancies from 9 LAC-positive women who had a history of repeated fetal loss but no systemic autoimmune disease (Group C). None of these 15 pregnancies had hypertensive complications, even when they reached term. In the placentas of LAC-positive women, no characteristic changes other than fibrinoid degeneration and microscopic infarction were observed upon histological examination. These results suggest that LAC does not relate with the onset of hypertension during pregnancy.

  11. Assessment of Nephroprotective Potential of Histochrome during Induced Arterial Hypertension.

    PubMed

    Agafonova, I G; Bogdanovich, R N; Kolosova, N G

    2015-12-01

    Magnetic resonance tomography was employed to verify endothelial dysfunction of renal arteries in Wistar and OXYS rats under conditions of induced arterial hypertension. Angiography revealed changes in the size and form of renal arteries of hypertensive animals. In hypertensive rats, histochrome exerted a benevolent therapeutic effect in renal arteries: it decreased BP, diminished thrombus formation in fi ne capillaries and arterioles, demonstrated the anticoagulant properties, partially improved endothelial dysfunction of small renal arteries, and up-regulated the glomerular filtration.

  12. Spaceflight-Induced Intracranial Hypertension: An Overview

    NASA Technical Reports Server (NTRS)

    Traver, William J.

    2011-01-01

    This slide presentation is an overview of the some of the known results of spaceflight induced intracranial hypertension. Historical information from Gemini 5, Apollo, and the space shuttle programs indicated that some vision impairment was reported and a comparison between these historical missions and present missions is included. Optic Disc Edema, Globe Flattening, Choroidal Folds, Hyperopic Shifts and Raised Intracranial Pressure has occurred in Astronauts During and After Long Duration Space Flight. Views illustrate the occurrence of Optic Disc Edema, Globe Flattening, and Choroidal Folds. There are views of the Arachnoid Granulations and Venous return, and the question of spinal or venous compliance issues is discussed. The question of increased blood flow and its relation to increased Cerebrospinal fluid (CSF) is raised. Most observed on-orbit papilledema does not progress, and this might be a function of plateau homeostasis for the higher level of intracranial pressure. There are seven cases of astronauts experiencing in flight and post flight symptoms, which are summarized and follow-up is reviewed along with a comparison of the treatment options. The question is "is there other involvement besides vision," and other Clinical implications are raised,

  13. [Reversible posterior leukoencephalopathy syndrome associated with carbamazepine-induced hypertension].

    PubMed

    Furuta, Natsumi; Fujita, Yukio; Sekine, Akiko; Ikeda, Masaki; Okamoto, Koichi

    2009-04-01

    A 21-year-old man developed idiopathic trigeminal neuralgia, and was admitted to our hospital. Although neuralgia was promptly resolved after oral carbamazepine (CBZ) administration, he developed arterial hypertension (from 110/60 mmHg to 170/126 mmHg) followed by consciousness disturbance several days after the initiation of carbamazepine. MRI T2-weighted, FLAIR and ADC images demonstrated transient hyperintense lesions of the bilateral fronto-parieto-occipital subcortical white matter. These lesions showed isointensity on diffusion-weighted images. Since these alterations suggested the presence of vasogenic edema induced by hypertension, we diagnosed him as having reversible posterior leukoencephalopathy syndrome (RPLS) induced by hypertension. Persistent hypertension despite the administration of various anti-hypertension drugs finally improved after oral CBZ therapy was discontinued. Therefore, we considered that hypertension was induced by oral CBZ therapy. This is a rare case in which high blood pressure was caused by CBZ. There is no previous report of RPLS induced by CBZ administration. Further investigation to determine whether CBZ is capable of causing arterial hypertension is warranted.

  14. Mitochondrial injury and dysfunction in hypertension-induced cardiac damage

    PubMed Central

    Eirin, Alfonso; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Hypertension remains an important modifiable risk factor for cardiovascular disease, associated with increased morbidity and mortality. Deciphering the mechanisms involved in the pathogenesis of hypertension is critical, as its prevalence continues increasing worldwide. Mitochondria, the primary cellular energy producers, are numerous in parenchymal cells of the heart, kidney, and brain, major target organs in hypertension. These membrane-bound organelles not only maintain cellular respiration but also modulate several functions of the cell including proliferation, apoptosis, generation of reactive oxygen species, and intracellular calcium homeostasis. Therefore, mitochondrial damage and dysfunction compromise overall cell functioning. In recent years, significant advances increased our understanding of mitochondrial morphology, bioenergetics, and homeostasis, and in turn of their role in several diseases, so that mitochondrial abnormalities and dysfunction have been identified in experimental models of hypertension. In this review, we summarize current knowledge of the contribution of dysfunctional mitochondria to the pathophysiology of hypertension-induced cardiac damage, as well as available evidence of mitochondrial injury-induced damage in other organs. Finally, we discuss the capability of antihypertensive therapy to ameliorate hypertensive mitochondrial injury, and the potential position of mitochondria as therapeutic targets in patients with hypertension. PMID:25385092

  15. Acute hypertension induces oxidative stress in brain tissues.

    PubMed

    Poulet, Roberta; Gentile, Maria T; Vecchione, Carmine; Distaso, Maria; Aretini, Alessandra; Fratta, Luigi; Russo, Giovanni; Echart, Cinara; Maffei, Angelo; De Simoni, Maria G; Lembo, Giuseppe

    2006-02-01

    Arterial hypertension is not only a major risk factor for cerebrovascular accidents, such as stroke and cerebral hemorrhage, but is also associated to milder forms of brain injury. One of the main causes of neurodegeneration is the increase in reactive oxygen species (ROS) that is also a common trait of hypertensive conditions, thus suggesting that such a mechanism could play a role even in the onset of hypertension-evoked brain injury. To investigate this issue, we have explored the effect of acute-induced hypertensive conditions on cerebral oxidative stress. To this aim, we have developed a mouse model of transverse aortic coarctation (TAC) between the two carotid arteries, which imposes acutely on the right brain hemisphere a dramatic increase in blood pressure. Our results show that hypertension acutely induced by aortic coarctation induces a breaking of the blood-brain barrier (BBB) and reactive astrocytosis through hyperperfusion, and evokes trigger factors of neurodegeneration such as oxidative stress and inflammation, similar to that observed in cerebral hypoperfusion. Moreover, the derived brain injury is mainly localized in selected brain areas controlling cognitive functions, such as the cortex and hippocampus, and could be a consequence of a defect in the BBB permeability. It is noteworthy to emphasize that, even if these latter events are not enough to produce ischemic/hemorrhagic injury, they are able to alter mechanisms fundamental for maintaining normal brain function, such as protein synthesis, which has a prominent role for memory formation and cortical plasticity.

  16. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    PubMed

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  17. Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension.

    PubMed

    Perros, F; Dorfmüller, P; Souza, R; Durand-Gasselin, I; Godot, V; Capel, F; Adnot, S; Eddahibi, S; Mazmanian, M; Fadel, E; Hervé, P; Simonneau, G; Emilie, D; Humbert, M

    2007-05-01

    Pulmonary hypertension is characterised by a progressive increase in pulmonary arterial resistance due to endothelial and smooth muscle cell proliferation resulting in chronic obstruction of small pulmonary arteries. There is evidence that inflammatory mechanisms may contribute to the pathogenesis of human and experimental pulmonary hypertension. The aim of the study was to address the role of fractalkine (CX3CL1) in the inflammatory responses and pulmonary vascular remodelling of a monocrotaline-induced pulmonary hypertension model. The expression of CX3CL1 and its receptor CX3CR1 was studied in monocrotaline-induced pulmonary hypertension by means of immunohistochemistry and quantitative reverse-transcription PCR on laser-captured microdissected pulmonary arteries. It was demonstrated that CX3CL1 was expressed by inflammatory cells surrounding pulmonary arterial lesions and that smooth muscle cells from these vessels had increased CX3CR1 expression. It was then shown that cultured rat pulmonary artery smooth muscle cells expressed CX3CR1 and that CX3CL1 induced proliferation but not migration of these cells. In conclusion, the current authors proposed that fractalkine may act as a growth factor for pulmonary artery smooth muscle cells. Chemokines may thus play a role in pulmonary artery remodelling.

  18. The mechanisms underlying fructose-induced hypertension: a review

    PubMed Central

    Klein, Alice Victoria; Kiat, Hosen

    2015-01-01

    We are currently in the midst of an epidemic of metabolic disorders, which may, in part, be explained by excess fructose intake. This theory is supported by epidemiological observations as well as experimental studies in animals and humans. Rising consumption of fructose has been matched with growing rates of hypertension, leading to concern from public health experts. At this stage, the mechanisms underlying fructose-induced hypertension have not been fully characterized and the bulk of our knowledge is derived from animal models. Animal studies have shown that high-fructose diets up-regulate sodium and chloride transporters, resulting in a state of salt overload that increases blood pressure. Excess fructose has also been found to activate vasoconstrictors, inactivate vasodilators, and over-stimulate the sympathetic nervous system. Further work is required to determine the relevance of these findings to humans and to establish the level at which dietary fructose increases the risk of developing hypertension PMID:25715094

  19. Inducible nitric oxide synthase as a possible target in hypertension.

    PubMed

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2014-02-01

    Nitric oxide (NO) is an important vasodilator produced by vascular endothelium. Its enzymatic formation is derived from three different synthases: neuronal (nNOS), endothelial (eNOS) and inducible (iNOS) synthases. While relatively small amounts of NO produced by eNOS are important to cardiovascular homeostasis, high NO levels produced associated with iNOS activity may have detrimental consequences to the cardiovascular system and contribute to hypertension. In this article, we reviewed current literature and found mounting evidence indicating that increased iNOS expression and activity contribute to the pathogenesis of hypertension and its complications. Excessive amounts of NO produced by iNOS up-regulation can react with superoxide anions forming peroxynitrite, thereby promoting nitrosative stress and endothelial dysfunction. In addition, abnormal iNOS activity can up-regulate arginase activity, allowing it to compete with eNOS for L-arginine, thereby resulting in reduced NO bioavailability. This may also lead to eNOS uncoupling with enhanced production of superoxide anions instead of NO. All these alterations mediated by iNOS apparently contribute to hypertension and its complications. We also reviewed current evidence showing the effects of iNOS inhibitors on different animal models of hypertension. iNOS inhibition apparently exerts antihypertensive effects, decreases oxidative and nitrosative stress, and improves vascular function. Together, these studies highlight the possibility that iNOS is a potential pharmacological target in hypertension.

  20. Licorice-induced hypertension: a case of pseudohyperaldosteronism due to jelly bean ingestion.

    PubMed

    Foster, Christopher A; Church, Kristen S; Poddar, Megha; Van Uum, Stan H M; Spaic, Tamara

    2017-04-01

    Hypertension is one of the most common problems encountered in the primary care setting. Numerous secondary causes of hypertension exist and are potentially reversible. The ability to screen for such causes and manage them effectively may spare patients from prolonged medical therapy and hypertensive complications. Licorice can cause hypertension and hypokalemia due its effects on cortisol metabolism. We report a case of jelly bean ingestion that highlights the presentation, pathophysiology and management of licorice-induced hypertension.

  1. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia.

  2. PLACENTAL GROWTH FACTOR ADMINISTRATION ABOLISHES PLACENTAL ISCHEMIA-INDUCED HYPERTENSION

    PubMed Central

    Spradley, Frank T.; Tan, Adelene Y.; Joo, Woo S.; Daniels, Garrett; Kussie, Paul; Karumanchi, S. Ananth; Granger, Joey P.

    2016-01-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia as placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and VEGF are both natural ligands for sFlt-1, VEGF also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to four groups: normal pregnant (NP) or RUPP ± infusion of rhPlGF (180 μg/kg/day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than NP rats. Infusion of rhPlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that rhPlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  3. Reactive oxygen species and the central nervous system in salt-sensitive hypertension: possible relationship with obesity-induced hypertension.

    PubMed

    Ando, Katsuyuki; Fujita, Megumi

    2012-01-01

    1. There are multiple and complex mechanisms of salt-induced hypertension; however, central sympathoexcitation plays an important role. In addition, the production of reactive oxygen species (ROS) is increased in salt-sensitive hypertensive humans and animals. Thus, we hypothesized that brain ROS overproduction may increase blood pressure (BP) by central sympathostimulation. 2. Recently, we demonstrated that ROS levels were elevated in the hypothalamus of salt-sensitive hypertensive animals. Moreover, intracerebroventricular anti-oxidants suppressed BP and renal sympathetic nerve activity more in salt-sensitive than non-salt-sensitive hypertensive rats. Thus, brain ROS overproduction increased BP through central sympathoexcitation in salt-sensitive hypertension. 3. Salt sensitivity of BP is enhanced in obesity and metabolic syndrome. Interestingly, it is also suggested that, in obesity-induced hypertension models, increases in BP are caused by brain ROS-induced central sympathoexcitation. 4. Recent studies suggest that increased ROS production in the brain and central sympathoexcitation may share a common pathway that increases BP in both salt- and obesity-induced hypertension.

  4. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    PubMed

    Zimnicka, Adriana M; Tang, Haiyang; Guo, Qiang; Kuhr, Frank K; Oh, Myung-Jin; Wan, Jun; Chen, Jiwang; Smith, Kimberly A; Fraidenburg, Dustin R; Choudhury, Moumita S R; Levitan, Irena; Machado, Roberto F; Kaplan, Jack H; Yuan, Jason X-J

    2014-01-01

    Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  5. Structure of Minimal Tetratricopeptide Repeat Domain Protein Tah1 Reveals Mechanism of Its Interaction with Pih1 and Hsp90*

    PubMed Central

    Jiménez, Beatriz; Ugwu, Francisca; Zhao, Rongmin; Ortí, Leticia; Makhnevych, Taras; Pineda-Lucena, Antonio; Houry, Walid A.

    2012-01-01

    Tah1 and Pih1 are novel Hsp90 interactors. Tah1 acts as a cofactor of Hsp90 to stabilize Pih1. In yeast, Hsp90, Tah1, and Pih1 were found to form a complex that is required for ribosomal RNA processing through their effect on box C/D small nucleolar ribonucleoprotein assembly. Tah1 is a minimal tetratricopeptide repeat protein of 111 amino acid residues that binds to the C terminus of the Hsp90 molecular chaperone, whereas Pih1 consists of 344 residues of unknown fold. The NMR structure of Tah1 has been solved, and this structure shows the presence of two tetratricopeptide repeat motifs followed by a C helix and an unstructured region. The binding of Tah1 to Hsp90 is mediated by the EEVD C-terminal residues of Hsp90, which bind to a positively charged channel formed by Tah1. Five highly conserved residues, which form a two-carboxylate clamp that tightly interacts with the ultimate Asp-0 residue of the bound peptide, are also present in Tah1. Tah1 was found to bind to the C terminus of Pih1 through the C helix and the unstructured region. The C terminus of Pih1 destabilizes the protein in vitro and in vivo, whereas the binding of Tah1 to Pih1 allows for the formation of a stable complex. Based on our data, a model for an Hsp90-Tah1-Pih1 ternary complex is proposed. PMID:22179618

  6. 76 FR 76432 - Notice of Proposed Information for Public Comment for: Capture Energy Efficiency Measures for PIH

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... URBAN DEVELOPMENT Notice of Proposed Information for Public Comment for: Capture Energy Efficiency... public comments on the subject proposal. HUD is creating the Capture Energy Efficiency Measures for PIH... lists the following information: Title of Proposal: Capture Energy Efficiency Measures for PIH...

  7. [Hypertension].

    PubMed

    Ohishi, Mitsuru

    2014-04-01

    Hypertension is well known to one of the risk factors to reduce cognitive function, however, it is still unclear whether anti-hypertensive therapy is effective to prevent development of dementia or Alzheimer's disease. Epidemiological studies suggested antihypertensive therapy from the middle-age could reduce risk of dementia. The meta-analysis including HYVET also suggested blood pressure lowering from the elderly might be also effective to prevent development of dementia. The network meta-analysis and the cohort study using mega-data bank suggested ARB might be effective to prevent development of dementia or Alzheimer's disease compared to administration with other anti-hypertensive drugs. Although the further major clinical investigation is required, anti-hypertensive treatment might be useful to manage hypertensive patients with dementia.

  8. Evaluation of the Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE)

    ERIC Educational Resources Information Center

    Brush, Thomas; Saye, John; Kale, Ugur; Hur, Jung Won; Kohlmeier, Jada; Yerasimou, Theano; Guo, Lijiang; Symonette, Simone

    2009-01-01

    The Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE) combines a database of video cases of authentic classroom practices with multiple resources and tools to enable pre-service social studies teachers to virtually observe teachers implementing problem-based learning activities. In this paper, we present the results…

  9. Clinical management of drug-induced hypertension: 2013 Practical Recommendations of the Italian Society of Hypertension (SIIA).

    PubMed

    Virdis, Agostino; Ghiadoni, Lorenzo; Taddei, Stefano

    2014-03-01

    Results from recent observational studies conducted in our country and including approximately 160,000 patients with hypertension, reported that only 37 % of patients achieve effective blood pressure control under treatment. These data confirm that blood pressure control amongst the hypertensive population is still largely unsatisfactory in Italy. For this reason, the Italian Society of Hypertension aims to generate a number of interventions to improve blood pressure control in Italy, including integrated actions with General Practitioners, the implementation of hypertension awareness in the general population, a larger use of home blood pressure measurements, and a survey aimed at identifying all clinical and excellence centers for hypertension diagnosis and treatment throughout the whole national territory. Many therapeutic agents or chemical substances can induce a persistent or transient increase in blood pressure or interfere with the effect of antihypertensive drugs, causing sodium retention and expansion of the extra-cellular volume, activating the sympathetic nervous system and inducing vasoconstriction. This aspect represents one of the most common cause of secondary forms of hypertension, which often is under-evaluated by the physicians. In this review article, the potential causes of secondary forms of hypertension caused by use/abuse of drugs or substances are summarized.

  10. Inhibition of phosphodiesterase-1 attenuates cold-induced pulmonary hypertension.

    PubMed

    Crosswhite, Patrick; Sun, Zhongjie

    2013-03-01

    Chronic exposure to cold caused pulmonary arterial hypertension (cold-induced pulmonary hypertension [CIPH]) and increased phosphodiesterase-1C (PDE-1C) expression in pulmonary arteries (PAs) in rats. The purpose of this study is to investigate a hypothesis that inhibition of PDE-1 would decrease inflammatory infiltrates and superoxide production leading to attenuation of CIPH. Three groups of male rats were exposed to moderate cold (5±1°C) continuously, whereas 3 groups were maintained at room temperature (23.5±1°C, warm; 6 rats/group). After 8-week exposure to cold, 3 groups in each temperature condition received continuous intravenous infusion of 8-isobutyl-methylxanthine (8-IBMX) (PDE-1 inhibitor), apocynin (NADPH oxidase inhibitor) or vehicle, respectively, for 1 week. Cold exposure significantly increased right-ventricular systolic pressure compared with warm groups (33.8±3.2 versus 18.6±0.3 mm Hg), indicating that animals developed CIPH. Notably, treatment with 8-IBMX significantly attenuated the cold-induced increase in right ventricular pressure (23.5±1.8 mm Hg). Cold exposure also caused right-ventricular hypertrophy, whereas 8-IBMX reversed cold-induced right ventricular hypertrophy. Cold exposure increased PDE-1C protein expression, macrophage infiltration, NADPH oxidase activity, and superoxide production in PAs and resulted in PA remodeling. 8-IBMX abolished cold-induced upregulation of PDE-1C in PAs. Interestingly, inhibition of PDE-1 eliminated cold-induced macrophage infiltration, NADPH oxidase activation, and superoxide production in PAs and reversed PA remodeling. Inhibition of NADPH oxidase by apocynin abolished cold-induced superoxide production and attenuated CIPH and PA remodeling. In conclusion, inhibition of PDE-1 attenuated CIPH and reversed cold-induced PA remodeling by suppressing macrophage infiltration and superoxide production, suggesting that upregulation of PDE-1C expression may be involved in the pathogenesis of CIPH.

  11. Factors affecting cold-induced hypertension in rats.

    PubMed

    Shechtman, O; Fregly, M J; Papanek, P E

    1990-12-01

    A 3- to 4-week exposure of rats to a cold environment (5 +/- 2 degrees C) induces hypertension, including elevation of systolic, diastolic, and mean blood pressures and cardiac (left ventricular) hypertrophy. The studies described here were designed to investigate some factors affecting both the magnitude and the time course for development of cold-induced hypertension. The objective of the first study was to determine whether there was an ambient temperature at which the cold-induced elevation of blood pressure did not occur. The objective of the second experiment was to determine whether body weight at the time of exposure to cold affected the magnitude and time course for development of hypertension. To assess the first objective, male rats were housed in a chamber whose temperature was maintained at 5 +/- 2 degrees C while others were housed in an identical chamber at 9 +/- 2 degrees C. After 7 days of exposure to cold, the rats exposed to the colder temperature had a significant elevation of blood pressure (140 +/- 2 mm Hg) compared with the group maintained at 9 degrees C (122 +/- 3 mm Hg). The rats exposed to 9 degrees C had no significant elevation of systolic blood pressure at either 27 or 40 days after initiation of exposure to cold. At the latter time, the temperature in the second chamber was reduced to 5 +/- 2 degrees C. By the 25th day of exposure to this ambient temperature, the rats had a significant increase in systolic blood pressure above their levels at 9 degrees C. Thus, there appears to be a threshold ambient temperature for elevation of blood pressure during exposure to cold. That temperature appears to lie somewhere between 5 and 9 degrees C. The second objective was assessed by placing rats varying in weight from approximately 250 to 430 g in air at 5 degrees C. There was a highly significant direct relationship (r = 0.96) between body weight at the time of introduction to cold and the number of days required to increase systolic blood

  12. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension

    PubMed Central

    Phan, Carole; Seferian, Andrei; Huertas, Alice; Thuillet, Raphaël; Sattler, Caroline; Le Hiress, Morane; Tamura, Yuichi; Jutant, Etienne-Marie; Chaumais, Marie-Camille; Bouchet, Stéphane; Manéglier, Benjamin; Molimard, Mathieu; Rousselot, Philippe; Sitbon, Olivier; Simonneau, Gérald; Montani, David; Humbert, Marc

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease that can be induced by dasatinib, a dual Src and BCR-ABL tyrosine kinase inhibitor that is used to treat chronic myelogenous leukemia (CML). Today, key questions remain regarding the mechanisms involved in the long-term development of dasatinib-induced PAH. Here, we demonstrated that chronic dasatinib therapy causes pulmonary endothelial damage in humans and rodents. We found that dasatinib treatment attenuated hypoxic pulmonary vasoconstriction responses and increased susceptibility to experimental pulmonary hypertension (PH) in rats, but these effects were absent in rats treated with imatinib, another BCR-ABL tyrosine kinase inhibitor. Furthermore, dasatinib treatment induced pulmonary endothelial cell apoptosis in a dose-dependent manner, while imatinib did not. Dasatinib treatment mediated endothelial cell dysfunction via increased production of ROS that was independent of Src family kinases. Consistent with these findings, we observed elevations in markers of endothelial dysfunction and vascular damage in the serum of CML patients who were treated with dasatinib, compared with CML patients treated with imatinib. Taken together, our findings indicate that dasatinib causes pulmonary vascular damage, induction of ER stress, and mitochondrial ROS production, which leads to increased susceptibility to PH development. PMID:27482885

  13. Hypertension.

    PubMed

    Fitzgerald, Kara; Lepine, Todd

    2012-05-01

    Hypertension is responsible for roughly one-in-six adult deaths annually in the United States and is associated with five of the top nine causes of death.(1) Ten trillion dollars is the estimated annual cost worldwide of the direct and indirect effects of hypertension.(2,3) In the U.S. alone, costs estimated at almost $74 billion in 2009 placed a huge economic burden on the health care system.(4) The prevalence of hypertension increases with advancing age to the point where more than half of people 60 to 69 years of age and at least three-fourths of those 70 years of age and older are affected.(5) Most individuals with hypertension do not have it adequately controlled.(1,6) Medication noncompliance due to avoidance of side effects is suggested to be a primary factor.(6) The epidemic incidence of hypertension and its significant cost to society indicate that a well-tolerated, cost-effective approach to treatment is urgently needed.

  14. Arginase inhibitor attenuates pulmonary artery hypertension induced by hypoxia.

    PubMed

    Chu, YanBiao; XiangLi, XiaoYing; Niu, Hu; Wang, HongChao; Jia, PingDong; Gong, WenBin; Wu, DaWei; Qin, WeiDong; Xing, ChunYan

    2016-01-01

    Hypoxia-induced pulmonary arterial hypertension (HPAH) is a refractory disease characterized by increased proliferation of pulmonary vascular smooth cells and progressive pulmonary vascular remodeling. The level of nitric oxide (NO), a potential therapeutic vasodilator, is low in PAH patients. L-arginine can be converted to either beneficial NO by nitric oxide synthases or to harmful urea by arginase. In the present study, we aimed to investigate whether an arginase inhibitor, S-(2-boronoethyl)-L-cysteine ameliorates HPAH in vivo and vitro. In a HPAH mouse model, we assessed right ventricle systolic pressure (RVSP) by an invasive method, and found that RSVP was elevated under hypoxia, but was attenuated upon arginase inhibition. Human pulmonary artery smooth muscle cells (HPASMCs) were cultured under hypoxic conditions, and their proliferative capacity was determined by cell counting and flow cytometry. The levels of cyclin D1, p27, p-Akt, and p-ERK were detected by RT-PCR or Western blot analysis. Compared to hypoxia group, arginase inhibitor inhibited HPASMCs proliferation and reduced the levels of cyclin D1, p-Akt, p-ERK, while increasing p27 level. Moreover, in mouse models, compared to control group, hypoxia increased cyclin D1 expression but reduced p27 expression, while arginase inhibitor reversed the effects of hypoxia. Taken together, these results suggest that arginase plays an important role in increased proliferation of HPASMCs induced by hypoxia and it is a potential therapeutic target for the treatment of pulmonary hypertensive disorders.

  15. [Effect of captopril on expression of PTEN in aorta of aortic-induced hypertensive rats].

    PubMed

    Yan, Zhiqiang; Hu, Ya'e; Liu, Bo; Jiang, Zonglai

    2004-12-01

    This study inquired about the role of tumor suppressor PTEN in the arterial remodeling of Ang II induced hypertension. The expression of PTEN of aorta was examined in the aortic-constricted hypertensive rats (hypertension group), in the aortic-constricted hypertensive rats treated with captopril(hypertension and captopril group), and in the rats having undergone sham operation (control group). At day 28 after surgery, the aortas were collected from the groups. The expression of PTEN mRNA was detected by RT-PCR. The expression and location of PTEN protein were determined by immunohistochemistry. The results showed that the expression of PTEN in aorta of the hypertension group was significantly lower than that of the hypertension and captopril group, and similarly lower than that of the control group. The intensity of PTEN-positive immunohistochemical production in aorta of the hypertension group was weaker than that of the hypertension and captopril group, and likewise, it was weaker than the control. PTEN-positive immunohistochemical production was located in VSMC of aorta. The findings indicated that the expression of PTEN is reduced in hypertensive aorta, that the reduced PTEN experession can be reversed by captopril treatment, that AngII and the increased mechanical strain may participate in regulating expression of PTEN, and that PTEN may play a role in the arterial remodeling induced by hypertension.

  16. Galectin-3 inhibition ameliorates hypoxia-induced pulmonary artery hypertension

    PubMed Central

    Hao, Mingwen; Li, Miaomiao; Li, Wenjun

    2016-01-01

    Galectin-3 (Gal-3) is a β-galactoside-binding lectin, which is important in inflammation, fibrosis and heart failure. The present study aimed to investigate the role and mechanism of Gal-3 in hypoxia-induced pulmonary arterial hypertension (PAH). Male C57BL/6J and Gal-3−/− mice were exposed to hypoxia, then the right ventricular systolic pressure (RVSP) and Fulton's index were measured, and Gal-3 mRNA and protein expression in the pulmonary arteries was analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting. Compared with the control, hypoxia increased the mRNA and protein expression levels of Gal-3 in wild type murine pulmonary arteries. Gal-3 deletion reduced the hypoxia-induced upregulation of RVSP and Fulton's index. Furthermore, human pulmonary arterial endothelial cells (HPAECs) and human pulmonary arterial smooth muscle cells (HPASMCs) were stimulated by hypoxia in vitro, and Gal-3 expression was inhibited by small interfering RNA. The inflammatory response of HPAECs, and the proliferation and cell cycle distribution of HPASMCs was also analyzed. Gal-3 inhibition alleviated the hypoxia-induced inflammatory response in HPAECs, including tumor necrosis factor-α and interleukin-1 secretion, expression of intercellular adhesion molecule-1 and adhesion of THP-1 monocytes. Gal-3 inhibition also reduced hypoxia-induced proliferation of HPASMCs, partially by reducing cyclin D1 expression and increasing p27 expression. Furthermore, Gal-3 inhibition suppressed HPASMC switching from a ‘contractile’ to a ‘synthetic’ phenotype. In conclusion, Gal-3 serves a fundamental role in hypoxia-induced PAH, and inhibition of Gal-3 may represent a novel therapeutic target for the treatment of hypoxia-induced PAH. PMID:27959409

  17. Role of calcitonin gene-related peptide in hypertension-induced renal damage.

    PubMed

    Bowers, Mark C; Katki, Khurshed A; Rao, Arundhati; Koehler, Michael; Patel, Parag; Spiekerman, Alvin; DiPette, Donald J; Supowit, Scott C

    2005-07-01

    Calcitonin gene-related peptide, a potent vasodilator neuropeptide, is localized in perivascular sensory nerves. We have reported that alpha-calcitonin gene-related peptide knockout mice have elevated baseline blood pressure and enhanced hypertension-induced renal damage compared with wild-type controls. Thus, the aim of this study was to determine the mechanism and functional significance of this increased hypertension-induced renal damage. We previously demonstrated by telemetric recording that the deoxycorticosterone-salt protocol produces a 35% increase in mean arterial pressure in both alpha-calcitonin gene-related peptide knockout and wild-type mice. Both strains of mice were studied at 0, 14, and 21 days after deoxycorticosterone-salt hypertension. Renal sections from hypertensive wild-type mice showed no pathological changes at any time point studied. However, on days 14 and 21, hypertensive knockout mice displayed progressive increases in glomerular proliferation, crescent formation, and tubular protein casts, as well as the inflammatory markers intercellular adhesion molecule-1, vascular adhesion molecule-1, and monocyte chemoattractant protein-1. There was a significant increase in 24-hour urinary isoprostane, a marker of oxidative stress-induced lipid peroxidation, levels at days 14 and 21 in the hypertensive knockout compared with hypertensive wild-type mice. Urinary microalbumin was significantly higher (2-fold) at day 21 and creatinine clearance was significantly decreased 4-fold in the hypertensive knockout compared with hypertensive wild-type mice. Therefore, in the absence of alpha-calcitonin gene-related peptide, deoxycorticosterone-salt hypertension induces enhanced oxidative stress, inflammation, and renal histopathologic damage, resulting in reduced renal function. Thus, sensory nerves, via alpha-calcitonin gene-related peptide, appear to be renoprotective against hypertension-induced damage.

  18. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents.

  19. Carotid body overactivity induces respiratory neurone channelopathy contributing to neurogenic hypertension.

    PubMed

    Moraes, Davi J A; Machado, Benedito H; Paton, Julian F R

    2015-07-15

    Why sympathetic activity rises in neurogenic hypertension remains unknown. It has been postulated that changes in the electrical excitability of medullary pre-sympathetic neurones are the main causal mechanism for the development of sympathetic overactivity in experimental hypertension. Here we review recent data suggesting that enhanced sympathetic activity in neurogenic hypertension is, at least in part, dependent on alterations in the electrical excitability of medullary respiratory neurones and their central modulation of sympatho-excitatory networks. We also present results showing a critical role for carotid body tonicity in the aetiology of enhanced central respiratory modulation of sympathetic activity in neurogenic hypertension. We propose a novel hypothesis of respiratory neurone channelopathy induced by carotid body overactivity in neurogenic hypertension that may contribute to sympathetic excess. Moreover, our data support the notion of targeting the carotid body as a potential novel therapeutic approach for reducing sympathetic vasomotor tone in neurogenic hypertension.

  20. Effect of magnesium on vascular reactivity in NOS inhibition-induced hypertension.

    PubMed

    Basralı, Filiz; Nasırcılar Ülker, Seher; Koçer, Günnur; Ülker Karadamar, Pınar; Özyurt, Dilek; Cengiz, Melike; Şentürk, Ümit Kemal

    2015-06-01

    This study investigated the effect of magnesium on the vascular reactivity of conduit and resistance arteries in a nitric oxide synthase inhibition-induced hypertension model. The aorta and third-order branches of the mesenteric artery were dissected from normotensive control and hypertensive rats, and their constriction and dilation responses in physiological saline solution containing normal (1.2 mM) or high (4.8 mM) magnesium concentrations were examined. The responses of the vessels were evaluated using potassium chloride (KCl) and phenylephrine (Phe), acetylcholine (ACh) and sodium nitroprusside. The Phe-induced constriction response of the aortic rings increased, whereas the ACh-induced dilation response decreased, in the hypertensive group compared to controls, in the presence of a normal magnesium concentration. High magnesium did not alter these responses in either group. Both the KCl- and Phe-induced constriction responses of the mesenteric arteries increased, and the ACh-induced dilation response decreased in the hypertensive group compared to controls, in the presence of a normal magnesium concentration. High magnesium significantly decreased the KCl and Phe-induced constriction and increased the ACh-induced dilation response of the mesenteric arteries in the hypertensive group, while it did not alter these responses in controls. This study suggests that high magnesium improves vascular reactivity of resistance-, but not conduit-type arteries in the nitric oxide synthase inhibition-induced hypertension model.

  1. Protection of blood-brain barrier breakdown by nifedipine in adrenaline-induced acute hypertension.

    PubMed

    Nukhet Turkel, A; Ziya Ziylan, Y

    2004-04-01

    The question of whether influxes of ionic Ca+2 into cerebral endothelium plays an important role in increased vascular permeability consequent to an acute hypertension is not accurately resolved. We tested the effect of nifedipine, a calcium entry blocker, on the cerebrovascular permeability for proteins in adrenalin-induced acute hypertension. The experiments were carried out on male Wistar rats. The experimental groups consisted of normotensive saline controls, adrenaline-induced hypertensive rats, and adrenalin-induced hypertensive rats as pre-treated or post-treated with a bolus of nifedipine. Brains of hypertensive rats showed increased permeability to Evans Blue-Albumin complex, when blood pressure elevated rapidly to more than 170 mmHg. The number and size of areas of Evans-Blue extravasation were smaller if an increase in blood pressure was prevented. The short lasting elevation of blood pressure did not result in protein extravasation in brains of hypertensive rats. The results suggest that nifedipine can modify the permeability disruptions observed in acutely hypertensive rats. The data also support the hypothesis that Ca+2 may be responsible for the changes in permeability of BBB in hypertension by mediating the contraction of vascular muscles.

  2. Adrenocorticotrophin-induced hypertension in rats. Role of progesterone and digoxin-like substances.

    PubMed

    Li, M; Wong, K S; Martin, A; Whitworth, J A

    1994-01-01

    Adrenocorticotrophin (ACTH) administration raises blood pressure in humans, sheep, and the rat. ACTH hypertension can be reproduced in sheep by combined infusion of aldosterone, 17 alpha-OH-progesterone, and 17 alpha,20 alpha-OH-progesterone, and in humans by cortisol. In the rat, ACTH hypertension is probably due to corticosterone. Progesterone treatment can prevent ACTH-induced hypertension in sheep. This study examined the ability of progesterone to antagonize the onset and development of ACTH-induced hypertension in Sprague-Dawley rats (n = 44). We also investigated the relationship of plasma digoxin-like substances (DLS) to ACTH hypertension. ACTH (0.5 mg/kg/day) significantly increased blood pressure (+24 +/- 5 mm Hg, P < .001) in association with an increase of water intake, urine output, and plasma sodium concentration, and a decrease of body weight and plasma potassium concentration. ACTH increased plasma DLS (+132 +/- 18 pg/mL, P < .01), and there was a positive correlation between DLS and blood pressure (r = 0.68, n = 22, P < .001). Progesterone (50 mg/kg/day) did not block the development of ACTH-induced hypertension in the rat. Although progesterone prevented the ACTH-induced rise in plasma sodium and glucose concentration, it did not prevent the decrease in plasma potassium concentration. The failure of progesterone to prevent ACTH-induced hypertension in the rat argues against a common "hypertensinogenic" mechanism for ACTH hypertension in sheep and rat. DLS may play a role in ACTH-induced hypertension in the rat.

  3. Ambient air pollution and pregnancy-induced hypertensive disorders: a systematic review and meta-analysis.

    PubMed

    Pedersen, Marie; Stayner, Leslie; Slama, Rémy; Sørensen, Mette; Figueras, Francesc; Nieuwenhuijsen, Mark J; Raaschou-Nielsen, Ole; Dadvand, Payam

    2014-09-01

    Pregnancy-induced hypertensive disorders can lead to maternal and perinatal morbidity and mortality, but the cause of these conditions is not well understood. We have systematically reviewed and performed a meta-analysis of epidemiological studies investigating the association between exposure to ambient air pollution and pregnancy-induced hypertensive disorders including gestational hypertension and preeclampsia. We searched electronic databases for English language studies reporting associations between ambient air pollution and pregnancy-induced hypertensive disorders published between December 2009 and December 2013. Combined risk estimates were calculated using random-effect models for each exposure that had been examined in ≥4 studies. Heterogeneity and publication bias were evaluated. A total of 17 articles evaluating the impact of nitrogen oxides (NO2, NOX), particulate matter (PM10, PM2.5), carbon monoxide (CO), ozone (O3), proximity to major roads, and traffic density met our inclusion criteria. Most studies reported that air pollution increased risk for pregnancy-induced hypertensive disorders. There was significant heterogeneity in meta-analysis, which included 16 studies reporting on gestational hypertension and preeclampsia as separate or combined outcomes; there was less heterogeneity in findings of the 10 studies reporting solely on preeclampsia. Meta-analyses showed increased risks of hypertensive disorders in pregnancy for all pollutants except CO. Random-effect meta-analysis combined odds ratio associated with a 5-μg/m3 increase in PM2.5 was 1.57 (95% confidence interval, 1.26-1.96) for combined pregnancy-induced hypertensive disorders and 1.31 (95%confidence interval, 1.14-1.50) for preeclampsia [corrected]. Our results suggest that exposure to air pollution increases the risk of pregnancy-induced hypertensive disorders.

  4. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  5. Pathophysiology of infantile pulmonary arterial hypertension induced by monocrotaline.

    PubMed

    Dias-Neto, Marina; Luísa-Neves, Ana; Pinho, Sónia; Gonçalves, Nádia; Mendes, Maria; Eloy, Catarina; Lopes, José M; Gonçalves, Daniel; Ferreira-Pinto, Manuel; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-06-01

    Pediatric pulmonary arterial hypertension (PAH) presents certain specific features. In this specific age group, experimental models to study the pathophysiology of PAH are lacking. To characterize hemodynamic, morphometric, and histological progression as well as the expression of neurohumoral factors and regulators of cardiac transcription in an infantile model of PAH induced by monocrotaline (MCT), eight-day-old Wistar rats were randomly injected with MCT (30 mg/kg, sc, n = 95) or equal volume of saline solution (n = 92). Animals were instrumented for biventricular hemodynamic recording 7, 14, and 21 days after MCT, whereas samples were collected at 1, 3, 7, 14, and 21 days after MCT. Different time point postinjections were defined for further analysis. Hearts and lungs were collected for morphometric characterization, assessment of right- and left-ventricle (RV and LV) cardiomyocyte diameter and collagen type-I and type-III ratio, RV collagen volume fraction, and pulmonary vessels wall thickness. mRNA quantification was undertaken for brain natriuretic peptide (BNP), endothelin-1 (ET-1), and for cardiac transcription regulators (HOP and Islet1). Animals treated with MCT at the 8th day of life presented RV hypertrophy since day 14 after MCT injection. There were no differences on the RV collagen volume fraction or collagen type-I and type-III ratio. Pulmonary vascular remodelling and PAH were present on day 21, which were accompanied by an increased expression of BNP, ET-1, HOP, and Islet1. The infantile model of MCT-induced PAH can be useful for the study of its pathophysiology and to test new therapeutic targets in pediatric age group.

  6. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms.

    PubMed

    Hall, John E; do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Hall, Michael E

    2015-03-13

    Excess weight gain, especially when associated with increased visceral adiposity, is a major cause of hypertension, accounting for 65% to 75% of the risk for human primary (essential) hypertension. Increased renal tubular sodium reabsorption impairs pressure natriuresis and plays an important role in initiating obesity hypertension. The mediators of abnormal kidney function and increased blood pressure during development of obesity hypertension include (1) physical compression of the kidneys by fat in and around the kidneys, (2) activation of the renin-angiotensin-aldosterone system, and (3) increased sympathetic nervous system activity. Activation of the renin-angiotensin-aldosterone system is likely due, in part, to renal compression, as well as sympathetic nervous system activation. However, obesity also causes mineralocorticoid receptor activation independent of aldosterone or angiotensin II. The mechanisms for sympathetic nervous system activation in obesity have not been fully elucidated but may require leptin and activation of the brain melanocortin system. With prolonged obesity and development of target organ injury, especially renal injury, obesity-associated hypertension becomes more difficult to control, often requiring multiple antihypertensive drugs and treatment of other risk factors, including dyslipidemia, insulin resistance and diabetes mellitus, and inflammation. Unless effective antiobesity drugs are developed, the effect of obesity on hypertension and related cardiovascular, renal and metabolic disorders is likely to become even more important in the future as the prevalence of obesity continues to increase.

  7. Cromolyn sodium does not prevent hypoxia-induced pulmonary hypertension in newborn and young lambs.

    PubMed

    Frantz, E G; Schreiber, M D; Soifer, S J

    1988-12-01

    Hypoxia-induced pulmonary hypertension may be mediated by leukotrienes. Pulmonary mast cells produce leukotrienes, histamine and prostaglandin D2, and degranulate in response to hypoxia. Cromolyn sodium, a mast cell membrane stabilizing agent, may prevent hypoxia-induced mast cell degranulation. To investigate the role of mast cell products in hypoxia-induced pulmonary hypertension, we studied the haemodynamic responses to alveolar hypoxia before and during an intravenous infusion of 3-5 mg/min per kg of cromolyn sodium in 6 chronically instrumented, spontaneously breathing lambs. Since there are age-dependent differences in the response of the pulmonary circulation to some mast cell products, we studied the effects of cromolyn sodium on hypoxia-induced pulmonary hypertension in newborn (4-7 days) and young lambs (15-18 days). During alveolar hypoxia, mean pulmonary arterial pressure increased by 68% (P less than 0.05) and 59% (P less than 0.05) in the newborn and young lambs, respectively. With alveolar hypoxia during cromolyn sodium infusion, mean pulmonary arterial pressure increased by 71% (P less than 0.05) and 42% (P less than 0.05) in the newborn and young lambs, respectively. Cromolyn sodium did blunt the hypoxia-induced release of histamine into the circulation. Because hypoxia-induced pulmonary hypertension was not inhibited by cromolyn sodium in either age group, mast cell products are not important mediators of hypoxia-induced pulmonary hypertension.

  8. Influence of antioxidants on blood-brain barrier permeability during adrenaline-induced hypertension.

    PubMed

    Oztaş, B; Erkin, E; Dural, E; Isbir, T

    2000-11-01

    We have examined the effect of antioxidants (vitamin E, and selenium) on the blood-brain barrier permeability during adreneline-induced acute hypertension in the female rats. The rats supplemented with nontoxic doses of sodium selenite in drinking water for three months or vitamin E was given intraperitoneally before adrenaline-induced acute hypertension. Evans-blue was used as a blood-brain barrier tracer. Mean values for Evans-blue dye were found to be 0.28 +/- 0.04 microg/g tissue in control animals and 1.0 +/- 0.2 microg tissue after adrenaline-induced acute hypertension (p < .01). Rats pretreated with selenium or vitamin E also showed macroscopic leakage of Evans-blue albumin after adrenaline injection i.e., there was no significant difference in protein extravasation between untreated and treated animals (p > .5). The mean value for Evans-blue dye was found to be 1.0 +/- 0.2 microg/g tissue in acute hypertension group, 0.9 +/- 0.2 microg/g tissue in selenium pretreated animals and 1.0 +/- 0.2 micrg/g tissue vitamin E injected animals after acute hypertension. The results show that antioxidants did not influence the blood-brain barrier breakdown during adrenaline-induced acute hypertension.

  9. Nebivolol has a beneficial effect in monocrotaline-induced pulmonary hypertension.

    PubMed

    Pankey, Edward A; Edward, Justin A; Swan, Kevin W; Bourgeois, Camille R T; Bartow, Matthew J; Yoo, Daniel; Peak, Taylor A; Song, Bryant M; Chan, Ryan A; Murthy, Subramanyam N; Prieto, Minolfa C; Giles, Thomas D; Kadowitz, Philip J

    2016-07-01

    Pulmonary hypertension is a rare disorder that, without treatment, is progressive and fatal within 3-4 years. Current treatment involves a diverse group of drugs that target the pulmonary vascular bed. In addition, strategies that increase nitric oxide (NO) formation have a beneficial effect in rodents and patients. Nebivolol, a selective β1 adrenergic receptor-blocking agent reported to increase NO production and stimulate β3 receptors, has vasodilator properties suggesting that it may be beneficial in the treatment of pulmonary hypertension. The present study was undertaken to determine whether nebivolol has a beneficial effect in monocrotaline-induced (60 mg/kg) pulmonary hypertension in the rat. These results show that nebivolol treatment (10 mg/kg, once or twice daily) attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension. This study demonstrates the presence of β3 adrenergic receptor immunoreactivity in pulmonary arteries and airways and that nebivolol has pulmonary vasodilator activity. Studies with β3 receptor agonists (mirabegron, BRL 37344) and antagonists suggest that β3 receptor-mediated decreases in systemic arterial pressure occur independent of NO release. Our results suggest that nebivolol, a selective vasodilating β1 receptor antagonist that stimulates β3 adrenergic receptors and induces vasodilation by increasing NO production, may be beneficial in treating pulmonary hypertensive disorders.

  10. Effect of magnesium supplementation on blood rheology in NOS inhibition-induced hypertension model.

    PubMed

    Cengiz, Melike; Ülker, Pinar; Üyüklü, Mehmet; Yaraş, Nazmi; Özen, Nur; Aslan, Mutay; Özyurt, Dilek; Basralı, Filiz

    2016-01-27

    This study investigated the effects of magnesium on blood rheological properties and blood pressure in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension was induced by oral administration of the nonselective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME, 25 mg/kg/day) for 6 weeks and systolic blood pressure was measured by the tail-cuff method. The groups receiving magnesium supplementation were fed with rat chow containing 0.8% magnesium oxide during the experiment. At the end of experiment, blood samples were obtained from abdominal aorta, using ether anesthesia. Plasma and erythrocyte magnesium levels were determined by the atomic absorption spectrometer. RBC deformability and aggregation were determined by rotational ektacytometry. Plasma fibrinogen concentration was evaluated by ELISA. Whole blood and plasma viscosities were determined by viscometer and intracellular free Ca++ level was measured by using spectroflurometric method. Blood pressure was elevated in hypertensive groups and suppressed by magnesium therapy. Plasma viscosity and RBC aggregation were found to be higher in hypertensive rats than control animals and these parameters significantly decreased in magnesium supplemented hypertensive animals. Other measurements were not different between experimental groups. These results confirm that blood pressure, plasma viscosity and RBC aggregation increased in NOS inhibition-induced hypertension model and oral magnesium supplementation improved these parameters.

  11. Sodium hydrosulfide prevents hypoxia-induced pulmonary arterial hypertension in broilers.

    PubMed

    Yang, Y; Zhang, B K; Liu, D; Nie, W; Yuan, J M; Wang, Z; Guo, Y M

    2012-01-01

    1. The aim of the study was to determine if H(2)S is involved in the development of hypoxia-induced pulmonary hypertension in broilers, a condition frequently observed in a variety of cardiac and pulmonary diseases. 2. Two-week-old broilers were reared under normoxic conditions or exposed to normobaric hypoxia (6 h/day) with tissue levels of H(2)S adjusted by administering sodium hydrosulfide (NaHS, 10 µmol/kg body weight/day). Mean pulmonary arterial pressure, right ventricular mass, plasma and tissue H(2)S levels, the expression of cystathionine-β-synthase (CSE) and vascular remodeling were determined at 35 d of age. 3. Exposure to hypoxia-induced pulmonary arterial hypertension was characterized by elevated pulmonary pressure, right ventricular hypertrophy and vascular remodeling. This was accompanied by decreased expression of CSE and decreased concentrations of plasma and tissue H(2)S. 4. Hypoxia-induced pulmonary hypertension was significantly reduced by administration of NaHS but this protective effect was largely abolished by D, L-propargylglycerine, an inhibitor of CSE. 5. The results indicate that H(2)S is involved in the development of hypoxia-induced pulmonary hypertension. Supplementing NaHS or H(2)S could be a strategy for reducing hypoxia-induced hypertension in broilers.

  12. Genetic AVP deficiency abolishes cold-induced diuresis but does not attenuate cold-induced hypertension.

    PubMed

    Sun, Zhongjie

    2006-06-01

    Chronic cold exposure causes hypertension and diuresis. The aim of this study was to determine whether vasopressin (AVP) plays a role in cold-induced hypertension and diuresis. Two groups of Long-Evans (LE) and two groups of homozygous AVP-deficient Brattleboro (VD) rats were used. Blood pressure (BP) was not different among the four groups during a 2-wk control period at room temperature (25 degrees C, warm). After the control period, one LE group and one VD group were exposed to cold (5 degrees C); the remaining groups were kept at room temperature. BP and body weight were measured weekly during exposure to cold. Food intake, water intake, urine output, and urine osmolality were measured during weeks 1, 3, and 5 of cold exposure. At the end of week 5, all animals were killed and blood was collected for measurement of plasma AVP. Kidneys were removed for measurement of renal medulla V2 receptor mRNA and aquaporin-2 (AQP-2) protein expression. BP of LE and VD rats increased significantly by week 2 of cold exposure and reached a high level by week 5. BP elevations developed at approximately the same rate and to the same degree in LE and VD rats. AVP deficiency significantly increased urine output and solute-free water clearance and decreased urine osmolality. Chronic cold exposure increased urine output and solute-free water clearance and decreased urine osmolality in LE rats, indicating that cold exposure caused diuresis in LE rats. Cold exposure failed to affect these parameters in VD rats, suggesting that the AVP system is responsible for cold-induced diuresis. Cold exposure did not alter plasma AVP in LE rats. Renal medulla V2 receptor mRNA and AQP-2 protein expression levels were decreased significantly in the cold-exposed LE rats, suggesting that cold exposure inhibited renal V2 receptors and AVP-inducible AQP-2 water channels. We conclude that 1) AVP may not be involved in the pathogenesis of cold-induced hypertension, 2) the AVP system plays a critical role

  13. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    SciTech Connect

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-05-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with (/sup 3/H)-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with (/sup 3/H)-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension.

  14. Renal Denervation Improves the Baroreflex and GABA System in Chronic Kidney Disease-induced Hypertension

    PubMed Central

    Chen, Hsin-Hung; Cheng, Pei-Wen; Ho, Wen-Yu; Lu, Pei-Jung; Lai, Chi-Cheng; Tseng, Yang-Ming; Fang, Hua-Chang; Sun, Gwo-Ching; Hsiao, Michael; Liu, Chun-Peng; Tseng, Ching-Jiunn

    2016-01-01

    Hypertensive rats with chronic kidney disease (CKD) exhibit enhanced gamma-aminobutyric acid (GABA)B receptor function and regulation within the nucleus tractus solitarii (NTS). For CKD with hypertension, renal denervation (RD) interrupts the afferent renal sympathetic nerves, which are connecting to the NTS. The objective of the present study was to investigate how RD improves CKD-induced hypertension. Rats underwent 5/6 nephrectomy for 8 weeks, which induced CKD and hypertension. RD was induced by applying phenol to surround the renal artery in CKD. RD improved blood pressure (BP) by lowering sympathetic nerve activity and markedly restored the baroreflex response in CKD. The GABAB receptor expression was increased in the NTS of CKD; moreover, the central GABA levels were reduced in the cerebrospinal fluid, and the peripheral GABA levels were increased in the serum. RD restored the glutamic acid decarboxylase activity in the NTS in CKD, similar to the effect observed for central treatment with baclofen, and the systemic administration of gabapentin reduced BP. RD slightly improved renal function and cardiac load in CKD. RD may improve CKD-induced hypertension by modulating the baroreflex response, improving GABA system dysfunction and preventing the development and reducing the severity of cardiorenal syndrome type 4 in CKD rats. PMID:27917928

  15. Adipokine Serum visfatin level in pregnancy induced hypertension and uncomplicated pregnancy

    PubMed Central

    Shaheen, Asmat; Nazli, Rubina; Fatima, Sadia; Ali, Roshan; Khan, Ihsanullah; Khattak, Salim

    2016-01-01

    Background and Objectives: Hypertensive disorder in pregnancy is the significant disease that badly affects the maternal and fetal prognosis and lead to higher mortality and morbidity in the prenatal period. Visfatin, potentially a new adipokine has emerged having high contribution in pathogenesis of pre-eclampsia. The objective of the study was to find the level of Visfatin in pregnancy induced hypertension and normal pregnant women. Methods: This study was carried out in tertiary care hospitals, Peshawar from March-October 2014. A total of 234 pregnant women (gestational age >20 weeks) were included in the study with distribution as Preeclampsia (PE=86), Eclampsia (E=74) and control (N=74). Blood was taken for measuring Visfatin level by Enzyme Linked Immunosorbent Assay (ELISA) technique. SPSS version 19 was used for statistical analysis. Student’s t test was performed to evaluate the mean differences in patients and control. Results: Serum level of visfatin was significantly higher in pregnancy induced hypertension when compared with control (P value<0.001).: Comparisons of mean value of visfatin with age group of 21-40 years, body mass index (BMI), primary parous and parity 2-4, gestational age of >36 weeks and both systolic and diastolic blood pressure were highly significant in pregnancy induced hypertension when compared with control (p value<0.001). Conclusion: Pregnancy induced hypertensive women showed increased level of serum Visfatin than normal pregnant women. PMID:28083037

  16. NLRP3 Deficiency Improves Angiotensin II-Induced Hypertension But Not Fetal Growth Restriction During Pregnancy.

    PubMed

    Shirasuna, Koumei; Karasawa, Tadayoshi; Usui, Fumitake; Kobayashi, Motoi; Komada, Tadanori; Kimura, Hiroaki; Kawashima, Akira; Ohkuchi, Akihide; Taniguchi, Shun'ichiro; Takahashi, Masafumi

    2015-11-01

    Preeclampsia is a pregnancy-specific syndrome characterized by elevated blood pressure, proteinuria, and intrauterine growth restriction (IUGR). Although sterile inflammation appears to be involved, its pathogenesis remains unclear. Recent evidence indicates that sterile inflammation is mediated through the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes, composed of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1. Here we investigated the role of the NLRP3 inflammasomes in the pathogenesis of preeclampsia using Nlrp3(-/-) and Asc(-/-) (Nlrp3 and Asc deficient) pregnant mice. During pregnancy in mice, continuous infusion of high-dose angiotensin II (AngII) induced hypertension, proteinuria, and IUGR, whereas infusion of low-dose AngII caused hypertension alone. AngII-induced hypertension was prevented in Nlrp3(-/-) mice but not in Asc(-/-), indicating that NLRP3 contributes to gestational hypertension independently of ASC-mediated inflammasomes. Although NLRP3 deficiency had no effect on IUGR, it restored the IL-6 up-regulation in the placenta and kidney of AngII-infused mice. Furthermore, treatment with hydralazine prevented the development of gestational hypertension but not IUGR or IL-6 expression in the placenta and kidney. These findings demonstrate that NLRP3 contributes to the development of gestational hypertension independently of the inflammasomes and that IUGR and kidney injury can occur independent of blood pressure elevation during pregnancy.

  17. Barnidipine ameliorates the vascular and renal injury in L-NAME-induced hypertensive rats.

    PubMed

    Alp Yildirim, F Ilkay; Eker Kizilay, Deniz; Ergin, Bülent; Balci Ekmekçi, Özlem; Topal, Gökçe; Kucur, Mine; Demirci Tansel, Cihan; Uydeş Doğan, B Sönmez

    2015-10-05

    The present study was aimed to investigate the influence of Barnidipine treatment on early stage hypertension by determining the function and morphology of the mesenteric and renal arteries as well as the kidney in N(ω)-Nitro-L-Arginine Methyl Ester (L-NAME)-induced hypertensive rats. Barnidipine (3 mg/kg/day p.o) was applied to rats after 2 weeks of L-NAME (60 mg/kg/day) administration, and continued for the next 3 weeks concomitantly with L-NAME. The systolic blood pressure (SBP) of rats was determined to decrease significantly in Barnidipine treated hypertensive group when compared to that of rats received L-NAME alone. Myograph studies demonstrated that the contractile reactivity to noradrenaline were significantly reduced in both of the resistance arteries while endothelium-dependent relaxations to acethylcholine were significantly diminished particularly in the mesenteric arteries of L-NAME-induced hypertensive rats. The impaired contractile and endothelial responses were completely restored by concomitant treatment of Barnidipine with L-NAME. Histopathological examinations verified structural alterations in the arteries as well as the kidney. Moreover, a decrease in endothelial nitric oxide synthase (eNOS) expression was presented both in the arteries and kidney of hypertensive rats which were increased following Barnidipine treatment. Elevated plasma levels of malondialdehyde (MDA) and myeloperoxidase (MPO) were also reduced in Barnidipine treated hypertensive rats. In conclusion, besides to its efficacy in reducing the elevated SBP, amelioration of vascular function, modulation of arterial and renal eNOS expressions as well as reduction of the plasma levels of oxidative and inflammatory biomarkers are possible supportive mechanisms mediating the favorable implications of Barnidipine in L-NAME-induced hypertension model.

  18. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension

    PubMed Central

    Durgan, David J.; Ganesh, Bhanu P.; Cope, Julia L.; Ajami, Nadim J.; Phillips, Sharon C.; Petrosino, Joseph F.; Hollister, Emily B.; Bryan, Robert M.

    2015-01-01

    Individuals suffering from obstructive sleep apnea (OSA) are at increased risk for systemic hypertension. The importance of a healthy gut microbiota, and detriment of a dysbiotic microbiota, on host physiology is becoming increasingly evident. We tested the hypothesis that gut dysbiosis contributes to hypertension observed with OSA. OSA was modeled in rats by inflating a tracheal balloon during the sleep cycle (10 sec inflations, 60/hour). On normal chow diet, OSA had no effect on blood pressure; however, in rats fed a high fat diet, blood pressure increased 24 and 29mmHg after 7 and 14 days of OSA, respectively (p<0.05 each). Bacterial community characterization was performed on fecal pellets isolated before and after 14 days of OSA in chow and high fat fed rats. High fat diet and OSA led to significant alterations of the gut microbiota including decreases in bacterial taxa known to produce the short chain fatty acid butyrate (p<0.05). Finally, transplant of dysbiotic cecal contents from hypertensive OSA rats on high fat diet into OSA recipient rats on normal chow diet (shown to be normotensive) resulted in hypertension similar to that of the donor (increased 14 and 32mm Hg after 7 and 14 days of OSA, respectively; p<0.05). These studies demonstrate a causal relationship between gut dysbiosis and hypertension, and suggest that manipulation of the microbiota may be a viable treatment for OSA-induced, and possibly other forms of, hypertension. PMID:26711739

  19. Role of the Gut Microbiome in Obstructive Sleep Apnea-Induced Hypertension.

    PubMed

    Durgan, David J; Ganesh, Bhanu P; Cope, Julia L; Ajami, Nadim J; Phillips, Sharon C; Petrosino, Joseph F; Hollister, Emily B; Bryan, Robert M

    2016-02-01

    Individuals suffering from obstructive sleep apnea (OSA) are at increased risk for systemic hypertension. The importance of a healthy gut microbiota, and detriment of a dysbiotic microbiota, on host physiology is becoming increasingly evident. We tested the hypothesis that gut dysbiosis contributes to hypertension observed with OSA. OSA was modeled in rats by inflating a tracheal balloon during the sleep cycle (10-s inflations, 60 per hour). On normal chow diet, OSA had no effect on blood pressure; however, in rats fed a high-fat diet, blood pressure increased 24 and 29 mm Hg after 7 and 14 days of OSA, respectively (P<0.05 each). Bacterial community characterization was performed on fecal pellets isolated before and after 14 days of OSA in chow and high-fat fed rats. High-fat diet and OSA led to significant alterations of the gut microbiota, including decreases in bacterial taxa known to produce the short chain fatty acid butyrate (P<0.05). Finally, transplant of dysbiotic cecal contents from hypertensive OSA rats on high-fat diet into OSA recipient rats on normal chow diet (shown to be normotensive) resulted in hypertension similar to that of the donor (increased 14 and 32 mm Hg after 7 and 14 days of OSA, respectively; P<0.05). These studies demonstrate a causal relationship between gut dysbiosis and hypertension, and suggest that manipulation of the microbiota may be a viable treatment for OSA-induced, and possibly other forms of, hypertension.

  20. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension

    PubMed Central

    WU, HAN; CHEN, LIANG; XIE, JUN; LI, RAN; LI, GUAN-NAN; CHEN, QIN-HUA; ZHANG, XIN-LIN; KANG, LI-NA; XU, BIAO

    2016-01-01

    Periostin is an extracellular matrix protein involved in fibrosis. The present study investigated the importance of periostin in hypertension-induced myocardial fibrosis. Rats were randomly divided into either the normal group (0.4% NaCl diet; n=8) or hypertension group (8% NaCl diet; n=8). For 36 weeks, the blood pressure and heart rate of the rats were monitored. At week 36, the hearts were extracted for further analysis. Masson's staining and western blotting were performed to determine the levels of periostin protein expression, oxidative stress and fibrosis. In addition, fibroblasts were isolated from adult rats and cultured in vitro, and following treatment with angiotensin II (Ang II) and N-acetyl-L-cysteine (NAC), western blotting, immunofluorescence and 2′,7′ dichlorodihydrofluorescin staining were performed to examine reactive oxygen species production, and periostin and α-smooth muscle actin (α-SMA) expression levels. The results demonstrated that periostin expression and oxidative stress were increased in hypertensive hearts compared with normal hearts. The in vitro experiments demonstrated that Ang II upregulated the expression levels of periostin and α-SMA compared with the control, whereas, pretreatment with NAC inhibited oxidative stress, periostin and α-SMA expression in fibroblasts. In conclusion, the results of the current study suggested that oxidative stress-induced periostin is involved in myocardial fibrosis and hypertension. The present study demonstrated that periostin inhibition may be a promising approach for the inhibition of hypertension-induced cardiac remodeling. PMID:27220372

  1. Improvement of Acetylcholine-Induced Vasodilation by Acute Exercise in Ovariectomized Hypertensive Rats.

    PubMed

    Cheng, Tsung-Lin; Lin, Yi-Yuan; Su, Chia-Ting; Hu, Chun-Che; Yang, Ai-Lun

    2016-06-30

    Postmenopause is associated with the development of cardiovascular disease, such as hypertension. However, limited information is available regarding effects of exercise on cardiovascular responses and its underlying mechanisms in the simultaneous postmenopausal and hypertensive status. We aimed to investigate whether acute exercise could enhance vasodilation mediated by acetylcholine (ACh) and sodium nitroprusside (SNP) in ovariectomized hypertensive rats. The fifteen-week-old female spontaneously hypertensive rats (SHR) were bilaterally ovariectomized, at the age of twenty-four weeks, and randomly divided into sedentary (SHR-O) and acute exercise (SHR-OE) groups. Age-matched WKY rats were used as the normotensive control group. The SHR-OE group ran on a motor-driven treadmill at a speed of 24 m/min for one hour in a moderate-intensity program. Following a single bout of exercise, rat aortas were isolated for the evaluation of the endothelium-dependent (ACh-induced) and endothelium-independent (SNP-induced) vasodilation by the organ bath system. Also, the serum levels of oxidative stress and antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), and catalase, were measured after acute exercise among the three groups. We found that acute exercise significantly enhanced the ACh-induced vasodilation, but not the SNP-induced vasodilation, in ovariectomized hypertensive rats. This increased vasodilation was eliminated after the inhibition of nitric oxide synthase (NOS). Also, the activities of SOD and catalase were significantly increased after acute exercise, whereas the level of MDA was comparable among the three groups. These results indicated that acute exercise improved the endothelium-dependent vasodilating response to ACh through the NOS-related pathway in ovariectomized hypertensive rats, which might be associated with increased serum antioxidant activities.

  2. Sildenafil and an early stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets.

    PubMed

    Binns-Loveman, Karen M; Kaplowitz, Mark R; Fike, Candice D

    2005-07-01

    Devising therapies that might prevent the onset or progression of pulmonary hypertension in newborns has received little attention. Our major objective was to determine whether sildenafil, a selective phosphodiesterase inhibitor, prevents the development of an early stage of chronic hypoxia-induced pulmonary hypertension in newborn pigs. Another objective was to determine whether sildenafil causes pulmonary vasodilation without systemic vasodilation in piglets with chronic pulmonary hypertension. Piglets were raised in room air (control, n = 5) or 10-11% O(2) (hypoxic, n = 17) for 3 days. Some piglets (n = 4) received oral sildenafil, 12 mg/kg/day, throughout exposure to hypoxia. All piglets were anesthetized and catheterized, and pulmonary arterial pressure (Ppa), pulmonary wedge pressure (Pw), aortic pressure (Ao), and cardiac output (CO) were measured. Then for some piglets raised in hypoxia for 3 days, a single oral sildenafil dose (3 mg/kg, n = 6) or placebo (n = 5) was given, and hemodynamic measurements were repeated. For piglets raised in hypoxia for 3 days, mean Ppa and calculated PVR were elevated above respective values in control piglets. Mean Ppa and PVR did not differ between piglets that received sildenafil throughout exposure to hypoxia and those that did not. For piglets with chronic hypoxia-induced pulmonary hypertension that received a single oral dose of sildenafil, mean Ppa and PVR decreased, while mean Pw, CO, mean Ao, and systemic vascular resistance remained the same. All hemodynamic measurements were unchanged after placebo. Oral sildenafil did not influence the early stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets. However, a single oral dose of sildenafil caused pulmonary vasodilation, without systemic vasodilation, in piglets with chronic hypoxia-induced pulmonary hypertension, which may have therapeutic implications.

  3. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  4. Antihypertensive Effect of Radix Paeoniae Alba in Spontaneously Hypertensive Rats and Excessive Alcohol Intake and High Fat Diet Induced Hypertensive Rats

    PubMed Central

    Su-Hong, Chen; Qi, Chen; Bo, Li; Jian-Li, Gao; Jie, Su; Gui-Yuan, Lv

    2015-01-01

    Radix Paeoniae Alba (Baishao, RPA) has long been used in traditional Chinese medicine formulation to treat hypertension by repression the hyperfunction of liver. However, whether the RPA itself has the antihypertensive effect or not is seldom studied. This study was to evaluate the protective effect of RPA on hypertensive rats. Alcohol in conjunction with a high fat diet- (ACHFD-) induced hypertensive rats and spontaneously hypertensive rats (SHR) was constantly received either RPA extract (25 or 75 mg/kg) or captopril (15 mg/kg) all along the experiments. As a result, RPA extract (75 mg/kg) could significantly reduce systolic blood pressure of both ACHFD-induced hypertensive rats and SHR after 9-week or 4-week treatment. In ACHFD-induced hypertensive rats, the blood pressure was significantly increased and the lipid profiles in serum including triglyceride, total cholesterol, LDL-cholesterol, and HDL-cholesterol were significantly deteriorated. Also, hepatic damage was manifested by a significant increase in alanine transaminase (ALT) and aspartate transaminase (AST) in serum. The RPA extract significantly reversed these parameters, which revealed that it could alleviate the liver damage of rats. In SHR, our result suggested that the antihypertensive active of RPA extract may be related to its effect on regulating serum nitric oxide (NO) and endothelin (ET) levels. PMID:25784949

  5. Response of the adrenergic system in the cadmium-induced hypertensive rat

    SciTech Connect

    Revis, N.W.; Major, T.C.; Horton, C.Y.

    1983-01-01

    Previous investigators, using an in vitro system, have shown that cadmium inhibits neuronal uptake of norepinephrine (NE). The current studies were performed to determine if the adrenergic system is altered in the cadmium-induced hypertensive rat. The results show that the Fischer and Sprague-Dawley rats develop hypertension, whereas the Wistar normotensive and Wistar hypertensive rats develop hypotension when exposed to 5 ppm of cadmium via drinking water. Results from these studies also show that in the cadmium-induced hypertensive rat, plasma NE is significantly elevated and that plasma clearance of (/sup 3/H)NE is significantly reduced. However, the changes in NE metabolism observed in the hypertensive rats were also observed in hypotensive rats. Furthermore in the Wistar strain, renal artery cadmium levels were significantly higher than observed in the other two strains. The authors suggest that the direction of change in blood following cadmium treatment is associated with both the plasma level of norepinephrine and the arterial level of cadmium.

  6. TRPV1 activation prevents high-salt diet-induced nocturnal hypertension in mice.

    PubMed

    Hao, Xinzhong; Chen, Jing; Luo, Zhidan; He, Hongbo; Yu, Hao; Ma, Liqun; Ma, Shuangtao; Zhu, Tianqi; Liu, Daoyan; Zhu, Zhiming

    2011-03-01

    High dietary salt-caused hypertension is associated with increasing reactive oxygen species generation and reduced nitric oxide (NO) bioavailability. Transient receptor potential vanilloid type 1 (TRPV1), a specific receptor for capsaicin, is proposed to be involved in Dahl salt-sensitive hypertension, as determined in acute or short-term experiments. However, it remains unknown whether activation of TRPV1 by dietary capsaicin could prevent the vascular oxidative stress and hypertension induced by a high-salt diet. Here, we report that consumption of a high-salt diet blunted endothelium-dependent relaxation in mesenteric resistance arteries and elevated nocturnal blood pressure in mice. These effects were associated with increased superoxide anion generation and reduced NO levels in mesenteric vessels in mice on a high-salt diet. However, chronic administration of capsaicin reduced the high-salt diet-induced endothelial dysfunction and nocturnal hypertension in part by preventing the generation of superoxide anions and NO reduction of mesenteric arteries through vascular TRPV1 activation. Our findings provide new insights into the role of TRPV1 channels in the long-term regulation of blood pressure in response to high-salt intake. TRPV1 activation through chronic dietary capsaicin may represent a promising lifestyle intervention in populations with salt-sensitive hypertension.

  7. Hepatoprotective Effect of Silymarin (Silybum marianum) on Hepatotoxicity Induced by Acetaminophen in Spontaneously Hypertensive Rats

    PubMed Central

    Cardia, Gabriel Fernando Esteves; da Rocha, Bruno Ambrósio; Aguiar, Rafael Pazzinatto; Spironello, Ricardo Alexandre; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2015-01-01

    This study was aimed to investigate the effect of Silymarin (SLM) on the hypertension state and the liver function changes induced by acetaminophen (APAP) in spontaneously hypertensive rat (SHR). Animals normotensive (N) or hypertensive (SHR) were treated or not with APAP (3 g/kg, oral) or previously treated with SLM. Twelve hours after APAP administration, plasmatic levels of liver function markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), gamma glutamyl transferase (γ-GT), and alkaline phosphatase (ALP) of all groups, were determined. Liver injury was assessed using histological studies. Samples of their livers were then used to determine the myeloperoxidase (MPO) activity and nitric oxide (NO) production and were also sectioned for histological analysis. No differences were observed for ALT, γ-GT, and GLU levels between SHR and normotensive rats groups. However, AST and ALP levels were increased in hypertensive animals. APAP treatment promoted an increase in ALT and AST in both SHR and N. However, only for SHR, γ-GT levels were increased. The inflammatory response evaluated by MPO activity and NO production showed that SHR was more susceptible to APAP effect, by increasing leucocyte infiltration. Silymarin treatment (Legalon) restored the hepatocyte functional and histopathological alterations induced by APAP in normotensive and hypertensive animals. PMID:25821491

  8. Therapeutic efficacy of TBC3711 in monocrotaline-induced pulmonary hypertension

    PubMed Central

    2011-01-01

    Background Endothelin-1 signalling plays an important role in pathogenesis of pulmonary hypertension. Although different endothelin-A receptor antagonists are developed, a novel therapeutic option to cure the disease is still needed. This study aims to investigate the therapeutic efficacy of the selective endothelin-A receptor antagonist TBC3711 in monocrotaline-induced pulmonary hypertension in rats. Methods Monocrotaline-injected male Sprague-Dawley rats were randomized and treated orally from day 21 to 35 either with TBC3711 (Dose: 30 mg/kg body weight/day) or placebo. Echocardiographic measurements of different hemodynamic and right-heart hypertrophy parameters were performed. After day 35, rats were sacrificed for invasive hemodynamic and right-heart hypertrophy measurements. Additionally, histologic assessment of pulmonary vascular and right-heart remodelling was performed. Results The novel endothelin-A receptor antagonist TBC3711 significantly attenuated monocrotaline-induced pulmonary hypertension, as evident from improved hemodynamics and right-heart hypertrophy in comparison with placebo group. In addition, muscularization and medial wall thickness of distal pulmonary vessels were ameliorated. The histologic evaluation of the right ventricle showed a significant reduction in fibrosis and cardiomyocyte size, suggesting an improvement in right-heart remodelling. Conclusion The results of this study suggest that the selective endothelin-A receptor antagonist TBC3711 demonstrates therapeutic benefit in rats with established pulmonary hypertension, thus representing a useful therapeutic approach for treatment of pulmonary hypertension. PMID:21699729

  9. Postnatal dexamethasone-induced programmed hypertension is related to the regulation of melatonin and its receptors.

    PubMed

    Chang, Hsin-Yu; Tain, You-Lin

    2016-04-01

    Adulthood hypertension can be programmed by glucocorticoid exposure in early life. We found that maternal melatonin therapy prevents postnatal dexamethasone (DEX)-induced programmed hypertension. Melatonin acts through specific receptors, including MT1 and MT2 membrane receptors, and retinoid related orphan nuclear receptors of the RZR/ROR family. Thus we tested whether postnatal DEX-induced hypertension is related to changes of melatonin receptors in the kidney and heart, which was preserved by maternal melatonin therapy. Male neonates were assigned to four groups (n=6-8/group): control, DEX, control+melatonin (MEL), and DEX+MEL. Male rat pups were injected i.p. with DEX on d 1 (0.5 mg/kg BW), d 2 (0.3 mg/kg BW), and d 3 (0.1 mg/kg BW) after birth. Melatonin was administered in drinking water (0.01%) during the lactation period. We found DEX group developed hypertension at 16 weeks of age, which melatonin therapy prevented. Postnatal DEX treatment increased mRNA expression of MT1 and MT2, while decreased RORα and RZRβ in the kidney. These changes were prevented by melatonin therapy. Postnatal DEX decreased protein level of MT2 in the kidney, which was attenuated by melatonin therapy. Renal protein level of RORα was higher in DEX+MEL group compared to control and DEX group. Renal melatonin level was higher in the MEL and DEX+MEL groups compared to control. We concluded that melatonin therapy has long-term protection on postnatal DEX-induced programmed hypertension, which is associated with regulation on melatonin receptors in the kidney. Our findings would offer potential therapeutic approaches to prevent programmed hypertension in premature baby receiving glucocorticoids.

  10. Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension.

    PubMed

    Xue, Baojian; Beltz, Terry G; Yu, Yang; Guo, Fang; Gomez-Sanchez, Celso E; Hay, Meredith; Johnson, Alan Kim

    2011-02-01

    Many studies have implicated both angiotensin II (ANG II) and aldosterone (Aldo) in the pathogenesis of hypertension, the progression of renal injury, and cardiac remodeling after myocardial infarction. In several cases, ANG II and Aldo have been shown to have synergistic interactions in the periphery. In the present studies, we tested the hypothesis that ANG II and Aldo interact centrally in Aldo- and ANG II-induced hypertension in male rats. In rats with blood pressure (BP) and heart rate (HR) measured by DSI telemetry, intracerebroventricular (icv) infusions of the mineralocorticoid receptor (MR) antagonists spironolactone and RU28318 or the angiotensin type 1 receptor (AT1R) antagonist irbesartan significantly inhibited Aldo-induced hypertension. In ANG II-induced hypertension, icv infusion of RU28318 significantly reduced the increase in BP. Moreover, icv infusions of the reactive oxygen species (ROS) scavenger tempol or the NADPH oxidase inhibitor apocynin attenuated Aldo-induced hypertension. To confirm these effects of pharmacological antagonists, icv injections of either recombinant adeno-associated virus carrying siRNA silencers of AT1aR (AT1aR-siRNA) or MR (MR-siRNA) significantly attenuated the development of Aldo-induced hypertension. The immunohistochemical and Western blot analyses of AT1aR-siRNA- or MR-siRNA-injected rats showed a marked reduction in the expression of AT1R or MR in the paraventricular nucleus compared with scrambled siRNA rats. When animals from all studies underwent ganglionic blockade with hexamethonium, there was a smaller reduction in the fall of BP in animals receiving icv AT1R or MR antagonists. These results suggest that ANG II and Aldo interact in the brain in a mutually cooperative manner such that the functional integrity of both brain AT1R and MR are necessary for hypertension to be induced by either systemic ANG II or Aldo. The pressor effects produced by systemic ANG II or Aldo involve increased central ROS and

  11. Prevalence of hypertension and noise-induced hearing loss in Chinese coal miners

    PubMed Central

    Liu, Jing; Xu, Ming; Ding, Lu; Zhang, Hengdong; Pan, Liping; Liu, Qingdong; Ding, Enming; Zhao, Qiuni; Wang, Boshen; Han, Lei

    2016-01-01

    Background Owing to inconsistent epidemiologic evidence and the presence of confounding factors, the relation between occupational noise exposure and hypertension still remained unclear. We aimed to assess whether Chinese coal miners were at risk of developing hypertension and noise induced hearing loss (NIHL), and whether occupational noise exposure was a risk factor of hypertension. Methods A questionnaire was designed to collect information from 738 study participants, all of whom were employees from the Datun Xuzhou Coal Company. The participants were divided into a noise-exposed group and a control group based on the noise level to which they were exposed in the workplace. The differences in the mean of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were compared between the noise-exposed and control groups. Also the prevalence and age-adjusted odds ratio (OR) [95% confidence intervals (CIs)] of audiometric deficit and hypertension was compared in the study. Binary logistic regression was used to assess the relation between occupational noise level and hypertension while controlling for potential confounding factors. Results Hypertension was more prevalent in noise-exposed group than the control group, 29.2% vs. 21.2% (P=0.012). The noise-exposed group faced an increased risk of hypertension (age-adjusted OR =1.52, 95% CI =1.07–2.15) when the control group was used as reference. The mean values of SBP and DBP of the noise-exposed groups were significantly higher than the control group (P=0.006 and P=0.002 respectively). Hearing loss at low frequencies was significantly more prevalent in the noise-exposed group than the control group, 12.8% vs. 7.4% (P=0.015), while the noise-exposed group faced the increased risk of hearing loss at low frequencies (age-adjusted OR =1.81, 95% CI =1.10–2.96). LEX, 8h (OR =1.036, 95% CI =1.012–1.060) was an independent risk of hypertension when controlling for potential confounding factors. Conclusions We

  12. Central nervous system dysfunction in obesity-induced hypertension.

    PubMed

    Head, Geoffrey A; Lim, Kyungjoon; Barzel, Benjamin; Burke, Sandra L; Davern, Pamela J

    2014-09-01

    The activation of the sympathetic nervous system is a major mechanism underlying both human and experimental models of obesity-related hypertension. While insulin and the adipokine leptin have long been thought to contribute to obesity-related neurogenic mechanisms, the evidence is now very strong that they play a major role, shown particularly in animal studies using selective receptor antagonists. There is not just maintenance of leptin's sympatho-excitatory actions as previously suggested but considerable amplification particularly in renal sympathetic nervous activity. Importantly, these changes are not dependent on short-term elevation or reduction in plasma leptin or insulin, but require some weeks to develop indicating a slow "neural adaptivity" within hypothalamic signalling. These effects can be carried across generations even when offspring are raised on a normal diet. A better understanding of the underlying mechanism should be a high research priority given the prevalence of obesity not just in the current population but also for future generations.

  13. Myocardial blood flow during induced aortic hypertension in dogs

    SciTech Connect

    Thai, B.N.; Levesque, M.J.; Nerem, R.M.

    1986-03-01

    Myocardial blood flow was measured in anesthetized dogs during control conditions and under conditions where the aortic pressure was increased due to aortic constriction or during infusion. Blood flow was measured using the radioactive microsphere technique. Radioactive microspheres (15 m Ce-141, Sr-85, and Sc-46) were injected under control, aortic constriction and arterenol infusion in four dogs and under control conditions in two others. All microsphere injections were performed under stabilized conditions. It was found that coronary blood flow rose by 80% during aortic constriction and by 158% during arterenol infusion (P < 0.05). This increase in blood flow was not uniform throughout the heart, and higher increases were observed in the middle and apex regions of the left ventricle. Furthermore, under hypertension the increase in blood flow in LAD (left anterior descending) perfused territories was slightly higher than that in CFX (left circumflex) perfused territories.

  14. Update of Targeted Therapy-Induced Hypertension: Basics for Non-Oncology Providers.

    PubMed

    Escalante, Carmen P; Lu, Maggie; Marten, Claire A

    2016-01-01

    Over the past several years, cancer treatments have expanded from usual chemotherapy standards with introduction of newer targeted therapies. As with chemotherapy, the targeted therapies also have unique side effects affecting various organ systems producing toxicities, such as cardiac and renal. This manuscript focuses on hypertension induced by vascular endothelial growth factor (VEGF) inhibitors and tyrosine kinase inhibitors (TKI). Hypertension due to these cancer therapies is important because these agents are now frequently used in common cancers. In addition, patients with cancer may not be treated in a comprehensive cancer center with experts available to manage the cancer and other side effects either from the malignancy or treatment of the malignancy. Especially in rural areas, patients are often managed or co-managed by a primary care provider with input from an oncologist that may not be nearby. Our aim is to provide an overview of the latest Federal Drug Administration (FDA) approved VEGF inhibitors and TKI's causing hypertension so that others managing patients on these treatments may easily recognize hypertension attributable to these agents and feel comfortable and confident in providing appropriate management and treatment of this side effect. This update includes characteristics, such as mechanism of action, metabolism and route of administration, and management and treatment of hypertension with aspects such as the timing, duration and monitoring of these agents. In addition, an algorithm for monitoring and treating hypertension before, during and after treatment with these therapies is included. It is imperative for patients to have hypertension promptly treated to prevent complications so they may continue with these agents with the least interruption or discontinuation of treatment, ensuring the best benefit available in their cancer trajectory.

  15. Glucocorticoid-induced hypertension and cardiac injury: effects of mineralocorticoid and glucocorticoid receptor antagonism.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Iwase, Erika; Takahashi, Keiji; Ohtake, Masafumi; Tsuboi, Koji; Ohtake, Mayuko; Miyachi, Masaaki; Murohara, Toyoaki; Nagata, Kohzo

    2013-02-01

    Glucocorticoids are widely administered for the treatment of various disorders, although their long-term use results in adverse effects associated with glucocorticoid excess. We investigated the pathophysiological roles of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the cardiac changes induced by exogenous corticosterone in rats. Corticosterone or vehicle was injected twice daily in rats from 8 to 12 weeks of age. The effects of the GR antagonist RU486, the MR antagonist spironolactone, or both agents on corticosterone action were also determined. Corticosterone induced hypertension, left ventricular (LV) fibrosis, and LV diastolic dysfunction. Neither RU486 nor spironolactone affected corticosterone-induced hypertension, whereas spironolactone, but not RU486, attenuated the effects of corticosterone on LV fibrosis and diastolic function. Corticosterone also increased cardiac oxidative stress and inflammation in a manner sensitive to spironolactone but not to RU486. The corticosterone-induced LV atrophy was not affected by either RU486 or spironolactone. Our results implicate MRs in the cardiac fibrosis and diastolic dysfunction, but not MRs or GRs in the cardiac atrophy, induced by corticosterone. Neither MRs nor GRs appear to contribute to corticosterone-induced hypertension.

  16. Exercise-induced hypertension among healthy firefighters-a comparison between two different definitions.

    PubMed

    Leiba, Adi; Baur, Dorothee M; Kales, Stefanos N

    2013-01-01

    Different studies have yielded conflicting results regarding the association of hypertensive response to exercise and cardiovascular morbidity. We compared two different definitions of exaggerated hypertensive response to exercise and their association with cardio-respiratory fitness in a population of healthy firefighters. We examined blood pressure response to exercise in 720 normotensive male career firefighters. Fitness was measured as peak metabolic equivalent tasks (METs) achieved during maximal exercise treadmill tests. Abnormal hypertensive response was defined either as systolic blood pressure ≥ 200 mm Hg; or alternatively, as responses falling in the upper tertile of blood pressure change from rest to exertion, divided by the maximal workload achieved. Using the simple definition of a 200 mm Hg cutoff at peak exercise less fit individuals (METs ≤ 12) were protected from an exaggerated hypertensive response (OR 0.45, 95%CI 0.30-0.67). However, using the definition of exercise-induced hypertension that corrects for maximal workload, less fit firefighters had almost twice the risk (OR 1.8, 95%CI 1.3-2.47). Blood pressure change corrected for maximal workload is better correlated with cardiorespiratory fitness. Systolic blood pressure elevation during peak exercise likely represents an adaptive response, whereas elevation out of proportion to the maximal workload may indicate insufficient vasodilation and a maladaptive response. Prospective studies are needed to best define exaggerated blood pressure response to exercise.

  17. Decreased pituitary response to insulin-induced hypoglycaemia in young lean male patients with essential hypertension.

    PubMed

    Radikova, Z; Penesova, A; Cizmarova, E; Huckova, M; Kvetnansky, R; Vigas, M; Koska, J

    2006-07-01

    Essential hypertension is associated with changes in central catecholaminergic pathways which might also be reflected in the pituitary response to stress stimuli. The aim of this study was to determine whether the response of pituitary hormones, cortisol, plasma renin activity, aldosterone and catecholamines to insulin-induced hypoglycaemia is changed in hypertension. We studied 22 young lean male patients with newly diagnosed untreated essential hypertension and 19 healthy normotensive, age- and body mass index (BMI)-matched controls. All subjects underwent an insulin tolerance test (0.1 IU insulin/kg body weight intravenously) with blood sampling before and 15, 30, 45, 60 and 90 min after insulin administration. Increased baseline levels of norepinephrine (P<0.05), increased response of norepinephrine (P<0.001) and decreased response of growth hormone (P<0.001), prolactin (P<0.001), adrenocorticotropic hormone (P<0.05) and cortisol (P<0.001) were found in hypertensive patients when compared to normotensive controls. Increased norepinephrine levels and a decreased pituitary response to metabolic stress stimuli may represent another manifestation of chronically increased sympathetic tone in early hypertension.

  18. Baroreflex deficit blunts exercise training-induced cardiovascular and autonomic adaptations in hypertensive rats.

    PubMed

    Moraes-Silva, I C; De La Fuente, R N; Mostarda, C; Rosa, K; Flues, K; Damaceno-Rodrigues, N R; Caldini, E G; De Angelis, K; Krieger, E M; Irigoyen, M C

    2010-03-01

    1. Baroreceptors regulate moment-to-moment blood pressure (BP) variations, but their long-term effect on the cardiovascular system remains unclear. Baroreceptor deficit accompanying hypertension contributes to increased BP variability (BPV) and sympathetic activity, whereas exercise training has been associated with an improvement in these baroreflex-mediated changes. The aim of the present study was to evaluate the autonomic, haemodynamic and cardiac morphofunctional effects of long-term sinoaortic baroreceptor denervation (SAD) in trained and sedentary spontaneously hypertensive rats (SHR). 2. Rats were subjected to SAD or sham surgery and were then further divided into sedentary and trained groups. Exercise training was performed on a treadmill (five times per week, 50-70% maximal running speed). All groups were studied after 10 weeks. 3. Sinoaortic baroreceptor denervation in SHR had no effect on basal heart rate (HR) or BP, but did augment BPV, impairing the cardiac function associated with increased cardiac hypertrophy and collagen deposition. Exercise training reduced BP and HR, re-established baroreflex sensitivity and improved both HR variability and BPV. However, SAD in trained SHR blunted all these improvements. Moreover, the systolic and diastolic hypertensive dysfunction, reduced left ventricular chamber diameter and increased cardiac collagen deposition seen in SHR were improved after the training protocol. These benefits were attenuated in trained SAD SHR. 4. In conclusion, the present study has demonstrated that the arterial baroreflex mediates cardiac disturbances associated with hypertension and is crucial for the beneficial cardiovascular morphofunctional and autonomic adaptations induced by chronic exercise in hypertension.

  19. Gamma Delta T Cells Mediate Angiotensin II-Induced Hypertension and Vascular Injury.

    PubMed

    Caillon, Antoine; Mian, Muhammad Oneeb Rehman; Fraulob-Aquino, Julio C; Huo, Ku-Geng; Barhoumi, Tlili; Ouerd, Sofiane; Sinnaeve, Peter R; Paradis, Pierre; Schiffrin, Ernesto L

    2017-03-22

    Background -Innate antigen-presenting cells and adaptive immune T cells have been implicated in the development of hypertension. However, the T-lymphocyte subsets involved in the pathophysiology of hypertension remain unclear. A small subset of "innate-like" T cells expressing the γδ T cell receptor (TCR) rather than the αβ TCR could play a role in the initiation of the immune response in hypertension. We aimed to determine whether angiotensin (Ang) II caused kinetic changes in γδ T cells, whether deficiency in γδ T cells blunted Ang II-induced hypertension, vascular injury and T-cell activation, and whether γδ T cells are associated with human hypertension. Methods -Male C57BL/6 wild-type (WT) and Tcrδ(-/-) mice, which are devoid of γδ T cells, or WT mice injected IP with control isotype IgG or γδ T cell-depleting antibodies, were infused or not with Ang II for 3, 7 or 14 days. T cell profiling was determined by flow cytometry, systolic blood pressure (SBP) by telemetry and mesentery artery endothelial function by pressurized myography. TCR γ constant region gene expression levels and clinical data of a whole blood gene expression microarray study including normotensive and hypertensive subjects were used to demonstrate an association between γδ T cells and SBP. Results -Seven- and 14-day Ang II infusion increased γδ T cell numbers and activation in the spleen of WT mice (P<0.05). Fourteen days of Ang II infusion increased SBP (P<0.01) and decreased mesenteric artery endothelial function (P<0.01) in WT mice, both of which were abrogated in Tcrδ(-/-) mice (P<0.01). Anti-TCR γδ antibody-induced γδ T cell depletion blunted Ang II-induced SBP rise and endothelial dysfunction (P<0.05), compared to isotype antibody-treated Ang II-infused mice. Ang II-induced T cell activation in the spleen and perivascular adipose tissue was blunted in Tcrδ(-/-) mice (P<0.01). In humans, the association between SBP and γδ T cells was demonstrated by a

  20. Fractal Dimension in Quantifying Experimental-Pulmonary-Hypertension-Induced Cardiac Dysfunction in Rats

    PubMed Central

    Pacagnelli, Francis Lopes; Sabela, Ana Karênina Dias de Almeida; Mariano, Thaoan Bruno; Ozaki, Guilherme Akio Tamura; Castoldi, Robson Chacon; do Carmo, Edna Maria; Carvalho, Robson Francisco; Tomasi, Loreta Casquel; Okoshi, Katashi; Vanderlei, Luiz Carlos Marques

    2016-01-01

    Background Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction. PMID:27223643

  1. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  2. Renal denervation attenuates aldosterone expression and associated cardiovascular pathophysiology in angiotensin II-induced hypertension

    PubMed Central

    Chen, Dong-Rui; Ruan, Cheng-Chao; Xu, Jian-Zhong; Chen, Jing; Wu, Yong-Jie; Ma, Yu; Zhu, Ding-Liang; Gao, Ping-Jin

    2016-01-01

    The sympathetic nervous system interacts with the renin-angiotensin-aldosterone system (RAAS) contributing to cardiovascular diseases. In this study, we sought to determine if renal denervation (RDN) inhibits aldosterone expression and associated cardiovascular pathophysiological changes in angiotensin II (Ang II)-induced hypertension. Bilateral RDN or SHAM operation was performed before chronic 14-day Ang II subcutaneous infusion (200ng/kg/min) in male Sprague-Dawley rats. Bilateral RDN blunted Ang II-induced hypertension and ameliorated the mesenteric vascular dysfunction. Cardiovascular hypertrophy in response to Ang II was significantly attenuated by RDN as shown by histopathology and transthoracic echocardiography. Moreover, Ang II-induced vascular and myocardial inflammation and fibrosis were suppressed by RDN with concurrent decrease in fibronectin and collagen deposition, macrophage infiltration, and MCP-1 expression. Interestingly, RDN also inhibited Ang II-induced aldosterone expression in the plasma, kidney and heart. This was associated with the reduction of calcitonin gene-related peptide (CGRP) in the adrenal gland. Ang II promoted aldosterone secretion which was partly attenuated by CGRP in the adrenocortical cell line, suggesting a protective role of CGRP in this model. Activation of transforming growth factor-β (TGF-β)/Smad and mitogen-activated protein kinases (MAPKs) signaling pathway was both inhibited by RDN especially in the heart. These results suggest that the regulation of the renal sympathetic nerve in Ang II-induced hypertension and associated cardiovascular pathophysiological changes is likely mediated by aldosterone, with CGRP involvement. PMID:27661131

  3. Loss of functional endothelial connexin40 results in exercise-induced hypertension in mice.

    PubMed

    Morton, Susan K; Chaston, Daniel J; Howitt, Lauren; Heisler, Jillian; Nicholson, Bruce J; Fairweather, Stephen; Bröer, Stefan; Ashton, Anthony W; Matthaei, Klaus I; Hill, Caryl E

    2015-03-01

    During activity, coordinated vasodilation of microcirculatory networks with upstream supply vessels increases blood flow to skeletal and cardiac muscles and reduces peripheral resistance. Endothelial dysfunction in humans attenuates activity-dependent vasodilation, resulting in exercise-induced hypertension in otherwise normotensive individuals. Underpinning activity-dependent hyperemia is an ascending vasodilation in which the endothelial gap junction protein, connexin (Cx)40, plays an essential role. Because exercise-induced hypertension is proposed as a forerunner to clinical hypertension, we hypothesized that endothelial disruption of Cx40 function in mice may create an animal model of this condition. To this end, we created mice in which a mutant Cx40T152A was expressed alongside wildtype Cx40 selectively in the endothelium. Expression of the Cx40T152A transgene in Xenopus oocytes and mouse coronary endothelial cells in vitro impaired both electric and chemical conductance and acted as a dominant-negative against wildtype Cx40, Cx43, and Cx45, but not Cx37. Endothelial expression of Cx40T152A in Cx40T152ATg mice attenuated ascending vasodilation, without effect on radial coupling through myoendothelial gap junctions. Using radiotelemetry, Cx40T152ATg mice showed an activity-dependent increase in blood pressure, which was significantly greater than in wildtype mice, but significantly less than in chronically hypertensive, Cx40knockout mice. The increase in heart rate with activity was also greater than in wildtype or Cx40knockout mice. We conclude that the endothelial Cx40T152A mutation attenuates activity-dependent vasodilation, producing a model of exercise-induced hypertension. These data highlight the importance of endothelial coupling through Cx40 in regulating blood pressure during activity.

  4. Complement activation is critical for placental ischemia-induced hypertension in the rat.

    PubMed

    Lillegard, Kathryn E; Johnson, Alex C; Lojovich, Sarah J; Bauer, Ashley J; Marsh, Henry C; Gilbert, Jeffrey S; Regal, Jean F

    2013-11-01

    Preeclampsia is a major obstetric problem defined by new-onset hypertension and proteinuria associated with compromised placental perfusion. Although activation of the complement system is increased in preeclampsia compared to normal pregnancy, it remains unclear whether excess complement activation is a cause or consequence of placental ischemia. Therefore, we hypothesized that complement activation is critical for placental ischemia-induced hypertension. We employed the reduced utero-placental perfusion pressure (RUPP) model of placental ischemia in the rat to induce hypertension in the third trimester and evaluated the effect of inhibiting complement activation with a soluble recombinant form of an endogenous complement regulator, human complement receptor 1 (sCR1; CDX-1135). On day 14 of a 21-day gestation, rats received either RUPP or Sham surgery and 15 mg/kg/day sCR1 or saline intravenously on days 14-18. Circulating complement component 3 decreased and complement activation product C3a increased in RUPP vs. Sham (p<0.05), indicating complement activation had occurred. Mean arterial pressure (MAP) measured on day 19 increased in RUPP vs. Sham rats (109.8±2.8 mmHg vs. 93.6±1.6 mmHg). Treatment with sCR1 significantly reduced elevated MAP in RUPP rats (98.4±3.6 mmHg, p<0.05) and reduced C3a production. Vascular endothelial growth factor (VEGF) decreased in RUPP compared to Sham rats, and the decrease in VEGF was not affected by sCR1 treatment. Thus, these studies have identified a mechanistic link between complement activation and the pregnancy complication of hypertension apart from free plasma VEGF and have identified complement inhibition as a potential treatment strategy for placental ischemia-induced hypertension in preeclampsia.

  5. The Effect of Magnesium on Visual Evoked Potentials in L-NAME-Induced Hypertensive Rats.

    PubMed

    Ozsoy, Ozlem; Aras, Sinem; Ulker Karadamar, Pinar; Nasircilar Ulker, Seher; Kocer, Gunnur; Senturk, Umit Kemal; Basrali, Filiz; Yargicoglu, Piraye; Ozyurt, Dilek; Agar, Aysel

    2016-08-01

    In the literature, although there are many studies regarding complications of hypertension, information concerning its influence on visual evoked potentials (VEPs) is limited. This study aims to clarify the possible therapeutic effects of the preferential magnesium (Mg) treatment on VEPs in an experimental hypertension model. Rats were divided into four groups as follows: control, Mg treated (Mg), N(omega)-nitro-L-arginine methyl ester (L-NAME) hypertension, and L-NAME hypertension + Mg treated (L-NAME + Mg). Hypertension was induced by L-NAME which was given to rats orally over 6 weeks (25 mg/kg/day in drinking water). A magnesium-enriched diet (0.8 g/kg) was given to treatment groups for 6 weeks. Systolic blood pressure (SBP) was determined by using the tail-cuff method. Flash VEPs were recorded. Our results revealed that the SBP was significantly increased in the L-NAME group compared to control. Magnesium treatment significantly attenuated SBP in the hypertensive rats compared to the L-NAME group. The mean latencies of P1, N1, P2, N2, and P3 components were significantly prolonged in hypertensive rats compared to control. Treatment with Mg provided a significant decrease in the latencies of P1, N1, P2, N2, and P3 potentials in the L-NAME + Mg group compared to the L-NAME group. Plasma Mg levels were increased in the L-NAME + Mg group compared to the L-NAME group. No change was detected in the Mg levels of the brains in all experimental groups. Magnesium treatment had no effect on the brain nitrate/nitrite and thiobarbituric acid-reactive substances (TBARS) levels in hypertensive rats compared to non-treated rats. There was a positive correlation between the brain TBARS levels and SBP of the rats. The present study suggests that Mg supplementation has the potential to prevent VEP changes in the L-NAME-induced hypertension model.

  6. IgG receptor FcγRIIB plays a key role in obesity-induced hypertension.

    PubMed

    Sundgren, Nathan C; Vongpatanasin, Wanpen; Boggan, Brigid-Meghan D; Tanigaki, Keiji; Yuhanna, Ivan S; Chambliss, Ken L; Mineo, Chieko; Shaul, Philip W

    2015-02-01

    There is a well-recognized association between obesity, inflammation, and hypertension. Why obesity causes hypertension is poorly understood. We previously demonstrated using a C-reactive protein (CRP) transgenic mouse that CRP induces hypertension that is related to NO deficiency. Our prior work in cultured endothelial cells identified the Fcγ receptor IIB (FcγRIIB) as the receptor for CRP whereby it antagonizes endothelial NO synthase. Recognizing known associations between CRP and obesity and hypertension in humans, in the present study we tested the hypothesis that FcγRIIB plays a role in obesity-induced hypertension in mice. Using radiotelemetry, we first demonstrated that the hypertension observed in transgenic mouse-CRP is mediated by the receptor, indicating that FcγRIIB is capable of modifying blood pressure. We then discovered in a model of diet-induced obesity yielding equal adiposity in all study groups that whereas FcγRIIB(+/+) mice developed obesity-induced hypertension, FcγRIIB(-/-) mice were fully protected. Levels of CRP, the related pentraxin serum amyloid P component which is the CRP-equivalent in mice, and total IgG were unaltered by diet-induced obesity; FcγRIIB expression in endothelium was also unchanged. However, whereas IgG isolated from chow-fed mice had no effect, IgG from high-fat diet-fed mice inhibited endothelial NO synthase in cultured endothelial cells, and this was an FcγRIIB-dependent process. Thus, we have identified a novel role for FcγRIIB in the pathogenesis of obesity-induced hypertension, independent of processes regulating adiposity, and it may entail an IgG-induced attenuation of endothelial NO synthase function. Approaches targeting FcγRIIB may potentially offer new means to treat hypertension in obese individuals.

  7. Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens.

    PubMed

    Hassanpour, H; Khosravi Alekoohi, Z; Madreseh, S; Bahadoran, S; Nasiri, L

    2016-10-01

    Quantitative real-time PCR was carried out to evaluate gene expression of heat shock proteins (HSP) (HSP27, HSP56, HSP60, HSP70, HSP90 and ubiquitin) in the brain (hindbrain, midbrain, forebrain) of chickens with cold-induced pulmonary hypertension. The ratio of the right ventricle to the total ventricle (index of pulmonary hypertension in chickens) was increased in the cold-induced pulmonary hypertensive chickens at 42 d of age compared with control. The HSP genes were expressed in the three parts of the brain in the two experimental groups. In the hindbrain of cold-induced pulmonary hypertensive chickens, the relative gene expression of HSP27, HSP60, HSP70 and HSP90 was decreased while gene expression of HSP56 and ubiquitin was increased compared with controls. In the midbrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased compared with controls while HSP27 and HSP90 were decreased. In the forebrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased while the expression of the HSP27 gene was decreased compared with controls. It is concluded that overexpression of HSPs in the forebrain and midbrain probably delays the pathological process of cold stress whereas diminished expression of HSP genes in the hindbrain may affect the normal function of brain centres in this area to exacerbate pulmonary hypertension.

  8. [Thrombotic microangiopathy and intravascular hemolysis in pregnancy-induced hypertension. The lie of HELLP syndrome].

    PubMed

    Díaz de León-Ponce, Manuel Antonio; Briones-Garduño, Jesús Carlos; Meneses-Calderón, José; Moreno-Santillán, Armando Alberto

    2006-01-01

    We reviewed the literature regarding pregnancy-induced hypertension and its relation with thrombotic microangiopathy and intravascular hemolysis (TMIH). In the present work we described the background, frequency, mortality, clinical picture, classification, diagnosis, complications and treatment. In addition, we analyzed Weinstein's report of 1982, and we concluded that the reported data of the HELLP syndrome is not conclusive because the presence of TMIH is not demonstrable in his group of patients. Also, we retrospectively reviewed the medical charts from three Intensive Care Units from two specialized gyneco-obstetrics hospitals and from one General Hospital. From all the patients with pregnancy-induced hypertension and who developed TMIH confirmed clinically and by laboratory findings, we described the incidence of acute renal failure and the mortality in this group of patients.

  9. Arrhythmogenic substrate in hearts of rats with monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark; Bernus, Olivier

    2011-01-01

    Mechanisms associated with right ventricular (RV) hypertension and arrhythmias are less understood than those in the left ventricle (LV). The aim of our study was to investigate whether and by what mechanisms a proarrhythmic substrate exists in a rat model of RV hypertension and hypertrophy. Rats were injected with monocrotaline (MCT; 60 mg/kg) to induce pulmonary artery hypertension or with saline (CON). Myocardial levels of mRNA for genes expressing ion channels were measured by real-time RT-PCR. Monophasic action potential duration (MAPD) was recorded in isolated Langendorff-perfused hearts. MAPD restitution was measured, and arrhythmias were induced by burst stimulation. Twenty-two to twenty-six days after treatment, MCT animals had RV hypertension, hypertrophy, and decreased ejection fractions compared with CON. A greater proportion of MCT hearts developed sustained ventricular tachycardias/fibrillation (0.83 MCT vs. 0.14 CON). MAPD was prolonged in RV and less so in the LV of MCT hearts. There were decreased levels of mRNA for K+ channels. Restitution curves of MCT RV were steeper than CON RV or either LV. Dispersion of MAPD was greater in MCT hearts and was dependent on stimulation frequency. Computer simulations based on ion channel gene expression closely predicted experimental changes in MAPD and restitution. We have identified a proarrhythmic substrate in the hearts of MCT-treated rats. We conclude that steeper RV electrical restitution and rate-dependant RV-LV action potential duration dispersion may be contributing mechanisms and be implicated in the generation of arrhythmias associated with in RV hypertension and hypertrophy. PMID:21398591

  10. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice.

    PubMed

    Cero, Fadila Telarevic; Hillestad, Vigdis; Sjaastad, Ivar; Yndestad, Arne; Aukrust, Pål; Ranheim, Trine; Lunde, Ida Gjervold; Olsen, Maria Belland; Lien, Egil; Zhang, Lili; Haugstad, Solveig Bjærum; Løberg, Else Marit; Christensen, Geir; Larsen, Karl-Otto; Skjønsberg, Ole Henning

    2015-08-15

    Pulmonary hypertension is a serious condition that can lead to premature death. The mechanisms involved are incompletely understood although a role for the immune system has been suggested. Inflammasomes are part of the innate immune system and consist of the effector caspase-1 and a receptor, where nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) is the best characterized and interacts with the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC). To investigate whether ASC and NLRP3 inflammasome components are involved in hypoxia-induced pulmonary hypertension, we utilized mice deficient in ASC and NLRP3. Active caspase-1, IL-18, and IL-1β, which are regulated by inflammasomes, were measured in lung homogenates in wild-type (WT), ASC(-/-), and NLRP3(-/-) mice, and phenotypical changes related to pulmonary hypertension and right ventricular remodeling were characterized after hypoxic exposure. Right ventricular systolic pressure (RVSP) of ASC(-/-) mice was significantly lower than in WT exposed to hypoxia (40.8 ± 1.5 mmHg vs. 55.8 ± 2.4 mmHg, P < 0.001), indicating a substantially reduced pulmonary hypertension in mice lacking ASC. Magnetic resonance imaging further supported these findings by demonstrating reduced right ventricular remodeling. RVSP of NLRP3(-/-) mice exposed to hypoxia was not significantly altered compared with WT hypoxia. Whereas hypoxia increased protein levels of caspase-1, IL-18, and IL-1β in WT and NLRP3(-/-) mice, this response was absent in ASC(-/-) mice. Moreover, ASC(-/-) mice displayed reduced muscularization and collagen deposition around arteries. In conclusion, hypoxia-induced elevated right ventricular pressure and remodeling were attenuated in mice lacking the inflammasome adaptor protein ASC, suggesting that inflammasomes play an important role in the pathogenesis of pulmonary hypertension.

  11. [Asymmetric function of the pes hippocampi in experimental stress-induced arterial hypertension of albino rats].

    PubMed

    Ljowschina, I P; Hecht, K

    1976-01-01

    Relations between a unilateral lesion of circumscribed structures of the Pes hippocampi on the one hand, and stress-induced blood-pressure and learning behaviour, on the other, were studied. An asymmetric functioning of the CNS was analyzed, in which unilateral exclusion of right-hand hippocampal structures stimulates processes of excitation, while lesion of left-hand structures causes prevalence of inhibitory processes. The resulting impairment of the emotional equilibrium potentiates the stress action's contribution to the development of arterial hypertension.

  12. Dexamethasone-Induced Ocular Hypertension in Mice: Effects of Myocilin and Route of Administration.

    PubMed

    Patel, Gaurang C; Phan, Tien N; Maddineni, Prabhavathi; Kasetti, Ramesh B; Millar, J Cameron; Clark, Abbot F; Zode, Gulab S

    2017-04-01

    Glucocorticoid (GC)-induced ocular hypertension (OHT) is a serious adverse effect of prolonged GC therapy that can lead to iatrogenic glaucoma and permanent vision loss. An appropriate mouse model can help us understand precise molecular mechanisms and etiology of GC-induced OHT. We therefore developed a novel, simple, and reproducible mouse model of GC-induced OHT. GC-induced myocilin expression in the trabecular meshwork (TM) has been suggested to play an important role in GC-induced OHT. We further determined whether myocilin contributes to GC-OHT. C57BL/6J mice received weekly periocular conjunctival fornix injections of a dexamethasone-21-acetate (DEX-Ac) formulation. Intraocular pressure (IOP) elevation was relatively rapid and significant, and correlated with reduced conventional outflow facility. Nighttime IOPs were higher in ocular hypertensive eyes compared to daytime IOPs. DEX-Ac treatment led to increased expression of fibronectin, collagen I, and α-smooth muscle actin in the TM in mouse eyes. No changes in body weight indicated no systemic toxicity associated with DEX-Ac treatment. Wild-type mice showed increased myocilin expression in the TM on DEX-Ac treatment. Both wild-type and Myoc(-/-) mice had equivalent and significantly elevated IOP with DEX-Ac treatment every week. In conclusion, our mouse model mimics many aspects of GC-induced OHT in humans, and we further demonstrate that myocilin does not play a major role in DEX-induced OHT in mice.

  13. Experimental TIPS with spiral Z-stents in swine with and without induced portal hypertension

    SciTech Connect

    Kichikawa, Kimihiko; Saxon, Richard R.; Nishimine, Kiyoshi; Nishida, Norifumi; Uchida, Barry T.

    1997-05-15

    Purpose. To assess the suitability of spiral Z-stents for transjugular intrahepatic portosystemic shunt (TIPS) and the influence of portal hypertension on shunt patency in young swine. Methods. TIPS were established using spiral Z-stents in 14 domestic swine. In 7 animals, the portal venous pressure was normal; in the other 7, acute portal hypertension was induced by embolization of portal vein branches. Follow-up portal venography and histologic evaluations were done from 1 hr to 12 weeks after TIPS. Results. Follow-up transhepatic portal venograms showed progressive narrowing of the shunt, most priminent in the midportion of the tract. Ingrowth of liver parenchyma between the stent wires found after 3 weeks led to progressive shunt narrowing and shunt occlusion by 12 weeks. A pseudointima grew rapidly inside the stent, peaked in thickness around 4 weeks, and decreased later. Acutely created portal hypertension rapidly returned to normal and there was no difference in TIPS patency between the two groups of animals. Conclusion. Although the spiral Z-stent can be used as a device for creation of TIPS in patients with cirrhotic livers, it is associated with extensive liver ingrowth in swine that leads to rapid shunt occlusion. Portal hypertension was only transient in this model.

  14. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study.

    PubMed

    Lankhorst, Stephanie; Kappers, Mariëtte H W; van Esch, Joep H M; Smedts, Frank M M; Sleijfer, Stefan; Mathijssen, Ron H J; Baelde, Hans J; Danser, A H Jan; van den Meiracker, Anton H

    2014-12-01

    Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.

  15. Effect of magnesium supplementation on blood pressure and vascular reactivity in nitric oxide synthase inhibition-induced hypertension model.

    PubMed

    Basralı, Filiz; Koçer, Günnur; Ülker Karadamar, Pınar; Nasırcılar Ülker, Seher; Satı, Leyla; Özen, Nur; Özyurt, Dilek; Şentürk, Ümit Kemal

    2015-01-01

    The aim of this study was to assess the effect of oral magnesium supplementation (Mg-supp) on blood pressure (BP) and possible mechanism in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension and/or Mg-supp were created by N-nitro-l-arginine methyl ester (25 mg/kg/day by drinking water) and magnesium-oxide (0.8% by diet) for 6 weeks. Systolic BP was measured weekly by tail-cuff method. The effects of hypertension and/or Mg-supp in thoracic aorta and third branch of mesenteric artery constriction and relaxation responses were evaluated. NOS-inhibition produced a gradually developing hypertension and the magnitude of the BP was significantly attenuated after five weeks of Mg-supp. The increased phenylephrine-induced contractile and decreased acetylcholine (ACh)-induced dilation responses were found in both artery segments of hypertensive groups. Mg-supp was restored ACh-relaxation response in both arterial segments and also Phe-constriction response in thoracic aorta but not in mesenteric arteries. The contributions of NO, prostaglandins and K(+) channels to the dilator response of ACh were similar in the aorta of all the groups. The contribution of the NO to the ACh-mediated relaxation response of mesenteric arteries was suppressed in hypertensive rats, whereas this was corrected by Mg-supp. The flow-mediated dilation response of mesenteric arteries in hypertensive rats failed and could not be corrected by Mg-supp. Whereas, vascular eNOS protein and magnesium levels were not changed and plasma nitrite levels were reduced in hypertensive rats. The results of this study showed that Mg-supp lowered the arterial BP in NOS-inhibition induced hypertension model by restoring the agonist-induced relaxation response of the arteries.

  16. [Hypertension and pregnancy. Diagnosis, physiopathology and treatment].

    PubMed

    Fournier, A; Fievet, P; el Esper, I; el Esper, N; Vaillant, P; Gondry, J

    1995-11-25

    This review on hypertension in pregnancy focuses mainly on the pathophysiology and prevention of pregnancy induced hypertension which, when associated with proteinuria, is usually called preeclampsia. Rather than a genuine hypertensive disease, preeclampsia is mainly a systemic endothelial disease causing activation of platelets and diffuse ischemic disorders whose most obvious clinical manifestations involve the kidney (hence the proteinuria, edema and hyperuricemia), the liver (hence the hemolytic elevated liver enzymes and low platelets, or HELLP syndrome), and the brain (hence eclamptic convulsions). Hypertension is explained by increased vascular reactivity rather than by an imbalance between vasoconstrictive and vasodilating circulating hormones. This increased reactivity is due to endothelial dysfunction with imbalance between prostacyclin and thromboxane A2 and possibly dysfunction of NO and endothelin synthesis. The aggressive substances for endothelium are thought to be of placentar origin and the cause of their release is explained by placentar ischemia related to a defect of trophoblastic invasion of the spiral arteries. The etiology of this latter defect is unknown but involves immunologic mechanisms with genetic predisposition. The only effective treatment for PIH is extraction of the baby with the whole placenta. The decision for extraction is often a very delicate obstetric problem. Antihypertensive drugs are mainly indicated in severe hypertension (> 160-100 mm Hg), with the aim of preventing cerebral hemorrhage in the mother, but have not been shown to improve fetal morbidity or mortality. Eclamptic seizures can be prevented and treated more effectively with magnesium sulfate than with diazepam or phenytoin. Prevention of preeclampsia remains the main challenge. Whereas antihypertensive drugs are ineffective, calcium supplementation and low dose aspirin have proven effective but mainly in selected populations with a relatively high incidence of

  17. Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation

    PubMed Central

    2012-01-01

    Background In addition to systemic inflammation, neuroinflammation in the brain, which enhances sympathetic drive, plays a significant role in cardiovascular diseases, including hypertension. Oxidative stress in rostral ventrolateral medulla (RVLM) that augments sympathetic outflow to blood vessels is involved in neural mechanism of hypertension. We investigated whether neuroinflammation and oxidative stress in RVLM contribute to hypertension following chronic systemic inflammation. Methods In normotensive Sprague-Dawley rats, systemic inflammation was induced by infusion of Escherichia coli lipopolysaccharide (LPS) into the peritoneal cavity via an osmotic minipump. Systemic arterial pressure and heart rate were measured under conscious conditions by the non-invasive tail-cuff method. The level of the inflammatory markers in plasma or RVLM was analyzed by ELISA. Protein expression was evaluated by Western blot or immunohistochemistry. Tissue level of superoxide anion (O2·-) in RVLM was determined using the oxidation-sensitive fluorescent probe dihydroethidium. Pharmacological agents were delivered either via infusion into the cisterna magna with an osmotic minipump or microinjection bilaterally into RVLM. Results Intraperitoneal infusion of LPS (1.2 mg/kg/day) for 14 days promoted sustained hypertension and induced a significant increase in plasma level of C-reactive protein, tumor necrosis factor-α (TNF-α), or interleukin-1β (IL-1β). This LPS-induced systemic inflammation was accompanied by activation of microglia, augmentation of IL-1β, IL-6, or TNF-α protein expression, and O2·- production in RVLM, all of which were blunted by intracisternal infusion of a cycloxygenase-2 (COX-2) inhibitor, NS398; an inhibitor of microglial activation, minocycline; or a cytokine synthesis inhibitor, pentoxifylline. Neuroinflammation in RVLM was also associated with a COX-2-dependent downregulation of endothelial nitric oxide synthase and an upregulation of

  18. Elevated Endothelial Hypoxia-Inducible Factor-1α Contributes to Glomerular Injury and Promotes Hypertensive Chronic Kidney Disease.

    PubMed

    Luo, Renna; Zhang, Weiru; Zhao, Cheng; Zhang, Yujin; Wu, Hongyu; Jin, Jianping; Zhang, Wenzheng; Grenz, Almut; Eltzschig, Holger K; Tao, Lijian; Kellems, Rodney E; Xia, Yang

    2015-07-01

    Hypertensive chronic kidney disease is one of the most prevalent medical conditions with high morbidity and mortality in the United States and worldwide. However, early events initiating the progression to hypertensive chronic kidney disease are poorly understood. We hypothesized that elevated endothelial hypoxia-inducible factor-1α (HIF-1α) is a common early insult triggering initial glomerular injury leading to hypertensive chronic kidney disease. To test our hypothesis, we used an angiotensin II infusion model of hypertensive chronic kidney disease to determine the specific cell type and mechanisms responsible for elevation of HIF-1α and its role in the progression of hypertensive chronic kidney disease. Genetic studies coupled with reverse transcription polymerase chain reaction profiling revealed that elevated endothelial HIF-1α is essential to initiate glomerular injury and progression to renal fibrosis by the transcriptional activation of genes encoding multiple vasoactive proteins. Mechanistically, we found that endothelial HIF-1α gene expression was induced by angiotensin II in a nuclear factor-κB-dependent manner. Finally, we discovered reciprocal positive transcriptional regulation of endothelial Hif-1α and Nf-κb genes is a key driving force for their persistent activation and disease progression. Overall, our findings revealed that the stimulation of HIF-1α gene expression in endothelial cells is detrimental to induce kidney injury, hypertension, and disease progression. Our findings highlight early diagnostic opportunities and therapeutic approaches for hypertensive chronic kidney disease.

  19. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  20. Pregnancy-induced hypertension caused by all-trans retinoic acid treatment in acute promyelocytic leukemia

    PubMed Central

    SONG, KUI; LI, MIN

    2015-01-01

    A 23-year-old pregnant female presented with fever and diarrhea during the sixth month of gestation. The patient was diagnosed with acute promyelocytic leukemia (APL) at 26 weeks gestation and was treated with all-trans retinoic acid (ATRA) at an initial dose of 45 mg/m2/day, which was reduced to 25 mg/m2/day 14 days later. The patient experienced chest distress, polypnea, hypertension, general dropsy and dysfunction of the kidneys and heart on day 3 of the treatment, which suggested pregnancy-induced hypertension. Intrauterine fetal demise was apparent on day 8. A cesarean delivery was performed, however, intrauterine fetal mortality had occurred. A favorable outcome was achieved for the patient following treatment, although hematological complete remission was slow. To the best of our knowledge, the present study is the first to describe an APL patient with pregnancy-induced hypertension following treatment with ATRA, and thus ATRA remains a suitable for therapy for APL during pregnancy. PMID:26171031

  1. Protective Effect of Salicornia europaea Extracts on High Salt Intake-Induced Vascular Dysfunction and Hypertension

    PubMed Central

    Panth, Nisha; Park, Sin-Hee; Kim, Hyun Jung; Kim, Deuk-Hoi; Oak, Min-Ho

    2016-01-01

    High salt intake causes and aggravates arterial hypertension and vascular dysfunction. We investigated the effect of Salicornia europaea extracts (SE) on vascular function and blood pressure. SE constituents were analyzed using high performance liquid chromatography, and SE’s effect on vascular function was evaluated in isolated porcine coronary arteries. SE’s vascular protective effect was also evaluated in vivo using normotensive and spontaneous hypertensive rats (SHRs). SE mainly contained sodium chloride (55.6%), 5-(hydroxymethyl)furfural, p-coumaric acid, and trans-ferulic acid. High sodium (160 mmol/L) induced vascular dysfunction; however, SE containing the same quantity of sodium did not cause vascular dysfunction. Among the compounds in SE, trans-ferulic acid accounts for the vascular protective effect. Normotensive rats fed a high-salt diet showed significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which decreased significantly in the SE-treated groups. In SHRs, high edible salt intake significantly increased SBP, DBP, and MAP, but SE intake was associated with a significantly lower MAP. Thus, SE did not induce vascular dysfunction, and trans-ferulic acid might be at least partly responsible for the vasoprotective effect of SE. Taken together, SE could be used as an alternative to purified salt to prevent and ameliorate hypertension. PMID:27455235

  2. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  3. Intermittent Hypoxia-Induced Carotid Body Chemosensory Potentiation and Hypertension Are Critically Dependent on Peroxynitrite Formation

    PubMed Central

    Moya, Esteban A.; Arias, Paulina; Varela, Carlos; Oyarce, María P.; Del Rio, Rodrigo; Iturriaga, Rodrigo

    2016-01-01

    Oxidative stress is involved in the development of carotid body (CB) chemosensory potentiation and systemic hypertension induced by chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea. We tested whether peroxynitrite (ONOO−), a highly reactive nitrogen species, is involved in the enhanced CB oxygen chemosensitivity and the hypertension during CIH. Accordingly, we studied effects of Ebselen, an ONOO− scavenger, on 3-nitrotyrosine immunoreactivity (3-NT-ir) in the CB, the CB chemosensory discharge, and arterial blood pressure (BP) in rats exposed to CIH. Male Sprague-Dawley rats were exposed to CIH (5% O2, 12 times/h, 8 h/day) for 7 days. Ebselen (10 mg/kg/day) was administrated using osmotic minipumps and BP measured with radiotelemetry. Compared to the sham animals, CIH-treated rats showed increased 3-NT-ir within the CB, enhanced CB chemosensory responses to hypoxia, increased BP response to acute hypoxia, and hypertension. Rats treated with Ebselen and exposed to CIH displayed a significant reduction in 3-NT-ir levels (60.8 ± 14.9 versus 22.9 ± 4.2 a.u.), reduced CB chemosensory response to 5% O2 (266.5 ± 13.4 versus 168.6 ± 16.8 Hz), and decreased mean BP (116.9 ± 13.2 versus 82.1 ± 5.1 mmHg). Our results suggest that CIH-induced CB chemosensory potentiation and hypertension are critically dependent on ONOO− formation. PMID:26798430

  4. The Effect of Protocatechuic Acid on Blood Pressure and Oxidative Stress in Glucocorticoid-induced Hypertension in Rat

    PubMed Central

    Safaeian, Leila; Hajhashemi, Valiollah; Haghjoo Javanmard, Shaghayegh; Sanaye Naderi, Hamed

    2016-01-01

    Oxidative stress is one of the important mechanisms involved in Dexamethasone (Dex)-induced hypertension. Protocatechuic acid (PCA) is a natural compound with high antioxidant capacity. In this investigation, the effect of pretreatment with PCA was studied in Dex-induced hypertensive male Wistar rats. For induction of hypertension, Dex was injected subcutaneously for 14 days. PCA (50, 100 and 200 mg/kg) was started from 4 days before Dex administration and continued during the test period. Systolic blood pressure (SBP) was recorded using tail-cuff method. Measurement of thymus weight was done as a marker of glucocorticoid activity. The hydrogen peroxide (H2O2) concentration and ferric reducing antioxidant power (FRAP) were determined in plasma samples. Significant increase in SBP and plasma H2O2 concentration and decrease in FRAP value and in the body and thymus weights were observed in Dex-induced hypertensive rats. PCA dose-dependently prevented hypertension and body weight loss, and reduced plasma H2O2 concentration and increased FRAP values. These results suggest the antihypertensive and antioxidant effects of PCA against Dex-induced hypertension. PMID:28228807

  5. Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer.

    PubMed Central

    Churchill, P C; Churchill, M C; Bidani, A K; Griffin, K A; Picken, M; Pravenec, M; Kren, V; St Lezin, E; Wang, J M; Wang, N; Kurtz, T W

    1997-01-01

    To test the hypothesis that genetic factors can determine susceptibility to hypertension-induced renal damage, we derived an experimental animal model in which two genetically different yet histocompatible kidneys are chronically and simultaneously exposed to the same blood pressure profile and metabolic environment within the same host. Kidneys from normotensive Brown Norway rats were transplanted into unilaterally nephrectomized spontaneously hypertensive rats (SHR-RT1.N strain) that harbor the major histocompatibility complex of the Brown Norway strain. 25 d after the induction of severe hypertension with deoxycorticosterone acetate and salt, proteinuria, impaired glomerular filtration rate, and extensive vascular and glomerular injury were observed in the Brown Norway donor kidneys, but not in the SHR-RT1.N kidneys. Control experiments demonstrated that the strain differences in kidney damage could not be attributed to effects of transplantation-induced renal injury, immunologic rejection phenomena, or preexisting strain differences in blood pressure. These studies (a) demonstrate that the kidney of the normotensive Brown Norway rat is inherently much more susceptible to hypertension-induced damage than is the kidney of the spontaneously hypertensive rat, and (b) establish the feasibility of using organ-specific genome transplants to map genes expressed in the kidney that determine susceptibility to hypertension-induced renal injury in the rat. PMID:9294102

  6. Role of α1D -adrenoceptors in vascular wall hypertrophy during angiotensin II-induced hypertension.

    PubMed

    Gallardo-Ortíz, I A; Rodríguez-Hernández, S N; López-Guerrero, J J; Del Valle-Mondragón, L; López-Sánchez, P; Touyz, R M; Villalobos-Molina, R

    2015-09-01

    The in vivo effect of continuous angiotensin II (Ang II) infusion on arterial blood pressure, vascular hypertrophy and α1 -adrenoceptors (α1 -ARs) expression was explored. Alzet(®) minipumps filled with Ang II (200 ng kg(-1)  min(-1) ) were subcutaneously implanted in male Wistar rats (3 months-old). Groups of rats were also treated with losartan, an AT1 R antagonist, or with BMY 7378, a selective α1D -AR antagonist. Blood pressure was measured by tail-cuff; after 2 or 4 weeks of treatment, vessels were isolated for functional and structural analyses. Angiotensin II increased systolic blood pressure. Phenylephrine-induced contraction in aorta was greater (40% higher) in Ang II-treated rats than in the controls, and similar effect occurred with KCl 80 mm. Responses in tail arteries were not significantly different among the different groups. Angiotensin II decreased α1D -ARs without modifying the other α1 -ARs and induced an increase in media thickness (hypertrophy) in aorta, while no structural change occurred in tail artery. Losartan prevented and reversed hypertension and hypertrophy, while BMY 7378 prevented and reversed the aorta's hypertrophic response, without preventing or reversing hypertension. Findings indicate that Ang II-induced aortic hypertrophic response involves Ang II-AT1 Rs and α1D -ARs. Angiotensin II-induced α1D -AR-mediated vascular remodeling occurs independently of hypertension. Findings identify a α1D -AR-mediated process whereby Ang II influences aortic hypertrophy independently of blood pressure elevation.

  7. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3.

    PubMed

    Olcese, Chiara; Patel, Mitali P; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J; Vaughan, Cara K; Hayward, Jane; Goldenberg, Alice; Emes, Richard D; Munye, Mustafa M; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean-François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M K; Antonarakis, Stylianos E; Loebinger, Michael R; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M

    2017-02-08

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2-DNAAF4-HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins.

  8. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    PubMed Central

    Olcese, Chiara; Patel, Mitali P.; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J.; Vaughan, Cara K.; Hayward, Jane; Goldenberg, Alice; Emes, Richard D.; Munye, Mustafa M.; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean- François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R.; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M. K.; Antonarakis, Stylianos E.; Loebinger, Michael R.; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Beales, Philip L.; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Allan, Daly; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; McCarthy, Shane; Muddyman, Dawn; Muntoni, Francesco; Parker, Victoria; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter J.; Schmidts, Miriam; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M.

    2017-01-01

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins. PMID:28176794

  9. Pulmonary hypertension

    MedlinePlus

    Pulmonary arterial hypertension; Sporadic primary pulmonary hypertension; Familial primary pulmonary hypertension; Idiopathic pulmonary arterial hypertension; Primary pulmonary hypertension; PPH; Secondary pulmonary ...

  10. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension

    PubMed Central

    Li, Xiao C.; Shull, Gary E.; Miguel-Qin, Elisa

    2015-01-01

    The renal mechanisms responsible for angiotensin II (ANG II)-induced hypertension remain incompletely understood. The present study tested the hypothesis that the Na+/H+ exchanger 3 (NHE3) is required for ANG II-induced hypertension in mice. Five groups of wild-type (Nhe3+/+) and Nhe3−/− mice were treated with vehicle or high pressor doses of ANG II (1.5 mg/kg/day ip, via minipump for 2 wk, or 10 pmol/min iv for 30 min). Under basal conditions, Nhe3−/− mice had significantly lower systolic blood pressure (SBP) and mean intra-arterial pressure (MAP) (P < 0.01), 24 h urine (P < 0.05), urinary Na+ (P < 0.01) and urinary K+ excretion (P < 0.01). In response to ANG II, SBP and MAP markedly increased in Nhe3+/+ mice in a time-dependent manner, as expected (P < 0.01). However, these acute and chronic pressor responses to ANG II were significantly attenuated in Nhe3−/− mice (P < 0.01). Losartan blocked ANG II-induced hypertension in Nhe3+/+ mice but induced marked mortality in Nhe3−/− mice. The attenuated pressor responses to ANG II in Nhe3−/− mice were associated with marked compensatory humoral and renal responses to genetic loss of intestinal and renal NHE3. These include elevated basal plasma ANG II and aldosterone and kidney ANG II levels, salt wasting from the intestines, increased renal AQP1, Na+/HCO3−, and Na+/K+-ATPase expression, and increased PKCα, mitogen-activated protein kinases ERK1/2, and glycogen synthase kinase 3αβ signaling proteins in the proximal tubules (P < 0.01). We concluded that NHE3 in proximal tubules of the kidney, along with NHE3 in intestines, is required for maintaining basal blood pressure as well as the full development of ANG II-induced hypertension. PMID:26242933

  11. Mitochondrial aldehyde dehydrogenase prevents ROS-induced vascular contraction in angiotensin-II hypertensive mice.

    PubMed

    Choi, Hyehun; Tostes, Rita C; Webb, R Clinton

    2011-01-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme that detoxifies aldehydes to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress, which is the imbalance between reactive oxygen species (ROS) generation and antioxidant defense activity. Increased ROS contribute to vascular dysfunction and structural remodeling in hypertension. We hypothesized that ALDH2 plays a protective role to reduce vascular contraction in angiotensin-II (AngII) hypertensive mice. Endothelium-denuded aortic rings from C57BL6 mice, treated with AngII (3.6 μg/kg/min, 14 days), were used to measure isometric force development. Rings treated with daidzin (10 μmol/L), an ALDH2 inhibitor, potentiated contractile responses to phenylephrine (PE) in AngII mice. Tempol (1 mmol/L) and catalase (600 U/mL) attenuated the augmented contractile effect of daidzin. In normotensive mice, contraction to PE in the presence of the daidzin was not different from control, untreated values. AngII aortic rings transfected with ALDH2 recombinant protein decreased contractile responses to PE compared with control. These data suggest that ALDH2 reduces vascular contraction in AngII hypertensive mice. Because tempol and catalase blocked the contractile response of the ALDH2 inhibitor, ROS generation by AngII may be decreased by ALDH2, thereby preventing ROS-induced contraction.

  12. Does copper enhance the antihypertensive effect of Elaeocarpus ganitrus in experimentally induced hypertensive rats?

    PubMed Central

    Barve, Kalyani H; Chodankar, Rahul

    2014-01-01

    Ayurveda, one of the traditional systems of medicine of India, reports that the seeds of Elaeocarpus ganitrus Linn. (Tilaceae) can be used for the treatment of hypertension. The main aim is to evaluate the antihypertensive effect of Elaeocarpus ganitrus (Rudraksha) seeds. Powdered seeds were extracted by maceration, overnight, using water, in copper (E1) and glass vessel (E2) and analyzed for antihypertensive activity in cadmium chloride (1 mg/kg intraperitoneally, for a period of 15 days) induced hypertensive male Wistar rats at three dose levels. E1 was administered at the dose of 5, 10, and 15 mg/kg and E2 at dose of 10, 20, and 30 mg/kg. All the data were analyzed using one way analysis of variance (ANOVA) followed by Dunnett's multiple comparison test. E1 and E2 did not show any toxicity at the dose of 5 g/kg in rats. It was found that 15 mg/kg of E1 and 30 mg/kg of E2 decreases the blood pressure by 30.20 mmHg and 28.96 mmHg, respectively, in hypertensive rats. Thus, it can be said that 15 mg/kg of E1 produced similar decrease in blood pressure as was observed with 30 mg/kg of E2. Copper ions in E1 might be additively affecting the reduction in blood pressure with the usage of Elaeocarpus ganitrus extracts. PMID:24948856

  13. Aluminum Trichloride Induces Hypertension and Disturbs the Function of Erythrocyte Membrane in Male Rats.

    PubMed

    Zhang, Qiuyue; Cao, Zheng; Sun, Xudong; Zuang, Cuicui; Huang, Wanyue; Li, Yanfei

    2016-05-01

    Aluminum (Al) is the most abundant metal in the earth's crust. Al accumulates in erythrocyte and causes toxicity on erythrocyte membrane. The dysfunction of erythrocyte membrane is a potential risk to hypertension. The high Al content in plasma was associated with hypertension. To investigate the effect of AlCl3 on blood pressure and the function of erythrocyte membrane, the rats were intragastrically exposed to 0, 64(1/20 LD50), 128(1/10 LD50), and 256(1/5 LD50) mg/kg body weight AlCl3 in double distilled water for 120 days, respectively. Then, we determined the systolic and mean arterial blood pressures of rats, the osmotic fragility, the percentage of membrane proteins, the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-pX), and malondialdehyde (MDA) content of the erythrocyte membrane in this experiment. The results showed that AlCl3 elevated the systolic and mean arterial blood pressure of rats, increased the osmotic fragility, decreased the percentage of membrane protein, inhibited the activities of Na(+)/K(+)-ATPase, Mg(2+)-ATPase, Ca(2+)-ATPase, CAT, SOD and GSH-pX, and increased the MDA content of erythrocyte membrane. These results indicate that AlCl3 may induce hypertension by disturbing the function of erythrocyte membrane.

  14. Prophylactic effects of alkaloids from Ba lotus seeds on L-NNA-induced hypertension in mice.

    PubMed

    Sun, Peng; Zhu, Kai; Wang, Cun; Liu, Wei-Wei; Peng, De-Guang; Zhao, Xin

    2016-11-01

    Alkaloids from Ba lotus seeds (ABLS) are a kind of important functional compounds in lotus seeds. The present study was designed to determine its hypertension prophylactic effects in the L-NNA-induced mouse hypertension model. The mice were treated with ABLS, the serum and tissues levels of NO, MDA, ET-1, VEGF, and CGRP were determined using the experimental kits, the mRNA levels of various genes in the heart muscle and blood vessel tissues were further determined by RT-PCR assay. ABLS could reduce the systolic blood pressure (SBP), mean blood pressure (MBP), and diastolic blood pressure (DBP), compared to that of the model control group. After ABLS treatment, the NO (nitric oxide) contents in serum, heart, liver, kidney and stomach of the mice were higher than that of the control mice, but the MDA (malonaldehyde) contents were lower than that of the control mice. The serum levels of ET-1 (endothelin-1), VEGF (vascular endothelial growth factor) were decreased after ABLS treatment, but CGRP (calcium gene related peptide) level was increased. The ABLS treated mice had higher mRNA expressions of HO-1, nNOS, and eNOS and lower expressions of ADM, RAMP2, IL-1β, TNF-α, and iNOS than the control mice. Higher concentration of ABLS had greater prophylactic effects, which were close to that of the hypertension drug captopril. These results indicated the hypertension prophylactic effects of ABLS could be further explored as novel medicine or functional food in the future.

  15. Depressor effect of chymase inhibitor in mice with high salt-induced moderate hypertension.

    PubMed

    Devarajan, Sankar; Yahiro, Eiji; Uehara, Yoshinari; Habe, Shigehisa; Nishiyama, Akira; Miura, Shin-ichiro; Saku, Keijiro; Urata, Hidenori

    2015-12-01

    The aim of the present study was to determine whether long-term high salt intake in the drinking water induces hypertension in wild-type (WT) mice and whether a chymase inhibitor or other antihypertensive drugs could reverse the increase of blood pressure. Eight-week-old male WT mice were supplied with drinking water containing 2% salt for 12 wk (high-salt group) or high-salt drinking water plus an oral chymase inhibitor (TPC-806) at four different doses (25, 50, 75, or 100 mg/kg), captopril (75 mg/kg), losartan (100 mg/kg), hydrochlorothiazide (3 mg/kg), eplerenone (200 mg/kg), or amlodipine (6 mg/kg). Control groups were given normal water with or without the chymase inhibitor. Blood pressure and heart rate gradually showed a significant increase in the high-salt group, whereas a dose-dependent depressor effect of the chymase inhibitor was observed. There was also partial improvement of hypertension in the losartan- and eplerenone-treated groups but not in the captopril-, hydrochlorothiazide-, and amlodipine-treated groups. A high salt load significantly increased chymase-dependent ANG II-forming activity in the alimentary tract. In addition, the relative contribution of chymase to ANG II formation, but not actual average activity, showed a significant increase in skin and skeletal muscle, whereas angiotensin-converting enzyme-dependent ANG II-forming activity and its relative contribution were reduced by high salt intake. Plasma and urinary renin-angiotensin system components were significantly increased in the high-salt group but were significantly suppressed in the chymase inhibitor-treated group. In conclusion, 2% salt water drinking for 12 wk caused moderate hypertension and activated the renin-angiotensin system in WT mice. A chymase inhibitor suppressed both the elevation of blood pressure and heart rate, indicating a definite involvement of chymase in salt-sensitive hypertension.

  16. Renovascular hypertension identified by captopril-induced changes in the renogram

    SciTech Connect

    Geyskes, G.G.; Oei, H.Y.; Puylaert, C.B.; Mees, E.J.

    1987-05-01

    Radioisotope renography was performed in 21 patients with hypertension and unilateral renal artery stenosis with and without premedication with 25 mg of captopril, and the results were compared with the effect of percutaneous transluminal angioplasty on the blood pressure, assessed 6 weeks after angioplasty. Angioplasty caused a considerable decrease in blood pressure in 15 of the 21 patients. In 12 of these 15 patients, captopril induced changes in the time-activity curves of the affected kidney only, suggesting deterioration of the excretory function of that kidney, while the function of the contralateral kidney remained normal. After angioplasty the asymmetry in the time-activity curves diminished despite identical pretreatment with captopril. Such captopril-induced unilateral impairment of the renal function was not seen in the six patients with unilateral renal artery stenosis whose blood pressure did not change after percutaneous transluminal angioplasty or in 13 patients with hypertension and normal renal arteries. The functional impairment of the affected kidneys was characterized by a decrease of /sup 99m/Tc-diethylenetriamine pentaacetic acid uptake and a delay of /sup 131/I-hippurate excretion, while the /sup 131/I-hippurate uptake remained unaffected. These data are in agreement with a reduced glomerular filtration rate and diuresis during preservation of the renal blood flow, changes that can be expected after converting enzyme inhibition in a kidney with low perfusion and an active, renin-mediated autoregulation of the glomerular filtration rate. These data suggest that functional captopril-induced unilateral changes, shown by split renal function studies with noninvasive gamma camera scintigraphy, can be used as a diagnostic test for renovascular hypertension caused by unilateral renal artery stenosis.

  17. Vasopressors induce passive pulmonary hypertension by blood redistribution from systemic to pulmonary circulation.

    PubMed

    Jiang, Chunling; Qian, Hong; Luo, Shuhua; Lin, Jing; Yu, Jerry; Li, Yajiao; An, Qi; Luo, Nanfu; Du, Lei

    2017-05-01

    Vasopressors are widely used in resuscitation, ventricular failure, and sepsis, and often induce pulmonary hypertension with undefined mechanisms. We hypothesize that vasopressor-induced pulmonary hypertension is caused by increased pulmonary blood volume and tested this hypothesis in dogs under general anesthesia. In normal hearts (model 1), phenylephrine (2.5 μg/kg/min) transiently increased right but decreased left cardiac output, associated with increased pulmonary blood volume (63% ± 11.8, P = 0.007) and pressures in the left atrium, pulmonary capillary, and pulmonary artery. However, the trans-pulmonary gradient and pulmonary vascular resistance remained stable. These changes were absent after decreasing blood volume or during right cardiac dysfunction to reduce pulmonary blood volume (model 2). During double-ventricle bypass (model 3), phenylephrine (1, 2.5 and 10 μg/kg/min) only slightly induced pulmonary vasoconstriction. Vasopressin (1U and 2U) dose-dependently increased pulmonary artery pressure (52 ± 8.4 and 71 ± 10.3%), but did not cause pulmonary vasoconstriction in normally beating hearts (model 1). Pulmonary artery and left atrial pressures increased during left ventricle dysfunction (model 4), and further increased after phenylephrine injection by 31 ± 5.6 and 43 ± 7.5%, respectively. In conclusion, vasopressors increased blood volume in the lung with minimal pulmonary vasoconstriction. Thus, this pulmonary hypertension is similar to the hemodynamic pattern observed in left heart diseases and is passive, due to redistribution of blood from systemic to pulmonary circulation. Understanding the underlying mechanisms may improve clinical management of patients who are taking vasopressors, especially those with coexisting heart disease.

  18. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    SciTech Connect

    Kodavanti, Urmila P.; Thomas, Ronald F.; Ledbetter, Allen D.; Schladweiler, Mette C.; Bass, Virginia; Krantz, Q. Todd; King, Charly; Nyska, Abraham; Richards, Judy E.; Andrews, Debora; Gilmour, M. Ian

    2013-04-15

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/day for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses

  19. Pulmonary hypertension and isolated right heart failure complicating amiodarone induced hyperthyroidism.

    PubMed

    Wong, Sean-Man; Tse, Hung-Fat; Siu, Chung-Wah

    2012-03-01

    Hyperthyroidism is a common side effect encountered in patients prescribed long-term amiodarone therapy for cardiac arrhythmias. We previously studied 354 patients prescribed amiodarone in whom the occurrence of hyperthyroidism was associated with major adverse cardiovascular events including heart failure, myocardial infarction, ventricular arrhythmias, stroke and even death [1]. We now present a case of amiodarone-induced hyperthyroidism complicated by isolated right heart failure and pulmonary hypertension that resolved with treatment of hyperthyroidism. Detailed quantitative echocardiography enables improved understanding of the haemodynamic mechanisms underlying the condition.

  20. Renoprotective effect of virgin coconut oil in heated palm oil diet-induced hypertensive rats.

    PubMed

    Kamisah, Yusof; Ang, Shu-Min; Othman, Faizah; Nurul-Iman, Badlishah Sham; Qodriyah, Hj Mohd Saad

    2016-10-01

    Virgin coconut oil, rich in antioxidants, was shown to attenuate hypertension. This study aimed to investigate the effects of virgin coconut oil on blood pressure and related parameters in kidneys in rats fed with 5-times-heated palm oil (5HPO). Thirty-two male Sprague-Dawley rats were divided into 4 groups. Two groups were fed 5HPO (15%) diet and the second group was also given virgin coconut oil (1.42 mL/kg, oral) daily for 16 weeks. The other 2 groups were given basal diet without (control) and with virgin coconut oil. Systolic blood pressure was measured pre- and post-treatment. After 16 weeks, the rats were sacrificed and kidneys were harvested. Dietary 5HPO increased blood pressure, renal thiobarbituric acid reactive substance (TBARS), and nitric oxide contents, but decreased heme oxygenase activity. Virgin coconut oil prevented increase in 5HPO-induced blood pressure and renal nitric oxide content as well as the decrease in renal heme oxygenase activity. The virgin coconut oil also reduced the elevation of renal TBARS induced by the heated oil. However, neither dietary 5HPO nor virgin coconut oil affected renal histomorphometry. In conclusion, virgin coconut oil has a potential to reduce the development of hypertension and renal injury induced by dietary heated oil, possibly via its antioxidant protective effects on the kidneys.

  1. Protective Effects of Methylsulfonylmethane on Hemodynamics and Oxidative Stress in Monocrotaline-Induced Pulmonary Hypertensive Rats

    PubMed Central

    Mohammadi, Sadollah; Najafi, Moslem; Hamzeiy, Hossein; Maleki-Dizaji, Nasrin; Pezeshkian, Masoud; Sadeghi-Bazargani, Homayon; Darabi, Masoud; Mostafalou, Sara; Bohlooli, Shahab; Garjani, Alireza

    2012-01-01

    Methylsulfonylmethane (MSM) is naturally occurring organic sulfur that is known as a potent antioxidant/anti-inflammatory compound. The aim of this study was to investigate the effect of MSM on hemodynamics functions and oxidative stress in rats with monocrotaline- (MCT-) induced pulmonary arterial hypertension (PAH). Wistar rats were randomly assigned to 38-days treatment. MSM was administered to rats at 100, 200, and 400 mg/kg/day doses 10 days before a single dose of 60 mg/kg, IP, MCT. Hemodynamics of ventricles were determined by Powerlab AD instrument. Blood samples were obtained to evaluate changes in the antioxidative system including activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and the level of reduced glutathione (GSH) and malondialdehyde (MDA). Improvements in cardiopulmonary hemodynamics were observed in the MSM-treated pulmonary arterial hypertensive rats, with a significant reduction in right ventricular systolic pressure (RSVP) and an increase in the mean arterial pressure (MAP). The values of CAT, SOD, GSH-px activities, and GSH were significantly lower in MCT-induced PAH (P < 0.01), but they were recovered to control levels of MSM-treated groups. Our present results suggest that long-term administration of the MSM attenuates MCT-induced PAH in rats through modulation of oxidative stress and antioxidant defense. PMID:23118745

  2. Fatal postoperative systemic pulmonary hypertension in benfluorex-induced valvular heart disease surgery

    PubMed Central

    Baufreton, Christophe; Bruneval, Patrick; Rousselet, Marie-Christine; Ennezat, Pierre-Vladimir; Fouquet, Olivier; Giraud, Raphael; Banfi, Carlo

    2017-01-01

    Abstract Rationale: Drug-induced valvular heart disease (DI-VHD) remains an under-recognized entity. Patient concerns: This report describes a heart valve replacement which was complicated by intractable systemic pulmonary arterial hypertension in a 61-year-old female with severe restrictive mitral and aortic disease. The diagnosis of valvular disease was preceded by a history of unexplained respiratory distress. The patient had been exposed to benfluorex for 6.5 years. Diagnoses: The diagnostic procedure documented specific drug-induced valvular fibrosis. Interventions: Surgical mitral and aortic valve replacement was performed. Outcomes: Heart valve replacement was postoperatively complicated by unanticipated disproportionate pulmonary hypertension. This issue was fatal despite intensive care including prolonged extracorporeal life support. Lessons: Benfluorex is a fenfluramine derivative which has been marketed between 1976 and 2009. Although norfenfluramine is the common active and toxic metabolite of all fenfluramine derivatives, the valvular and pulmonary arterial toxicity of benfluorex was much less known than that of fenfluramine and dexfenfluramine. The vast majority of benfluorex-induced valvular heart disease remains misdiagnosed as hypothetical rheumatic fever due to similarities between both etiologies. Better recognition of DI-VHD is likely to improve patient outcome. PMID:28079786

  3. Pharmacokinetics of a new proton pump inhibitor, YJA-20379-8, after intravenous and oral administration to spontaneously hypertensive rats and DOCA-salt-induced hypertensive rats.

    PubMed

    Kim, H J; Han, K S; Kim, Y G; Chung, Y K; Chang, M S; Lee, M G

    2000-11-01

    The purpose of this study was to investigate the causes for the differences observed in the pharmacokinetics of YJA-20379-8 in 16-week-old spontaneously hypertensive rats (SHRs). To see if the hereditary characteristics of SHRs was the cause, 20 mg/kg of the drug was intravenously infused over 15 min and 50 mg/kg of the drug was orally administered to 6-week-old SHRs and 16-week-old SHRs and their age-matched control Kyoto-Wistar (KW) rats. Also to see if the hypertensive status itself was the cause, the same doses were administered to 16-week-old deoxycorticosterone acetate (DOCA) salt-induced hypertensive rats (DOCA-salt rats) and their age-matched control Sprague-Dawley rats. The areas under the plasma concentration-time curve from time zero to time infinity (for intravenous study) and to the last sampling time in plasma (for oral study) were significantly smaller after both intravenous and oral administration, and the total body clearances of the drug were significantly faster after intravenous administration to 6-week-old SHRs, 16-week-old SHRs, and 16-week-old DOCA-salt rats than those in their respective age-matched control rats. The above pharmacokinetic parameter changes in 16-week-old SHRs were due to both hereditary characteristic of SHRs and the hypertensive status itself.

  4. Activation of TRPV4 by dietary apigenin antagonizes renal fibrosis in deoxycorticosterone acetate (DOCA)-salt-induced hypertension.

    PubMed

    Wei, Xing; Gao, Peng; Pu, Yunfei; Li, Qiang; Yang, Tao; Zhang, Hexuan; Xiong, Shiqiang; Cui, Yuanting; Li, Li; Ma, Xin; Liu, Daoyan; Zhu, Zhiming

    2017-04-01

    Hypertension-induced renal fibrosis contributes to the progression of chronic kidney disease, and apigenin, an anti-hypertensive flavone that is abundant in celery, acts as an agonist of transient receptor potential vanilloid 4 (TRPV4). However, whether apigenin reduces hypertension-induced renal fibrosis, as well as the underlying mechanism, remains elusive. In the present study, the deoxycorticosterone acetate (DOCA)-salt hypertension model was established in male Sprague-Dawley rats that were treated with apigenin or vehicle for 4 weeks. Apigenin significantly attenuated the DOCA-salt-induced structural and functional damage to the kidney, which was accompanied by reduced expression of transforming growth factor-β1 (TGF-β1)/Smad2/3 signaling pathway and extracellular matrix proteins. Immunochemistry, cell-attached patch clamp and fluorescent Ca(2+) imaging results indicated that TRPV4 was expressed and activated by apigenin in both the kidney and renal cells. Importantly, knockout of TRPV4 in mice abolished the beneficial effects of apigenin that were observed in the DOCA-salt hypertensive rats. Additionally, apigenin directly inhibited activation of the TGF-β1/Smad2/3 signaling pathway in different renal tissues through activation of TRPV4 regardless of the type of pro-fibrotic stimulus. Moreover, the TRPV4-mediated intracellular Ca(2+) influx activated the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) pathway, which inhibited the TGF-β1/Smad2/3 signaling pathway. In summary, dietary apigenin has beneficial effects on hypertension-induced renal fibrosis through the TRPV4-mediated activation of AMPK/SIRT1 and inhibition of the TGF-β1/Smad2/3 signaling pathway. This work suggests that dietary apigenin may represent a promising lifestyle modification for the prevention of hypertension-induced renal damage in populations that consume a high-sodium diet.

  5. Estrogen normalizes perinatal nicotine-induced hypertensive responses in adult female rat offspring.

    PubMed

    Xiao, Daliao; Huang, Xiaohui; Yang, Shumei; Zhang, Lubo

    2013-06-01

    Perinatal nicotine exposure caused a sex-dependent heightened vascular response to angiotensin II (Ang II) and increased blood pressure in adult male but not in female rat offspring. The present study tested the hypothesis that estrogen normalizes perinatal nicotine-induced hypertensive response to Ang II in female offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth. Ovariectomy and 17β-estradiol replacement were performed on 8-week-old female offspring. At 5 months of age, Ang II-induced blood pressure responses were not changed by nicotine treatment in the sham groups. In contrast, nicotine significantly enhanced Ang II-induced blood pressure responses as compared with saline control in the ovariectomy groups, which was associated with increased Ang II-induced vascular contractions. These heightened responses were abrogated by 17β-estradiol replacement. In addition, nicotine enhanced Ang II receptor type I, NADPH (nicotinamide adenine dinucleotide phosphate) oxidase type 2 protein expressions, and reactive oxygen species production of aortas as compared with saline control in the ovariectomy groups. Antioxidative agents, both apocynin and tempol, inhibited Ang II-induced vascular contraction and eliminated the differences of contractions between nicotine-treated and control ovariectomy rats. These findings support a key role of estrogen in the sex difference of perinatal nicotine-induced programming of vascular dysfunction, and suggest that estrogen may counteract heightened reactive oxygen species production, leading to protection of females from development programming of hypertensive phenotype in adulthood.

  6. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension.

    PubMed

    Veerbeek, Jan H W; Hermes, Wietske; Breimer, Anath Y; van Rijn, Bas B; Koenen, Steven V; Mol, Ben W; Franx, Arie; de Groot, Christianne J M; Koster, Maria P H

    2015-03-01

    Observational studies have shown an increased lifetime risk of cardiovascular disease (CVD) in women who experienced a hypertensive disorder in pregnancy. This risk is related to the severity of the pregnancy-related hypertensive disease and gestational age at onset. However, it has not been investigated whether these differences in CVD risk factors are already present at postpartum cardiovascular screening. We evaluated postpartum differences in CVD risk factors in 3 subgroups of patients with a history of hypertensive pregnancy. We compared the prevalence of common CVD risk factors postpartum among 448 women with previous early-onset preeclampsia, 76 women with previous late-onset preeclampsia, and 224 women with previous pregnancy-induced hypertension. Women with previous early-onset preeclampsia were compared with women with late-onset preeclampsia and pregnancy-induced hypertension and had significantly higher fasting blood glucose (5.29 versus 4.80 and 4.83 mmol/L), insulin (9.12 versus 6.31 and 6.7 uIU/L), triglycerides (1.32 versus 1.02 and 0.97 mmol/L), and total cholesterol (5.14 versus 4.73 and 4.73 mmol/L). Almost half of the early-onset preeclampsia women had developed hypertension, as opposed to 39% and 25% of women in the pregnancy-induced hypertension and late-onset preeclampsia groups, respectively. Our data show differences in the prevalence of common modifiable CVD risk factors postpartum and suggest that prevention strategies should be stratified according to severity and gestational age of onset for the hypertensive disorders of pregnancy.

  7. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    PubMed

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-01

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4.

  8. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    SciTech Connect

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  9. A novel complex I inhibitor protects against hypertension-induced left ventricular hypertrophy.

    PubMed

    Matsumura, Nobutoshi; Robertson, Ian M; Hamza, Shereen M; Soltys, Carrie-Lynn M; Sung, Miranda M; Masson, Grant; Beker, Donna L; Dyck, Jason R B

    2017-03-01

    Since left ventricular hypertrophy (LVH) increases the susceptibility for the development of other cardiac conditions, pharmacotherapy that mitigates pathological cardiac remodeling may prove to be beneficial in patients with LVH. Previous work has shown that the activation of the energy-sensing kinase AMP-activated protein kinase (AMPK) can inhibit some of the molecular mechanisms that are involved in LVH. Of interest, metformin activates AMPK through its inhibition of mitochondrial complex I in the electron transport chain and can prevent LVH induced by pressure overload. However, metformin has additional cellular effects unrelated to AMPK activation, raising questions about whether mitochondrial complex I inhibition is sufficient to reduce LVH. Herein, we characterize the cardiac effects of a novel compound (R118), which is a more potent complex I inhibitor than metformin and is thus used at a much lower concentration. We show that R118 activates AMPK in the cardiomyocyte, inhibits multiple signaling pathways involved in LVH, and prevents Gq protein-coupled receptor agonist-induced prohypertrophic signaling. We also show that in vivo administration of R118 prevents LVH in a mouse model of hypertension, suggesting that R118 can directly modulate the response of the cardiomyocyte to stress. Of importance, we also show that while R118 treatment prevents adaptive remodelling in response to elevated afterload, it does so without compromising systolic function, improves myocardial energetics, and prevents a decline in diastolic function in hypertensive mice. Taken together, our data suggest that inhibition of mitochondrial complex I may be worthy of future investigation for the treatment of LVH.NEW & NOTEWORTHY Inhibition of mitochondrial complex I by R118 reduces left ventricular hypertrophy (LVH) and improves myocardial energetics as well as diastolic function without compromising systolic function. Together, these effects demonstrate the therapeutic potential of

  10. Unaltered caffeine-induced relaxation in the aorta of stroke-prone spontaneously hypertensive rats (SHRSP).

    PubMed

    Sekiguchi, Fumiko; Miyake, Yoshimasa; Kashimoto, Takafumi; Sunano, Satoru

    2002-04-01

    Caffeine-induced relaxation was studied in aortic segments from Wistar Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). Although acetylcholine-induced endothelium-dependent relaxation was impaired in preparations from SHRSP, the relaxation induced by caffeine was identical in both groups. In addition, caffeine-induced relaxation was not affected by removal of the endothelium in either group. The relaxation induced by N6,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate (db-cAMP), a membrane-permeable analog of adenosine 3':5'-cyclic monophosphate (cAMP), was identical in both groups. No significant difference was observed in the increase in cAMP content induced by caffeine in the aortic smooth muscle between the groups, although the basal content was significantly higher in preparations from SHRSP. These results suggest that the relaxation induced by caffeine in these preparations is brought about by its direct effect on smooth muscle and that the response of the smooth muscle to caffeine, including cAMP production, is not altered in preparations from SHRSP compared with those from WKY.

  11. Gemcitabine-induced hemolytic uremic syndrome mimicking scleroderma renal crisis presenting with Raynaud's phenomenon, positive antinuclear antibodies and hypertensive emergency.

    PubMed

    Yamada, Yuichiro; Suzuki, Keisuke; Nobata, Hironobu; Kawai, Hirohisa; Wakamatsu, Ryo; Miura, Naoto; Banno, Shogo; Imai, Hirokazu

    2014-01-01

    A 58-year-old woman who received gemcitabine for advanced gallbladder cancer developed an impaired renal function, thrombocytopenia, Raynaud's phenomenon, digital ischemic changes, a high antinuclear antibody titer and hypertensive emergency that mimicked a scleroderma renal crisis. A kidney biopsy specimen demonstrated onion-skin lesions in the arterioles and small arteries along with ischemic changes in the glomeruli, compatible with a diagnosis of hypertensive emergency (malignant hypertension). The intravenous administration of a calcium channel blocker, the oral administration of an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker and the transfusion of fresh frozen plasma were effective for treating the thrombocytopenia and progressive kidney dysfunction. Gemcitabine induces hemolytic uremic syndrome with accelerated hypertension and Raynaud's phenomenon, mimicking scleroderma renal crisis.

  12. Effectiveness of 2-methoxyestradiol in alleviating angiogenesis induced by intracranial venous hypertension.

    PubMed

    Zou, Xiang; Zhou, Liangfu; Zhu, Wei; Mao, Ying; Chen, Liang

    2016-09-01

    OBJECT Intracranial dural arteriovenous fistulas (DAVFs) are complex intracranial vascular malformations that can lead to hemorrhage. The authors recently found that chronic local hypoperfusion seems to be the main cause of angiogenesis in the dura mater, which leads to the formation of DAVFs. As a natural derivative of estradiol, 2-methoxyestradiol (2-ME) has an antiangiogenic effect and can be used safely in patients with advanced carcinoid tumors. This study was conducted to examine the antiangiogenic effects of 2-ME on a rat DAVF model. METHODS Male Sprague-Dawley rats (n = 72) were used in the experiments. Intracranial venous hypertension was induced for modeling, and 2-ME was used in the early or late stage for treatment. The effects were examined by immunohistochemistry, Western blot analysis, and quantitative real-time polymerase chain reaction assays. RESULTS 2-Methoxyestradiol significantly reduced angiogenesis in the dura in early- and late-intervention treatment groups, as proven by the results of immunohistochemical staining, Western blotting, real-time polymerase chain reaction assays, and microvessel density counts. The antiangiogenic effect even lasted for up to 2 weeks after 2-ME cessation. CONCLUSIONS These data collectively suggest that 2-ME can reduce the angiogenic effect caused by venous hypertension in a rat DAVF model, mainly by suppressing the inhibitor of differentiation 1 (ID-1) and hypoxia-inducible factor 1α (HIF-1α) pathways.

  13. Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal

    PubMed Central

    Wesseling, Sebastiaan; Fledderus, Joost O; Verhaar, Marianne C; Joles, Jaap A

    2015-01-01

    Background and Purpose Whether NO, carbon monoxide (CO) and hydrogen sulfide (H2S) compensate for each other when one or more is depleted is unclear. Inhibiting NOS causes hypertension and kidney injury. Both global depletion of H2S by cystathionine γ-lyase (CSE) gene deletion and low levels of exogenous H2S cause hypertension. Inhibiting CO-producing enzyme haeme oxygenase-1 (HO-1) makes rodents hypersensitive to hypertensive stimuli. We hypothesized that combined inhibition of NOS and HO-1 exacerbates hypertension and renal injury, but how combined inhibition of NOS and CSE affect hypertension and renal injury was unclear. Experimental Approach Rats were treated with inhibitors of NOS (L-nitroarginine; LNNA), CSE (DL-propargylglycine; PAG), or HO-1 (tin protoporphyrin; SnPP) singly for 1 or 4 weeks or in combinations for 4 weeks. Key Results LNNA always reduced NO, decreased H2S and increased CO after 4 weeks. PAG abolished H2S, always enhanced CO and reduced NO, but not when used in combination with other inhibitors. SnPP always increased NO, enhanced H2S and inhibited CO after 1 week. Rats treated with LNNA, but not PAG and SnPP, rapidly developed hypertension followed by renal dysfunction. LNNA-induced hypertension was ameliorated and renal dysfunction prevented by all additional treatments. Renal HO-1 expression was increased by LNNA in injured tubules and increased in all tubules by all other treatments. Conclusions and Implications The amelioration of LNNA-induced hypertension and renal injury by additional inhibition of H2S and/or CO-producing enzymes appeared to be associated with secondary increases in renal CO or NO production. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24597655

  14. Sex differences in the development of angiotensin II-induced hypertension in conscious mice.

    PubMed

    Xue, Baojian; Pamidimukkala, Jaya; Hay, Meredith

    2005-05-01

    Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.

  15. Combination of Sildenafil and Simvastatin Ameliorates Monocrotaline-induced Pulmonary Hypertension in Rats

    PubMed Central

    Kuang, Tuguang; Wang, Jun; Pang, Baosen; Huang, Xiuxia; Burg, Elyssa D.; Yuan, Jason X.-J.; Wang, Chen

    2010-01-01

    Sildenafil, a phosphodiesterase-5 inhibitor, and simvastatin, a cholesterol lowering drug, both have therapeutic effects on PAH; however, the combination of these drugs has not been tested in the treatment of PAH. The purpose of this study was to determine whether the combination of sildenafil and simvastatin is superior to each drug alone in the prevention of MCT-induced PAH. Phosphorylated Smad levels were decreased in lung tissue in MCT-injected rats, whereas ERK protein levels were increased. This indicates a possible role for an increase in mitogenic ERK activity in addition to decreased proapoptotic Smad signaling in the MCT model of PAH. Combination sildenafil and simvastatin treatment prevented the MCT-induced increases in right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH), exerted an antiproliferative effect on pulmonary artery smooth muscle cells (PASMC). Our results indicate that combination therapy with sildenafil and simvastatin attenuated the development of pulmonary hypertension more than either treatment alone. PMID:20188205

  16. Severe Corticosteroid-Induced Ocular Hypertension Requiring Bilateral Trabeculectomies in a Patient with Takayasu's Arteritis

    PubMed Central

    Sharma, Pranev; Ameen, Sally; Ahmed, Faisal

    2016-01-01

    We present a rare case of severe corticosteroid-induced ocular hypertension (OHT) after prolonged systemic corticosteroid use in a young woman with Takayasu's arteritis. As she did not sufficiently respond to ocular antihypertensive therapies, bilateral enhanced trabeculectomies were required to normalize her intraocular pressures. The systemic side effects of corticosteroids are well known, yet steroid-induced OHT and glaucoma remain silent causes of ocular morbidity. This case highlights the importance of IOP-monitoring in visually asymptomatic patients on systemic corticosteroids. It further emphasizes the need to raise awareness of the potential ocular side effects of steroids amongst physicians, in particular those looking after patients with autoimmune and inflammatory diseases. PMID:27957366

  17. Is hypercalcemic diet a possible antidote to oral contraceptive-induced hypertension?

    PubMed

    Okwusidi, J I; Alabi, K I; Olatunji, L A; Oyesola, T O

    2010-11-28

    Administration of oral contraceptive (OC) has been associated with body fluid retention and in high doses over a long period, promotes hypertension. This present investigation tests the hypothesis that the dietary calcium supplementation increases salt and water excretion in OC (norgestre/ethinylestradiol) treated 32 female albino rats randomly distributed into four (1-4) groups of 8 rats each: Control, OC-treated, OC-treated+ Calcium diet fed and Calcium diet fed only respectively. OC was administered to the appropriate groups by gavage. Experimental diet contained 2.5% calcium supplement. Plasma and urinary [Na+] [K+] were evaluated after 8 weeks of experimentation by flame photometry and plasma [Ca2+] by colorimetric method. OC-treatment induced a significant fall in urinary [Na+]. Water excretion was significantly reduced in these animals (control, 3.1±0.56 Vs OC-treated rats, 1.47±0.16). OC-treated rats had significantly higher plasma [K+] compared to control rats. Calcium supplementation induced increases in plasma [Na+], [K+] and augmented urinary Na+ excretion (OC-treated + Ca2+ diet Vs OC-treated only). Compared with the control rats, high Ca2+ diet fed rats exhibited significant increases in plasma [Na+] and [K+] accompanied by significant decreases in urinary H20 excretion. These results strongly suggest that high dietary Ca2+ supplementation increases salt and water excretion in OC-treated rats and potentially moderates fluid retention and blood pressure in these animals, and may be of clinical significance in OC-induced abnormal fluid retention and perhaps OC-induced hypertension.

  18. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation

    PubMed Central

    Zhao, Rongmin; Kakihara, Yoshito; Gribun, Anna; Huen, Jennifer; Yang, Guocheng; Khanna, May; Costanzo, Michael; Brost, Renée L.; Boone, Charles; Hughes, Timothy R.; Yip, Christopher M.; Houry, Walid A.

    2008-01-01

    Hsp90 is a highly conserved molecular chaperone that is involved in modulating a multitude of cellular processes. In this study, we identify a function for the chaperone in RNA processing and maintenance. This functionality of Hsp90 involves two recently identified interactors of the chaperone: Tah1 and Pih1/Nop17. Tah1 is a small protein containing tetratricopeptide repeats, whereas Pih1 is found to be an unstable protein. Tah1 and Pih1 bind to the essential helicases Rvb1 and Rvb2 to form the R2TP complex, which we demonstrate is required for the correct accumulation of box C/D small nucleolar ribonucleoproteins. Together with the Tah1 cofactor, Hsp90 functions to stabilize Pih1. As a consequence, the chaperone is shown to affect box C/D accumulation and maintenance, especially under stress conditions. Hsp90 and R2TP proteins are also involved in the proper accumulation of box H/ACA small nucleolar RNAs. PMID:18268103

  19. Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension.

    PubMed

    Antunes, Tayze T; Callera, Glaucia E; He, Ying; Yogi, Alvaro; Ryazanov, Alexey G; Ryazanova, Lillia V; Zhai, Alexander; Stewart, Duncan J; Shrier, Alvin; Touyz, Rhian M

    2016-04-01

    Transient receptor potential melastatin 7 (TRPM7) is a bifunctional protein comprising a magnesium (Mg(2+))/cation channel and a kinase domain. We previously demonstrated that vasoactive agents regulate vascular TRPM7. Whether TRPM7 plays a role in the pathophysiology of hypertension and associated cardiovascular dysfunction is unknown. We studied TRPM7 kinase-deficient mice (TRPM7Δkinase; heterozygous for TRPM7 kinase) and wild-type (WT) mice infused with angiotensin II (Ang II; 400 ng/kg per minute, 4 weeks). TRPM7 kinase expression was lower in heart and aorta from TRPM7Δkinase versus WT mice, effects that were further reduced by Ang II infusion. Plasma Mg(2+) was lower in TRPM7Δkinase versus WT mice in basal and stimulated conditions. Ang II increased blood pressure in both strains with exaggerated responses in TRPM7Δkinase versus WT groups (P<0.05). Acetylcholine-induced vasorelaxation was reduced in Ang II-infused TRPM7Δkinase mice, an effect associated with Akt and endothelial nitric oxide synthase downregulation. Vascular cell adhesion molecule-1 expression was increased in Ang II-infused TRPM7 kinase-deficient mice. TRPM7 kinase targets, calpain, and annexin-1, were activated by Ang II in WT but not in TRPM7Δkinase mice. Echocardiographic and histopathologic analysis demonstrated cardiac hypertrophy and left ventricular dysfunction in Ang II-treated groups. In TRPM7 kinase-deficient mice, Ang II-induced cardiac functional and structural effects were amplified compared with WT counterparts. Our data demonstrate that in TRPM7Δkinase mice, Ang II-induced hypertension is exaggerated, cardiac remodeling and left ventricular dysfunction are amplified, and endothelial function is impaired. These processes are associated with hypomagnesemia, blunted TRPM7 kinase expression/signaling, endothelial nitric oxide synthase downregulation, and proinflammatory vascular responses. Our findings identify TRPM7 kinase as a novel player in Ang II-induced hypertension

  20. Activation of Central PPAR-γ Attenuates Angiotensin II-Induced Hypertension

    PubMed Central

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-01-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg/min) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and angiotensin II type-1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  1. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-08-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension.

  2. Aortic arch geometry and exercise-induced hypertension in aortic coarctation.

    PubMed

    De Caro, Enrico; Trocchio, Gianluca; Smeraldi, Attilio; Calevo, Maria Grazia; Pongiglione, Giacomo

    2007-05-01

    Hypertension at rest or during effort is not uncommon in patients with aortic coarctation (CoA), even those with a successful repair or mild degree of obstruction. Anatomic factors and functional abnormalities have been proposed as causes of this finding. Recently, aortic arch geometry was reported in association with hypertension at rest in patients with successful CoA repair. Forty-one patients (age 15.7 +/- 4.6 years) without significant obstruction at rest (mean systolic Doppler gradient at rest < or =25 mm Hg) were selected for the study. All patients underwent a maximal cardiopulmonary exercise test and magnetic resonance imaging of the aorta. Aortic arch shape was defined on global geometry as normal, gothic, and crenel. Percentage of anatomic narrowing (AN) was also calculated. Twenty-four patients (58%) showed exercise-induced hypertension (EIH). Regarding the shape of the aortic arch, normal geometry was present in 17 patients (41%), 9 (21%) had gothic geometry, and 15 (36%) had crenel geometry. There were no differences among the 3 geometries in regard to the incidence of EIH (70.6% in normal, 55.6% in gothic, and 46.7% in crenel) or AN (36.9% in normal, 33.5% in gothic, and 36.6% in crenel). In conclusion, our results fail to show a correlation between a specific aortic arch shape and the incidence of EIH and significant AN in patients with native or residual CoA or repeat CoA. Therefore, at present, the role of aortic arch geometry in identifying patients at risk of EIH is still uncertain.

  3. New Insights on the Maternal Diet Induced-Hypertension: Potential Role of the Phenotypic Plasticity and Sympathetic-Respiratory Overactivity

    PubMed Central

    Costa-Silva, João H.; de Brito-Alves, José L.; Barros, Monique Assis de V.; Nogueira, Viviane Oliveira; Paulino-Silva, Kássya M.; de Oliveira-Lira, Allan; Nobre, Isabele G.; Fragoso, Jéssica; Leandro, Carol G.

    2015-01-01

    Systemic arterial hypertension (SAH) is an important risk factor for cardiovascular disease and affects worldwide population. Current environment including life style coupled with genetic programming have been attributed to the rising incidence of hypertension. Besides, environmental conditions during perinatal development such as maternal malnutrition can program changes in the integration among renal, neural, and endocrine system leading to hypertension. This phenomenon is termed phenotypic plasticity and refers to the adjustment of a phenotype in response to environmental stimuli without genetic change, following a novel or unusual input during development. Human and animal studies indicate that fetal exposure to an adverse maternal environment may alter the renal morphology and physiology that contribute to the development of hypertension. Recently, it has been shown that the maternal protein restriction alter the central control of SAH by a mechanism that include respiratory dysfunction and enhanced sympathetic-respiratory coupling at early life, which may contribute to adult hypertension. This review will address the new insights on the maternal diet induced-hypertension that include the potential role of the phenotypic plasticity, specifically the perinatal protein malnutrition, and sympathetic-respiratory overactivity. PMID:26635631

  4. Effect of Lysyl Oxidase Inhibition on Angiotensin II-Induced Arterial Hypertension, Remodeling, and Stiffness

    PubMed Central

    Eberson, Lance S.; Sanchez, Pablo A.; Majeed, Beenish A.; Tawinwung, Supannikar; Secomb, Timothy W.; Larson, Douglas F.

    2015-01-01

    It is well accepted that angiotensin II (Ang II) induces altered vascular stiffness through responses including both structural and material remodeling. Concurrent with remodeling is the induction of the enzyme lysyl oxidase (LOX) through which ECM proteins are cross-linked. The study objective was to determine the effect of LOX mediated cross-linking on vascular mechanical properties. Three-month old mice were chronically treated with Ang II with or without the LOX blocker, β -aminopropionitrile (BAPN), for 14 days. Pulse wave velocity (PWV) from Doppler measurements of the aortic flow wave was used to quantify in vivo vascular stiffness in terms of an effective Young’s modulus. The increase in effective Young’s modulus with Ang II administration was abolished with the addition of BAPN, suggesting that the material properties are a major controlling element in vascular stiffness. BAPN inhibited the Ang II induced collagen cross-link formation by 2-fold and PWV by 44% (P<0.05). Consistent with this observation, morphometric analysis showed that BAPN did not affect the Ang II mediated increase in medial thickness but significantly reduced the adventitial thickness. Since the hypertensive state contributes to the measured in vivo PWV stiffness, we removed the Ang II infusion pumps on Day 14 and achieved normal arterial blood pressures. With pump removal we observed a decrease of the PWV in the Ang II group to 25% above that of the control values (P=0.002), with a complete return to control values in the Ang II plus BAPN group. In conclusion, we have shown that the increase in vascular stiffness with 14 day Ang II administration results from a combination of hypertension-induced wall strain, adventitial wall thickening and Ang II mediated LOX ECM cross-linking, which is a major material source of vascular stiffening, and that the increased PWV was significantly inhibited with co-administration of BAPN. PMID:25875748

  5. Repetitive Electroacupuncture Attenuates Cold-Induced Hypertension through Enkephalin in the Rostral Ventral Lateral Medulla

    PubMed Central

    Li, Min; Tjen-A-Looi, Stephanie C.; Guo, Zhi-Ling; Longhurst, John C.

    2016-01-01

    Acupuncture lowers blood pressure (BP) in hypertension, but mechanisms underlying its action are unclear. To simulate clinical studies, we performed electroacupuncture (EA) in unanesthetized rats with cold-induced hypertension (CIH) induced by six weeks of cold exposure (6 °C). EA (0.1 – 0.4 mA, 2 Hz) was applied at ST36-37 acupoints overlying the deep peroneal nerve for 30 min twice weekly for five weeks while sham-EA was conducted with the same procedures as EA except for no electrical stimulation. Elevated BP was reduced after six sessions of EA treatment and remained low 72 hrs after EA in 18 CIH rats, but not in sham-EA (n = 12) and untreated (n = 6) CIH ones. The mRNA level of preproenkephalin in the rostral ventrolateral medulla (rVLM) 72 hr after EA was increased (n = 9), compared to the sham-EA (n = 6), untreated CIH rats (n = 6) and normotensive control animals (n = 6). Microinjection of ICI 174,864, a δ-opioid receptor antagonist, into the rVLM of EA-treated CIH rats partially reversed EA’s effect on elevated BP (n = 4). Stimulation of rVLM of CIH rats treated with sham-EA using a δ-opioid agonist, DADLE, decreased BP (n = 6). These data suggest that increased enkephalin in the rVLM induced by repetitive EA contributes to BP lowering action of EA. PMID:27775047

  6. Hypertension-induced remodeling of cardiac excitation-contraction coupling in ventricular myocytes occurs prior to hypertrophy development.

    PubMed

    Chen-Izu, Ye; Chen, Ling; Bányász, Tamás; McCulle, Stacey L; Norton, Byron; Scharf, Steven M; Agarwal, Anuj; Patwardhan, Abhijit; Izu, Leighton T; Balke, C William

    2007-12-01

    Hypertension is a major risk factor for developing cardiac hypertrophy and heart failure. Previous studies show that hypertrophied and failing hearts display alterations in excitation-contraction (E-C) coupling. However, it is unclear whether remodeling of the E-C coupling system occurs before or after heart disease development. We hypothesized that hypertension might cause changes in the E-C coupling system that, in turn, induce hypertrophy. Here we tested this hypothesis by utilizing the progressive development of hypertensive heart disease in the spontaneously hypertensive rat (SHR) to identify a window period when SHR had just developed hypertension but had not yet developed hypertrophy. We found the following major changes in cardiac E-C coupling during this window period. 1) Using echocardiography and hemodynamics measurements, we found a decrease of left ventricular ejection fraction and cardiac output after the onset of hypertension. 2) Studies in isolated ventricular myocytes showed that myocardial contraction was also enhanced at the same time. 3) The action potential became prolonged. 4) The E-C coupling gain was increased. 5) The systolic Ca(2+) transient was augmented. These data show that profound changes in E-C coupling already occur at the onset of hypertension and precede hypertrophy development. Prolonged action potential and increased E-C coupling gain synergistically increase the Ca(2+) transient. Functionally, augmented Ca(2+) transient causes enhancement of myocardial contraction that can partially compensate for the greater workload to maintain cardiac output. The increased Ca(2+) signaling cascade as a molecular mechanism linking hypertension to cardiac hypertrophy development is also discussed.

  7. H,K-ATPase type 2 contributes to salt-sensitive hypertension induced by K(+) restriction.

    PubMed

    Walter, Christine; Tanfous, Mariem Ben; Igoudjil, Katia; Salhi, Amel; Escher, Geneviève; Crambert, Gilles

    2016-10-01

    In industrialized countries, a large part of the population is daily exposed to low K(+) intake, a situation correlated with the development of salt-sensitive hypertension. Among many processes, adaptation to K(+)-restriction involves the stimulation of H,K-ATPase type 2 (HKA2) in the kidney and colon and, in this study, we have investigated whether HKA2 also contributes to the determination of blood pressure (BP). By using wild-type (WT) and HKA2-null mice (HKA2 KO), we showed that after 4 days of K(+) restriction, WT remain normokalemic and normotensive (112 ± 3 mmHg) whereas HKA2 KO mice exhibit hypokalemia and hypotension (104 ± 2 mmHg). The decrease of BP in HKA2 KO is due to the absence of NaCl-cotransporter (NCC) stimulation, leading to renal loss of salt and decreased extracellular volume (by 20 %). These effects are likely related to the renal resistance to vasopressin observed in HKA2 KO that may be explained, in part by the increased production of prostaglandin E2 (PGE2). In WT, the stimulation of NCC induced by K(+)-restriction is responsible for the elevation in BP when salt intake increases, an effect blunted in HKA2-null mice. The presence of an activated HKA2 is therefore required to limit the decrease in plasma [K(+)] but also contributes to the development of salt-sensitive hypertension.

  8. Hypertension influences the exponential progression of inflammation and oxidative stress in streptozotocin-induced diabetic kidney

    PubMed Central

    Muthaian, Rupadevi; Pakirisamy, Rajaa Muthu; Parasuraman, Subramani; Raveendran, Ramasamy

    2016-01-01

    Objective: To investigate the association of hypertension coexisting with diabetes mellitus with oxidative stress and inflammation in the kidneys of streptozotocin (STZ)-induced diabetic rats. Materials and Methods: Male Wistar rats were used for the experiments. Blood glucose (BG), urea, blood pressure (BP), and heart rate (HR) were analyzed before and 48 h after STZ injection. Further, these parameters were monitored up to 3 months of diabetes induction. Subsequently, the inflammatory markers (C-reactive protein, tumor necrosis factor-alpha, and nitrate) and oxidative stress markers were estimated after 3 months of diabetes induction in the kidney homogenate. Histological analysis of renal tissue was also carried out. Results: Linear elevation of BG, urea, mean arterial pressure (MAP), and HR was observed up to 3 months of diabetes induction. In the same manner, inflammatory and oxidative stress markers were also found to be significantly increased. Notably, the histological analysis revealed the signs of nephropathy such as increased mesangial cell number, thickness of basement membrane, and renal artery. Inflammatory and oxidative stress markers positively correlated with elevated BP and BG, but the correlation was better with BP rather than BG. Conclusion: Hypertension has a strong implication in the increased oxidative stress and inflammation of diabetic kidney at the very early stage of diabetes mellitus. PMID:28163536

  9. Impact of family hypertension history on exercise-induced cardiac remodeling.

    PubMed

    Baggish, Aaron L; Weiner, Rory B; Yared, Kibar; Wang, Francis; Kupperman, Eli; Hutter, Adolph M; Picard, Michael H; Wood, Malissa J

    2009-07-01

    Left ventricular (LV) hypertrophy is a well-established, but highly variable, finding among exercise-trained persons. The causes for the variability in LV remodeling in response to exercise training remain incompletely understood. The present study sought to determine whether a family history of hypertension is a determinant of the cardiac response to exercise training. The cardiac parameters in 60 collegiate rowers (30 men/30 women; age 19.8 +/- 1.1 years) with (family history positive [FH+], n = 22) and without (family history negative [FH-], n = 38) a FH of hypertension were studied with echocardiography before and after 90 days of rowing training. The LV mass increased significantly in both groups. However, the LV mass increased significantly more in FH- persons (Delta 17 +/- 5 g/m(2)) than in FH+ persons (Delta 9 +/- 6 g/m(2), p <0.001) with distinctly differently patterns of LV hypertrophy between the 2 groups. FH- athletes experienced eccentric LV hypertrophy (relative wall thickness index 0.39 +/- 0.4) characterized by LV dilation. In contrast, FH+ athletes developed concentric LV hypertrophy (relative wall thickness index 0.44 +/- 0.3; p <0.001) characterized by LV wall thickening. Furthermore, the eccentric LV remodeling in FH- athletes was associated with a more robust enhancement of LV diastolic function than the concentric LV remodeling that occurred in FH+ athletes. In conclusion, these findings suggest that patterns of exercise-induced LV remodeling are strongly associated with FH history status.

  10. Phenylalanine improves dilation and blood pressure in GTP cyclohydrolase inhibition-induced hypertensive rats.

    PubMed

    Mitchell, Brett M; Dorrance, Anne M; Webb, R Clinton

    2004-06-01

    GTP cyclohydrolase (GTPCH), the rate-limiting enzyme in the production of the nitric oxide synthase cofactor tetrahydrobiopterin (BH4), is partly regulated by the GTPCH feedback regulatory protein (GFRP). GFRP can inhibit GTPCH by end-product negative feedback, and L-phenylalanine (L-Phe) reverses this inhibition and increases BH4 biosynthesis in vitro. We hypothesized that L-Phe would increase endothelium-dependent relaxation and decrease blood pressure in rats made hypertensive by GTPCH inhibition. Di-amino-hydroxypyrimidine (DAHP, 10 mmol/L), a known inhibitor of GTPCH, was given with or without L-Phe or D-Phe (2 mmol/L) in the drinking water of rats for 3 days and blood pressure was measured via tail-cuff. Endothelium-intact aortic segments were hung in organ chambers for measurement of isometric force generation. Systolic blood pressure was increased significantly in DAHP-treated rats compared with controls. The addition of L-Phe attenuated the hypertensive effect, whereas D-Phe had no effect. Acetylcholine- and A23187-induced relaxation was decreased in aortas from DAHP-treated rats compared with controls, but was restored in aortas from DAHP+L-Phe-treated rats. Following NOS inhibition, sensitivity to sodium nitroprusside was increased in aortas from DAHP-treated rats, but restored in DAHP+L-Phe-treated rats. These results suggest that L-Phe can reverse GTPCH inhibition in vivo leading to increased vasodilation and decreased blood pressure.

  11. Soy protein hydrolysate ameliorates cardiovascular remodeling in rats with L-NAME-induced hypertension.

    PubMed

    Yang, Hsin-Yi; Yang, Suh-Ching; Chen, Shu-Tzu; Chen, Jiun-Rong

    2008-12-01

    Pepsin-digested soy protein hydrolysate has been reported to be responsible for many of the physiological benefits associated with soy protein consumption. In the present study, we investigated the effects of soy protein hydrolysate with angiotensin-converting enzyme (ACE) inhibitory potential on the blood pressure and cardiovascular remodeling in rats with N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension. Rats were fed a diet containing L-NAME (50 mg/kg body weight) with or without soy protein hydrolysate (1%, 3% or 5%) for 6 weeks. We found that ingestion of soy protein hydrolysate retarded the development of hypertension during the 6-week experimental period without affecting the amount of food intake. Although there was no difference in plasma ACE activity or tissue nitric oxide levels, ACE activity in the heart of rats consuming soy protein hydrolysate was significantly lower than that of the control group. Moreover, cardiac malonaldehyde and tumor necrosis factor-alpha concentrations were also lower in the soy protein hydrolysate group. No difference in plasminogen activator inhibitor-1 level was found in plasma or cardiovascular tissue. In the histopathological analysis, we also found that soy protein hydrolysate ameliorated inflammation and left ventricle hypertrophy in the heart. These findings suggest that soy protein hydrolysate might not only improve the balance between circulating nitric oxide and renin-angiotensin system but also show beneficial effects on cardiovascular tissue through its ACE inhibitory activity.

  12. Intratracheal Gene Transfer of Adrenomedullin Using Polyplex Nanomicelles Attenuates Monocrotaline-induced Pulmonary Hypertension in Rats

    PubMed Central

    Harada-Shiba, Mariko; Takamisawa, Itaru; Miyata, Kanjiro; Ishii, Takehiko; Nishiyama, Nobuhiro; Itaka, Keiji; Kangawa, Kenji; Yoshihara, Fumiki; Asada, Yujiro; Hatakeyama, Kinta; Nagaya, Noriya; Kataoka, Kazunori

    2009-01-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive PAH and right ventricular failure. Despite recent advances in therapeutic approaches using prostanoids, endothelin antagonists, and so on, PAH remains a challenging condition. To develop a novel therapeutic approach, we have established a nonviral gene delivery system of poly(ethylene glycol) (PEG)-based block catiomers, which form a polyplex nanomicelle with a nanoscaled core–shell structure in the presence of DNA. The polyplex nanomicelle from PEG-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-P[Asp(DET)]), having ethylenediamine units at the side chain, showed ~100-fold increase in luciferase transgene expression activity in mouse lung via intratracheal administration with a minimal toxicity compared with the polyplex from linear poly(ethylenimine) (LPEI). The transfection activity was highest on day 3 after administration and remained detectable until day 14. PEG-b-P[Asp(DET)] polyplex nanomicelles were formulated with a therapeutic plasmid bearing the human adrenomedullin (AM) gene and intratracheally administered to rats with monocrotaline-induced pulmonary hypertension. The right ventricular pressure significantly decreased 3 days after administration as confirmed by a notable increase of pulmonary human AM mRNA levels. Intratracheal administration of PEG-b-P[Asp-(DET)] polyplex nanomicelles showed remarkable therapeutic efficacy with PAH animal models without compromising biocompatibility. PMID:19337232

  13. Multiple Mechanisms are Involved in Salt-Sensitive Hypertension-Induced Renal Injury and Interstitial Fibrosis

    PubMed Central

    Wei, Shi-Yao; Wang, Yu-Xiao; Zhang, Qing-Fang; Zhao, Shi-Lei; Diao, Tian-Tian; Li, Jian-Si; Qi, Wen-Rui; He, Yi-Xin; Guo, Xin-Yu; Zhang, Man-Zhu; Chen, Jian-Yu; Wang, Xiao-Ting; Wei, Qiu-Ju; Wang, Yu; Li, Bing

    2017-01-01

    Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/β-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/β-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension. PMID:28383024

  14. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension.

    PubMed

    Li, Wencheng; Sullivan, Michelle N; Zhang, Sheng; Worker, Caleb J; Xiong, Zhenggang; Speth, Robert C; Feng, Yumei

    2015-02-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension.

  15. Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats.

    PubMed

    Jabaris, Sobhana George Sugin Lal; Sumathy, Haridass; Kumar, Ramadass Satiesh; Narayanan, Shridhar; Thanikachalam, Sadagopan; Babu, Chidambaram Saravana

    2015-01-05

    Hypertension (HT) is a prevailing risk factor for cognitive impairment, the most common cause of vascular dementia; yet, no possible mechanism underlying the cognitive impairment induced by hypertension has been identified so far. Inhibition of PDE-4 has been shown to increase phosphorylation of cAMP-response element binding protein in the hippocampus and enhance the memory performance. Here, we examined the effects of PDE-4 inhibitors, rolipram and roflumilast, on the impairment of learning and memory observed in hypertensive rats. We used 2k-1c hypertensive model to induce learning and memory defects. In addition, mRNA expression of PDE-4 sub-types A-D was also assessed in the hippocampus tissue. Systolic blood pressure (SBP) was measured by tail-cuff method was significantly increased in 2k-1c rats when compared to sham operated rats; this effect was reversed by clonidine, whereas, PDE-4 inhibitors did not. PDE-4 inhibitors significantly reversed time induced memory deficit in novel object recognition task (NORT). Further, the retention latency on the second day in the elevated plus maze model was significantly shortened after repeated administration of rolipram and roflumilast. Plasma and brain concentrations of rolipram, roflumilast and roflumilast N-oxide were also measured after the NORT and showed linear increase in plasma and brain concentrations. The PDE4B and PDE4D gene expression was significantly enhanced in hypertensive rats compared with sham operated however PDE4A and PDE4C remained unaltered. Repeated treatment with PDE-4 inhibitors caused down regulation of PDE4B and PDE4D in hypertensive rats. These results suggest that inhibition of PDE-4 ameliorates HT-induced impairment of learning and memory functions.

  16. Comparison of foetomaternal circulation in normal pregnancies and pregnancy induced hypertension using color Doppler studies.

    PubMed

    Gupta, Shikha; Misra, R; Ghosh, U K; Gupta, V; Srivastava, D

    2014-01-01

    The aim of present study was to assess fetomaternal blood flows in normal and abnormal pregnancies using color Doppler indices. Subjects were divided into two groups as: Group A of 25 subjects of normal pregnancy as controls and group B of 25 subjects of pregnancy induced hypertension. All the subjects were lying in the age-group of 25-35 years and having 28 to 34 weeks of gestation; the patients were evaluated by detailed history and were subjected to complete general examination. Blood pressure was taken on two occasions at least 6 hours apart. Systemic examination and obstetrical examination was done in all subjects. All cases were subjected to pathological tests- Haemogram, Test for proteins in urine. Ultrasound assessment of fetal growth was done by measuring BPD (Biparietal diameter), HC (Head circumference), FL (Femur length) and AC (Abdominal circumference): Average gestational age and effective fetal weight was then calculated by ultrasound machine. Color Doppler was used to assess the various Doppler indices indices: Pulsatility index (PI), Resistive index (RI) and Systolic diastolic ratio (S/D ratio) in bilateral uterine, umbilical and middle cerebral arteries and compared to the standard normograms. Percentage of subjects having abnormal Doppler indices were calculated. Assessment of percentage of SGA (small for gestational age) fetuses was done in all the three groups. Decline in mean values of all Doppler indices was found with advancing gestational age in normal pregnancy suggesting decreased vascular resistance and increased blood flow in fetomaternal circulation. In pregnancy induced hypertensives, the mean values of Doppler indices showed a decline as in normal pregnancy but showed an increase (more than 2 S.D. of the mean) for that gestational age in comparison to the control group suggesting increased impedance to blood flow in uteroplacental and fetomaternal circulation. Umbilical artery Doppler indices were found to be the most sensitive

  17. Implication of PDGF signaling in cigarette smoke-induced pulmonary arterial hypertension in rat.

    PubMed

    Xing, Ai-ping; Hu, Xiao-yun; Shi, Yi-wei; Du, Yong-cheng

    2012-07-01

    Pulmonary artery hypertension (PAH) is a severe disease characterized with progressive increase of pulmonary vascular resistance that finally causes right ventricular failure and premature death. Cigarette smoke (CS) is a major factor of Chronic Obstructive Pulmonary Disease (COPD) that can lead to PAH. However, the mechanism of CS-induced PAH is poorly understood. Mounting evidence supports that pulmonary vascular remodeling play an important role in the development of PAH. PDGF signaling has been demonstrated to be a major mediator of vascular remodeling implicated in PAH. However, the association of PDGF signaling with CS-induced PAH has not been documented. In this study, we investigated CS-induced PAH in rats and the expression of platelet derived growth factor (PDGF) and PDGF receptor (PDGFR) in pulmonary artery. Forty male rats were randomly divided into control group and three experimental groups that were exposed to CS for 1, 2, and 3 months, respectively. CS significantly increased right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI). Histology staining demonstrated that CS significantly increased the thickness of pulmonary artery wall and collagen deposition. The expression of PDGF isoform B (PDGF-B) and PDGF receptor beta (PDGFRβ) were significantly increased at both protein and mRNA levels in pulmonary artery of rats with CS exposure. Furthermore, Cigarette smoke extract (CSE) significantly increased rat pulmonary artery smooth muscle cell (PASMC) proliferation, which was inhibited by PDGFR inhibitor Imatinib. Thus, our data suggest PDGF signaling is implicated in CS-induced PAH.

  18. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice.

    PubMed

    Huby, Anne-Cécile; Otvos, Laszlo; Belin de Chantemèle, Eric J

    2016-05-01

    Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115 ± 2; protein tyrosine phosphatase 1b knockout, 124 ± 2 mm Hg; P<0.05) and obesity elevated BP (a/a, 113 ± 1; Ay, 128 ± 7 mm Hg; P<0.05) and impaired endothelial function. Chronic leptin receptor antagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex

  19. Leptin Induces Hypertension and Endothelial Dysfunction via Aldosterone-Dependent Mechanisms in Obese Female Mice

    PubMed Central

    Huby, Anne-Cecile; Otvos, Laszlo; Belin de Chantemèle, Eric J.

    2016-01-01

    Obesity is a major risk factor for cardiovascular disease in males and females. Whether obesity triggers cardiovascular disease via similar mechanisms in both the sexes is, however, unknown. In males, the adipokine leptin highly contributes to obesity-related cardiovascular disease by increasing sympathetic activity. Females secrete 3× to 4× more leptin than males, but do not exhibit high sympathetic tone with obesity. Nevertheless, females show inappropriately high aldosterone levels that positively correlate with adiposity and blood pressure (BP). We hypothesized that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in females. Leptin control of the cardiovascular function was analyzed in female mice sensitized to leptin via the deletion of protein tyrosine phosphatase 1b (knockout) and in agouti yellow obese hyperleptinemic mice (Ay). Hypersensitivity to leptin (wild-type, 115±2; protein tyrosine phosphatase 1b knockout, 124±2 mm Hg; P<0.05) and obesity elevated BP (a/a, 113±1; Ay, 128±7 mm Hg; P<0.05) and impaired endothelial function. Chronic leptin receptor antagonism restored BP and endothelial function in protein tyrosine phosphatase 1b knockout and Ay mice. Hypersensitivity to leptin and obesity reduced BP response to ganglionic blockade in both strains and plasma catecholamine levels in protein tyrosine phosphatase 1b knockout mice. Hypersensitivity to leptin and obesity significantly increased plasma aldosterone levels and adrenal CYP11B2 expression. Chronic leptin receptor antagonism reduced aldosterone levels. Furthermore, chronic leptin and mineralocorticoid receptor blockade reduced BP and improved endothelial function in both leptin-sensitized and obese hyperleptinemic female mice. Together, these data demonstrate that leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in female mice and suggest that obesity leads to cardiovascular disease via sex

  20. The Beneficial Effect of Suramin on Monocrotaline-Induced Pulmonary Hypertension in Rats

    PubMed Central

    Izikki, Mohamed; Mercier, Olaf; Lecerf, Florence; Lubert Guin, Lauriane; Hoang, Eric; Dorfmüller, Peter; Perros, Frédéric; Humbert, Marc; Simonneau, Gerald; Dartevelle, Philippe; Fadel, Elie; Eddahibi, Saadia

    2013-01-01

    Background Pulmonary hypertension (PH) is a progressive disorder characterized by an increase in pulmonary artery pressure and structural changes in the pulmonary vasculature. Several observations indicate that growth factors play a key role in PH by modulating pulmonary artery smooth muscle cell (PA-SMC) function. In rats, established monocrotaline-induced PH (MCT-PH) can be reversed by blocking platelet-derived growth factor receptors (PDGF-R), epidermal growth factor receptors (EGF-R), or fibroblast growth factor receptors (FGF-R). All these receptors belong to the receptor tyrosine kinase (RTK) family. Methods and Results We evaluated whether RTK blockade by the nonspecific growth factor inhibitor, suramin, reversed advanced MCT-PH in rats via its effects on growth-factor signaling pathways. We found that suramin inhibited RTK and ERK1/2 phosphorylation in cultured human PA-SMCs. Suramin inhibited PA-SMC proliferation induced by serum, PDGF, FGF2, or EGF in vitro and ex vivo. Treatment with suramin from day 1 to day 21 after monocrotaline injection attenuated PH development, as shown by lower values for pulmonary artery pressure, right ventricular hypertrophy, and distal vessel muscularization on day 21 compared to control rats. Treatment with suramin from day 21 to day 42 after monocrotaline injection reversed established PH, thereby normalizing the pulmonary artery pressure values and vessel structure. Suramin treatment suppressed PA-SMC proliferation and attenuated both the inflammatory response and the deposition of collagen. Conclusions RTK blockade by suramin can prevent MCT-PH and reverse established MCT-PH in rats. This study suggests that an anti-RTK strategy that targets multiple RTKs could be useful in the treatment of pulmonary hypertension. PMID:24143201

  1. Treatment with Salvianolic Acid B restores endothelial function in angiotensin II-induced hypertensive mice.

    PubMed

    Ling, Wei Chih; Liu, Jian; Lau, Chi Wai; Murugan, Dharmani Devi; Mustafa, Mohd Rais; Huang, Yu

    2017-04-07

    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25 mg/kg/day) was administered via oral gavage for 11 days to Ang II (1.2 mg/kg/day)-infused C57BL/6J mice (8-10 weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1 - 10 nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11 days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.

  2. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    PubMed Central

    Tain, You-Lin; Sheen, Jiunn-Ming; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Mao-Meng; Hsu, Chien-Ning; Lin, Yu-Ju; Kuo, Kuang-Che; Huang, Li-Tung

    2015-01-01

    Prenatal dexamethasone (DEX) exposure and high-fat (HF) intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg) or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M), rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS), to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification. PMID:26696906

  3. Role of digitalis-like substance in the hypertension of streptozotocin-induced diabetes and simulated weightlessness in rats

    NASA Technical Reports Server (NTRS)

    Pamnani, M. B.; Chen, S.; Haddy, F. J.; Yuan, C.; Mo, Z.

    1998-01-01

    We have examined the role of plasma Na+-K+ pump inhibitor (SPI) in the hypertension of streptozotocin induced insulin dependent diabetes (IDDM) in reduced renal mass rats. The increase in blood pressure (BP) was associated with an increase in extracellular fluid volume (ECFV), and SPI and a decrease in myocardial Na+,K+ATPase (NKA) activity, suggesting that increased SPI, which inhibits cardiovascular muscle (CVM) cell NKA activity, may be involved in the mechanism of IDDM-hypertension. In a second study, using prolonged suspension resulted in a decrease in cardiac NKA activity, suggesting that cardiovascular deconditioning following space flight might in part result from insufficient SPI.

  4. Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats

    PubMed Central

    Kim, Hae Jin

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vascular remodeling of pulmonary arteries (PAs) and increased vascular resistance in the lung. Monocrotaline (MCT), a toxic alkaloid, is widely used for developing rat models of PAH caused by injury to pulmonary endothelial cells; however, characteristics of vascular functions in MCT-induced PAH vary and are not fully understood. Here, we investigated hypoxic pulmonary vasoconstriction (HPV) responses and effects of various vasoconstrictors with isolated/perfused lungs of MCT-induced PAH (PAH-MCT) rats. Using hematoxylin and eosin staining, we confirmed vascular remodeling (i.e., medial thickening of PA) and right ventricle hypertrophy in PAH-MCT rats. The basal pulmonary arterial pressure (PAP) and PAP increase by a raised flow rate (40 mL/min) were higher in the PAH-MCT than in the control rats. In addition, both high K+ (40 mM KCl)- and angiotensin II-induced PAP increases were higher in the PAH-MCT than in the control rats. Surprisingly, application of a nitric oxide synthase inhibitor, L-NG-Nitroarginine methyl ester (L-NAME), induced a marked PAP increase in the PAH-MCT rats, suggesting that endothelial functions were recovered in the three-week PAH-MCT rats. In addition, the medial thickening of the PA was similar to that in chronic hypoxia-induced PAH (PAH-CH) rats. However, the HPV response (i.e., PAP increased by acute hypoxia) was not affected in the MCT rats, whereas HPV disappeared in the PAH-CH rats. These results showed that vascular contractility and HPV remain robust in the MCT-induced PAH rat model with vascular remodeling. PMID:27847441

  5. PUMA mediates ER stress-induced apoptosis in portal hypertensive gastropathy.

    PubMed

    Tan, S; Wei, X; Song, M; Tao, J; Yang, Y; Khatoon, S; Liu, H; Jiang, J; Wu, B

    2014-03-13

    Mucosal apoptosis has been demonstrated to be an essential pathological feature in portal hypertensive gastropathy (PHG). p53-upregulated modulator of apoptosis (PUMA) was identified as a BH3-only Bcl-2 family protein that has an essential role in apoptosis induced by a variety of stimuli, including endoplasmic reticulum (ER) stress. However, whether PUMA is involved in mucosal apoptosis in PHG remains unclear, and whether PUMA induces PHG by mediating ER stress remains unknown. The aim of the study is to investigate whether PUMA is involved in PHG by mediating ER stress apoptotic signaling. To identify whether PUMA is involved in PHG by mediating ER stress, gastric mucosal injury and apoptosis were studied in both PHG patients and PHG animal models using PUMA knockout (PUMA-KO) and PUMA wild-type (PUMA-WT) mice. The induction of PUMA expression and ER stress signaling were investigated, and the mechanisms of PUMA-mediated apoptosis were analyzed. GES-1 and SGC7901 cell lines were used to further identify whether PUMA-mediated apoptosis was induced by ER stress in vitro. Epithelial apoptosis and PUMA were markedly induced in the gastric mucosa of PHG patients and mouse PHG models. ER stress had a potent role in the induction of PUMA and apoptosis in PHG models, and the apoptosis was obviously attenuated in PUMA-KO mice. Although the targeted deletion of PUMA did not affect ER stress, mitochondrial apoptotic signaling was downregulated in mice. Meanwhile, PUMA knockdown significantly ameliorated ER stress-induced mitochondria-dependent apoptosis in vitro. These results indicate that PUMA mediates ER stress-induced mucosal epithelial apoptosis through the mitochondrial apoptotic pathway in PHG, and that PUMA is a potentially therapeutic target for PHG.

  6. Neuropathy optic glaucomatosa induced by systemic hypertension through activation endothelin-1 signaling pathway in central retinal artery in rats

    PubMed Central

    Prayitnaningsih, Seskoati; Sujuti, Hidayat; Effendi, Maksum; Abdullah, Aulia; Anandita, Nanda Wahyu; Yohana, Febriani; Permatasari, Nur; Widodo, Mohamad Aris

    2016-01-01

    AIM To evaluate effect of hypertension on retinal ganglion cell (RGC) apoptosis, intraocular pressure (IOP), and the activation of endothelin-1 (ET-1) signaling pathway in central retinal artery (CRA) in rats. METHODS The experimental study was performed on 20 male Sprague Dawley rats that were divided into control group, and hypertension groups. The hypertension was induced by subcutaneous deoxycorticoacetate (DOCA) 10 mg/kg twice a week and administered 0.9% NaCl solution daily for 2, 6, and 10wk. Blood pressure (BP) was measured using animal BP analyzer. IOP was measured by handheld tonometry. Retinal tissue preparations by paraffin blocks were made after enucleation. The expression of ET-1, eNOS, ET-1 receptor A (ETRA), ET-1 receptor B (ETRB), and phosphorylated myosin light chain kinase (MLCK), and caldesmon (CaD) in CRA and RGC apoptosis were evaluated through immunofluorescent staining method then observed using laser scanning confocal microscopy. RESULTS BP significantly increased in all of the hypertension groups compared to control (P=0.001). Peak IOP elevation (7.78±4.14 mm Hg) and RGC apoptosis (576.15±33.28 Au) occurred on 2wk of hypertension. ET-1 expression (1238.6±55.1 Au) and eNOS expression (2814.2±70.7 Au) were found highest in 2wk of hypertension, although the ratio of ET-1/eNOS decreased since 2wk. ETRA reached peak expression in 10wk of hypertension (1219.4±6.3 Au), while ETRB significantly increased only in 2 weeks group (1069.2±9.6 Au). The highest MLCK expression (1190.09±58.32 Au), CaD (1670.28±18.36 Au) were also found in 2wk of hypertension. CONCLUSION Hypertension effects to activation of ET-1 signaling pathway significantly in CRA, elevation of IOP, and RGC apoptosis. The highest value was achieved at 2wk, which is the development phase of hypertension. PMID:27990358

  7. Ghrelin counteracts salt-induced hypertension via promoting diuresis and renal nitric oxide production in Dahl rats.

    PubMed

    Aoki, Hirotaka; Nakata, Masanori; Dezaki, Katsuya; Lu, Ming; Gantulga, Darambazar; Yamamoto, Keiji; Shimada, Kazuyuki; Kario, Kazuomi; Yada, Toshihiko

    2013-01-01

    Ghrelin is the endogenous ligand for the growth hormone-secretagogue receptor expressed in various tissues including the heart, blood vessels and kidney. This study sought to determine the effects of long-term treatment with ghrelin (10 nmol/kg, twice a day, intraperitoneally) on the hypertension induced by high salt (8.0% NaCl) diet in Dahl salt-sensitive hypertensive (DS) rats. Systolic blood pressure (SBP) was measured by a tail cuff method. During the treatment period for 3 weeks, high salt diet increased blood pressure compared to normal salt (0.3% NaCl) diet, and this hypertension was partly but significantly (P<0.01) attenuated by simultaneous treatment with ghrelin. Ghrelin significantly increased urine volume and tended to increase urine Na⁺ excretion. Furthermore, ghrelin increased urine nitric oxide (NO) excretion and tended to increase renal neuronal nitric oxide synthase (nNOS) mRNA expression. Ghrelin did not alter the plasma angiotensin II level and renin activity, nor urine catecholamine levels. Furthermore, ghrelin prevented the high salt-induced increases in heart thickness and plasma ANP mRNA expression. These results demonstrate that long-term ghrelin treatment counteracts salt-induced hypertension in DS rats primarily through diuretic action associated with increased renal NO production, thereby exerting cardio-protective effects.

  8. Alterations in phenylephrine-induced contractions and the vascular expression of Na+,K+-ATPase in ouabain-induced hypertension

    PubMed Central

    Rossoni, Luciana V; Salaices, Mercedes; Marín, Jesús; Vassallo, Dalton V; Alonso, María J

    2002-01-01

    Hypertension development, phenylephrine-induced contraction and Na+,K+-ATPase functional activity and protein expression in aorta (AO), tail (TA) and superior mesenteric (SMA) arteries from ouabain- (25 μg day−1, s.c., 5 weeks) and vehicle-treated rats were evaluated.Ouabain treatment increased systolic blood pressure (127±1 vs 160±2 mmHg, n=24, 35; P<0.001) while the maximum response to phenylephrine was reduced (P<0.01) in AO (102.8±3.9 vs 67.1±10.1% of KCl response, n=12, 9) and SMA (82.5±7.5 vs 52.2±5.8%, n=12, 9).Endothelium removal potentiated the phenylephrine response to a greater extent in segments from ouabain-treated rats. Thus, differences of area under the concentration-response curves (dAUC) in endothelium-denuded and intact segments for control and ouabain-treated rats were, respectively: AO, 56.6±9.6 vs 198.3±18.3 (n=9, 7); SMA, 85.5±15.4 vs 165.4±24.8 (n=6, 6); TA, 13.0±6.1 vs 39.5±10.4% of the corresponding control AUC (n=6, 6); P<0.05.The relaxation to KCl (1 – 10 mM) was similar in segments from both groups. Compared to controls, the inhibition of 0.1 mM ouabain on KCl relaxation was greater in AO (dAUC: 64.8±4.6 vs 84.0±5.1%, n=11, 14; P<0.05), similar in SMA (dAUC: 39.1±3.9 vs 43.3±7.8%, n=6, 7; P>0.05) and smaller in TA (dAUC: 62.1±5.5 vs 41.4±8.2%, n=12, 13; P<0.05) in ouabain-treated rats.Protein expression of both α1 and α2 isoforms of Na+,K+-ATPase was augmented in AO, unmodified in SMA and reduced in TA from ouabain-treated rats.These results suggest that chronic administration of ouabain induces hypertension and regional vascular alterations, the latter possibly as a consequence of the hypertension. PMID:11834625

  9. Effect of sodium on vasoconstriction and angiotensin II type 1 receptor mRNA expression in cold-induced hypertensive rats.

    PubMed

    Zhu, Zhiming; Zhu, Shanjun; Zhu, Jijun; van der Giet, Markus; Tepel, Martin

    2004-08-01

    Angiotensin II and sodium play an important pathogenetic role in several models of hypertension. Now, we investigated the effects of sodium on vasoconstriction and angiotensin II type 1 (AT1) and type 2 (AT2) receptor mRNA expression in aortic vessels from cold-induced hypertensive rats. Wistar rats on low sodium and high sodium diet were exposed to cold-stress for 8 weeks. The effects of angiotensin II infusion on mean arterial blood pressure were investigated in these rats. In addition, angiotensin II induced contraction was measured using aortic rings. Expression of AT1 receptor mRNA and AT2 receptor mRNA was assessed in aortic vessels by reverse transcription polymerase chain reaction. After infusion of angiotensin II mean arterial blood pressure in cold-induced hypertensive rats on high sodium diet was significantly higher compared to cold-induced hypertensive rats on low sodium diet (p < 0.05). Angiotensin II-induced contraction of aortic rings was significantly higher in cold-induced hypertensive rats on high sodium diet compared to cold-induced hypertensive rats on low sodium diet (2.39 +/- 0.03 g vs. 2.21 +/- 0.04 g, n = 12, p < 0.01). Angiotensin AT1 receptor mRNA was significantly higher in cold-induced hypertensive rats on high sodium diet compared to cold-induced hypertensive rats on low sodium diet (p < 0.05). It is concluded that in this nongenetic, nonsurgical animal model of cold-induced hypertension increased vasoconstriction and increased AT1 receptor mRNA expression in aortic vessels are dependent on sodium intake.

  10. Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice.

    PubMed

    Ciuclan, Loredana; Sheppard, Kellyann; Dong, Liqun; Sutton, Daniel; Duggan, Nicholas; Hussey, Martin; Simmons, Jenny; Morrell, Nicholas W; Jarai, Gabor; Edwards, Matthew; Dubois, Gerald; Thomas, Matthew; Van Heeke, Gino; England, Karen

    2013-11-01

    The expression of the bone morphogenetic protein antagonist, Gremlin 1, was recently shown to be increased in the lungs of pulmonary arterial hypertension patients, and in response to hypoxia. Gremlin 1 released from the vascular endothelium may inhibit endogenous bone morphogenetic protein signaling and contribute to the development of pulmonary arterial hypertension. Here, we investigate the impact of Gremlin 1 inhibition in disease after exposure to chronic hypoxia/SU5416 in mice. We investigated the effects of an anti-Gremlin 1 monoclonal antibody in the chronic hypoxia/SU5416 murine model of pulmonary arterial hypertension. Chronic hypoxic/SU5416 exposure of mice induced upregulation of Gremlin 1 mRNA in lung and right ventricle tissue compared with normoxic controls. Prophylactic treatment with an anti-Gremlin 1 neutralizing mAb reduced the hypoxic/SU5416-dependent increase in pulmonary vascular remodeling and right ventricular hypertrophy. Importantly, therapeutic treatment with an anti-Gremlin 1 antibody also reduced pulmonary vascular remodeling and right ventricular hypertrophy indicating a role for Gremlin 1 in the progression of the disease. We conclude that Gremlin 1 plays a role in the development and progression of pulmonary arterial hypertension in the murine hypoxia/SU5416 model, and that Gremlin 1 is a potential therapeutic target for pulmonary arterial hypertension.

  11. Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype.

    PubMed

    Tarantini, Stefano; Valcarcel-Ares, Noa M; Yabluchanskiy, Andriy; Springo, Zsolt; Fulop, Gabor A; Ashpole, Nicole; Gautam, Tripti; Giles, Cory B; Wren, Jonathan D; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2017-03-14

    Clinical and experimental studies show that aging exacerbates hypertension-induced cerebral microhemorrhages (CMHs), which progressively impair neuronal function. There is growing evidence that aging promotes insulin-like growth factor 1 (IGF-1) deficiency, which compromises multiple aspects of cerebromicrovascular and brain health. To determine the role of IGF-1 deficiency in the pathogenesis of CMHs, we induced hypertension in mice with liver-specific knockdown of IGF-1 (Igf1(f/f)  + TBG-Cre-AAV8) and control mice by angiotensin II plus l-NAME treatment. In IGF-1-deficient mice, the same level of hypertension led to significantly earlier onset and increased incidence and neurological consequences of CMHs, as compared to control mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Previous studies showed that in aging, increased oxidative stress-mediated matrix metalloprotease (MMP) activation importantly contributes to the pathogenesis of CMHs. Thus, it is significant that hypertension-induced cerebrovascular oxidative stress and MMP activation were increased in IGF-1-deficient mice. We found that IGF-1 deficiency impaired hypertension-induced adaptive media hypertrophy and extracellular matrix remodeling, which together with the increased MMP activation likely also contributes to increased fragility of intracerebral arterioles. Collectively, IGF-1 deficiency promotes the pathogenesis of CMHs, mimicking the aging phenotype, which likely contribute to its deleterious effect on cognitive function. Therapeutic strategies that upregulate IGF-1 signaling in the cerebral vessels and/or reduce microvascular oxidative stress, and MMP activation may be useful for the prevention of CMHs, protecting cognitive function in high-risk elderly patients.

  12. Helium-induced cardioprotection of healthy and hypertensive rat myocardium in vivo.

    PubMed

    Oei, Gezina T M L; Huhn, Ragnar; Heinen, Andre; Hollmann, Markus W; Schlack, Wolfgang S; Preckel, Benedikt; Weber, Nina C

    2012-06-05

    Helium protects healthy myocardium against ischemia/reperfusion injury by early and late preconditioning (EPC, LPC) and postconditioning (PostC). We investigated helium-induced PostC of the hypertensive heart and enhancement by addition of LPC and EPC. We also investigated involvement of signaling kinases glycogen synthase kinase 3 beta (GSK-3β) and protein kinase C-epsilon (PKC-ε). To assess myocardial cell damage, we performed infarct size measurements in healthy Wistar Kyoto (WKY rats, n=8-9) and Spontaneous Hypertensive rats (SHR, n=8-9) subjected to 25 min ischemia and 120 min reperfusion. Rats inhaled 70% helium for 15 min after index ischemia (PostC), combined with 15 min helium 24h prior to index ischemia (LPC+PostC), a triple intervention with additional 3 short cycles of 5 min helium inhalation shortly before ischemia (EPC+LPC+PostC), or no further treatment. In WKY rats, PostC reduced infarct size from 46 ± 2% (mean ± S.E.M) in the control group to 29 ± 2%. LPC+PostC or EPC+LPC+PostC reduced infarct sizes to a similar extent (30 ± 3% and 32 ± 2% respectively). In SHR, EPC+LPC+PostC reduced infarct size from 53 ± 3% in control to 39 ± 3%, while PostC or LPC+PostC alone were not protective; infarct size 48 ± 4% and 44 ± 4%, respectively. Neither PostC in WKY rats nor EPC+LPC+PostC in SHR was associated with an increase in phosphorylation of GSK-3β and PKC-ε after 15 min of reperfusion. Concluding, a triple intervention of helium conditioning results in cardioprotection in SHR, whereas a single intervention does not. In WKY rats, the triple intervention does not further augment protection. Helium conditioning is not associated with a mechanism involving GSK-3β and PKC-ε.

  13. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.

    PubMed

    Franco, Martha; Bautista, Rocio; Tapia, Edilia; Soto, Virgilia; Santamaría, José; Osorio, Horacio; Pacheco, Ursino; Sánchez-Lozada, L Gabriela; Kobori, Hiroyuki; Navar, L Gabriel

    2011-06-01

    To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.

  14. Association of systemic hypertension with renal injury in dogs with induced renal failure.

    PubMed

    Finco, Delmar R

    2004-01-01

    Systemic hypertension is hypothesized to cause renal injury to dogs. This study was performed on dogs with surgically induced renal failure to determine whether hypertension was associated with altered renal function or morphology. Mean arterial pressure (MAP), heart rate (HR), systolic arterial pressure (SAP), and diastolic arterial pressure (DAP) were measured before and after surgery. Glomerular filtration rate (GFR) and urine protein:creatinine ratios (UPC) were measured at 1, 12, 24, 36, and 56-69 weeks after surgery, and renal histology was evaluated terminally. The mean of weekly MAP, SAP, and DAP measurements for each dog over the 1st 26 weeks was used to rank dogs on the basis of MAP, SAP, or DAP values. A statistically significant association was found between systemic arterial pressure ranking and ranked measures of adverse renal responses. When dogs were divided into higher pressure and lower pressure groups on the basis of SAP, group 1 (higher pressure, n = 9) compared with group 2 (lower pressure, n = 10) had significantly lower GFR values at 36 and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, and fibrosis. When dogs were divided on MAP and DAP values, group 1 compared with group 2 had significantly lower GFR values at 12, 24, 36, and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, fibrosis, and cell infiltrate. These results demonstrate an association between increased systemic arterial pressure and renal injury. Results from this study might apply to dogs with some types of naturally occurring renal failure.

  15. Induction of Heme Oxygenase-1 Attenuates Placental-Ischemia Induced Hypertension

    PubMed Central

    George, Eric M.; Cockrell, Kathy; Aranay, Marietta; Csongradi, Eva; Stec, David E.; Granger, Joey P.

    2011-01-01

    Recent in vitro studies have reported that heme oxygenase-1 (HO-1) downregulates the angiostatic protein sFlt-1 from placental villous explants and that the HO-1 metabolites CO and bilirubin negatively regulates endothelin-1 and reactive oxygen species (ROS). Although sFlt-1, ET-1, and ROS have been implicated in the pathophysiology of hypertension during preeclampsia and in response to placental ischemia in pregnant rats, it is unknown whether chronic induction of HO-1 alters the hypertensive response to placental ischemia. The present study examined the hypothesis that HO-1 induction in a rat model of placental ischemia would beneficially affect blood pressure, angiogenic balance, superoxide, and ET-1 production in the ischemic placenta. To achieve this goal we examined the effects of cobalt protoporphyrin (CoPP), an HO-1 inducer, in the reduced uterine perfusion pressure (RUPP) placental ischemia model and in normal pregnant rats. In response to RUPP treatment, MAP increases 29mmHg (136 ± 7 vs. 106 ± 5 mmHg) which is significantly attenuated by CoPP (118 ± 5 mmHg). While RUPP treatment causes placental sFlt-1/VEGF ratios to alter significantly to an angiostatic balance (1 ± 0.1 vs 1.27 ± 0.2,), treatment with CoPP causes a significant shift in the ratio to an angiogenic balance (0.68 ± 0.1). Placental superoxide increased in RUPP (952.5 ± 278.8 vs 243.9 ± 70.5 RLU/min/mg), but was significantly attenuated by HO-1 induction (482.7 ± 117.4 RLU/min/mg). Also, preproendothelin message was significantly increased in RUPP, which was prevented by CoPP. These data indicate that HO-1, or its metabolites, are potential therapeutics for the treatment of preeclampsia. PMID:21383306

  16. Role of the sympathetic nervous system in cold-induced hypertension in rats.

    PubMed

    Papanek, P E; Wood, C E; Fregly, M J

    1991-07-01

    Hypertension develops in rats exposed chronically to cold [6 +/- 2 degrees C (SE)] and includes both an elevation of mean arterial pressure and cardiac hypertrophy. Previous studies suggest that cold-exposed animals, at least initially, have a large sustained increase in the activity of their sympathetic nervous system, suggesting a failure of the baroreceptor system to provide sufficient negative feedback to the central nervous system. The present study was designed to investigate whether alterations in the activity of the sympathetic nervous system, including the baroreceptor reflex, occur during exposure to cold and whether they contribute to cold-induced hypertension. Twenty male rats were prepared with indwelling catheters in the femoral artery and vein. Ten of the rats were exposed to cold (6 +/- 2 degrees C) chronically, while the remaining 10 were kept at 26 +/- 2 degrees C. Withdrawal of arterial blood samples (less than 5 ml/kg), measurement of direct arterial pressures, and measurement of baroreflex function were carried out at 0800 h at intervals throughout the experiment. Norepinephrine and epinephrine concentrations in plasma were also determined at intervals throughout the experiment. Systolic, diastolic, and mean blood pressures of cold-exposed rats were increased to levels significantly above those of controls. The sensitivity of the baroreflex (delta heart period/delta mean arterial pressure) was decreased in the cold-treated group. The concentration of norepinephrine in plasma increased after 24 h of exposure to cold and remained elevated throughout the experiment, whereas the concentration of epinephrine in plasma increased initially but returned to control levels after 19 days of exposure to cold.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Cocaine induces apoptosis in primary cultured rat aortic vascular smooth muscle cells: possible relationship to aortic dissection, atherosclerosis, and hypertension.

    PubMed

    Su, Jialin; Li, Jianfeng; Li, Wenyan; Altura, Bella; Altura, Burton

    2004-01-01

    Cocaine abuse is known to induce many adverse cardiovascular effects, including hypertension, atherosclerosis, and aortic dissection. A major physiological event leading to these pathophysiological actions of cocaine could be apoptosis. This study was designed to investigate if primary cultured rat aortic vascular smooth muscle cells (VSMCs) can undergo apoptosis when treated with cocaine. After treatment with cocaine (10(-6) to 10(-4) M), morphological analysis of aortic VSMCs using confocal fluoresence microscopy showed that the percentage of apoptotic aortic VSMCs increased after cocaine (10(-6) to 10(-4) M) treatment for 12, 24, and 48 h. These results demonstrate that aortic VSMCs can undergo rapid apoptosis in response to cocaine in a concentration-dependent manner. Cocaine-induced apoptosis may thus play a major role in cocaine abuse-induced aortic dissection, atherosclerosis, and hypertension.

  18. Effect of deoxycorticosterone acetate-salt-induced hypertension on diabetic peripheral neuropathy in alloxan-induced diabetic WBN/Kob rats.

    PubMed

    Ozaki, Kiyokazu; Hamano, Hiroko; Matsuura, Tetsuro; Narama, Isao

    2016-01-01

    The relationship between hypertension and diabetic peripheral neuropathy (DPN) has recently been reported in clinical research, but it remains unclear whether hypertension is a risk factor for DPN. To investigate the effects of hypertension on DPN, we analyzed morphological features of peripheral nerves in diabetic rats with hypertension. Male WBN/Kob rats were divided into 2 groups: alloxan-induced diabetic rats with deoxycorticosterone acetate-salt (DOCA-salt) treatment (ADN group) and nondiabetic rats with DOCA-salt treatment (DN group). Sciatic, tibial (motor) and sural (sensory) nerves were subjected to qualitative and quantitative histomorphological analysis. Systolic blood pressure in the two groups exhibited a higher value (>140 mmHg), but there was no significant difference between the two groups. Endoneurial blood vessels in both groups presented endothelial hypertrophy and narrowing of the vascular lumen. Electron microscopically, duplication of basal lamina surrounding the endothelium and pericyte of the endoneurial vessels was observed, and this lesion appeared to be more frequent and severe in the ADN group than the DN group. Many nerve fibers of the ADN and DN groups showed an almost normal appearance, whereas morphometrical analysis of the tibial nerve showed a significant shift to smaller fiber and myelin sizes in the ADN group compared with DN group. In sural nerve, the fiber and axon-size significantly shifted to a smaller size in ADN group compared with the DN group. These results suggest that combined diabetes and hypertension could induce mild peripheral nerve lesions with vascular changes.

  19. Assessment of contrast-enhanced ultrasonography of the hepatic vein for detection of hemodynamic changes associated with experimentally induced portal hypertension in dogs.

    PubMed

    Morishita, Keitaro; Hiramoto, Akira; Michishita, Asuka; Takagi, Satoshi; Hoshino, Yuki; Itami, Takaharu; Lim, Sue Yee; Osuga, Tatsuyuki; Nakamura, Sayuri; Ochiai, Kenji; Nakamura, Kensuke; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2017-04-01

    OBJECTIVE To assess the use of contrast-enhanced ultrasonography (CEUS) of the hepatic vein for the detection of hemodynamic changes associated with experimentally induced portal hypertension in dogs. ANIMALS 6 healthy Beagles. PROCEDURES A prospective study was conducted. A catheter was surgically placed in the portal vein of each dog. Hypertension was induced by intraportal injection of microspheres (10 to 15 mg/kg) at 5-day intervals via the catheter. Microsphere injections were continued until multiple acquired portosystemic shunts were created. Portal vein pressure (PVP) was measured through the catheter. Contrast-enhanced ultrasonography was performed before and after establishment of hypertension. Time-intensity curves were generated from the region of interest in the hepatic vein. Perfusion variables measured for statistical analysis were hepatic vein arrival time, time to peak, time to peak phase (TTPP), and washout ratio. The correlation between CEUS variables and PVP was assessed by use of simple regression analysis. RESULTS Time to peak and TTPP were significantly less after induction of portal hypertension. Simple regression analysis revealed a significant negative correlation between TTPP and PVP. CONCLUSIONS AND CLINICAL RELEVANCE CEUS was useful for detecting hemodynamic changes associated with experimentally induced portal hypertension in dogs, which was characterized by a rapid increase in the intensity of the hepatic vein. Furthermore, TTPP, a time-dependent variable, provided useful complementary information for predicting portal hypertension. IMPACT FOR HUMAN MEDICINE Because the method described here induced presinusoidal portal hypertension, these results can be applied to idiopathic portal hypertension in humans.

  20. AAV Delivery of Endothelin-1 shRNA Attenuates Cold-Induced Hypertension.

    PubMed

    Chen, Peter Gin-Fu; Sun, Zhongjie

    2017-02-01

    Cold temperatures are associated with increased prevalence of hypertension. Cold exposure increases endothelin-1 (ET1) production. The purpose of this study is to determine whether upregulation of ET1 contributes to cold-induced hypertension (CIH). In vivo RNAi silencing of the ET1 gene was achieved by adeno-associated virus 2 (AAV2) delivery of ET1 short-hairpin small interfering RNA (ET1-shRNA). Four groups of male rats were used. Three groups were given AAV.ET1-shRNA, AAV.SC-shRNA (scrambled shRNA), and phosphate-buffered saline (PBS), respectively, before exposure to a moderately cold environment (6.7 ± 2°C), while the last group was given PBS and kept at room temperature (warm, 24 ± 2°C) and served as a control. We found that systolic blood pressure of the PBS-treated and SC-shRNA-treated groups increased significantly within 2 weeks of exposure to cold, reached a peak level (145 ± 4.8 mmHg) by 6 weeks, and remained elevated thereafter. By contrast, blood pressure of the ET1-shRNA-treated group did not increase, suggesting that silencing of ET1 prevented the development of CIH. Animals were euthanized after 10 weeks of exposure to cold. Cold exposure significantly increased the left ventricle (LV) surface area and LV weight in cold-exposed rats, suggesting LV hypertrophy. Superoxide production in the heart was increased by cold exposure. Interestingly, ET1-shRNA prevented cold-induced superoxide production and cardiac hypertrophy. ELISA assay indicated that ET1-shRNA abolished the cold-induced upregulation of ET1 levels, indicating effective silencing of ET1. In conclusion, upregulation of ET1 plays a critical role in the pathogenesis of CIH and cardiac hypertrophy. AAV delivery of ET1-shRNA is an effective therapeutic strategy for cold-related cardiovascular disease.

  1. Chronic Normobaric Hypoxia Induces Pulmonary Hypertension in Rats: Role of NF-κB.

    PubMed

    Fan, Junming; Fan, Xiaofang; Li, Yang; Ding, Lu; Zheng, Qingqing; Guo, Jinbin; Xia, Dongmei; Xue, Feng; Wang, Yongyu; Liu, Shufang; Gong, Yongsheng

    2016-03-01

    To investigate whether nuclear factor-kappa B (NF-κB) activation is involved in chronic normobaric hypoxia-induced pulmonary hypertension (PH), rats were treated with saline or an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC, 150 mg/kg, sc, twice daily), and exposed to normoxia or chronic normobaric hypoxia with a fraction of inspired oxygen of ∼0.1 for 14 days. Lung tissue levels of NF-κB activity, and interleukin (IL)-1β, IL-6, and cyclooxygenase-2 mRNAs, were determined, and mean pulmonary arterial pressure, right ventricular hypertrophy, and right heart function were evaluated. Compared to the normoxia exposure group, rats exposed to chronic normobaric hypoxia showed an increased NF-κB activity, measured by increased nuclear translocation of p50 and p65 proteins, an increased inflammatory gene expression in the lungs, elevated mean pulmonary arterial blood pressure and mean right ventricular pressure, right ventricular hypertrophy, as assessed by right ventricle-to-left ventricle plus septum weight ratio, and right heart dysfunction. Treatment of hypoxia-exposed rats with PDTC inhibited NF-κB activity, decreased pulmonary arterial blood pressure and right ventricular pressure, and ameliorated right ventricular hypertrophy and right heart dysfunction. Hypoxia exposure increased protein kinase C activity and promoted pulmonary artery smooth muscle cell proliferation in vitro. Our data suggest that NF-κB activation may contribute to chronic normobaric hypoxia-induced PH.

  2. Effect of dietary tyrosine supplementation on development of deoxycorticosterone acetate (DOCA)-induced hypertension in rats

    SciTech Connect

    Henley, W.N.; Fregly, M.J.; Mihally, M.A.; Wilson, K.M.; Hathaway, S.

    1986-03-01

    Adult male Sprague-Dawley rats were unilaterally nephrectomized, given 0.15M NaCl to drink, and assigned to 1 or 4 groups: (a) control diet (CD); (b) CD plus DOCA (39 ..mu..g/rat/day); (c) CD supplemented with 2.5% 1-tyrosine (Tyr); and (d) Tyr plus DOCA. DOCA significantly elevated systolic blood pressure (SBP) within 2 weeks (P < 0.05); however, Tyr for 8 weeks failed to affect SBP. Direct measurement of BP confirmed these findings. Tyrosine also failed to affect the enhanced vascular reactivity (change in MBP to phenylephrine) noted in DOCA-treated rats. Although ineffective in these regards, Tyr alone induced both significant elevations in urinary excretion of free dopamine (week 1, 3, 5, 7) and a significant decrease in urinary free norepinephrine excretion (week 1). Tyr induced significant prolongations in the time-courses of metabolic and cardiovascular responses to the beta-adrenergic agonist, isoproterenol. The binding (B/sub max/) of /sup 3/H-yohimbine in cerebral cortical membranes was also reduced. Thus, chronic excess of precursor can affect the function of the adrenergic system, but these effects do not include mitigation of DOCA-salt hypertension.

  3. In vitro vascular effects of cicletanine in pregnancy-induced hypertension.

    PubMed Central

    Ebeigbe, A. B.; Cabanie, M.

    1991-01-01

    1. The vascular effects of cicletanine have been studied in vitro on ring preparations of inferior epigastric arteries from normotensive human females and human females with pregnancy-induced hypertension (preeclampsia). 2. Cicletanine (10(-7)-10(-3) M) elicited concentration-dependent relaxation of vessels precontracted with 10(-7) M noradrenaline (NA) or 60 mM K+ but was more potent in the former. Relaxation was significantly greater in rings from preeclamptic patients and was uninfluenced by endothelium removal. 3. The intracellular Ca-dependent contractile responses to 10(-5) M NA in Ca-free medium as well as the subsequent extracellular Ca-dependent contractions (on restoration of external Ca) were significantly attenuated dose-dependently by cicletanine (10(-5) M, 3 x 10(-4) M) in arterial rings from both normotensive and preeclamptic patients. Cicletanine also relaxed rings precontracted by 25 mM K+ but was ineffective against 80 mM K(+)-induced contractions. 4. The inhibition of intracellular Ca-dependent contractions was significantly greater in rings from preeclamptic than from normotensive patients whereas extracellular Ca-dependent contractions were comparably inhibited in both groups. Nifedipine, on the other hand, had little effect on the intracellular Ca-dependent contractions but significantly depressed extracellular Ca-dependent contractions. 5. Cicletanine-induced relaxation was uninfluenced by pretreatment with propranolol, ouabain, tetraethylammonium, procaine, indomethacin, cimetidine or tetrodotoxin but was antagonized by glibenclamide. 6. The results show that cicletanine inhibits contractile responses of human isolated inferior epigastric arteries by a mechanism unrelated to endothelial factors but associated with inhibition of calcium metabolism. An action of cicletanine on glibenclamide-sensitive K+ channels is also suggested. Cicletanine-induced inhibition was significantly greater in arteries from preclamptic patients. PMID:1912987

  4. Pulmonary Artery Denervation Reduces Pulmonary Artery Pressure and Induces Histological Changes in an Acute Porcine Model of Pulmonary Hypertension

    PubMed Central

    Arnold, Nadine D.; Chang, William; Watson, Oliver; Swift, Andrew J.; Condliffe, Robin; Elliot, Charlie A.; Kiely, David G.; Suvarna, S. Kim; Gunn, Julian; Lawrie, Allan

    2015-01-01

    Background— Pulmonary arterial hypertension is a devastating disease with high morbidity and mortality and limited treatment options. Recent studies have shown that pulmonary artery denervation improves pulmonary hemodynamics in an experimental model and in an early clinical trial. We aimed to evaluate the nerve distribution around the pulmonary artery, to determine the effect of radiofrequency pulmonary artery denervation on acute pulmonary hypertension induced by vasoconstriction, and to demonstrate denervation of the pulmonary artery at a histological level. Methods and Results— Histological evaluation identified a circumferential distribution of nerves around the proximal pulmonary arteries. Nerves were smaller in diameter, greater in number, and located in closer proximity to the luminal aspect of the pulmonary arterial wall beyond the pulmonary artery bifurcation. To determine the effect of pulmonary arterial denervation acute pulmonary hypertension was induced in 8 pigs by intravenous infusion of thromboxane A2 analogue. Animals were assigned to either pulmonary artery denervation, using a prototype radiofrequency catheter and generator, or a sham procedure. Pulmonary artery denervation resulted in reduced mean pulmonary artery pressure and pulmonary vascular resistance and increased cardiac output. Ablation lesions on the luminal surface of the pulmonary artery were accompanied by histological and biochemical alteration in adventitial nerves and correlated with improved hemodynamic parameters. Conclusions— Pulmonary artery denervation offers the possibility of a new treatment option for patients with pulmonary arterial hypertension. Further work is required to determine the long-term efficacy and safety. PMID:26553697

  5. ANG II-induced hypertension in the VCD mouse model of menopause is prevented by estrogen replacement during perimenopause.

    PubMed

    Pollow, Dennis P; Romero-Aleshire, Melissa J; Sanchez, Jessica N; Konhilas, John P; Brooks, Heddwen L

    2015-12-15

    Premenopausal females are resistant to the development of hypertension, and this protection is lost after the onset of menopause, resulting in a sharp increase in disease onset and severity. However, it is unknown how a fluctuating ovarian hormone environment during the transition from perimenopause to menopause impacts the onset of hypertension, and whether interventions during perimenopause prevent disease onset after menopause. A gradual transition to menopause was induced by repeated daily injections of 4-vinylcyclohexene diepoxide (VCD). ANG II (800 ng·kg(-1)·min(-1)) was infused into perimenopausal and menopausal female mice for 14 days. A separate cohort of mice received 17β-estradiol replacement during perimenopause. ANG II infusion produced significantly higher mean arterial pressure (MAP) in menopausal vs. cycling females, and 17β-estradiol replacement prevented this increase. In contrast, MAP was not significantly different when ANG II was infused into perimenopausal and cycling females, suggesting that female resistance to ANG II-induced hypertension is intact during perimenopause. ANG II infusion caused a significant glomerular hypertrophy, and hypertrophy was not impacted by hormonal status. Expression levels of aquaporin-2 (AQP2), a collecting duct protein, have been suggested to reflect blood pressure. AQP2 protein expression was significantly downregulated in the renal cortex of the ANG II-infused menopause group, where blood pressure was increased. AQP2 expression levels were restored to control levels with 17β-estradiol replacement. This study indicates that the changing hormonal environment in the VCD model of menopause impacts the severity of ANG II-induced hypertension. These data highlight the utility of the ovary-intact VCD model of menopause as a clinically relevant model to investigate the physiological mechanisms of hypertension that occur in women during the transition into menopause.

  6. Studies of gaze during induced conflict in families with a hypertensive father.

    PubMed

    Baer, P E; Reed, J; Bartlett, P C; Vincent, J P; Williams, B J; Bourianoff, G G

    1983-06-01

    Three modified replications (N = 32, 46, and 32) investigated verbal and nonverbal interactions during role playing of family conflict by family groups of father, mother, and one child. Half the fathers had essential hypertension and half were normotensive. Nonverbal but not verbal behavior differed between families with hypertensive vs. normotensive fathers. Hypertensive fathers and their normotensive wives and children looked at each other less (gaze aversion), both while listening and speaking, than did the members of normotensive families. The difference in duration of gaze aversion occurred more prominently during emotionally negative verbalizations. The results suggest a pattern of conflict avoidance in families with a hypertensive father.

  7. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs.

    PubMed

    Grasemann, Hartmut; Dhaliwal, Rupinder; Ivanovska, Julijana; Kantores, Crystal; McNamara, Patrick J; Scott, Jeremy A; Belik, Jaques; Jankov, Robert P

    2015-03-15

    Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.

  8. [Role of endogenous hydrogen sulfide in pulmonary hypertension induced by lipopolysaccharide].

    PubMed

    Huang, Xin-Li; Zhou, Xiao-Hong; Wei, Peng; Zhang, Xiao-Jing; Meng, Xiang-Yan; Xian, Xiao-Hui

    2008-04-25

    The purpose of the present study was to explore the role of endogenous hydrogen sulfide (H2S) in pulmonary arterial hypertension induced by endotoxin. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group (0.5 mL/kg body weight of normal saline, i.v.), lipopolysaccharide (LPS)-treated group (5 mg/kg body weight of LPS, i.v.), LPS + NaHS (5 mg/kg body weight of LPS, i.v., and 28 μmol/kg body weight of NaHS, i.p.) and LPS + PPG group (5 mg/kg body weight of LPS, i.v., and 30 μmol/kg body weight of PPG, i.p.). Rats were anesthetized with 20% urethane (1 g/kg body weight, i.p.). A polyethylene catheter was inserted into the pulmonary artery through the right external jugular vein to measure the mean pulmonary arterial pressure (mPAP) for 7 h, and then the pulmonary artery was isolated rapidly by the method described previously. Pulmonary arterial activity was detected. H2S concentration and cystathionine γ-lyase (CSE) activity in pulmonary artery tissues were determined by biochemical method. CSE mRNA expression was detected by competitive reverse transcriptase-polymerase chain reaction (RT-PCR). Compared with control, LPS significantly increased mPAP [(1.82±0.29) kPa vs (1.43±0.26) kPa, P<0.01], decreased H2S production [(26.33±7.84) vs (42.92±8.73) pmol/g wet tissue per minute, P<0.01), and reduced endothelium-dependent relaxation response [(75.72±7.22)% vs (86.40±4.40) %, P<0.01) induced by ACh (1×10(-6) mol/L). These effects were partly reversed by co-administration of NaHS and enhanced by co-administration of PPG. Both CSE activity and CSE mRNA expression were consistent with H2S production. It is suggested that the inhibitory effect of LPS on endothelium-dependent relaxation results in pulmonary hypertension, which might be mediated through H(2)S.

  9. Ultrastructural Changes Associated With Dexamethasone-Induced Ocular Hypertension in Mice

    PubMed Central

    Overby, Darryl R.; Bertrand, Jacques; Tektas, Ozan-Yüksel; Boussommier-Calleja, Alexandra; Schicht, Martin; Ethier, C. Ross; Woodward, David F.; Stamer, W. Daniel; Lütjen-Drecoll, Elke

    2014-01-01

    Purpose. To determine whether dexamethasone (DEX)-induced ocular hypertension (OHT) in mice mimics the hallmarks of steroid-induced glaucoma (SIG) in humans, including reduced conventional outflow facility (C), increased extracellular matrix (ECM), and myofibroblasts within the outflow pathway. Methods. Osmotic mini-pumps were implanted subcutaneously into C57BL/6J mice for systemic delivery of DEX (3–4 mg/kg/d, n = 31 mice) or vehicle (n = 28). IOP was measured weekly by rebound tonometry. After 3 to 4 weeks, mice were euthanized and eyes enucleated for ex vivo perfusion to measure C, for electron microscopy to examine the trabecular meshwork (TM) and Schlemm's canal (SC), or for immunohistochemistry to examine type IV collagen and α-smooth muscle actin. The length of basement membrane material (BMM) was measured along the anterior-posterior extent of SC by electron microscopy. Ultrastructural changes in BMM of DEX-treated mice were compared against archived human SIG specimens. Results. Dexamethasone increased IOP by 2.6 ± 1.6 mm Hg (mean ± SD) over 3 to 4 weeks and decreased C by 52% ± 17% versus controls. Intraocular pressure elevation correlated with decreased C. Dexamethasone treatment led to increased fibrillar material in the TM, plaque-like sheath material surrounding elastic fibers, and myofibroblasts along SC outer wall. The length of BMM underlying SC was significantly increased in mice with DEX and in humans with SIG, and in mice decreased C correlated with increased BMM. Conclusions. Dexamethasone-induced OHT in mice mimics hallmarks of human SIG within 4 weeks of DEX treatment. The correlation between reduced C and newly formed ECM motivates further study using DEX-treated mice to investigate the pathogenesis of conventional outflow obstruction in glaucoma. PMID:25028360

  10. Right ventricular cyclic nucleotide signaling is decreased in hyperoxia-induced pulmonary hypertension in neonatal mice.

    PubMed

    Heilman, Rachel P; Lagoski, Megan B; Lee, Keng Jin; Taylor, Joann M; Kim, Gina A; Berkelhamer, Sara K; Steinhorn, Robin H; Farrow, Kathryn N

    2015-06-15

    Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 25-35% of premature infants with significant bronchopulmonary dysplasia (BPD), increasing morbidity and mortality. We sought to determine the role of phosphodiesterase 5 (PDE5) in the right ventricle (RV) and left ventricle (LV) in a hyperoxia-induced neonatal mouse model of PH and RVH. After birth, C57BL/6 mice were placed in room air (RA) or 75% O2 (CH) for 14 days to induce PH and RVH. Mice were euthanized at 14 days or recovered in RA for 14 days or 42 days prior to euthanasia at 28 or 56 days of age. Some pups received sildenafil or vehicle (3 mg·kg(-1)·dose(-1) sc) every other day from P0. RVH was assessed by Fulton's index [RV wt/(LV + septum) wt]. PDE5 protein expression was analyzed via Western blot, PDE5 activity was measured by commercially available assay, and cGMP was measured by enzyme-linked immunoassay. Hyperoxia induced RVH in mice after 14 days, and RVH did not resolve until 56 days of age. Hyperoxia increased PDE5 expression and activity in RV, but not LV + S, after 14 days. PDE5 expression normalized by 28 days of age, but PDE5 activity did not normalize until 56 days of age. Sildenafil given during hyperoxia prevented RVH, decreased RV PDE5 activity, and increased RV cGMP levels. Mice with cardiac-specific overexpression of PDE5 had increased RVH in RA. These findings suggest normal RV PDE5 function is disrupted by hyperoxia, and elevated PDE5 contributes to RVH and remodeling. Therefore, in addition to impacting the pulmonary vasculature, sildenafil also targets PDE5 in the neonatal mouse RV and decreases RVH.

  11. Nox2-Induced Production of Mitochondrial Superoxide in Angiotensin II-Mediated Endothelial Oxidative Stress and Hypertension

    PubMed Central

    Dikalov, Sergey I.; Bikineyeva, Alfiya; Hilenski, Lula; Lassègue, Bernard; Griendling, Kathy K.; Harrison, David G.; Dikalova, Anna E.

    2014-01-01

    Abstract Aims: Angiotensin II (AngII)-induced superoxide (O2•−) production by the NADPH oxidases and mitochondria has been implicated in the pathogenesis of endothelial dysfunction and hypertension. In this work, we investigated the specific molecular mechanisms responsible for the stimulation of mitochondrial O2•− and its downstream targets using cultured human aortic endothelial cells and a mouse model of AngII-induced hypertension. Results: Western blot analysis showed that Nox2 and Nox4 were present in the cytoplasm but not in the mitochondria. Depletion of Nox2, but not Nox1, Nox4, or Nox5, using siRNA inhibits AngII-induced O2•− production in both mitochondria and cytoplasm. Nox2 depletion in gp91phox knockout mice inhibited AngII-induced cellular and mitochondrial O2•− and attenuated hypertension. Inhibition of mitochondrial reverse electron transfer with malonate, malate, or rotenone attenuated AngII-induced cytoplasmic and mitochondrial O2•− production. Inhibition of the mitochondrial ATP-sensitive potassium channel (mitoK+ATP) with 5-hydroxydecanoic acid or specific PKCɛ peptide antagonist (EAVSLKPT) reduced AngII-induced H2O2 in isolated mitochondria and diminished cytoplasmic O2•−. The mitoK+ATP agonist diazoxide increased mitochondrial O2•−, cytoplasmic c-Src phosphorylation and cytoplasmic O2•− suggesting feed-forward regulation of cellular O2•− by mitochondrial reactive oxygen species (ROS). Treatment of AngII-infused mice with malate reduced blood pressure and enhanced the antihypertensive effect of mitoTEMPO. Mitochondria-targeted H2O2 scavenger mitoEbselen attenuated redox-dependent c-Src and inhibited AngII-induced cellular O2•−, diminished aortic H2O2, and reduced blood pressure in hypertensive mice. Innovation and Conclusions: These studies show that Nox2 stimulates mitochondrial ROS by activating reverse electron transfer and both mitochondrial O2•− and reverse electron transfer may represent new

  12. Maintenance of GLUT4 expression in smooth muscle prevents hypertension-induced changes in vascular reactivity.

    PubMed

    Atkins, Kevin B; Seki, Yoshinori; Saha, Jharna; Eichinger, Felix; Charron, Maureen J; Brosius, Frank C

    2015-02-01

    Previous studies have shown that expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice and that total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity in hypertension. To demonstrate that the effect of GLUT4 overexpression on vascular responses is dependent on vascular smooth muscle GLUT4 rather than on some systemic effect we developed and tested smooth-muscle-specific GLUT4 transgenic mice (SMG4). When made hypertensive with angiotensin II, both wild-type and SMG4 mice exhibited similarly increased systolic blood pressure. Responsiveness to phenylephrine, serotonin, and prostaglandin F2α was significantly increased in endothelium-intact aortic rings from hypertensive wild-type mice but not in aortae of SMG4 mice. Inhibition of Rho-kinase equally reduced serotonin-stimulated contractility in aortae of hypertensive wild-type and SMG4-mice. In addition, acetylcholine-stimulated relaxation was significantly decreased in aortic rings of hypertensive wild-type mice, but not in rings of SMG4 mice. Inhibition of either prostacylin receptors or cyclooxygenase-2 reduced relaxation in rings of hypertensive SMG4 mice. Inhibition of cyclooxygenase-2 had no effect on relaxation in rings of hypertensive wild-type mice. Cyclooxygenase-2 protein expression was decreased in hypertensive wild-type aortae but not in hypertensive SMG4 aortae compared to nonhypertensive controls. Our results demonstrate that smooth muscle expression of GLUT4 exerts a major effect on smooth muscle contractile responses and endothelium-dependent vasorelaxation and that normal expression of GLUT4 in vascular smooth muscle is required for appropriate smooth muscle and endothelial responses.

  13. Hypertension-Induced Vascular Remodeling Contributes to Reduced Cerebral Perfusion and the Development of Spontaneous Stroke in Aged SHRSP Rats

    DTIC Science & Technology

    2010-01-01

    induced vascular remodeling contributes to reduced cerebral perfusion and the development of spontaneous stroke in aged SHRSP rats Erica C Henning1...spontaneously-hypertensive, stroke-prone (SHRSP) rats is of particular interest because the pathogenesis is believed to be similar to that in the...cerebral infarction and the specific role of cerebral perfusion in disease development. Twelve female SHRSP rats (age: - 1 year) were Imaged within 1

  14. Chronic caffeine intake decreases circulating catecholamines and prevents diet-induced insulin resistance and hypertension in rats.

    PubMed

    Conde, Silvia V; Nunes da Silva, Tiago; Gonzalez, Constancio; Mota Carmo, Miguel; Monteiro, Emilia C; Guarino, Maria P

    2012-01-01

    We tested the hypothesis that long-term caffeine intake prevents the development of insulin resistance and hypertension in two pathological animal models: the high-fat (HF) and the high-sucrose (HSu) diet rat. We used six groups of animals: control; caffeine-treated (Caff; 1 g/l in drinking water during 15 d); HF; caffeine-treated HF (HFCaff); HSu; caffeine-treated HSu (HSuCaff). Insulin sensitivity was assessed using the insulin tolerance test. Blood pressure, weight gain, visceral fat, hepatic glutathione, plasma caffeine, insulin and NO, and serum NEFA and catecholamines were measured. Caffeine reversed insulin resistance and hypertension induced by both the HF and HSu diets. In the HF-fed animals caffeine treatment restored fasting insulin levels to control values and reversed increased weight gain and visceral fat mass. In the HSu group, caffeine reversed fasting hyperglycaemia and restored NEFA to control values. There were no changes either in plasma NO or in hepatic glutathione levels. In contrast, caffeine totally prevented the increase in serum catecholamines induced by HF and HSu diets. To test the hypothesis that inhibition of the sympathetic nervous system prevents the development of diet-induced insulin resistance we administered carvedilol, an antagonist of β1, β2 and also α1 adrenoceptors, to HF and HSu rats. Carvedilol treatment fully prevented diet-induced insulin resistance and hypertension, mimicking the effect of caffeine. We concluded that long-term caffeine intake prevented the development of insulin resistance and hypertension in HF and HSu models and that this effect was related to a decrease in circulating catecholamines.

  15. Follistatin-like 1 protects against hypoxia-induced pulmonary hypertension in mice

    PubMed Central

    Zhang, Wei; Wang, Wang; Liu, Jie; Li, Jinna; Wang, Juan; Zhang, Yunxia; Zhang, Zhifei; Liu, Yafei; Jin, Yankun; Li, Jifeng; Cao, Jie; Wang, Chen; Ning, Wen; Wang, Jun

    2017-01-01

    Pulmonary hypertension (PH) remains a life-limiting disease characterized by pulmonary vascular remodelling due to aberrant proliferation and migration of pulmonary artery smooth muscle cells (PASMCs), thus leading to raised pulmonary arterial pressure and right ventricular hypertrophy. Secreted glycoprotein follistatin-like 1 (FSTL1) has been reported to ameliorate tissue remodelling in cardiovascular injuries. However, the role of FSTL1 in deranged pulmonary arteries remains elusive. We found that there were higher serum levels of FSTL1 in patients with PH related to chronic obstructive pulmonary diseases (COPD) and in mice model of hypoxia-induced PH (HPH). Haploinsufficiency of Fstl1 in mice contributed to an exacerbated HPH, as demonstrated by increased right ventricular systolic pressure, pulmonary arterial muscularization and right ventricular hypertrophy index. Conversely, FSTL1 administration attenuated HPH. In cultured human PASMCs, hypoxia-promoted cellular viability, DNA synthesis and migration were suppressed by exogenous FSTL1 but enhanced by small interfering RNA targeting FSTL1. Additionally, FSTL1 inhibited the proliferation and migration of PASMCs via extracellular regulated kinase (ERK) signal pathway. All these findings indicate that FSTL1 imposed a protective modulation on pulmonary vascular remodelling, thereby suggesting its role in the regulation of HPH. PMID:28361925

  16. Cold-restraint induced gastric lesions in normotensive and spontaneously hypertensive rats

    SciTech Connect

    Athey, G.R.; Iams, S.G.

    1981-02-23

    Spontaneously hypertensive (SHR) rats and normotensive Wistar-Kyoto (WKY) rats were subjected to 2 hr of cold-restraint stress at 4-6/sup o/C following a 24 hr fast. WKY rats had a significantly greater incidence and degree of ulceration of the gastric glandular mucosa than did SHR rats. Mean arterial pressure, obtained from a chronic arterial cannula, fell during 2 hr of cold-restraint stress in both SHR and WKY rats. Heart rate was unchanged in WKY but fell significantly in SHR. Plasma norepinephrine (NE) and epinephrine (E), determined by radioenzymatic assay, increased significantly following stress. Increased levels of NE remained similar for both SHR and WKY rats, while post-stress levels of E for the SHR rats greatly exceeded E levels for WKY rats. A greater degree of hypothermia was also noted in SHR rats. Decreased stress induced ulcerogenesis in the SHR may be due to the well-known altered hemodynamic and autonomic nervous system reactivity in this strain or other factors not yet discovered.

  17. Contribution of elastin and collagen to the pathogenesis of monocrotaline induced pulmonary hypertension

    SciTech Connect

    Todorovich, L.; Johnson, D.; Ranger, P.; Keeley, F.; Rabinovitch, M.

    1986-03-01

    Male Sprague-Dawley rats were selected randomly for subcutaneous injections, 24 with monocrotaline (M) (60mg/kg) and 24 with an equivolume of saline, and studied 8, 16 or 28 days later. The right (RV) and left ventricle with septum (LV + S) were separated and weighed. The pulmonary artery (PA) was assessed by light and electron microscopy. Synthesis of elastin collagen and non-collagenous proteins was determined by measuring incorporations of /sup 3/H-valine, /sup 14/C-OH-proline and /sup 14/C-proline respectively. Total content of elastin was determined by weight of residue after CNBr digestion, and of collagen by total OH-proline content in SDS and CNBr extracts. At 16 days, the M injected rats developed a 6-fold increase in PA elastin synthesis and a 2-fold increase in medial wall thickness. Ultrastructural changes included increased microtubules and golgi apparatus in endothelium, decreased proportion of mature elastin in subendothelium and increased ground substance in media. By 28 days, M rats showed a progressive increase in PA elastin and collagen synthesis, greater than 20-fold, and in medial wall thickness, 3-fold. This was associated with a 2-fold increase in total elastin in proportion to the increase in PA weight and the development of RV hypertrophy (RV/LV + S increased more than 2-fold). Progressive irreversible pulmonary hypertension induced by M may be related to continuing stimulation of PA elastin and collagen synthesis.

  18. Effects of Lactobacillus plantarum TWK10-Fermented Soymilk on Deoxycorticosterone Acetate-Salt-Induced Hypertension and Associated Dementia in Rats

    PubMed Central

    Liu, Te-Hua; Chiou, Jiachi; Tsai, Tsung-Yu

    2016-01-01

    Oxidative stress resulting from excessive production of reactive oxygen species is the major mediator of neuronal cell degeneration observed in neurodegenerative diseases, such as Alzheimer’s disease (AD) and vascular dementia (VaD). Additionally, hypertension has been shown to be a positive risk factor for VaD. Therefore, the objective of this study was to investigate the effects of Lactobacillus plantarum strain TWK10 (TWK10)-fermented soymilk on the protection of PC-12 cells in H2O2-, oxygen-glucose deprivation (OGD)- and deoxycorticosterone acetate (DOCA)-salt-induced rat models of VaD. Notably, the viabilities of H2O2-treated PC-12 cells and OGD model were significantly increased by treatment with TWK10-fermented soymilk ethanol extract (p < 0.05). In addition, oral administration of TWK10-fermented soymilk extract in DOCA-salt hypertension-induced VaD rats resulted in a significant decrease in blood pressure (p < 0.05), which was regulated by inhibiting ACE activity and promoting NO production, in addition to decreased escape latency and increased target crossing (p < 0.05). In conclusion, these results demonstrated that TWK10-fermented soymilk extract could improve learning and memory in DOCA-salt hypertension-induced VaD rats by acting as a blood pressure-lowering and neuroprotective agent. PMID:27144579

  19. Reactive oxygen species and RhoA signaling in vascular smooth muscle: role in chronic hypoxia-induced pulmonary hypertension.

    PubMed

    Resta, Thomas C; Broughton, Brad R S; Jernigan, Nikki L

    2010-01-01

    Increases in myofilament Ca2+ sensitivity resulting from stimulation of RhoA and Rho kinase represent a primary mechanism of vasoconstriction and associated pulmonary hypertension resulting from chronic hypoxia (CH). This chapter summarizes recent advances in the understanding of RhoA/Rho kinase signaling mechanisms in pulmonary vascular smooth muscle (VSM) that increase the sensitivity of the contractile apparatus to Ca2+ and contribute to vasoconstriction in this setting. Such advances include the discovery of myogenic tone in small pulmonary arteries from CH rats that contributes to vasoconstriction through a mechanism inherent to the VSM, dependent on Rho kinase-induced Ca2+ sensitization but independent of L-type voltage-gated Ca2+ channels. Additional studies have revealed an important contribution of superoxide anion (O2-)-induced RhoA activation to both receptor-mediated and membrane depolarization-induced myofilament Ca2+ sensitization in hypertensive pulmonary arteries. Xanthine oxidase and NADPH oxidase isoforms are potential sources of O2- that mediate RhoA-dependent vasoconstriction and associated pulmonary hypertension.

  20. Altered lymphatic function and architecture in salt-induced hypertension assessed by near-infrared fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kwon, Sunkuk; Agollah, Germaine D.; Chan, Wenyaw; Sevick-Muraca, Eva M.

    2012-08-01

    The lymphatic system plays an important role in maintaining the fluid homeostasis between the blood vascular and interstitial tissue compartment and there is recent evidence that its transport capabilities may regulate blood pressure in salt-induced hypertension. Yet, there is little known how the lymphatic contractile function and architecture responds to dietary salt-intake. Thus, we longitudinally characterized lymphatic contractile function and vessel remodeling noninvasively using dynamic near-infrared fluorescence imaging in animal models of salt-induced hypertension. The lymphatics of mice and rats were imaged following intradermal injection of indocyanine green to the ear tip or the base of the tail before and during two weeks of either a high salt diet (HSD) or normal chow. Our noninvasive imaging data demonstrated dilated lymphatic vessels in the skin of mice and rats on a HSD as compared to their baseline levels. In addition, our dynamic imaging results showed increased lymphatic contraction frequency in HSD-fed mice and rats. Lymphatic contractile function and vessel remodeling occurs in response to salt-induced hypertension suggesting a possible role for the lymphatics in the regulation of vascular blood pressure.

  1. Effects of Lactobacillus plantarum TWK10-Fermented Soymilk on Deoxycorticosterone Acetate-Salt-Induced Hypertension and Associated Dementia in Rats.

    PubMed

    Liu, Te-Hua; Chiou, Jiachi; Tsai, Tsung-Yu

    2016-05-02

    Oxidative stress resulting from excessive production of reactive oxygen species is the major mediator of neuronal cell degeneration observed in neurodegenerative diseases, such as Alzheimer's disease (AD) and vascular dementia (VaD). Additionally, hypertension has been shown to be a positive risk factor for VaD. Therefore, the objective of this study was to investigate the effects of Lactobacillus plantarum strain TWK10 (TWK10)-fermented soymilk on the protection of PC-12 cells in H₂O₂-, oxygen-glucose deprivation (OGD)- and deoxycorticosterone acetate (DOCA)-salt-induced rat models of VaD. Notably, the viabilities of H₂O₂-treated PC-12 cells and OGD model were significantly increased by treatment with TWK10-fermented soymilk ethanol extract (p < 0.05). In addition, oral administration of TWK10-fermented soymilk extract in DOCA-salt hypertension-induced VaD rats resulted in a significant decrease in blood pressure (p < 0.05), which was regulated by inhibiting ACE activity and promoting NO production, in addition to decreased escape latency and increased target crossing (p < 0.05). In conclusion, these results demonstrated that TWK10-fermented soymilk extract could improve learning and memory in DOCA-salt hypertension-induced VaD rats by acting as a blood pressure-lowering and neuroprotective agent.

  2. Effect of captopril and melatonin on fibrotic rebuilding of the aorta in 24 hour light-induced hypertension.

    PubMed

    Repová-Bednárová, K; Aziriová, S; Hrenák, J; Krajčírovičová, K; Adamcová, M; Paulis, L; Simko, F

    2013-01-01

    Chronic continuous light exposure leads to melatonin deficiency along with complex neurohumoral activation resulting in hypertension development in rats. The aim of this study was to show, whether continuous light induces fibrotic rebuilding of the aorta and whether the treatment with melatonin or angiotensin converting enzyme inhibitor captopril can prevent these potential alterations. In a six-week experiment, 3-month-old Wistar rats were divided into 4 groups (ten per group): controls, rats exposed to continuous light, exposed to continuous light plus treated with captopril (100 mg/kg/24 h) and exposed to continuous light plus treated with melatonin (10 mg/kg/24 h). Systolic blood pressure (SBP) and collagen type I and III in the media of thoracic aorta were measured. Continuous light induced hypertension and fibrotic rebuilding of the aorta in terms of enhancement of collagen I and III concentration in the aortic media. Both captopril and melatonin prevented SBP rise and reduced collagen III concentration in the aorta. However, only melatonin reduced collagen I and the sum of collagen I and III in the aortic tissue. We conclude that in continuous light-induced hypertension, administration of melatonin, along with SBP reduction, decreases collagen I and III concentration in the aorta. It is suggested that antifibrotic effect of melatonin may reduce the stiffness of the aorta and small arteries and beneficially influence the nature of the pulse wave and peripheral vascular resistance.

  3. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats

    SciTech Connect

    Sarath, Thengumpallil Sasindran; Waghe, Prashantkumar; Gupta, Priyanka; Choudhury, Soumen; Kannan, Kandasamy; Pillai, Ayyappan Harikrishna; Harikumar, Sankaran Kutty; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2014-11-01

    Chronic arsenic exposure has been linked to elevated blood pressure and cardiovascular diseases, while statins reduce the incidence of cardiovascular disease predominantly by their low density lipoprotein-lowering effect. Besides, statins have other beneficial effects, including antioxidant and anti-inflammatory activities. We evaluated whether atorvastatin, a widely used statin, can ameliorate arsenic-induced increase in blood pressure and alteration in lipid profile and also whether the amelioration could relate to altered NO and ROS signaling. Rats were exposed to sodium arsenite (100 ppm) through drinking water for 90 consecutive days. Atorvastatin (10 mg/kg bw, orally) was administered once daily during the last 30 days of arsenic exposure. On the 91st day, blood was collected for lipid profile. Western blot of iNOS and eNOS protein, NO and 3-nitrotyrosine production, Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation, lipid peroxidation and antioxidants were evaluated in thoracic aorta. Arsenic increased systolic, diastolic and mean arterial blood pressure, while it decreased HDL-C and increased LDL-C, total cholesterol and triglycerides in serum. Arsenic down-regulated eNOS and up-regulated iNOS protein expression and increased basal NO and 3-nitrotyrosine level. Arsenic increased aortic Nox-4 and p22Phox mRNA expression, Nox activity, ROS generation and lipid peroxidation. Further, arsenic decreased the activities of superoxide dismutase, catalase, and glutathione peroxidase and depleted aortic GSH content. Atorvastatin regularized blood pressure, improved lipid profile and attenuated arsenic-mediated redox alterations. The results demonstrate that atorvastatin has the potential to ameliorate arsenic-induced hypertension by improving lipid profile, aortic NO signaling and restoring vascular redox homeostasis. - Highlights: • Arsenic increased systolic, diastolic and mean arterial blood pressure and caused dyslipidemia. • Arsenic increased

  4. Induction of heme oxygenase-1 attenuates sFlt-1-induced hypertension in pregnant rats

    PubMed Central

    George, Eric M.; Arany, Marietta; Cockrell, Kathy; Storm, Megan V.; Stec, David E.

    2011-01-01

    Preeclampsia (PE) is one of the leading causes of fetal and maternal morbidity, affecting 5–10% of all pregnancies, and lacks an effective treatment. The exact etiology of the disorder is unclear, but placental ischemia has been shown to be a central causative agent. In response to placental ischemia, the antiangiogenic protein fms-like tyrosine kinase-1 (sFlt-1), a VEGF antagonist, and reactive oxygen species are secreted, leading to the maternal syndrome. One promising therapeutic approach to treat PE is through manipulation of the heme oxygenase-1 (HO-1) protein. It has been previously reported that HO-1 and carbon monoxide downregulate sFlt-1 production in vitro, and we have recently shown that HO-1 induction significantly attenuates placental ischemia-induced hypertension, partially through normalization of the sFlt-1-to-VEGF ratio in the placenta. The purpose of this study was to determine whether HO-1 induction would have beneficial effects independently of sFlt-1 suppression. To that end, pregnant rats were continuously infused with recombinant sFlt-1 from gestational days 14–19, and circulating sFlt-1 increased approximately twofold, similar to rats with experimentally induced placental ischemia. In response, mean arterial pressure increased 17 mmHg, which was completely normalized by HO-1 induction. Unbound circulating VEGF was decreased ∼17% in response to sFlt-1 infusion but was increased ∼50% in response to HO-1 induction. Finally, endothelial function was improved as measured by reductions in vascular expression of preproendothelin mRNA. In conclusion, manipulation of HO-1 presents an intriguing therapeutic approach to the treatment of PE. PMID:21865547

  5. Pioglitazone alleviates cardiac and vascular remodelling and improves survival in monocrotaline induced pulmonary arterial hypertension.

    PubMed

    Behringer, Arnica; Trappiel, Manuela; Berghausen, Eva Maria; Ten Freyhaus, Henrik; Wellnhofer, Ernst; Odenthal, Margarete; Blaschke, Florian; Er, Fikret; Gassanov, Natig; Rosenkranz, Stephan; Baldus, Stephan; Kappert, Kai; Caglayan, Evren

    2016-04-01

    Pulmonary arterial hypertension (PAH) is a fatal disease with limited therapeutic options. Pathophysiological changes comprise obliterative vascular remodelling of small pulmonary arteries, elevated mean pulmonary arterial systolic pressure (PASP) due to elevated resistance of pulmonary vasculature, adverse right ventricular remodelling, and heart failure. Recent findings also indicate a role of increased inflammation and insulin resistance underlying the development of PAH. We hypothesized that treatment of this condition with the peroxisome proliferator-activated receptor-γ (PPARγ) activator pioglitazone, known to regulate the expression of different genes addressing insulin resistance, inflammatory changes, and vascular remodelling, could be a beneficial approach. PAH was induced in adult rats by a single subcutaneous injection of monocrotaline (MCT). Pioglitazone was administered for 2 weeks starting 3 weeks after MCT-injection. At day 35, hemodynamics, organ weights, and -indices were measured. We performed morphological and molecular characterization of the pulmonary vasculature, including analysis of the degree of muscularization, proliferation rates, and medial wall thickness of the small pulmonary arteries. Furthermore, markers of cardiac injury, collagen content, and cardiomyocyte size were analyzed. Survival rates were monitored throughout the experimental period. Pioglitazone treatment improved survival, reduced PASP, muscularization of small pulmonary arteries, and medial wall thickness. Further, MCT-induced right ventricular hypertrophy and fibrosis were attenuated. This was accompanied with reduced cardiac expression of brain natriuretic peptide, as well as decreased cardiomyocyte size. Finally, pulmonary macrophage content and osteopontin gene expression were attenuated. Based on the beneficial impact of pioglitazone, activation of PPARγ might be a promising treatment option in PAH.

  6. Hypoxia-induced pulmonary arterial hypertension augments lung injury and airway reactivity caused by ozone exposure.

    PubMed

    Zychowski, Katherine E; Lucas, Selita N; Sanchez, Bethany; Herbert, Guy; Campen, Matthew J

    2016-08-15

    Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability.

  7. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins.

    PubMed

    Hall, John E; da Silva, Alexandre A; do Carmo, Jussara M; Dubinion, John; Hamza, Shereen; Munusamy, Shankar; Smith, Grant; Stec, David E

    2010-06-04

    Excess weight gain contributes to increased blood pressure in most patients with essential hypertension. Although the mechanisms of obesity hypertension are not fully understood, increased renal sodium reabsorption and impaired pressure natriuresis play key roles. Several mechanisms contribute to altered kidney function and hypertension in obesity, including activation of the sympathetic nervous system, which appears to be mediated in part by increased levels of the adipocyte-derived hormone leptin, stimulation of pro-opiomelanocortin neurons, and subsequent activation of central nervous system melanocortin 4 receptors.

  8. Central renin-angiotensin system activation and inflammation induced by high fat diet sensitize angiotensin II-elicited hypertension

    PubMed Central

    Xue, Baojian; Thunhorst, Robert L.; Yu, Yang; Guo, Fang; Beltz, Terry G.; Felder, Robert B.; Johnson, Alan Kim

    2016-01-01

    Obesity has been shown to promote renin-angiotensin system (RAS) activity and inflammation in the brain and to be accompanied by increased sympathetic activity and blood pressure (BP). Our previous studies demonstrated that administration of a subpressor dose of angiotensin (Ang) II sensitizes subsequent Ang II-elicited hypertension. The present study tested whether high fat diet (HFD) feeding also sensitizes the Ang II-elicited hypertensive response and whether HFD-induced sensitization is mediated by an increase in RAS activity and inflammatory mechanisms in the brain. HFD did not increase baseline BP, but enhanced the hypertensive response to Ang II compared to a normal fat diet. The sensitization produced by the HFD was abolished by concomitant central infusions of either a tumor necrosis factor α (TNF-α) synthesis inhibitor, pentoxifylline, an Ang II type 1 receptor (AT1-R) blocker, irbesartan or an inhibitor of microglial activation, minocycline. Furthermore, central pretreatment with TNF-α mimicked the sensitizing action of a central subpressor dose of Ang II, whereas central pentoxifylline or minocycline abolished this Ang II-induced sensitization. RT-PCR analysis of lamina terminalis tissue indicated that HFD feeding, central TNF-α or a central subpressor dose of Ang II upregulated mRNA expression of several components of the RAS and proinflammatory cytokines, whereas inhibition of AT1-R and of inflammation reversed these changes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by upregulation of the brain RAS and of central proinflammatory cytokines. PMID:26573717

  9. Palm oil tocotrienol fractions restore endothelium dependent relaxation in aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats.

    PubMed

    Muharis, Syed Putra; Top, Abdul Gapor Md; Murugan, Dharmani; Mustafa, Mohd Rais

    2010-03-01

    Diabetes and hypertension are closely associated with impaired endothelial function. Studies have demonstrated that regular consumption of edible palm oil may reverse endothelial dysfunction. The present study investigates the effect of palm oil fractions: tocotrienol rich fraction (TRF), alpha-tocopherol and refined palm olein (vitamin E-free fraction) on the vascular relaxation responses in the aortic rings of streptozotocin-induced diabetic and spontaneously hypertensive rats (SHR). We hypothesize that the TRF and alpha-tocopherol fractions are able to improve endothelial function in both diabetic and hypertensive rat aortic tissue. A 1,1-diphenyl picryl hydrazyl assay was performed on the various palm oil fractions to evaluate their antioxidant activities. Endothelium-dependent (acetylcholine) and endothelium-independent (sodium nitroprusside) relaxations were examined on streptozotocin-induced diabetic and SHR rat aorta following preincubation with the different fractions. In 1-diphenyl picryl hydrazyl antioxidant assay, TRF and alpha-tocopherol fractions exhibited a similar degree of activity while palm olein exhibited poor activity. TRF and alpha-tocopherol significantly improved acetylcholine-induced relaxations in both diabetic (TRF, 88.5% +/- 4.5%; alpha-tocopherol, 87.4% +/- 3.4%; vehicle, 65.0 +/- 1.6%) and SHR aorta (TRF, 72.1% +/- 7.9%; alpha-tocopherol, 69.8% +/- 4.0%, vehicle, 51.1% +/- 4.7%), while palm olein exhibited no observable effect. These results suggest that TRF and alpha-tocopherol fractions possess potent antioxidant activities and provide further support to the cardiovascular protective effects of palm oil vitamin E. TRF and alpha-tocopherol may potentially improve vascular endothelial function in diabetes and hypertension by their sparing effect on endothelium derived nitric oxide bioavailability.

  10. Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata.

    PubMed

    de Brito Alves, José L; de Oliveira, Jéssica M D; Ferreira, Diorginis J S; Barros, Monique A de V; Nogueira, Viviane O; Alves, Débora S; Vidal, Hubert; Leandro, Carol G; Lagranha, Cláudia J; Pirola, Luciano; da Costa-Silva, João H

    2016-12-01

    Maternal protein restriction during pregnancy and lactation predisposes the adult offspring to sympathetic overactivity and arterial hypertension. Although the underlying mechanisms are poorly understood, dysregulation of the oxidative balance has been proposed as a putative trigger of neural-induced hypertension. The aim of the study was to evaluate the association between the oxidative status at transcriptional and functional levels in the medulla oblongata and maternal protein restriction induced-hypertension. Wistar rat dams were fed a control (normal protein; 17% protein) or a low protein ((Lp); 8% protein) diet during pregnancy and lactation, and male offspring was studied at 90 days of age. Direct measurements of baseline arterial blood pressure (ABP) and heart rate (HR) were recorded in awakened offspring. In addition, quantitative RT-PCR was used to assess the mRNA expression of superoxide dismutase 1 (SOD1) and 2 (SOD2), catalase (CAT), glutathione peroxidase (GPx), Glutamatergic receptors (Grin1, Gria1 and Grm1) and GABA(A)-receptor-associated protein like 1 (Gabarapl1). Malondialdehyde (MDA) levels, CAT and SOD activities were examined in ventral and dorsal medulla. Lp rats exhibited higher ABP. The mRNA expression levels of SOD2, GPx and Gabarapl1 were down regulated in medullary tissue of Lp rats (P<.05, t test). In addition, we observed that higher MDA levels were associated to decreased SOD (approximately 45%) and CAT (approximately 50%) activities in ventral medulla. Taken together, our data suggest that maternal protein restriction induced-hypertension is associated with medullary oxidative dysfunction at transcriptional level and with impaired antioxidant capacity in the ventral medulla.

  11. Repeated electroacupuncture attenuating of apelin expression and function in the rostral ventrolateral medulla in stress-induced hypertensive rats.

    PubMed

    Zhang, Cheng-Rong; Xia, Chun-Mei; Jiang, Mei-Yan; Zhu, Min-Xia; Zhu, Ji-Min; Du, Dong-Shu; Liu, Min; Wang, Jin; Zhu, Da-Nian

    2013-08-01

    Studies have revealed that apelin is a novel multifunctional peptide implicated both in blood pressure (BP) regulation and cardiac function control. Evidence shows that apelin and its receptor (APJ) in the rostral ventrolateral medulla (RVLM) may play an important role in central BP regulation; however, its role is controversial and very few reports have shown the relationship between acupuncture and apelin. Our study aims to both investigate the apelinergic system role in stress-induced hypertension (SIH) and determine whether acupuncture therapy effects on hypertension involve the apelinergic system in the RVLM. We established the stress-induced hypertensive rat (SIHR) model using electric foot-shock stressors with noise interventions. The expression of both apelin and the APJ receptor in the RVLM neurons was examined by immunohistochemical staining and Western blots. The results showed apelin expression increased remarkably in SIHR while APJ receptor expression showed no significant difference between control and SIHR groups. Microinjection of apelin-13 into the RVLM of control rats or SIHR produced pressor and tachycardic effects. Furthermore, effects induced by apelin-13 in SIHR were significantly greater than those of control rats. In addition, repetitive electroacupuncture (EA) stimulation at the Zusanli (ST-36) acupoint attenuated hypertension and apelin expression in the RVLM in SIHR; it also attenuated the pressor effect elicited by exogenous apelin-13 microinjection in SIHR. The results suggest that augmented apelin in the RVLM was part of the manifestations of SIH; the antihypertensive effects of EA might be associated with the attenuation of apelin expression and function in the RVLM, which might be a novel role for EA in SIH setting.

  12. Norepinephrine-induced relaxations in rat aorta mediated by endothelial beta adrenoceptors. Impairment by ageing and hypertension.

    PubMed

    Arribas, S; Marín, J; Ponte, A; Balfagón, G; Salaices, M

    1994-08-01

    The objective of the present work has been to analyze the influence of endothelium, ageing and hypertension in the norepinephrine (NE)-induced responses. For this purpose we used aortic rings from spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats of different ages. In rings with endothelium from 5-week-old WKY, cumulative addition of NE (0.01 and 0.1 microM) caused concentration-dependent contractions, whereas higher concentrations (1 and 10 microM) induced concentration-dependent relaxations. In 5-week-old SHR and 3-month-old WKY rats, these relaxant responses were observed only at 10 microM NE, and they disappeared in older animals from both strains. In endothelium denuded rings, NE induced only contractions, which were similar in WKY rats of different ages, but significantly increased in 6- and 12-month-old SHR. In both strains, the endothelium-dependent relaxant responses to NE were abolished by NG-nitro-L-arginine methyl ester and propranolol, but not modified by yohimbine or ouabain. Isoproterenol (0.01-10 microM) induced concentration-dependent vasodilation in rings from 5-week-old rats of both strains, precontracted with 1 microM NE. Isoproterenol-elicited responses were reduced by endothelium removal or by 0.1 mM NG-nitro-L-arginine methyl ester and abolished by 1 microM propranolol. These results suggest that: 1) in the aorta from young WKY and prehypertensive SHR rats, NE induces vasodilations mediated by activation of endothelial beta adrenoceptors and release of nitric oxide; 2) these responses are impaired during ageing and hypertension; and 3) there is an important negative endothelial modulation of NE-induced contraction in adult SHR rats.

  13. Liquorice: a root cause of secondary hypertension

    PubMed Central

    Ross, Calum N.

    2017-01-01

    We describe a patient presenting with hypertension and hypokalaemia who was ultimately diagnosed with liquorice- induced pseudohyperaldosteronism. This rare cause of secondary hypertension illustrates the importance of a methodical approach to the assessment of hypertension. PMID:28210494

  14. Inhibition of neutral sphingomyelinase decreases elevated levels of inducible nitric oxide synthase and apoptotic cell death in ocular hypertensive rats

    SciTech Connect

    Aslan, Mutay; Basaranlar, Goksun; Unal, Mustafa; Ciftcioglu, Akif; Derin, Narin; Mutus, Bulent

    2014-11-01

    Endoplasmic reticulum (ER) stress and excessive nitric oxide production via induction of inducible nitric oxide synthase (NOS2) have been implicated in the pathogenesis of neuronal retinal cell death in ocular hypertension. Neutral sphingomyelinase (N-SMase)/ceramide pathway can regulate NOS2 expression, hence this study determined the role of selective neutral sphingomyelinase (N-SMase) inhibition on retinal NOS2 levels, ER stress, apoptosis and visual evoked potentials (VEPs) in a rat model of elevated intraocular pressure (EIOP). NOS2 expression and retinal protein nitration were significantly greater in EIOP and significantly decreased with N-SMase inhibition. A significant increase was observed in retinal ER stress markers pPERK, CHOP and GRP78 in EIOP, which were not significantly altered by N-SMase inhibition. Retinal TUNEL staining showed increased apoptosis in all EIOP groups; however N-SMase inhibition significantly decreased the percent of apoptotic cells in EIOP. Caspase-3, -8 and -9 activities were significantly increased in EIOP and returned to baseline levels following N-SMase inhibition. Latencies of all VEP components were significantly prolonged in EIOP and shortened following N-SMase inhibition. Data confirm the role of nitrative injury in EIOP and highlight the protective effect of N-SMase inhibition in EIOP via down-regulation of NOS2 levels and nitrative stress. - Highlights: • Inhibition of N-SMase decreases NOS2 levels in ocular hypertension. • Inhibition of N-SMase decreases protein nitration in ocular hypertension. • Inhibition of N-SMase decreases caspase activation in ocular hypertension. • Inhibition of N-SMase decreases apoptosis in ocular hypertension.

  15. Insight into molecular mechanisms of ultrafine carbon particle induced cardiovascular impairments in spontaneously hypertensive rats.

    EPA Science Inventory

    Rationale: Exposure to ambient particulate matter is a risk factor for cardiopulmonary disease as identified in several epidemiological studies. Radio telemetric analysis detected increased heart rate and blood pressure in Spontaneously Hypertensive Rats (SHR) following inhalatio...

  16. Optical cryoimaging of rat kidney and the effective role of chromosome 13 in salt-induced hypertension

    NASA Astrophysics Data System (ADS)

    Salehpour, F.; Yang, C.; Kurth, T.; Cowley, A. W.; Ranji, M.

    2015-03-01

    The objective of this work is to assess oxidative stress levels in salt-sensitive hypertension animal model using 3D optical cryoimager to image mitochondrial redox ratio. We studied Dahl salt-induced (SS) rats, and compared the results with a consomic SS rat strain (SSBN13). The SSBN13 strain was developed by the introgression of chromosome from the Brown Norway (BN) rat into the salt-sensitive (SS) genetic background and exhibits significant protection from salt induced hypertension1 . These two groups were fed on a high salt diet of 8.0% NaCl for one week. Mitochondrial redox ratio (NADH/FAD=NADH RR), was used as a quantitative marker of the oxidative stress in kidney tissue. Maximum intensity projected images and their corresponding histograms in each group were acquired from each kidney group. The result showed a 49% decrease in mitochondrial redox ratio of SS compared to SSBN13 translated to an increase in the level of oxidative stress of the tissue. Therefore, the results quantify oxidative stress levels and its effect on mitochondrial redox in salt sensitive hypertension.

  17. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

    PubMed

    Barnes, Elizabeth A; Chen, Chih-Hsin; Sedan, Oshra; Cornfield, David N

    2017-02-01

    Pulmonary arterial hypertension (PAH) is an often fatal disease with limited treatment options. Whereas current data support the notion that, in pulmonary artery endothelial cells (PAECs), expression of transcription factor hypoxia inducible factor-1α (HIF-1α) is increased, the role of HIF-1α in pulmonary artery smooth muscle cells (PASMCs) remains controversial. This study investigates the hypothesis that, in PASMCs from patients with PAH, decreases in HIF-1α expression and activity underlie augmented pulmonary vascular contractility. PASMCs and tissues were isolated from nonhypertensive control patients and patients with PAH. Compared with controls, HIF-1α and Kv1.5 protein expression were decreased in PAH smooth muscle cells (primary culture). Myosin light chain (MLC) phosphorylation and MLC kinase (MLCK) activity-major determinants of vascular tone-were increased in patients with PAH. Cofactors involved in prolyl hydroxylase domain activity were increased in PAH smooth muscle cells. Functionally, PASMC contractility was inversely correlated with HIF-1α activity. In PASMCs derived from patients with PAH, HIF-1α expression is decreased, and MLCK activity, MLC phosphorylation, and cell contraction are increased. We conclude that compromised PASMC HIF-1α expression may contribute to the increased tone that characterizes pulmonary hypertension.-Barnes, E. A., Chen, C.-H., Sedan, O., Cornfield, D. N. Loss of smooth muscle cell hypoxia inducible factor-1α underlies increased vascular contractility in pulmonary hypertension.

  18. Hypertension and hypertensive encephalopathy.

    PubMed

    Price, Raymond S; Kasner, Scott E

    2014-01-01

    The definition of hypertension has continuously evolved over the last 50 years. Hypertension is currently defined as a blood pressure greater than 140/90mmHg. One in every four people in the US has been diagnosed with hypertension. The prevalence of hypertension increases further with age, affecting 75% of people over the age of 70. Hypertension is by far the most common risk factor identified in stroke patients. Hypertension causes pathologic changes in the walls of small (diameter<300 microns) arteries and arterioles usually at short branches of major arteries, which may result in either ischemic stroke or intracerebral hemorrhage. Reduction of blood pressure with diuretics, β-blockers, calcium channel blockers, and angiotensin-converting enzyme (ACE) inhibitors have all been shown to markedly reduce the incidence of stroke. Hypertensive emergency is defined as a blood pressure greater than 180/120mmHg with end organ dysfunction, such as chest pain, shortness of breath, encephalopathy, or focal neurologic deficits. Hypertensive encephalopathy is believed to be caused by acute failure of cerebrovascular autoregulation. Hypertensive emergency is treated with intravenous antihypertensive agents to reduce blood pressure by 25% within the first hour. Selective inhibition of cerebrovascular blood vessel permeability for the treatment of hypertensive emergency is beginning early clinical trials.

  19. Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide.

    PubMed

    Xue, Baojian; Singh, Minati; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2009-11-01

    protective role against ANG II-induced hypertension in female mice.

  20. Alpha-adrenoceptor antagonists and chemical sympathectomy exacerbate anaphylaxis-induced hypotension, but not portal hypertension, in anesthetized rats.

    PubMed

    Wang, Mofei; Tanida, Mamoru; Shibamoto, Toshishige; Kurata, Yasutaka

    2013-10-15

    Anaphylactic shock is sometimes life-threatening, and it is accompanied by hepatic venoconstriction in animals, which, in part, accounts for anaphylactic hypotension. Roles of norepinephrine and α-adrenoceptor in anaphylaxis-induced hypotension and portal hypertension were investigated in anesthetized ovalbumin-sensitized Sprague-Dawley rats. The sensitized rats were randomly allocated to the following pretreatment groups (n = 6/group): 1) control (nonpretreatment), 2) α1-adrenoceptor antagonist prazosin, 3) nonselective α-adrenoceptor antagonist phentolamine, 4) 6-hydroxydopamine-induced chemical sympathectomy, and 5) surgical hepatic sympathectomy. Anaphylactic shock was induced by an intravenous injection of the antigen. The systemic arterial pressure (SAP), central venous pressure (CVP), portal venous pressure (PVP), and portal venous blood flow (PBF) were measured, and splanchnic [Rspl: (SAP-PVP)/PBF] and portal venous [Rpv: (PVP-CVP)/PBF] resistances were determined. Separately, we measured efferent hepatic sympathetic nerve activity during anaphylaxis. In the control group, SAP markedly decreased, followed by a gradual recovery toward baseline. PVP and Rpv increased 3.2- and 23.3-fold, respectively, after antigen. Rspl decreased immediately, but only transiently, after antigen, and then increased 1.5-fold later than 10 min. The α-adrenoceptor antagonist pretreatment or chemical sympathectomy inhibited the late increase in Rspl and the SAP recovery. Pretreatment with α-adrenoceptor antagonists, or either chemical or surgical hepatic sympathectomy, did not affect the antigen-induced increase in Rpv. Hepatic sympathetic nerve activity did not significantly change after antigen. In conclusion, α-adrenoceptor antagonists and chemical sympathectomy exacerbate anaphylaxis-induced hypotension, but not portal hypertension, in anesthetized rats. Hepatic sympathetic nerves are not involved in anaphylactic portal hypertension.

  1. Estrogen receptor-β in the paraventricular nucleus and rostroventrolateral medulla plays an essential protective role in aldosterone/salt-induced hypertension in female rats.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Beltz, Terry G; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2013-06-01

    The identification of the specific estrogen receptor (ER) subtypes that are involved in estrogen protection from hypertension and their specific locations in the central nervous system is critical to our understanding and design of effective estrogen replacement therapies in women. Using selective ER agonists and recombinant adeno-associated virus (AAV) carrying small interference (si) RNA to silence either ERα (AAV-siRNA-ERα) or ERβ (AAV-siRNA-ERβ), the present study investigated regional specificity of different ER subtypes in the protective actions of estrogen in aldosterone (Aldo)-induced hypertension. Intracerebroventricular infusions of either diarylpropionitrile, a selective ERβ agonist, or propyl-pyrazole-triol, a selective ERα agonist, attenuated Aldo/NaCl-induced hypertension in ovariectomized rats. In contrast, intracerebroventricular injections of siRNA-ERα or siRNA-ERβ augmented Aldo-induced hypertension in intact females. Site-specific paraventricular nucleus (PVN) or rostroventrolateral medulla (RVLM) injections of siRNA-ERβ augmented Aldo-induced hypertension. However, rats with PVN or RVLM injections of siRNA-ERα did not significantly increase blood pressure induced by Aldo. Real-time polymerase chain reaction analyses of the PVN and RVLM of siRNA-injected rat confirmed a marked reduction in the expression of ERα and ERβ. In cultured PVN neurons, silencing either ERα or ERβ by culturing PVN neurons with siRNA-ERα or siRNA-ERβ enhanced Aldo-induced reactive oxygen species production. Ganglionic blockade after Aldo infusion showed an increase in sympathetic activity in ERβ knockdown rats. These results indicate that both PVN and RVLM ERβ, but not ERα in these nuclei, contribute to the protective effects of estrogen against Aldo-induced hypertension. The brain regions responsible for the protective effects of estrogen interaction with ERα in Aldo-induced hypertension still need to be determined.

  2. Vascular Smooth Muscle Sirtuin-1 Protects Against Aortic Dissection During Angiotensin II–Induced Hypertension

    PubMed Central

    Fry, Jessica L; Shiraishi, Yasunaga; Turcotte, Raphaël; Yu, Xunjie; Gao, Yuan Z; Akiki, Rachid; Bachschmid, Markus; Zhang, Yanhang; Morgan, Kathleen G; Cohen, Richard A; Seta, Francesca

    2015-01-01

    Background Sirtuin-1 (SirT1), a nicotinamide adenine dinucleotide+–dependent deacetylase, is a key enzyme in the cellular response to metabolic, inflammatory, and oxidative stresses; however, the role of endogenous SirT1 in the vasculature has not been fully elucidated. Our goal was to evaluate the role of vascular smooth muscle SirT1 in the physiological response of the aortic wall to angiotensin II, a potent hypertrophic, oxidant, and inflammatory stimulus. Methods and Results Mice lacking SirT1 in vascular smooth muscle (ie, smooth muscle SirT1 knockout) had drastically high mortality (70%) caused by aortic dissection after angiotensin II infusion (1 mg/kg per day) but not after an equipotent dose of norepinephrine, despite comparable blood pressure increases. Smooth muscle SirT1 knockout mice did not show any abnormal aortic morphology or blood pressure compared with wild-type littermates. Nonetheless, in response to angiotensin II, aortas from smooth muscle SirT1 knockout mice had severely disorganized elastic lamellae with frequent elastin breaks, increased oxidant production, and aortic stiffness compared with angiotensin II–treated wild-type mice. Matrix metalloproteinase expression and activity were increased in the aortas of angiotensin II–treated smooth muscle SirT1 knockout mice and were prevented in mice overexpressing SirT1 in vascular smooth muscle or with use of the oxidant scavenger tempol. Conclusions Endogenous SirT1 in aortic smooth muscle is required to maintain the structural integrity of the aortic wall in response to oxidant and inflammatory stimuli, at least in part, by suppressing oxidant-induced matrix metalloproteinase activity. SirT1 activators could potentially be a novel therapeutic approach to prevent aortic dissection and rupture in patients at risk, such as those with hypertension or genetic disorders, such as Marfan’s syndrome. PMID:26376991

  3. Downregulation of vascular soluble guanylate cyclase induced by high salt intake in spontaneously hypertensive rats

    PubMed Central

    Kagota, Satomi; Tamashiro, Akiko; Yamaguchi, Yu; Sugiura, Reiko; Kuno, Takayoshi; Nakamura, Kazuki; Kunitomo, Masaru

    2001-01-01

    Cyclic guanosine monophosphate (cyclic GMP)-mediated mechanism plays an important role in vasodilatation and blood pressure regulation. We investigated the effects of high salt intake on the nitric oxide (NO) – cyclic GMP signal transduction pathway regulating relaxation in aortas of spontaneously hypertensive rats (SHR).Four-week-old SHR and normotensive Wistar-Kyoto rats (WKY) received a normal salt diet (0.3% NaCl) or a high salt diet (8% NaCl) for 4 weeks.In aortic rings from SHR, endothelium-dependent relaxations in response to acetylcholine (ACh), adenosine diphosphate (ADP) and calcium ionophore A23187 were significantly impaired by the high salt intake. The endothelium-independent relaxations in response to sodium nitroprusside (SNP) and nitroglycerin were also impaired, but that to 8-bromo-cyclic GMP remained unchanged. On the other hand, high salt diet had no significant effects on the relaxations of aortic rings from WKY.In aortas from SHR, the release of NO stimulated by ACh was significantly enhanced, whereas the production of cyclic GMP induced by either ACh or SNP was decreased by the high salt intake.Western blot analysis showed that the protein level of endothelial NO synthase (eNOS) was slightly increased, whereas that of soluble guanylate cyclase (sGC) was dramatically reduced by the high salt intake.These results indicate that in SHR, excessive dietary salt can result in downregulation of sGC followed by decreased cyclic GMP production, which leads to impairment of vascular relaxation in responses to NO. It is notable that chronic high salt intake impairs the sGC/cyclic GMP pathway but not the eNOS/NO pathway. PMID:11606313

  4. Reversibility of cold-induced hypertension after removal of rats from cold.

    PubMed

    Shechtman, O; Papanek, P E; Fregly, M J

    1990-07-01

    Chronic exposure of rats to cold air induces hypertension, including elevation of blood pressure and cardiac hypertrophy. The present study was designed to assess reversibility of these changes after removal from cold. Five groups of six male rats each were exposed to cold (5 +/- 2 degrees C) for 39 days, while six control rats were maintained at 26 +/- 2 degrees C. Systolic blood pressures of the rats in one of the cold-treated groups, as well as the controls, were measured twice weekly throughout the experiment. Blood pressure of the cold-exposed rats (150 +/- 3 mmHg; 1 mmHg = 133.3 Pa) became elevated significantly above that of controls (129 +/- 3 mmHg) within 4 weeks. On day 39 of cold exposure, one group (six rats) of the cold-treated rats was sacrificed while still in the cold. The remaining four groups of cold-treated rats were than removed from cold and kept at 26 +/- 2 degrees C. One group of cold-treated rats was sacrificed weekly thereafter. During the last week, the six control rats were also sacrificed. At death, the heart, kidneys, and adrenal glands were removed and weighed. Mean heart weight of the cold-treated group (346 +/- 7 mg/100 g body weight), sacrificed prior to removal from cold, was significantly (p less than 0.01) greater than that of controls (268 +/- 5 mg/100 g body weight). The increased heart weight of the cold-treated group appeared to result mainly from an increase in left ventricular weight.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Exogenous administration of thiosulfate, a donor of hydrogen sulfide, attenuates angiotensin II-induced hypertensive heart disease in rats

    PubMed Central

    Snijder, P M; Frenay, A R; de Boer, R A; Pasch, A; Hillebrands, J L; Leuvenink, H G D; van Goor, H

    2015-01-01

    Background and Purpose Hypertension is an important mediator of cardiac damage and remodelling. Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter with cardioprotective properties. However, it is not yet in clinical use. We, therefore, investigated the protective effects of sodium thiosulfate (STS), a clinically applicable H2S donor substance, in angiotensin II (Ang II)-induced hypertensive cardiac disease in rats. Experimental Approach Male Sprague Dawley rats were infused with Ang II (435 ng kg min−1) or saline (control) for 3 weeks via s.c. placed osmotic minipumps. During these 3 weeks, rats received i.p. injections of either STS, NaHS or vehicle (0.9% NaCl). Key Results Compared with controls, Ang II infusion caused an increase in systolic and diastolic BP with associated cardiac damage as evidenced by cardiac hypertrophy, an increase in atrial natriuretic peptide (ANP) mRNA, cardiac fibrosis and increased oxidative stress. Treatment with NaHS and STS prevented the development of hypertension and the increase in ANP mRNA levels. Furthermore, the degree of cardiac hypertrophy, the extent of histological fibrosis in combination with the expression of profibrotic genes and the levels of oxidative stress were all significantly decreased. Conclusions and Implications Ang II-induced hypertensive cardiac disease can be attenuated by treatment with STS and NaHS. Although BP regulation is the most plausible mechanism of cardiac protection, the antifibrotic and antioxidant properties of released sulfide may also contribute to their effects. Our data show that H2S might be a valuable addition to the already existing antihypertensive and cardioprotective therapies. Linked Articles This article is part of a themed section on Pharmacology of the Gasotransmitters. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-6 PMID:24962324

  6. Beneficial effects of Acer okamotoanum sap on L-NAME-induced hypertension-like symptoms in a rat model.

    PubMed

    Yang, Hyun; Hwang, Inho; Koo, Tae-Hyoung; Ahn, Hyo-Jin; Kim, Sun; Park, Mi-Jin; Choi, Won-Sil; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-02-01

    The sap of Acer okamotoanum has been termed 'bone-benefit-water' in Korea owing to its mineral and sugar content. In particular, the calcium (Ca) and potassium (K) concentrations of the sap of Acer okamotoanum are 40- and 20-times higher, respectively, than commercial spring water. In the present study, we examined whether Acer okamotoanum sap improves or prevents hypertension-like symptoms in a rat model. Male Sprague-Dawley rats (8-weeks-old) were provided commercial spring water supplemented with 25, 50 or 100% Acer okamotoanum sap, 3% potassium ions (K+) or captopril, and treated daily for 2 weeks with NG-nitro-L-arginine methyl ester (L-NAME; 100 mg/kg/day) by subcutaneous injection, in order to induce hypertensive symptoms. Rats were euthanized 6 h following the final injection. To assess the effect of the sap on hypertension-like symptoms, we examined the mean blood pressure (BP), protein levels and localization of endothelial nitric oxide synthase (eNOS) in the descending aorta of the rats. BP levels were significantly lower in hypertensive rats received 25, 50 and 100% sap compared with rats who were administered only commercial spring water. Protein levels of eNOS were repressed in L-NAME-only-treated rats, but were elevated in the descending aorta of rats administered captopril, K+ water and Acer okamotoanum sap (25, 50 and 100%) up to the level of the sham group provided commercial spring water, and then injected with dimethyl sulfoxide for the same period of time. Localized eNOS protein was abundantly expressed in the perivascular descending aorta adipose tissue of the rats. Taken together, these results demonstrated that the sap of Acer okamotoanum ameliorated high BP induced by L-NAME treatment in a rat model.

  7. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension.

    PubMed

    Zhang, Meng; Qin, Da-Nian; Suo, Yu-Ping; Su, Qing; Li, Hong-Bao; Miao, Yu-Wang; Guo, Jing; Feng, Zhi-Peng; Qi, Jie; Gao, Hong-Li; Mu, Jian-Jun; Zhu, Guo-Qing; Kang, Yu-Ming

    2015-06-15

    Reactive oxygen species (ROS) in the brain plays an important role in the progression of hypertension and hydrogen peroxide (H2O2) is a major component of ROS. The aim of this study is to explore whether endogenous H2O2 changed by polyethylene glycol-catalase (PEG-CAT) and aminotriazole (ATZ) in the hypothalamic paraventricular nucleus (PVN) regulates neurotransmitters, renin-angiotensin system (RAS), and cytokines, and whether subsequently affects the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in high salt-induced hypertension. Male Sprague-Dawley rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 10 weeks. Then rats were treated with bilateral PVN microinjection of PEG-CAT (0.2 i.u./50nl), an analog of endogenous catalase, the catalase inhibitor ATZ (10nmol/50nl) or vehicle. High salt-fed rats had significantly increased MAP, RSNA, plasma norepinephrine (NE) and pro-inflammatory cytokines (PICs). In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), interleukin-1beta (IL-1β), glutamate and NE, and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN than normal diet rats. Bilateral PVN microinjection of PEG-CAT attenuated the levels of RAS and restored the balance of neurotransmitters and cytokines, while microinjection of ATZ into the PVN augmented those changes occurring in hypertensive rats. Our findings demonstrate that ROS component H2O2 in the PVN regulating MAP and RSNA are partly due to modulate neurotransmitters, renin-angiotensin system, and cytokines within the PVN in salt-induced hypertension.

  8. Endocannabinoid-mediated modulation of Gq/11 protein-coupled receptor signaling-induced vasoconstriction and hypertension.

    PubMed

    Szekeres, Mária; Nádasy, György L; Turu, Gábor; Soltész-Katona, Eszter; Benyó, Zoltán; Offermanns, Stefan; Ruisanchez, Éva; Szabó, Eszter; Takáts, Zoltán; Bátkai, Sándor; Tóth, Zsuzsanna E; Hunyady, László

    2015-03-05

    Activation of G protein-coupled receptors (GPCRs) can induce vasoconstriction via calcium signal-mediated and Rho-dependent pathways. Earlier reports have shown that diacylglycerol produced during calcium signal generation can be converted to an endocannabinoid, 2-arachidonoylglycerol (2-AG). Our aim was to provide evidence that GPCR signaling-induced 2-AG production and activation of vascular type1 cannabinoid receptors (CB1R) is capable of reducing agonist-induced vasoconstriction and hypertension. Rat and mouse aortic rings were examined by myography. Vascular expression of CB1R was demonstrated with immunohistochemistry. Rat aortic vascular smooth muscle cells (VSMCs) were cultured for calcium measurements and 2-AG-determination. Inhibition or genetic loss of CB1Rs enhanced vasoconstriction induced by angiotensin II (AngII) or phenylephrine (Phe), but not by prostaglandin(PG)F2α. AngII-induced vasoconstriction was augmented by inhibition of diacylglycerol lipase (tetrahydrolipstatin) and was attenuated by inhibition of monoacylglycerol lipase (JZL184) suggesting a functionally relevant role for endogenously produced 2-AG. In Gαq/11-deficient mice vasoconstriction was absent to AngII or Phe, which activate Gq/11-coupled receptors, but was maintained in response to PGF2α. In VSMCs, AngII-stimulated 2-AG-formation was inhibited by tetrahydrolipstatin and potentiated by JZL184. CB1R inhibition increased the sustained phase of AngII-induced calcium signal. Pharmacological or genetic loss of CB1R function augmented AngII-induced blood pressure rise in mice. These data demonstrate that vasoconstrictor effect of GPCR agonists is attenuated via Gq/11-mediated vascular endocannabinoid formation. Agonist-induced endocannabinoid-mediated CB1R activation is a significant physiological modulator of vascular tone. Thus, the selective modulation of GPCR signaling-induced endocannabinoid release has a therapeutic potential in case of increased vascular tone and hypertension.

  9. Onset and Regression of Pregnancy-Induced Cardiac Alterations in Gestationally Hypertensive Mice: The Role of the Natriuretic Peptide System.

    PubMed

    Ventura, Nicole M; Li, Terry Y; Tse, M Yat; Andrew, R David; Tayade, Chandrakant; Jin, Albert Y; Pang, Stephen C

    2015-12-01

    Pregnancy induces cardiovascular adaptations in response to increased volume overload. Aside from the hemodynamic changes that occur during pregnancy, the maternal heart also undergoes structural changes. However, cardiac modulation in pregnancies complicated by gestational hypertension is incompletely understood. The objectives of the current investigation were to determine the role of the natriuretic peptide (NP) system in pregnancy and to assess alterations in pregnancy-induced cardiac hypertrophy between gestationally hypertensive and normotensive dams. Previously we have shown that mice lacking the expression of atrial NP (ANP; ANP(-/-)) exhibit a gestational hypertensive phenotype. In the current study, female ANP(+/+) and ANP(-/-) mice were mated with ANP(+/+) males. Changes in cardiac size and weight were evaluated across pregnancy at Gestational Days 15.5 and 17.5 and Postnatal Days 7, 14, and 28. Nonpregnant mice were used as controls. Physical measurement recordings and histological analyses demonstrated peak cardiac hypertrophy occurring at 14 days postpartum in both ANP(+/+) and ANP(-/-) dams with little to no change during pregnancy. Additionally, left ventricular expression of the renin-angiotensin system (RAS) and NP system was quantified by real-time quantitative polymerase chain reaction. Up-regulation of Agt and AT(1a) genes was observed late in pregnancy, while Nppa and Nppb genes were significantly up-regulated postpartum. Our data suggest that pregnancy-induced cardiac hypertrophy may be influenced by the RAS throughout gestation and by the NP system postpartum. Further investigations are required to gain a complete understanding of the mechanistic aspects of pregnancy-induced cardiac hypertrophy.

  10. [Action of DDPH in the interventional treatment of portal hypertension induced by liver cirrhosis in rabbits].

    PubMed

    Qian, J; Feng, G; Liang, H

    1998-01-01

    To explore a new way of utilizing intervential treatment to effectively decrease the portal hypertension, the animal models of liver cirrhosis accompanying portal hypertension were set up by intraportal vein injection of suspensions of Bletilla striata to 10 rabbits by means of prospective investigational method. The catheter filled with heparin solution was remained in theportal vein for infusion of drugs. Three weeks later, DDPH solution was injected into the portal vein via the catheter to determine its effect of decreasing portal vein pressure and its influence of peripheral blood pressure and heart rate. At the same time, other 10 rabbits with liver cirrhosis associated with portal hypertension were subjected to the injection of DDPH solution via the ear vein served as control group. The results showed that administration of DDPH by portal vein could rapidly, safely and effectively decrease the portal hypertenive pressure without side effects and partially reverse liver cirrhosis, as compared with injection of DDPH via peripheral veins. It was concluded that DDPH exerted its alpha 1-adrenoceptor blocking and calcium antagonistic effects, thereby significantly reduce the portal hypertension. Injection of DDPH via portal vein is a completely new and relaible method for the treatment of liver cirrhosis with portal hypertension.

  11. Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension

    PubMed Central

    Hernanz, R; Martínez-Revelles, S; Palacios, R; Martín, A; Cachofeiro, V; Aguado, A; García-Redondo, L; Barrús, M T; de Batista, P R; Briones, A M; Salaices, M; Alonso, M J

    2015-01-01

    Background and Purpose Toll-like receptor 4 (TLR4) signalling contributes to inflammatory cardiovascular diseases, but its role in hypertension and the associated vascular damage is not known. We investigated whether TLR4 activation contributed to angiotensin II (AngII)-induced hypertension and the associated vascular structural, mechanical and functional alterations. Experimental Approach AngII was infused (1.44 mg·kg−1·day−1, s.c.) for 2 weeks in C57BL6 mice, treated with a neutralizing anti-TLR4 antibody or IgG (1 μg·day−1); systolic BP (SBP) and aortic cytokine levels were measured. Structural, mechanical and contractile properties of aortic and mesenteric arterial segments were measured with myography and histology. RT-PCR and Western blotting were used to analyse these tissues and cultured vascular smooth muscle cells (VSMC) from hypertensive rats (SHR). Key Results Aortic TLR4 mRNA levels were raised by AngII infusion. Anti-TLR4 antibody treatment of AngII-treated mice normalised: (i) increased SBP and TNF-α, IL-6 and CCL2 levels; (ii) vascular structural and mechanical changes; (iii) altered aortic phenylephrine- and ACh-induced responses; (iv) increased NOX-1 mRNA levels, superoxide anion production and NAD(P)H oxidase activity and effects of catalase, apocynin, ML-171 and Mito-TEMPO on vascular responses; and (v) reduced NO release and effects of L-NAME on phenylephrine-induced contraction. In VSMC, the MyD88 inhibitor ST-2825 reduced AngII-induced NAD(P)H oxidase activity. The TLR4 inhibitor CLI-095 reduced AngII-induced increased phospho-JNK1/2 and p65 NF-κB subunit nuclear protein expression. Conclusions and Implications TLR4 up-regulation by AngII contributed to the inflammation, endothelial dysfunction, vascular remodelling and stiffness associated with hypertension by mechanisms involving oxidative stress. MyD88-dependent activation and JNK/NF-κB signalling pathways participated in these alterations. PMID:25712370

  12. Beneficial effects of losartan on vascular injury induced by advanced glycosylation end products and their receptors in spontaneous hypertension rats.

    PubMed

    Zhu, Wei-Wei; Liu, Xue-Ping; Wu, Nan; Zhao, Ting-Ting; Zhao, Yong; Zhang, Jie; Shao, Jian-Hua

    2007-10-01

    This study was designed to explore the role of losartan, an angiotensin II receptor blocker, in hypertensive injuries of blood vessels and the potential mechanisms related to the vascular advanced glycosylation end product (AGE)/receptor (RAGE) system, oxidative stress and endothelial proinflammatory factors. Spontaneously hypertensive rats (SHR) were employed for our study, and age-matched Wistar-Kyoto rats (WKY) were used for control experiments. After losartan treatment for 12 weeks, we observed by immunofluorescence that the vascular AGE level in the losartan group was significantly lower than that of the SHR group and that the vascular mRNA expression of RAGE, NF-kappaB, NADPH oxidase p47phox and ET-1, as detected by RT-PCR, was significantly lower in losartan group than in the SHR group. Meanwhile, we found that the expression of RAGE and NF-kappaB proteins in the losartan group and the WKY group was remarkably lower than that of the SHR group. Compared with the SHR group, the activities of plasma superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) and the NO level were robustly increased, while the plasma malondialdehyde (MDA) and ET-1 were substantially reduced. These findings suggest that losartan decreases the vascular AGE level, suppresses RAGE and NF-kappaB activation, and enhances the antioxidant capacity thereby improving the endothelial function, which induce hypertensive vascular remodeling.

  13. Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries.

    PubMed

    Fransen, Paul; Van Hove, Cor E; Leloup, Arthur J A; Schrijvers, Dorien M; De Meyer, Guido R Y; De Keulenaer, Gilles W

    2016-02-01

    Arterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks). Normotensive mice treated with saline-filled osmotic mini-pumps were used for comparison. Voltage-dependent contractions mediated by L-type Ca(2+) channels were studied in vaso-reactive studies in vitro in isolated aortic and femoral arteries by using extracellular K(+) concentration-response (KDR) experiments. In aortic segments, AngII-induced AHT significantly sensitized isometric contractions induced by elevated extracellular K(+) and depolarization. This sensitization was partly prevented by normalizing blood pressure with hydralazine, suggesting that it was caused by AHT rather than by direct AngII effects on aortic smooth muscle cells. The EC50 for extracellular K(+) obtained in vitro correlated significantly with the rise in arterial blood pressure induced by AngII in vivo. The AHT-induced sensitization persisted when aortic segments were exposed to levcromakalim or to inhibitors of basal nitric oxide release. Consistent with these observations, AngII-treatment also sensitized the vaso-relaxing effects of the L-type Ca(2+) channel blocker diltiazem during K(+)-induced contractions. Unlike aorta, AngII-treatment desensitized the isometric contractions to depolarization in femoral arteries pointing to vascular bed specific responses of arteries to hypertension. AHT affects the voltage-dependent L-type Ca(2+) channel-mediated contraction of conduit arteries. This effect may contribute to the decreased vascular compliance in AHT and explain the efficacy of Ca(2+) channel blockers to reduce vascular stiffness and central blood pressure in AHT.

  14. Dramatic response of a patient with pregnancy induced idiopathic pulmonary arterial hypertension to sildenafil treatment.

    PubMed

    Taçoy, Gülten; Ekim, Numan Nadir; Cengel, Atiye

    2010-04-01

    Idiopathic pulmonary arterial hypertension (IPAH) is characterized by a progressive increase in pulmonary vascular resistance, which may lead to right ventricular failure and death. Major cardiovascular and pulmonary alterations occur during pregnancy and therefore worsen or increase the complications of pulmonary arterial hypertension (PAH). A patient diagnosed with IPAH after a successful full-term pregnancy and cesarean section with epidural anesthesia is presented. The postoperative course was complicated by progressive dyspnea, and lower limb edema. The outcome of treatment with sildenafil during puerperium was favorable in this patient. The clinical course was complicated by an unexpected spontaneous pregnancy after primary infertility.

  15. Food restriction induces in vivo ventricular dysfunction in spontaneously hypertensive rats without impairment of in vitro myocardial contractility.

    PubMed

    Okoshi, K; Fioretto, J R; Okoshi, M P; Cicogna, A C; Aragon, F F; Matsubara, L S; Matsubara, B B

    2004-04-01

    Cardiac structures, function, and myocardial contractility are affected by food restriction (FR). There are few experiments associating undernutrition with hypertension. The aim of the present study was to analyze the effects of FR on the cardiac response to hypertension in a genetic model of hypertension, the spontaneously hypertensive rat (SHR). Five-month-old SHR were fed a control or a calorie-restricted diet for 90 days. Global left ventricle (LV) systolic function was evaluated in vivo by transthoracic echocardiogram and myocardial contractility and diastolic function were assessed in vitro in an isovolumetrically beating isolated heart (Langendorff preparation). FR reduced LV systolic function (control (mean +/- SD): 58.9 +/- 8.2; FR: 50.8 +/- 4.8%, N = 14, P < 0.05). Myocardial contractility was preserved when assessed by the +dP/dt (control: 3493 +/- 379; FR: 3555 +/- 211 mmHg/s, P > 0.05), and developed pressure (in vitro) at diastolic pressure of zero (control: 152 +/- 16; FR: 149 +/- 15 mmHg, N = 9, P > 0.05) and 25 mmHg (control: 155 +/- 9; FR: 150 +/- 10 mmHg, N = 9, P > 0.05). FR also induced eccentric ventricular remodeling, and reduced myocardial elasticity (control: 10.9 +/- 1.6; FR: 9.2 +/- 0.9%, N = 9, P < 0.05) and LV compliance (control: 82.6 +/- 16.5; FR: 68.2 +/- 9.1%, N = 9, P < 0.05). We conclude that FR causes systolic ventricular dysfunction without in vitro change in myocardial contractility and diastolic dysfunction probably due to a reduction in myocardial elasticity.

  16. Plasma Cardiotrophin-1 as a Marker of Hypertension and Diabetes-Induced Target Organ Damage and Cardiovascular Risk

    PubMed Central

    Gamella-Pozuelo, Luis; Fuentes-Calvo, Isabel; Gómez-Marcos, Manuel A.; Recio-Rodriguez, José I.; Agudo-Conde, Cristina; Fernández-Martín, José L.; Cannata-Andía, Jorge B.; López-Novoa, José M.; García-Ortiz, Luis; Martínez-Salgado, Carlos

    2015-01-01

    Abstract The search for biomarkers of hypertension and diabetes-induced damage to multiple target organs is a priority. We analyzed the correlation between plasma cardiotrophin-1 (CT-1), a chemokine that participates in cardiovascular remodeling and organ fibrosis, and a wide range of parameters currently used to diagnose morphological and functional progressive injury in left ventricle, arteries, and kidneys of diabetic and hypertensive patients, in order to validate plasma levels of CT-1 as clinical biomarker. This is an observational study with 93 type 2-diabetic patients, 209 hypertensive patients, and 82 healthy controls in which we assessed the following parameters: plasma CT-1, basal glycaemia, systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), left ventricular hypertrophy (LVH by electrocardiographic indexes), peripheral vascular disease (by pulse wave velocity—PWV, carotid intima-media thickness—C-IMT, and ankle-brachial index—ABI), and renal impairment (by microalbuminuria, albumin/creatinine urinary ratio, plasma creatinine concentrations, and glomerular filtration rate). Hypertensive or diabetic patients have higher plasma CT-1 than control patients. CT-1 positively correlates with basal glycaemia, SBP, DBP, PP, LVH, arterial damage (increased IMT, decreased ABI), and early renal damage (microalbuminuria, elevated albumin/creatinine ratio). CT-1 also correlates with increased 10-year cardiovascular risk. Multiple linear regression analysis confirmed that CT-1 was associated with arterial injury assessed by PWV, IMT, ABI, and cardiac damage evaluated by Cornell voltage duration product. Increases in plasma CT-1 are strongly related to the intensity of several parameters associated to target organ damage supporting further investigation of its diagnostic capacity as single biomarker of cardiovascular injury and risk and, possibly, of subclinical renal damage. PMID:26222851

  17. Impaired Nrf2 regulation of mitochondrial biogenesis in rostral ventrolateral medulla on hypertension induced by systemic inflammation.

    PubMed

    Wu, Kay L H; Wu, Chih-Wei; Chao, Yung-Mei; Hung, Chun-Ying; Chan, Julie Y H

    2016-08-01

    Oxidative stress in rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, is involved in the development of hypertension under systemic inflammation. Mitochondrial dysfunction contributes to tissue oxidative stress. In this study, we sought to investigate whether hypertension developed under systemic inflammation is attributable to impaired mitochondrial biogenesis in RVLM. In normotensive Sprague-Dawley rats, intraperitoneal infusion of a low dose Escherichia coli lipopolysaccharide (LPS) for 7 days promoted a pressor response, alongside a decrease in mitochondrial DNA (mtDNA) copy number, reductions in protein expression of nuclear DNA-encoded transcription factors for mitochondrial biogenesis, including mitochondrial transcription factor A (TFAM) and nuclear factor erythroid-derived 2-like 2 (Nrf2), and suppression of nuclear translocation of the phosphorylated Nrf2 (p-Nrf2) in RVLM neurons; all of which were abrogated by treatment with intracisternal infusion of an interleukin-1β (IL-1β) blocker, IL-1Ra, or a mobile mitochondrial electron carrier, coenzyme Q10 (CoQ10). Microinjection into RVLM of IL-1β suppressed the expressions of p-Nrf2 and TFAM, and evoked a pressor response; conversely, the Nrf2 inducer, tert-butylhydroquinone, lessened the LPS-induced suppression of TFAM expression and pressor response. At cellular level, exposure of neuronal N2a cells to IL-1β decreased mtDNA copy number, increased protein interaction of Nrf2 to its negative regulator, kelch-like ECH-associated protein 1 (Keap1), and reduced DNA binding activity of p-Nrf2 to Tfam gene. Together these results indicate that defect mitochondrial biogenesis in RVLM neurons entailing redox-sensitive and IL-1β-dependent suppression of TFAM because of the increase in the formation of Keap1/Nrf2 complex, reductions in nuclear translocation of the activated Nrf2 and its binding to the Tfam gene promoter may underlie hypertension developed under the LPS-induced

  18. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Beltz, Terry G; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2014-07-15

    This study investigated sex differences in the sensitization of angiotensin (ANG) II-induced hypertension and the role of central estrogen and ANG-(1-7) in this process. Male and female rats were implanted for telemetered blood pressure (BP) recording. A subcutaneous subpressor dose of ANG II was given alone or concurrently with intracerebroventricular estrogen, ANG-(1-7), an ANG-(1-7) receptor antagonist A-779 or vehicle for 1 wk (induction). After a 1-wk rest (delay), a pressor dose of ANG II was given for 2 wk (expression). In males and ovariectomized females, subpressor ANG II had no sustained effect on BP during induction, but produced an enhanced hypertensive response to the subsequent pressor dose of ANG II during expression. Central administration of estrogen or ANG-(1-7) during induction blocked ANG II-induced sensitization. In intact females, subpressor ANG II treatment produced a decrease in BP during induction and delay, and subsequent pressor ANG II treatment given during expression produced only a slight but significant increase in BP. However, central blockade of ANG-(1-7) by intracerebroventricular infusion of A-779 during induction restored the decreased BP observed in females during induction and enhanced the pressor response to the ANG II treatment during expression. RT-PCR analyses indicated that estrogen given during induction upregulated mRNA expression of the renin-angiotensin system (RAS) antihypertensive components, whereas both central estrogen and ANG-(1-7) downregulated mRNA expression of RAS hypertensive components in the lamina terminalis. The results indicate that females are protected from ANG II-induced sensitization through central estrogen and its regulation of brain RAS.

  19. Central endogenous angiotensin-(1-7) protects against aldosterone/NaCl-induced hypertension in female rats.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2013-09-01

    In comparison to male rodents, females are protected against angiotensin (ANG) II- and aldosterone (Aldo)-induced hypertension. However, the mechanisms underlying this protective effect are not well understood. ANG-(1-7) is formed from ANG II by angiotensin-converting enzyme 2 (ACE2) and has an antihypertensive effect in the central nervous system (CNS). The present study tested the hypothesis that central ANG-(1-7) plays an important protective role in attenuating the development of Aldo/NaCl-hypertension in female rats. Systemic infusion of Aldo into intact female rats with 1% NaCl as their sole drinking fluid resulted in a slight increase in blood pressure (BP). Intracerebroventricular (icv) infusion of A-779, an ANG-(1-7) receptor (Mas-R) antagonist, significantly augmented the pressor effects of Aldo/NaCl. In contrast, systemic Aldo/NaCl induced a significant increase in BP in ovariectomized (OVX) female rats, and central infusion of ANG-(1-7) significantly attenuated this Aldo/NaCl pressor effect. The inhibitory effect of ANG-(1-7) on the Aldo/NaCl pressor effect was abolished by concurrent infusion of A-779. RT-PCR analyses showed that there was a corresponding change in mRNA expression of several renin-angiotensin system components, estrogen receptors and an NADPH oxidase subunit in the lamina terminalis. Taken together these results suggest that female sex hormones regulate an antihypertensive axis of the brain renin-angiotensin system involving ACE2/ANG-(1-7)/Mas-R that plays an important counterregulatory role in protecting against the development of Aldo/NaCl-induced hypertension.

  20. Preventive effect of gomisin J from Schisandra chinensis on angiotensin II-induced hypertension via an increased nitric oxide bioavailability.

    PubMed

    Ye, Byeong Hyeok; Lee, Seung Jin; Choi, Young Whan; Park, So Youn; Kim, Chi Dae

    2015-03-01

    Gomisin J (GJ) is a small molecular weight lignan found in Schisandra chinensis and has been demonstrated to have vasodilatory activity. In this study, the authors investigated the effect of GJ on blood pressure (BP) in angiotensin II (Ang II)-induced hypertensive mice. In addition, we determined the relative potencies of gomisin A (GA) and GJ with respect to vasodilatory activity and antihypertensive effects. C57/BL6 mice infused s.c. with Ang II (2 μg kg(-1) min(-1) for 2 weeks) showed an increase in BP and a decrease in plasma nitric oxide (NO) metabolites. In the thoracic aortas of Ang II-induced hypertensive mice, a decrease in vascular NO was accompanied by an increase in reactive oxygen species (ROS) production. Furthermore, these alterations in BP, plasma concentrations of NO metabolites and in the vascular productions of NO and ROS in Ang II-treated mice were reversed by the co-administration of GJ (1 and 3 μg kg(-1) min(-1)). In in vitro studies, Ang II decreased the cellular concentration of NO, which was accompanied by a reduction in phosphorylated endothelial nitric oxide synthase (eNOS) and an increase in ROS production. These eNOS phosphorylation and ROS production changes in Ang II-treated cells were also reversed by GJ pretreatment (0-3 μg ml(-1)). Interestingly, the vasodilatory and antihypertensive effects of GJ were more prominent than those of GA. Collectively, an increase in BP in mice treated with Ang II was markedly attenuated by GJ, which was attributed to the preservations of vascular NO bioavailability and eNOS function, and to the inhibition of ROS production in Ang II-induced hypertensive mice.

  1. Prolonged Subcutaneous Administration of Oxytocin Accelerates Angiotensin II-Induced Hypertension and Renal Damage in Male Rats.

    PubMed

    Phie, James; Haleagrahara, Nagaraja; Newton, Patricia; Constantinoiu, Constantin; Sarnyai, Zoltan; Chilton, Lisa; Kinobe, Robert

    2015-01-01

    Oxytocin and its receptor are synthesised in the heart and blood vessels but effects of chronic activation of this peripheral oxytocinergic system on cardiovascular function are not known. In acute studies, systemic administration of low dose oxytocin exerted a protective, preconditioning effect in experimental models of myocardial ischemia and infarction. In this study, we investigated the effects of chronic administration of low dose oxytocin following angiotensin II-induced hypertension, cardiac hypertrophy and renal damage. Angiotensin II (40 μg/Kg/h) only, oxytocin only (20 or 100 ng/Kg/h), or angiotensin II combined with oxytocin (20 or 100 ng/Kg/h) were infused subcutaneously in adult male Sprague-Dawley rats for 28 days. At day 7, oxytocin or angiotensin-II only did not change hemodynamic parameters, but animals that received a combination of oxytocin and angiotensin-II had significantly elevated systolic, diastolic and mean arterial pressure compared to controls (P < 0.01). Hemodynamic changes were accompanied by significant left ventricular cardiac hypertrophy and renal damage at day 28 in animals treated with angiotensin II (P < 0.05) or both oxytocin and angiotensin II, compared to controls (P < 0.01). Prolonged oxytocin administration did not affect plasma concentrations of renin and atrial natriuretic peptide, but was associated with the activation of calcium-dependent protein phosphatase calcineurin, a canonical signalling mechanism in pressure overload-induced cardiovascular disease. These data demonstrate that oxytocin accelerated angiotensin-II induced hypertension and end-organ renal damage, suggesting caution should be exercised in the chronic use of oxytocin in individuals with hypertension.

  2. Ameliorative Effect of Hydroethanolic Leaf Extract of Byrsocarpus coccineus in Alcohol- and Sucrose-Induced Hypertension in Rats

    PubMed Central

    Akindele, Abidemi J.; Iyamu, Endurance A.; Dutt, Prabhu; Satti, Naresh K.; Adeyemi, Olufunmilayo O.

    2014-01-01

    Hypertension remains a major health problem worldwide considering the prevalence of morbidity and mortality. Plants remain a reliable source of efficacious and better tolerated drugs and botanicals. This study was designed to investigate the effect of the chemo-profiled hydroethanolic leaf extract of Byrsocarpus coccineus in ethanol- and sucrose-induced hypertension. Groups of rats were treated orally (p.o.) with distilled water (10 ml/kg), ethanol (35%; 3 g/kg), sucrose (5-7%), and B. coccineus (100, 200, and 400 mg/kg), and nifedipine together with ethanol and sucrose separately for 8 weeks. At the end of the treatment period, blood pressure and heart rate of rats were determined. Blood was collected for serum biochemical parameters and lipid profile assessment, and the liver, aorta, kidney, and heart were harvested for estimation of in vivo antioxidants and malondialdehyde (MDA). Results obtained in this study showed that B. coccineus at the various doses administered reduced the systolic, diastolic, and arterial blood pressure elevated by ethanol and sucrose. Also, the extract reversed the reduction in catalase (CAT), reduced glutathione (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) induced by ethanol and sucrose. The level of MDA was reduced compared to the ethanol- and sucrose-induced hypertensive group. With respect to lipid profile, administration of B. coccineus at the various doses reduced the levels of triglycerides, low-density lipoprotein (LDL), cholesterol, and atherogenic indices, compared to the ethanol and sucrose groups. In conclusion the hydroethanolic leaf extract of B. coccineus exerted significant antihypertensive effect and this is probably related to the antioxidant property and improvement of lipid profile observed in this study. PMID:25161923

  3. Estrogen regulation of the brain renin-angiotensin system in protection against angiotensin II-induced sensitization of hypertension

    PubMed Central

    Zhang, Zhongming; Beltz, Terry G.; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2014-01-01

    This study investigated sex differences in the sensitization of angiotensin (ANG) II-induced hypertension and the role of central estrogen and ANG-(1–7) in this process. Male and female rats were implanted for telemetered blood pressure (BP) recording. A subcutaneous subpressor dose of ANG II was given alone or concurrently with intracerebroventricular estrogen, ANG-(1–7), an ANG-(1–7) receptor antagonist A-779 or vehicle for 1 wk (induction). After a 1-wk rest (delay), a pressor dose of ANG II was given for 2 wk (expression). In males and ovariectomized females, subpressor ANG II had no sustained effect on BP during induction, but produced an enhanced hypertensive response to the subsequent pressor dose of ANG II during expression. Central administration of estrogen or ANG-(1–7) during induction blocked ANG II-induced sensitization. In intact females, subpressor ANG II treatment produced a decrease in BP during induction and delay, and subsequent pressor ANG II treatment given during expression produced only a slight but significant increase in BP. However, central blockade of ANG-(1–7) by intracerebroventricular infusion of A-779 during induction restored the decreased BP observed in females during induction and enhanced the pressor response to the ANG II treatment during expression. RT-PCR analyses indicated that estrogen given during induction upregulated mRNA expression of the renin-angiotensin system (RAS) antihypertensive components, whereas both central estrogen and ANG-(1–7) downregulated mRNA expression of RAS hypertensive components in the lamina terminalis. The results indicate that females are protected from ANG II-induced sensitization through central estrogen and its regulation of brain RAS. PMID:24858844

  4. Prevention of Endotoxin-Induced Pulmonary Hypertension in Primates by the Use of a Selective Thromboxane Synthetase Inhibitor, OXY 1581

    DTIC Science & Technology

    1982-09-01

    inhibitor to prevent endotoxin-induced Chemical name: Sodium-(E) - 3 -[ 4 - ( 3 -pyridylmethyl) phenyll -2- pulmonary hypertension in subhuman primates...1:B4, 6 mg/kg) and Group II (n = 6) received a bolus of 2 mg/kg of Results are expressed as mean ± S.EM. OKY 1581 (fig. I) (sodium-(E)- 3 -[ 4 -( 3 ...UK 37248 endotoxines. Ann. Inst. Pasteur 73: 565. 1947. [ 4 -(2- 1H -imidazole-lyl)ethoxyl benzoic acid], given to humans, DELAUNAY, A., LEBRUN, J

  5. Delivery of imatinib-incorporated nanoparticles into lungs suppresses the development of monocrotaline-induced pulmonary arterial hypertension.

    PubMed

    Akagi, Satoshi; Nakamura, Kazufumi; Miura, Daiji; Saito, Yukihiro; Matsubara, Hiromi; Ogawa, Aiko; Matoba, Tetsuya; Egashira, Kensuke; Ito, Hiroshi

    2015-05-13

    Platelet-derived growth factor (PDGF) is implicated in the pathogenesis of pulmonary arterial hypertension (PAH). Imatinib, a PDGF-receptor tyrosine kinase inhibitor, improved hemodynamics, but serious side effects and drug discontinuation are common when treating PAH. A drug delivery system using nanoparticles (NPs) enables the reduction of side effects while maintaining the effects of the drug. We examined the efficacy of imatinib-incorporated NPs (Ima-NPs) in a rat model and in human PAH-pulmonary arterial smooth muscle cells (PASMCs). Rats received a single intratracheal administration of PBS, FITC-NPs, or Ima-NPs immediately after monocrotaline injection. Three weeks after monocrotaline injection, intratracheal administration of Ima-NPs suppressed the development of pulmonary hypertension, small pulmonary artery remodeling, and right ventricular hypertrophy in the rat model of monocrotaline-induced PAH. We also examined the effects of imatinib and Ima-NPs on PDGF-induced proliferation of human PAH-PASMCs by (3)H-thymidine incorporation. Imatinib and Ima-NPs significantly inhibited proliferation after 24 hours of treatment. Ima-NPs significantly inhibited proliferation compared with imatinib at 24 hours after removal of these drugs. Delivery of Ima-NPs into lungs suppressed the development of MCT-induced PAH by sustained antiproliferative effects on PAS-MCs.

  6. Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion.

    PubMed Central

    Anderson, R J; Cronin, R E; McDonald, K M; Schrier, R W

    1976-01-01

    Clinical states with portal venous hypertension are frequently associated with impairment in renal hemodynamics and water excretion, as well as increased renin secretion. In the present investigation, portal venous pressure (PVP) was increased in anesthetized dogs undergoing a water diuresis. Renal arterial pressure was maintained constant in all studies. As PVP was increased from 6 to 20 mm Hg, decreases in cardiac output (2.5-2.0 liter/min, P less than 0.05) and mean arterial pressure (140-131 mm Hg, P less than 0.05) were observed. Increases in PVP were also associated with decreases in glomerular filtration rate (GFR, 40-31 ml/min, P less than 0.001), renal blood flow (RBF, 276-193 ml/min, P less than 0.001), and increases in renin secretion (232-939 U/min, P less than 0.025) in innervated kidneys. No significant change in either GFR or RBF and a decrease in renin secretion occurred with increases in PVP in denervated kidneys. To dissociate the changes in cardiac output and mean arterial pressure induced by increase PVP from the observed decreases in GFR and RBF, studies were performed on animals undergoing constriction of the thoracic inferior vena cava. In these studies, similar decreases in cardiac output and mean arterial pressure were not associated with significant changes in GFR or RBF. Increases in PVP also were associated with an antidiuresis as urine osmolality increased from 101 to 446 mosmol/kg H2O (P less than 0.001). This antidiuresis was significantly blunted but not abolished by acute hypophysectomy. In hypophysectomized animals, changes in free water clearance and urine flow were linearly correlated as PVP was increased. These studies indicate that increases in PVP result in decreases in GFR and RBF and increases in renin secretion mediated by increased renal adrenergic tone. Increased PVP is also associated with antidiuresis; this antidiuresis is mediated both by vasopressin release and by diminished tubular fluid delivery to the distal

  7. Correlation of bevacizumab-induced hypertension and outcomes of metastatic colorectal cancer patients treated with bevacizumab: a systematic review and meta-analysis

    PubMed Central

    2013-01-01

    Background With the wide application of targeted drug therapies, the relevance of prognostic and predictive markers in patient selection has become increasingly important. Bevacizumab is commonly used in combination with chemotherapy in the treatment of metastatic colorectal cancer. However, there are currently no predictive or prognostic biomarkers for bevacizumab. Several clinical studies have evaluated bevacizumab-induced hypertension in patients with metastatic colorectal cancer. This meta-analysis was performed to better determine the association of bevacizumab-induced hypertension with outcome in patients with metastatic colorectal cancer, and to assess whether bevacizumab-induced hypertension can be used as a prognostic factor in these patients. Methods We performed a systematic review and meta-analysis on seven published studies to investigate the relationship between hypertension and outcome of patients with metastatic colorectal cancer treated with bevacizumab. Our primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS) and overall response rate (ORR). Hazard ratios (HRs) for PFS and OS were extracted from each trial, and the log of the relative risk ratio (RR) was estimated for ORR. Results The occurrence of bevacizumab-induced hypertension in patients was highly associated with improvements in PFS (HR = 0.57, 95% CI: 0.46–0.72; P <0.001), OS (HR = 0.50; 95% CI: 0.37–0.68; P <0.001), and ORR (RR = 1.57, 95% CI: 1.07–2.30, P <0.05), as compared to patients without hypertension. Conclusions Bevacizumab-induced hypertension may represent a prognostic factor in patients with metastatic colorectal cancer. PMID:24283603

  8. Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Zhang, Zhi-Hua; Wei, Shun-Guang; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2013-04-01

    Blood-borne angiotensin II (ANG II) can upregulate p44/42 mitogen-activated protein kinase (MAPK) signaling and ANG II type-1 receptors in the hypothalamic paraventricular nucleus (PVN), a critical cardiovascular and autonomic center. We tested the hypothesis that brain p44/42 MAPK signaling contributes to the development of ANG II-induced hypertension. The ANG II infusion (120 ng/kg per min, subcutaneously) induced increases in phosphorylated p44/42 MAPK and ANG II type-1 receptors in the PVN after 1 week, before the onset of hypertension, that were sustained as hypertension developed during a 2- or 3-week infusion protocol. Bilateral PVN microinjections of small interfering RNAs for p44/42 MAPK, at the onset of the ANG II infusion or 1 week later, prevented the early increase in p44/42 MAPK activity. The early treatment normalized ANG II type-1 receptor expression in the PVN and attenuated the hypertensive response to the 2-week infusion of ANG II. The later small interfering RNA microinjections had a transient effect on ANG II type-1 receptor expression in PVN and no effect on the hypertensive response to the 3-week infusion of ANG II. The early treatment also normalized the pressure response to ganglionic blockade. The ANG II infusion induced increases in mRNA for proinflammatory cytokines that were not affected by either small interfering RNA treatment. These results suggest that the full expression of ANG II-induced hypertension depends on p44/42 MAPK-mediated effects. A potential role for p44/42 MAPK in modulating the ANG II-induced central inflammatory response might also be considered. MAPK signaling in PVN may be a novel target for early intervention in the progression of ANG II-dependent hypertension.

  9. Pulmonary vascular efflux of norepinephrine in Dahl rats susceptible or resistant to salt-induced hypertension

    SciTech Connect

    Metting, P.J.; Duggan, J.M.

    1988-06-01

    The purpose of these studies was to determine whether the accumulation of norepinephrine by the pulmonary circulation is altered in the Dahl model of genetic hypertension. Pulmonary norepinephrine accumulation was evaluated by performing a compartmental analysis of the efflux of L-(/sup 3/H)norepinephrine from perfused lungs after inhibition of the norepinephrine-metabolizing enzymes. The lungs were isolated from Dahl salt-hypertension-susceptible (S) and salt-hypertension-resistant (R) rats that had been on a high sodium diet for 3 weeks. In both S and R rats, norepinephrine was accumulated into a single compartment with an efflux half-time of approximately 23 min, in addition to its distribution in the extracellular space. The size of the extracellular space was significantly increased in the S rats, but there was no difference in the size of the compartment of L-(/sup 3/H)norepinephrine efflux between S (6.4 +/- 1.2 ml/g) and R (3.7 +/- 0.7 ml/g) rats. These data indicate that impaired accumulation and efflux of norepinephrine by the lungs does not contribute to the pathogenesis of hypertension in Dahl S rats.

  10. Diesel Exhaust-Induced Pulmonary and Cardiovascular Impairment: The Role of Hypertension Intervention

    EPA Science Inventory

    Background–Exposure to diesel exhaust (DE) particles and associated gases is linked to cardiovascular impairments; however the susceptibility of hypertensive individuals is less well understood. Objective–1) To determine cardiopulmonary effects of gas-phase versus whole-DE, and 2...

  11. Haemodynamic characteristics of hypertension induced by prenatal cortisol exposure in sheep.

    PubMed

    Moritz, Karen M; Dodic, Miodrag; Jefferies, Andrew J; Wintour, E Marelyn; DeMatteo, Robert; Singh, Reetu R; Evans, Roger G

    2009-10-01

    1. Administration of glucocorticoids to ewes early in pregnancy results in offspring with hypertension in adulthood. The hypertension in female offspring exposed to dexamethasone is associated with increased cardiac output, but whether this is also true in cortisol-exposed offspring is unknown. 2. Systemic haemodynamic variables were measured under basal conditions in castrated male and female adult sheep exposed to cortisol (5 mg/h) or saline (0.19 mL/h) from 26 to 28 days of gestation. To examine the contribution of the autonomic nervous system to maintenance of basal arterial pressure in established hypertension in cortisol-exposed sheep, responses to adrenoceptor blockade (intravenous infusion of 0.15 mg/kg per h phentolamine plus 0.4 mg/kg per h propranolol) and ganglionic blockade (intravenous infusion of 125 mg/h hexamethonium) were examined in castrated male offspring. 3. Mean arterial pressure and calculated systemic vascular resistance were 9% and 17% greater, whereas cardiac output tended to be 8% less, in cortisol-compared with saline-exposed sheep. These effects were not sex dependent. The depressor response to ganglionic blockade and the initial phase of the depressor response to adrenoceptor blockade were greater in cortisol-compared with saline-exposed sheep. 4. These results indicate that hypertension in offspring exposed prenatally to cortisol is associated with increased total peripheral resistance, mimicking observations in human patients with chronic hypertension. Furthermore, the increased vascular resistance appears to be dependent, at least in part, on an increased effect of sympathetic vasomotor drive. Taken together with previous findings, the present observations suggest that prenatal cortisol and dexamethasone programme altered adult cardiovascular function via distinct mechanistic pathways.

  12. Prenatal testosterone exposure induces hypertension in adult females via androgen receptor-dependent protein kinase Cδ-mediated mechanism.

    PubMed

    Blesson, Chellakkan S; Chinnathambi, Vijayakumar; Hankins, Gary D; Yallampalli, Chandra; Sathishkumar, Kunju

    2015-03-01

    Prenatal exposure to excess testosterone induces hyperandrogenism in adult females and predisposes them to hypertension. We tested whether androgens induce hypertension through transcriptional regulation and signaling of protein kinase C (PKC) in the mesenteric arteries. Pregnant Sprague-Dawley rats were injected with vehicle or testosterone propionate (0.5 mg/kg per day from gestation days 15 to 19, SC) and their 6-month-old adult female offspring were examined. Plasma testosterone levels (0.84±0.04 versus 0.42±0.09 ng/mL) and blood pressures (111.6±1.3 versus 104.5±2.4 mm Hg) were significantly higher in prenatal testosterone-exposed rats compared with controls. This was accompanied with enhanced expression of PKCδ mRNA (1.5-fold) and protein (1.7-fold) in the mesenteric arteries of prenatal testosterone-exposed rats. In addition, mesenteric artery contractile responses to PKC activator, phorbol-12,13-dibutyrate, was significantly greater in prenatal testosterone-exposed rats. Treatment with androgen receptor antagonist flutamide (10 mg/kg, SC, BID for 10 days) significantly attenuated hypertension, PKCδ expression, and the exaggerated vasoconstriction in prenatal testosterone-exposed rats. In vitro exposure of testosterone to cultured mesenteric artery smooth muscle cells dose dependently upregulated PKCδ expression. Analysis of PKCδ gene revealed a putative androgen responsive element in the promoter upstream to the transcription start site and an enhancer element in intron-1. Chromatin immunoprecipitation assays showed that androgen receptors bind to these elements in response to testosterone stimulation. Furthermore, luciferase reporter assays showed that the enhancer element is highly responsive to androgens and treatment with flutamide reverses reporter activity. Our studies identified a novel androgen-mediated mechanism for the control of PKCδ expression via transcriptional regulation that controls vasoconstriction and blood pressure.

  13. Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats.

    PubMed

    Ahmed, Lamiaa A; Obaid, Al Arqam Z; Zaki, Hala F; Agha, Azza M

    2014-10-05

    Pulmonary hypertension is a progressive disease of various origins that is associated with right ventricular dysfunction. In the present study, the protective effect of diosgenin was investigated in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). Diosgenin (100 mg/kg) was given by oral administration once daily for 3 weeks. At the end of the experiment, mean arterial blood pressure, electrocardiography and echocardiography were recorded. Rats were then sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta contents. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Diosgenin treatment provided a significant improvement toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline in rats. Furthermore, diosgenin therapy prevented monocrotaline-induced changes in nitric oxide production, endothelial and inducible nitric oxide synthase protein expression as well as histological analysis. These findings support the beneficial effect of diosgenin in pulmonary hypertension induced by monocrotaline in rats.

  14. Secondary Hypertension

    MedlinePlus

    Secondary hypertension Overview By Mayo Clinic Staff Secondary hypertension (secondary high blood pressure) is high blood pressure that's caused by another medical condition. Secondary hypertension can be caused by conditions that affect your ...

  15. Renal Nitric Oxide Synthase and Antioxidant Preservation in Cyp1a1-Ren-2 Transgenic Rats With Inducible Malignant Hypertension

    PubMed Central

    2013-01-01

    BACKGROUND Dietary administration of 0.30% indole-3-carbinol (I3C) to Cyp1a1-Ren2 transgenic rats (TGRs) generates angiotensin II (ANG II)–dependent malignant hypertension (HTN) and increased renal vascular resistance. However, TGRs with HTN maintain a normal or slightly reduced glomerular filtration rate. We tested the hypothesis that maintenance of renal function in hypertensive Cyp1a1-Ren2 TGRs is due to preservation of the intrarenal nitric oxide (NO) and antioxidant systems. METHODS Kidney cortex, kidney medulla, aortic endothelial (e) and neuronal (n) nitric oxide synthase (NOS), superoxide dismutases (SODs), and p22phox (nicotinamide adenine dinucleotide phosphate-oxidase subunit) protein abundances were measured along with kidney cortex total antioxidant capacity (TAC) and NOx. TGRs were fed a normal diet that contained 0.3% I3C or 0.3% I3C + candesartan (AT1 receptor antagonist; 25mg/L in drinking water) (n = 5–6 per group) for 10 days. RESULTS Blood pressure increased and body weight decreased in I3C-induced TGRs, while candesartan blunted these responses. Abundances of NOS, SOD, and p22phox as well as TAC were maintained in the kidney cortex of I3C-induced TGRs with and without candesartan, while kidney cortex NOx production increased in both groups. Kidney medulla eNOS and extracellular (EC) SOD decreased and nNOS were unchanged in both groups of I3C-induced TGRs. In addition, a compensatory increase occurred in kidney medulla Mn SOD in I3C-induced TGRs + candesartan. Aortic eNOS and nNOS∝ fell and p22phox and Mn SOD increased in hypertensive I3C-induced TGRs; all changes were reversed with candesartan. CONCLUSIONS The preservation of renal cortical NO and antioxidant capacity is associated with preserved renal function in Cyp1a1-Ren2 TGRs with ANG II-dependent malignant HTN. PMID:23764378

  16. Behavioral response to induced conflict in families with a hypertensive father.

    PubMed

    Baer, P E; Vincent, J P; Williams, B J; Bourianoff, G G; Bartlett, P C

    1980-01-01

    To clarify the possible environmental mediation of familial aggregation of blood pressure (BP), we examined whether the behavior of family members differed between families with a hypertensive (n = 16) or a normotensive (n = 15) father. Three-member families consisting of a father, mother, and a boy or girl aged 8-13 years were videotaped as they interacted under standard conditions calling for disagreement or conflict. Their BPs were recorded before and after interactions. The videotaped material was reliably coded into behavioral categories by independent observers. The aggregate of all three members of families with hypertensive fathers, as well as normotensive mothers and the children in these families, showed significantly more negative nonverbal behavior than their counterparts in families with normotensive fathers.

  17. Usefulness of latent left ventricular dysfunction assessed by Bowditch Treppe to predict stress-induced pulmonary hypertension in minimally symptomatic severe mitral regurgitation secondary to mitral valve prolapse.

    PubMed

    Agricola, Eustachio; Bombardini, Tonino; Oppizzi, Michele; Margonato, Alberto; Pisani, Matteo; Melisurgo, Giulio; Picano, Eugenio

    2005-02-01

    We assessed whether the presence of latent myocardial dysfunction, evaluated by echocardiographic derived force-frequency relationship (FFR) during exercise, predicts the appearance of stress-induced pulmonary hypertension in minimally symptomatic patients with severe mitral regurgitation (MR). Two groups of patients were identified: group I with normal (40 mm Hg) peak stress systemic pulmonary artery pressure. Group I had normal and upsloping FFR and group II had abnormal flat or biphasic FFR. Therefore, in patients with severe MR and apparently normal left ventricular function, the stress-induced pulmonary hypertension seems to be related to the presence of latent left ventricular dysfunction.

  18. Captopril attenuates hypertension and renal injury induced by the vascular endothelial growth factor inhibitor sorafenib.

    PubMed

    Nagasawa, Tasuku; Hye Khan, Md Abdul; Imig, John D

    2012-05-01

    Vascular endothelial growth factor inhibitors (VEGFi) are known to cause hypertension and renal injury that severely limits their use as an anticancer therapy. We hypothesized that the angiotensin-converting enzyme inhibitor captopril not only prevents hypertension, but also decreases renal injury caused by the VEGFi sorafenib. Rats were administered sorafenib (20 mg/kg per day) alone or in combination with captopril (40 mg/kg per day) for 4 weeks. Sorafenib administration increased blood pressure, which plateaued by day 10. Concurrent treatment with captopril for 4 weeks resulted in a 30 mmHg decrease in blood pressure compared with sorafenib alone (155 ± 5 vs 182 ± 6 mmHg, respectively; P < 0.05). Furthermore, concurrent captopril treatment reduced albuminuria by 50% compared with sorafenib alone (20 ± 8 vs 42 ± 9 mg/day, respectively; P < 0.05) and reduced nephrinuria by eightfold (280 ± 96 vs 2305 ± 665 μg/day, respectively; P < 0.05). Glomerular injury, thrombotic microangiopathy and tubular cast formation were also decreased in captopril-treated rats administered sorafenib. Renal autoregulatory efficiency was determined by evaluating the afferent arteriolar constrictor response to ATP. Sorafenib administration attenuated the vasoconstriction to ATP, whereas concurrent captopril treatment improved ATP reactivity. In conclusion, captopril attenuated hypertension and renal injury and improved renal autoregulatory capacity in rats administered sorafenib. These findings indicate that captopril treatment, in addition to alleviating the detrimental side-effect of hypertension, decreases the renal injury associated with anticancer VEGFi therapies such as sorafenib.

  19. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Angiotensin II–Induced Inflammation and Hypertension

    PubMed Central

    Ebrahimian, Talin; Li, Melissa Wei; Lemarié, Catherine A.; Simeone, Stefania M.C.; Pagano, Patrick J.; Gaestel, Matthias; Paradis, Pierre; Wassmann, Sven; Schiffrin, Ernesto L.

    2015-01-01

    Vascular oxidative stress and inflammation play an important role in angiotensin II–induced hypertension, and mitogen-activated protein kinases participate in these processes. We questioned whether mitogen-activated protein kinase–activated protein kinase 2 (MK2), a downstream target of p38 mitogen–activated protein kinase, is involved in angiotensin II–induced vascular responses. In vivo experiments were performed in wild-type and Mk2 knockout mice infused intravenously with angiotensin II. Angiotensin II induced a 30 mm Hg increase in mean blood pressure in wild-type that was delayed in Mk2 knockout mice. Angiotensin II increased superoxide production and vascular cell adhesion molecule-1 in blood vessels of wild-type but not in Mk2 knockout mice. Mk2 knockdown by small interfering RNA in mouse mesenteric vascular smooth muscle cells caused a 42% reduction in MK2 protein and blunted the angiotensin II–induced 40% increase of MK2 expression. Mk2 knockdown blunted angiotensin II–induced doubling of intracellular adhesion molecule-1 expression, 2.4-fold increase of nuclear p65, and 1.4-fold increase in Ets-1. Mk2 knockdown abrogated the angiotensin II–induced 4.7-fold and 1.3-fold increase of monocyte chemoattractant protein-1 mRNA and protein. Angiotensin II enhanced reactive oxygen species levels (by 29%) and nicotinamide adenine dinucleotide phosphate oxidase activity (by 48%), both abolished by Mk2 knockdown. Reduction of MK2 blocked angiotensin II–induced p47phox translocation to the membrane, associated with a 53% enhanced catalase expression. Angiotensin II–induced increase of MK2 was prevented by the nicotinamide adenine dinucleotide phosphate oxidase inhibitor Nox2ds-tat. Mk2 small interfering RNA prevented the angiotensin II–induced 30% increase of proliferation. In conclusion, MK2 plays a critical role in angiotensin II signaling, leading to hypertension, oxidative stress via activation of p47phox and inhibition of antioxidants, and

  20. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice.

    PubMed

    Xue, Baojian; Pamidimukkala, Jaya; Lubahn, Dennis B; Hay, Meredith

    2007-04-01

    It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.

  1. Schistosome-induced cholangiocyte proliferation and osteopontin secretion correlate with fibrosis and portal hypertension in human and murine schistosomiasis mansoni.

    PubMed

    Pereira, Thiago A; Syn, Wing-Kin; Machado, Mariana V; Vidigal, Paula V; Resende, Vivian; Voieta, Izabela; Xie, Guanhua; Otoni, Alba; Souza, Márcia M; Santos, Elisângela T; Chan, Isaac S; Trindade, Guilherme V M; Choi, Steve S; Witek, Rafal P; Pereira, Fausto E; Secor, William E; Andrade, Zilton A; Lambertucci, José Roberto; Diehl, Anna Mae

    2015-11-01

    Schistosomiasis is a major cause of portal hypertension worldwide. It associates with portal fibrosis that develops during chronic infection. The mechanisms by which the pathogen evokes these host responses remain unclear. We evaluated the hypothesis that schistosome eggs release factors that directly stimulate liver cells to produce osteopontin (OPN), a pro-fibrogenic protein that stimulates hepatic stellate cells to become myofibroblasts. We also investigated the utility of OPN as a biomarker of fibrosis and/or severity of portal hypertension. Cultured cholangiocytes, Kupffer cells and hepatic stellate cells were treated with soluble egg antigen (SEA); OPN production was quantified by quantitative reverse transcriptase polymerase chain reaction (qRTPCR) and ELISA; cell proliferation was assessed by BrdU (5-bromo-2'-deoxyuridine). Mice were infected with Schistosoma mansoni for 6 or 16 weeks to cause early or advanced fibrosis. Liver OPN was evaluated by qRTPCR and immunohistochemistry (IHC) and correlated with liver fibrosis and serum OPN. Livers from patients with schistosomiasis mansoni (early fibrosis n=15; advanced fibrosis n=72) or healthy adults (n=22) were immunostained for OPN and fibrosis markers. Results were correlated with plasma OPN levels and splenic vein pressures. SEA-induced cholangiocyte proliferation and OPN secretion (P<0.001 compared with controls). Cholangiocytes were OPN (+) in Schistosoma-infected mice and humans. Liver and serum OPN levels correlated with fibrosis stage (mice: r=0.861; human r=0.672, P=0.0001) and myofibroblast accumulation (mice: r=0.800; human: r=0.761, P=0.0001). Numbers of OPN (+) bile ductules strongly correlated with splenic vein pressure (r=0.778; P=0.001). S. mansoni egg antigens stimulate cholangiocyte proliferation and OPN secretion. OPN levels in liver and blood correlate with fibrosis stage and portal hypertension severity.

  2. H2S inhibits pulmonary arterial endothelial cell inflammation in rats with monocrotaline-induced pulmonary hypertension.

    PubMed

    Feng, Shasha; Chen, Siyao; Yu, Wen; Zhang, Da; Zhang, Chunyu; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2017-03-01

    This study aimed to determine whether hydrogen sulfide (H2S) inhibits pulmonary arterial endothelial inflammation in rats with monocrotaline (MCT)-induced pulmonary hypertension and its possible mechanisms. Twenty-four male Wistar rats were divided randomly into control, MCT, and MCT+H2S treatment groups. Human pulmonary arterial endothelial cells (HPAEC) were cultured and divided into four groups: control, MCT, MCT+H2S, and H2S. Pulmonary artery pressure was determined using a right cardiac catheterization procedure 3 weeks after MCT administration. Pulmonary vascular morphological changes and inflammatory infiltration were measured. Endogenous H2S levels, cystathionine-γ-lyase (CSE) expression, and inflammatory cytokines were determined both in vivo and in vitro. In addition, phosphorylation of NF-κB p65 and IκBα was detected by western blotting, and NF-κB p65 nuclear translocation, as well as its DNA-binding activity, was determined. Pulmonary hypertension and vascular remolding developed 3 wks after MCT administration, with elevated lung tissue inflammatory infiltration and cytokine level associated with activation of the NF-κB pathway, both in vivo and in vitro. However, the endogenous H2S/CSE pathway was downregulated in MCT rats. By contrast, an H2S donor markedly reduced pulmonary artery pressure, pulmonary vascular structural remolding, and increased lung inflammatory infiltration and cytokine levels of MCT-treated rats. Meanwhile, H2S reversed the activation of the NF-κB pathway successfully. The downregulated pulmonary arterial endothelial H2S/CSE pathway is involved in the pulmonary inflammatory response in MCT-treated pulmonary hypertensive rats. H2S attenuated endothelial inflammation by inhibiting the NF-κB pathway.

  3. Increased nitric oxide bioavailability in adult GRK2 hemizygous mice protects against angiotensin II-induced hypertension.

    PubMed

    Avendaño, María S; Lucas, Elisa; Jurado-Pueyo, María; Martínez-Revelles, Sonia; Vila-Bedmar, Rocío; Mayor, Federico; Salaices, Mercedes; Briones, Ana M; Murga, Cristina

    2014-02-01

    G protein-coupled receptor kinase 2 (GRK2) is a ubiquitous serine/threonine protein kinase able to phosphorylate and desensitize the active form of several G protein-coupled receptors. Given the lack of selective inhibitors for GRK2, we investigated the effects elicited by GRK2 inhibition in vascular responses using global adult hemizygous mice (GRK2(+/-)). The vasodilator responses to acetylcholine or isoproterenol were increased in aortas and mesenteric resistance arteries from GRK2(+/-) mice compared with wild-type (WT) littermates. After angiotensin II (AngII) infusion, GRK2(+/-) mice were partially protected against hypertension, vascular remodeling, and mechanical alterations, even when resting basal blood pressures were not significantly different. AngII infusion also (1) increased GRK2 levels in WT but not in GRK2(+/-) vessels; (2) increased vasoconstrictor responses to phenylephrine in WT but not in GRK2(+/-) mice; and (3) decreased vasodilator responses to acetylcholine and vascular pAkt and eNOS levels more in WT than in GRK2(+/-) animals. Vascular NO production and the modulation of vasoconstrictor responses by endothelial-derived NO remained enhanced in GRK2(+/-) mice infused with AngII. Thus, GRK2(+/-) mice are resistant to the development of vascular remodeling and mechanical alterations, endothelial dysfunction, increased vasoconstrictor responses, and hypertension induced by AngII at least partially through the preservation of NO bioavailability. In conclusion, our results describe an important role for GRK2 in systemic hypertension and further establish that an inhibition of GRK2 could be a beneficial treatment for this condition.

  4. Pulmonary arterial strain- and remodeling-induced stiffening are differentiated in a chronic model of pulmonary hypertension.

    PubMed

    Golob, Mark J; Tabima, Diana M; Wolf, Gregory D; Johnston, James L; Forouzan, Omid; Mulchrone, Ashley M; Kellihan, Heidi B; Bates, Melissa L; Chesler, Naomi C

    2017-04-11

    Pulmonary hypertension (PH) is a debilitating vascular disease that leads to pulmonary artery (PA) stiffening, which is a predictor of patient mortality. During PH development, PA stiffening adversely affects right ventricular function. PA stiffening has been investigated through the arterial nonlinear elastic response during mechanical testing using a canine PH model. However, only circumferential properties were reported and in the absence of chronic PH-induced PA remodeling. Remodeling can alter arterial nonlinear elastic properties via chronic changes in extracellular matrix (ECM) content and geometry. Here, we used an established constitutive model to demonstrate and differentiate between strain-stiffening, which is due to nonlinear elasticity, and remodeling-induced stiffening, which is due to ECM and geometric changes, in a canine model of chronic thromboembolic PH (CTEPH). To do this, circumferential and axial tissue strips of large extralobar PAs from control and CTEPH tissues were tested in uniaxial tension, and data were fit to a phenomenological constitutive model. Strain-induced stiffening was evident from mechanical testing as nonlinear elasticity in both directions and computationally by a high correlation coefficient between the mechanical data and model (R(2)=0.89). Remodeling-induced stiffening was evident from a significant increase in the constitutive model stress parameter, which correlated with increased PA collagen content and decreased PA elastin content as measured histologically. The ability to differentiate between strain- and remodeling-induced stiffening in vivo may lead to tailored clinical treatments for PA stiffening in PH patients.

  5. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways

    PubMed Central

    Chen, Mayun; Cai, Hui; Yu, Chang; Wu, Peiliang; Fu, Yangyang; Xu, Xiaomei; Fan, Rong; Xu, Cunlai; Chen, Yanfan; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Salidroside, an active ingredient isolated from Rhodiola rosea, has shown to exert protective effects against chronic hypoxia-induced pulmonary arterial hypertension (PAH). However, the underlying mechanisms were not well known. Based on our recent reports, we predicted the involvement of adenosine monophosphate-activated protein kinase (AMPK) mediated effects in salidroside regulation of PAH. Firstly, to prove the hypothesis, rats were exposed to chronic hypoxia and treated with increasing concentrations of salidroside or a selective AMPK activator-5’-aminoimidazole-4-carboxamide ribonucleoside (AICAR) for 4 weeks. After salidroside or AICAR treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary artery remodeling were attenuated. Then the effects of salidroside or AICAR on hypoxia-induced excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs), which contributed to pulmonary arterial remodeling, were investigated. Our results suggested salidroside, as well as AICAR, reversed hypoxia-induced PASMCs proliferation and apoptosis resistance while AMPK inhibitor Compound C enhanced the effects of hypoxia. To reveal the potential cellular mechanisms, activation of AMPKα1 and expression of the genes related to proliferation and apoptosis were analyzed in PASMCs after salidroside treatment under hypoxia conditions. The results demonstrated salidroside as well as AICAR might inhibit chronic hypoxia-induced PASMCs proliferation via AMPKα1-P53-P27/P21 pathway and reverse apoptosis resistance via AMPKα1-P53-Bax/Bcl-2-caspase 9-caspase 3 pathway. PMID:27069536

  6. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways.

    PubMed

    Chen, Mayun; Cai, Hui; Yu, Chang; Wu, Peiliang; Fu, Yangyang; Xu, Xiaomei; Fan, Rong; Xu, Cunlai; Chen, Yanfan; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Salidroside, an active ingredient isolated from Rhodiola rosea, has shown to exert protective effects against chronic hypoxia-induced pulmonary arterial hypertension (PAH). However, the underlying mechanisms were not well known. Based on our recent reports, we predicted the involvement of adenosine monophosphate-activated protein kinase (AMPK) mediated effects in salidroside regulation of PAH. Firstly, to prove the hypothesis, rats were exposed to chronic hypoxia and treated with increasing concentrations of salidroside or a selective AMPK activator-5'-aminoimidazole-4-carboxamide ribonucleoside (AICAR) for 4 weeks. After salidroside or AICAR treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary artery remodeling were attenuated. Then the effects of salidroside or AICAR on hypoxia-induced excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs), which contributed to pulmonary arterial remodeling, were investigated. Our results suggested salidroside, as well as AICAR, reversed hypoxia-induced PASMCs proliferation and apoptosis resistance while AMPK inhibitor Compound C enhanced the effects of hypoxia. To reveal the potential cellular mechanisms, activation of AMPKα1 and expression of the genes related to proliferation and apoptosis were analyzed in PASMCs after salidroside treatment under hypoxia conditions. The results demonstrated salidroside as well as AICAR might inhibit chronic hypoxia-induced PASMCs proliferation via AMPKα1-P53-P27/P21 pathway and reverse apoptosis resistance via AMPKα1-P53-Bax/Bcl-2-caspase 9-caspase 3 pathway.

  7. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice

    PubMed Central

    Lee, Craig R.; Imig, John D.; Edin, Matthew L.; Foley, Julie; DeGraff, Laura M.; Bradbury, J. Alyce; Graves, Joan P.; Lih, Fred B.; Clark, James; Myers, Page; Perrow, A. Ligon; Lepp, Adrienne N.; Kannon, M. Alison; Ronnekleiv, Oline K.; Alkayed, Nabil J.; Falck, John R.; Tomer, Kenneth B.; Zeldin, Darryl C.

    2010-01-01

    Renal cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) regulate sodium transport and blood pressure. Although endothelial CYP-derived EETs are potent vasodilators, their contribution to the regulation of blood pressure remains unclear. Consequently, we developed transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases to increase endothelial EET biosynthesis. Compared to wild-type littermate controls, an attenuated afferent arteriole constrictor response to endothelin-1 and enhanced dilator response to acetylcholine was observed in CYP2J2 and CYP2C8 transgenic mice. CYP2J2 and CYP2C8 transgenic mice demonstrated modestly, but not significantly, lower mean arterial pressure under basal conditions compared to wild-type controls. However, mean arterial pressure was significantly lower in both CYP2J2 and CYP2C8 transgenic mice during coadministration of N-nitro-l-arginine methyl ester and indomethacin. In a separate experiment, a high-salt diet and subcutaneous angiotensin II was administered over 4 wk. The angiotensin/high-salt-induced increase in systolic blood pressure, proteinuria, and glomerular injury was significantly attenuated in CYP2J2 and CYP2C8 transgenic mice compared to wild-type controls. Collectively, these data demonstrate that increased endothelial CYP epoxygenase expression attenuates afferent arteriolar constrictor reactivity and hypertension-induced increases in blood pressure and renal injury in mice. We conclude that endothelial CYP epoxygenase function contributes to the regulation of blood pressure.—Lee, C. R., Imig, J. D., Edin, M. E., Foley, J., DeGraff, L. M., Bradbury, J. A., Graves, J. P., Lih, F. B., Clark, J., Myers, P., Perrow, A. L., Lepp, A. N., Kannon, M. A., Ronnekleiv, O. K., Alkayed, N. J., Falck, J. R., Tomer, K. B., Zeldin, D. C. Endothelial expression of human cytochrome P450 epoxygenases lowers blood pressure and attenuates hypertension-induced renal injury in mice. PMID:20495177

  8. Vascular smooth muscle G(q) signaling is involved in high blood pressure in both induced renal and genetic vascular smooth muscle-derived models of hypertension.

    PubMed

    Harris, David M; Cohn, Heather I; Pesant, Stéphanie; Zhou, Rui-Hai; Eckhart, Andrea D

    2007-11-01

    More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.

  9. Magnesium taurate prevents cataractogenesis via restoration of lenticular oxidative damage and ATPase function in cadmium chloride-induced hypertensive experimental animals.

    PubMed

    Choudhary, Rajesh; Bodakhe, Surendra H

    2016-12-01

    Previously we found that hypertension potentiates the risk the cataractogenesis. In the present study, we investigated the protective effects of magnesium taurate (MgT) on hypertension and associated lenticular damages against cadmium chloride (CdCl2)-induced hypertensive animals. Male Sprague-Dawley albino rats (150-180g) were assigned to five experimental groups (n=6). Among the five groups, normal group received 0.3% carboxymethyl cellulose (10ml/kg/day, p.o.). Hypertension control group received CdCl2 (0.5mg/kg/day, i.p.). Tests and standard groups received MgT (3 and 6mg/kg/day, p.o.) and amlodipine (3mg/kg/day, p.o.) concurrently with CdCl2 respectively, for six consecutive weeks. Blood pressure, heart rate, and eyes were examined biweekly, and pathophysiological parameters in serum and eye lenses were evaluated after six weeks of the experimental protocol. The chronic administration of MgT concurrently with CdCl2 significantly restored the blood pressure, serum and lens antioxidants (CAT, SOD, GPx, and GSH), MDA level, and ions (Na(+), K(+), and Ca(2+)). Additionally, MgT treatment led to significant increase in the lens proteins (total and soluble), Ca(2+) ATPase, and Na(+)K(+) ATPase activity as compared to hypertension control group. Ophthalmoscope observations indicated that MgT treatments delayed the progression of cataract against the hypertensive state. The study shows that MgT prevents the progression of cataractogenesis via restoration of blood pressure, lenticular oxidative damages, and lens ATPase functions in the hypertensive state. The results suggest that MgT supplement may play a beneficial role to manage hypertension and associated cataractogenesis.

  10. Effects of 9 Kampo medicines clinically used in hypertension on hemodynamic changes induced by theophylline in rats.

    PubMed

    Sanae, F; Komatsu, Y; Amagaya, S; Chisaki, K; Hayashi, H

    2000-06-01

    We examined the effects of 9 kinds of Kampo medicines, which are clinically used for the treatment of hypertension, on anesthetized rats with increases in arterial blood pressure, heart rate and peripheral blood flow induced by theophylline (5 mg/kg, i.v.) that were partially or completely mediated by endogenous catecholamines. Each Kampo medicine (1 g/kg) was intraduodenaly administered. Shinbu-to caused a severe disturbance of the arterial blood pressure. Saiko-ka-ryukotsu-borei-to, Oren-gedoku-to, San'o-shashin-to and Dai-jyoki-to had hypotensive effects, while Hachimi-jio-gan, Gosha-jinki-gan, Dai-saiko-to and Choto-san did not have such an effect. Moreover, Saiko-ka-ryukotsu-borei-to attenuated the heart rate. In Oren-gedoku-to, San'o-shashin-to and Dai-jyoki-to, a reduction in peripheral blood flow was observed. These results suggest that Saiko-ka-ryukotsuborei-to, Oren-gedoku-to, San'o-shashin-to and Dai-jyoki-to are ameliorative to the hypertension in sympathetic system dominance and Shinbu-to is occasionally dangerous to it.

  11. Acute and chronic antihypertensive effects of Cinnamomum zeylanicum stem bark methanol extract in L-NAME-induced hypertensive rats

    PubMed Central

    2013-01-01

    Background Previous study showed that the aqueous extract of the stem bark of Cinnamomum zeylanicum possesses antihypertensive and vasodilatory properties. The present work investigates the acute and chronic antihypertensive effects of the methanol extract of Cinnamomum zeylanicum stem bark (MECZ) in L-NAME-induced hypertensive rats. Methods The acute antihypertensive effects of MECZ (5, 10 and 20 mg/kg) administered intravenously were evaluated in rats in which acute arterial hypertension has been induced by intravenous administration of L-NAME (20 mg/kg). For chronic antihypertensive effects, animals were treated with L-NAME (40 mg/kg/day) plus the vehicle or L-NAME (40 mg/kg/day) in combination with captopril (20 mg/kg/day) or MECZ (300 mg/kg/day) and compared with control group receiving only distilled water. All drugs were administered per os and at the end of the experiment that lasted for four consecutive weeks, blood pressure was measured by invasive method and blood samples were collected for the determination of the lipid profile. The heart and aorta were collected, weighed and used for both histological analysis and determination of NO tissue content. Results Acute intravenous administration of C. zeylanicum extract (5, 10 and 20 mg/kg) to L-NAME-induced hypertensive rats provoked a long-lasting decrease in blood pressure. Mean arterial blood pressure decreased by 12.5%, 26.6% and 30.6% at the doses of 5, 10 and 20 mg/kg, respectively. In chronic administration, MECZ and captopril significantly prevented the increase in blood pressure and organs’ weights, as well as tissue histological damages and were able to reverse the depletion in NO tissue’s concentration. The MECZ also significantly lower the plasma level of triglycerides (38.1%), total cholesterol (32.1%) and LDL-cholesterol (75.3%) while increasing that of HDL-cholesterol (58.4%) with a significant low atherogenic index (1.4 versus 5.3 for L-NAME group). Conclusion MECZ possesses

  12. Treatment with nicardipine protects brain in an animal model of hypertension-induced damage.

    PubMed

    Amenta, Francesco; Tomassoni, Daniele

    2004-05-01

    Control of blood pressure protects from the development of cerebrovascular lesions and vascular dementia (VaD). This study has assessed the influence of treatment with the dihydropyridine-type Ca2+ antagonist nicardipine on brain microanatomical changes in spontaneously hypertensive rats (SHR). SHR were treated from 16th to 26th week of age with hypotensive (3 mg/Kg/day) or non-hypotensive (0.1 mg/Kg/day) doses of nicardipine, with the non-dihydropyridine-type vasodilator hydralazine (10 mg/kg/day) or with vehicle (control group). Untreated age-matched Wistar Kyoto (WKY) rats were used as a normotensive reference group. Brain volume, number of neurons, glial fibrillary-acidic protein (GFAP)-immunoreactive astrocytes and neurofilament 200 KDa (NFP)-immunoreactivity (IR) were assessed in frontal and occipital cortex, hippocampus and striatum. A decrease of volume and number of nerve cells and a loss of NFP-IR was found in the frontal and occipital cortex and in the CA1 subfield of hippocampus and in the striatum of SHR. Treatment with nicardipine countered microanatomical changes occurring in SHR, whereas hydralazine displayed a less pronounced effect. Comparatively, the non-hypotensive dose of nicardipine was less active than the hypotensive one. The observation that equihypotensive doses of nicardipine or hydralazine did not protect brain in the same way from hypertensive brain damage suggests that lowering blood pressure is per se not enough for affording neuroprotection. The demonstration of neuroprotective effect of nicardipine suggests an use of the compound in situations in which hypertension is accompanied by the risk of brain damage.

  13. Hypertension in postmenopausal women: how to approach hypertension in menopause.

    PubMed

    Modena, Maria Grazia

    2014-09-01

    During fertile life women are usually normo or hypotensive. Hypertension may appear during pregnancy and this represents a peculiar phenomenon increasing nowadays for delay time of pregnancy. Gestational hypertension appears partially similar to hypertension in the context of metabolic syndrome for a similar condition of increased waste circumference. Parity, for the same pathogenesis, has been reported to be associated to peri and postmenopausal hypertension, not confirmed by our study of parous women with transitional non persistent perimenopausal hypertension. Estrogen's deficiency inducing endothelial dysfunction and increased body mass index are the main cause for hypertension in this phase of life. For these reasons lifestyle modification, diet and endothelial active drugs represent the ideal treatment. Antioxidant agents may have a role in prevention and treatment of hypertension. In conclusion, hypertension in women represents a peculiar constellation of different biological and pathogenic factors, which need a specific gender related approach, independent from the male model.

  14. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9

    PubMed Central

    Wang, Yiran; Chen, Ali; Chen, Mayun; Yao, Dan; Xu, Xiaomei; Wang, Liangxing

    2016-01-01

    Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK) in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP-) 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway. PMID:27688788

  15. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9.

    PubMed

    Yan, Shuangquan; Wang, Yiran; Liu, Panpan; Chen, Ali; Chen, Mayun; Yao, Dan; Xu, Xiaomei; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Baicalin has a protective effect on hypoxia-induced pulmonary hypertension in rats, but the mechanism of this effect remains unclear. Thus, investigating the potential mechanism of this effect was the aim of the present study. Model rats that display hypoxic pulmonary hypertension and cor pulmonale under control conditions were successfully generated. We measured a series of indicators to observe the levels of pulmonary arterial hypertension, pulmonary arteriole remodeling, and right ventricular remodeling. We assessed the activation of p38 mitogen-activated protein kinase (MAPK) in the pulmonary arteriole walls and pulmonary tissue homogenates using immunohistochemistry and western blot analyses, respectively. The matrix metalloproteinase- (MMP-) 9 protein and mRNA levels in the pulmonary arteriole walls were measured using immunohistochemistry and in situ hybridization. Our results demonstrated that baicalin not only reduced p38 MAPK activation in both the pulmonary arteriole walls and tissue homogenates but also downregulated the protein and mRNA expression levels of MMP-9 in the pulmonary arteriole walls. This downregulation was accompanied by the attenuation of pulmonary hypertension, arteriole remodeling, and right ventricular remodeling. These results suggest that baicalin may attenuate pulmonary hypertension and cor pulmonale, which are induced by chronic hypoxia, by downregulating the p38 MAPK/MMP-9 pathway.

  16. Ascorbic Acid Protects against Hypertension through Downregulation of ACE1 Gene Expression Mediated by Histone Deacetylation in Prenatal Inflammation-Induced Offspring

    PubMed Central

    Wang, Jing; Yin, Na; Deng, Youcai; Wei, Yanling; Huang, Yinhu; Pu, Xiaoyun; Li, Li; Zheng, Yingru; Guo, Jianxin; Yu, Jianhua; Li, Xiaohui; Yi, Ping

    2016-01-01

    Hypertension is a major risk factor for cardiovascular and cerebrovascular disease. Prenatal exposure to lipopolysaccharide (LPS) leads to hypertension in a rat offspring. However, the mechanism is still unclear. This study unraveled epigenetic mechanism for this and explored the protective effects of ascorbic acid against hypertension on prenatal inflammation-induced offspring. Prenatal LPS exposure resulted in an increase of intrarenal oxidative stress and enhanced angiotensin-converting enzyme 1 (ACE1) gene expression at the mRNA and protein levels in 6- and 12-week-old offspring, correlating with the augmentation of histone H3 acetylation (H3AC) on the ACE1 promoter. However, the prenatal ascorbic acid treatment decreased the LPS-induced expression of ACE1, protected against intrarenal oxidative stress, and reversed the altered histone modification on the ACE1 promoter, showing the protective effect in offspring of prenatal LPS stimulation. Our study demonstrates that ascorbic acid is able to prevent hypertension in offspring from prenatal inflammation exposure. Thus, ascorbic acid can be a new approach towards the prevention of fetal programming hypertension. PMID:27995995

  17. Renin-angiotensin system acting on reactive oxygen species in paraventricular nucleus induces sympathetic activation via AT1R/PKCγ/Rac1 pathway in salt-induced hypertension

    PubMed Central

    Su, Qing; Huo, Chan-Juan; Li, Hong-Bao; Liu, Kai-Li; Li, Xiang; Yang, Qing; Song, Xin-Ai; Chen, Wen-Sheng; Cui, Wei; Zhu, Guo-Qing; Shi, Xiao-Lian; Liu, Jin-Jun; Kang, Yu-Ming

    2017-01-01

    Brain renin-angiotensin system (RAS) could regulate oxidative stress in the paraventricular nucleus (PVN) in the development of hypertension. This study was designed to explore the precise mechanisms of RAS acting on reactive oxygen species (ROS) in salt-induced hypertension. Male Wistar rats were administered with a high-salt diet (HS, 8.0% NaCl) for 8 weeks to induced hypertension. Those rats were received PVN infusion of AT1R antagonist losartan (LOS, 10 μg/h) or microinjection of small interfering RNAs for protein kinase C γ (PKCγ siRNA) once a day for 2 weeks. High salt intake resulted in higher levels of AT1R, PKCγ, Rac1 activity, superoxide and malondialdehyde (MDA) activity, but lower levels of copper/zinc superoxide dismutase (Cu/Zn-SOD), superoxide dismutase (SOD) and glutathione (GSH) in PVN than control animals. PVN infusion of LOS not only attenuated the PVN levels of AT1R, PKCγ, Rac1 activity, superoxide and decreased the arterial pressure, but also increased the PVN antioxidant capacity in hypertension. PVN microinjection of PKCγ siRNA had the same effect on LOS above responses to hypertension but no effect on PVN level of AT1R. These results, for the first time, identified that the precise signaling pathway of RAS regulating ROS in PVN is via AT1R/PKCγ/Rac1 in salt-induced hypertension. PMID:28338001

  18. Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species.

    PubMed

    Xue, Baojian; Zhao, Yuanzi; Johnson, Alan Kim; Hay, Meredith

    2008-09-01

    It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.

  19. PVN adenovirus-siRNA injections silencing either NOX2 or NOX4 attenuate aldosterone/NaCl-induced hypertension in mice.

    PubMed

    Xue, Baojian; Beltz, Terry G; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2012-02-01

    Mineralocorticoid excess increases superoxide production by activating NADPH oxidase (NOX), and intracerebroventricular infusions of NADPH oxidase inhibitors attenuate aldosterone (Aldo)/salt-induced hypertension. It has been hypothesized that increased reactive oxygen species (ROS) in the brain may be a key mechanism in the development of hypertension. The present study investigated the brain regional specificity of NADPH oxidase and the role of NOX2 and NOX4 NADPH oxidase subunits in the hypothalamic paraventricular nucleus (PVN) in Aldo/salt-induced hypertension. PVN injections of adenoviral vectors expressing small interfering (si)RNA targeting NOX2 (AdsiRNA-NOX2) or NOX4 (AdsiRNA-NOX4) mRNAs were used to knock down NOX2 and NOX4 proteins. Three days later, delivery of Aldo (0.2 mg·kg(-1)·day(-1) sc) via osmotic pump commenced and 1% NaCl was provided in place of water. PVN injections of either AdsiRNA-NOX2 or AdsiRNA-NOX4 significantly attenuated the development of Aldo/NaCl-induced hypertension. In an additional study, Aldo/salt-induced hypertension was also significantly attenuated in NOX2 (genomic) knockout mice compared with wild-type controls. When animals from both functional studies underwent ganglionic blockade, there was a reduced fall in blood pressure in the NOX2 and NOX4 knockdown/knockout mice. Western blot analyses of the PVN of siRNA-NOX2- or siRNA-NOX4-injected mice confirmed a marked reduction in the expression of NOX2 or NOX4 protein. In cultured PVN neurons, silencing either NOX2 or NOX4 protein production by culturing PVN cells with siRNA-NOX2 or siRNA-NOX4 attenuated Aldo-induced ROS. These data indicate that both NOX2 and NOX4 in the PVN contribute to elevated sympathetic activity and the hypertensivogenic actions induced by mineralocorticoid excess.

  20. Aspirin attenuates monocrotaline-induced pulmonary arterial hypertension in rats by suppressing the ERK/MAPK pathway.

    PubMed

    Gao, Hua; Cheng, Yuqing; Zong, Liguo; Huang, Linian; Qiao, Chenchen; Li, Wei; Gong, Beilei; Hu, Junfeng; Liu, Haitao; Wang, Xiaojing; Zhao, Chengling

    2017-01-01

    This study aimed to investigate the therapeutic effects of aspirin (ASA) and its potential mechanisms of action in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. PAH was induced in a rat model by a single intraperitoneal (IP) injection of MCT. Saline was injected in a control group. Two weeks following MCT injection, right ventricular systolic pressure (RVSP) and systolic blood pressure (SBP) were measured in six rats from each group to confirm establishment of a PAH model. The remaining MCT-treated rats were randomly allocated to receive IP injection of saline, ASA, or ERK1/2 inhibitor PD98059. Four weeks following treatment, RVSP was measured and all rats were sacrificed for histological study. There was no significant difference in SBP in any group two weeks following MCT administration. Nonetheless RVSP was significantly increased in the MCT group compared with the control group. At 6 weeks, ASA treatment remarkably attenuated MCT-induced increased RVSP, RV hypertrophy, and pulmonary artery remodeling compared with the MCT group. The density of pulmonary capillaries in ASA-treated rats was also dramatically increased. Treatment with ASA significantly inhibited the increased p-ERK1/2 and restored the impaired endothelial nitric oxide synthase (eNOS) in MCT-treated rats. This study demonstrated that ASA distinctively attenuates MCT-induced PAH by inhibition of the ERK1/2 signaling pathway.

  1. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension

    PubMed Central

    Tatebayashi, Daisuke; Lee, Jaesik; Westerblad, Håkan; Lanner, Johanna T.

    2017-01-01

    Patients with pulmonary hypertension (PH) suffer from inspiratory insufficiency, which has been associated with intrinsic contractile dysfunction in diaphragm muscle. Here, we examined the role of redox stress in PH-induced diaphragm weakness by using the novel antioxidant, EUK-134. Male Wistar rats were randomly divided into control (CNT), CNT + EUK-134 (CNT + EUK), monocrotaline-induced PH (PH), and PH + EUK groups. PH was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg body weight). EUK-134 (3 mg/kg body weight/day), a cell permeable mimetic of superoxide dismutase (SOD) and catalase, was daily intraperitoneally administered starting one day after induction of PH. After four weeks, diaphragm muscles were excised for mechanical and biochemical analyses. There was a decrease in specific tetanic force in diaphragm bundles from the PH group, which was accompanied by increases in: protein expression of NADPH oxidase 2/gp91phox, SOD2, and catalase; 3-nitrotyrosine content and aggregation of actin; glutathione oxidation. Treatment with EUK-134 prevented the force decrease and the actin modifications in PH diaphragm bundles. These data show that redox stress plays a pivotal role in PH-induced diaphragm weakness. Thus, antioxidant treatment can be a promising strategy for PH patients with inspiratory failure. PMID:28152009

  2. Cytochrome P4501A1 is Required for Vascular Dysfunction and Hypertension Induced by 2,3,7,8-Tetrachlorodibenzo-p-dioxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAH). Further, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen species (...

  3. Clinical study on the influence of phloroglucinol on plasma angiotensin II and D-Dimer index in patients with severe pregnancy-induced hypertension.

    PubMed

    Ai, Liang; Lan, Xinzhi; Wang, Limin; Xu, Yanjie; Zhang, Bin

    2016-07-01

    To observe the effect of phloroglucinol on plasma angiotensin II and D-dimer index when it was applied to patients with severe pregnancy-induced hypertension. 212 cases of severe pregnancy-induced hypertension patients diagnosed clinically were selected to be randomly divided into the research group and the control group. The research groups were given phloroglucinol, while the control groups were given magnesium sulfate. The plasma angiotensin II and D-dimer index in patients were detected before treatment and after 7 days respectively with statistical analysis of results. The diffidence after treatment was statistically significant (P<0.05). Compared within the same group, the difference of each index before and after treatment in the research group was statistically significant (P<0.05), while the control group was not statistically significant (P>0.05). It showed that the research group could reduce the plasma D-dimer and angiotensin II index in severe pregnancy-induced hypertension patients, and its effect was significantly better than the control group according to the plasma D-dimer and angiotensin II index changes in patients, it indicated that it was effective of phloroglucinol treatment for patients with pregnancy-induced hypertension disease and superior to the western medicine conventional treatment, worth clinical promotion.

  4. Regulatory effect of AMP-activated protein kinase on pulmonary hypertension induced by chronic hypoxia in rats: in vivo and in vitro studies.

    PubMed

    Huang, Xiaoying; Fan, Rong; Lu, Yuanyuan; Yu, Chang; Xu, Xiaomei; Zhang, Xie; Liu, Panpan; Yan, Shuangquan; Chen, Chun; Wang, Liangxing

    2014-06-01

    Activation of AMP-activated protein kinase (AMPK) plays an important role in cardiovascular protection. It can inhibit arterial smooth muscle cell proliferation and cardiac fibroblast collagen synthesis induced by anoxia. However, the role of AMPK-dependent signalling cascades in the pulmonary vascular system is currently unknown. This study aims to determine the effects of AMPK on pulmonary hypertension and pulmonary vessel remodelling induced by hypoxia in rats using in vivo and in vitro studies. In vivo study: pulmonary hypertension, right ventricular hypertrophy and pulmonary vascular remodelling were found in hypoxic rats. Meanwhile, AMPKα1 and phosphorylated AMPKα1 were increased markedly in pulmonary arterioles and lung tissues. Mean pulmonary arterial pressure, index of right ventricular hypertrophy and parameters of pulmonary vascular remodelling, including vessel wall area/total area, density of nuclei in medial smooth muscle cells, and thickness of the medial smooth muscle cell layer were markedly suppressed by AICAR, an AMPK agonist. In vitro study: the expression of AMPKα1 and phosphorylated AMPKα1 was increased in pulmonary artery smooth muscle cells (PASMCs) under hypoxic conditions. The effects of PASMC proliferation stimulated by hypoxia were reinforced by treatment with Compound C, an AMPK inhibitor. AICAR inhibited the proliferation of PASMCs stimulated by hypoxia. These findings suggest that AMPK is involved in the formation of hypoxia-induced pulmonary hypertension and pulmonary vessel remodelling. Up-regulating AMPK can contribute to decreasing pulmonary vessel remodelling and pulmonary hypertension induced by hypoxia.

  5. Perindopril Induces TSP-1 Expression in Hypertensive Patients with Endothelial Dysfunction in Chronic Treatment

    PubMed Central

    Buda, Valentina; Andor, Minodora; Petrescu, Lucian; Cristescu, Carmen; Baibata, Dana Emilia; Voicu, Mirela; Munteanu, Melania; Citu, Ioana; Muntean, Calin; Cretu, Octavian; Tomescu, Mirela Cleopatra

    2017-01-01

    Thrombospondin-1 (TSP-1) is a potent endogenous inhibitor of both physiological and pathological angiogenesis, widely studied as a target in drug development for treating cancer. Several studies performed in the cardiovascular field on TSP-1 are contradictory, the role of TSP-1 in the physiopathology of cardiovascular disorders (CVDs) being, for the moment, incompletely understood and may be due to the presence of several domains in its structure which can stimulate many cellular receptors. It has been reported to inhibit NO-mediated signaling and to act on the angiogenesis, tissue perfusion, endothelial cell proliferation, and homeostasis, so we aimed to quantify the effect Perindopril has on TSP-1 plasma levels in hypertensive patients with endothelial dysfunction in comparison with other antihypertensive drugs, such as beta blockers, calcium channel blockers, and diuretics, in a chronic treatment. As a conclusion, patients under treatment with Perindopril had increased plasma levels of TSP-1 compared with other hypertensive patients and with the control group. The results of this study confirms the pleiotropic properties of Perindopril: anti-proliferative, anti-inflammatory, with effects showed by quantifying a single biomarker: TSP-1. PMID:28178210

  6. Dexmedetomidine Use in the Setting of Cocaine-Induced Hypertensive Emergency and Aortic Dissection: A Novel Indication

    PubMed Central

    Javed, Fahad; Benjo, Alexandre Miguel; Reddy, Kiran; Shoaib Akram, Muhammad; Khan, Shahzeb Afsar; Sabharwal, Manpreet Singh; Nadkarni, Girish; Aziz, Emad F.; Herzog, Eyal

    2011-01-01

    Aortic dissection is a potentially fatal but rare disease characterized by an aortic intimal tear with blood passing into the media creating a false lumen and with resultant high mortality depending on the location of dissection if not aggressively treated. Cocaine users are known to have a higher incidence of aortic dissection. We report here aortic dissection in a patient with cocaine abuse which did not respond to traditional medication regimes used currently in this setting. Worth mentioning is the use of an alpha-2 receptor selective agonist named Dexmedetomidine as a treatment modality to control hypertension in this patient, which is approved only for sedation of intubated and mechanically ventilated patients in the intensive care settings and for sedation during invasive procedures. This paper illustrates the practical beneficial role of Dexmedetomidine in controling blood pressure in the settings of cocaine-induced sympathetic surge when other treatment modalities fail. PMID:21961011

  7. Exercise-induced pulmonary artery hypertension in a patient with compensated cardiac disease: hemodynamic and functional response to sildenafil therapy.

    PubMed

    Nikolaidis, Lazaros; Memon, Nabeel; O'Murchu, Brian

    2015-02-01

    We describe the case of a 54-year-old man who presented with exertional dyspnea and fatigue that had worsened over the preceding 2 years, despite a normally functioning bioprosthetic aortic valve and stable, mild left ventricular dysfunction (left ventricular ejection fraction, 0.45). His symptoms could not be explained by physical examination, an extensive biochemical profile, or multiple cardiac and pulmonary investigations. However, abnormal cardiopulmonary exercise test results and a right heart catheterization-combined with the use of a symptom-limited, bedside bicycle ergometer-revealed that the patient's exercise-induced pulmonary artery hypertension was out of proportion to his compensated left heart disease. A trial of sildenafil therapy resulted in objective improvements in hemodynamic values and functional class.

  8. Influence of age on the relaxation induced by nifedipine in aorta from spontaneously hypertensive and Wistar Kyoto rats.

    PubMed

    Hernández, M C; Salaices, M; Arribas, S; Sánchez-Ferrer, C F; Marín, J

    1995-10-01

    1. Nifedipine induces relaxation in aortic segments from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) of 5-week-, 3-month-, 6-month- and 1.5-year-old precontracted with 50 mM K+ or 0.1 microM noradrenaline (NA). 2. In WKY rat segments precontracted with K+, nifedipine relaxation was reduced at 1.5 years. However, in SHR segments, the greatest relaxation was observed at 1.5 years. The relaxation elicited by nifedipine in segments from WKY of 6-month and 1.5-year-old precontracted with NA was higher than that reached at 5-week- and 3-month-old. However, the relaxation induced in SHR of 6-month and 1.5-year-old was only higher than that obtained at 5-week-old. 3. Relaxations elicited by nifedipine in segments from WKY precontracted with K+ were smaller than those observed in age-matched SHR segments. 4. The endothelium positively and negatively modulates the relaxation to nifedipine in segments from SHR and WKY rats of different ages precontracted with K+, respectively. However, in segments of both strain precontracted with NA, endothelium removal did not alter the relaxations obtained at different ages. 5. These results suggest that the relaxation elicited by nifedipine: (1) depends on the strain, with a tendency to be greater in the hypertensive strain; (2) is negatively and positively modulated by endothelium in WKY and SHR, respectively, and (3) is influenced by age, and this influence depends on both the contractile agent and the strain.

  9. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, convalesce behavior and biochemistry of hypertension induced vascular dementia in rats.

    PubMed

    Sharma, Bhupesh; Singh, Nirmal

    2013-02-01

    Cognitive disorders are likely to increase over the coming years (5-10). Vascular dementia (VaD) has heterogeneous pathology and is a challenge for clinicians. Current Alzheimer's disease drugs have had limited clinical efficacy in treating VaD and none have been approved by major regulatory authorities specifically for this disease. Role of iNOS and NADPH-oxidase has been reported in various pathological conditions but there role in hypertension (Hypt) induced VaD is still unclear. This research work investigates the salutiferous effect of aminoguanidine (AG), an iNOS inhibitor and 4'-hydroxy-3'-methoxyacetophenone (HMAP), a NADPH oxidase inhibitor in Hypt induced VaD in rats. Deoxycorticosterone acetate-salt (DOCA-S) hypertension has been used for development of VaD in rats. Morris water-maze was used for testing learning and memory. Vascular system assessment was done by testing endothelial function. Mean arterial blood pressure (MABP), oxidative stress [aortic superoxide anion, serum and brain thiobarbituric acid reactive species (TBARS) and brain glutathione (GSH)], nitric oxide levels (serum nitrite/nitrate) and cholinergic activity (brain acetyl cholinesterase activity-AChE) were also measured. DOCA-S treated rats have shown increased MABP with impairment of endothelial function, learning and memory, reduction in serum nitrite/nitrate & brain GSH levels along with increase in serum & brain TBARS, and brain AChE activity. AG as well as HMAP significantly convalesce Hypt induced impairment of learning, memory, endothelial function, and alterations in various biochemical parameters. It may be concluded that AG, an iNOS inhibitor and HMAP, a NADPH-oxidase inhibitor may be considered as potential agents for the management of Hypt induced VaD.

  10. Studies of the effect of mode of delivery: obstetric analgesia and anaesthesia on maternal Plasma Renin Concentration (PRC) and Plasma Renin Activity (PRA) in the normotensive and hypertensive primigravidae.

    PubMed

    Odum, C U

    1994-01-01

    This study evaluated, the influence of mode of delivery, obstetric analgesia and anaesthesia on the maternal plasma renin angiotension system (RAS) in the normotensive primigravidae (n-10) and those with Pregnancy Induced Hypertension (PIH) (n-18). A total of 56 plasma samples from these subjects were assayed for Plasma Renin Concentration (PRC) and Plasma Renin Activity (PRA), using the radio-immunoassay technique. The normotensive subjects had normal delivery, while their hypertensive counterparts were delivered vaginally under lumbar epidural analgesia (n = 10) and with Caesarean Section (n = 8). The blood sample for the study were taken pre-labour, and immediately after delivery. The mean pre-labour PRC and PRA levels for the normotensive subjects were 5.73 +/- 0.25, and 3.56 +/- 0.13 ngml.1hr-1; and the post-delivery PRC and PRA values were 4.43 +/- 0.18 and 2.1 +/- 0.05ngml-1hr-1 respectively. The mean pre-labour PRC and PRA levels for the hypertensive subjects, who were delivered under epidural analgesia were 6.38 +/- 0.52 and 3.64 +/- 0.09 ngml-1hr-1 and the post-delivery values for this group were 5.04 +/- 0.21 and 2.34 +/- 0.07 ngml-1hr-1 respectively. The mean pre-labour PRC and PRA levels for the hypertensive subjects who were delivered by Caesarean Section were 5.87 +/- 0.36 and 3.83 +/- 0.36 ngml-1hr-1 and their post-delivery PRC and PRA values were 4.55 +/- 0.30 and 2.30 +/- 0.09 respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Preferential renal and mesenteric vasodilation induced by barnidipine and amlodipine in spontaneously hypertensive rats.

    PubMed

    Janssen, B J; Kam, K L; Smits, J F

    2001-11-01

    Barnidipine is a stereoselective single isomer formulation of a long-term acting dihydropyridine calcium antagonist (CaA). In anaesthetised animals, the antihypertensive response to barnidipine is accompanied by a diuretic effect. The aim of the present study was to examine whether barnidipine increased renal blood flow in a conscious animal model for essential hypertension. We compared the regional specific hemodynamic effects of barnidipine with those obtained with its racemic mixture and amlodipine. Male adult spontaneously hypertensive rats (SHR) were instrumented with Doppler flow probes and catheters to measure renal (RVR), mesenteric (MVR) and hindquarter (HQVR) vascular resistance changes. One week after surgery, barnidipine, its racemic mixture, and amlodipine were intravenously administered at three doses (n> or =10 per dose) causing comparable reductions in mean arterial pressure (MAP). At doses of 3, 10 and 30 microg/kg barnidipine reduced MAP (+/- SEM) by 8+/-2, 26+/-3 and 45+/-4 mmHg. Equipotent effects on MAP were achieved by the racemic mixture of barnidipine at 10, 30 and 100 microg/kg, and by amlodipine at doses of 100, 300 and 1000 microg/kg. Following the 3 microg/kg and 10 microg/kg dose, barnidipine reduced MVR (% +/- SEM) by 4+/-4 and 19+/-4, and RVR by 8+/-2 and 15+/-4, respectively. In contrast, HQVR remained unaltered. Similar data were obtained for the racemic mixture of barnidipine and for amlodipine, although for the latter the changes in RVR were half of those found after barnidipine. After the highest doses of barnidipine, its racemic mixture as well as amlodipine, HQVR fell more than 25% whereas RVR and MVR remained unaltered. Analysis of the dynamic response to the CaAs revealed that the reductions in vascular resistance were associated with decreased myogenic-like oscillations in blood flow. We conclude that, in conscious SHR, the single isomer barnidipine reduces MAP at doses which are three times lower than its racemic mixture

  12. Hypertension in women.

    PubMed

    Pimenta, Eduardo

    2012-02-01

    Hypertension is an important modifiable risk factor for cardiovascular (CV) morbidity and mortality, and a highly prevalent condition in both men and women. However, the prevalence of hypertension is predicted to increase more among women than men. Combined oral contraceptives (COCs) can induce hypertension in a small group of women and, increase CV risk especially among those with hypertension. Both COC-related increased CV risk and blood pressure (BP) returns to pretreatment levels by 3 months of its discontinuation. The effects of menopause and hormone replacement therapy (HRT) on BP are controversial, and COCs and HRT containing the new generation progestin drospirenone are preferred in women with established hypertension. Despite the high incidence of cancer in women, CV disease remains the major cause of death in women and comparable benefit of antihypertensive treatment have been demonstrated in both women and men.

  13. Cervical Spondylosis and Hypertension

    PubMed Central

    Peng, Baogan; Pang, Xiaodong; Li, Duanming; Yang, Hong

    2015-01-01

    Abstract Cervical spondylosis and hypertension are all common diseases, but the relationship between them has never been studied. Patients with cervical spondylosis are often accompanied with vertigo. Anterior cervical discectomy and fusion is an effective method of treatment for cervical spondylosis with cervical vertigo that is unresponsive to conservative therapy. We report 2 patients of cervical spondylosis with concomitant cervical vertigo and hypertension who were treated successfully with anterior cervical discectomy and fusion. Stimulation of sympathetic nerve fibers in pathologically degenerative disc could produce sympathetic excitation, and induce a sympathetic reflex to cause cervical vertigo and hypertension. In addition, chronic neck pain could contribute to hypertension development through sympathetic arousal and failure of normal homeostatic pain regulatory mechanisms. Cervical spondylosis may be one of the causes of secondary hypertension. Early treatment for resolution of symptoms of cervical spondylosis may have a beneficial impact on cardiovascular disease risk in patients with cervical spondylosis. PMID:25761188

  14. Severe Dextran-Induced Anaphylactic Shock during Induction of Hypertension-Hypervolemia-Hemodilution Therapy following Subarachnoid Hemorrhage

    PubMed Central

    Shiratori, Tohru; Sato, Atsushi; Fukuzawa, Masao; Kondo, Naoko; Tanno, Shogo

    2015-01-01

    Dextran is a colloid effective for volume expansion; however, a possible side effect of its use is anaphylaxis. Dextran-induced anaphylactoid reaction (DIAR) is a rare but severe complication, with a small dose of dextran solution sufficient to induce anaphylaxis. An 86-year-old female who underwent clipping for a ruptured cerebral aneurysm was admitted to the intensive care unit. Prophylactic hypertension-hypervolemia-hemodilution therapy was induced for cerebral vasospasm following a subarachnoid hemorrhage. The patient went into severe shock after administration of dextran for volume expansion, and dextran administration was immediately discontinued. The volume administered at that time was only 0.8 mL at the most. After fluid resuscitation with a crystalloid solution, circulatory status began to recover. However, cerebral vasospasm occurred and the patient's neurological condition deteriorated. Five weeks after the shock, she was diagnosed with hypersensitivity to dextran by a skin test. When severe hypotension occurs after dextran administration, appropriate treatments for shock should be performed immediately with discontinuation of dextran solution. Although colloid administration is recommended in some guidelines and researches, it is necessary to consider concerning the indication for volume expansion as well as the risk of colloid administration. PMID:26171255

  15. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway.

    PubMed

    Huang, Xiaoying; Zou, Lizhen; Yu, Xiaoming; Chen, Mayun; Guo, Rui; Cai, Hui; Yao, Dan; Xu, Xiaomei; Chen, Yanfan; Ding, Cheng; Cai, Xueding; Wang, Liangxing

    2015-05-01

    Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial remodeling mainly due to excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Salidroside, an active ingredient isolated from Rhodiola rosea is proposed to exert protective effects against PAH. However, the function of salidroside in PAH has not been investigated systematically and the underlying mechanisms are not clear. To investigate the effects of salidroside on PAH, the mice in chronic hypoxia model of PAH were given by an increasing concentration of salidroside (0, 16 mg/kg, 32 mg/kg, and 64 mg/kg). After salidroside treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary arterial remodeling were attenuated, suggesting a protective role played by salidroside in PAH. To explore the potential mechanisms, the apoptosis of PASMCs after salidroside treatment under hypoxia conditions were determined in vivo and in vitro, and also the mitochondria-dependent apoptosis factors, Bax, Bcl-2, cytochrome C, and caspase 9 were examined. The results revealed that salidroside reversed hypoxia-induced cell apoptosis resistance at least partially via a mitochondria-dependent pathway. In addition, salidroside upregulated the expression of adenosine A2a receptor (A2aR) in lung tissues of mice and in PASMCs in vitro after hypoxia exposure. Combined the evidence above, we conclude that salidroside can attenuate chronic hypoxia-induced PAH by promoting PASMCs apoptosis via an A2aR related mitochondria dependent pathway.

  16. 17α-Oestradiol-induced neuroprotection in the brain of spontaneously hypertensive rats.

    PubMed

    Pietranera, L; Brocca, M E; Roig, P; Lima, A; Garcia-Segura, L M; De Nicola, A F

    2014-05-01

    17β-oestradiol is a powerful neuroprotective factor for the brain abnormalities of spontaneously hypertensive rats (SHR). 17α-Oestradiol, a nonfeminising isomer showing low affinity for oestrogen receptors, is also endowed with neuroprotective effects in vivo and in vitro. We therefore investigated whether treatment with 17α-oestradiol prevented pathological changes of the hippocampus and hypothalamus of SHR. We used 20-week-old male SHR with a blood pressure of approximately 170 mmHg receiving s.c. a single 800 μg pellet of 17α-oestradiol dissolved in cholesterol or vehicle only for 2 weeks Normotensive Wistar-Kyoto (WKY) rats were used as controls. 17α-Oestradiol did not modify blood pressure, serum prolactin, 17β-oestradiol levels or the weight of the testis and pituitary of SHR. In the brain, we analysed steroid effects on hippocampus Ki67+ proliferating cells, doublecortin (DCX) positive neuroblasts, glial fibrillary acidic protein (GFAP)+ astrocyte density, aromatase immunostaining and brain-derived neurotrophic factor (BDNF) mRNA. In the hypothalamus, we determined arginine vasopressin (AVP) mRNA. Treatment of SHR with 17α-oestradiol enhanced the number of Ki67+ in the subgranular zone and DCX+ cells in the inner granule cell layer of the dentate gyrus, increased BDNF mRNA in the CA1 region and gyrus dentatus, decreased GFAP+ astrogliosis in the CA1 subfield, and decreased hypothalamic AVP mRNA. Aromatase expression was unmodified. By contrast to SHR, normotensive WKY rats were unresponsive to 17α-oestradiol. These data indicate a role for 17α-oestradiol as a protective factor for the treatment of hypertensive encephalopathy. Furthermore, 17α-oestradiol is weakly oestrogenic in the periphery and can be used in males.

  17. Collecting duct-specific knockout of renin attenuates angiotensin II-induced hypertension.

    PubMed

    Ramkumar, Nirupama; Stuart, Deborah; Rees, Sara; Hoek, Alfred Van; Sigmund, Curt D; Kohan, Donald E

    2014-10-15

    The physiological and pathophysiological significance of collecting duct (CD)-derived renin, particularly as it relates to blood pressure (BP) regulation, is unknown. To address this question, we generated CD-specific renin knockout (KO) mice and examined BP and renal salt and water excretion. Mice containing loxP-flanked exon 1 of the renin gene were crossed with mice transgenic for aquaporin-2-Cre recombinase to achieve CD-specific renin KO. Compared with controls, CD renin KO mice had 70% lower medullary renin mRNA and 90% lower renin mRNA in microdissected cortical CD. Urinary renin levels were significantly lower in KO mice (45% of control levels) while plasma renin concentration was significantly higher in KO mice (63% higher than controls) during normal-Na intake. While no observable differences were noted in BP between the two groups with varying Na intake, infusion of angiotensin II at 400 ng·kg(-1)·min(-1) resulted in an attenuated hypertensive response in the KO mice (mean arterial pressure 111 ± 4 mmHg in KO vs. 128 ± 3 mmHg in controls). Urinary renin excretion and epithelial Na(+) channel (ENaC) remained significantly lower in the KO mice following ANG II infusion compared with controls. Furthermore, membrane-associated ENaC protein levels were significantly lower in KO mice following ANG II infusion. These findings suggest that CD renin modulates BP in ANG II-infused hypertension and these effects are associated with changes in ENaC expression.

  18. [Hypertension In pregnancy: practical considerations].

    PubMed

    Jaafar, Jaafar; Pechère-Bertschi, Antoinette; Ditisheim, Agnès

    2014-09-10

    Hypertension is the most frequent medical disorder of pregnancy. Whether in the form of a chronic hypertension or a pregnancy induced-hypertension, or preeclampsia, it is associated with major maternal and neonatal morbidity and mortality. Improvement of prenatal care allowed a reduction in the number of poor outcomes. However, our partial understanding of the origin of gestational hypertension and preeclampsia limits the establishment of robust prediction models and efficient preventive interventions. This review discusses actual considerations on the clinical approach to hypertension in pregnancy.

  19. Role of miR206 in genistein-induced rescue of pulmonary hypertension in monocrotaline model.

    PubMed

    Sharma, Salil; Umar, Soban; Centala, Alexander; Eghbali, Mansoureh

    2015-12-15

    Pulmonary hypertension (PH) is a progressive lung disease associated with proliferation of smooth muscle cells and constriction of lung microvasculature, leading to increased pulmonary arterial pressure, right ventricular failure, and death. We have previously shown that genistein rescues preexisting established PH by significantly improving lung and heart function. (Matori H, Umar S, Nadadur RD, Sharma S, Partow-Navid R, Afkhami M, Amjedi M, Eghbali M. Hypertension 60: 425-430, 2012). Here, we have examined the role of microRNAs (miRs) in the rescue action of genistein in monocrotaline (MCT)-induced PH in rats. Our miR microarray analysis on the lung samples from control, PH, and genistein-rescue group revealed that miR206, which was robustly upregulated to ∼11-fold by PH, was completely normalized to control levels by genistein treatment. Next, we examined whether knockdown of miR206 could reverse preexisting established PH. PH was induced in male rats by 60 mg/kg of MCT, and rats received three intratracheal doses of either miR206 antagomir (10 mg/kg body wt) or scrambled miR control at days 17, 21, and 26. Knockdown of miR206 resulted in significant improvement in the cardiopulmonary function, as right ventricular pressure was significantly reduced to 38.6 ± 3.61 mmHg from 61.2 ± 5.4 mmHg in PH, and right ventricular hypertrophy index was decreased to 0.35 ± 0.04 from 0.59 ± 0.037 in PH. Knockdown of miR206 reversed PH-induced pulmonary vascular remodeling in vivo and was associated with restoration of PH-induced loss of capillaries in the lungs and induction of vascular endothelial growth factor A expression. In conclusion, miR206 antagomir therapy improves cardiopulmonary function and structure and rescues preexisting severe PH in MCT rat model possibly by stimulating angiogenesis in the lung.

  20. Activation of SIRT1 Attenuates Klotho Deficiency-Induced Arterial Stiffness and Hypertension by Enhancing AMP-Activated Protein Kinase Activity.

    PubMed

    Gao, Diansa; Zuo, Zhong; Tian, Jing; Ali, Quaisar; Lin, Yi; Lei, Han; Sun, Zhongjie

    2016-11-01

    Arterial stiffness is an independent risk factor for stroke and myocardial infarction. This study was designed to investigate the role of SIRT1, an important deacetylase, and its relationship with Klotho, a kidney-derived aging-suppressor protein, in the pathogenesis of arterial stiffness and hypertension. We found that the serum level of Klotho was decreased by ≈45% in patients with arterial stiffness and hypertension. Interestingly, Klotho haplodeficiency caused arterial stiffening and hypertension, as evidenced by significant increases in pulse wave velocity and blood pressure in Klotho-haplodeficient (KL(+/-)) mice. Notably, the expression and activity of SIRT1 were decreased significantly in aortic endothelial and smooth muscle cells in KL(+/-) mice, suggesting that Klotho deficiency downregulates SIRT1. Treatment with SRT1720 (15 mg/kg/d, IP), a specific SIRT1 activator, abolished Klotho deficiency-induced arterial stiffness and hypertension in KL(+/-) mice. Klotho deficiency was associated with significant decreases in activities of AMP-activated protein kinase α (AMPKα) and endothelial NO synthase (eNOS) in aortas, which were abolished by SRT1720. Furthermore, Klotho deficiency upregulated NADPH oxidase activity and superoxide production, increased collagen expression, and enhanced elastin fragmentation in the media of aortas. These Klotho deficiency-associated changes were blocked by SRT1720. In conclusion, this study provides the first evidence that Klotho deficiency downregulates SIRT1 activity in arterial endothelial and smooth muscle cells. Pharmacological activation of SIRT1 may be an effective therapeutic strategy for arterial stiffness and hypertension.

  1. Effects of a novel ACE inhibitor, 3-(3-thienyl)-l-alanyl-ornithyl-proline, on endothelial vasodilation and hepatotoxicity in l-NAME-induced hypertensive rats.

    PubMed

    Seth, Mahesh Kumar; Hussain, M Ejaz; Pasha, Santosh; Fahim, Mohammad

    2016-01-01

    Nitric oxide (NO) is a widespread biological mediator involved in many physiological and pathological processes, eg, in the regulation of vascular tone and hypertension. Chronic inhibition of NO synthase by N(G)-nitro-l-arginine methyl ester (l-NAME) hydrochloride results in the development of hypertension accompanied by an increase in vascular responsiveness to adrenergic stimuli. Recently, we developed a novel sulfur-containing angiotensin-converting enzyme inhibitor: 3-(3-thienyl)-l-alanyl-ornithyl-proline (TOP). Our previous studies indicated a superior nature of the molecule as an antihypertensive agent in spontaneously hypertensive rats (showing the involvement of renin-angiotensin-aldosterone system) in comparison to captopril. The aim of the present study was to investigate the effect of TOP on NO pathway in l-NAME-induced hypertensive rats, and captopril was included as the standard treatment group. Treatment with both TOP (20 mg/kg) and captopril (40 mg/kg) prevented the development of hypertension in l-NAME model, but TOP showed better restoration of NO and normal levels of angiotensin-converting enzyme. In addition, in vitro vasorelaxation assay showed an improvement in endothelium-dependent vasodilation in both the cases. Further, the biochemical (malondialdehyde, alanine aminotransferase, and aspartate aminotransferase) and the histopathological effects of TOP on rat liver tissues revealed a protective nature of TOP in comparison to captopril in the l-NAME model. In conclusion, TOP at 50% lesser dose than captopril was found to be better in the l-NAME model.

  2. Fucoidan from Undaria pinnatifida prevents vascular dysfunction through PI3K/Akt/eNOS-dependent mechanisms in the l-NAME-induced hypertensive rat model.

    PubMed

    Li, Xiaofei; Li, Jian; Li, Zhike; Sang, Ying; Niu, Yunhui; Zhang, Qianying; Ding, Hong; Yin, Shanye

    2016-05-18

    Despite major scientific advances in its prevention, treatment and care, hypertension remains a serious condition that might lead to long-term complications such as heart disease and stroke. The great majority of forms of hypertension eventually result from an increased vasomotor tone activity that is regulated by endothelial NOS (eNOS) in vascular endothelium. Here, we examined the effect of fucoidan on eNOS activation in human umbilical vein endothelial cells (HUVECs). We also examined the effects of functional components of Undaria pinnatifida fucoidan on blood pressure and vascular function in eNOS inhibition-induced hypertensive rats in vivo. Our results suggest that fucoidan increased nitric oxide production by activating eNOS and Akt phosphorylation, which could be impaired by Akt or eNOS inhibitors. In the hypertensive rat model, treatment of fucoidan resulted in potent and persistent reduction of high blood pressure (BP) even after drug withdrawal. Our results showed that the mechanisms might involve protection against vascular structure damage, enhanced endothelium-independent vascular function and inhibition of abnormal proliferation of smooth muscle cells, which are mediated by the Akt-eNOS signaling pathway. Moreover, fucoidan treatment reduced the vascular inflammation and oxidative stress control caused by iNOS expression. Together, these results support a putative role of fucoidan in hypertension prevention and treatment.

  3. Maternal diet during gestation and lactation modifies the severity of salt-induced hypertension and renal injury in Dahl salt-sensitive rats.

    PubMed

    Geurts, Aron M; Mattson, David L; Liu, Pengyuan; Cabacungan, Erwin; Skelton, Meredith M; Kurth, Theresa M; Yang, Chun; Endres, Bradley T; Klotz, Jason; Liang, Mingyu; Cowley, Allen W

    2015-02-01

    Environmental exposure of parents or early in life may affect disease development in adults. We found that hypertension and renal injury induced by a high-salt diet were substantially attenuated in Dahl SS/JrHsdMcwiCrl (SS/Crl) rats that had been maintained for many generations on the grain-based 5L2F diet compared with SS/JrHsdMcwi rats (SS/Mcw) maintained on the casein-based AIN-76A diet (mean arterial pressure, 116±9 versus 154±25 mm Hg; urinary albumin excretion, 23±12 versus 170±80 mg/d). RNAseq analysis of the renal outer medulla identified 129 and 82 genes responding to a high-salt diet uniquely in SS/Mcw and SS/Crl rats, respectively, along with minor genetic differences between the SS substrains. The 129 genes responding to salt in the SS/Mcw strain included numerous genes with homologs associated with hypertension, cardiovascular disease, or renal disease in human. To narrow the critical window of exposure, we performed embryo-transfer experiments in which single-cell embryos from 1 colony (SS/Mcw or SS/Crl) were transferred to surrogate mothers from the other colony, with parents and surrogate mothers maintained on their respective original diet. All offspring were fed the AIN-76A diet after weaning. Salt-induced hypertension and renal injury were substantially exacerbated in rats developed from SS/Crl embryos transferred to SS/Mcw surrogate mothers. Conversely, salt-induced hypertension and renal injury were significantly attenuated in rats developed from SS/Mcw embryos transferred to SS/Crl surrogate mothers. Together, the data suggest that maternal diet during the gestational-lactational period has substantial effects on the development of salt-induced hypertension and renal injury in adult SS rats.

  4. The effect of hydroalcoholic extract of Ferula foetida stems on blood pressure and oxidative stress in dexamethasone-induced hypertensive rats

    PubMed Central

    Safaeian, Leila; Ghannadi, Alireza; Javanmard, Shaghayegh Haghjoo; Vahidian, Mohammad Hadi

    2015-01-01

    Ferula foetida (Bunge) Regel. is one of the most widespread and important Ferula species with nutritional and medicinal applications. Some phytochemicals with helpful cardiovascular effects have been isolated from Ferula species. The present study was designed to evaluate the effects of hydroalcoholic extract of the stems of F. foetida in dexamethasone (Dex)-induced hypertension in rats. Hypertension was induced by subcutaneous injection of Dex (30 µg/kg) for 14 days. In a prevention study, rats received oral F. foetida extract (200, 400 and 800 mg/kg) for 4 days prior to Dex administration and during the test period (Days 1-18). In a treatment study, F. foetida extract was administered from day 8 to 14. Systolic blood pressure (SBP) was evaluated using tail-cuff method. The thymus weight was measured as an indicator of glucocorticoid activity. The hydrogen peroxide (H2O2) concentration and ferric reducing antioxidant power (FRAP) were measured in plasma samples. Dex-induced hypertensive rats showed significant increases in SBP and in plasma H2O2 and decreases in the body and thymus weights and in FRAP value (P<0.001). Administration of F. foetida extract significantly prevented and reversed hypertension at all doses. It also increased plasma FRAP value (P<0.001) but failed to decrease plasma H2O2 concentration. These results suggest antihypertensive and antioxidant effects of F. foetida stem extract in Dex-induced hypertension. More investigations are needed to elucidate the exact mechanism of antihypertensive effect of this traditional phytomedicine. PMID:26600859

  5. Cytochrome P4501A1 Is Required for Vascular Dysfunction and Hypertension Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin

    PubMed Central

    Kopf, Phillip G.; Scott, Jason A.; Agbor, Larry N.; Boberg, Jason R.; Elased, Khalid M.; Huwe, Janice K.; Walker, Mary K.

    2010-01-01

    National Health and Nutrition Examination Survey data show an association between hypertension and exposure to dioxin-like halogenated aromatic hydrocarbons (HAHs). Furthermore, chronic exposure of mice to the prototypical HAH, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces reactive oxygen species (ROS), endothelial dysfunction, and hypertension. Because TCDD induces cytochrome P4501A1 (CYP1A1) and CYP1A1 can increase ROS, we tested the hypothesis that TCDD-induced endothelial dysfunction and hypertension are mediated by CYP1A1. CYP1A1 wild-type (WT) and knockout (KO) mice were fed one control or TCDD-containing pill (180 ng TCDD/kg, 5 days/week) for 35 days (n = 10–14/genotype/treatment). Blood pressure was monitored by radiotelemetry, and liver TCDD concentration, CYP1A1 induction, ROS, and aortic reactivity were measured at 35 days. TCDD accumulated to similar levels in livers of both genotypes. TCDD induced CYP1A1 in endothelium of aorta and mesentery without detectable expression in the vessel wall. TCDD also induced superoxide anion production, measured by NADPH-dependent lucigenin luminescence, in aorta, heart, and kidney of CYP1A1 WT mice but not KO mice. In contrast, TCDD induced hydrogen peroxide, measured by amplex red assay, to similar levels in aorta of CYP1A1 WT and KO mice but not in heart or kidney. TCDD reduced acetylcholine-dependent vasorelaxation in aortic rings of CYP1A1 WT mice but not in KO mice. Finally, TCDD steadily increased blood pressure after 15 days, which plateaued after 25 days (+20 mmHg) in CYP1A1 WT mice but failed to alter blood pressure in KO mice. These results demonstrate that CYP1A1 is required for TCDD-induced cardiovascular superoxide anion production, endothelial dysfunction, and hypertension. PMID:20634294

  6. Suppression of the expression of hypoxia-inducible factor-1α by RNA interference alleviates hypoxia-induced pulmonary hypertension in adult rats

    PubMed Central

    Li, Ying; Shi, Bo; Huang, Liping; Wang, Xin; Yu, Xiaona; Guo, Baosheng; Ren, Weidong

    2016-01-01

    Hypoxia-inducible factor-1α (HIF-1α) has been implicated in the pathogenesis of hypoxic pulmonary hypertension (PH). However, the potential clinical value of HIF-1α as a therapeutic target in the treatment of PH has not yet been evaluated. In this study, an animal model of hypoxia-induced PH was established by exposing adult rats to 10% O2 for 3 weeks, and the effects of the lentivirus-mediated delivery of HIF-1α short hairpin RNA (shRNA) by intratracheal instillation prior to exposure to hypoxia on the manifestations of hypoxia-induced PH were assessed. The successful delivery of HIF-1α shRNA into the pulmonary arteries effectively suppressed the hypoxia-induced upregulation of HIF-1α, accompanied by the prominent attenuation the symptoms associated with hypoxia-induced PH, including the elevation of pulmonary arterial pressure, hypertrophy and hyperplasia of pulmonary artery smooth muscle cells (PASMCs), as well as the muscularization of pulmonary arterioles. In addition, the knockdown of HIF-1α in cultured rat primary PASMCs significantly inhibited the hypoxia-induced acceleration of the cell cycle and the proliferation of the PASMCs, suggesting that HIF-1α may be a direct mediator of PASMC hyperplasia in hypoxia-induced PH. In conclusion, this study demonstrates the potent suppressive effects of HIF-1α shRNA on hypoxia-induced PH and PASMC hyperplasia, providing evidence for the potential application of HIF-1α shRNA in the treatment of hypoxic PH. PMID:27748831

  7. Chronic unilateral occlusion of an extrapulmonary primary bronchus induces pulmonary hypertension syndrome (ascites) in male and female broilers.

    PubMed

    Wideman, R F; Kirby, Y K; Owen, R L; French, H

    1997-02-01

    Previously, it was demonstrated that acute (4 min) and chronic (12 d) occlusion of an extrapulmonary primary bronchus triggers pulmonary hypertension but not pulmonary hypertension syndrome (PHS, ascites) in broilers. The present study was conducted to determine whether a more prolonged period of bronchus occlusion causes PHS similar to that induced by clamping one pulmonary artery. Male and female broiler chicks, 14 to 18 d old, were anesthetized, the thoracic inlet was opened, and a silver clip was positioned to fully obstruct the left extrapulmonary primary bronchus (BRONCHUS CLAMP group) or the left pulmonary artery (PA-CLAMP group). Sham-operated chicks were anesthetized and the thoracic inlet was opened; however, neither the pulmonary artery nor the bronchus was clamped (SHAM group). An electrocardiogram (ECG) was obtained whenever clinical ascites became apparent in individual broilers, or prior to the final necropsy for broilers surviving to the end (Day 36) of the experiment. The right:total ventricular weight ratio (RV:TV) was evaluated as an index of pulmonary arterial pressure. Early post-surgical mortality (up to 21 d of age) was higher in the PA-CLAMP group (27% for males and females combined) than in the BRONCHUS CLAMP (10%) and SHAM (2%) groups. Cumulative ascites mortality (Days 22 to 36) also was higher in the PA-CLAMP group (86% for males, 77% for females) than in the BRONCHUS CLAMP (69% for males, 41% for females) and SHAM (23% for males, 0% for females) groups. Ascitic birds in all treatment groups had higher RV:TV ratios and more negative ECG Lead II S-wave amplitudes than nonascitic birds, reflecting the right ventricular hypertrophy and generalized ventricular dilation typically associated with PHS. These results demonstrate that unilateral bronchus occlusion is an effective experimental model for triggering ascites at a lower incidence than that obtained by occluding one pulmonary artery. Following the onset of pulmonary hypertension, the

  8. TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension

    PubMed Central

    Xia, Yang; Fu, Zhenzhen; Hu, Jinxing; Huang, Chun; Paudel, Omkar; Cai, Shaoxi; Liedtke, Wolfgang

    2013-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive channel in pulmonary arterial smooth muscle cells (PASMCs). Its upregulation by chronic hypoxia is associated with enhanced myogenic tone, and genetic deletion of trpv4 suppresses the development of chronic hypoxic pulmonary hypertension (CHPH). Here we further examine the roles of TRPV4 in agonist-induced pulmonary vasoconstriction and in the enhanced vasoreactivity in CHPH. Initial evaluation of TRPV4-selective antagonists HC-067047 and RN-1734 in KCl-contracted pulmonary arteries (PAs) of trpv4−/− mice found that submicromolar HC-067047 was devoid of off-target effect on pulmonary vasoconstriction. Inhibition of TRPV4 with 0.5 μM HC-067047 significantly reduced the sensitivity of serotonin (5-HT)-induced contraction in wild-type (WT) PAs but had no effect on endothelin-1 or phenylephrine-activated response. Similar shift in the concentration-response curve of 5-HT was observed in trpv4−/− PAs, confirming specific TRPV4 contribution to 5-HT-induced vasoconstriction. 5-HT-induced Ca2+ response was attenuated by HC-067047 in WT PASMCs but not in trpv4−/− PASMCs, suggesting TRPV4 is a major Ca2+ pathway for 5-HT-induced Ca2+ mobilization. Nifedipine also attenuated 5-HT-induced Ca2+ response in WT PASMCs but did not cause further reduction in the presence of HC-067047, suggesting interdependence of TRPV4 and voltage-gated Ca2+ channels in the 5-HT response. Chronic exposure (3–4 wk) of WT mice to 10% O2 caused significant increase in 5-HT-induced maximal contraction, which was partially reversed by HC-067047. In concordance, the enhancement of 5-HT-induced contraction was significantly reduced in PAs of CH trpv4−/− mice and HC-067047 had no further effect on the 5-HT induced response. These results suggest unequivocally that TRPV4 contributes to 5-HT-dependent pharmaco-mechanical coupling and plays a major role in the enhanced pulmonary vasoreactivity to 5-HT in CHPH. PMID

  9. Stress and hypertension.

    PubMed

    Zimmerman, R S; Frohlich, E D

    1990-09-01

    The relationships between stress and hypertension have been evaluated extensively. Acutely, stress has been shown to increase blood pressure by increasing cardiac output and the heart rate without affecting total peripheral resistance. Acute stress has been found to increase levels of catecholamines, cortisol, vasopressin, endorphins and aldosterone, which may in part explain the increase in blood pressure. However, a primary role for the activation of the sympathetic nervous system has recently been suggested in several studies. Studies in the rat are beginning to determine specific central nervous system pathways which transform stressful stimuli into signals triggering a cardiovascular response without direct cortical participation. Furthermore, acute stress reduces renal sodium excretion, which contributes to an increase in blood pressure. Several studies suggest that prolonged stress may predispose people and animals to prolonged hypertension and certain populations are at risk for the development of stress-induced hypertension. It is likely that prolonged stress-induced hypertension is the result of neurohormonal trophic factors which cause vascular hypertrophy or atherosclerosis. Because stress can affect measurement of blood pressure due to the phenomenon of 'white-coat hypertension', ambulatory blood pressure monitoring is emerging as an important feature in the evaluation of patients with hypertension. Finally, relaxation techniques are being used increasingly in the treatment of patients with hypertension.

  10. Vascular endothelial-cadherin downregulation as a feature of endothelial transdifferentiation in monocrotaline-induced pulmonary hypertension.

    PubMed

    Nikitopoulou, Ioanna; Orfanos, Stylianos E; Kotanidou, Anastasia; Maltabe, Violetta; Manitsopoulos, Nikolaos; Karras, Panagiotis; Kouklis, Panos; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2016-08-01

    Increased pulmonary vascular resistance in pulmonary hypertension (PH) is caused by vasoconstriction and obstruction of small pulmonary arteries by proliferating vascular cells. In analogy to cancer, subsets of proliferating cells may be derived from endothelial cells transitioning into a mesenchymal phenotype. To understand phenotypic shifts transpiring within endothelial cells in PH, we injected rats with alkaloid monocrotaline to induce PH and measured lung tissue levels of endothelial-specific protein and critical differentiation marker vascular endothelial (VE)-cadherin. VE-cadherin expression by immonoblotting declined significantly 24 h and 15 days postinjection to rebound to baseline at 30 days. There was a concomitant increase in transcriptional repressors Snail and Slug, along with a reduction in VE-cadherin mRNA. Mesenchymal markers α-smooth muscle actin and vimentin were upregulated by immunohistochemistry and immunoblotting, and α-smooth muscle actin was colocalized with endothelial marker platelet endothelial cell adhesion molecule-1 by confocal microscopy. Apoptosis was limited in this model, especially in the 24-h time point. In addition, monocrotaline resulted in activation of protein kinase B/Akt, endothelial nitric oxide synthase (eNOS), nuclear factor (NF)-κB, and increased lung tissue nitrotyrosine staining. To understand the etiological relationship between nitrosative stress and VE-cadherin suppression, we incubated cultured rat lung endothelial cells with endothelin-1, a vasoconstrictor and pro-proliferative agent in pulmonary arterial hypertension. This resulted in activation of eNOS, NF-κB, and Akt, in addition to induction of Snail, downregulation of VE-cadherin, and synthesis of vimentin. These effects were blocked by eNOS inhibitor N(ω)-nitro-l-arginine methyl ester. We propose that transcriptional repression of VE-cadherin by nitrosative stress is involved in endothelial-mesenchymal transdifferentiation in experimental PH.

  11. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension

    PubMed Central

    Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway. PMID:26871724

  12. Key Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension.

    PubMed

    Li, Qian; Mao, Min; Qiu, Yanli; Liu, Gaofeng; Sheng, Tingting; Yu, Xiufeng; Wang, Shuang; Zhu, Daling

    2016-01-01

    We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the underlying mechanisms of the remodeling induced by 15-HETE have remained unclear. As reactive oxygen species (ROS) and 15-LO are both induced by hypoxia, it is possible that ROS are involved in the events of hypoxia-induced 15-LO expression that lead to PH. We employed immunohistochemistry, tube formation assays, bromodeoxyuridine (BrdU) incorporation assays, and cell cycle analyses to explore the role of ROS in the process of 15-HETE-mediated hypoxic pulmonary hypertension (HPH). We found that exogenous 15-HETE facilitated the generation of ROS and that this effect was mainly localized to mitochondria. In particular, the mitochondrial electron transport chain and nicotinamide-adenine dinucleotide phosphate oxidase 4 (Nox4) were responsible for the significant 15-HETE-stimulated increase in ROS production. Moreover, ROS induced by 15-HETE stimulated endothelial cell (EC) migration and promoted pulmonary artery smooth muscle cell (PASMC) proliferation under hypoxia via the p38 MAPK pathway. These results indicated that 15-HETE-regulated ROS mediated hypoxia-induced pulmonary vascular remodeling (PVR) via the p38 MAPK pathway.

  13. N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats

    PubMed Central

    2014-01-01

    Background The outcome of patients suffering from pulmonary arterial hypertension (PAH) are predominantly determined by the response of the right ventricle to the increase afterload secondary to high vascular pulmonary resistance. However, little is known about the effects of the current available or experimental PAH treatments on the heart. Recently, inflammation has been implicated in the pathophysiology of PAH. N-acetylcysteine (NAC), a well-known safe anti-oxidant drug, has immuno-modulatory and cardioprotective properties. We therefore hypothesized that NAC could reduce the severity of pulmonary hypertension (PH) in rats exposed to monocrotaline (MCT), lowering inflammation and preserving pulmonary vascular system and right heart function. Methods Saline-treated control, MCT-exposed, MCT-exposed and NAC treated rats (day 14–28) were evaluated at day 28 following MCT for hemodynamic parameters (right ventricular systolic pressure, mean pulmonary arterial pressure and cardiac output), right ventricular hypertrophy, pulmonary vascular morphometry, lung inflammatory cells immunohistochemistry (monocyte/macrophages and dendritic cells), IL-6 expression, cardiomyocyte hypertrophy and cardiac fibrosis. Results The treatment with NAC significantly decreased pulmonary vascular remodeling, lung inflammation, and improved total pulmonary resistance (from 0.71 ± 0.05 for MCT group to 0.50 ± 0.06 for MCT + NAC group, p < 0.05). Right ventricular function was also improved with NAC treatment associated with a significant decrease in cardiomyocyte hypertrophy (625 ± 69 vs. 439 ± 21 μm2 for MCT and MCT + NAC group respectively, p < 0.001) and heart fibrosis (14.1 ± 0.8 vs. 8.8 ± 0.1% for MCT and MCT + NAC group respectively, p < 0.001). Conclusions Through its immuno-modulatory and cardioprotective properties, NAC has beneficial effect on pulmonary vascular and right heart function in experimental PH. PMID:24929652

  14. Portal Hypertension

    MedlinePlus

    ... Obesity to Liver Cancer Additional Content Medical News Portal Hypertension By Steven K. Herrine, MD, Thomas Jefferson ... Liver Hepatic Encephalopathy Jaundice in Adults Liver Failure Portal Hypertension (See also Overview of Liver Disease .) Portal ...

  15. Hypertension - overview

    MedlinePlus Videos and Cool Tools

    If left untreated, hypertension can lead to the thickening of arterial walls causing its lumen, or blood passage way, to narrow in diameter. ... the narrowed arterial openings. In addition, people with hypertension may be more susceptible to stroke.

  16. 1H NMR-Based Analysis of Serum Metabolites in Monocrotaline-Induced Pulmonary Arterial Hypertensive Rats

    PubMed Central

    Lin, Taijie; Gu, Jinping; Huang, Caihua; Zheng, Suli; Lin, Xu; Xie, Liangdi; Lin, Donghai

    2016-01-01

    Aims. To study the changes of the metabolic profile during the pathogenesis in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). Methods. Forty male Sprague-Dawley (SD) rats were randomly divided into 5 groups (n = 8, each). PAH rats were induced by a single dose intraperitoneal injection of 60 mg/kg MCT, while 8 rats given intraperitoneal injection of 1 ml normal saline and scarified in the same day (W0) served as control. Mean pulmonary arterial pressure (mPAP) was measured through catherization. The degree of right ventricular hypertrophy and pulmonary hyperplasia were determined at the end of first to fourth weeks; nuclear magnetic resonance (NMR) spectra of sera were then acquired for the analysis of metabolites. Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to discriminate different metabolic profiles. Results. The prominent changes of metabolic profiles were seen during these four weeks. Twenty specific metabolites were identified, which were mainly involved in lipid metabolism, glycolysis, energy metabolism, ketogenesis, and methionine metabolism. Profiles of correlation between these metabolites in each stage changed markedly, especially in the fourth week. Highly activated methionine and betaine metabolism pathways were selected by the pathway enrichment analysis. Conclusions. Metabolic dysfunction is involved in the development and progression of PAH. PMID:27057080

  17. Involvement of endogenous central hydrogen sulfide (H2S) in hypoxia-induced hypothermia in spontaneously hypertensive rats.

    PubMed

    Sabino, João Paulo J; Soriano, Renato N; Donatti, Alberto F; Fernandez, Rodrigo Restrepo; Kwiatkoski, Marcelo; Francescato, Heloísa D C; Coimbra, Terezila M; Branco, Luiz G S

    2017-02-01

    Spontaneously hypertensive rats (SHR) display autonomic imbalance and abnormal body temperature (Tb) adjustments. Hydrogen sulfide (H2S) modulates hypoxia-induced hypothermia, but its role in SHR thermoregulation is unknown. We tested the hypothesis that SHR display peculiar thermoregulatory response to hypoxia and that endogenous H2S overproduced in the caudal nucleus of the solitary tract (NTS) of SHR modulates this response. SHR and Wistar rats were microinjected into the fourth ventricle with aminooxyacetate (AOA, H2S-synthezing enzyme inhibitor) or sodium sulfide (Na2S, H2S donor) and exposed to normoxia (21% inspired O2) or hypoxia (10% inspired O2, 30 min). Tb was continuously measured, and H2S production rate was assessed in caudal NTS homogenates. In both groups, AOA, Na2S, or saline (i.e., control; 1 μL) did not affect euthermia. Hypoxia caused similar decreases in Tb in both groups. AOA presented a longer latency to potentiate hypoxic hypothermia in SHR. Caudal NTS H2S production rate was higher in SHR. We suggest that increased bioavailability of H2S in the caudal NTS of SHR enables the adequate modulation of excitability of peripheral chemoreceptor-activated NTS neurons that ultimately induce suppression of brown adipose tissue thermogenesis, thus accounting for the normal hypoxic hypothermia.

  18. MICU1 may be a promising intervention target for gut-derived sepsis induced by intra-abdominal hypertension

    PubMed Central

    Leng, Yuxin; Ge, Qinggang; Zhao, Zhiling; Wang, Kun; Yao, Gaiqi

    2016-01-01

    Intra-abdominal hypertension (IAH) is a common and serious complication in critically ill patients, for which there is no targeted therapy. IAH-induced dysfunction of intestinal barriers is closely associated with oxidative imbalances, which are considered to provide a pathophysiological basis for subsequent gut-derived sepsis. However, the upstream mechanism that produces oxidative damage during IAH remains unknown. It is not clear whether ‘mitochondrial Ca2+ uptake 1’ (MICU1, the key protein regulating the oxidative process) is involved in preventing Ca2+m (mitochondrial Ca2+) overload. Here, we detected changes in the expression of MICU1 during the development of increased intestinal permeability in rats with IAH, and we explored the related mechanism regulating epithelial-barrier functions by knocking-down micu1 in Caco-2 cells. Our results demonstrated that, to combat IAH-induced dysfunction of intestinal barriers, MICU1 undergoes a compensatory increase in expression, whereas ‘mitochondrial calcium uniporter’ (MCU) – a conserved Ca2+ transporter – becomes transcriptionally suppressed. Silencing the expression of MICU1 destroyed Caco-2 cell barrier integrity, promoted paracellular permeability, and impaired the expression of tight junction proteins (occludin, ZO-1, and claudin 1). Meanwhile, oxidative imbalances were induced; malondialdehyde (MDA), a product of oxidation, was increased and antioxidant products (GSH-Px, CAT, and SOD) were decreased. In MICU1-deficient Caco-2 cells, proliferation was inhibited and apoptosis was promoted. Collectively, our results indicate that MICU1-related oxidation/antioxidation disequilibrium is strongly involved in IAH-induced damage to intestinal barriers. MICU1-targeted treatment may hold promise for preventing the progression of IAH to gut-derived sepsis. PMID:27924224

  19. Exposure to stimulatory CpG oligonucleotides during gestation induces maternal hypertension and excess vasoconstriction in pregnant rats.

    PubMed

    Goulopoulou, Styliani; Wenceslau, Camilla F; McCarthy, Cameron G; Matsumoto, Takayuki; Webb, R Clinton

    2016-04-15

    Bacterial infections increase risk for pregnancy complications, such as preeclampsia and preterm birth. Unmethylated CpG DNA sequences are present in bacterial DNA and have immunostimulatory effects. Maternal exposure to CpG DNA induces fetal demise and craniofacial malformations; however, the effects of CpG DNA on maternal cardiovascular health have not been examined. We tested the hypothesis that exposure to synthetic CpG oligonucleotides (ODNs) during gestation would increase blood pressure and cause vascular dysfunction in pregnant rats. Pregnant and nonpregnant female rats were treated with CpG ODN (ODN 2395) or saline (Veh) starting on gestational day 14or corresponding day for the nonpregnant groups. Exposure to CpG ODN increased systolic blood pressure in pregnant (Veh: 121 ± 2 mmHg vs. ODN 2395: 134 ± 2 mmHg,P< 0.05) but not in nonpregnant rats (Veh: 111 ± 2 mmHg vs. ODN 2395: 108 ± 5 mmHg,P> 0.05). Mesenteric resistance arteries from pregnant CpG ODN-treated rats had increased contractile responses to U46619 [thromboxane A2(TxA2) mimetic] compared with arteries from vehicle-treated rats [Emax(%KCl), Veh: 87 ± 4 vs. ODN 2395: 104 ± 4,P< 0.05]. Nitric oxide synthase (NOS) inhibition increased contractile responses to U46619, and CpG ODN treatment abolished this effect in arteries from pregnant ODN 2395-treated rats. CpG ODN potentiated the involvement of cyclooxygenase (COX) to U46619-induced contractions. In conclusion, exposure to CpG ODN during gestation induces maternal hypertension, augments resistance artery contraction, increases the involvement of COX-dependent mechanisms and reduces the contribution of NOS-dependent mechanisms to TxA2-induced contractions in mesenteric resistance arteries.

  20. Inhibition of nuclear factor-κB in the lungs prevents monocrotaline-induced pulmonary hypertension in mice.

    PubMed

    Li, Li; Wei, Chuanyu; Kim, Il-Kwon; Janssen-Heininger, Yvonne; Gupta, Sudhiranjan

    2014-06-01

    Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder with significant morbidity and mortality in patients with various lung and heart diseases. PAH is characterized by vascular obstruction which leads to a sustained increased pulmonary vascular resistance, vascular remodeling, and right ventricular hypertrophy and failure. Limited PAH therapies indicate that novel approaches are urgently needed for the treatment of PAH. Nuclear factor-κB (NF-κB) has been shown to play an important role in different cardiac pathologies; however, the role of NF-κB remains limited in the setting of PAH. Here, we investigated whether NF-κB inhibition in the lungs using Club (Clara) cell-10 promoter driving IκBα mutant had any effect in monocrotaline (MCT)-induced PAH mouse model. Our data revealed that MCT-induced PAH and right ventricular hypertrophy were associated with NF-κB activation, inflammatory response, and altered expression of bone morphogenetic protein receptor 2, inhibitor of differentiation, and Notch-3 signaling molecules in wild-type mice; and all these alterations were prevented in IκBα mutant mice treated with MCT. Moreover, endothelial cell apoptosis and endothelial-to-mesenchymal transition occurred in the lungs of MCT-treated wild-type mice and were restored in IκBα mutant+MCT mice, indicating an association with NF-κB signaling. In lung microvascular endothelial cells, IκBα (AA) mutant plasmid restored the decreased bone morphogenetic protein receptor 2 protein level and reversed the endothelial-to-mesenchymal transition process induced by transforming growth factor-β1. We conclude that NF-κB regulates bone morphogenetic protein receptor 2-inhibitor of differentiation-Notch-3 axis genes and the subsequent endothelial cell apoptosis and endothelial-to-mesenchymal transition events in the lungs, providing new mechanistic information about MCT-induced PAH and right ventricular hypertrophy.

  1. Development and Characterization of an Inducible Rat Model of Chronic Thromboembolic Pulmonary Hypertension.

    PubMed

    Arias-Loza, Paula-Anahi; Jung, Pius; Abeßer, Marco; Umbenhauer, Sandra; Williams, Tatjana; Frantz, Stefan; Schuh, Kai; Pelzer, Theo

    2016-05-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is an entity of PH that not only limits patients quality of life but also causes significant morbidity and mortality. The treatment of choice is pulmonary endarterectomy. However numerous patients do not qualify for pulmonary endarterectomy or present with residual vasculopathy post pulmonary endarterectomy and require specific vasodilator treatment. Currently, there is no available specific small animal model of CTEPH that could serve as tool to identify targetable molecular pathways and to test new treatment options. Thus, we generated and standardized a rat model that not only resembles functional and histological features of CTEPH but also emulates thrombi fibrosis. The pulmonary embolism protocol consisted of 3 sequential tail vein injections of fibrinogen/collagen-covered polystyrene microspheres combined with thrombin and administered to 10-week-old male Wistar rats. After the third embolism, rats developed characteristic features of CTEPH including elevated right ventricular systolic pressure, right ventricular cardiomyocyte hypertrophy, pulmonary artery remodeling, increased serum brain natriuretic peptide levels, thrombi fibrosis, and formation of pulmonary cellular-fibrotic lesions. The current animal model seems suitable for detailed study of CTEPH pathophysiology and permits preclinical testing of new pharmacological therapies against CTEPH.

  2. Venous hypertension induces increased platelet reactivity and accumulation in patients with chronic venous insufficiency.

    PubMed

    Lu, Xinwu; Chen, Yujie; Huang, Yin; Li, Weimin; Jiang, Mier

    2006-01-01

    The objective of this study was to determine whether there are changes in platelet activation and rheology in patients with chronic venous insufficiency (CVI) and what their impact is on this disease. Anticoagulated peripheral venous blood collected from 21 patients with CVI and 13 normal control subjects in different bodily positions was incubated either with 0.5 mumol/L adenosine diphosphate (ADP) or without agonist and analyzed by whole blood flow cytometry. Soluble P-selectin was analyzed in obtained sera by enzyme-linked immunosorbent assay. Platelet count was determined by a whole blood analyzer. Circulating platelets were more reactive to stimulation with 0.5 mumol/L ADP in patients with CVI compared with control subjects. There was no statistically significant change in platelet activation without ADP and the level of soluble P-selectin as a function of posture. Under simulated venous hypertension, platelet accumulation was observed in patients with CVI. Patients with CVI had increased platelet reactivity and accumulation during orthostasis, suggesting this might be a contributory factor to CVI pathogenesis.

  3. Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model

    PubMed Central

    Park, H-Y Lopilly; Kim, J H; Park, C K

    2012-01-01

    Autophagy is reported to have important roles in relation to regulated cell death pathways and neurodegeneration. This study used chronic hypertensive glaucoma rat model to investigate whether the autophagy pathway has a role in the apoptosis of retinal ganglion cells (RGCs) after chronic intraocular pressure (IOP) elevation. Under electron microscopy, autophagosomes were markedly accumulated in the dendrites and cytoplasm of RGCs after IOP elevation. Western blot analysis showed that LC3-II/LC3-I and beclin-1 were upregulated throughout the 8-weeks period after IOP elevation. The pattern of LC3 immunostaining showed autophagy activation in the cytoplasm of RGCs to increase and peak at 4 weeks after IOP elevation. Most of these LC3B-positive RGCs underwent apoptosis by terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling, and inhibition of autophagy with 3-methyladenine decreased RGC apoptosis. The activated pattern shows that autophagy is initially activated in the dendrites of the RGCs, but, thereafter autophagy is mainly activated in the cytoplasm of RGCs. This may show that autophagy is differently regulated in different compartments of the neuron. This present study showed that autophgy is activated in RGCs and has a role in autophagic cell death after chronic IOP elevation. PMID:22476098

  4. Multiple esophageal variceal ruptures with massive ascites due to myelofibrosis-induced portal hypertension

    PubMed Central

    Tokai, Koichi; Miyatani, Hiroyuki; Yoshida, Yukio; Yamada, Shigeki

    2012-01-01

    A 75-year old man had been diagnosed at 42 years of age as having polycythemia vera and had been monitored at another hospital. Progression of anemia had been recognized at about age 70, and the patient was thus referred to our center in 2008 where secondary myelofibrosis was diagnosed based on bone marrow biopsy findings. Hematemesis due to rupture of esophageal varices occurred in January and February of 2011. The bleeding was stopped by endoscopic variceal ligation. Furthermore, in March of the same year, hematemesis recurred and the patient was transported to our center. He was in irreversible hemorrhagic shock and died. The autopsy showed severe bone marrow fibrosis with mainly argyrophilic fibers, an observation consistent with myelofibrosis. The liver weighed 1856 g the spleen 1572 g, indicating marked hepatosplenomegaly. The liver and spleen both showed extramedullary hemopoiesis. Myelofibrosis is often complicated by portal hypertension and is occasionally associated with gastrointestinal hemorrhage due to esophageal varices. A patient diagnosed as having myelofibrosis needs to be screened for esophageal/gastric varices. Myelofibrosis has a poor prognosis. Therefore, it is necessary to carefully decide the therapeutic strategy in consideration of the patient’s concomitant conditions, treatment invasiveness and quality of life. PMID:22851873

  5. Extravasation of blood-borne immunoglobulin G through blood-brain barrier during adrenaline-induced transient hypertension in the rat.

    PubMed

    Kuang, Fang; Wang, Bai-Ren; Zhang, Ping; Fei, Ling-Ling; Jia, Yi; Duan, Xiao-Li; Wang, Xi; Xu, Zhen; Li, Gai-Li; Jiao, Xi-Ying; Ju, Gong

    2004-06-01

    The effect of transient hypertension on blood-brain barrier (BBB) permeability, particularly on extravasation of immunoglobulin G (IgG), has not been fully understood. In the present experiment, we investigated the time course of endogenous albumin and IgG extravasation through BBB and the localization of extravasated IgG in brain parenchyma during adrenaline(AD)-induced transient hypertension in the rat by using Evans blue fluorescence, immunohistochemistry, and Western blot. The results showed that a bolus injection of AD (10 microg/kg) induced a transient elevation of arterial pressure lasting about 1 min. The endogenous albumin and IgG entered the brain parenchyma via BBB only when hypertension occurred. Electron microscopically, the IgG-like immunoreactivities were predominantly seen in the cytoplasm of endothelia of capillaries, pericytes, extracellular space of parenchyma, and the cytoplasm of glial cells. The results suggest that circulating IgG or antibodies might contact the structures of brain parenchyma through passage of BBB when its permeability is temporally changed by transient hypertension. This phenomenon implies a possible mechanism of pathogenesis for immune-mediated diseases in the brain.

  6. Secreted miR-27a Induced by Cyclic Stretch Modulates the Proliferation of Endothelial Cells in Hypertension via GRK6

    PubMed Central

    Wang, Lu; Bao, Han; Wang, Kai-Xuan; Zhang, Ping; Yao, Qing-Ping; Chen, Xiao-Hu; Huang, Kai; Qi, Ying-Xin; Jiang, Zong-Lai

    2017-01-01

    Abnormal proliferation of endothelial cells (ECs) is important in vascular remodeling during hypertension, but the mechanisms are still unclear. In hypertensive rats caused by abdominal aortic coarctation, the expression of G-protein-coupled receptor kinase 6 (GRK6) in ECs at common carotid artery was repressed in vivo, and EC proliferation was increased. 15% cyclic stretch in vitro, which mimics the pathologically increased stretch in hypertension, repressed EC GRK6 expression via paracrine control by vascular smooth muscle cells (VSMCs). Furthermore, VSMC-derived microparticles (VSMC-MPs) were detected in the conditioned medium from VSMCs and in artery. VSMC-MPs from cells exposed to 15% cyclic stretch decreased GRK6 expression and increased EC proliferation. miR-27a was detected in VSMC-MPs and was upregulated by 15% cyclic stretch. miR-27a was transferred from VSMCs to ECs via VSMC-MPs and directly targeted on GRK6. Finally, a multi-point injection of antagomiR-27a around carotid artery decreased miR-27a expression in vivo, induced GRK6 expression, and reversed the abnormal EC proliferation. Pathologically elevated cyclic stretch increased the secretion of miR-27a, which was transferred from VSMCs to ECs via the VSMC-MPs, subsequently targeted GRK6, and induced EC proliferation. Locally decreasing miR-27a could be a novel therapeutic approach to attenuate the abnormal EC proliferation in hypertension. PMID:28106155

  7. Secreted miR-27a Induced by Cyclic Stretch Modulates the Proliferation of Endothelial Cells in Hypertension via GRK6.

    PubMed

    Wang, Lu; Bao, Han; Wang, Kai-Xuan; Zhang, Ping; Yao, Qing-Ping; Chen, Xiao-Hu; Huang, Kai; Qi, Ying-Xin; Jiang, Zong-Lai

    2017-01-20

    Abnormal proliferation of endothelial cells (ECs) is important in vascular remodeling during hypertension, but the mechanisms are still unclear. In hypertensive rats caused by abdominal aortic coarctation, the expression of G-protein-coupled receptor kinase 6 (GRK6) in ECs at common carotid artery was repressed in vivo, and EC proliferation was increased. 15% cyclic stretch in vitro, which mimics the pathologically increased stretch in hypertension, repressed EC GRK6 expression via paracrine control by vascular smooth muscle cells (VSMCs). Furthermore, VSMC-derived microparticles (VSMC-MPs) were detected in the conditioned medium from VSMCs and in artery. VSMC-MPs from cells exposed to 15% cyclic stretch decreased GRK6 expression and increased EC proliferation. miR-27a was detected in VSMC-MPs and was upregulated by 15% cyclic stretch. miR-27a was transferred from VSMCs to ECs via VSMC-MPs and directly targeted on GRK6. Finally, a multi-point injection of antagomiR-27a around carotid artery decreased miR-27a expression in vivo, induced GRK6 expression, and reversed the abnormal EC proliferation. Pathologically elevated cyclic stretch increased the secretion of miR-27a, which was transferred from VSMCs to ECs via the VSMC-MPs, subsequently targeted GRK6, and induced EC proliferation. Locally decreasing miR-27a could be a novel therapeutic approach to attenuate the abnormal EC proliferation in hypertension.

  8. Central Infusion of Angiotensin II Type 2 Receptor Agonist Compound 21 Attenuates DOCA/NaCl-Induced Hypertension in Female Rats

    PubMed Central

    Dai, Shu-Yan; Zhang, Yu-Ping; Peng, Wei; Shen, Ying; He, Jing-Jing

    2016-01-01

    The present study investigated whether central activation of angiotensin II type 2 receptor (AT2-R) attenuates deoxycorticosterone acetate (DOCA)/NaCl-induced hypertension in intact and ovariectomized (OVX) female rats and whether female sex hormone status has influence on the effects of AT2-R activation. DOCA/NaCl elicited a greater increase in blood pressure in OVX females than that in intact females. Central infusion of compound 21, a specific AT2-R agonist, abolished DOCA/NaCl pressor effect in intact females, whereas same treatment in OVX females produced an inhibitory effect. Real-time RT-PCR analysis revealed that DOCA/NaCl enhanced the mRNA expression of hypertensive components including AT1-R, ACE-1, and TNF-α in the paraventricular nucleus of hypothalamus in both intact and OVX females. However, the mRNA expressions of antihypertensive components such as AT2-R, ACE-2, and IL-10 were increased only in intact females. Central AT2-R agonist reversed the changes in the hypertensive components in all females, while this agonist further upregulated the expression of ACE2 and IL-10 in intact females, but only IL-10 in OVX females. These results indicate that brain AT2-R activation plays an inhibitory role in the development of DOCA/NaCl-induced hypertension in females. This beneficial effect of AT2-R activation involves regulation of renin-angiotensin system and proinflammatory cytokines. PMID:26783414

  9. Antihypertensive and antioxidant effects of hydroalcoholic extract from the aerial parts of Kelussia odoratissima Mozaff. in dexamethasone-induced hypertensive rats

    PubMed Central

    Safaeian, Leila; Sajjadi, Seyed Ebrahim; Javanmard, Shaghayegh Haghjoo; Gholamzadeh, Hadi

    2016-01-01

    Background: Kelussia odoratissima Mozaff. is a monotypic endemic plant of Apiaceae growing wild in Iran. The aerial parts of this plant are used for treatment of hypertension, ulcer, and inflammatory conditions in folk medicine. In this study, the effects of hydroalcoholic extract of the aerial parts of K. odoratissima were evaluated in dexamethasone (Dex)-induced hypertension in male Wistar rats. Materials and Methods: For induction of hypertension, Dex (30 μg/kg/day) was administered subcutaneously for 14 days. In a prevention study, rats received oral K. odoratissima extract (100, 200, and 400 mg/kg) from 4 days before Dex administration and during the test period (days 1–18). In a reversal study, K. odoratissima extract was administered orally from day 8 to 14. Systolic blood pressure (SBP) was evaluated using tail-cuff method. The hydrogen peroxide (H2O2) concentration and ferric-reducing antioxidant power (FRAP) were measured in plasma samples. Results: Administrations of Dex significantly induced an increase in SBP and in plasma H2O2 and a decrease in body and thymus weights, and in FRAP value (P < 0.001). K. odoratissima extract dose-dependently prevented and reversed hypertension (P < 0.001). It also prevented and reduced the plasma H2O2 concentration and prevented the body weight loss upon Dex administration at all doses (100–400 mg/kg, P < 0.001) but failed to improve FRAP value. Conclusions: These results suggest antihypertensive and antioxidant effects of K. odoratissima extract in Dex-induced hypertension. Further studies are needed to elucidate the exact mechanism of the antihypertensive effect of this herbal medicine. PMID:27014652

  10. 6β-hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice.

    PubMed

    Pingili, Ajeeth K; Kara, Mehmet; Khan, Nayaab S; Estes, Anne M; Lin, Zongtao; Li, Wei; Gonzalez, Frank J; Malik, Kafait U

    2015-06-01

    Previously, we showed that Cyp1b1 gene disruption minimizes angiotensin II-induced hypertension and associated pathophysiological changes in male mice. This study was conducted to test the hypothesis that cytochrome P450 1B1-generated metabolites of testosterone, 6β-hydroxytestosterone and 16α-hydroxytestosterone, contribute to angiotensin II-induced hypertension and its pathogenesis. Angiotensin II infusion for 2 weeks increased cardiac cytochrome P450 1B1 activity and plasma levels of 6β-hydroxytestosterone, but not 16α-hydroxytestosterone, in Cyp1b1(+/+) mice without altering Cyp1b1 gene expression; these effects of angiotensin II were not observed in Cyp1b1(-/-) mice. Angiotensin II-induced increase in systolic blood pressure and associated cardiac hypertrophy, and fibrosis, measured by intracardiac accumulation of α-smooth muscle actin, collagen, and transforming growth factor-β, and increased nicotinamide adenine dinucleotide phosphate oxidase activity and production of reactive oxygen species; these changes were minimized in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice, and restored by treatment with 6β-hydroxytestoterone. In Cyp1b1(+/+) mice, 6β-hydroxytestosterone did not alter the angiotensin II-induced increase in systolic blood pressure; the basal systolic blood pressure was also not affected by this agent in either genotype. Angiotensin II or castration did not alter cardiac, angiotensin II type 1 receptor, angiotensin-converting enzyme, Mas receptor, or androgen receptor mRNA levels in Cyp1b1(+/+) or in Cyp1b1(-/-) mice. These data suggest that the testosterone metabolite, 6β-hydroxytestosterone, contributes to angiotensin II-induced hypertension and associated cardiac pathogenesis in male mice, most probably by acting as a permissive factor. Moreover, cytochrome P450 1B1 could serve as a novel target for developing agents for treating renin-angiotensin and testosterone-dependent hypertension and associated pathogenesis in males.

  11. An alternative hypothesis to the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension.

    PubMed

    Kurtz, Theodore W; DiCarlo, Stephen E; Pravenec, Michal; Schmidlin, Olga; Tanaka, Masae; Morris, R Curtis

    2016-11-01

    It is widely held that in response to high salt diets, normal individuals are acutely and chronically resistant to salt-induced hypertension because they rapidly excrete salt and retain little of it so that their blood volume, and therefore blood pressure, does not increase. Conversely, it is also widely held that salt-sensitive individuals develop salt-induced hypertension because of an impaired renal capacity to excrete salt that causes greater salt retention and blood volume expansion than that which occurs in normal salt-resistant individuals. Here we review results of both acute and chronic salt-loading studies that have compared salt-induced changes in sodium retention and blood volume between normal subjects (salt-resistant normotensive control subjects) and salt-sensitive subjects. The results of properly controlled studies strongly support an alternative view: during acute or chronic increases in salt intake, normal salt-resistant subjects undergo substantial salt retention and do not excrete salt more rapidly, retain less sodium, or undergo lesser blood volume expansion than do salt-sensitive subjects. These observations: (i) directly conflict with the widely held view that renal excretion of sodium accounts for resistance to salt-induced hypertension, and (ii) have implications for contemporary understanding of how various genetic, immunologic, and other factors determine acute and chronic blood pressure responses to high salt diets.

  12. Intrathecal Midazolam as an Adjuvant in Pregnancy-Induced Hypertensive Patients Undergoing an Elective Caesarean Section: A Clinical Comparative Study

    PubMed Central

    Dodawad, Ravichandra; G. B., Sumalatha; Pandarpurkar, Sandeep; Jajee, Parashuram

    2016-01-01

    Background A pain-free postoperative period is essential following a caesarean section so new mothers may care for and bond with their neonates. Intrathecal adjuvants are often administered during this procedure to provide significant analgesia, but they may also have bothersome side effects. Intrathecal midazolam produces effective postoperative analgesia with no significant side effects. Objectives This prospective, randomized, double-blind study was designed to compare the analgesic efficacy and safety of intrathecal midazolam vs. plain bupivacaine as an adjunct to bupivacaine in pregnancy-induced hypertension patients scheduled for elective caesarean section. Methods Sixty patients diagnosed with pregnancy-induced hypertension on regular treatment who were scheduled for a caesarean section were randomly allocated into two groups: a control group (Group BC, n = 30) and a midazolam group (Group BM, n = 30). Both groups received 10 mg (2 mL) of 0.5% hyperbaric bupivacaine. Group BC received 0.4 mL of distilled water, while group BM received 0.4 mL (2 mg) of midazolam intrathecally. The duration of postoperative analgesia, analgesic requirements during the first 24 hours after surgery, onset times and durations of sensory and motor blocks, incidence of hypotension, vasopressor requirements, and side effects were recorded. Results Postoperative analgesia was significantly longer in the midazolam group compared to the control group (201.5 minutes vs. 357.6 minutes). The mean onset times of the sensory and motor blocks were significantly faster (P < 0.01) in the midazolam group compared to the control group. The mean times to attain the maximum sensory level and motor blocks were also significantly faster in the midazolam group compared to the control group (P < 0.05). The incidence of hypotension was 6.6% in the midazolam group and 36.6% in the control group, which was highly significant. In addition, the number of patients with side effects was significantly lower

  13. Long-term exposure to high-altitude chronic hypoxia during gestation induces neonatal pulmonary hypertension at sea level

    PubMed Central

    Herrera, Emilio A.; Riquelme, Raquel A.; Ebensperger, Germán; Reyes, Roberto V.; Ulloa, César E.; Cabello, Gertrudis; Krause, Bernardo J.; Parer, Julian T.; Giussani, Dino A.

    2010-01-01

    We determined whether postnatal pulmonary hypertension induced by 70% of pregnancy at high altitude (HA) persists once the offspring return to sea level and investigated pulmonary vascular mechanisms operating under these circumstances. Pregnant ewes were divided into two groups: conception, pregnancy, and delivery at low altitude (580 m, LLL) and conception at low altitude, pregnancy at HA (3,600 m) from 30% of gestation until delivery, and return to lowland (LHL). Pulmonary arterial pressure (PAP) was measured in vivo. Vascular reactivity and morphometry were assessed in small pulmonary arteries (SPA). Protein expression of vascular mediators was determined. LHL lambs had higher basal PAP and a greater increment in PAP after NG-nitro-l-arginine methyl ester (20.9 ± 1.1 vs. 13.7 ± 0.5 mmHg; 39.9 ± 5.0 vs. 18.3 ± 1.3 mmHg, respectively). SPA from LHL had a greater maximal contraction to K+ (1.34 ± 0.05 vs. 1.16 ± 0.05 N/m), higher sensitivity to endothelin-1 and nitroprusside, and persistence of dilatation following blockade of soluble guanylate cyclase. The heart ratio of the right ventricle-to-left ventricle plus septum was higher in the LHL relative to LLL. The muscle area of SPA (29.3 ± 2.9 vs. 21.1 ± 1.7%) and the protein expression of endothelial nitric oxide synthase (1.7 ± 0.1 vs. 1.1 ± 0.2), phosphodiesterase (1.4 ± 0.1 vs. 0.7 ± 0.1), and Ca2+-activated K+ channel (0.76 ± 0.16 vs. 0.30 ± 0.01) were greater in LHL compared with LLL lambs. In contrast, LHL had decreased heme oxygenase-1 expression (0.82 ± 0.26 vs. 2.22 ± 0.44) and carbon monoxide production (all P < 0.05). Postnatal pulmonary hypertension induced by 70% of pregnancy at HA promotes cardiopulmonary remodeling that persists at sea level. PMID:20881096

  14. A study on the involvement of GABA-transaminase in MCT induced pulmonary hypertension.

    PubMed

    Lingeshwar, Poorella; Kaur, Gurpreet; Singh, Neetu; Singh, Seema; Mishra, Akanksha; Shukla, Shubha; Ramakrishna, Rachumallu; Laxman, Tulsankar Sachin; Bhatta, Rabi Sankar; Siddiqui, Hefazat H; Hanif, Kashif

    2016-02-01

    Increased sympathetic nervous system (SNS) activity is associated with cardiovascular diseases but its role has not been completely explored in pulmonary hypertension (PH). Increased SNS activity is distinguished by elevated level of norepinephrine (NE) and activity of γ-Amino butyric acid Transminase (GABA-T) which degrades GABA, an inhibitory neurotransmitter within the central and peripheral nervous system. Therefore, we hypothesized that GABA-T may contribute in pathophysiology of PH by modulating level of GABA and NE. The effect of daily oral administration of GABA-T inhibitor, Vigabatrin (GVG, 50 and 75 mg/kg/day, 35 days) was studied following a single subcutaneous administration of monocrotaline (MCT, 60 mg/kg) in male SD rats. The pressure and hypertrophy of right ventricle (RV), oxidative stress, inflammation, pulmonary vascular remodelling were assessed after 35 days in MCT treated rats. The expression of GABA-T and HIF-1α was studied in lung tissue. The levels of plasma NE (by High performance liquid chromatography coupled with electrochemical detector; HPLC-ECD) and lung GABA (by liquid chromatography-mass spectrometry) were also estimated. GVG at both doses significantly attenuated increased in pressure (35.82 ± 4.80 mm Hg, p < 0.001; 28.37 ± 3.32 mm Hg, p < 0.001 respectively) and hypertrophy of RV, pulmonary vascular remodelling, oxidative stress and inflammation in lungs of MCT exposed rats. GVG also reduced the expression of GABA-T and HIF-1α in MCT treated rats. Increased NE level and decreased GABA level was also reversed by GVG in MCT exposed rats. GABA-T plays an important role in PH by modulating SNS activity and may be considered as a therapeutic target in PH.

  15. Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats

    PubMed Central

    Jaarin, Kamsiah; Foong, Wai Dic; Yeoh, Min Hui; Kamarul, Zaman Yusoff Nik; Qodriyah, Haji Mohd Saad; Azman, Abdullah; Zuhair, Japar Sidik Fadhlullah; Juliana, Abdul Hamid; Kamisah, Yusof

    2015-01-01

    OBJECTIVES This study was conducted to determine whether the blood pressure-lowering effect of Nigella sativa might be mediated by its effects on nitric oxide, angiotensin-converting enzyme, heme oxygenase and oxidative stress markers. METHODS: Twenty-four adult male Sprague-Dawley rats were divided equally into 4 groups. One group served as the control (group 1), whereas the other three groups (groups 2-4) were administered L-NAME (25 mg/kg, intraperitoneally). Groups 3 and 4 were given oral nicardipine daily at a dose of 3 mg/kg and Nigella sativa oil at a dose of 2.5 mg/kg for 8 weeks, respectively, concomitantly with L-NAME administration. RESULTS Nigella sativa oil prevented the increase in systolic blood pressure in the L-NAME-treated rats. The blood pressure reduction was associated with a reduction in cardiac lipid peroxidation product, NADPH oxidase, angiotensin-converting enzyme activity and plasma nitric oxide, as well as with an increase in heme oxygenase-1 activity in the heart. The effects of Nigella sativa on blood pressure, lipid peroxidation product, nicotinamide adenine dinucleotide phosphate oxidase and angiotensin-converting enzyme were similar to those of nicardipine. In contrast, L-NAME had opposite effects on lipid peroxidation, angiotensin-converting enzyme and NO. CONCLUSION: The antihypertensive effect of Nigella sativa oil appears to be mediated by a reduction in cardiac oxidative stress and angiotensin-converting enzyme activity, an increase in cardiac heme oxygenase-1 activity and a prevention of plasma nitric oxide loss. Thus, Nigella sativa oil might be beneficial for controlling hypertension. PMID:26602523

  16. Hypertension induced by high salt intake in absence of volume retention in reduced renal mass rats.

    PubMed

    Cowley, A W; Skelton, M M; Papanek, P E; Greene, A S

    1994-11-01

    Reduction of renal mass (RRM) combined with a high-salt diet results in volume retention, a rise of cardiac output, and hypertension. The present studies were designed to determine whether prevention of volume retention would alter the rise of mean arterial pressure (MAP) in RRM rats given high salt. Rats were studied in a modified metabolic cage to permit continuous determination of total body weight (TBW). In group 1, NaCl was increased from 1 to 14.5 meq/day and delivered isotonically. In group 2, NaCl was increased while TBW was servo-controlled to a constant level. Group 3 was also servo-controlled, but rats received an intravenous infusion of an arginine vasopressin V1 antagonist throughout the study. MAP in group 1 rose 24 mmHg by day 4 of high salt with a parallel increase of TBW of 26 g. In group 2, MAP rose 48 mmHg by day 4 of high salt, while TBW was controlled to within 0.6% of control body weight. With inhibition of vasopressin V1 receptors (group 3), MAP rose 39 mmHg. Nearly equivalent amounts of NaCl were retained in all groups, which was associated with no change of plasma Na in group 1 but an increase of nearly 7 meq/ml in groups 2 and 3. Hematocrit fell nearly 9% in groups 2 and 3 compared with a 4% reduction in group 1. The results suggest that under conditions where net retention cannot occur, high salt intake increases MAP by an osmotically driven fluid transfer from cells, which results in an even greater expansion of blood volume.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. NF kappa B and Matrix Metalloproteinase induced Receptor Cleavage in the Spontaneously Hypertensive Rat

    PubMed Central

    Wu, Kwan-I Sharon; Schmid-Schönbein, Geert W.

    2011-01-01

    Recent evidence suggests that inflammation in the spontaneously hypertensive rat (SHR) is associated with an uncontrolled matrix metalloproteinase (MMP) activity. We hypothesize that the transcription factor nuclear factor kappa B (NF–κB) is overexpressed in the SHR, enhancing its MMP activity and enzymatic cleavage of the beta-2 adrenergic receptor (β2AR), thereby diminishing catecholamine-mediated arteriolar vasodilation. NF-κB expression level and translocation were compared between Wistar Kyoto rat (WKY) and SHR kidney, heart and brain. The animals were treated with a NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), for ten weeks and correlations between NF-κB and MMP activity were determined. Immunohistochemistry showed that NF-κB expression is increased in untreated SHR kidney (~ 14%) and brain hypothalamus (~ 22%) compared to that in WKY (p <0.05), but not in myocardium and cerebral cortex. After PDTC treatment, the SHR systolic blood pressure was reduced close to WKY levels. NF-κB expression level in treated-SHR was also decreased in kidney and hypothalamus compared to non-treated animals (p <0.05). Furthermore, MMP-2 and -9 activities in SHR plasma were significantly reduced (~41%) by PDTC treatment. Additionally, zymographic analyses and in situ zymography showed decreased MMP-2 activity in kidney homogenates and decreased MMP-1,-9 activities in brain. The level of the β2AR extracellular, but not intracellular, domain density was found reduced in kidney showing a receptor cleavage process that can be blocked by PDTC treatment. These results suggest NF-κB is an important transcription factor in the SHR and may be involved in the enhanced MMP activity and consequently receptor cleavage. PMID:21220710

  18. Disrupted pulmonary artery cyclic guanosine monophosphate signaling in mice with hyperoxia-induced pulmonary hypertension.

    PubMed

    Lee, Keng Jin; Berkelhamer, Sara K; Kim, Gina A; Taylor, Joann M; O'Shea, Kelly M; Steinhorn, Robin H; Farrow, Kathryn N

    2014-02-01

    Pulmonary hypertension (PH) occurs in 25 to 35% of premature infants with significant bronchopulmonary dysplasia (BPD). Neonatal mice exposed to 14 days of hyperoxia develop BPD-like lung injury and PH. To determinne the impact of hyperoxia on pulmonary artery (PA) cyclic guanosine monophosphate (cGMP) signaling in a murine model of lung injury and PH, neonatal C57BL/6 mice were placed in room air, 75% O2 for 14 days (chronic hyperoxia [CH]) or 75% O2 for 24 hours, followed by 13 days of room air (acute hyperoxia with recovery [AHR]) with or without sildenafil. At 14 days, mean alveolar area, PA medial wall thickness (MWT), right ventricular hypertrophy (RVH), and vessel density were assessed. PA protein was analyzed for cGMP, soluble guanylate cyclase, and PDE5 activity. CH and AHR mice had RVH, but only CH mice had increased alveolar area and MWT and decreased vessel density. In CH and AHR PAs, soluble guanylate cyclase activity was decreased, and PDE5 activity was increased. In CH mice, sildenafil attenuated MWT and RVH but did not improve mean alveolar area or vessel density. In CH and AHR PAs, sildenafil decreased PDE5 activity and increased cGMP. Our results indicate that prolonged hyperoxia leads to lung injury, PH, RVH, and disrupted PA cGMP signaling. Furthermore, 24 hours of hyperoxia causes RVH and disrupted PA cGMP signaling that persists for 13 days. Sildenafil reduced RVH and restored vascular cGMP signaling but did not attenuate lung injury. Thus, hyperoxia can rapidly disrupt PA cGMP signaling in vivo with sustained effects, and concurrent sildenafil therapy can be protective.

  19. Distinct vasodilation, without reflex neurohormonal activation, induced by barnidipine in hypertensive patients.

    PubMed

    Argenziano, L; Izzo, R; Iovino, G; De Luca, N; Parrella, L; Morisco, C; Trimarco, B

    1998-01-01

    Barnidipine is a new 1,4-dihydropyridine calcium antagonist with a strong and long-lasting vasodilatory effect. In order to assess the haemodynamic profile of the antihypertensive effect of barnidipine, a randomized, double-blind study of barnidipine vs nitrendipine was performed in 24 patients with mild to moderate essential hypertension. Following an initial 4-week placebo period, patients whose sitting diastolic blood pressure (SiDBP) was between 95 and 114 mm Hg, and whose sitting systolic blood pressure was between 150 and 219 mm Hg, were randomized (2:1 ratio) to receive either barnidipine (10 mg) or nitrendipine (10 mg) once daily, for a 6-week double-blind period. Subsequently, patients with an SiDBP of less than 90 mm Hg continued for a second 6-week period with the same monotherapy, while patients with an SiDBP of 90 mm Hg or above received double the dose of antihypertensive treatment for the next 6 weeks. Two-dimensional M- and B-mode echocardiography with Doppler flowmetry was performed at the end of both the placebo and active treatment phases. Barnidipine and nitrendipine reduced blood pressure by the same degree (barnidipine: from 165 +/- 2/100 +/- 1 to 145 +/- 2/89 +/- 1 mm Hg, p < 0.01; nitrendipine: from 163 +/- 3/100 +/- 2 to 143 +/- 7/90 +/- 3 mm Hg, p < 0.01) as a result of peripheral vasodilation. This was not accompanied by reflex neurohormonal activation. Moreover, only in the group receiving barnidipine was a significant decrease in plasma noradrenaline observed, both when the patients were in the supine position (from 298 +/- 27 to 214 +/- 21 pg/ml, p < 0.05) and when they were upright (from 472 +/- 37 to 348 +/- 38 pg/ml, p < 0.05).

  20. Structural and Mechanical Adaptations of Right Ventricular Free Wall Myocardium to Pulmonary-Hypertension Induced Pressure Overload

    PubMed Central

    Hill, Michael R.; Simon, Marc A.; Valdez-Jasso, Daniela; Zhang, Will; Champion, Hunter C.; Sacks, Michael S.

    2014-01-01

    Right ventricular (RV) failure in response to pulmonary hypertension (PH) is a severe disease that remains poorly understood. PH-induced pressure overload leads to changes in the RV free wall (RVFW) that eventually results in RV failure. While the development of computational models can benefit our understanding of the onset and progression of PH-induced pressure overload, detailed knowledge of the underlying structural and biomechanical events remains limited. The goal of the present study was to elucidate the structural and biomechanical adaptations of RV myocardium subjected to sustained pressure overload in a rat model. Hemodynamically confirmed severe chronic RV pressure overload was induced in Sprague-Dawley rats via pulmonary artery banding. Extensive tissue-level biaxial mechanical and histomorphological analyses were conducted to assess the remodeling response in the RV free wall. Simultaneous myofiber hypertrophy and longitudinal re-orientation of myo- and collagen fibers was observed, with both fiber types becoming more highly aligned. Transmural myo- and collagen fiber orientations were co-aligned in both the normal and diseased state. The overall tissue stiffness increased, with larger increases in longitudinal versus circumferential stiffness. Interestingly, estimated myofiber stiffness increased while the collagen fiber stiffness remained unchanged. The latter was attributed to longitudinal fiber re-orientation, which increased the degree of anisotropy. Increased mechanical coupling between the two axes was attributed to the increased fiber alignment. The increased myofiber stiffness was consistent with clinical results showing titin-associated increased sarcomeric stiffening observed in PH patients. These results further our understanding of the underlying adaptive and maladaptive remodeling mechanisms and may lead to improved techniques for prognosis, diagnosis, and treatment for PH. PMID:25164124

  1. Pulmonary hypertension secondary to left-heart failure involves peroxynitrite-induced downregulation of PTEN in the lung.

    PubMed

    Ravi, Yazhini; Selvendiran, Karuppaiyah; Naidu, Shan K; Meduru, Sarath; Citro, Lucas A; Bognár, Balázs; Khan, Mahmood; Kálai, Tamás; Hideg, Kálmán; Kuppusamy, Periannan; Sai-Sudhakar, Chittoor B

    2013-03-01

    Pulmonary hypertension (PH) that occurs after left-heart failure (LHF), classified as Group 2 PH, involves progressive pulmonary vascular remodeling induced by smooth muscle cell (SMC) proliferation. However, mechanisms involved in the activation of SMCs remain unknown. The objective of this study was to determine the involvement of peroxynitrite and phosphatase-and-tensin homolog on chromosome 10 (PTEN) in vascular SMC proliferation and remodeling in the LHF-induced PH (LHF-PH). LHF was induced by permanent ligation of left anterior descending coronary artery in rats for 4 weeks. MRI, ultrasound, and hemodynamic measurements were performed to confirm LHF and PH. Histopathology, Western blot, and real-time polymerase chain reaction analyses were used to identify key molecular signatures. Therapeutic intervention was demonstrated using an antiproliferative compound, HO-3867. LHF-PH was confirmed by significant elevation of pulmonary artery pressure (mean pulmonary artery pressure/mm Hg: 35.9±1.8 versus 14.8±2.0, control; P<0.001) and vascular remodeling. HO-3867 treatment decreased mean pulmonary artery pressure to 22.6±0.8 mm Hg (P<0.001). Substantially higher levels of peroxynitrite and significant loss of PTEN expression were observed in the lungs of LHF rats when compared with control. In vitro studies using human pulmonary artery SMCs implicated peroxynitrite-mediated downregulation of PTEN expression as a key mechanism of SMC proliferation. The results further established that HO-3867 attenuated LHF-PH by decreasing oxidative stress and increasing PTEN expression in the lung. In conclusion, peroxynitrite and peroxynitrite-mediated PTEN inactivation seem to be key mediators of lung microvascular remodeling associated with PH secondary to LHF.

  2. The Effects of Hydroalchoholic Extract of Teucrium polium L. on Hypertension Induced by Angiotensin II in Rats

    PubMed Central

    Mahmoudabady, Maryam; Shafei, Mohammad Naser; Niazmand, Saeed; Khodaee, Esmaeel

    2014-01-01

    Background: Antispasmodic and vasorelaxant effects of Teucrium polium L. (TP) were mentioned in former studies, so we attempted to evaluate the eventual preventive effect of TP in an acute experimental model of hypertension induced by angiotensin II (Ang II). Methods: Forty-eight male Wistar rats were divided randomly into six groups (n = 8); control Group (C), which received only saline, group Ang II; which received Ang II (300 ng/min, IV), group losartan (Los); which received Los (10 mg/kg, IV) before Ang II injection, three groups of TP 100, TP 200, and TP 400; which received different doses of TP extract (100, 200 and 400 mg/kg, IP, respectively) before Ang II application. After cannulation of the femoral artery, mean arterial blood pressure (MAP) and heart rate (HR) was continuously measured and recorded during the experiments. Comparisons were performed using t-test with SPSS software, version 16 (SPSS, Chicago, IL). Results: MAP and HR in Ang group were significantly higher than the control group (P < 0.001), MAP in group Los significantly was lower than Ang group (P < 0.001) and pretreatment with three doses of TP extract also inhibited increasing of MAP after Ang II injection (P < 0.001). Los also inhibited the increase of HR due to Ang II (P < 0.001), but none of three doses of TP extract had a protective effect on tachycardia induced by Ang II. Conclusions: It seems TP extract could be effective in preventing of high blood pressure induced by Ang II pathway activation but could not have remarkable efficacy for improving the created tachycardia. PMID:25400883

  3. Folic Acid Promotes Recycling of Tetrahydrobiopterin and Protects Against Hypoxia-Induced Pulmonary Hypertension by Recoupling Endothelial Nitric Oxide Synthase

    PubMed Central

    Chalupsky, Karel; Kračun, Damir; Kanchev, Ivan; Bertram, Katharina

    2015-01-01

    Abstract Aims: Nitric oxide (NO) derived from endothelial NO synthase (eNOS) has been implicated in the adaptive response to hypoxia. An imbalance between 5,6,7,8-tetrahydrobiopterin (BH4) and 7,8-dihydrobiopterin (BH2) can result in eNOS uncoupling and the generation of superoxide instead of NO. Dihydrofolate reductase (DHFR) can recycle BH2 to BH4, leading to eNOS recoupling. However, the role of DHFR and eNOS recoupling in the response to hypoxia is not well understood. We hypothesized that increasing the capacity to recycle BH4 from BH2 would improve NO bioavailability as well as pulmonary vascular remodeling (PVR) and right ventricular hypertrophy (RVH) as indicators of pulmonary hypertension (PH) under hypoxic conditions. Results: In human pulmonary artery endothelial cells and murine pulmonary arteries exposed to hypoxia, eNOS was uncoupled as indicated by reduced superoxide production in the presence of the nitric oxide synthase inhibitor, L-(G)-nitro-L-arginine methyl ester (L-NAME). Concomitantly, NO levels, BH4 availability, and expression of DHFR were diminished under hypoxia. Application of folic acid (FA) restored DHFR levels, NO bioavailability, and BH4 levels under hypoxia. Importantly, FA prevented the development of hypoxia-induced PVR, right ventricular pressure increase, and RVH. Innovation: FA-induced upregulation of DHFR recouples eNOS under hypoxia by improving BH4 recycling, thus preventing hypoxia-induced PH. Conclusion: FA might serve as a novel therapeutic option combating PH. Antioxid. Redox Signal. 23, 1076–1091. PMID:26414244

  4. [Hypertension and pregnancy].

    PubMed

    Rosas, Martín; Lomelí, Catalina; Mendoza-González, Celso; Lorenzo, José Antonio; Méndez, Arturo; Férez Santander, Sergio Mario; Attie, Fause

    2008-01-01

    Increasing evidence indicates that hypertension in pregnancy is an under recognized risk factor for cardiovascular disease (CVD). Compared with women who have had normotensive pregnancies, those who are hypertensive during pregnancy are at greater risk of cardiovascular and cerebrovascular events and have a less favorable overall risk profile for CVD years after the affected pregnancies. One factor that might underlie this relationship is that hypertensive disorders of pregnancy (pre-eclampsia, in particular) and CVD share several common risk factors (e.g. obesity, diabetes mellitus and renal disease). Alternatively, hypertension in pregnancy could induce long-term metabolic and vascular abnormalities that might increase the overall risk of CVD later in life. In both cases, evidence regarding risk-reduction interventions specific to women who have had hypertensive pregnancies is lacking. While awaiting results of large-scale studies, hypertensive disorders of pregnancy should be screened for during assessment of a woman's overall risk profile for CVD. Women at high risk must be monitored closely for conventional risk factors that are common to both CVD and hypertensive disorders of pregnancy and treated according to current evidence-based national guidelines.

  5. Effects of aging and hypertension on the participation of endothelium-derived constricting factor (EDCF) in norepinephrine-induced contraction of rat femoral artery.

    PubMed

    Líšková, Silvia; Silvia, Líšková; Petrová, Miriam; Miriam, Petrová; Karen, Petr; Petr, Karen; Kuneš, Jaroslav; Jaroslav, Kuneš; Zicha, Josef; Josef, Zicha

    2011-09-30

    Endothelium-dependent contraction elicited by high concentrations of acetylcholine was described in hypertensive as well as in aged normotensive rats. The contribution of endothelium-derived constricting factor (EDCF) to norepinephrine-induced contraction is still unknown. We aimed to compare EDCF participation to norepinephrine-induced arterial contraction in spontaneously hypertensive rats (SHR) and aged normotensive Wistar-Kyoto (WKY) rats. Femoral arteries from either adult (7-months-old) or aged (14-months-old) animals were placed in myograph and norepinephrine-induced concentration-response curves were recorded under control conditions and in the presence of indomethacin (cyclooxygenase inhibitor, 10(-5) mol/l) or L-NNA (NO synthase inhibitor, 10(-4) mol/l) or both. Norepinephrine-induced concentration-response curve was enhanced in SHR compared to WKY rats, but concentration-response curve of aged WKY rats was similar to those of adult SHR. Cyclooxygenase inhibition largely attenuated concentration-response curves in all groups. However, this effect was greater in aged WKY rats and adult SHR compared to adult WKY rats. NO synthase inhibition augmented norepinephrine-induced contraction in arteries of adult WKY rats, but not in arteries from aged WKY rats or adult SHR. The combined administration of L-NNA and indomethacin had no additive effects on concentration-response curves. EDCF contribution to norepinephrine-induced contractions of arteries was considerably greater in adult SHR (80±3%) and aged WKY rats (86±2%) compared to adult WKY rats (35±10%). The inhibition of NO synthase augmented EDCF contribution to norepinephrine-induced contraction only in arteries from adult WKY rats (76±9%). We conclude that EDCF contribution to norepinephrine-induced contraction of conduit arteries is similarly enhanced in adult hypertensive and aged normotensive rats.

  6. 2,3′,4,5′-Tetramethoxystilbene prevents deoxycorticosterone-salt-induced hypertension: contribution of cytochrome P-450 1B1

    PubMed Central

    Sahan-Firat, Seyhan; Jennings, Brett L.; Yaghini, Fariborz A.; Song, Chi Young; Estes, Anne M.; Fang, Xiao R.; Farjana, Nasreen; Khan, Amir I.

    2010-01-01

    Reactive oxygen species (ROS) contribute to various models of hypertension, including deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Recently, we have shown that ROS, generated by cytochrome P-450 1B1 (CYP1B1) from arachidonic acid, mediate vascular smooth muscle cell growth caused by angiotensin II. This study was conducted to determine the contribution of CYP1B1 to hypertension and associated pathophysiological changes produced by DOCA (30 mg/kg) given subcutaneously per week with 1% NaCl + 0.1% KCl in drinking water to uninephrectomized rats for 6 wk. DOCA-salt treatment increased systolic blood pressure (SBP). Injections of the selective inhibitor of CYP1B1, 2,3′,4,5′-tetramethoxystilbene (TMS; 300 μg/kg ip every 3rd day) initiated at the 4th week of DOCA-salt treatment normalized SBP and decreased CYP1B1 activity but not its expression in the aorta, heart, and kidney. TMS also inhibited cardiovascular and kidney hypertrophy, prevented the increase in vascular reactivity and endothelial dysfunction, and minimized the increase in urinary protein and K+ output and the decrease in urine osmolality, Na+ output, and creatinine clearance associated with DOCA-salt treatment. These pathophysiological changes caused by DOCA-salt treatment and associated increase in vascular superoxide production, NADPH oxidase activity, and expression of NOX-1, and ERK1/2 and p38 MAPK activities in the aorta, heart, and kidney were inhibited by TMS. These data suggest that CYP1B1 contributes to DOCA-salt-induced hypertension and associated pathophysiological changes, most likely as a result of increased ROS production and ERK1/2 and p38 MAPK activity, and could serve as a novel target for the development of agents like TMS to treat hypertension. PMID:20852048

  7. Oral CoQ10 attenuates high salt-induced hypertension by restoring neurotransmitters and cytokines in the hypothalamic paraventricular nucleus

    PubMed Central

    Gao, Hong-Li; Yu, Xiao-Jing; Qi, Jie; Yi, Qiu-Yue; Jing, Wang-Hui; Sun, Wen-Yan; Cui, Wei; Mu, Jian-Jun; Yuan, Zu-Yi; Zhao, Xiu-Fang; Liu, Kai-Li; Zhu, Guo-Qing; Shi, Xiao-Lian; Liu, Jin-Jun; Kang, Yu-Ming

    2016-01-01

    High salt intake leads to an increase in some proinflammatory cytokines and neurotransmitters involved in the pathogenesis of hypertension. The purpose of this work was to know if oral administration of anti-oxidant and free-radical scavenger CoQ10 may attenuate high salt-induced hypertension via regulating neurotransmitters and cytokines in the hypothalamic paraventricular nucleus (PVN). Adult male Sprague-Dawley (SD) rats were fed with a normal salt diet (NS, 0.3% NaCl) or a high salt diet (HS, 8% NaCl) for 15 weeks to induce hypertension. These rats received CoQ10 (10 mg/kg/day) dissolved in olive oil was given by gavage (10 mg/kg/day) for 15 weeks. HS resulted in higher mean arterial pressure (MAP) and the sympathetic nerve activity (RSNA). These HS rats had higher PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), interleukin (IL)-1β, NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), IL-10, copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. CoQ10 supplementation reduced NE, TH, IL-1β, NOX2 and NOX4 in the PVN, and induced IL-10, Cu/Zn-SOD and GAD67 in the PVN. These findings suggest that CoQ10 supplementation restores neurotransmitters and cytokines in the PVN, thereby attenuating high salt-induced hypertension. PMID:27452860

  8. Chronic N(G)-nitro-L-arginine methyl ester-induced hypertension : novel molecular adaptation to systolic load in absence of hypertrophy

    NASA Technical Reports Server (NTRS)

    Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.

  9. Effect of nebivolol treatment during pregnancy on the intrauterine fetal growth, mortality and pup postnatal development in the l-NAME-induced hypertensive rats.

    PubMed

    Altoama, Kassem; Mallem, Mohamed Yassine; Thorin, Chantal; Betti, Eric; Desfontis, Jean-Claude

    2016-11-15

    The present study was carried out to evaluate the effect of nebivolol vs. bisoprolol treatment on the intrauterine fetal growth, mortality and postnatal development in N(ω)-Nitro-l-arginine methyl ester hydrochloride (l-NAME)-induced hypertensive rats. Hypertension was induced in normotensive pregnant Wistar rats by daily administration of l-NAME (100mg/kg/day, in the drinking water) for the period of pregnancy. After 9 days of l-NAME treatment, rats with systolic and diastolic blood pressure (SBP and DBP) more than 140/90mmHg were considered hypertensive. Then, some of them were treated from day 11 to day 18 of pregnancy with nebivolol (8mg/kg/day) or bisoprolol (10mg/kg/day) via oral gavage. SBP, DBP and heart rate (HR) were re-evaluated by tail cuff method on day 19 of pregnancy and morphometrical or histological studies were performed on day 20. In addition, the mortality and postnatal development of newborn pups were assessed in all groups. The l-NAME administration during pregnancy induced an increase in SBP and DBP while HR did not change. Nebivolol or bisoprolol treatment completely prevented the elevation of SBP and DBP induced by l-NAME with a reduction in HR in pregnant and non-pregnant rats. The intra-uterine fetal growth and the postnatal development of newborn rats in nebivolol-treated hypertensive group were significantly lower vs. control and higher vs. bisoprolol-treated group with a higher mortality in the both types of treatments vs. control rats. The nebivolol and bisoprolol administration produce adverse effects on fetal growth and postnatal development, that limits their therapeutic use in females during pregnancy.

  10. The variant N363S of glucocorticoid receptor in steroid-induced ocular hypertension in Hungarian patients treated with photorefractive keratectomy

    PubMed Central

    Borgulya, Gábor; Filkorn, Tamás; Majnik, Judit; Bányász, Ilona; Nagy, Zoltán Zsolt

    2007-01-01

    Purpose Variation in sensitivity to glucocorticoids observed in healthy population is influenced by genetic polymorphisms of the glucocorticoid receptor gene (NR3C1). N363S, ER22/23EK, and Bcl I have been previously described as glucocorticoid-sensitivity modulating polymorphisms. We investigated whether these variants may contribute to steroid-induced ocular hypertension and if they play a role as protective or risk factors during exogenous glucocorticoid administration. Methods We examined 102 patients who underwent photorefractive keratectomy and received topical steroids (either fluorometholone 0.1% or prednisolone acetate 0.5% alone or combined) as part of postoperative therapy. The choice of steroid depended on course of wound healing and regression. Variations in intraocular pressure (IOP) levels in response to steroid therapy were observed. To genotype DNA, allele-specific PCR amplification was applied for the N363S polymorphism, and PCR-based restriction fragment length polymorphism analysis was performed to examine the Bcl I and the ER22/23EK polymorphisms. We separately analyzed data from three groups of patients: those who received fluorometholone only; those who were initially given fluorometholone then later switched to prednisolone acetate; and those who received prednisolone acetate only. Covariance analysis with forward stepwise variable selection was carried out. Results In cases where prednisolone acetate was administered, we found a significant correlation between N363S heterozygosity and steroid-induced ocular hypertension. ER22/23EK and Bcl I polymorphisms do not have a major influence on the risk of developing steroid-induced ocular hypertension. Conclusions Genotyping of high risk steroid responders may allow an individual therapy to avoid steroid-induced ocular hypertension. The N363S polymorphism may have a clinical significance in the future. PMID:17563720

  11. High levels of corticotropin-releasing factor (CRF) are inversely correlated with low levels of maternal CRF-binding protein in pregnant women with pregnancy-induced hypertension.

    PubMed

    Petraglia, F; Florio, P; Benedetto, C; Gallo, C; Woods, R J; Genazzani, A R; Lowry, P J

    1996-02-01

    Corticotropin-releasing factor-binding protein (CRF-BP) is suggested to play a role in modulating the activity of the hypothalamus-pituitary-adrenal axis during pregnancy, counteracting the actions of circulating or locally acting CRF. The aim of the present study was to evaluate whether maternal levels of CRF-BP and CRF are modified in pregnant women with a high risk of developing pregnancy-induced hypertension (n = 21). A group of nine patients developed the disease between 25-35 weeks gestation, and sequential blood samples were taken every 5 weeks throughout the pregnancy. As a control group, healthy pregnant women were studied (n = 9) using the same protocol; a group of women with pregnancy-induced hypertension (n = 5) was studied starting from the time of diagnosis. In a subgroup of patients (n = 10), CRF-BP and CRF levels were studied after 5 weeks of antihypertensive treatment. Levels of CRF-BP were determined using a specific RIA, whereas CRF was evaluated by a two-site immunoradiometric assay. In patients at risk, circulating levels of CRF-BP followed the same pattern as that in healthy controls, showing a significant decrease at term (36-40 weeks; P < 0.05). A significant and progressive increase in plasma CRF levels was observed in both groups of pregnant women; the highest values were found at term (P < 0.01). In the nine patients who developed pregnancy-induced hypertension, maternal levels of CRF-BP at the onset of signs and symptoms were lower than control values, and CRF levels were significantly higher at the onset of the disease (P < 0.01). Similarly, in these hypertensive patients studied at the time of hospitalization, CRF-BP levels were lower whereas those of CRF were higher than levels in healthy patients (P < 0.01). No effect of antihypertensive therapy on either CRF-BP or CRF levels was observed. The present study shows an inverse correlation between reduced plasma CRF-BP levels and increased CRF levels in the maternal circulation of

  12. The 5-hydroxytryptamine2A receptor is involved in (+)-norfenfluramine-induced arterial contraction and blood pressure increase in deoxycorticosterone acetate-salt hypertension.

    PubMed

    Ni, Wei; Fink, Gregory D; Watts, Stephanie W

    2007-05-01

    The highly effective anorexigen (+)-fenfluramine was widely used to control body weight until the association with primary pulmonary hypertension and valvular heart disease. (+)-Norfenfluramine is the major hepatic metabolite of (+)-fenfluramine and is primarily responsible for the anorexic effect as well as side effects. We reported that (+)-norfenfluramine causes vasoconstriction and a blood pressure increase in rats with normal blood pressure via the 5-hydroxytryptamine (5-HT)2A receptor. With the knowledge that (+)-norfenfluramine also has affinity for 5-HT2B receptors and that arterial 5-HT2B receptor expression is up-regulated in deoxycorticosterone acetate (DOCA)-salt hypertension, we tested the hypothesis that (+)-norfenfluramine-induced vasoconstriction and pressor effects are potentiated in DOCA-salt hypertensive rats in a 5-HT2 receptor-dependent manner. Contractions of arteries were measured using an isolated tissue bath system or myograph. Mean arterial blood pressure was measured in chronically instrumented conscious rats. Effects of (+)-norfenfluramine in stimulating arterial contraction (leftward shift versus SHAM, aorta, 5.13-fold; renal artery, 1.95-fold; mesenteric resistance artery, 1.77-fold) and raising blood pressure were significantly enhanced in hypertension. In arteries from both normotensive and hypertensive rats, (+)-norfenfluramine-induced contraction in aorta was inhibited by 5-HT2A receptor antagonists, ketanserin and LY53857 (4-isopropyl-7-methyl-9-(2-hydroxy-1-meth ylpropoxycarbonyl)4,6,6a,7,8,9,10,10a-octahydroindolo[4,3-fg]quinoline), but not by the 5-HT2B receptor antagonist, LY272015 [6-chloro-5-methyl-N-(5-quinolinyl)-2,3-dihydro-1H-indole-1-carboxamide]. Ketanserin (3 mg/kg) reduced (+)-norfenfluramine-induced pressor response in both SHAM and DOCA rats. Our results demonstrate that (+)-norfenfluramine-induced arterial contraction and blood pressure increases are potentiated in DOCA-salt hypertensive rats. However, it is the 5

  13. The Stop-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea-Induced Hypertension in Asian Population

    PubMed Central

    Pavarangkul, Tanut; Jungtrakul, Thipphailin; Chaobangprom, Pichsinee; Nitiwatthana, Luxanawadee; Jongkumchok, Wisit; Morrakotkhiew, Weerachat; Kachenchart, Sitthan; Chindaprasirt, Jarin; Limpawattana, Panita; Srisaenpang, Sompong; Pinitsoontorn, Somdej; Sawanyawisuth, Kittisak

    2016-01-01

    Obstructive sleep apnea (OSA) is a common public health issue. If left untreated, OSA may cause a large health economic burden from cardiovascular complications particularly stroke. The diagnosis of OSA can be made by polysomnography, but its availability is limited in the developing countries in Asia. STOP-BANG questionnaire is a good screening tool but may need some adjustment for Asian population. STOP-BANG stands for: Snoring history, Tired during the day, Observed stop breathing while sleep, High blood pressure, body mass index (BMI) more than 35 kg/m2, Age more than 50 years, Neck circumference more than 40 cm and male Gender. We compared clinical features in STOP-BANG questionnaire between 42 OSA induced hypertension patients and 82 healthy control subjects in the Faculty of Medicine, Khon Kaen University, Thailand. The best cutoff point for the BMI and the neck circumference were 24.5 kg/m2 and 36 cm, respectively. The sensitivity and specificity of the BMI cutoff point were 97.2% and 91.40, while those of the neck circumference were 94.7% and 82.9%. In conclusion, the appropriate cutoff points of BMI and neck circumference for Thai STOP-BANG questionnaire were 25 kg/m2 and 36 cm. PMID:27127598

  14. The Stop-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea-Induced Hypertension in Asian Population.

    PubMed

    Pavarangkul, Tanut; Jungtrakul, Thipphailin; Chaobangprom, Pichsinee; Nitiwatthana, Luxanawadee; Jongkumchok, Wisit; Morrakotkhiew, Weerachat; Kachenchart, Sitthan; Chindaprasirt, Jarin; Limpawattana, Panita; Srisaenpang, Sompong; Pinitsoontorn, Somdej; Sawanyawisuth, Kittisak

    2016-04-01

    Obstructive sleep apnea (OSA) is a common public health issue. If left untreated, OSA may cause a large health economic burden from cardiovascular complications particularly stroke. The diagnosis of OSA can be made by polysomnography, but its availability is limited in the developing countries in Asia. STOP-BANG questionnaire is a good screening tool but may need some adjustment for Asian population. STOP-BANG stands for: Snoring history, Tired during the day, Observed stop breathing while sleep, High blood pressure, body mass index (BMI) more than 35 kg/m(2), Age more than 50 years, Neck circumference more than 40 cm and male Gender. We compared clinical features in STOP-BANG questionnaire between 42 OSA induced hypertension patients and 82 healthy control subjects in the Faculty of Medicine, Khon Kaen University, Thailand. The best cutoff point for the BMI and the neck circumference were 24.5 kg/m(2) and 36 cm, respectively. The sensitivity and specificity of the BMI cutoff point were 97.2% and 91.40, while those of the neck circumference were 94.7% and 82.9%. In conclusion, the appropriate cutoff points of BMI and neck circumference for Thai STOP-BANG questionnaire were 25 kg/m(2) and 36 cm.

  15. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension.

    PubMed

    Tian, Lian; Neuber-Hess, Monica; Mewburn, Jeffrey; Dasgupta, Asish; Dunham-Snary, Kimberly; Wu, Danchen; Chen, Kuang-Hueih; Hong, Zhigang; Sharp, Willard W; Kutty, Shelby; Archer, Stephen L

    2017-04-01

    Right ventricular (RV) function determines prognosis in pulmonary arterial hypertension (PAH). We hypothesize that ischemia causes RV dysfunction in PAH by triggering dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. RV function was compared in control rats (n = 50) versus rats with monocrotaline-induced PAH (MCT-PAH; n = 60) both in vivo (echocardiography) and ex vivo (RV Langendorff). Mitochondrial membrane potential and morphology and RV function were assessed before or after 2 cycles of ischemia-reperfusion injury challenge (RV-IR). The effects of Mdivi-1 (25 μM), a Drp1 GTPase inhibitor, and P110 (1 μM), a peptide inhibitor of Drp1-Fis1 interaction, were studied. We found that MCT caused RV hypertrophy, RV vascular rarefaction, and RV dysfunction. Prior to IR, the mitochondria in MCT-PAH RV were depolarized and swollen with increased Drp1 content and reduced aconitase activity. RV-IR increased RV end diastolic pressure (RVEDP) and mitochondrial Drp1 expression in both control and MCT-PAH RVs. IR depolarized mitochondria in control RV but did not exacerbate the basally depolarized MCT-PAH RV mitochondria. During RV IR mdivi-1 and P110 reduced Drp1 translocation to mitochondria, improved mitochondrial structure and function, and reduced RVEDP. In conclusion, RV ischemia occurs in PAH and causes Drp1-Fis1-mediated fission leading to diastolic dysfunction. Inhibition of mitochondrial fission preserves RV function in RV-IR.

  16. Candidate genes in quantitative trait loci associated with absolute and relative kidney weight in rats with Inherited Stress Induced Arterial Hypertension

    PubMed Central

    2015-01-01

    Background The kidney mass is significantly increased in hypertensive ISIAH rats with Inherited Stress Induced Arterial Hypertension as compared with normotensive WAG rats. The QTL/microarray approach was carried out to determine the positional candidate genes in the QTL for absolute and relative kidney weight. Results Several known and predicted genes differentially expressed in ISIAH and WAG kidney were mapped to genetic loci associated with the absolute and relative kidney weight in 6-month old F2 hybrid (ISIAHxWAG) males. The knowledge-driven filtering of the list of candidates helped to suggest several positional candidate genes, which may be related to the structural and mass changes in hypertensive ISIAH kidney. In the current study, we showed that all loci found for absolute and relative kidney weight didn't overlap with significant or suggestive loci for arterial blood pressure level. So, the genes differentially expressed in ISIAH and WAG kidneys and located in these QTL regions associated with absolute and relative kidney weight shouldn't substantially influence the BP level in the 6 month-old ISIAH rats. However, in some cases, small effects may be suggested. Conclusions The further experimental validation of causative genes and detection of polymorphisms will provide opportunities to advance our understanding of the underlying nature of structural and mass changes in hypertensive ISIAH kidney. PMID:25707311

  17. Long-lasting cardiovascular depression induced by acupuncture-like stimulation of the sciatic nerve in unanaesthetized rats. Effects of arousal and type of hypertension.

    PubMed

    Hoffmann, P; Thorén, P

    1986-05-01

    Prolonged low frequency stimulation of the sciatic nerve in conscious spontaneously hypertensive rats (SHR), is reported to induce a naloxone-reversible long-lasting depressor response (Yao et al. 1982a). In the present study this depressor response was compared during daytime and night-time conditions to determine whether different degrees of arousal affect this response. In addition, the effect of sciatic nerve stimulation was examined in one-clip, two-kidney renal hypertensive rats (RHR); a type of secondary hypertension which lacks the central autonomic hyper-reactivity which characterizes the SHR variant of primary hypertension. A maximal fall in blood pressure of 20 mm Hg was observed 1 h after sciatic nerve stimulation in SHR examined in daytime. We also found a significant bradycardia that lasted for 2.5 h. Neither poststimulatory depression nor bradycardia were observed in RHR examined at daytime. A short-lasting, non-significant decrease in blood pressure and heart rate was found following sciatic stimulation in SHR examined at night.

  18. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in L-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT₁R Expression.

    PubMed

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-02-29

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in N(ω)-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS.

  19. Synergistic Antihypertensive Effect of Carthamus tinctorius L. Extract and Captopril in l-NAME-Induced Hypertensive Rats via Restoration of eNOS and AT1R Expression

    PubMed Central

    Maneesai, Putcharawipa; Prasarttong, Patoomporn; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Tangsucharit, Panot; Prachaney, Parichat; Pakdeechote, Poungrat

    2016-01-01

    This study examined the effect of Carthamus tinctorius (CT) extract plus captopril treatment on blood pressure, vascular function, nitric oxide (NO) bioavailability, oxidative stress and renin-angiotensin system (RAS) in Nω-Nitro-l-arginine methyl ester (l-NAME)-induced hypertension. Rats were treated with l-NAME (40 mg/kg/day) for five weeks and given CT extract (75 or 150 or 300 or 500 mg/kg/day): captopril (5 mg/kg/day) or CT extract (300 mg/kg/day) plus captopril (5 mg/kg/day) for two consecutive weeks. CT extract reduced blood pressure dose-dependently, and the most effective dose was 300 mg/kg/day. l-NAME-induced hypertensive rats showed abnormalities including high blood pressure, high vascular resistance, impairment of acetylcholine-induced vasorelaxation in isolated aortic rings and mesenteric vascular beds, increased vascular superoxide production and plasma malondialdehyde levels, downregulation of eNOS, low level of plasma nitric oxide metabolites, upregulation of angiotensin II type 1 receptor and increased plasma angiotensin II. These abnormalities were alleviated by treatment with either CT extract or captopril. Combination treatment of CT extract and captopril normalized all the abnormalities found in hypertensive rats except endothelial dysfunction. These data indicate that there are synergistic antihypertensive effects of CT extract and captopril. These effects are likely mediated by their anti-oxidative properties and their inhibition of RAS. PMID:26938552

  20. Scutellarin Attenuates Hypertension-Induced Expression of Brain Toll-Like Receptor 4/Nuclear Factor Kappa B

    PubMed Central

    Chen, Xingyong; Shi, Xiaogeng; Zhang, Xu; Lei, Huixin; Long, Simei; Su, Huanxing; Pei, Zhong; Huang, Ruxun

    2013-01-01

    Hypertension is associated with low-grade inflammation, and Toll-like receptor 4 (TLR4) has been shown to be linked to the development and maintenance of hypertension. This study aimed to investigate the effects of scutellarin (administered by oral gavage daily for 2 weeks) on brain TLR4/nuclear factor kappa B-(NF-κB-) mediated inflammation and blood pressure in renovascular hypertensive (using the 2-kidney, 2-clip method) rats. Immunofluorescence and western immunoblot analyses revealed that hypertension contributed to the activation of TLR4 and NF-κB, accompanied by significantly enhanced expression of proinflammatory mediators, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18). Furthermore, expression of the antiapoptotic protein, myeloid cell leukemia-1 (Mcl1), was decreased, and the pro-apoptotic proteins, Bax and cleavedcaspase-3 p17 were increased in combined cerebral cortical/striatal soluble lysates. Scutellarin significantly lowered blood pressure and attenuated the number of activated microglia and macrophages in brains of hypertensive rats. Furthermore, scutellarin significantly reduced the expression of TLR4, NF-κB p65, TNF-α, IL-1β, IL-18, Bax and cleaved-caspase-3 p17, and increased the expression of Mcl1. Overall, these results revealed that scutellarin exhibits anti-inflammatory and anti-apoptotic properties and decreases blood pressure in hypertensive rats. Therefore, scutellarin may be a potential therapeutic agent in hypertension-associated diseases. PMID:24223475

  1. Alteration of amiloride-sensitive salt taste nerve responses in aldosterone/NaCl-induced hypertensive rats.

    PubMed

    Sakamoto, Takashi; Fujii, Akihiko; Saito, Naoko; Kondo, Hidehiko; Ohuchi, Atsushi

    2016-07-01

    Salt taste sensitivity is related to physiological condition, and declined in hypertensive patients. However, little is known about the mechanism underlying changes in salt taste sensitivity during the development of hypertension. This is largely due to lack of an appropriate animal model which shows the decline of salt taste sensitivity caused by hypertension. Previous studies have suggested that one of main causes of salt-sensitive hypertension is dysfunction of the renin-angiotensin-aldosterone system (RAAS). To examine the involvement of RAAS in modulation of salt taste sensitivity, we utilized aldosterone/NaCl-treated rats as a well-established model of salt-sensitive hypertension caused by RAAS dysfunction. Amount of sodium intake in aldosterone/NaCl-treated rats was higher than that in control rats. In addition to behavioral changes, the amiloride-sensitive salt taste nerve responses in aldosterone/NaCl-treated rats were remarkably lower by approximately 90% than those in the other groups. Moreover, αENaC mRNA expression in the epithelium of circumvallate papillae was significantly low in aldosterone/NaCl-treated rats. Thus, RAAS modulates salt taste system as is case in hypertensive patients. This report is to our knowledge the first to describe an animal model with decline of amiloride-sensitive salt taste nerve responses by RAAS dysfunction-mediated salt-sensitive hypertension.

  2. Effects of niflumic acid on alpha1-adrenoceptor-induced vasoconstriction in mesenteric artery in vitro and in vivo in two-kidney one-clip hypertensive rats.

    PubMed

    He, Y; Tabrizchi, R

    1997-06-11

    The influence of niflumic acid (3 and 10 microM), a Cl- channel antagonist, on cirazoline-induced vasoconstriction in isolated perfused mesenteric artery (5 ml/min) from two-kidney one-clip (2K1C) hypertensive and sham normotensive rats was examined. In addition, the effect of a single i.v. bolus injection of niflumic acid (3 mg/kg) on cirazoline-mediated reduction in vascular conductance in superior mesenteric artery was determined in pentobarbital-anaesthetized hypertensive and normotensive rats. Bolus injections of cirazoline induced a dose-dependent transient increase in the perfusion pressure in vitro. In the presence of niflumic acid, cirazoline-mediated vasoconstriction was significantly inhibited. Cirazoline-induced vasoconstriction in isolated mesenteric beds was also significantly inhibited following perfusion with Cl(-)-free buffer. Pre-perfusion of mesenteric blood vessels with Cl(-)-free buffer resulted in a significantly greater inhibition of cirazoline-mediated vasoconstriction in sham normotensive rats than in hypertensive rats. We found that in Cl(-)-free buffer, cirazoline-mediated vasoconstriction could be further inhibited by niflumic acid. Intravenous infusion of cumulative doses of cirazoline in vivo caused a dose-dependent decrease in superior mesenteric vascular conductance. Pretreatment with niflumic acid significantly impaired cirazoline-mediated decreases in vascular conductance. Our results indicate that chloride ions play an important role in alpha1-adrenoceptor-mediated vasoconstriction in mesenteric blood vessels. In addition, the contribution of chloride ions in alpha1-adrenoceptor-mediated vasoconstriction in blood vessels from hypertensive rats appears to be reduced.

  3. Vascular Tone Regulation Induced by C-Type Natriuretic Peptide: Differences in Endothelium-Dependent and -Independent Mechanisms Involved in Normotensive and Spontaneously Hypertensive Rats

    PubMed Central

    Caniffi, Carolina; Cerniello, Flavia M.; Gobetto, María N.; Sueiro, María L.; Arranz, Cristina

    2016-01-01

    Given that the role of C-type natriuretic peptide (CNP) in the regulation of vascular tone in hypertensive states is unclear, we hypothesized that impaired response of the nitric oxide system to CNP in spontaneously hypertensive rats (SHR) could affect vascular relaxation induced by the peptide in this model of hypertension, and that other endothelial systems or potassium channels opening could also be involved. We examined the effect of CNP on isolated SHR aortas, and the hindlimb vascular resistance (HVR) in response to CNP administration compared to normotensive rats. Aortas were mounted in an isometric organ bath and contracted with phenylephrine. CNP relaxed arteries in a concentration-dependent manner but was less potent in inducing relaxation in SHR. The action of CNP was diminished by removal of the endothelium, inhibition of nitric oxide synthase by Nω-nitro-L-arginine methyl ester, and inhibition of soluble guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one in both groups. In contrast, blockade of cyclooxygenase or subtype 2 bradykinin receptor increased CNP potency only in SHR. In both Wistar and SHR, CNP relaxation was blunted by tetraethylammonium and partially inhibited by BaCl2 and iberiotoxin, indicating that it was due to opening of the Kir and BKCa channels. However, SHR seem to be more sensitive to Kir channel blockade and less sensitive to BKCa channel blockade than normotensive rats. In addition, CNP decreases HVR in Wistar and SHR, but the effect of CNP increasing blood flow was more marked in SHR. We conclude that CNP induces aorta relaxation by activation of the nitric oxide system and opening of potassium channels, but the response to the peptide is impaired in conductance vessel of hypertensive rats. PMID:27936197

  4. Effect of ivabradine, captopril and melatonin on the behaviour of rats in L-nitro-arginine methyl ester-induced hypertension.

    PubMed

    Aziriova, S; Repova, K; Krajcirovicova, K; Baka, T; Zorad, S; Mojto, V; Slavkovsky, P; Hodosy, J; Adamcova, M; Paulis, L; Simko, F

    2016-12-01

    Cardiovascular diseases including hypertension are often associated with behavioural alterations. The aim of this study was to show, whether ivabradine, the blocker of If-channel in sinoatrial node, is able to modify the behaviour of rats in L-nitro-arginine methyl ester (L-NAME)-induced hypertension and to compare the effect of ivabradine with captopril and melatonin. 12-week-old male Wistar rats were divided into the following groups: controls, ivabradine (10 mg/kg/24 h), L-NAME (40 mg/kg/24 h), L-NAME + ivabradine, L-NAME + captopril (100 mg/kg/24 h), L-NAME + melatonin (10 mg/kg/24 h). Systolic blood pressure (SBP) and heart rate (HR) were measured by tail-cuff method once a week. The behaviour of rats was investigated during 23-hours in the phenotyper after four weeks of the treatment. Chronic administration of L-NAME induced hypertension without a change in HR. All tested substances partly prevented the increase of SBP, while ivabradine and melatonin also reduced HR. Ivabradine, captopril and melatonin reduced daily food intake, slightly decreased daily water intake and attenuated body weight gain. In L-NAME group, locomotor activity was enhanced by ivabradine, whereas exploratory behaviour was increased by melatonin and captopril. In conclusion, ivabradine, besides its potentially protective hemodynamic actions, does not seem to exert any disturbing effects on behaviour in L-NAME-induced hypertension in rats, while some of its effects were similar to captopril or melatonin. It is suggested that ivabradine used in cardiovascular indications is harmless regarding the effect on behaviour.

  5. Effects of green tea supplementation on inflammation markers, antioxidant status and blood pressure in NaCl-induced hypertensive rat model

    PubMed Central

    Szulińska, Monika; Stępień, Marta; Kręgielska-Narożna, Matylda; Suliburska, Joanna; Skrypnik, Damian; Bąk-Sosnowska, Monika; Kujawska-Łuczak, Magdalena; Grzymisławska, Małgorzata; Bogdański, Paweł

    2017-01-01

    ABSTRACT Background: Recent studies indicate the important role of chronic inflammation and oxidative stress in the pathogenesis of hypertension. Green tea, due to the high content of catechins, shows high antioxidant activity. Objective: To determine the effect of supplementation with green tea extract on the blood pressure, on the concentration of selected parameters of inflammation and antioxidant status in the model of high-sodium-diet induced hypertension. Design: The study lasted 42 days. The experimental population consisted of 30 rats. The rats were divided into three groups. The rats in the control group were fed a standard diet with 35 g of NaCl per kg of diet, in the second group hypertensive rats were fed a standard diet with NaCl (35 g/kg diet) and with an extract of green tea (2 g/kg diet). The third group consisted of hypertensive rats fed a standard diet with NaCl (35 g/kg diet), and 4 g of green tea extract/kg diet. Results: Supplementation with green tea had no effect on body mass of rats on a high-sodium diet. At the end of the experiment systolic blood pressures in SH2 and SH4 groups were significantly lower than in the control group SK. The SH4 group was characterized by a significantly lower diastolic blood pressure value and concentration of TNF-α in comparison to the SK group. The rats from both SH2 and SH4 groups were characterized by higher total antioxidant status values compared to the control group. Discussion: The mechanism of the beneficial effects of green tea on blood pressure is not clear, but it is believed that it is related to its omnidirectional properties. Conclusions: Supplementation of green tea has a beneficial effect on blood pressure, markers of inflammation and antioxidant status in an experimental model of hypertension. PMID:28326006

  6. Malignant hypertension

    MedlinePlus

    ... Lippincott Williams & Wilkins; 2009:chap 89. Read More Acute kidney failure Alertness - decreased Angina Heart attack Preeclampsia Pulmonary edema Renovascular hypertension Seizures Stroke Review ...

  7. Mineralocorticoid hypertension

    PubMed Central

    Gupta, Vishal

    2011-01-01

    Hypertension affects about 10 – 25% of the population and is an important risk factor for cardiovascular and renal disease. The renin-angiotensin system is frequently implicated in the pathophysiology of hypertension, be it primary or secondary. The prevalence of primary aldosteronism increases with the severity of hypertension, from 2% in patients with grade 1 hypertension to 20% among resistant hypertensives. Mineralcorticoid hypertension includes a spectrum of disorders ranging from renin-producing pathologies (renin-secreting tumors, malignant hypertension, coarctation of aorta), aldosterone-producing pathologies (primary aldosteronism – Conns syndrome, familial hyperaldosteronism 1, 2, and 3), non-aldosterone mineralocorticoid producing pathologies (apparent mineralocorticoid excess syndrome, Liddle syndrome, deoxycorticosterone-secreting tumors, ectopic adrenocorticotropic hormones (ACTH) syndrome, congenitalvadrenal hyperplasia), and drugs with mineraocorticoid activity (locorice, carbenoxole therapy) to glucocorticoid receptor resistance syndromes. Clinical presentation includes hypertension with varying severity, hypokalemia, and alkalosis. Ratio of plasma aldosterone concentraion to plasma renin activity remains the best screening tool. Bilateral adrenal venous sampling is the best diagnostic test coupled with a CT scan. Treatment is either surgical (adrenelectomy) for unilateral adrenal disease versus medical therapy for idiopathic, ambiguous, or bilateral disease. Medical therapy focuses on blood pressure control and correction of hypokalemia using a combination of anti-hypertensives (calcium channel blockers, angiotensin converting enzyme inhibitors, or angiotensin receptor blockers) and potassium-raising therapies (mineralcorticoid receptor antagonist or potassium sparing diuretics). Direct aldosterone synthetase antagonists represent a promising future therapy. PMID:22145132

  8. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    SciTech Connect

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  9. Blood Pressure Interventions Affect Acute and Four-Week Diesel Exhaust Induced Pulmonary Injury in Healthy and Hypertensive Rats

    EPA Science Inventory

    Rationale: We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicits changes in cardiac gene expression that broadly mimics expression in spontaneously hypertensive (SH) rats without DE. We hypothesized that pharmacol...

  10. Metabolic perturbations of postnatal growth restriction and hyperoxia-induced pulmonary hypertension in a bronchopulmonary dysplasia model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Neonatal pulmonary hypertension (PH) is a common manifestation of bronchopulmonary dysplasia (BPD) and contributes to increased morbidity and mortality of preterm birth. Postnatal growth restriction and hyperoxia are independent contributors to PH development, as indicated by our previ...

  11. The herbal medicines Saireito and Boiogito improve the hypertension of pre-eclamptic rats induced by Nomega-Nitro-L-arginine methyl ester.

    PubMed

    Takei, Hisato; Nakai, Yoichiro; Hattori, Naoko; Yamamoto, Masahiro; Takeda, Shuichi; Yamamoto, Masako; Arishima, Kazuyoshi

    2007-09-01

    The chronic inhibition of nitric oxide (NO) synthesis with N(omega)-Nitro-L-arginine methyl ester (L-NAME) induces a pre-eclampsia-like syndrome including hypertension in pregnant rats. We tested the traditional herbal medicines Saireito (SR) and Boiogito (BO), which have been used clinically for the treatment of pre-eclampsia, in this model. L-NAME was infused subcutaneously into pregnant rats from gestational day 14 (G14). SR and BO (both at 1, 2g/kg) were administered by gavage from G14 to G20. Systolic blood pressure was measured on G19. SR and BO (both at 1, 2g/kg) inhibited L-NAME-induced hypertension. SR was effective in both pregnant and non-pregnant rats while BO was effective only in pregnant rats. BO increased blood levels of CGRP and decreased levels of endothelin-1; both are known to play important roles in regulation of blood pressure in pre-eclampsia. SR and BO may be beneficial for the treatment and prevention of hypertension in pre-eclampsia.

  12. [Chronic administration of estrogen receptors antagonist reduces degree of hypoxia-induced pulmonary hypertension caused by chronic injections of estrogen in ovariectomised female Wistar rats].

    PubMed

    Kovaleva, Iu O; Artem'eva, M M; Medvedev, O S; Medvedeva, N A

    2013-01-01

    As we showed previously, administration of estradiol in different doses (5 and 15 mcg per day for 21 day) initiates the development of pulmonary arterial hypertension (PAH) in ovariectomised female Wistar rats. The aim of current study was to analyze the involvement of antagonist of estrogen receptors type a- and beta- ICI 182,780 (fulvestrant) in development of hypoxia-induced pulmonary arterial hypertension. Ovariectomised female rats were separated into 5 groups received subcutaneously for 1 month : 1. Estrogen 15 mcg per day. 2. Estrogen 60 mcg per day 3. Antagonist of estrogen receptors type alpha- and beta- fulvestrant 150 mcg per day. 4. Estrogen 15 mcg/d + fulvestrant 150 mcg/d. 5. Propylenglycol as a control group. PAH was induced by exposure to hypobaric hypoxia. Rats were housed in a hypobaric chamber at simulated altitude of 5000 m, 10 h a day, 2 wk (O2 concentration reduced to 10%). We suppose that the development of pulmonary hypertension in ovariectomised female Wistar rats caused by administration of estrogen (15 mcg and 60 mcg per day for 1 month) is mediated by estrogen receptors type alpha- and beta-.

  13. Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice.

    PubMed

    Bolasco, Giulia; Calogero, Raffaele; Carrara, Matteo; Banchaabouchi, Mumna Al; Bilbao, Daniel; Mazzoccoli, Gianluigi; Vinciguerra, Manlio

    2012-06-01

    Locally acting insulin growth factor isoform (mIGF-1) and the NAD+-dependent protein deacetylase SIRT1 are implicated in life and health span. Heart failure is associated with aging and is a major cause of death. mIGF-1 protects the heart from oxidative stresses via SIRT1. SIRT1 subcellular localization and its genomic regulation by mIGF-1 are unknown. We show here that SIRT1 is located in the nuclei of a significant fraction of cardiomyocytes. Using high throughput sequencing approaches in mIGF-1 transgenic mice, we identified new targets of the mIGF-1/SIRT1 signaling. In addition to its potent cardioprotective properties, cardiac-restricted mIGF-1 transgene induced systemic changes such as high blood pressure, leukocytosis and an enhanced fear response, in a SIRT1-dependent manner. Cardiac mIGF-1/ SIRT1 signaling may thus modulate disparate systemic functions.

  14. Resveratrol Inhibition of Rac1-Derived Reactive Oxygen Species by AMPK Decreases Blood Pressure in a Fructose-Induced Rat Model of Hypertension

    PubMed Central

    Cheng, Pei-Wen; Lee, Hui-Chieh; Lu, Pei-Jung; Chen, Hsin-Hung; Lai, Chi-Cheng; Sun, Gwo-Ching; Yeh, Tung-Chen; Hsiao, Michael; Lin, Yu-Te; Liu, Chun-Peng; Tseng, Ching-Jiunn

    2016-01-01

    Recent studies have reported that the activation of AMP-activated protein kinase (AMPK) suppressed oxidative stress. The aim of this study was to examine whether the activation of AMPK in the brain decreased Rac1-induced ROS generation, thereby reducing blood pressure (BP) in rats with fructose-induced hypertension. The inhibition of ROS by treatment with an AMPK activator (oral resveratrol, 10 mg/kg/day) for 1 week decreased the BP and increased the NO production in the rostral ventrolateral medulla (RVLM) of fructose-fed rats but not in control Wistar-Kyoto (WKY) rats. In addition, resveratrol treatment abolished the Rac1-induced increases in the activity of the NADPH oxidase subunits p22-phox and reduced the activity of SOD2, while treatment with an AMPK inhibitor (compound C, 40 μM/day) had the opposite effect, in the fructose-fed rats. Interestingly, the activation of AMPK abolished Rac1 activation and decreased BP by inducing the activities of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and ribosomal protein S6 kinase (RSK) and nNOS phosphorylation in the fructose-fed rats. We conclude that the activation of AMPK decreased BP, abolished ROS generation, and enhanced ERK1/2-RSK-nNOS pathway activity by negatively regulating Racl-induced NADPH oxidase levels in the RVLM during oxidative stress–associated hypertension. PMID:27138844

  15. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension

    PubMed Central

    Morris, R. Curtis; Schmidlin, Olga; Sebastian, Anthony; Tanaka, Masae; Kurtz, Theodore W.

    2016-01-01

    Prevailing theory holds that abnormally large increases in renal salt retention and cardiac output are early pathophysiologic events mediating initiation of most instances of salt-induced hypertension. This theory has come under increasing scrutiny because it is based on studies that lack measurements of sodium balance and cardiac output obtained during initiation of salt-loading in proper normal controls, i.e., salt-resistant subjects with normal blood pressure. Here we make the case for a “vasodysfunction” theory for initiation of salt-induced hypertension: In response to an increase in salt intake, a subnormal decrease in total peripheral resistance that involves a subnormal decrease in renal vascular resistance, in the absence of abnormally large increases in sodium retention and cardiac output, is the hemodynamic abnormality that usually mediates initiation of salt-induced increases in blood pressure (BP). It is the failure to normally decrease vascular resistance in response to salt loading that enables a normal increase of cardiac output to initiate the salt-induced increase in blood pressure. This theory is based on the results of properly controlled studies which consistently demonstrate that in salt-sensitive subjects, salt-loading initiates increased BP through a hemodynamic mechanism that: 1) does not usually involve early increases in sodium retention and cardiac output greater than those which occur with salt-loading in normal controls, and 2) usually involves an early failure to decrease vascular resistance to the same extent as that observed during salt-loading in normal controls. Multiple mechanisms including disturbances in nitric oxide and sympathetic nervous system activity likely underlie this subnormal vasodilatory response to salt that usually precedes and initiates salt-induced hypertension. PMID:26927006

  16. [Hypertension and osteoporosis].

    PubMed

    Nakagami, Hironori; Morishita, Ryuichi

    2013-04-01

    The number of patients with high blood pressure and osteoporosis are increased year by year in our society. In hypertension patients, excess urinary calcium secretion induces secondary parathyroidism to increase serum calcium level by calcium release from bone, which may accelerate osteoporosis. In this aspect, there are several reports that anti-hypertensive drugs, especially thiazides, increase bone mineral density and decrease the incidence of bone fracture. In addition, we demonstrated that renin-angiotensin system can be involved in the process of osteoporosis. Angiotensin II significantly induced the expression of RANKL (receptor activator of NF-κB ligand) in osteoblasts, leading to the activation of osteoclasts, while these effects were completely blocked by an Ang II type 1 receptor blockade. Recently, it has been reported that angiotensin receptor blockade clinically decreased the incidence of bone fracture. Renin-angiotensin system might be common molecule to regulate both hypertension and osteoporosis.

  17. Renal antioxidant enzymes and glutathione redox status in leptin-induced hypertension.

    PubMed

    Bełtowski, Jerzy; Jamroz-Wiśniewska, Anna; Wójcicka, Grazyna; Lowicka, Ewelina; Wojtak, Andrzej

    2008-12-01

    Previously, we have demonstrated that leptin increases blood pressure (BP) in the rats through two oxidative stress-dependent mechanisms: stimulation of extracellular signal-regulated kinases (ERK) by H(2)O(2) and scavenging of nitric oxide (NO) by superoxide (O(2-.)). Herein, we examined if renal glutathione system and antioxidant enzymes determine the mechanism of prohypertensive effect of leptin. Leptin administered at 0.5 mg/kg/day for 4 or 8 days increased BP and renal Na(+),K(+)-ATPase activity and reduced fractional sodium excretion; these effects were prevented by NADPH oxidase inhibitor, apocynin. Superoxide scavenger, tempol, abolished the effect of leptin on BP and renal Na(+) pump in rats receiving leptin for 8 days, whereas ERK inhibitor, PD98059, was effective in animals treated with leptin for 4 days. Leptin administered for 4 days decreased glutathione (GSH) and increased glutathione disulfide (GSSG) in the kidney. In animals receiving leptin for 8 days GSH returned to normal level, which was accompanied by up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS), a rate-limiting enzyme of the GSH biosynthetic pathway. In addition, superoxide dismutase (SOD) activity was decreased, whereas glutathione peroxidase (GPx) was increased in rats receiving leptin for 8 days. Cotreatment with gamma-GCS inhibitor, buthionine sulfoximine (BSO), accelerated, whereas GSH precursor, N-acetylcysteine (NAC), attenuated leptin-induced changes in gamma-GCS, SOD, and GPx. In addition, coadministration of BSO changed the mechanism of BP elevation from H(2)O(2)-ERK to (O(2-.))-NO dependent in animals receiving leptin for 4 days, whereas NAC had the opposite effect in rats treated with leptin for 8 days. These results suggest that initial change in GSH redox status induces decrease in SOD/GPx ratio, which results in greater amount of (O)2-.)) versus H(2)O(2) in later phase of leptin treatment, thus shifting the mechanism of BP elevation from H(2)O(2)-ERK to (O(2

  18. Therapeutic Benefits of Mesenchymal Stromal Cells in a Rat Model of Hemoglobin-Induced Hypertensive Intracerebral Hemorrhage

    PubMed Central

    Ding, Rui; Lin, Chunnan; Wei, ShanShan; Zhang, Naichong; Tang, Liangang; Lin, Yumao; Chen, Zhijun; Xie, Teng; Chen, XiaoWei; Feng, Yu; Wu, LiHua

    2017-01-01

    Previous studies have shown that bone marrow mesenchymal stromal cell (MSC) transplantation significantly improves the recovery of neurological function in a rat model of intracerebral hemorrhage. Potential repair mechanisms involve anti-inflammation, anti-apoptosis and angiogenesis. However, few studies have focused on the effects of MSCs on inducible nitric oxide synthase (iNOS) expression and subsequent peroxynitrite formation after hypertensive intracerebral hemorrhage (HICH). In this study, MSCs were transplanted intracerebrally into rats 6 hours after HICH. The modified neurological severity score and the modified limb placing test were used to measure behavioral outcomes. Blood–brain barrier disruption and neuronal loss were measured by zonula occludens-1 (ZO-1) and neuronal nucleus (NeuN) expression, respectively. Concomitant edema formation was evaluated by H&E staining and brain water content. The effect of MSCs treatment on neuroinflammation was analyzed by immunohistochemical analysis or polymerase chain reaction of CD68, Iba1, iNOS expression and subsequent peroxynitrite formation, and by an enzyme-linked immunosorbent assay of pro-inflammatory factors (IL-1β and TNF-α). The MSCs-treated HICH group showed better performance on behavioral scores and lower brain water content compared to controls. Moreover, the MSC injection increased NeuN and ZO-1 expression measured by immunochemistry/immunofluorescence. Furthermore, MSCs reduced not only levels of CD68, Iba1 and pro-inflammatory factors, but it also inhibited iNOS expression and peroxynitrite formation in perihematomal regions. The results suggest that intracerebral administration of MSCs accelerates neurological function recovery in HICH rats. This may result from the ability of MSCs to suppress inflammation, at least in part, by inhibiting iNOS expression and subsequent peroxynitrite formation. PMID:28190323

  19. Physiological basis for effect of physical conditioning on chronic ethanol-induced hypertension in a rat model.

    PubMed

    Husain, Kazim; Mejia, Jose; Lalla, Jainarine

    2006-09-01

    The study aim was to investigate the interaction of physical conditioning and chronic ethanol ingestion on blood pressure (BP), heart rate (HR), nitric oxide (NO) and oxidants/antioxidants balance in the plasma of rats. Male Fisher rats were divided into four groups of seven animals each and treated as follows: (1) Control (5% sucrose, orally) daily for 12 weeks; (2) ethanol (4 g kg(-1), orally) daily for 12 weeks; (3) exercise training on treadmill plus sucrose daily for 12 weeks and (4) exercise training on treadmill followed by ethanol (4 g kg(-1), orally) daily for 12 weeks. The body weight, BP and HR were recorded every week. The animals were sacrificed under ether anesthesia after 12 weeks, blood collected in heparinzed vials, plasma isolated and analyzed. The results show that exercise training significantly lowered the weight gain 6-12 weeks in ethanol treated rats compared to ethanol alone or control rats. The mean arterial BP was significantly elevated 6-12 weeks after ethanol ingestion without significant alterations in HR. Exercise training lowered the BP close to the normal control values in ethanol fed rats. Ethanol significantly decreased the plasma NO levels, reduced to oxidized glutathione ratio (GSH/GSSG) and antioxidant enzymes-superoxide dismutase (CuZn-SOD, and Mn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities while plasma NADPH oxidase activity and malondialdehyde (MDA) levels were significantly elevated compared to control. Exercise training significantly restored the depletion of plasma NO levels, GSH/GSSG ratio, and antioxidant enzyme activities and normalized the MDA levels and NADPH oxidase activity in the plasma of ethanol treated rats. The study concluded that physical conditioning attenuates the chronic ethanol-induced hypertension by augmenting the NO bioavailability and reducing the oxidative stress response in the plasma of rats.

  20. STARS knockout attenuates hypoxia-induced pulmonary arterial hypertension by suppressing pulmonary arterial smooth muscle cell proliferation.

    PubMed

    Shi, Zhaoling; Wu, Huajie; Luo, Jianfeng; Sun, Xin

    2017-03-01

    STARS (STriated muscle Activator of Rho Signaling) is a sarcomeric protein, which expressed early in cardiac development and involved in pathological remodeling. Abundant evidence indicated that STARS could regulate cell proliferation, but it's exact function remains unclear. In this study, we aimed to investigate the role of STARS in the proliferation of pulmonary arterial smooth muscle cells (PASMC) and the potential effect on the progression of pulmonary arterial hypertension (PAH). In this study, we established a PAH mouse model through chronic hypoxia exposure as reflected by the increased RVSP and RVHI. Western blot and RT-qPCR detected the increased STARS protein and mRNA levels in PAH mice. Next, we cultured the primary PASMC from PAH mice. After STARS overexpression in PASMC, STARS, SRF and Egr-1 were up-regulated significantly. The MTT assay revealed an increase in cell proliferation. Flow cytometry showed a marked inhibition of cell apoptosis. However, STARS silence in PASMC exerted opposite effects with STARS overexpression. SRF siRNA transfection blocked the effects of STARS overexpression in PASMC. In order to further confirm the role of STARS in PAH mice in vivo, we exposed STARS knockout mice to hypoxia and found lower RVSP and RVHI in knockout mice as compared with controls. Our results not only suggest that STARS plays a crucial role in the development of PAH by increasing the proliferation of PASMC through activation of the SRF/Egr-1 pathway, but also provides a new mechanism for hypoxia-induced PAH. In addition, STARS may represent a potential treatment target.

  1. Pharmacological inhibition of epsilon-protein kinase C attenuates cardiac fibrosis and dysfunction in hypertension-induced heart failure.

    PubMed

    Inagaki, Koichi; Koyanagi, Tomoyoshi; Berry, Natalia C; Sun, Lihan; Mochly-Rosen, Daria

    2008-06-01

    Studies on genetically manipulated mice suggest a role for epsilon-protein kinase C (epsilonPKC) in cardiac hypertrophy and in heart failure. The potential clinical relevance of these findings was tested here using a pharmacological inhibitor of epsilonPKC activity during the progression to heart failure in hypertensive Dahl rats. Dahl rats, fed an 8% high-salt diet from the age of 6 weeks, exhibited compensatory cardiac hypertrophy by 11 weeks, followed by heart failure at approximately 17 weeks and death by the age of approximately 20 weeks (123+/-3 days). Sustained treatment between weeks 11 and 17 with the selective epsilonPKC inhibitor epsilonV1-2 or with an angiotensin II receptor blocker olmesartan prolonged animal survival by approximately 5 weeks (epsilonV1-2: 154+/-7 days; olmesartan: 149+/-5 days). These treatments resulted in improved fractional shortening (epsilonV1-2: 58+/-2%; olmesartan: 53+/-2%; saline: 41+/-6%) and decreased cardiac parenchymal fibrosis when measured at 17 weeks without lowering blood pressure at any time during the treatment. Combined treatment with epsilonV1-2, together with olmesartan, prolonged animal survival by 5 weeks (37 days) relative to olmesartan alone (from 160+/-5 to 197+/-14 days, respectively) and by approximately 11 weeks (74 days) on average relative to saline-treated animals, suggesting that the pathway inhibited by epsilonPKC inhibition is not identical to the olmesartan-induced effect. These data suggest that an epsilonPKC-selective inhibitor such as epsilonV1-2 may have a potential in augmenting current therapeutic strategies for the treatment of heart failure in humans.

  2. Observation of the pi...H hydrogen-bonded ternary complex, (C(2)H(4))(2)H(2)O, using matrix isolation infrared spectroscopy.

    PubMed

    Thompson, Matthew G K; Lewars, Errol G; Parnis, J Mark

    2005-10-27

    FTIR absorption spectra of water-containing ethene:Ar matrices, with compositions of ethene up to 1:10 ethene:Ar, have been recorded. Systematically increasing the concentration of ethene reveals features in the spectra consistent with the known 1:1 ethene:water complex, which subsequently disappear on further increase in ethene concentration. At high concentrations of ethene, new features are observed at 3669 and 3585 cm(-1), which are red-shifted with respect to matrix-isolated nu(3) and nu(1) O-H stretching modes of water and the 1:1 ethene:water complex. These shifts are consistent with a pi...H interaction of a 2:1 ethene:water complex of the form (C(2)H(4)...H-O-H...C(2)H(4)). The analogous (C(2)D(4))(2)H(2)O complex shows little shifting from positions associated with (C(2)H(4))(2)H(2)O, while the (C(2)H(4))(2)D(2)O isotopomer shows large shifts to 2722.3 and 2617.2 cm(-1), having identical nu(3)(H(2)O)/nu(3)(D(2)O) and nu(1)(H(2)O)/nu(1)(D(2)O) values when compared with monomeric water isotopomers. Features at 3626.1 and 2666.2 cm(-1) are also observed and are attributed to (C(2)H(4))(2)HDO. DFT calculations at the B3LYP/6-311+G(d,p) level for each isotopomer are presented, and the predicted vibrational frequencies are directly compared with experimental values. The interaction energy for the formation of the 2:1 ethene:water complex from the 1:1 ethene:water complex is also presented.

  3. Pulmonary Hypertension

    MedlinePlus

    ... on Twitter. What Is Pulmonary Hypertension? Pulmonary hypertension (PULL-mun-ary HI-per-TEN-shun), or PH, is increased pressure in the pulmonary arteries. These arteries carry blood from your heart to your lungs to pick up oxygen. PH causes symptoms such as shortness of ...

  4. Impact of tannic acid on blood pressure, oxidative stress and urinary parameters in L-NNA-induced hypertensive rats.

    PubMed

    Turgut Coşan, Didem; Saydam, Faruk; Özbayer, Cansu; Doğaner, Fulya; Soyocak, Ahu; Güneş, Hasan Veysi; Değirmenci, İrfan; Kurt, Hülyam; Üstüner, Mehmet Cengiz; Bal, Cengiz

    2015-01-01

    Hypertension is a major health problem with increasing prevalence around the world. Tannic acid is water-soluble polyphenol that is present in tea, green tea, coffee, red wine, nuts, fruits and many plant foods. It has been reported to serve as an antioxidant or a pro-oxidant depending on the type of cells and its concentration. The purpose of our study was to evaluate the effect of tannic acid on systolic blood pressure, oxidative stress and some urinary parameters in the rat model of essential hypertension. Blood pressures of all rats were measured using the tail-cuff method. The nitric oxide synthase inhibitor N (omega)-nitro-L-arginine was administered orally at a dose of 0.5 g/l/day for 15 days to rats in order to create an animal model of hypertension. Tannic acid was intraperitoneally injected at a dose of 50 mg/kg for 15 days. Superoxide dismutase, catalase activity and the concentration of malondialdehyde (MDA) were determined in blood plasma and homogenates of heart, liver and kidney. In order to evaluate renal functions, urine pH, urine volume, urine creatine, uric acid, and urea nitrogen values were measured. Compared with the hypertension group, a decrease in MDA concentrations of heart tissue (p < 0.01), urea nitrogen values (p < 0.01) and urine volumes (p < 0.001) were established in hypertension + tannic acid group. There was also a decrease in blood pressure values (20th and 30th days) of this group, but there was no a statistical difference according to hypertension group. The findings of our research show the effect of tannic acid in lowering blood pressure in hypertensive rats.

  5. Leptin-Induced Endothelium-Independent Vasoconstriction in Thoracic Aorta and Pulmonary Artery of Spontaneously Hypertensive Rats: Role of Calcium Channels and Stores

    PubMed Central

    Gomart, Samantha; Gaudreau-Ménard, Caroline; Jespers, Pascale; Dilek, Omer Gurkan; Hupkens, Emeline; Hanthazi, Aliénor; Naeije, Robert; Melot, Christian; Labranche, Nathalie; Dewachter, Laurence

    2017-01-01

    Decreased leptin-induced endothelium-dependent vasodilation has been reported in spontaneously hypertensive rats (SHR). Here, we report leptin-induced vasoconstriction in endothelium-denuded pulmonary artery and thoracic aorta from SHR and sought to characterize calcium handling underlying these mechanisms. Vasoreactivity to leptin was evaluated on pulmonary artery and thoracic aorta rings from 18 weeks old male SHR with or without calcium free medium, caffeine + thapsigargin + carbonyl cyanide-4-trifluoromethoxyphenylhydrazone emptying intracellular calcium stores, nifedipine a voltage-gated calcium channel inhibitor, SKF-96365 a transient receptor potential cation channels (TRPC) inhibitor, wortmaninn, a phosphatidylinositide 3-kinases (PI3K) inhibitor, or PD98059 a mitogen-activated protein kinase kinase (MAPKK) inhibitor. Calcium imaging was performed on cultured vascular smooth muscle cells incubated with leptin in presence or not of wortmaninn or PD98059. Leptin induced vasoconstriction in denuded pulmonary artery and thoracic aorta from SHR. Response was abolished when intra- or extracellular calcium stores were emptied, after blocking TRPC or voltage-dependent calcium channels or when using MAPKK or PI3K inhibitors. In vascular smooth muscle cells, leptin increased intracellular calcium. This rise was higher in SHR and abolished by MAPKK or PI3K inhibitors. TRPC6 gene expression was upregulated in arteries from SHR. Leptin-induced vasoconstriction in denuded arteries of SHR requires intracellular stores and is TRPC- and voltage-gated calcium channels dependent. Intracellular calcium increase is more pronounced in spontaneously hypertensive rats. PMID:28085954

  6. Pentaerythritol Tetranitrate In Vivo Treatment Improves Oxidative Stress and Vascular Dysfunction by Suppression of Endothelin-1 Signaling in Monocrotaline-Induced Pulmonary Hypertension

    PubMed Central

    Steven, Sebastian; Oelze, Matthias; Brandt, Moritz; Ullmann, Elisabeth; Kröller-Schön, Swenja; Heeren, Tjebo; Tran, Lan P.; Daub, Steffen; Dib, Mobin; Stalleicken, Dirk; Wenzel, Philip; Münzel, Thomas

    2017-01-01

    Objective. Oxidative stress and endothelial dysfunction contribute to pulmonary arterial hypertension (PAH). The role of the nitrovasodilator pentaerythritol tetranitrate (PETN) on endothelial function and oxidative stress in PAH has not yet been defined. Methods and Results. PAH was induced by monocrotaline (MCT, i.v.) in Wistar rats. Low (30 mg/kg; MCT30), middle (40 mg/kg; MCT40), or high (60 mg/kg; MCT60) dose of MCT for 14, 28, and 42 d was used. MCT induced endothelial dysfunction, pulmonary vascular wall thickening, and fibrosis, as well as protein tyrosine nitration. Pulmonary arterial pressure and heart/body and lung/body weight ratio were increased in MCT40 rats (28 d) and reduced by oral PETN (10 mg/kg, 24 d) therapy. Oxidative stress in the vascular wall, in the heart, and in whole blood as well as vascular endothelin-1 signaling was increased in MCT40-treated rats and normalized by PETN therapy, likely by upregulation of heme oxygenase-1 (HO-1). PETN therapy improved endothelium-dependent relaxation in pulmonary arteries and inhibited endothelin-1-induced oxidative burst in whole blood and the expression of adhesion molecule (ICAM-1) in endothelial cells. Conclusion. MCT-induced PAH impairs endothelial function (aorta and pulmonary arteries) and increases oxidative stress whereas PETN markedly attenuates these adverse effects. Thus, PETN therapy improves pulmonary hypertension beyond its known cardiac preload reducing ability. PMID:28337251

  7. Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats.

    PubMed

    Pérez-Girón, Jose V; Palacios, Roberto; Martín, Angela; Hernanz, Raquel; Aguado, Andrea; Martínez-Revelles, Sonia; Barrús, María T; Salaices, Mercedes; Alonso, María J

    2014-06-01

    Glitazones have anti-inflammatory properties by interfering with the transcription of proinflammatory genes, such as cyclooxygenase (COX)-2, and with ROS production, which are increased in hypertension. This study analyzed whether pioglitazone modulates COX-2 expression in hypertension by interfering with ROS and endothelin (ET)-1. In vivo, pioglitazone (2.5 mg·kg(-1)·day(-1), 28 days) reduced the greater levels of COX-2, pre-pro-ET-1, and NADPH oxidase (NOX) expression and activity as well as O2 (·-) production found in aortas from spontaneously hypertensive rats (SHRs). ANG II increased COX-2 and pre-pro-ET-1 levels more in cultured vascular smooth muscle cells from hypertensive rats compared with normotensive rats. The ETA receptor antagonist BQ-123 reduced ANG II-induced COX-2 expression in SHR cells. ANG II also increased NOX-1 expression, NOX activity, and superoxide production in SHR cells; the selective NOX-1 inhibitor ML-171 and catalase reduced ANG II-induced COX-2 and ET-1 transcription. ANG II also increased c-Jun transcription and phospho-JNK1/2, phospho-c-Jun, and p65 NF-κB subunit nuclear protein expression. SP-600125 and lactacystin, JNK and NF-κB inhibitors, respectively, reduced ANG II-induced ET-1, COX-2, and NOX-1 levels and NOX activity. Pioglitazone reduced the effects of ANG II on NOX activity, NOX-1, pre-pro-ET-1, COX-2, and c-Jun mRNA levels, JNK activation, and nuclear phospho-c-Jun and p65 expression. In conclusion, ROS production and ET-1 are involved in ANG II-induced COX-2 expression in SHRs, explaining the greater COX-2 expression observed in this strain. Furthermore, pioglitazone inhibits ANG II-induced COX-2 expression likely by interfering with NF-κB and activator protein-1 proinflammatory pathways and downregulating ROS production and ET-1 transcription, thus contributing to the anti-inflammatory properties of glitazones.

  8. Portal hypertension.

    PubMed

    Garcia-Tsao, G

    2001-05-01

    Portal hypertension is the main complication of cirrhosis and is responsible for its most common complications: variceal hemorrhage, ascites, and portosystemic encephalopathy. Portal hypertension is the result of increased intrahepatic resistance and increased portal venous inflow, which in turn is the result of splanchnic vasodilatation. Vasodilatation (splanchnic and systemic) and hyperdynamic circulation are hemodynamic abnormalities typical of cirrhosis and portal hypertension. Gastroesophageal varices result almost solely from portal hypertension, although the hyperdynamic circulation contributes to variceal growth and hemorrhage. Ascites results from sinusoidal hypertension and sodium retention, which is, in turn, secondary to vasodilatation and activation of neurohumoral systems. The hepatorenal syndrome represents the result of extreme vasodilatation with an extreme decrease in effective blood volume that leads to maximal activation of vasoconstrictive systems, renal vasoconstriction, and renal failure. Spontaneous bacterial peritonitis is a potentially lethal infection of ascites that occurs in the absence of a local source of infection. Portosystemic encephalopathy is a consequence of both portal hypertension (shunting of blood through portosystemic collaterals) and hepatic insufficiency that result in the accumulation of neurotoxins in the brain. This paper reviews the recent advances in the pathophysiology and management of the complications of portal hypertension.

  9. Portal hypertension.

    PubMed

    Garcia-Tsao, Guadalupe

    2003-05-01

    Portal hypertension, the main complication of cirrhosis, is responsible for its most common complications: variceal hemorrhage, ascites, and portosystemic encephalopathy. Portal hypertension is the result of increased intrahepatic resistance and increased portal venous inflow. Vasodilatation (splanchnic and systemic) and the hyperdynamic circulation are hemodynamic abnormalities typical of cirrhosis and portal hypertension. Gastroesophageal varices result almost solely from portal hypertension, although the hyperdynamic circulation contributes to variceal growth and hemorrhage. Ascites results from sinusoidal hypertension and sodium retention, which, in turn, is secondary to vasodilatation and activation of neurohumoral systems. The hepatorenal syndrome represents the result of extreme vasodilatation, with an extreme decrease in effective blood volume that leads to maximal activation of vasoconstrictive systems, renal vasoconstriction, and renal failure. Spontaneous bacterial peritonitis is a potentially lethal infection of ascites that occurs in the absence of a local source of infection. Portosystemic encephalopathy is a consequence of both portal hypertension (shunting of blood through portosystemic collaterals) and hepatic insufficiency that result in the accumulation of neurotoxins in the brain. This review covers the recent advances in the pathophysiology and management of the complications of portal hypertension.

  10. Prenatal inflammation-induced NF-κB dyshomeostasis contributes to renin-angiotensin system over-activity resulting in prenatally programmed hypertension in offspring

    PubMed Central

    Deng, Youcai; Deng, Yafei; He, Xiaoyan; Chu, Jianhong; Zhou, Jianzhi; Zhang, Qi; Guo, Wei; Huang, Pei; Guan, Xiao; Tang, Yuan; Wei, Yanling; Zhao, Shanyu; Zhang, Xingxing; Wei, Chiming; Namaka, Michael; Yi, Ping; Yu, Jianhua; Li, Xiaohui

    2016-01-01

    Studies involving the use of prenatally programmed hypertension have been shown to potentially contribute to prevention of essential hypertension (EH). Our previous research has demonstrated that prenatal inflammatory stimulation leads to offspring’s aortic dysfunction and hypertension in pregnant Sprague-Dawley rats challenged with lipopolysaccharide (LPS). The present study found that prenatal LPS exposure led to NF-κB dyshomeostasis from fetus to adult, which was characterized by PI3K-Akt activation mediated degradation of IκBα protein and impaired NF-κB self-negative feedback loop mediated less newly synthesis of IκBα mRNA in thoracic aortas (gestational day 20, postnatal week 7 and 16). Prenatal or postnatal exposure of the IκBα degradation inhibitor, pyrollidine dithiocarbamate, effectively blocked NF-κB activation, endothelium dysfunction, and renin-angiotensin system (RAS) over-activity in thoracic aortas, resulting in reduced blood pressure in offspring that received prenatal exposure to LPS. Surprisingly, NF-κB dyshomeostasis and RAS over-activity were only found in thoracic aortas but not in superior mesenteric arteries. Collectively, our data demonstrate that the early life NF-κB dyshomeostasis induced by prenatal inflammatory exposure plays an essential role in the development of EH through triggering RAS over-activity. We conclude that early life NF-κB dyshomeostasis is a key predictor of EH, and thus, NF-κB inhibition represents an effective interventional strategy for EH prevention. PMID:26877256

  11. PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress

    PubMed Central

    Gao, Hong-Li; Yu, Xiao-Jing; Liu, Kai-Li; Shi, Xiao-Lian; Qi, Jie; Chen, Yan-Mei; Zhang, Yan; Bai, Juan; Yi, Qiu-Yue; Feng, Zhi-Peng; Chen, Wen-Sheng; Cui, Wei; Liu, Jin-Jun; Zhu, Guo-Qing; Kang, Yu-Ming

    2017-01-01

    The imbalance of neurotransmitters and excessive oxidative stress responses contribute to the pathogenesis of hypertension. In this study, we determined whether blockade of p44/42 MAPK pathway in the hypothalamic paraventricular nucleus (PVN) ameliorates the development of hypertension through modulating neurotransmitters and attenuating oxidative stress. Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 6 weeks and were treated with bilateral PVN infusion of PD-98059 (0.025 μg/h), a p44/42 MAPK inhibitor, or vehicle via osmotic minipump. HS resulted in higher mean arterial pressure (MAP) and Fra-like (Fra-LI) activity, and plasma and PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. PD-98059 infusion reduced NE, TH, NOX2 and NOX4 in the PVN, and induced Cu/Zn-SOD and GAD67 in the PVN. It suggests that PVN blockade of p44/42 MAPK attenuates hypertension through modulating neurotransmitters and attenuating oxidative stress. PMID:28225041

  12. Hypersensitivity of mesenteric veins to 5-hydroxytryptamine- and ketanserin-induced reduction of portal pressure in portal hypertensive rats.

    PubMed Central

    Cummings, S. A.; Groszmann, R. J.; Kaumann, A. J.

    1986-01-01

    Isolated