Low-intensity infrared laser effects on zymosan-induced articular inflammatory response
NASA Astrophysics Data System (ADS)
Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia
2015-03-01
Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.
Cao, Jun; Jiang, Liping; Zhang, Xiaomei; Yao, Xiaofeng; Geng, Chengyan; Xue, Xiangxin; Zhong, Laifu
2008-01-01
Oxidative stress plays an important role during inflammatory diseases and antioxidant administration to diminish oxidative stress may arrest inflammatory processes. Boron has been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we investigated the role of the tripeptide glutathione (GSH) in modulating the effects of boric acid (BA) on lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) formation in THP-1 monocytes. Interestingly, we found that BA had no significant effects on both TNF-alpha production and intracellular GSH contents, whereas it could inhibit LPS-induced TNF-alpha formation and ameliorated the d,l-buthionine-S,R-sulfoximine (BSO)-induced GSH depletion. Twenty-four hour incubation with BSO induced a decrease of the intracellular GSH and an increase of TNF-alpha. Treatment with N-acetyl-l-cysteine (NAC) did not significantly increase intracellular content of GSH but significantly reduced the secretion of TNF-alpha. BSO-pretreatment for 24h enhanced the LPS-induced secretion and mRNA expression of TNF-alpha further. BA inhibited LPS-stimulated TNF-alpha formation was also seen after GSH depletion by BSO. These results indicate that BA may have anti-inflammatory effect in the LPS-stimulated inflammation and the effect of BA on TNF-alpha secretion may be induced via a thiol-dependent mechanism.
Molecular inflammation as an underlying mechanism of the aging process and age-related diseases.
Chung, H Y; Lee, E K; Choi, Y J; Kim, J M; Kim, D H; Zou, Y; Kim, C H; Lee, J; Kim, H S; Kim, N D; Jung, J H; Yu, B P
2011-07-01
Aging is a biological process characterized by time-dependent functional declines that are influenced by changes in redox status and by oxidative stress-induced inflammatory reactions. An organism's pro-inflammatory status may underlie the aging process and age-related diseases. In this review, we explore the molecular basis of low-grade, unresolved, subclinical inflammation as a major risk factor for exacerbating the aging process and age-related diseases. We focus on the redox-sensitive transcription factors, NF-κB and FOXO, which play essential roles in the expression of pro-inflammatory mediators and anti-oxidant enzymes, respectively. Major players in molecular inflammation are discussed with respect to the age-related up-regulation of pro-inflammatory cytokines and adhesion molecules, cyclo-oxygenase-2, lipoxygenase, and inducible nitric oxide synthase. The molecular inflammation hypothesis proposed by our laboratory is briefly described to give further molecular insights into the intricate interplay among redox balance, pro-inflammatory gene activation, and chronic age-related inflammatory diseases. The final section discusses calorie restriction as an aging-retarding intervention that also exhibits extraordinarily effective anti-inflammatory activity by modulating GSH redox, NF-κB, SIRT1, PPARs, and FOXOs.
Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill).
Padilha, Marina M; Avila, Ana A L; Sousa, Pergentino J C; Cardoso, Luis Gustavo V; Perazzo, Fábio F; Carvalho, José Carlos T
2009-04-01
The effects of aqueous and alkaline extracts from Agaricus blazei Murill, an edible mushroom used as folk medicine in Brazil, Japan, and China to treat several illnesses, were investigated on the basis of the inflammatory process induced by different agents. Oral administration of A. blazei extracts marginally inhibited the edema induced by nystatin. In contrast, when complete Freund's adjuvant was used as the inflammatory stimulus, both extracts were able to inhibit this process significantly (P < .05, analysis of variance followed by Tukey-Kramer multiple comparison post hoc test), although it inhibited the granulomatous tissue induction moderately. These extracts were able to decrease the ulcer wounds induced by stress. Also, administration of extracts inhibited neutrophil migration to the exudates present in the peritoneal cavity after carrageenin injection. Therefore, it is possible that A. blazei extracts can be useful in inflammatory diseases because of activation of the immune system and its cells induced by the presence of polysaccharides such as beta-glucans.
Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A
2005-10-01
A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.
Wound repair in rat urinary bladder following electrocautery or holmium laser incision
NASA Astrophysics Data System (ADS)
Venzi, Giordano; Schmidlin, Franz R.; Gabbiani, Giulio; Delacretaz, Guy P.; Pittet, Brigitte; Leisinger, Hans-Juerg; Iselin, Christoph E.
1999-06-01
Woundhealing is a complex phenomenon which varies according the type of tissue but is also depending from the type of tissue injury. Electrocautery mainly induces coagulation necrosis while thermal damages induced by the Holmium laser primarily lead to tissue vaporization which may induce less tissue injury. The aim of this study was to evaluate the healing process of the Holmium laser induced lesions compared to electrocautery induced lesions in urothelial tissue by assessing the inflammatory response and myofibroblast behavior in sequential healing phases. A surgical wound was created in the urinary rat bladder of 32 rats either by electrocautery or by laser (N=16). The inflammatory response, the total lesion depth and the myofibroblast activity during woundhealing was then analyzed on a qualitative basis on days 0/2/4/8. The overall inflammatory response was comparable in both groups up to days two and four. However, at day eight less cellular inflammatory reaction and less myofibroblast activity was found in the specimen of lesions created by the Holmium laser. These results suggest that wound repair may be a less invasive process after Holmium laser than electrocautery.
Yi, Wei; Yang, Yang; Zhao, Dajun; Yang, Honggang; Geng, Ting; Xing, Jianzhou; Zhang, Yu; Tan, Songtao; Yi, Dinghua
2014-01-01
Ethyl pyruvate (EP) is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC) inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs) and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8) production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK). EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer) attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS. PMID:25470819
Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata
2016-07-01
Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.
Guo, Juanjuan; Chen, Jinghao; Lu, Xu; Guo, Zebin; Huang, Zhiwei; Zeng, Shaoxiao; Zhang, Yi; Zheng, Baodong
2018-05-09
κ/ι-Carrageenan hexaoses (κ/ι-neocarrahexaoses, KCO-4) are a type of carrageenan oligosaccharide that have a broad spectrum of bioactivities due to the presence of sulfate groups. However, the anti-inflammatory capacity of purified carrageenan oligosaccharides and the underlying mechanism has not been completely elucidated. The present study aimed to investigate inflammatory signaling modulation of KCO-4 in LPS-induced macrophages using a quantitative proteomic strategy. KCO-4 inhibited the oversecretion of inflammatory mediators (i.e., NO, TNF-α, IL-1β, IL-8, iNOS, and COX-2). KCO-4 treatment altered proteome profile, and metabolic processes in mitochondria were significantly disrupted. The IPA network analysis proposed that KCO-4 triggered the NF-κB signaling pathway-dependent anti-inflammation process through the inhibition of CD14/Rel@p50 in LPS-induced RAW264.7 macrophages. These data improve our understanding of the anti-inflammatory mechanism and contribute to exposure biomarker screening of κ-carrageenan oligosaccharides.
Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud
2013-01-01
We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974
Guava pomace: a new source of anti-inflammatory and analgesic bioactives
2013-01-01
Background Guava pomace is an example of the processing waste generated after the manufacturing process from the juice industry that could be a source of bioactives. Thus, the present investigation was carried out in order to evaluate the anti-inflammatory and antinociceptive potential and determinate the main phenolic compounds of a guava pomace extract (GPE). Methods The anti-inflammatory activity was evaluated by carrageenan, dextran, serotonin, histamine-induced paw edema and neutrophils migration in the peritoneal cavity models. Acetic acid-induced abdominal writhing and formalin test were performed to investigate the antinociceptive effects. In addition, the content of total phenolic and of individual phenolic compounds was determined by GC/MS. Results GPE showed anti-inflammatory activity by carrageenan, dextran, serotonin, histamine-induced paw edema and neutrophils migration in the peritoneal cavity models (p < 0.05). GPE also demonstrated antinociceptive activity by acetic acid-induced abdominal writhing and formalin test (p < 0.05). The total phenolic value was 3.40 ± 0.09 mg GAE/g and epicatechin, quercetin, myricetin, isovanilic and gallic acids were identified by GC/MS analysis. Conclusions The presence of bioactive phenolic compounds as well as important effects demonstrated in animal models suggest that guava pomace could be an interesting source of anti-inflammatory and analgesic substances. PMID:24063346
Taibi-Djennah, Zahida; Laraba-Djebari, Fatima
2015-07-01
Androctonus australis hector (Aah) venom and its neurotoxins may affect the neuro-endocrine immunological axis due to their binding to ionic channels of axonal membranes. This binding leads to the release of neurotransmitters and immunological mediators accompanied by pathophysiological effects. Although the hyperglycemia induced by scorpion venom is clearly established, the involved mediators in these deregulations are unknown. The strong relationship between inflammation and the wide variety of physiological processes can suggest that the activation of the inflammatory response and the massive release of IL-6 and TNF-α release induced by the venom may induce hyperglycemia and various biological disorders. We therefore investigated in this study the contribution of IL-6 and TNF-α in the modulation of inflammatory response and metabolic disorder induced by Aah venom. Obtained results revealed that Aah venom induced inflammatory response characterized by significant increase of inflammatory cells in sera and tissues homogenates accompanied by hyperglycemia and hyperinsulinemia, suggesting that the venom induced insulin resistance. It also induced severe alterations in hepatic parenchyma associated to metabolic disorders and imbalanced redox status. Cytokine antagonists injected 30 min prior to Aah venom allowed a significant reduction of inflammatory biomarker and plasma glucose levels, they also prevented metabolic disorders, oxidative stress and hepatic tissue damage induced by Aah venom. In conclusion, IL-6 and TNF-α appear to play a crucial role in the inflammatory response, hyperglycemia and associated complications to glucose metabolism disorders (carbohydrate and fat metabolism disorders, oxidative stress and hepatic damage) observed following scorpion envenoming. Copyright © 2014 Elsevier B.V. All rights reserved.
Almeida, Camila Bononi; Souza, Lucas Eduardo Botelho; Leonardo, Flavia Costa; Costa, Fabio Trindade Maranhão; Werneck, Claudio C; Covas, Dimas Tadeu; Costa, Fernando Ferreira; Conran, Nicola
2015-08-06
Hemolysis and consequent release of cell-free hemoglobin (CFHb) impair vascular nitric oxide (NO) bioavailability and cause oxidative and inflammatory processes. Hydroxyurea (HU), a common therapy for sickle cell disease (SCD), induces fetal Hb production and can act as an NO donor. We evaluated the acute inflammatory effects of intravenous water-induced hemolysis in C57BL/6 mice and determined the abilities of an NO donor, diethylamine NONOate (DEANO), and a single dose of HU to modulate this inflammation. Intravenous water induced acute hemolysis in C57BL/6 mice, attaining plasma Hb levels comparable to those observed in chimeric SCD mice. This hemolysis resulted in significant and rapid systemic inflammation and vascular leukocyte recruitment within 15 minutes, accompanied by NO metabolite generation. Administration of another potent NO scavenger (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) to C57BL/6 mice induced similar alterations in leukocyte recruitment, whereas hemin-induced inflammation occurred over a longer time frame. Importantly, the acute inflammatory effects of water-induced hemolysis were abolished by the simultaneous administration of DEANO or HU, without altering CFHb, in an NO pathway-mediated manner. In vitro, HU partially reversed the Hb-mediated induction of endothelial proinflammatory cytokine secretion and adhesion molecule expression. In summary, pathophysiological levels of hemolysis trigger an immediate inflammatory response, possibly mediated by vascular NO consumption. HU presents beneficial anti-inflammatory effects by inhibiting rapid-onset hemolytic inflammation via an NO-dependent mechanism, independently of fetal Hb elevation. Data provide novel insights into mechanisms of hemolytic inflammation and further support perspectives for the use of HU as an acute treatment for SCD and other hemolytic disorders. © 2015 by The American Society of Hematology.
Bi, Fangfang; Chen, Fang; Li, Yanning; Wei, Ai; Cao, Wangsen
2018-05-05
Renal anti-aging protein Klotho exhibits impressive properties of anti-inflammation and renal protection, however is suppressed early after renal injury, making Klotho restoration an attractive strategy of treating renal inflammatory disorders. Here, we reported that Klotho is enriched in macrophages and Klotho preservation by Rhein, an anthraquinone derived from medicinal plant rhubarb, attenuates lipopolysaccharide (LPS)-induced acute inflammation essentially via promoting toll-like receptor 4 (TLR4) degradation. LPS-induced pro-inflammatory NF-κB signaling and cytokine expressions coincided with Klotho repression and toll-like receptor 4 (TLR4) elevation in macrophages, renal epithelial cells, and acutely- inflamed kidney. Intriguingly, Rhein treatment effectively corrected the inverted alterations of Klotho and TLR4 and mitigated the TLR4 downstream inflammatory response in a Klotho restoration and TLR4 repression-dependent manner. Klotho inducibly associated with TLR4 after LPS stimulation and suppressed TLR4 protein abundance mainly via a proteolytic process sensitive to the inhibition of Klotho's putative β-glucuronidase activity. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and renal protective effects of Rhein in a mouse model of acute kidney injury incurred by LPS. Thus, Klotho suppression of TLR4 via deglycosylation negatively controls TLR-associated inflammatory signaling and the endogenous Klotho preservation by Rhein or possibly other natural or synthetic compounds possesses promising potentials in the clinical treatment of renal inflammatory disorders. • Klotho is highly expressed in macrophages and repressed by LPS in vitro and in vivo. • Klotho inhibits LPS-induced TLR4 accumulation and the downstream signaling. • Klotho decreases TLR4 via a deglycosylation-associated proteolytic process. • Rhein effectively prevents acute inflammation-incurred Klotho suppression. • Rhein reversal of Klotho attenuates LPS-induced acute inflammation and kidney injury.
Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.
2013-01-01
Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsou, Tsui-Chun, E-mail: tctsou@nhri.org.tw; Liou, Saou-Hsing; Yeh, Szu-Ching
Our previous studies indicated that zinc induced inflammatory response in both vascular endothelial cells and promonocytes. Here, we asked if other metals could cause the similar effect on vascular endothelial cells and tried to determine its underlying mechanism. Following screening of fifteen metals, zinc and nickel were identified with a marked proinflammatory effect, as determined by ICAM-1 and IL-8 induction, on human umbilical vein endothelial cells (HUVECs). Inhibiting protein expression of myeloid differentiation primary response protein-88 (MyD88), a Toll-like receptor (TLR) adaptor acting as a TLR-signaling transducer, significantly attenuated the zinc/nickel-induced inflammatory response, suggesting the critical roles of TLRs inmore » the inflammatory response. Blockage of TLR-4 signaling by CLI-095, a TLR-4 inhibitor, completely inhibited the nickel-induced ICAM-1 and IL-8 expression and NFκB activation. The same CLI-095 treatment significantly blocked the zinc-induced IL-8 expression, however with no significant effect on the ICAM-1 expression and a minor inhibitory effect on the NFκB activation. The finding demonstrated the differential role of TLR-4 in regulation of the zinc/nickel-induced inflammatory response, where TLR-4 played a dominant role in NFκB activation by nickel, but not by zinc. Moreover, inhibition of NFκB by adenovirus-mediated IκBα expression and Bay 11-7025, an inhibitor of cytokine-induced IκB-α phosphorylation, significantly attenuated the zinc/nickel-induced inflammatory responses, indicating the critical of NFκB in the process. The study demonstrates the crucial role of TLRs in the zinc/nickel-induced inflammatory response in vascular endothelial cells and herein deciphers a potential important difference in NFκB activation via TLRs. The study provides a molecular basis for linkage between zinc/nickel exposure and pathogenesis of the metal-related inflammatory vascular disease. - Highlights: • Both zinc and nickel cause ICAM-1/IL‑8 expression in endothelial cells via TLRs. • Nickel induces the inflammatory responses via a TLR-4/NF-κB pathway. • Zinc causes the inflammatory responses via a broader TLRs/NF-κB signaling. • Nickel shows a significantly higher inflammatory effect than zinc. • NF-κB activation is the primary mechanism involved in the inflammatory responses.« less
The PI3K/Akt pathway is required for LPS activation of microglial cells.
Saponaro, Concetta; Cianciulli, Antonia; Calvello, Rosa; Dragone, Teresa; Iacobazzi, Francesco; Panaro, Maria Antonietta
2012-10-01
Upregulation of inflammatory responses in the brain is associated with a number of neurodegenerative diseases. Microglia are activated in neurodegenerative diseases, producing pro-inflammatory mediators. Critically, lipopolysaccharide (LPS)-induced microglial activation causes dopaminergic neurodegeneration in vitro and in vivo. The signaling mechanisms triggered by LPS to stimulate the release of pro-inflammatory mediators in microglial cells are still incompletely understood. To further explore the mechanisms of LPS-mediated inflammatory response of microglial cells, we studied the role of phosphatidylinositol 3-kinase (PI3K)/Akt signal transduction pathways known to be activated by toll-like receptor-4 signaling through LPS. In the current study, we report that the activation profile of LPS-induced pAkt activation preceded those of LPS-induced NF-κB activation, suggesting a role for PI3K/Akt in the pathway activation of NF-κB-dependent inflammatory responses of activated microglia. These results, providing the first evidence that PI3K dependent signaling is involved in the inflammatory responses of microglial cells following LPS stimulation, may be useful in preventing inflammatory based neurodegenerative processes.
Das, Amitava; Ganesh, Kasturi; Khanna, Savita; Sen, Chandan K.; Roy, Sashwati
2014-01-01
SUMMARY At an injury-site, efficient clearance of apoptotic cells by wound macrophages or efferocytosis is a pre-requisite for the timely resolution of inflammation. Emerging evidence indicates that miR-21 may regulate the inflammatory response. In this work, we sought to elucidate the significance of miR-21 in the regulation of efferocytosis mediated suppression of innate immune response, a key process implicated in resolving inflammation following injury. An increased expression of inducible miR-21 was noted in post-efferocytotic peripheral blood monocyte-derived macrophages (MDM). Such induction of miR-21 was associated with silencing of its target genes PTEN and PDCD4. Successful efferocytosis of apoptotic cells by MDM resulted in the suppression of LPS-induced NF-κB activation and TNFα expression. Interestingly, bolstering of miR-21 levels alone using miR mimic resulted in significant suppression of LPS-induced TNFα expression and NFκB activation. We report that efferocytosis-induced miR-21, by silencing PTEN and GSK3β, tempers LPS-induced inflammatory response. Macrophage efferocytosis is known to trigger the release of anti-inflammatory cytokine IL-10. This study demonstrates that following successful efferocytosis, miR-21 induction in macrophages silence PDCD4 favoring cJun-AP1 activity which in turn results in elevated production of anti-inflammatory IL-10. In summary, this work provides direct evidence implicating miRNA in the process of turning-on an anti-inflammatory phenotype in the post-efferocytotic macrophage. Elevated macrophage miR-21 promotes efferocytosis and silences target genes PTEN and PDCD4 which in turn accounts for a net anti-inflammatory phenotype. Findings of this study highlight the significance of miRNAs in the resolution of wound inflammation. PMID:24391209
Propolis reduces Leishmania amazonensis-induced inflammation in the liver of BALB/c mice.
da Silva, Suelen S; Mizokami, Sandra S; Fanti, Jacqueline R; Miranda, Milena M; Kawakami, Natalia Y; Teixeira, Fernanda Humel; Araújo, Eduardo J A; Panis, Carolina; Watanabe, Maria A E; Sforcin, José M; Pavanelli, Wander R; Verri, Waldiceu A; Felipe, Ionice; Conchon-Costa, Ivete
2016-04-01
Experimental models of mouse paw infection with L. amazonensis show an induction of a strong inflammatory response in the skin, and parasitic migration may occur to secondary organs with consequent tissue injury. There are few studies focusing on the resolution of damage in secondary organs caused by Leishmania species-related cutaneous leishmaniasis. We investigated the propolis treatment effect on liver inflammation induced by Leishmania amazonensis infection in the mouse paw. BALB/c mice were infected in the hind paw with L. amazonensis (10(7)) promastigote forms. After 15 days, animals were treated daily with propolis (5 mg/kg), Glucantime (10 mg/kg), or with propolis plus Glucantime combined. After 60 days, mice were euthanized and livers were collected for inflammatory process analysis. Liver microscopic analysis showed that propolis reduced the inflammatory process compared to untreated infected control. There was a decrease of liver myeloperoxidase and N-acetyl-β-glucosaminidase activity levels, collagen fiber deposition, pro-inflammatory cytokine production, and plasma aspartate transaminase and alanine transaminase levels. Furthermore, propolis treatment enhanced anti-inflammatory cytokine levels and reversed hepatosplenomegaly. Our data demonstrated that daily low doses of Brazilian propolis reduced the secondary chronic inflammatory process in the liver caused by L. amazonensis subcutaneous infection in a susceptible mice strain.
Nam, Ju-Suk; Jagga, Supriya; Sharma, Ashish Ranjan; Lee, Joon-Hee; Park, Jong Bong; Jung, Jun-Sub; Lee, Sang-Soo
2017-08-01
Korean oriental medicine prescription is widely used for the treatment of gouty diseases. In the present study, we investigated anti-inflammatory effects of modified Korean herbal formulation, mixed extract of medicinal herbs (MEMH), and its modulatory effects on inflammatory mediators associated with gouty arthritis. Both in vitro and in vivo studies were carried out to assess the anti-inflammatory efficacy of MEMH on monosodium urate (MSU) crystals-induced gouty inflammation. MSU crystals stimulated human chondrosarcoma cell line, SW1353, and human primary chondrocytes were treated with MEMH in vitro. The expression levels of pro-inflammatory mediators and metalloproteases were analyzed. The effect of MEMH on NFκB signaling pathway in SW1353 cells was examined. Effect of MEMH on the mRNA expression level of pro-inflammatory mediators and chemotactic factor from human monocytic cell line, THP-1, was also analyzed. The probable role of MEMH in the differentiation process of osteoblast like cells, SaOS-2, after MSU treatment was also observed. To investigate the effects of MEMH in vivo, MSU crystals-induced ankle arthritic model was established. Histopathological changes in affected joints and plasma levels of pro-inflammatory mediators (IL-1β and TNFα) were recorded. MEMH inhibited NFκB signaling pathway and COX-2 protein expression in chondrocytes. MSU-induced mRNA expressions of pro-inflammatory mediators and chemotactic cytokines were suppressed by MEMH. In MSU crystals-induced ankle arthritic mouse model, administration of MEMH relieved inflammatory symptoms and decreased the plasma levels of IL-1β and TNFα. The results indicated that MEMH can effectively inhibit the expression of inflammatory mediators in gouty arthritis, demonstrating its potential for treating gouty arthritis. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Ying; Li, Shu-Jun; Yang, Jian
Highlights: •Mechanisms of inflammatory response induced by HMGB1 are incompletely understood. •We found that endoplasmic reticulum stress mediate the inflammatory response induced by HMGB1. •RAGE-mediated ERS pathways are involved in those processes. •We reported a new mechanism for HMGB1 induced inflammatory response. -- Abstract: The high mobility group 1B protein (HMGB1) mediates chronic inflammatory responses in endothelial cells, which play a critical role in atherosclerosis. However, the underlying mechanism is unknown. The goal of our study was to identify the effects of HMGB1 on the RAGE-induced inflammatory response in endothelial cells and test the possible involvement of the endoplasmic reticulummore » stress pathway. Our results showed that incubation of endothelial cells with HMGB1 (0.01–1 μg/ml) for 24 h induced a dose-dependent activation of endoplasmic reticulum stress transducers, as assessed by PERK and IRE1 protein expression. Moreover, HMGB1 also promoted nuclear translocation of ATF6. HMGB1-mediated ICAM-1 and P-selectin production was dramatically suppressed by PERK siRNA or IRE1 siRNA. However, non-targeting siRNA had no such effects. HMGB1-induced increases in ICAM-1 and P-selectin expression were also inhibited by a specific eIF2α inhibitor (salubrinal) and a specific JNK inhibitor (SP600125). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) decreased ICAM-1, P-selectin and endoplasmic reticulum stress molecule (PERK, eIF2α, IRE1 and JNK) protein expression levels. Collectively, these novel findings suggest that HMGB1 promotes an inflammatory response by inducing the expression of ICAM-1 and P-selectin via RAGE-mediated stimulation of the endoplasmic reticulum stress pathway.« less
Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun
2016-05-23
Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.
Buhrmann, Constanze; Popper, Bastian; Aggarwal, Bharat B.
2017-01-01
While Lymphotoxin α (TNF-β), a product of lymphocytes, is known to play a pivotal role in inflammatory joint environment, resveratrol has been shown to possess anti-inflammatory and chondroprotective effects via activation of the histondeacetylase Sirt1. Whether TNF-β induction of inflammatory pathways in primary human chondrocytes (PCH) can be modulated by resveratrol, was investigated. Monolayer and alginate cultures of PCH were treated with TNF-β, anti-TNF-β, nicotinamide (NAM), antisense oligonucleotides against Sirt1 (Sirt1-ASO) and/or resveratrol and co-cultured with T-lymphocytes. We found that resveratrol suppressed, similar to anti-TNF-β, TNF-β-induced increased adhesiveness in an inflammatory microenvironment of T-lymphocytes and PCH. In contrast, knockdown of Sirt1 by mRNA abolished the inhibitory effects of resveratrol on the TNF-β-induced adhesiveness, suggesting the essential role of this enzyme for resveratrol-mediated anti-inflammatory signaling. Similar results were obtained in PCH stimulated with TNF-α. Sirt1-ASO, NAM or TNF-β, similar to T-lymphocytes induced inflammatory microenvironment by down-regulation of cartilage-specific proteins, Sox9, Ki67 and enhanced NF-κB-regulated gene products involved in inflammatory and degradative processes in cartilage (MMP-9/-13, COX-2, caspase-3), NF-κB activation and its translocation to the nucleus. Moreover, resveratrol reversed the TNF-β-, NAM-, T-lymphocytes-induced up-regulation of various NF-κB-regulated gene products. Down-regulation of Sirt1 by mRNA interference abrogated the effect of resveratrol on TNF-β-induced effects. Ultrastructural and cell viability assay investigations revealed that resveratrol revoked TNF-β-induced dose-dependent degradative/apoptotic morphological changes, cell viability and proliferation in PCH. Taken together, suppression of TNF-β-induced inflammatory microenvironment in PCH by resveratrol/Sirt1 might be a novel therapeutic approach for targeting inflammation during rheumatoid arthritis. PMID:29095837
Zakaria, Z A; Somchit, M N; Mat Jais, A M; Teh, L K; Salleh, M Z; Long, K
2011-01-01
The present study was carried out to investigate the antinociceptive and anti-inflammatory activities of virgin coconut oil (VCO) produced by the Malaysian Agriculture Research and Development Institute (MARDI) using various in vivo models. Two types of VCOs, produced via standard drying (VCOA) and fermentation (VCOB) processes were used in this study. Both VCOA and VCOB were serially diluted using 1% Tween 80 to concentrations (v/v) of 10, 50 and 100%. Antinociceptive and anti- inflammatory activities of both VCOs were examined using various in vivo model systems. The antinociceptive activity of the VCOs were compared to those of 1% Tween 80 (used as a negative control), morphine (5 mg/kg) and/or acetylsalicylic acid (100 mg/kg). Both VCOA and VCOB exhibited significant (p < 0.05) dose-dependent antinociceptive activity in the acetic acid-induced writhing test. Both VCOs also exerted significant (p < 0.05) antinociceptive activity in both phases of the formalin and hot-plate tests. Interestingly, the VCOs exhibited anti-inflammatory activity in an acute (carrageenan-induced paw edema test), but not in a chronic (cotton-pellet-induced granuloma test) model of inflammation. The MARDI-produced VCOs possessed antinociceptive and anti-inflammatory activities. Further studies are needed to confirm these observations. Copyright © 2011 S. Karger AG, Basel.
Nomura, Johji; Busso, Nathalie; Ives, Annette; Tsujimoto, Syunsuke; Tamura, Mizuho; So, Alexander; Yamanaka, Yoshihiro
2013-01-01
Excess reactive oxygen species (ROS) formation can trigger various pathological conditions such as inflammation, in which xanthine oxidase (XO) is one major enzymatic source of ROS. Although XO has been reported to play essential roles in inflammatory conditions, the molecular mechanisms underlying the involvement of XO in inflammatory pathways remain unclear. Febuxostat, a selective and potent inhibitor of XO, effectively inhibits not only the generation of uric acid but also the formation of ROS. In this study, therefore, we examined the effects of febuxostat on lipopolysaccharide (LPS)-mediated inflammatory responses. Here we show that febuxostat suppresses LPS-induced MCP-1 production and mRNA expression via activating MAPK phosphatase-1 (MKP-1) which, in turn, leads to dephosphorylation and inactivation of JNK in macrophages. Moreover, these effects of febuxostat are mediated by inhibiting XO-mediated intracellular ROS production. Taken together, our data suggest that XO mediates LPS-induced phosphorylation of JNK through ROS production and MKP-1 inactivation, leading to MCP-1 production in macrophages. These studies may bring new insights into the novel role of XO in regulating inflammatory process through MAPK phosphatase, and demonstrate the potential use of XO inhibitor in modulating the inflammatory processes. PMID:24086554
Leptin does not induce an inflammatory response in the murine placenta.
Appel, S; Turnwald, E-M; Alejandre-Alcazar, M A; Ankerne, J; Rother, E; Janoschek, R; Wohlfarth, M; Vohlen, C; Schnare, M; Meißner, U; Dötsch, J
2014-06-01
Leptin is described as a pro-inflammatory signal in fat tissue, which is released from adipocytes and in turn activates immune cells. Also, leptin levels are known to be increased in pregnancies complicated with enhanced inflammatory processes in the placenta. Hence, we assumed that increased leptin amounts might contribute to inducing an inflammatory response in the placenta. To test this hypothesis, pregnant mice were continuously infused with recombinant murine leptin s. c. from day g13 to g16, resulting in a 3-fold increase of maternal circulating serum leptin levels. Dissected placentas were examined for the expression of pro-inflammatory cytokines IL-6 and TNF-alpha and the anti-inflammatory cytokine IL-10 using qPCR analysis. No changes were found except for TNF-alpha, which was slightly elevated upon leptin stimulation. However, TNF-alpha protein levels were not significantly higher in placentas from leptin treated mice. Also, leukocyte infiltration in the labyrinth section of placentas was not increased. In summary, our data demonstrate for the first time that elevated leptin levels alone do not induce an inflammatory response in the placenta. © Georg Thieme Verlag KG Stuttgart · New York.
Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Fattori, Victor; Bussmann, Allan J C; Bottura, Carolina; Fonseca, Maria J V; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia
2017-07-01
trans-Chalcone is a plant flavonoid precursor, which lacks broad investigation on its biological activity in inflammatory processes. In the present study, anti-inflammatory and antioxidant mechanisms of systemic administration with trans-chalcone, a flavonoid precursor, on ultraviolet (UV) irradiation-induced skin inflammation and oxidative stress in hairless mice were investigated by the following parameters: skin edema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, gp 91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR and cytokine production by ELISA. Systemic treatment with trans-chalcone inhibited skin inflammation by reducing skin edema and neutrophil recruitment, and also inhibited matrix metalloproteinase-9 activity. trans-Chalcone also inhibited oxidative stress, gp 91phox mRNA expression, and the production of a wide range of pro-inflammatory cytokines, while it did not affect anti-inflammatory cytokines induced by UV irradiation. However, trans-chalcone did not prevent oxidative stress in vitro, suggesting that its in vivo effect is more related to anti-inflammatory properties rather than a direct antioxidant effect. In conclusion, treatment with trans-chalcone inhibited UV-induced skin inflammation resulting in oxidative stress inhibition in vivo. Therefore, systemic supplementation with this compound may represent an important therapeutic approach in inflammatory skin diseases induced by UV irradiation.
Melanocortin signaling and anorexia in chronic disease states.
Wisse, Brent E; Schwartz, Michael W; Cummings, David E
2003-06-01
Data from both rodent models and humans suggest that intact neuronal melanocortin signaling is essential to prevent obesity, as mutations that decrease the melanocortin signal within the brain induce hyperphagia and excess body fat accumulation. Melanocortins are also involved in the pathogenesis of disorders at the opposite end of the spectrum of energy homeostasis, the anorexia and weight loss associated with inflammatory and neoplastic disease processes. Studies using melanocortin antagonists (SHU9119 or agouti-related peptide) or genetic approaches (melanocortin-4 receptor null mice) suggest that intact melanocortin tone is required for anorexia and weight loss induced by injected lipopolysaccharide (an inflammatory gram-negative bacterial cell wall product) or by implantation of prostate or lung cancer cells. Although the precise mechanism whereby peripheral inflammatory/neoplastic factors activate the melanocortin system remains unknown, the proinflammatory cytokines (interleukin-1, interleukin-6, and tumor necrosis factor-alpha) that are produced in the hypothalamus of rodents during both inflammatory and neoplastic disease processes likely play a role. The data presented in this paper summarize findings that implicate neuronal melanocortin signaling in inflammatory anorexia.
Anti-inflammatory activity of Arnica montana 6cH: preclinical study in animals.
Macêdo, S B; Ferreira, L R; Perazzo, F F; Carvalho, J C
2004-04-01
The anti-inflammatory effect of Arnica montana 6cH was evaluated using acute and chronic inflammation models. In the acute, model, carrageenin-induced rat paw oedema, the group treated with Arnica montana 6cH showed 30% inhibition compared to control (P < 0.05). Treatment with Arnica 6cH, 30 min prior to carrageenin, did not produce any inhibition of the inflammatory process. In the chronic model, Nystatin-induced oedema, the group treated 3 days previously with Arnica montana 6cH had reduced inflammation 6 h after the inflammatory agent was applied (P < 0.05). When treatment was given 6 h after Nystatin treatment, there was no significant inhibitory effect. In a model based on histamine-induced increase of vascular permeability, pretreatment with Arnica montana 6cH blocked the action of histamine in increasing vascular permeability.
Rodrigues, Hosana G; Vinolo, Marco A R; Sato, Fabio T; Magdalon, Juliana; Kuhl, Carolina M C; Yamagata, Ana S; Pessoa, Ana Flávia M; Malheiros, Gabriella; Dos Santos, Marinilce F; Lima, Camila; Farsky, Sandra H; Camara, Niels O S; Williner, Maria R; Bernal, Claudio A; Calder, Philip C; Curi, Rui
2016-01-01
Impaired wound healing has been widely reported in diabetes. Linoleic acid (LA) accelerates the skin wound healing process in non-diabetic rats. However, LA has not been tested in diabetic animals. We investigated whether oral administration of pure LA improves wound healing in streptozotocin-induced diabetic rats. Dorsal wounds were induced in streptozotocin-induced type-1 diabetic rats treated or not with LA (0.22 g/kg b.w.) for 10 days. Wound closure was daily assessed for two weeks. Wound tissues were collected at specific time-points and used to measure fatty acid composition, and contents of cytokines, growth factors and eicosanoids. Histological and qPCR analyses were employed to examine the dynamics of cell migration during the healing process. LA reduced the wound area 14 days after wound induction. LA also increased the concentrations of cytokine-induced neutrophil chemotaxis (CINC-2αβ), tumor necrosis factor-α (TNF-α) and leukotriene B4 (LTB4), and reduced the expression of macrophage chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1). These results together with the histological analysis, which showed accumulation of leukocytes in the wound early in the healing process, indicate that LA brought forward the inflammatory phase and improved wound healing in diabetic rats. Angiogenesis was induced by LA through elevation in tissue content of key mediators of this process: vascular-endothelial growth factor (VEGF) and angiopoietin-2 (ANGPT-2). Oral administration of LA hastened wound closure in diabetic rats by improving the inflammatory phase and angiogenesis.
Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso
2010-05-01
The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.
Amirshahrokhi, Keyvan; Khalili, Ali-Reza
2015-01-05
Excessive ethanol ingestion causes gastric mucosal damage through the inflammatory and oxidative processes. The present study was aimed to evaluate the protective effect of thalidomide on ethanol-induced gastric mucosal damage in mice. The animals were pretreated with vehicle or thalidomide (30 or 60 mg/kg, orally), and one hour later, the gastric mucosal injury was induced by oral administration of acidified ethanol. The animals were euthanized one hour after ethanol ingestion, and gastric tissues were collected to biochemical analyzes. The gastric mucosal lesions were assessed by macroscopic and histopathological examinations. The results showed that treatment of mice with thalidomide prior to the administration of ethanol dose-dependently reduced the gastric ulcer index. Thalidomide pretreatment significantly reduced the levels of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6], malondialdehyde (MDA) and myeloperoxidase (MPO) activity. In addition, thalidomide significantly inhibited ethanol-induced nitric oxide (NO) overproduction in gastric tissue. Histological observations showed that ethanol-induced gastric mucosal damage was attenuated by thalidomide pretreatment. It seems that thalidomide as an anti-inflammatory agent may have a protective effect against alcohol-induced mucosal damage by inhibition of neutrophil infiltration and reducing the production of nitric oxide and inflammatory cytokines in gastric tissue. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lin, Connie B; Chen, Nannan; Scarpa, Richard; Guan, Fei; Babiarz-Magee, Laura; Liebel, Frank; Li, Wen-Hwa; Kizoulis, Menas; Shapiro, Stanley; Seiberg, Miri
2008-04-01
The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure.
Parkinson's disease and systemic inflammation.
Ferrari, Carina C; Tarelli, Rodolfo
2011-02-22
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the "primed" microglia into an "active" state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.
Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang
2017-06-01
Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.
Adesso, Simona; Autore, Giuseppina; Quaroni, Andrea; Popolo, Ada; Severino, Lorella; Marzocco, Stefania
2017-12-11
Fusarium mycotoxins are fungal metabolites whose ability to affect cereal grains as multi-contaminants is progressively increasing. The trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON) are often found in almost all agricultural commodities worldwide. They are able to affect animal and human health, including at the intestinal level. In this study, NIV, both alone and in combination with DON, induced inflammation and increased the inflammatory response induced by lipopolysaccharide (LPS) plus Interferon-γ (IFN) in the non-tumorigenic intestinal epithelial cell line (IEC-6). The inflammatory response induced by NIV and DON involves tumor necrosis factor-α (TNF-α) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, nitrotyrosine formation, reactive oxygen species (ROS) release, Nuclear Factor-κB (NF-κB), Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inflammasome activation. The pro-inflammatory effect was strongly induced by NIV and by the mycotoxin mixture, when compared to DON alone. Mechanistic studies indicate a pivotal role for ROS in the observed pro-inflammatory effects induced by mycotoxins. In this study, the interactions between NIV and DON point out the importance of their food co-contamination, further highlighting the risk assessment process that is of growing concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Mili, E-mail: milimandal@gmail.com
Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300 mg/kg, i.p.) to control mice resulted in an increase in CD11b{sup +} infiltrating Ly6G{sup +} granulocytic and Ly6G{sup −} monocytic cells in the spleen and the liver. The majority of the Ly6G{sup +} cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G{sup −} cells consisted of 3 subpopulations expressingmore » high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80{sup +}) and immature (F4/80{sup −}) pro-inflammatory Ly6C{sup hi} macrophages and mature anti-inflammatory (Ly6C{sup lo}) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3{sup +} macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs. - Highlights: • Multiple inflammatory cell subpopulations accumulate in the spleen and liver following acetaminophen (APAP) intoxication. • Splenectomy alters liver inflammatory cell populations responding to APAP. • Inflammatory cells accumulating in the liver in response to APAP originate from the spleen and the bone marrow. • Hepatotoxicity is reduced in splenectomized mice.« less
González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M.; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L.
2013-01-01
Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation. PMID:24358331
Bensasson, René V.; Zoete, Vincent; Berthier, Gaston; Talalay, Paul; Dinkova-Kostova, Albena T.
2010-01-01
Electron affinity (EA) and electrophilicity index (ω) of 16 synthetic triterpenoids (TP), previously identified as inducers of cytoprotective enzymes and as inhibitors of cellular inflammatory responses, have been calculated by the molecular orbital method. Linear correlations were obtained by plotting the values of EA, as well as those of ω versus (i) the potencies of induction of NAD(P)H quinone reductase (NQO1, EC 1.6.99.2), a cytoprotective enzyme, expressed via the concentration of TP required to double the specific activity of NQO1 (CD value) and (ii) the values of their anti-inflammatory activity expressed via the IC-50 of TP for suppression of upregulation of inducible nitric oxide synthase (iNOS, EC 1.14.13.39), both previously experimentally determined. The observed correlations demonstrate quantitatively for a series of triterpenoids that their electrophilicity is a major factor determining their potency as inducers of the cytoprotective phase 2 response and as inhibitors of inflammatory processes. PMID:20433811
A metabolomics and mouse models approach to study inflammatory and immune responses to radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornace, Albert J.; Li, Henghong
2013-12-02
The three-year project entitled "A Metabolomics and Mouse Models Approach to Study Inflammatory and Immune Responses to Radiation" was initiated in September 2009. The overall objectives of this project were to investigate the acute and persistent effects of low dose radiation on T cell lymphocyte function and physiology, as well the contributions of these cells to radiation-induced inflammatory responses. Inflammation after ionizing radiation (IR), even at low doses, may impact a variety of disease processes, including infectious disease, cardiovascular disease, cancer, and other potentially inflammatory disorders. There were three overall specific aims: 1. To investigate acute and persistent effects ofmore » low dose radiation on T cell subsets and function; 2. A genetic approach with mouse models to investigate p38 MAPK pathways that are involved in radiation-induced inflammatory signaling; 3. To investigate the effect of radiation quality on the inflammatory response. We have completed the work proposed in these aims.« less
EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.
Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin
2018-01-01
Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.
RBP-J-Regulated miR-182 Promotes TNF-α-Induced Osteoclastogenesis.
Miller, Christine H; Smith, Sinead M; Elguindy, Mahmoud; Zhang, Tuo; Xiang, Jenny Z; Hu, Xiaoyu; Ivashkiv, Lionel B; Zhao, Baohong
2016-06-15
Increased osteoclastogenesis is responsible for osteolysis, which is a severe consequence of inflammatory diseases associated with bone destruction, such as rheumatoid arthritis and periodontitis. The mechanisms that limit osteoclastogenesis under inflammatory conditions are largely unknown. We previously identified transcription factor RBP-J as a key negative regulator that restrains TNF-α-induced osteoclastogenesis and inflammatory bone resorption. In this study, we tested whether RBP-J suppresses inflammatory osteoclastogenesis by regulating the expression of microRNAs (miRNAs) important for this process. Using high-throughput sequencing of miRNAs, we obtained the first, to our knowledge, genome-wide profile of miRNA expression induced by TNF-α in mouse bone marrow-derived macrophages/osteoclast precursors during inflammatory osteoclastogenesis. Furthermore, we identified miR-182 as a novel miRNA that promotes inflammatory osteoclastogenesis driven by TNF-α and whose expression is suppressed by RBP-J. Downregulation of miR-182 dramatically suppressed the enhanced osteoclastogenesis program induced by TNF-α in RBP-J-deficient cells. Complementary loss- and gain-of-function approaches showed that miR-182 is a positive regulator of osteoclastogenic transcription factors NFATc1 and B lymphocyte-induced maturation protein-1. Moreover, we identified that direct miR-182 targets, Foxo3 and Maml1, play important inhibitory roles in TNF-α-mediated osteoclastogenesis. Thus, RBP-J-regulated miR-182 promotes TNF-α-induced osteoclastogenesis via inhibition of Foxo3 and Maml1. Suppression of miR-182 by RBP-J serves as an important mechanism that restrains TNF-α-induced osteoclastogenesis. Our results provide a novel miRNA-mediated mechanism by which RBP-J inhibits osteoclastogenesis and suggest that targeting of the newly described RBP-J-miR-182-Foxo3/Maml1 axis may represent an effective therapeutic approach to suppress inflammatory osteoclastogenesis and bone resorption. Copyright © 2016 by The American Association of Immunologists, Inc.
Lin, Tzu-hua; Yao, Zhenyu; Sato, Taishi; Keeney, Michael; Li, Chenguang; Pajarinen, Jukka; Yang, Fan; Egashira, Kensuke; Goodman, Stuart B.
2014-01-01
Total joint replacement (TJR) is a very cost-effective surgery for end-stage arthritis. One important goal is to decrease the revision rate especially because TJR has been extended to younger patients. Continuous production of ultra-high molecular weight polyethylene (UHMWPE) wear particles induces macrophage infiltration and chronic inflammation, which can lead to peri-prosthetic osteolysis. Targeting individual pro-inflammatory cytokines directly has not reversed the osteolytic process in clinical trials, due to compensatory upregulation of other pro-inflammatory factors. We hypothesized that targeting the important transcription factor NF-κB could mitigate the inflammatory response to wear particles, potentially diminishing osteolysis. In the current study, we suppressed NF-κB activity in mouse RAW264.7 and human THP1 macrophage cell lines, as well as primary mouse and human macrophages, via competitive binding with double strand decoy oligodeoxynucleotide (ODN) containing an NF-κB binding element. We found that macrophage exposure to UHMWPE particles induced multiple pro-inflammatory cytokine and chemokine expression including TNF-α, MCP1, MIP1α and others. Importantly, the decoy ODN significantly suppressed the induced cytokine and chemokine expression in both murine and human macrophages, and resulted in suppression of macrophage recruitment. The strategic use of decoy NF-κB ODN, delivered locally, could potentially diminish particle-induced peri-prosthetic osteolysis. PMID:24814879
Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.
Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M
2017-08-01
Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (<24 hours; OXVASC [Oxford Vascular Study]). Isolated EV fractions were subjected to untargeted proteomic analysis by liquid chromatography mass-spectrometry/mass-spectrometry and then applied to macrophages in culture to investigate inflammatory gene expression. EV number, but not size, is significantly increased in stroke patients when compared to age-matched controls. Proteomic analysis reveals an overall increase in acute phase proteins, including C-reactive protein. EV fractions applied to monocyte-differentiated macrophage cultures induced inflammatory gene expression. Together these data show that EVs from stroke patients are proinflammatory in nature and are capable of inducing inflammation in immune cells. © 2017 American Heart Association, Inc.
Parkinson's Disease and Systemic Inflammation
Ferrari, Carina C.; Tarelli, Rodolfo
2011-01-01
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862
Inhibition of Na+/H+ exchanger 1 by cariporide reduces burn-induced intestinal barrier breakdown.
Yang, Xuekang; Chen, Ji; Bai, Hua; Tao, Ke; Zhou, Qin; Hou, Hongyi; Hu, Dahai
2013-12-01
Severe burns initiate an inflammatory cascade within the gut, which leads to intestinal mucosal injury. Although Na(+)/H(+) exchanger 1 (NHE1) is recognised as a pivotal player in several inflammatory processes, its role in burn-induced intestinal injury is relatively unknown. We hypothesised that NHE1 might be involved in the increased intestinal permeability and barrier breakdown after severe burns. Thus, we here investigate whether the inhibition of NHE1 has a protective effect on burn-induced intestinal injury. Mice were subjected to a 30% total body surface area (TBSA) full-thickness steam burn. Cariporide was used to assess the function of NHE1 in mice with burn-induced intestinal injury by fluorescence spectrophotometry, Western blotting and enzyme linked immunosorbent assay (ELISA). We found that severe burn increased intestinal permeability, associated with the up-regulation of NHE1 and raised inflammatory cytokine levels. Mice treated with the NHE1 inhibitor cariporide had significantly attenuated burn-induced intestinal permeability and a reduced inflammatory response. NHE1 inhibition also reduced nuclear factor-κB (NF-κB) activation and attenuated p38 mitogen-activated protein kinase (MAPK) phosphorylation. Our study suggests that NHE1 plays an important role in burn-induced intestinal permeability through the regulation of the inflammatory response. Inhibition of NHE1 may be adopted as a potential therapeutic strategy for attenuating intestinal barrier breakdown. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.
Chaudhary, Ghanshyam; Mahajan, Umesh B; Goyal, Sameer N; Ojha, Shreesh; Patil, Chandragouda R; Subramanya, Sandeep B
2017-01-01
The protective effect of methanolic extract of Lagerstroemia speciosaleaves (LS) was evaluated against dextran sulfate sodium (DSS) induced ulcerative colitis in C57BL/6 mice. The administration of DSS (2.5% in drinking water ad libitum) in C57BL/6 mice induced ulcerative colitis in 7 days. The LS was orally administered for 7 days at daily doses of 100 and 200 mg/kg. At the end of 7 days of treatment the animals were sacrificed, colonic tissues were removed and processed for further analysis of oxidative stress, and histopathology. In DSS treated mice the oxidative stress markers were elevated compared to controls. There was also significant reduction in the anti-oxidant defense levels marked by reduced cellular glutathione, catalase, and superoxide dismutase. The DSS-induced damage to the colon epithelium was evident from a significant increase in the lipid peroxidation. The histology of colon sections revealed inflammatory changes and marked impairment in the integrity of the mucosal lining with inflammatory changes. Both the doses of LS significantly prevented DSS-induced inflammatory and ulcerative damages of the colon, reduced lipid peroxidation and also restored the levels of innate antioxidants in the colon tissue. These findings indicate the protective effects of LS against the DSS-induced inflammatory and oxidative damage in the mouse colon. Further investigation involving bioactivity guided fractionation of the LS can yield potent constituent which may have a significant role in the treatment of inflammatory bowel disease and ulcerative colitis.
LYATK1 potently inhibits LPS-mediated pro-inflammatory response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Feng; Liu, Yuan; Wang, Xiujuan
Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine productionmore » was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.« less
Inflammation and fertility in the mare.
Christoffersen, M; Troedsson, Mht
2017-08-01
A transient uterine inflammation post-breeding is a normal physiological reaction in the mare, and it is believed that the inflammatory response is necessary to eliminate bacteria and excess spermatozoa introduced into the uterine lumen. A tight balance between multiple pro- and anti-inflammatory factors is required for resolving the breeding-induced inflammation within 24-36 hr in the reproductively healthy mare, whereas a subpopulation of mares is susceptible to development of a persistent infection that can interfere with fertility. The aetiology of persistent endometritis can be either bacterial or semen-induced and both scenarios can threaten the establishment of pregnancy. Several factors associated with susceptibility to persistent endometritis have been identified including altered innate immune response in the early inflammatory process, reduced myometrial contractions and impaired opsonization; however, the pathogenesis to susceptibility has not been fully elucidated. Current research focuses on the initial hours of uterine inflammatory responses to semen and bacteria, and potential treatments to modify this altered innate immune response. An increased understanding of the mechanisms involved in the disease progression is necessary to improve the treatment and management of these mares. This review attempts to summarize the current knowledge of the uterine inflammatory and immunological responses to breeding-induced endometritis, persistent breeding-induced endometritis (PBIE) and bacterial endometritis in the mare. © 2017 Blackwell Verlag GmbH.
Uwaydat, Sami; Jha, Purushottam; Tytarenko, Ruslana; Brown, Harry; Wiggins, Michael; Bora, Puran S; Bora, Nalini S
2011-09-01
To investigate the effect of topically applied honey on intact corneas, surgically induced corneal abrasions and endotoxin induced keratitis. The effect of honey on the cornea was investigated by application of honey on intact corneas, wounded corneas and endotoxin-induced keratitis in Lewis rats. The corneas were wounded by creating an epithelial defect using a surgical blade, and the keratitis was induced by topically applying Pseudomonas aeruginosa endotoxin to scarified corneas. After treatment rats were sacrificed and cornea harvested in each case. Corneas were processed for paraffin embedding for histological and immuno-fluorescence staining. Corneas were also harvested and processed for total ribonucleic acid (RNA) isolation for reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for various growth factors and inflammatory chemokines/cytokines). Histological analysis revealed that no inflammation or morphological changes occurred after honey treatment in naive intact corneas. Vascular endothelial growth factor (VEGF) levels were also not altered after honey treatment. Topical application of honey to injured corneas resulted in faster epithelial healing and decreased expression of VEGF, transforming growth factor beta (TGF-β), interferon gamma (IFN-γ), interleukin 12 (IL-12) and tumor necrosis factor alpha (TNF-α) in injured corneas. Our results also established that honey treatment reduced the inflammation in endotoxin-induced keratitis by reducing the levels of angiogenic factors (VEGF and TGF-β), inflammatory cytokines (IL-12) and chemokines (CC chemokine receptor 5(CCR-5)). Short term use of honey on intact corneas can be safe. Honey has anti-angiogenic and anti-inflammatory properties that can be explored in several corneal inflammatory and infectious conditions.
Wang, Yuli; Wu, Hongxia; Shen, Ming; Ding, Siyang; Miao, Jing; Chen, Ning
2017-01-01
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2'-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assaying reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. Copyright © 2016 Elsevier Inc. All rights reserved.
Mizushina, Yoshiyuki; Ogawa, Yoshiaki; Onodera, Takefumi; Kuriyama, Isoko; Sakamoto, Yuka; Nishikori, Shu; Kamisuki, Shinji; Sugawara, Fumio
2014-08-06
The components adsorbed onto activated charcoal following the fermentation process of the Japanese rice wine "sake" have been studied with the aim of identifying suitable applications for this industrial food waste product. The absorbed materials were effectively extracted from the charcoal, and inhibited the activity of several mammalian DNA polymerases (pols). Subsequent purification of the extract afforded tyrosol [4-(2-hydroxyethyl)phenol] as the active component, which selectively inhibited the activity of 11 mammalian pols with IC50 values in the range of 34.3-46.1 μM. In contrast, this compound did not influence the activities of plant or prokaryotic pols or any of the other DNA metabolic enzymes tested. Tyrosol suppressed both anti-inflammatory and antiallergic effects in vivo, including 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory mouse ear edema, and immunoglobulin E-induced passive cutaneous anaphylactic reaction in mice. These results suggested that this byproduct formed during the sake-brewing process could be used as an anti-inflammatory and/or antiallergic agent.
Growth Hormone Resistance—Special Focus on Inflammatory Bowel Disease
Soendergaard, Christoffer; Young, Jonathan A.; Kopchick, John J.
2017-01-01
Growth hormone (GH) plays major anabolic and catabolic roles in the body and is important for regulating several aspects of growth. During an inflammatory process, cells may develop a state of GH resistance during which their response to GH stimulation is limited. In this review, we will emphasize specific mechanisms governing the formation of GH resistance in the active phase of inflammatory bowel disease. The specific molecular effects mediated through individual inflammatory mediators and processes will be highlighted to provide an overview of the transcriptional, translational and post-translational inflammation-mediated impacts on the GH receptor (GHR) along with the impacts on GH-induced intracellular signaling. We also will review GH’s effects on mucosal healing and immune cells in the context of experimental colitis, human inflammatory bowel disease and in patients with short bowel syndrome. PMID:28486400
[Fibrous tissue(s): a key for lesion characterization in digestive diseases].
Régent, D; Laurent, V; Antunes, L; Debelle, L; Cannard, L; Leclerc, Jc; Beot, S
2002-02-01
Fibrosis is one of the hallmarks of inflammatory and repair processes in pathology. Various exogenous and endogenous stimuli, including tumor development, can induce inflammatory reactions. During the post-equilibrium phase after IV injection of non specific contrast media, CT and/or MR allow the study of these inflammatory answers to tumoral or infectious processes. Delayed enhancement of collagenic fibrous tissue during the late post-equilibrium phase is an essential complementary data in the characterization of many liver lesions: cirrhosis, cholangiocarcinoma, focal nodular hyperplasia, fibrous metastasis. but also for the differential diagnosis of pancreatic diseases (groove pancreatitis vs ductal adenocarcinoma) or of gastro-intestinal diseases (gastric adenocarcinoma vs lymphoma, mechanical complication vs inflammatory bouts of ileal Crohn's disease).
Bueno-Silva, Bruno; Franchin, Marcelo; Alves, Claudiney de Freitas; Denny, Carina; Colón, David Fernando; Cunha, Thiago Mattar; Alencar, Severino Matias; Napimoga, Marcelo Henrique; Rosalen, Pedro Luiz
2016-12-01
Brazilian propolis is popularly used as treatment for different diseases including the ones with inflammatory origin. Brazilian red propolis chemical profile and its anti-inflammatory properties were recently described however, its mechanism of action has not been investigated yet. Elucidate Brazilian red propolis major pathways of action on the modulation of neutrophil migration during the inflammatory process. The ethanolic extract of propolis (EEP) activity was investigated for neutrophil migration into the peritoneal cavity, intravital microscopy (rolling and adhesion of leukocytes), quantification of cytokines TNF-α, IL-1β and chemokines CXCL1/KC, CXCL2/MIP-2, neutrophil chemotaxis induced by CXCL2/MIP-2, calcium influx and CXCR2 expression on neutrophils. EEP at 10mg/kg prevented neutrophil migration into peritoneal cavity (p < 0.05), reduced leukocyte rolling and adhesion on the mesenteric microcirculation (p < 0.05) and inhibited the release TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 (p < 0.05). EEP at 0.01, 0.1 and 1µg/ml reduced the CXCL2/MIP-2-induced neutrophils chemotaxis (p < 0.05) without affect cell viability (p > 0.05).EEP at 1µg/ml decreased the calcium influx induced by CXCL2/MIP-2 (p<0.05). On the other hand, none of EEP concentrations tested altered CXCR2 expression by neutrophils (p>0.05). Brazilian red propolis appears as a promising anti-inflammatory natural product which mechanism seems to be by reducing leukocyte rolling and adhesion; TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 release; CXCL2/MIP-2-induced chemotaxis and calcium influx. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mycolactone displays anti-inflammatory effects on the nervous system
Isaac, Caroline; Mauborgne, Annie; Grimaldi, Alfonso; Ade, Kemy; Pohl, Michel; Limatola, Cristina; Boucher, Yves; Demangel, Caroline
2017-01-01
Background Mycolactone is a macrolide produced by the skin pathogen Mycobacterium ulcerans, with cytotoxic, analgesic and immunomodulatory properties. The latter were recently shown to result from mycolactone blocking the Sec61-dependent production of pro-inflammatory mediators by immune cells. Here we investigated whether mycolactone similarly affects the inflammatory responses of the nervous cell subsets involved in pain perception, transmission and maintenance. We also investigated the effects of mycolactone on the neuroinflammation that is associated with chronic pain in vivo. Methodology/ Principle findings Sensory neurons, Schwann cells and microglia were isolated from mice for ex vivo assessment of mycolactone cytotoxicity and immunomodulatory activity by measuring the production of proalgesic cytokines and chemokines. In all cell types studied, prolonged (>48h) exposure to mycolactone induced significant cell death at concentrations >10 ng/ml. Within the first 24h treatment, nanomolar concentrations of mycolactone efficiently suppressed the cell production of pro-inflammatory mediators, without affecting their viability. Notably, mycolactone also prevented the pro-inflammatory polarization of cortical microglia. Since these cells critically contribute to neuroinflammation, we next tested if mycolactone impacts this pathogenic process in vivo. We used a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. Here, mycolactone was injected daily for 3 days in the spinal canal, to ensure its proper delivery to spinal cord. While this treatment failed to prevent injury-induced neuroinflammation, it decreased significantly the local production of inflammatory cytokines without inducing detectable cytotoxicity. Conclusion/ Significance The present study provides in vitro and in vivo evidence that mycolactone suppresses the inflammatory responses of sensory neurons, Schwann cells and microglia, without affecting the cell viability. Together with previous studies using peripheral blood leukocytes, our work implies that mycolactone-mediated analgesia may, at least partially, be explained by its anti-inflammatory properties. PMID:29149212
ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation
Schumacher, Michael A; Hedl, Matija; Abraham, Clara; Bernard, Jessica K; Lozano, Patricia R; Hsieh, Jonathan J; Almohazey, Dana; Bucar, Edie B; Punit, Shivesh; Dempsey, Peter J; Frey, Mark R
2017-01-01
Efficient clearance of pro-inflammatory macrophages from tissues after resolution of a challenge is critical to prevent prolonged inflammation. Defects in clearance can contribute to conditions such as inflammatory bowel disease, and thus may be therapeutically targetable. However, the signaling pathways that induce termination of pro-inflammatory macrophages are incompletely defined. We tested whether the ErbB4 receptor tyrosine kinase, previously not known to have role in macrophage biology, is involved in this process. In vitro, pro-inflammatory activation of cultured murine and human macrophages induced ErbB4 expression; in contrast, other ErbB family members were not induced in pro-inflammatory cells, and other innate immune lineages (dendritic cells, neutrophils) did not express detectable ErbB4 levels. Treatment of activated pro-inflammatory macrophages with the ErbB4 ligand neuregulin-4 (NRG4) induced apoptosis. ErbB4 localized to the mitochondria in these cells. Apoptosis was accompanied by loss of mitochondrial membrane potential, and was dependent upon the proteases that generate the cleaved ErbB4 intracellular domain fragment, suggesting a requirement for this fragment and mitochondrial pathway apoptosis. In vivo, ErbB4 was highly expressed on pro-inflammatory macrophages but not neutrophils during experimental DSS colitis in C57Bl/6 mice. Active inflammation in this model suppressed NRG4 expression, which may allow for macrophage persistence and ongoing inflammation. Consistent with this notion, NRG4 levels rebounded during the recovery phase, and administration of exogenous NRG4 during colitis reduced colonic macrophage numbers and ameliorated inflammation. These data define a novel role for ErbB4 in macrophage apoptosis, and outline a mechanism of feedback inhibition that may promote resolution of colitis. PMID:28230865
Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A
2016-08-01
Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Xuesheng; Parker, Tory L
2017-06-01
Lemongrass ( Cymbopogon flexuosus ) essential oil (LEO), which has citral as its main component, has exhibited anti-inflammatory effect in both animal and human cells. In this study, we evaluated the anti-inflammatory activity of a commercially available LEO in pre-inflamed human dermal fibroblasts. We first studied the impact of LEO on 17 protein biomarkers that are critically associated with inflammation and tissue remodeling. LEO significantly inhibited production of the inflammatory biomarkers vascular cell adhesion molecule 1 (VCAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell alpha chemoattractant (I-TAC), and monokine induced by gamma interferon (MIG); decreased levels of the tissue remodeling biomarkers collagen-I and III, epidermal growth factor receptor (EGFR), and plasminogen activator inhibitor (PAI-1); and inhibited the immunomodulatory biomarker macrophage colony-stimulating factor (M-CSF). Furthermore, we studied the impact of LEO on genome-wide gene expression profiles. LEO significantly modulated global gene expression and robustly impacted signaling pathways, many of which are critical for inflammation and tissue remodeling processes. This study provides the first evidence of the anti-inflammatory activity of LEO in human skin cells and indicates that it is a good therapeutic candidate for treating inflammatory conditions of the skin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeong Eun; Hanyang Biomedical Research Institute, Seoul; Park, Jae Hyeon
Oxidative stress can lead to expression of inflammatory transcription factors, which are important regulatory elements in the induction of inflammatory responses. One of the transcription factors, nuclear transcription factor kappa-B (NF-κB) plays a significant role in the inflammation regulatory process. Inflammatory cell death has been implicated in neuronal cell death in some neurodegenerative disorders such as Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying apoptosis initiated by chlorpyrifos (CPF)-mediated oxidative stress. Based on the cytotoxic mechanism of CPF, we examined the neuroprotective effects of rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, against CPF-induced neuronalmore » cell death. The treatment of SH-SY5Y cells with CPF induced oxidative stress. In addition, CPF activated the p38, JNK and ERK mitogen-activated protein kinases (MAPKs), and induced increases in the inflammatory genes such as COX-2 and TNF-α. CPF also induced nuclear translocation of NF-κB and inhibitors of NF-κB abolished the CPF-induced COX-2 expression. Pretreatment with RGZ significantly reduced ROS generation and enhanced HO-1 expression in CPF-exposed cells. RGZ blocked the activation of both p38 and JNK signaling, while ERK activation was strengthened. RGZ also attenuated CPF-induced cell death through the reduction of NF-κB-mediated proinflammatory factors. Results from this study suggest that RGZ may exert an anti-apoptotic effect against CPF-induced cytotoxicity by attenuation of oxidative stress as well as inhibition of the inflammatory cascade via inactivation of signaling by p38 and JNK, and NF-κB. - Highlights: • CPF induces apoptotic cell death in SH-SY5Y cells • ROS involved in CPF-mediated apoptotic cell death • Inflammation involved in CPF-mediated apoptotic cell death • Rosiglitazone modulates ROS and inflammatory response in CPF-treated cells.« less
Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages
Montana, Giovanna
2016-01-01
Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression. PMID:27907187
da Silveira, Karine Lanes; da Silveira, Leonardo Lanes; Thorstenberg, Maria Luiza Prates; Cabral, Fernanda Licker; Castilhos, Livia Gelain; Rezer, João Felipe Peres; de Andrade, Diego Fontana; Beck, Ruy Carlos Ruver; Einloft Palma, Heloísa; de Andrade, Cinthia Melazzo; Pereira, Renata da Silva; Martins, Nara Maria Beck; Bertonchel Dos Santos, Claudia de Mello; Leal, Daniela Bitencourt Rosa
2016-06-01
The effect of vitamin D3 in oral solution (VD3 ) and vitamin D3 -loaded nanocapsules (NC-VD3 ) was analysed in animals with complete Freund's adjuvant (CFA) induced arthritis (AR). For this purpose, we evaluated scores for arthritis, thermal hyperalgesia and paw oedema, as well as histological analyses and measurements of the activity of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) enzymes in rat lymphocytes. Haematological and biochemical parameters were also determined. The doses administered were 120 UI/day of VD3 and 15.84 UI/day of NC-VD3 . Fifteen days after the induction of AR, the groups were treated for 15 days with vitamin D3 . The results demonstrated that VD3 was able to reduce arthritis scores, thermal hyperalgesia and paw oedema in rats with CFA-induced arthritis. However, treatment with NC-VD3 did not reduce arthritis scores. The histological analyses showed that both formulations were able to reduce the inflammatory changes induced by CFA. The activity of E-NTPDase in rat lymphocytes was higher in the AR compared with the control group, while the activity of E-ADA was lower. This effect was reversed after the 15-day treatment. Data from this study indicates that both forms of vitamin D3 seem to contribute to decreasing the inflammatory process induced by CFA, possibly altering the activities of ectoenzymes. Copyright © 2016 John Wiley & Sons, Ltd. The effects promoted by both formulations of vitamin D3 , either in oral solution or nanoencapsulated form, strongly suggests the softening of the inflammatory process induced by complete Freund's adjuvant (CFA), possibly altering the E-NTPDase and E-ADA activities. However, it is known that vitamin D has a beneficial effect on the modulation of the immune system components responsible for the inflammatory process. Moreover, the establishment of responses to treatment with vitamin D3 may provide an alternative for inhibiting the proinflammatory response, assisting in our understanding of the immunopathology of this disease and possibly improving the signs and symptoms that hinder the quality of life of patients with rheumatoid arthritis. Evaluation of the effects on the E-NTPDase and E-ADA activities in an animal model of induced arthritis. Two formulations of vitamin D3 were used: form oral solution and nanoencapsulated. Vitamin D3 seems to contribute to the inflammatory process induced by CFA. Vitamin D3 possibly alters the E-NTPDase and E-ADA activities. Vitamin D3 may be an alternative supplementary treatment for chronic arthritis. Copyright © 2016 John Wiley & Sons, Ltd.
Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J
2015-02-01
We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.
Aisemberg, Julieta; Vercelli, Claudia A.; Bariani, María V.; Billi, Silvia C.; Wolfson, Manuel L.; Franchi, Ana M.
2013-01-01
Lipopolysaccharide (LPS) administration to mice on day 7 of gestation led to 100% embryonic resorption after 24 h. In this model, nitric oxide is fundamental for the resorption process. Progesterone may be responsible, at least in part, for a Th2 switch in the feto-maternal interface, inducing active immune tolerance against fetal antigens. Th2 cells promote the development of T cells, producing leukemia inhibitory factor (LIF), which seems to be important due to its immunomodulatory action during early pregnancy. Our aim was to evaluate the involvement of progesterone in the mechanism of LPS-induced embryonic resorption, and whether LIF can mediate hormonal action. Using in vivo and in vitro models, we provide evidence that circulating progesterone is an important component of the process by which infection causes embryonic resorption in mice. Also, LIF seems to be a mediator of the progesterone effect under inflammatory conditions. We found that serum progesterone fell to very low levels after 24 h of LPS exposure. Moreover, progesterone supplementation prevented embryonic resorption and LPS-induced increase of uterine nitric oxide levels in vivo. Results show that LPS diminished the expression of the nuclear progesterone receptor in the uterus after 6 and 12 h of treatment. We investigated the expression of LIF in uterine tissue from pregnant mice and found that progesterone up-regulates LIF mRNA expression in vitro. We observed that LIF was able to modulate the levels of nitric oxide induced by LPS in vitro, suggesting that it could be a potential mediator of the inflammatory action of progesterone. Our observations support the view that progesterone plays a critical role in a successful pregnancy as an anti-inflammatory agent, and that it could have possible therapeutic applications in the prevention of early reproductive failure associated with inflammatory disorders. PMID:23409146
Exercise-induced bronchospasm.
Storms, William W
2009-01-01
Exercise-induced bronchospasm (EIB) is a relatively common condition that affects both recreational and elite athletes. The latest data suggest that it is an inflammatory process, especially in elite athletes. Proper diagnosis is important to differentiate EIB from other respiratory conditions. Effective treatment usually controls this condition.
The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair.
Moriwaki, Kenta; Balaji, Sakthi; McQuade, Thomas; Malhotra, Nidhi; Kang, Joonsoo; Chan, Francis Ka-Ming
2014-10-16
Programmed necrosis or necroptosis is an inflammatory form of cell death that critically requires the receptor-interacting protein kinase 3 (RIPK3). Here we showed that RIPK3 controls a separate, necrosis-independent pathway of inflammation by regulating cytokine expression in dendritic cells (DCs). Ripk3(-/-) bone-marrow-derived dendritic cells (BMDCs) were highly defective in lipopolysaccharide (LPS)-induced expression of inflammatory cytokines. These effects were caused by impaired NF-κB subunit RelB and p50 activation and by impaired caspase 1-mediated processing of interleukin-1β (IL-1β). This DC-specific function of RIPK3 was critical for injury-induced inflammation and tissue repair in response to dextran sodium sulfate (DSS). Ripk3(-/-) mice exhibited an impaired axis of injury-induced IL-1β, IL-23, and IL-22 cytokine cascade, which was partially corrected by adoptive transfer of wild-type DCs, but not Ripk3(-/-) DCs. These results reveal an unexpected function of RIPK3 in NF-κB activation, DC biology, innate inflammatory-cytokine expression, and injury-induced tissue repair.
Pathophysiology of viral-induced exacerbations of COPD
Alfredo, Potena; Gaetano, Caramori; Paolo, Casolari; Marco, Contoli; Johnston, Sebastian L; Alberto, Papi
2007-01-01
Inflammation of the lower airways is a central feature of chronic obstructive pulmonary disease (COPD). Inflammatory responses are associated with an increased expression of a cascade of proteins including cytokines, chemokines, growth factors, enzymes, adhesion molecules and receptors. In most cases the increased expression of these proteins is the result of enhanced gene transcription: many of these genes are not expressed in normal cells under resting conditions but they are induced in the inflammatory process in a cell-specific manner. Transcription factors regulate the expression of many pro-inflammatory genes and play a key role in the pathogenesis of airway inflammation. Many studies have suggested a role for viral infections as a causative agent of COPD exacerbations. In this review we will focus our attention on the relationship between common respiratory viral infections and the molecular and inflammatory mechanisms that lead to COPD exacerbation. PMID:18268922
The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers.
Borelli, Violetta; Trevisan, Elisa; Francesca, Vita; Zabucchi, Giuliano
2018-01-10
Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.
Lorimore, S A; Wright, E G
2003-01-01
To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The induction of bystander effects and instabilities may reflect interrelated aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures.
Anti-inflammatory effects of Zea mays L. husk extracts.
Roh, Kyung-Baeg; Kim, Hyoyoung; Shin, Seungwoo; Kim, Young-Soo; Lee, Jung-A; Kim, Mi Ok; Jung, Eunsun; Lee, Jongsung; Park, Deokhoon
2016-08-19
Zea mays L. (Z. mays) has been used for human consumption in the various forms of meal, cooking oil, thickener in sauces and puddings, sweetener in processed food and beverage products, bio-disel. However, especially, in case of husk extract of Z. mays, little is known about its anti-inflammatory effects. Therefore, in this study, the anti-inflammatory effects of Z. mays husk extract (ZMHE) and its mechanisms of action were investigated. The husks of Z. Mays were harvested in kangwondo, Korea. To assess the anti-inflammatory activities of ZMHE, we examined effects of ZMHE on nitric oxide (NO) production, and release of soluble intercellular adhesion molecule-1 (sICAM-1) and eotaxin-1. The expression level of inducible nitric oxide synthase (iNOS) gene was also determined by Western blot and luciferase reporter assays. To determine its mechanisms of action, a luciferase reporter assay for nuclear factor kappa B (NF-kB) and activator protein-1 (AP-1) was introduced. ZMHE inhibited lipopolysaccharide (LPS)-induced production of NO in RAW264.7 cells. In addition, expression of iNOS gene was reduced, as confirmed by Western blot and luciferase reporter assays. Effects of ZMHE on the AP-1 and NF-kB promoters were examined to elucidate the mechanism of its anti-inflammatory activity. Activation of AP-1 and NF-kB promoters induced by LPS was significantly reduced by ZMHE treatment. In addition, LPS-induced production of sICAM-1 and IL-4-induced production of eotaxin-1 were all reduced by ZMHE. Our results indicate that ZMHE has anti-inflammatory effects by downregulating the expression of iNOS gene and its downregulation is mediated by inhibiting NF-kB and AP-1 signaling.
Evaluation of the analgesic effect of low-power optical radiation in acute inflammatory process
NASA Astrophysics Data System (ADS)
Ferreira, Denise M.; Zangaro, Renato A.; Cury, Yara; Frigo, Lucio; Barbosa, Daniella G.; da Silva Melo, Milene; Munin, Egberto
2004-07-01
Many research works have explored the use of the low power laser as a tool for the control of inflammatory processes. The anti-inflammatory effect of low power optical radiation and its ability to induce analgesia has been reported for different experimental conditions. Many published works are very qualitative in nature. In this work the action of low power laser radiation on acute inflammatory process is evaluated. The time evolution of rat paw edema and pain induced by carrageenan was experimentally monitored. A 632.8 nm He-Ne laser was used for the treatment. The laser treatment, at a dosage of 2,5 J/cm2, was applied at the first, second and third hour after the induction of the inflammation. A hydroplethysmometer was used for the evaluation of the inflammation. The measurement of pain sensitivity was performed according to the method described by Randall and Selito, (1957). The laser treatment was capable of inhibiting the carrageenan-induced hyperalgesia by 49% (p<0,001) at the second hour after the induction, as compared to the non-treated group. At the fourth hour (peak of the carrageenan action on hyperalgesia) and at the sixth hour, the achieved inhibition was 49% (p<0,001) and 61% (p<0,001), respectively. In the treated groups, the edema evolution was inhibited by 38% (p<0,01), at the second hour after induction, as compared to the non-treated groups. At the fourth hour (peak of the carrageenan action on leakage) and at sixth hour the achieved inhibition was 35% (p<0,01) and 30% (p<0,05) respectively.
APOPTOTIC AND INFLAMMATORY EFFECTS INDUCED BY DIFFERENT PARTICLES IN HUMAN ALVEOLAR MACROPHAGES
Pollutant particles induce apoptosis and inflammation, but the relationship between these two biological processes is not entirely clear. In this study, we compared the proapoptotic and proinflammatory effects of four particles: residual oil fly ash (ROFA), St. Louis particles SR...
Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.
Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A
2015-08-15
Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.
Diaz, Alfonso; Limon, Daniel; Chávez, Raúl; Zenteno, Edgar; Guevara, Jorge
2012-01-01
Amyloid-β (Aβ)25-35 is able to cause memory impairment and neurodegenerative events. Recent evidence has shown that the injection of Aβ25-35 into the temporal cortex (TCx) of rats increases the inflammatory response; however, it is unclear how the inflammatory process could be involved in the progression of Aβ25-35 toxicity. In this study we investigated the role of inflammation in the neuronal damage and spatial memory impairment generated by Aβ25-35 in rat TCx using immunohistochemistry, ELISA, and a behavioral test in the radial maze. Our findings show that Aβ25-35 -injection into the TCx induced a reactive gliosis (GFAP and CD11b-reactivity) and an increase of pro-inflammatory cytokines (IL-1β, IL-6, IL-17, and TNF-α) in the TCx and the hippocampus at 5, 15, and 30 days after injection. Thirty days after Aβ25-35 injection, we observed that the inflammatory reaction probably contributed to increase the immunoreactivity of inducible nitric oxide synthase and nitrite levels, as well as to the loss of neurons in TCx and hippocampus. Behavioral performance showed that the neurodegeneration evoked by Aβ25-35 delayed acquisition of learning and impaired spatial memory, because the Aβ25-35-treated animals showed a greater number of errors during the task than the control group. Previous administration of an interleukin receptor antagonist (IL-1ra) (10 and 20 μg/μL, into TCx), an anti-inflammatory agent, suppressed the Aβ25-35-induced inflammatory response and neurodegeneration, as well as memory dysfunction. This study suggests that the chronic inflammatory reaction could contribute to the progression of Aβ25-35 toxicity and cause cognitive impairment.
Mishra, Pooja-Shree; Vijayalakshmi, K; Nalini, A; Sathyaprabha, T N; Kramer, B W; Alladi, Phalguni Anand; Raju, T R
2017-12-16
Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory pathways for its treatment.
CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young, E-mail: chanyshin@kku.ac.kr
2011-06-17
Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury,more » yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.« less
Chen, Fengli; Li, Tong; Li, Shuangyang; Hou, Kexin; Liu, Zaizhi; Li, Lili; Cui, Guoqiang; Zu, Yuangang; Yang, Lei
2014-02-17
The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW) powders by the supercritical antisolvent precipitation process (SAS), and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15-35 MPa), precipitation temperature (45-65 °C), drug solution flow rates (3-7 mL/min) and drug concentrations (10-30 mg/mL) were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund's complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1α, IL-1β) and tumor necrosis factor-α (TNF-α). It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS) process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW.
Chen, Fengli; Li, Tong; Li, Shuangyang; Hou, Kexin; Liu, Zaizhi; Li, Lili; Cui, Guoqiang; Zu, Yuangang; Yang, Lei
2014-01-01
The aim of this study was to prepare nanosized Tripterygium wilfordii multi-glycoside (GTW) powders by the supercritical antisolvent precipitation process (SAS), and to evaluate the anti-inflammatory effects. Ethanol was used as solvent and carbon dioxide was used as an antisolvent. The effects of process parameters such as precipitation pressure (15–35 MPa), precipitation temperature (45–65 °C), drug solution flow rates (3–7 mL/min) and drug concentrations (10–30 mg/mL) were investigated. The nanospheres obtained with mean diameters ranged from 77.5 to 131.8 nm. The processed and unprocessed GTW were characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy and thermal gravimetric analysis. The present study was designed to investigate the beneficial effect of the GTW nanoparticles on adjuvant-induced arthritis in albino rats. The processed and unprocessed GTW were tested against Freund’s complete adjuvant-induced arthritis in rats. Blood samples were collected for the estimation of interleukins (IL-1α, IL-1β) and tumor necrosis factor-α (TNF-α). It was concluded that physicochemical properties and anti-inflammatory activity of GTW nanoparticles could be improved by physical modification, such as particle size reduction using supercritical antisolvent (SAS) process. Further, SAS process was a powerful methodology for improving the physicochemical properties and anti-inflammatory activity of GTW. PMID:24549173
Shen, Lei; Zhou, Ting; Wang, Jing; Sang, Xiumei; Lan, Lei; Luo, Lan; Yin, Zhimin
2017-07-01
Here, we used various approaches to investigate the suppressive role of daphnetin in LPS-induced inflammatory response, with the goal to understand the underlining molecular mechanism by which daphnetin regulated these processes. We examined the survival rate and the lung injury in the mice model of LPS-induced endotoxemia. The production of pro-inflammatory factors including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), IL-6, nitric oxide (NO), and prostaglandin E2 (PGE2) was measured by ELISA and nitrite analysis, respectively. The expression of inducible NO synthase (iNOS), cyclooxygenase 2 (COX-2), and the activation of signaling molecules was determined by immunoblotting. The production of reactive oxygen species (ROS) was measured by the ROS assay. In vivo study showed that daphnetin enhanced the survival rate and reduced the lung injury in mice with LPS-induced endotoxemia. Both in vivo and in vitro study showed that daphnetin prevented the production of pro-inflammatory factors including TNF-α, IL-1β, IL-6, NO, and PGE2 after LPS challenge. In Raw264.7 cells, we found that daphnetin reduced LPS-induced expression of iNOS and COX-2, and suppressed LPS-induced ROS production. In addition, we found that daphnetin suppressed the activation of JAK/STATs pathway and inhibited the nucleus import of STAT1 and STAT3. Here, our results indicate that daphnetin shows anti-inflammatory properties, at least in part, through suppressing LPS-induced activation of JAK/STATs cascades and ROS production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuli; Wu, Hongxia; Shen, Ming
Periodontitis is a chronic inflammatory disease induced by bacterial pathogens, which not only affect connective tissue attachments but also cause alveolar bone loss. In this study, we investigated the anti-inflammatory effects of Human amnion-derived mesenchymal stem cells (HAMSCs) on human bone marrow mesenchymal stem cells (HBMSCs) under lipopolysaccharide (LPS)-induced inflammatory conditions. Proliferation levels were measured by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were investigated using chromogenic alkaline phosphatase activity (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of HBMSCs osteogenic marker expression. Oxidative stress induced by LPS was investigated by assayingmore » reactive oxygen species (ROS) level and superoxide dismutase (SOD) activity. Here, we demonstrated that HAMSCs increased the proliferation, osteoblastic differentiation, and SOD activity of LPS-induced HBMSCs, and down-regulated the ROS level. Moreover, our results suggested that the activation of p38 MAPK signal transduction pathway is essential for reversing the LPS-induced bone-destructive processes. SB203580, a selective inhibitor of p38 MAPK signaling, significantly suppressed the anti-inflammatory effects in HAMSCs. In conclusion, HAMSCs show a strong potential in treating inflammation-induced bone loss by influencing p38 MAPK signaling. - Highlights: • LPS inhibites osteogenic differentiation in HBMSCs via suppression of p38 MAPK signaling pathway. • HAMSCs promote LPS-induced HBMSCs osteogenic differentiation through p38 MAPK signaling pathway. • HAMSCs reverse LPS-induced oxidative stress in LPS-induced HBMSCs through p38 MAPK signaling pathway.« less
Liu, Guo; Zhang, Wenhao
2018-06-11
Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may induce cancer, immunosuppression, photoaging, and inflammation. The long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in multiple human biological processes. However, its role in UVB-induced keratinocyte injury is unclear. This study was performed to investigate the effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6. Cell viability was measured using trypan blue exclusion method and cell apoptosis using flow cytometry and western blot. ELISA was used to measure the concentrations of TNF-α and IL-6. Western blot was used to measure the expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway proteins. UVB induced HaCaT cell injury by inhibiting cell viability and promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted the expression of HOTAIR. HOTAIR suppression increased cell viability and decreased apoptosis and expression of inflammatory factors in UVB-treated cells. HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased cell viability and increased cell apoptosis and expression of inflammatory factors in UVB-treated cells by upregulating PKR. Overexpression of PKR decreased cell viability and promoted cell apoptosis in UVB-treated cells. Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings identified an essential role of HOTAIR in promoting UVB-induced apoptosis and inflammatory injury by up-regulating PKR in keratinocytes.
Jia, Zhi-rong; Li, Xian-jing; Wang, Zhuo; Li, Li; Li, Yong-wen; Liu, Gen-yan; Tong, Ming-Qing; Li, Xiao-yi; Zhang, Guo-hui; Dai, Xiang-rong; He, Ling; Li, Zhi-yu; Cao, Cong; Yang, Yong
2013-01-01
In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation. PMID:23457491
Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera; Wong, Wendy Wei-Lynn; Kaufmann, Thomas
2018-02-28
Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID.
Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera
2018-01-01
Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID. PMID:29495595
Tomazoni, Shaiane Silva; Frigo, Lúcio; Dos Reis Ferreira, Tereza Cristina; Casalechi, Heliodora Leão; Teixeira, Simone; de Almeida, Patrícia; Muscara, Marcelo Nicolas; Marcos, Rodrigo Labat; Serra, Andrey Jorge; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto
2017-11-01
Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm 2 ; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm 2 ), 3 J (107.1 J/cm 2 ), and 9 J (321.4 J/cm 2 ) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p < 0.05). The diclofenac group showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). COX-2 protein expression remained unchanged with all therapies except with PBMT at a 3-J dose at 12 h (p < 0.05 compared to the injury group). In addition, PBMT (1, 3, and 9 J) effectively reduced levels of cytokines TNF-α, interleukin (IL)-1β, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p < 0.05). Thus, PBMT at a 3-J dose was more effective than other doses of PBMT and topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.
McCarson, Kenneth E
2015-09-01
Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti-inflammatory properties of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this unit are methods to elicit and measure carrageenan- and complete Freund's adjuvant (CFA)-induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). Copyright © 2015 John Wiley & Sons, Inc.
IN VIVO ANTI-INFLAMMATORY EFFECTS OF TARAXASTEROL AGAINST ANIMAL MODELS
Wang, Ying; Li, Guan-Hao; Liu, Xin-Yu; Xu, Lu; Wang, Sha-Sha; Zhang, Xue-Mei
2017-01-01
Background: Traditional Chinese medicine Taraxacum officinale has been widely used to treat various inflammatory diseases. Taraxasterol is one of the main active components isolated from Taraxacum officinale. Recently, we have demonstrated that taraxasterol has the in vitro anti-inflammatory effects. This study aims to determine the in vivo anti-inflammatory effects of taraxasterol against animal models. Materials and Methods: Anti-inflammatory effects were assessed in four animal models by using dimethylbenzene-induced mouse ear edema, carrageenan-induced rat paw edema, acetic acid-induced mouse vascular permeability and cotton pellet-induced rat granuloma tests. Results: Our results demonstrated that taraxasterol dose-dependently attenuated dimethylbenzene-induced mouse ear edema and carrageenan-induced rat paw edema, decreased acetic acid-induced mouse vascular permeability and inhibited cotton pellet-induced rat granuloma formation. Conclusion: Our finding indicates that taraxasterol has obvious in vivo anti-inflammatory effects against animal models. It will provide experimental evidences for the traditional use of Taraxacum officinale and taraxasterol in inflammatory diseases. PMID:28480383
He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan
2017-03-01
The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.
Fehrenbach, Elvira; Schneider, Marion E
2006-01-01
Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.
de Oliveira, Anderson Marques; Conserva, Lucia M.; de Souza Ferro, Jamylle N.; de Almeida Brito, Fabíola; Lyra Lemos, Rosângela P.; Barreto, Emiliano
2012-01-01
Sabicea species are used in the Amazon for treatment of fever and malaria, which suggests that its chemical constituents may have some effect on pain and inflammation. Phytochemical analysis of the hexane fraction obtained from the crude ethanol extract from Sabicea grisea var. grisea Cham. & Schltdl (Rubiaceae), an endemic plant in Brazil, resulted in the isolation of octacosanol. This study investigated the antinociceptive and anti-inflammatory effects of the octacosanol in different experimental models. The crude ethanolic extract and hexane fraction obtained from the leaves of S. grisea produced an inhibition of acetic acid-induced pain. Moreover, octacosanol isolated from the hexane fraction produced a significant inhibition of pain response elicited by acetic acid. Pre-treatment with yohimbine, an alpha 2-adrenergic receptor antagonist, notably reversed the antinociceptive activity induced by octacosanol in the abdominal constriction test. Furthermore, mice treated with octacosanol did not exhibit any behavioral alteration during the hot plate and rota-rod tests, indicating non-participation of the supraspinal components in the modulation of pain by octacosanol with no motor abnormality. In the formalin test, octacosanol did not inhibit the licking time in first phase (neurogenic pain), but significantly inhibited the licking time in second phase (inflammatory pain) of mice. The anti-inflammatory effect of octacosanol was evaluated using carrageenan-induced pleurisy. The octacosanol significantly reduced the total leukocyte count and neutrophils influx, as well as TNF-α levels in the carrageenan-induced pleurisy. This study revealed that the mechanism responsible for the antinociceptive and anti-inflammatory effects of the octacosanol appears to be partly associated with an inhibition of alpha 2-adrenergic transmission and an inhibition of pathways dependent on pro-inflammatory cytokines. Finally, these results demonstrated that the octacosanol from the leaves of S. grisea possesses antinociceptive and anti-inflammatory activities, which could be of relevance for the pharmacological control of pain and inflammatory processes. PMID:22408410
Li, Wen-Hwa; Pappas, Apostolos; Zhang, Li; Ruvolo, Eduardo; Cavender, Druie
2013-07-01
The loss of subcutaneous (sc) fat is associated with aging. Inflammatory cytokines, such as interleukin-1 α (IL-1α), interleukin-11 (IL-11) and tumor necrosis factor-α (TNF-α), are known to inhibit the differentiation of preadipocytes. This study investigated the potential role of inflammatory cytokines in solar-radiation-induced facial fat loss. Cultured fibroblasts, keratinocytes, and skin equivalents were exposed to various doses of radiation from a solar simulator. Inflammatory cytokines' mRNA production and protein secretion were examined by qRT-PCR and ELISA, respectively. In some experiments, epidermal-dermal equivalents were pretreated topically with a broad-spectrum sunscreen prior to solar simulated radiation (SSR). Human facial preadipocytes treated with recombinant IL-11 or with conditioned media from solar-irradiated equivalents were evaluated for the level of adipocyte differentiation by image analyses, Oil red O staining, and the expression of adipocyte differentiation markers. IL-11, IL-1α, IL-6, and TNF-α protein secretion were induced from epidermal-dermal equivalents by exposure to SSR. A sunscreen prevented SSR-induced inflammatory cytokines production from such equivalents. Exposure of facial preadipocytes to conditioned medium from solar-irradiated epidermal-dermal equivalents inhibited their differentiation into mature adipocytes. Consequently, conditioned medium from sunscreen-pretreated, solar-irradiated equivalents did not inhibit differentiation of preadipocytes. A cocktail of neutralizing antibodies to IL-11, IL-1α, IL-6 and TNF-α significantly reduced the SSR-induced inhibition of preadipocyte differentiation. These results support the hypothesis that SSR-induced inflammatory cytokine may be involved in the photoaging-induced loss of facial subcutaneous fat. Inhibition of this process, e.g. by sunscreens, might slow or prevent photoaging-induced changes in facial contouring. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Liu, Quan-Sheng; Nilsen-Hamilton, Marit; Xiong, Si-Dong
2003-10-25
SIP24/24p3 is a secreted murine acute phase protein which has been speculated to play an anti-inflammatory role in vivo. Recently SIP24/24p3 has been found to be able to specifically induce apoptosis in leukocytes. By using (35)S metabolic labeling method, we studied the regulation of SIP24/24p3 by glucocorticoid and pro-inflammatory cytokines IL-6 and TNF-alpha in cultured Balb/c 3T3 and BNL cells. The following results were observed: (1) dexamethasone induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells, the induction was more significant in BNL cells; (2) dexamethasone and IL-6 synergistically induced the expression of SIP24/24p3 in both Balb/c 3T3 and BNL cells; (3) in Balb/c 3T3 cells dexamethasone and TNF-alpha acted synergistically to induce the expression of SIP24/24p3, whereas in BNL cells dexamethasone and TNF-alpha induced the expression of SIP24/24p3 in an additive manner; (4) dexamethasone and IL-6/TNF-alpha acted synergistically in Balb/c 3T3 cells and additively in BNL cells to induce the expression of SIP24/24p3. The inducibility of SIP24/24p3 by multiple factors will help to explain its highly specific expression in vivo. The difference in the expression patterns of SIP24/24p3 in different cell types is also suggestive to its expression and regulation in hepatic and extrahepatic tissues. Finally, the fact that SIP24/24p3 protein can be induced by both pro-inflammatory as well as anti-inflammatory factors is indicative of the important role of SIP24/24p3 in the entire acute phase response process.
Inflammation, leukocytes and menstruation.
Evans, Jemma; Salamonsen, Lois A
2012-12-01
Menstruation has many of the features of an inflammatory process. The complexity and sequence of inflammatory-type events leading to the final tissue breakdown and bleeding are slowly being unravelled. Progesterone has anti-inflammatory properties, and its rapidly declining levels (along with those of estrogen) in the late secretory phase of each non-conception cycle, initiates a sequence of interdependent events of an inflammatory nature involving local inter-cellular interactions within the endometrium. Intracellular responses to loss of progesterone (in decidualized stromal, vascular and epithelial cells) lead to decreased prostaglandin metabolism and loss of protection from reactive oxygen species (ROS). Increased ROS results in release of NFκB from suppression with activation of target gene transcription and increased synthesis of pro-inflammatory prostaglandins, cytokines, chemokines and matrix metalloproteinases (MMP). The resultant leukocyte recruitment, with changing phenotypes and activation, provide further degradative enzymes and MMP activators, which together with a hypoxic environment induced by prostaglandin actions, lead to the tissue breakdown and bleeding characteristic of menstruation. In parallel, at sites where shedding is complete, microenvironmentally-induced changes in phenotypes of neutrophils and macrophages from pro- to anti-inflammatory, in addition to induction of growth factors, contribute to the very rapid re-epithelialization and restoration of tissue integrity.
Choi, Jun-Hui; Kim, Na-Hyun; Kim, Sung-Jun; Lee, Hyo-Jeong; Kim, Seung
2016-03-01
Undaria pinnatifida is a well-known traditional Korean food with a variety of biological activities. Carrageenan (carr) is commonly used to induce paw edema in animal models. This study was designed to elucidate the processes underlying the anti-inflammatory effect of fucoxanthin isolated from the sporophyll of U. pinnatifida in carr-induced paw edema in ICR mice. Fucoxanthin significantly decreased carr-induced increased nitric oxide levels in the plasma of mice with carr-induced paw edema. Fucoxanthin protected catalase (CAT) and superoxide dismutase (SOD) activity against disruption in mice with carr-induced paw edema. In addition, fucoxanthin repressed carr-induced activation of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear factor kappa B, as well as carr-induced phosphorylation of mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and protein kinase B/Akt. These results suggest that fucoxanthin may have therapeutic potential as a treatment for patients with inflammatory diseases. © 2015 Wiley Periodicals, Inc.
Lin, Ya; Yamashita, Masaru; Zhang, Jingxian; Ling, Changying; Welham, Nathan V
2009-10-01
Disruption of the vocal fold extracellular matrix (ECM) can induce a profound and refractory dysphonia. Pulsed dye laser (PDL) irradiation has shown early promise as a treatment modality for disordered ECM in patients with chronic vocal fold scar; however, there are limited data addressing the mechanism by which this laser energy might induce cellular and extracellular changes in vocal fold tissues. In this study, we examined the inflammatory and ECM modulating effects of PDL irradiation on normal vocal fold tissues and cultured vocal fold fibroblasts (VFFs). We evaluated the effects of 585 nm PDL irradiation on inflammatory cytokine and collagen/collagenase gene transcription in normal rat vocal folds in vivo (3-168 hours following delivery of approximately 39.46 J/cm(2) fluence) and VFFs in vitro (3-72 hours following delivery of 4.82 or 9.64 J/cm(2) fluence). We also examined morphological vocal fold tissue changes 3 hours, 1 week, and 1 month post-irradiation. PDL irradiation altered inflammatory cytokine and procollagen/collagenase expression at the transcript level, both in vitro and in vivo. Additionally, PDL irradiation induced an inflammatory repair process in vivo that was completed by 1 month with preservation of normal tissue morphology. PDL irradiation can modulate ECM turnover in phenotypically normal vocal folds. Additional work is required to determine if these findings extend to disordered ECM, such as is seen in vocal fold scar. Lasers Surg. Med. 41:585-594, 2009. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
de Castro, Isabele C. V.; Rosa, Cristiane B.; Carvalho, Carolina M.; Soares, Luiz Guilherme P.; Cangussu, Maria Cristina T.; dos Santos, Jean N.; Pinheiro, Antônio L. B.
2015-03-01
Temporomandibular disorders (TMD) are commonly found in the population and usually involve inflammatory processes. Previous studies have shown positive effects of LED (Light emitting diodes) phototherapies on TMD but its action and mechanism in the inflammatory infiltrate of the temporomandibular joint are still poorly understood. The aim of this study was to assess through histological analysis the effectiveness LED (10 J/cm2, λ850 nm, 100 mW, CW) on the inflammation of the temporomandibular joint of rats induced by carrageenan. Thirty animals were divided in two groups with five animals per subgroup according to the experimental times of two, three and seven days: Inflammation and Inflammation + LED phototherapy. The first irradiation was performed 24 h after induction with an interval of 48 h between sessions. After animal death, specimens were processed and stained with HE and Picrosirius. Then the samples were examined histologically. Data were statistically analyzed. The inflammation group showed mild to moderate chronic inflammatory infiltrate among the bone trabecules of the condyle. Over the time-course of the study in the LED group the condyle showed aspects of normality and absent inflammation in some specimens. In all the time-points, no statistically significant differences were found for collagen deposition in the in the condyle and disc when LED was compared to Inflammation group. LED treated groups also demonstrated a smaller number of the layers of the synovial membrane when compared to the non-irradiated groups. It was concluded that, in general, LED phototherapy resulted in a reduction of inflammatory infiltrate in the temporomandibular joint of rat.
Casado, Javier G.; Blázquez, Rebeca; Vela, Francisco Javier; Álvarez, Verónica; Tarazona, Raquel; Sánchez-Margallo, Francisco Miguel
2017-01-01
Synovitis is an inflammatory process associated with pain, disability, and discomfort, which is usually treated with anti-inflammatory drugs or biological agents. Mesenchymal stem cells (MSCs) have been also successfully used in the treatment of inflammatory-related diseases such as synovitis or arthritis. In the last years, the exosomes derived from MSCs have become a promising tool for the treatment of inflammatory-related diseases and their therapeutic effect is thought to be mediated (at least in part) by their immunomodulatory potential. In this work, we aimed to evaluate the anti-inflammatory effect of these exosomes in an antigen-induced synovitis animal model. To our knowledge, this is the first report where exosomes derived from MSCs have been evaluated in an animal model of synovitis. Our results demonstrated a decrease of synovial lymphocytes together with a downregulation of TNF-α transcripts in those exosome-treated joints. These results support the immunomodulatory effect of these exosomes and point out that they may represent a promising therapeutic option for the treatment of synovitis. PMID:28377922
Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing
2015-01-01
Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties. © 2015 International Union of Biochemistry and Molecular Biology.
Odor Signals of Immune Activation and CNS Inflammation
2014-12-01
inflammation results in detectable alteration of body odor and that traumatic brain injury (TBI) might similarly produce volatile metabolites specific to...Because both LPS and TBI elicit inflammatory processes and LPS-induced inflammation induces body odor changes, we hypothesized that (1) TBI would...induce a distinct change in body odor and (2) this change would resemble the change induced by LPS. Mice receiving surgery and lateral fluid percussion
Chen, Xiu-Min; Ma, Zhili; Kitts, David D
2018-05-30
The use of coffee leaves as a novel beverage has recently received consumer interest, but there is little known about how processing methods affect the quality of final product. We applied tea (white, green, oolong and black tea) processing methods to process coffee leaves and then investigated their effects on phytochemical composition and related antioxidant and anti-inflammatory properties. Using Japanese-style green tea-processing of young leaves, and black tea-processing of mature (BTP-M) coffee leaves, produced contrasting effects on phenolic content, and associated antioxidant activity and nitric oxide (NO) inhibitory activity in IFN-γ and LPS induced Raw 264.7 cells. BTP-M coffee leaves also had significantly (P < .05) higher responses in NO, iNOS, COX-2, as well as a number of cytokines, in non-induced Raw 264.7. Our findings show that the age of coffee leaves and the type of processing method affect phytochemical profiles sufficiently to produce characteristic antioxidant and anti-inflammatory activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Vascotto, Carlo; Leonardi, Antonio; Kelley, Mark R.; Tiribelli, Claudio; Tell, Gianluca
2013-01-01
APE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on the NF-κB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process. HepG2 cells were stably transfected with functional and non-functional APE1 encoding plasmids and the protective effect of APE1 overexpression toward genotoxic compounds or FAs accumulation, was tested. JHH6 cells were stimulated with TNF-α in the presence or absence of E3330, an APE1 redox inhibitor. IL-8 promoter activity was assessed by a luciferase reporter assay, gene expression by Real-Time PCR and cytokines (IL-6, IL-8, IL-12) levels measured by ELISA. APE1 over-expression did not prevent cytotoxicity induced by lipid accumulation. E3330 treatment prevented the functional activation of NF-κB via the alteration of APE1 subcellular trafficking and reduced IL-6 and IL-8 expression induced by TNF-α and FAs accumulation through blockage of the redox-mediated activation of NF-κB. APE1 overexpression observed in hepatic cancer cells may reflect an adaptive response to cell damage and may be responsible for further cell resistance to chemotherapy and for the onset of inflammatory response. The efficacy of the inhibition of APE1 redox activity in blocking TNF-α and FAs induced inflammatory response opens new perspectives for treatment of inflammatory-based liver diseases. PMID:23967134
Chen, Chun-Jen; Shi, Yan; Hearn, Arron; Fitzgerald, Kate; Golenbock, Douglas; Reed, George; Akira, Shizuo; Rock, Kenneth L.
2006-01-01
While it is known that monosodium urate (MSU) crystals cause the disease gout, the mechanism by which these crystals stimulate this inflammatory condition has not been clear. Here we find that the Toll/IL-1R (TIR) signal transduction adaptor myeloid differentiation primary response protein 88 (MyD88) is required for acute gouty inflammation. In contrast, other TIR adaptor molecules, TIRAP/Mal, TRIF, and TRAM, are not required for this process. The MyD88-dependent TLR1, -2, -4, -6, -7, -9, and -11 and IL-18 receptor (IL-18R) are not essential for MSU-induced inflammation. Moreover, MSU does not stimulate HEK cells expressing TLR1–11 to activate NF-κB. In contrast, mice deficient in the MyD88-dependent IL-1R showed reduced inflammatory responses, similar to those observed in MyD88-deficient mice. Similarly, mice treated with IL-1 neutralizing antibodies also showed reduced MSU-induced inflammation, demonstrating that IL-1 production and IL-1R activation play essential roles in MSU-triggered inflammation. IL-1R deficiency in bone marrow–derived cells did not affect the inflammatory response; however, it was required in non–bone marrow–derived cells. These results indicate that IL-1 is essential for the MSU-induced inflammatory response and that the requirement of MyD88 in this process is primarily through its function as an adaptor molecule in the IL-1R signaling pathway. PMID:16886064
Orsi, Patrícia Rodrigues; Seito, Leonardo Noboru; Di Stasi, Luiz Claudio
2014-01-01
Stem bark and fruit pulp of Hymenaea stigonocarpa Mart ex. Hayne (Fabaceae) has been popularly used to treat inflammation and gastrointestinal diseases including ulcers, diarrhea and gastric pain. The aim of this study was to investigate the intestinal anti-inflammatory activity of a methanol extract derived from the stem bark and diet with fruit pulp of Hymenaea stigonocarpa in the TNBS model of intestinal inflammation in rats. The intestinal anti-inflammatory activity of stem bark extract (100, 200 and 400mg/kg) and fruit pulp (10% and 5% in diet) was measured against the intestinal inflammatory process induced by TNBS (trinitrobenzesulphonic acid) in rats. The protective effects were evaluated as follows: evaluation of intestinal damage (damage score, extension of lesion, colon weight/length ratio), incidence of diarrhea and adherence to adjacent organs, colon glutathione (GSH) and malondialdehyde (MDA) contents, myeloperoxidase (MPO) and alkaline phosphatase (AP) activities. In addition, in vitro studies on lipid peroxidation in rat brain membranes and phytochemical profile were performed with both stem bark and fruit pulp. Treatment with 100, 200 and 400mg/kg of stem bark extract and 10% fruit pulp flour showed protective effects in the TNBS-induced colon damage, which was related to inhibition of MPO and AP activities, reduction in colon MDA content, and counteraction of GSH depletion induced by inflammatory process. A concentration-dependent inhibitory effect on the lipid peroxidation in rat brain membranes for stem bark and fruit pulp was determined, with an IC50 value of 5.25 ± 0.23 μg/mL and 27.33 ± 0.09 μg/mL, respectively. Similar phytochemical composition was observed in fruit and stem bark, including mainly flavonoids, condensed tannins and terpenes. Stem bark extract and fruit pulp flour of Hymenaea stigonocarpa prevented TNBS-induced colonic damage in rats and this protective effect were associated to an improvement of intestinal oxidative stress. The observed anti-inflammatory and antioxidant effects may be associated to the presence of flavonoids and tannins in the stem bark and fruit pulp of Hymenaea stigonocarpa. © 2013 Published by Elsevier Ireland Ltd.
Ramakrishna, Chandran; Cantin, Edouard M
2018-01-01
Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection.
Conserved gene regulation during acute inflammation between zebrafish and mammals
Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.
2017-01-01
Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230
Connaughton, Ruth M; McMorrow, Aoibheann M; McGillicuddy, Fiona C; Lithander, Fiona E; Roche, Helen M
2016-05-01
Obesity-related metabolic conditions such as insulin resistance (IR), type 2 diabetes and CVD share a number of pathological features, one of which is metabolic-inflammation. Metabolic-inflammation results from the infiltration of immune cells into the adipose tissue, driving a pro-inflammatory environment, which can induce IR. Furthermore, resolution of inflammation, an active process wherein the immune system counteracts pro-inflammatory states, may be dysregulated in obesity. Anti-inflammatory nutritional interventions have focused on attenuating this pro-inflammatory environment. Furthermore, with inherent variability among individuals, establishing at-risk populations who respond favourably to nutritional intervention strategies is important. This review will focus on chronic low-grade metabolic-inflammation, resolution of inflammation and the putative role anti-inflammatory nutrients have as a potential therapy. Finally, in the context of personalised nutrition, the approaches used in defining individuals who respond favourably to nutritional interventions will be highlighted. With increasing prevalence of obesity in younger people, age-dependent biological processes, preventative strategies and therapeutic options are important to help protect against development of obesity-associated co-morbidities.
A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models.
Tyzack, Giulia E; Hall, Claire E; Sibley, Christopher R; Cymes, Tomasz; Forostyak, Serhiy; Carlino, Giulia; Meyer, Ione F; Schiavo, Giampietro; Zhang, Su-Chun; Gibbons, George M; Newcombe, Jia; Patani, Rickie; Lakatos, András
2017-10-27
Astrocyte responses to neuronal injury may be beneficial or detrimental to neuronal recovery, but the mechanisms that determine these different responses are poorly understood. Here we show that ephrin type-B receptor 1 (EphB1) is upregulated in injured motor neurons, which in turn can activate astrocytes through ephrin-B1-mediated stimulation of signal transducer and activator of transcription-3 (STAT3). Transcriptional analysis shows that EphB1 induces a protective and anti-inflammatory signature in astrocytes, partially linked to the STAT3 network. This is distinct from the response evoked by interleukin (IL)-6 that is known to induce both pro inflammatory and anti-inflammatory processes. Finally, we demonstrate that the EphB1-ephrin-B1 pathway is disrupted in human stem cell derived astrocyte and mouse models of amyotrophic lateral sclerosis (ALS). Our work identifies an early neuronal help-me signal that activates a neuroprotective astrocytic response, which fails in ALS, and therefore represents an attractive therapeutic target.
Lefèvre, Lise; Authier, Hélène; Stein, Sokrates; Majorel, Clarisse; Couderc, Bettina; Dardenne, Christophe; Eddine, Mohamad Ala; Meunier, Etienne; Bernad, José; Valentin, Alexis; Pipy, Bernard; Schoonjans, Kristina; Coste, Agnès
2015-01-01
Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis. PMID:25873311
Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María
2015-12-15
Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.
Popovic, Ljiljana M; Mitic, Nebojsa R; Miric, Dijana; Bisevac, Boban; Miric, Mirjana; Popovic, Brankica
2015-01-01
Exercise induces a multitude of physiological and biochemical changes in blood affecting its redox status. Tissue damage resulting from exercise induces activation of inflammatory cells followed by the increased activity of myeloperoxidase (MPO) in circulation. Vitamin C readily scavenges free radicals and may thereby prevent oxidative damage of important biological macromolecules. The aim of this study was to examine the effect of vitamin C supplementation on oxidative stress and neutrophil inflammatory response induced by acute and regular exercise. Experiment was conducted on acute exercise group (performing Bruce Treadmill Protocol (BTP)) and regular training group. Markers of lipid peroxidation, malondialdehyde (MDA), MPO activity, and vitamin C status were estimated at rest and after BTP (acute exercise group) and before and after vitamin C supplementation in both groups. Our results showed increased postexercise Asc in serum independently of vitamin supplementation. They also showed that vitamin C can significantly decrease postexercise MDA level in both experimental groups. Increased postexercise MPO activity has been found in both groups and was not affected by vitamin C supplementation. We concluded that vitamin C supplementation can suppress lipid peroxidation process during exercise but cannot affect neutrophil inflammatory response in either exercise group.
Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity
Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay
2009-01-01
Aims Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. Main Methods We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Key Findings Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. Significance These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer. PMID:19788894
Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.
Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay
2009-11-04
Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.
Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M
2017-08-01
The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russe, Otto Quintus, E-mail: quintus@russe.eu; Möser, Christine V., E-mail: chmoeser@hotmail.com; Kynast, Katharina L., E-mail: katharina.kynast@googlemail.com
2014-05-09
Highlights: • AMPK-activation induces caspase 3-dependent apoptosis in macrophages. • Apoptosis is associated with decreased mTOR and increased p21 levels. • All effects can be significantly inhibited by the TLR4 agonist lipopolysaccharide. - Abstract: AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have amore » therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner. In conclusion, our results revealed that AMPK activation is not only associated with positive effects but might also contribute to risk factors by disturbing important features of macrophages. The fact that LPS is able to restore AMPK-associated apoptosis might indicate an important role of TLR4 agonists in preventing unfavorable cell death of immune cells.« less
Jiménez-Garduño, Aura M; Mendoza-Rodríguez, Mónica G; Urrutia-Cabrera, Daniel; Domínguez-Robles, María C; Pérez-Yépez, Eloy A; Ayala-Sumuano, Jorge Tonatiuh; Meza, Isaura
2017-08-26
Inflammation has been recently acknowledged as a key participant in the physiopathology of oncogenesis and tumor progression. The inflammatory cytokine IL-1β has been reported to induce the expression of markers associated with malignancy in breast cancerous cells through Epithelial-Mesenchymal Transition (EMT). Aggressive breast cancer tumors classified as Triple Negative do not respond to hormonal treatment because they lack three crucial receptors, one of which is the estrogen receptor alpha (ERα). Expression of ERα is then considered a good prognostic marker for tamoxifen treatment of this type of cancer, as the binding of this drug to the receptor blocks the transcriptional activity of the latter. Although it has been suggested that inflammatory cytokines in the tumor microenvironment could regulate ERα expression, the mechanism(s) involved in this process have not yet been established. We show here that, in a cell model of breast cancer cells (6D cells), in which the inflammatory cytokine IL-1β induces EMT by activation of the IL-1β/IL-1RI/β-catenin pathway, the up regulation of TWIST1 leads to methylation of the ESR1 gene promoter. This epigenetic modification produced significant decrease of the ERα receptor levels and increased resistance to tamoxifen. The direct participation of IL-1β in these processes was validated by blockage of the cytokine-induced signaling pathway by wortmannin inactivation of the effectors PI3K/AKT. These results support our previous reports that have suggested direct participation of the inflammatory cytokine IL-1β in the transition to malignancy of breast cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.
2013-01-01
Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816
Downregulation of the glucocorticoid-induced leucine zipper (GILZ) promotes vascular inflammation.
Hahn, Rebecca T; Hoppstädter, Jessica; Hirschfelder, Kerstin; Hachenthal, Nina; Diesel, Britta; Kessler, Sonja M; Huwer, Hanno; Kiemer, Alexandra K
2014-06-01
Glucocorticoid-induced leucine zipper (GILZ) represents an anti-inflammatory mediator, whose downregulation has been described in various inflammatory processes. Aim of our study was to decipher the regulation of GILZ in vascular inflammation. Degenerated aortocoronary saphenous vein bypass grafts (n = 15), which exhibited inflammatory cell activation as determined by enhanced monocyte chemoattractrant protein 1 (MCP-1, CCL2) and Toll-like receptor 2 (TLR2) expression, showed significantly diminished GILZ protein and mRNA levels compared to healthy veins (n = 23). GILZ was also downregulated in human umbilical vein endothelial cells (HUVEC) and macrophages upon treatment with the inflammatory cytokine TNF-α in a tristetraprolin (ZFP36, TTP)- and p38 MAPK-dependent manner. To assess the functional implications of decreased GILZ expression, we determined NF-κB activation after GILZ knockdown by siRNA and found that NF-κB activity and inflammatory gene expression were significantly enhanced. Importantly, ZFP36 is induced in TNF-α-activated HUVEC as well as in degenerated vein bypasses. When atheroprotective laminar shear stress was employed, GILZ levels in HUVEC increased on mRNA and protein level. Laminar flow also counteracted TNF-α-induced ZFP36 expression and GILZ downregulation. MAP kinase phosphatase 1 (MKP-1, DUSP1), a negative regulator of ZFP36 expression, was distinctly upregulated under laminar shear stress conditions and downregulated in degenerated vein bypasses. Our data show a diminished expression of the anti-inflammatory mediator GILZ in the inflamed vasculature and indicate that GILZ downregulation requires the mRNA binding protein ZFP36. We suggest that reduced GILZ levels play a role in cardiovascular disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia
2010-03-02
Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.
Antagonist effects of veratric acid against UVB-induced cell damages.
Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon
2013-05-10
Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.
Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele
2016-02-08
Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.
Le Roy, Chloé; Laboureyras, Emilie; Gavello-Baudy, Stéphanie; Chateauraynaud, Jérémy; Laulin, Jean-Paul; Simonnet, Guy
2011-10-01
Although stress induces analgesia, there is evidence that stressful events may exacerbate pain syndromes. Here, we studied the effects of 1 to 3 prestressful events (days 0, 2, and 7), such as non-nociceptive environmental stress, on inflammatory hyperalgesia induced by a carrageenan injection (day 14) in 1 rat hind paw. Changes in nociceptive threshold were evaluated by the paw pressure vocalization test. The higher the number of stress sessions presented to the rats, the greater was the inflammatory hyperalgesia. Blockade of opioid receptors by naltrexone before each stress inhibited stress-induced analgesia and suppressed the exaggerated inflammatory hyperalgesia. Stressed versus nonstressed animals could be discriminated by their response to a fentanyl ultra-low dose (fULD), that produced hyperalgesia or analgesia, respectively. This pharmacological test permitted the prediction of the pain vulnerability level of prestressed rats because fULD analgesic or hyperalgesic indices were positively correlated with inflammatory hyperalgesic indices (r(2) = .84). In prestressed rats, fULD-induced hyperalgesia and the exaggerated inflammatory hyperalgesia were prevented NMDA receptor antagonists. This study provides some preclinical evidence that pain intensity is not only the result of nociceptive input level but is also dependent on the individual history, especially prior life stress events associated with endogenous opioid release. Based on these preclinical data, it would be of clinical interest to evaluate whether prior stressful events may also affect further pain sensation in humans. Moreover, this preclinical model could be a good tool for evaluating new therapeutic strategies for relieving pain hypersensitivity. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Zhang, Yang; Liu, Gongjian; Dull, Randal O.; Schwartz, David E.
2014-01-01
The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury. PMID:24838752
Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model.
Zhang, Zhen; Yang, Wen-Zhao; Zhu, Zhen-Zhen; Hu, Qian-Qian; Chen, Yan-Feng; He, Hui; Chen, Yong-Xiong; Liu, Zu-Guo
2014-05-06
We investigated the therapeutic effects and underlying mechanisms of topical doxycycline in a benzalkonium chloride (BAC)-induced mouse dry eye model. Eye drops containing 0.025%, 0.1% doxycycline or solvent were administered to a BAC-induced dry eye model four times daily. The clinical evaluations, including tear break-up time (BUT), fluorescein staining, inflammatory index, and tear volume, were performed on days 0, 1, 4, 7, and 10. Global specimens were collected on day 10 and processed for immunofluorescent staining, TUNEL, and periodic acid-Schiff assay. The levels of inflammatory mediators in the corneas were determined by real-time PCR. The total and phosphorylated nuclear factor-κB (NF-κB) were detected by Western blot. Both 0.025% and 0.1% doxycycline treatments resulted in increased BUT, lower fluorescein staining scores, and inflammatory index on days 4, 7, and 10, while no significant change in tear volume was observed. The 0.1% doxycycline-treated group showed more improvements in decreasing fluorescein staining scores, increasing Ki-67-positive cells, and decreasing TUNEL- and keratin-10-positive cells than other groups. The mucin-filled goblet cells in conjunctivas were increased, and the expression of CD11b and levels of matrix metalloproteinase-9, IL-1β, IL-6, TNF-α, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant in corneas were decreased in both doxycycline-treated groups. In addition, doxycycline significantly reduced the phosphorylation of NF-κB activated in the BAC-treated corneas. Topical doxycycline showed clinical improvements and alleviated ocular surface inflammation on BAC-induced mouse dry eye, suggesting a potential as an anti-inflammatory agent in the clinical treatment of dry eye.
Globular adiponectin induces a pro-inflammatory response in human astrocytic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana
Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observedmore » link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.« less
Surgical inflammatory stress: the embryo takes hold of the reins again
2013-01-01
The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient’s injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process. PMID:23374964
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi
HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrolmore » induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.« less
Barreto, Angelique
2017-06-01
If present in high enough concentrations, IL-1-Ra has the potential to inhibit Interleukin-1, the chief offender that promotes the pro-inflammatory cascade causing pain, swelling and joint dysfunction associated with osteoarthritis (OA). IL-1-Ra and growth factor levels were quantified from whole blood in this retrospective chart review investigation (n=20) using Zero and 15min incubation times respectively. The hypothesis that this process can significantly (p<0.0001) increase levels of IL-1-Ra was confirmed. Mean Arthrokinex™ induced IL-1-Ra levels reached a concentration of 13,288pg/mL and 12,809pg/mL compared to 518pg/mL at baseline, representing a 26-fold increase. Post conditioning levels of pro-inflammatories IL-1β, IL-6 and TNF α were not changed to any significant degree. The Arthrokinex™ blood conditioning process induces adequate levels of IL-1-Ra to alter the IL-1-Ra: IL-1β ratio and mitigate the inflammatory cascade, while increasing growth factors PDGF and TGF respectively. Copyright © 2017. Published by Elsevier Ltd.
Meng, Fanyong; Mambetsariev, Isa; Tian, Yufeng; Beckham, Yvonne; Meliton, Angelo; Leff, Alan; Gardel, Margaret L.; Allen, Michael J.; Birukov, Konstantin G.
2015-01-01
Reversible changes in lung microstructure accompany lung inflammation, although alterations in tissue micromechanics and their impact on inflammation remain unknown. This study investigated changes in extracellular matrix (ECM) remodeling and tissue stiffness in a model of LPS-induced inflammation and examined the role of lipoxin analog 15-epi-lipoxin A4 (eLXA4) in the reduction of stiffness-dependent exacerbation of the inflammatory process. Atomic force microscopy measurements of live lung slices were used to directly measure local tissue stiffness changes induced by intratracheal injection of LPS. Effects of LPS on ECM properties and inflammatory response were evaluated in an animal model of LPS-induced lung injury, live lung tissue slices, and pulmonary endothelial cell (EC) culture. In vivo, LPS increased perivascular stiffness in lung slices monitored by atomic force microscopy and stimulated expression of ECM proteins fibronectin, collagen I, and ECM crosslinker enzyme, lysyl oxidase. Increased stiffness and ECM remodeling escalated LPS-induced VCAM1 and ICAM1 expression and IL-8 production by lung ECs. Stiffness-dependent exacerbation of inflammatory signaling was confirmed in pulmonary ECs grown on substrates with high and low stiffness. eLXA4 inhibited LPS-increased stiffness in lung cross sections, attenuated stiffness-dependent enhancement of EC inflammatory activation, and restored lung compliance in vivo. This study shows that increased local vascular stiffness exacerbates lung inflammation. Attenuation of local stiffening of lung vasculature represents a novel mechanism of lipoxin antiinflammatory action. PMID:24992633
Defaux, Antoinette; Zurich, Marie-Gabrielle; Braissant, Olivier; Honegger, Paul; Monnet-Tschudi, Florianne
2009-05-07
Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.
Defaux, Antoinette; Zurich, Marie-Gabrielle; Braissant, Olivier; Honegger, Paul; Monnet-Tschudi, Florianne
2009-01-01
Background Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-β seems to play an important role in the regulation of central inflammation. In addition, PPAR-β agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-β agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-γ and LPS. Methods Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-γ and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-β, PPAR-γ, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. Results GW 501516 decreased the IFN-γ-induced up-regulation of TNF-α and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-β agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. Conclusion Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-β agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes. PMID:19422681
dos Santos, Michel David; Almeida, Maria Camila; Lopes, Norberto Peporine; de Souza, Glória Emília Petto
2006-11-01
Phenolic compounds are numerous and ubiquitous in the plant kingdom, being particularly present in health-promoting foods. Epidemiological evidences suggest that the consumption of polyphenol-rich foods reduces the incidence of cancer, coronary heart disease and inflammation. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Data obtained from in vivo and in vitro experiments show that CGA mostly presents antioxidant and anti-carcinogenic activities. However, the effects of CGA on the inflammatory reaction and on the related pain and fever processes have been explored less so far. Therefore, this study was designed to evaluate the anti-inflammatory, antinociceptive and antipyretic activities of CGA in rats. In comparison to control, CGA at doses 50 and 100 mg/kg inhibited carrageenin-induced paw edema beginning at the 2nd hour of the experimental procedure. Furthermore, at doses 50 and 100 mg/kg CGA also inhibited the number of flinches in the late phase of formalin-induced pain test. Such activities may be derived from the inhibitory action of CGA in the peripheral synthesis/release of inflammatory mediators involved in these responses. On the other hand, even at the highest tested dose (200 mg/kg), CGA did not inhibit the febrile response induced by lipopolysaccharide (LPS) in rats. Additional experiments are necessary in order to clarify the true target for the anti-inflammatory and analgesic effects of CGA.
Zaveri, Toral D.; Dolgova, Natalia V.; Lewis, Jamal S.; Hamaker, Kiri; Clare-Salzler, Michael J.; Keselowsky, Benjamin G.
2016-01-01
Aseptic loosening due to peri-prosthetic osteolysis is one of the primary causes for failure of artificial joint replacements. Implant-derived wear particles, often ultra-high molecular weight polyethylene (UHMWPE) microparticles, initiate an inflammatory cascade upon phagocytosis by macrophages, which leads to osteoclast recruitment and activation, ultimately resulting in osteolysis. Investigation into integrin receptors, involved in cellular interactions with biomaterial-adsorbed adhesive proteins, is of interest to understand and modulate inflammatory processes. In this work, we investigate the role of macrophage integrins Mac-1 and RGD-binding integrins in response to UHMWPE wear particles. Using integrin knockout mice as well as integrin blocking techniques, reduction in macrophage phagocytosis and inflammatory cytokine secretion is demonstrated when these receptors are either absent or blocked. Along this line, various opsonizing proteins are shown to differentially modulate microparticle uptake and macrophage secretion of inflammatory cytokines. Furthermore, using a calvarial osteolysis model it is demonstrated that both Mac-1 integrin and RGD-binding integrins modulate the particle induced osteolysis response to UHMWPE microparticles, with a 40% decrease in the area of osteolysis by the absence or blocking of these integrins, in vivo. Altogether, these findings indicate Mac-1 and RGD-binding integrins are involved in macrophage-directed inflammatory responses to UHMWPE and may serve as therapeutic targets to mitigate wear particle induced peri-prosthetic osteolysis for improved performance of implanted joints. PMID:27889664
Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.
Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen
2017-01-01
Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.
Chang, Tsong-Min; Yang, Ting-Ya; Niu, Yu-Lin; Huang, Huey-Chun
2018-06-15
Dictamni dasycarpus is a type of Chinese medicine made from the root bark of D. dasycarpus . It has been reported to show a wide spectrum of biological and pharmacological effects, for example, it has been used widely for the treatment of rheumatism, nettle rash, itching, jaundice, chronic hepatitis and skin diseases. In the current study, D. dasycarpus extract was investigated for its antioxidant and anti-inflammatory effects, as well as its capability to alleviate oxazolone-induced skin damage in mice. The possible anti-inflammatory mechanism of D. dasycarpus extract against oxidative challenge was elucidated by measuring the levels of reactive oxygen species (ROS) production, interleukin-6, Tumor necrosis factor-α, NLRP3 (NACHT, LRR and PYD domains-containing protein 3 (NALP3)) inflammasome and interleukin-1β in HaCaT cells. D. dasycarpus extract did not affect cell viability in basal conditions. The extract significantly reduced oxazolone-induced epidermal swelling compared to untreated animal in the hairless albino mice (ICR mice) model. At the molecular level, Western blot assays indicated that the D. dasycarpus extract attenuated oxazolone-induced activation of apoptosis-associated speck-like protein containing CARD (ASC), procaspase-1, NF-κB and mitogen-activated protein kinase (MAPKs) such as c-Jun N-terminal protein kinase (JNK) and p38. This study demonstrates that D. dasycarpus extract could protect skin cells against oxidative and inflammatory insult by modulating the intracellular levels of ROS, TNF-α, interleukin-1, interleukin-6, NLR family pyrin domain containing 3 (NLRP3) inflammasome generation, antioxidant enzyme activity and cell signaling pathways. D. dasycarpus extract also attenuated the expression of NF-κB in HaCaT keratinocytes and thereby effectively downregulated inflammatory responses in the skin. Furthermore, D. dasycarpus extract alleviated oxazolone-induced damage in mice. Our results suggest the potential application of D. dasycarpus extract in preventing inflammatory processes in dermatitis.
De Falco, Gianluigi; Terlizzi, Michela; Sirignano, Mariano; Commodo, Mario; D'Anna, Andrea; Aquino, Rita P; Pinto, Aldo; Sorrentino, Rosalinda
2017-02-22
Ultrafine particles (UFP) generated by combustion processes are often associated with adverse health effects. However, little is known about the inflammatory processes generated by UFP that may underlie their toxicological activity. Murine macrophages (J774.1 cells) and human peripheral blood mononuclear cells (PBMCs) were used to evaluate the molecular mechanism underlying the pro-inflammatory activity of UFP. The addition of soot particles to J774.1 cells induced a concentration-dependent release of IL-1α, IL-1β and IL-33 This effect was not associated with cell death and, in contrast to literature, was pronounced at very low concentrations (5-100 pg/ml). Similarly, UFP induced the release of IL-1α, IL-18 and IL-33 by PBMCs. However, this effect was solely observed in PBMCs obtained from smokers, as the PBMCs from non-smokers instead released higher levels of IL-10. The release of these cytokines after UFP exposure was caspase-1- and NLRP3 inflammasome-dependent in PBMCs from healthy smokers, whereas IL-1α release was calpain-dependent. These results show that UFP at very low concentrations are able to give rise to an inflammatory process that is responsible for IL-1α, IL-18 and IL-33 release, which is pronounced in PBMCs from smokers, confirming that these individuals are especially susceptible to inflammatory-based airway diseases once exposed to air pollution.
De Falco, Gianluigi; Terlizzi, Michela; Sirignano, Mariano; Commodo, Mario; D’Anna, Andrea; Aquino, Rita P.; Pinto, Aldo; Sorrentino, Rosalinda
2017-01-01
Ultrafine particles (UFP) generated by combustion processes are often associated with adverse health effects. However, little is known about the inflammatory processes generated by UFP that may underlie their toxicological activity. Murine macrophages (J774.1 cells) and human peripheral blood mononuclear cells (PBMCs) were used to evaluate the molecular mechanism underlying the pro-inflammatory activity of UFP. The addition of soot particles to J774.1 cells induced a concentration-dependent release of IL-1α, IL-1β and IL-33 This effect was not associated with cell death and, in contrast to literature, was pronounced at very low concentrations (5–100 pg/ml). Similarly, UFP induced the release of IL-1α, IL-18 and IL-33 by PBMCs. However, this effect was solely observed in PBMCs obtained from smokers, as the PBMCs from non-smokers instead released higher levels of IL-10. The release of these cytokines after UFP exposure was caspase-1- and NLRP3 inflammasome-dependent in PBMCs from healthy smokers, whereas IL-1α release was calpain-dependent. These results show that UFP at very low concentrations are able to give rise to an inflammatory process that is responsible for IL-1α, IL-18 and IL-33 release, which is pronounced in PBMCs from smokers, confirming that these individuals are especially susceptible to inflammatory-based airway diseases once exposed to air pollution. PMID:28223692
Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou
2014-01-01
Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372
Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou
2014-01-01
Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure.
Štofilová, Jana; Langerholc, Tomaž; Botta, Cristian; Treven, Primož; Gradišnik, Lidija; Salaj, Rastislav; Šoltésová, Alena; Bertková, Izabela; Hertelyová, Zdenka; Bomba, Alojz
2017-10-01
Over the past decade, it has become clear that specific probiotic lactobacilli are valuable in the prevention and treatment of infectious and inflammatory diseases of gastrointestinal tract but their successful application would benefit greatly from a better understanding of the mechanisms of individual strains. Hence, each probiotic strain should be characterized for their immune activity before being proposed for clinical applications. The aim of the study was to characterize the immunomodulatory activity of the strain Lactobacillus (L.) plantarum LS/07 in vitro using functional gut model and to study its anti-inflammatory potential in dextran sulphate sodium (DSS)-induced colitis in rats. We showed that L. plantarum LS/07 induced production of IL-10 in macrophages derived from blood monocytes as well as monocyte/macrophages cell line stimulated indirectly via enterocytes in vitro. In rat model of colitis, L. plantarum LS/07 attenuated the DSS-induced signs of inflammatory process in colon such as weight loss, diarrhoea, infiltration of inflammatory cells associated with decreased colon weight/length ratio, inhibited gut mucosa destruction and depletion of goblet cells. Moreover, the strain increased the concentration of anti-inflammatory cytokine IL-10 in mucosal tissue. In conclusion, the protective effects of L. plantarum LS/07 in the DSS-induced colitis model seem to be related to the stimulation of IL-10 and the restoration of goblet cells and indicate it as a good candidate to prevent and treat diseases associated with inflammation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Anti-inflammatory and antinociceptive activities of Croton urucurana Baillon bark.
Cordeiro, Kátia Wolff; Felipe, Josyelen Lousada; Malange, Kauê Franco; do Prado, Pâmela Rafaela; de Oliveira Figueiredo, Patrícia; Garcez, Fernanda Rodrigues; de Cássia Freitas, Karine; Garcez, Walmir Silva; Toffoli-Kadri, Mônica Cristina
2016-05-13
Croton urucurana (Euphorbiaceae) is popularly used in Brazil to treat inflammatory processes, pain, and gastric ulcers. To evaluate the anti-inflammatory and antinociceptive properties of the methanol extract from the bark of C. urucurana (MECu) in mice and identify its chemical constituents. The extract was characterized by UHPLC-DAD-ESI-Q-TOF-MS/MS. Extract doses of 25, 100, and 400mg/kg were employed in the biological assays. Evaluation of anti-inflammatory activity was based on paw edema and leukocyte recruitment into the peritoneal cavity of mice, both induced by carrageenan. Abdominal writhing caused by acetic acid and duration of formalin-induced paw-licking were the models employed to evaluate antinociceptive activity. Ten compounds were identified in the extract: (+)-gallocatechin (1), procyanidin B3 (2), (+)-catechin (3), (-)-epicatechin (4), tembetarine (5), magnoflorine (6), taspine (7), methyl-3-oxo-12-epi-barbascoate (8), methyl-12-epi-barbascoate (9), and hardwickiic acid (10). This is the first report of compounds 2, 4, 6, 7, and 10 in C. urucurana and compound 5 in the genus Croton. In addition to inhibiting paw edema and leukocyte recruitment (particularly of polymorphonuclear cells) into the peritoneal cavity of mice, MECu reduced the number of abdominal writhings induced by acetic acid and the duration of formalin-induced paw licking. The methanol extract of C. urucurana bark exhibited anti-inflammatory and antinociceptive properties, corroborating its use in folk medicine. These effects may be related to the presence of diterpenes, alkaloids, and flavonoids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[Inflammasome and its role in immunological and inflammatory response at early stage of burns].
Zhang, Fang; Li, Jiahui; Xia, Zhaofan
2014-06-01
Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.
Bernela, Manju; Ahuja, Munish; Thakur, Rajesh
2016-06-05
Bromelain-loaded katira gum nanoparticles were synthesized using 3 level optimization process and desirability approach. Nanoparticles of the optimized batch were characterized using particle size analysis, zeta potential, transmission electron microscopy and Fourier-transform infrared spectroscopy. Investigation of their in vivo anti-inflammatory activity by employing carrageenan induced rat-paw oedema method showed that encapsulation of bromelain in katira gum nanoparticles substantially enhanced its anti-inflammatory potential. This may be attributed to enhanced absorption owing to reduced particle size or to protection of bromelain from acid proteases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.
Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee
2017-08-01
Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ramakrishna, Chandran
2018-01-01
Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection. PMID:29352287
Pan, Yuqin; Lin, Wenjuan; Wang, Weiwen; Qi, Xiaoli; Wang, Donglin; Tang, Mingming
2013-06-15
Although increasing evidence demonstrates that both chronic stressors and inflammatory immune activation contribute to pathophysiology and behavioral alterations associated with major depression, little is known about the interaction effect of central inflammatory immune activation and stress on depressive-like behavior. Our previous work has shown that 14-day chronic forced swim stress induces significant depressive-like behavior. The present investigation assessed whether pro-inflammatory cytokine and anti-inflammatory cytokine challenges have differential interaction effect on depressive-like behavior induced by chronic forced swim stress in rats. The pro-inflammatory and anti-inflammatory immune challenges were achieved respectively by central administration of lipopolysaccharide (LPS), a pro-inflammatory cytokine inducer, and interleukin-10 (IL-10), an anti-inflammatory cytokine. It was found that either central LPS treatment alone or chronic forced swim stress alone significantly induced depressive-like behavior, including reduced body weight gain, reduced saccharin preference and reduced locomotor activity. However, there was no significant synergistic or additive effect of central LPS treatment and stress on depressive-like behavior. LPS treatment did not exacerbate the depressive-like behavior induced by forced swim stress. Nevertheless, IL-10 reversed depressive-like behavior induced by forced swim stress, a finding indicating that IL-10 has antidepressant effect on behavioral depression induced by stress. The present findings provide new insight into the complexity of the immunity-inflammation hypothesis of depression. Copyright © 2013 Elsevier B.V. All rights reserved.
GanedenBC30 cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro.
Jensen, Gitte S; Benson, Kathleen F; Carter, Steve G; Endres, John R
2010-03-24
This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010.Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro.The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2.Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM-induced expression of IL-10. The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system.
GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro
2010-01-01
Background This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Results Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010. Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro. The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2. Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM-induced expression of IL-10. Conclusion The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system. PMID:20331905
Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda
2016-02-01
Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.
Pałasz, Ewelina; Bąk, Agnieszka; Gąsiorowska, Anna; Niewiadomska, Grażyna
2017-01-04
Glial cells and neurotrophins play an important role in maintaining homeostasis of the CNS. Disturbances of their function can lead to a number of nervous system diseases, including Parkinson's disease (PD). Current clinical studies provide evidence that moderate physical activity adapted to the health status of PD patients can support pharmacological treatment, slow down the onset of motor impairments, and extend the patients period of independence. Physical activity, by stimulating the production and release of endogenous trophic factors, prevents the neurodegeneration of dopaminergic neurons via inhibition of inflammatory processes and the reduction of oxidative stress. The aim of this study is to present the current state of knowledge for the anti-inflammatory and neuroprotective properties of physical activity as a supportive therapy in Parkinson's disease.
Barrachina, Laura; Remacha, Ana Rosa; Soler, Lourdes; García, Natalia; Romero, Antonio; Vázquez, Francisco José; Vitoria, Arantza; Álava, María Ángeles; Lamprave, Fermín; Rodellar, Clementina
2016-12-01
Acute phase proteins are useful inflammatory markers in horses. Haptoglobin (Hp) serum level is increased in horses undergoing different inflammatory processes, including arthritis. However, Hp concentration has not been assessed in inflammatory synovial fluid (SF). The aim of the present study was to investigate the Hp response in serum and SF in horses undergoing experimentally induced arthritis. For this purpose, serum and SF samples were collected from 12 animals before amphotericin B-induced arthritis was created (T0, healthy) and 15days after the lesion induction (T1, joint inflammation) and Hp was determined by single radial immunodiffusion. The Hp increase between T0 and T1 was significant in both serum and SF, and serum Hp concentration at T0 was significantly higher than in SF, but significant differences were not found at T1, indicating a higher Hp increase in SF. A significant positive correlation for Hp concentration between serum and SF samples was found. These results highlight the potential usefulness of Hp as inflammatory marker in horses, showing for the first time the increase of Hp in SF from joint inflammation in the horse. Copyright © 2016 Elsevier B.V. All rights reserved.
Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J
2016-08-01
Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.
Schwaiger, Stefan; Zeller, Iris; Pölzelbauer, Petra; Frotschnig, Sandra; Laufer, Günther; Messner, Barbara; Pieri, Valerio; Stuppner, Hermann; Bernhard, David
2011-01-01
Aim of the study The performed investigations aimed on the identification of the anti-inflammatory principal of extracts of leaves of Sambucus ebulus L. (dwarf elder) in order to rationalize the traditional use of this plant for the treatment of chronically inflammatory diseases. Materials and methods Dwarf elder leaf extract was subjected to activity guided fractionation using inhibition of TNFα induced expression of vascular cell adhesion molecule 1 (VCAM-1) on the surface of human umbilical vein endothelial cells (HUVECs) as monitoring tool (positive control: parthenolide 10 μM, VCAM-1 expression (% of control): 5.35 ± 0.38%). Results Bio-guided isolation resulted in identification of ursolic acid as anti-inflammatory principal. Besides its inhibitory effects against TNFα induced expression of VCAM-1 (IC50 6.25 μM), ursolic acid inhibits also TNFα induced expression of ICAM-1 (IC50 value between 3.13 and 6.25 μM) (positive control: parthenolide 10 μM, ICAM-1 expression (% of control): 38.89 ± 16.6%). Toxic effects of ursolic acid on HUVECs can be drastically reduced using an enriched extract instead of the pure compound. Conclusions Our findings suggest an additional mechanism of the anti-inflammatory activity of ursolic acid by demonstrating its ability to inhibit TNFα-stimulated expression of VCAM-1 and ICAM-1 and support the traditional use of extracts and preparations of Sambucus ebulus L., rich in ursolic acid, for the treatment of chronically inflammatory processes. PMID:21040770
Regulatory effects of fisetin on microglial activation.
Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu
2014-06-26
Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.
Analgesic activity of piracetam: effect on cytokine production and oxidative stress.
Navarro, Suelen A; Serafim, Karla G G; Mizokami, Sandra S; Hohmann, Miriam S N; Casagrande, Rubia; Verri, Waldiceu A
2013-04-01
Piracetam is a prototype of nootropic drugs used to improve cognitive impairment. However, recent studies suggest that piracetam can have analgesic and anti-inflammatory effects. Inflammatory pain is the result of a process that depends on neutrophil migration, cytokines and prostanoids release and oxidative stress. We analyze whether piracetam has anti-nociceptive effects and its mechanisms. Per oral pretreatment with piracetam reduced in a dose-dependent manner the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, formalin and complete Freund's adjuvant. Piracetam also diminished carrageenin-induced mechanical and thermal hyperalgesia, myeloperoxidase activity, and TNF-α-induced mechanical hyperalgesia. Piracetam presented analgesic effects as post-treatment and local paw treatment. The analgesic mechanisms of piracetam were related to inhibition of carrageenin- and TNF-α-induced production of IL-1β as well as prevention of carrageenin-induced decrease of reduced glutathione, ferric reducing ability and free radical scavenging ability in the paw. These results demonstrate that piracetam presents analgesic activity upon a variety of inflammatory stimuli by a mechanism dependent on inhibition of cytokine production and oxidative stress. Considering its safety and clinical use for cognitive function, it is possible that piracetam represents a novel perspective of analgesic. Copyright © 2013 Elsevier Inc. All rights reserved.
Cherdantseva, Lilia A; Potapova, Oksana V; Sharkova, Tatyana V; Belyaeva, Yana Yu; Shkurupiy, Vyacheslav A
2014-01-01
Helicobacter pylori is one of the most common causes of chronic gastritis. With the development of the disease cellular inflammatory infiltrates composed of lymphocytes, plasma cells, and macrophages are formed in epithelium and lamina propria of the stomach. These cells are capable of secreting a number of active substances, including inducible nitric oxide synthase (iNOS). We examined the relationship between H. pylori and secretion of iNOS by cells of inflammatory infiltrates in chronic gastritis by light microscopy and immunohistochemistry. The data obtained indicate that stimulation of H. pylori immune system cells of the host organism during development of chronic gastritis causes increase in number of macrophages and lymphocytes in the inflammatory infiltrate of the gastric mucosa. This is accompanied with increased expression of inducible NO-synthase with excess free radicals in the tissues, which leads to secondary alterations and exacerbates the inflammation with impaired regeneration processes.
The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis.
Jackson, J K; Higo, T; Hunter, W L; Burt, H M
2006-04-01
Curcumin and quercetin are antioxidant molecules with anti-proliferative, anti-inflammatory and immunosuppressive activities. The objective of this study was to investigate the inhibitory activity of these agents using four assays of inflammatory aspects of arthritis. Crystal-induced neutrophil activation was measured by luminol-dependent chemiluminescence. Synoviocyte proliferation was measured by an MTS assay using HIG-82 rabbit synoviocytes in cell culture. Chondrocyte (cultured primary cells) expression of the matrix metalloproteinases collagenase and stromelysin was measured by Northern Blot analysis. Angiogenesis was measured using the chorioallantoic membrane of the chick embryo. Both agents inhibited neutrophil activation, synoviocyte proliferation and angiogenesis. Curcumin strongly inhibited collagenase and stromelysin expression at micromolar concentrations whereas quercetin had no effect in this assay. These studies suggest that curcumin and to a lesser extent quercetin may offer therapeutic potential for the treatment of crystal-induced arthritis or rheumatoid arthritis.
Kim, Min-Jung; Han, Jong-Min; Jin, Yue-Yan; Baek, Nam-In; Bang, Myun-Ho; Chung, Hae-Gon; Choi, Myung-Sook; Lee, Kyung-Tae; Sok, Dai-Eun; Jeong, Tae-Sook
2008-04-01
Oxidized low-density lipoprotein (oxLDL) plays a key role in the inflammatory processes of atherosclerosis. Jaceosidin isolated from the methanolic extracts of the aerial parts of Artemisia princeps Pampanini cv. Sajabal was tested for antioxidant and anti-inflammatory activities. Jaceosidin inhibited the Cu(2+)-mediated LDL oxidation with IC(50) values of 10.2 microM in the thiobarbituric acid-reactive substances (TBARS) assay as well as the macrophage-mediated LDL oxidation. The antioxidant activities of jaceosidin were exhibited in the conjugated diene production, relative electrophoretic mobility, and apoB-100 fragmentation on copper-mediated LDL oxidation. Jaceosidin also inhibited the generation of reactive oxygen species (ROS) concerning in regulation of NF-kappaB signaling. And jaceosidin inhibited nuclear factor-kappa B (NF-kappaB) activity, nitric oxide (NO) production, and suppressed expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages.
Inflammasome Activity in Non-Microbial Lung Inflammation
Ather, Jennifer L.; Martin, Rebecca A.; Ckless, Karina; Poynter, Matthew E.
2015-01-01
The understanding of interleukin-1 (IL-1) family cytokines in inflammatory disease has rapidly developed, due in part to the discovery and characterization of inflammasomes, which are multi-subunit intracellular protein scaffolds principally enabling recognition of a myriad of cellular stimuli, leading to the activation of caspase-1 and the processing of IL-1β and IL-18. Studies continue to elucidate the role of inflammasomes in immune responses induced by both microbes and environmental factors. This review focuses on the current understanding of inflammasome activity in the lung, with particular focus on the non-microbial instigators of inflammasome activation, including inhaled antigens, oxidants, cigarette smoke, diesel exhaust particles, mineral fibers, and engineered nanomaterials, as well as exposure to trauma and pre-existing inflammatory conditions such as metabolic syndrome. Inflammasome activity in these sterile inflammatory states contribute to diseases including asthma, chronic obstructive disease, acute lung injury, ventilator-induced lung injury, pulmonary fibrosis, and lung cancer. PMID:25642415
Aguayo-Patrón, Sandra V; Calderón de la Barca, Ana M
2017-11-15
Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for obesity and chronic non-transmissible diseases; additionally, they could impact in the prevalence of autoimmune diseases such as type 1 diabetes and celiac disease. The rationale is that the nutritional composition of ultra-processed foodstuffs can induce gut dysbiosis, promoting a pro-inflammatory response and consequently, a "leaky gut". These factors have been associated with increased risk of autoimmunity in genetically predisposed children. In addition, food emulsifiers, commonly used in ultra-processed products could modify the gut microbiota and intestinal permeability, which could increase the risk of autoimmunity. In contrast, unprocessed and minimally processed food-based diets have shown the capacity to promote gut microbiota eubiosis, anti-inflammatory response, and epithelial integrity, through bacterial butyrate production. Thus, to decrease the susceptibility to autoimmunity, genetically predisposed children should avoid ultra-processed food products and encourage the consumption of fresh and minimally processed foods.
Aβ-Induced Inflammatory Processes in Microglia Cells of APP23 Transgenic Mice
Bornemann, Klaus D.; Wiederhold, Karl-Heinz; Pauli, Chantal; Ermini, Florian; Stalder, Martina; Schnell, Lisa; Sommer, Bernd; Jucker, Mathias; Staufenbiel, Matthias
2001-01-01
A microglial response is part of the inflammatory processes in Alzheimer’s disease (AD). We have used APP23 transgenic mice overexpressing human amyloid precursor protein with the Swedish mutation to characterize this microglia response to amyloid deposits in aged mice. Analyses with MAC-1 and F4/80 antibodies as well as in vivo labeling with bromodeoxyuridine demonstrate that microglia in the plaque vicinity are in an activated state and that proliferation contributes to their accumulation at the plaque periphery. The amyloid-induced microglia activation may be mediated by scavenger receptor A, which is generally elevated, whereas the increased immunostaining of the receptor for advanced glycation end products is more restricted. Although components of the phagocytic machinery such as macrosialin and Fc receptors are increased in activated microglia, efficient clearance of amyloid is missing seemingly because of the lack of amyloid-bound autoantibodies. Similarly, although up-regulation of major histocompatibility complex class II (IA) points toward an intact antigen-presenting function of microglia, lack of T and B lymphocytes does not indicate a cell-mediated immune response in the brains of APP23 mice. The similar characteristics of microglia in the APP23 mice and in AD render the mouse model suitable to study the role of inflammatory processes during AD pathogenesis. PMID:11141480
Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee
2017-07-10
Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.
Role of Antioxidants and Natural Products in Inflammation
Fard, Masoumeh Tangestani; Tan, Woan Sean; Gothai, Sivapragasam; Kumar, S. Suresh
2016-01-01
Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases. PMID:27803762
Kudasova, E O; Vlasova, L F; Semenov, D E; Lushnikova, E L
2017-03-01
Morphological analysis of the subcutaneous fat was performed in rats after subcutaneous implantation of basic dental plastic materials with different hydrophobic and hydrophilic properties. It was shown that subcutaneous implantation of dental plastics with mostly hydrophobic surface and low biocompatibility induced destructive and inflammatory processes of various intensities, sometimes with allergic component; morphological signs of processes persisted for 6 weeks. Modification of basic plastics using glow-discharge plasma and enhancement of their hydrophilicity and biocompatibility significantly reduced the intensity of destructive and inflammatory processes and ensured more rapid (in 2 weeks) repair of the destroyed tissues with the formation of fibrous capsule around the implant.
Cipriani, B; Borsellino, G; Knowles, H; Tramonti, D; Cavaliere, F; Bernardi, G; Battistini, L; Brosnan, C F
2001-09-15
Curcumin, in addition to its role as a spice, has been used for centuries to treat inflammatory disorders. Although the mechanism of action remains unclear, it has been shown to inhibit the activation of NF-kappaB and AP-1, transcription factors required for induction of many proinflammatory mediators. Due to its low toxicity it is currently under consideration as a broad anti-inflammatory, anti-tumor cell agent. In this study we investigated whether curcumin inhibited the response of gammadelta T cells to protease-resistant phosphorylated derivatives found in the cell wall of many pathogens. The results showed that curcumin levels > or =30 microM profoundly inhibited isopentenyl pyrophosphate-induced release of the chemokines macrophage inflammatory protein-1alpha and -1beta and RANTES. Curcumin also blocked isopentenyl pyrophosphate-induced activation of NF-kappaB and AP-1. Commencing around 16 h, treatment with curcumin lead to the induction of cell death that could not be reversed by APC, IL-15, or IL-2. This cytotoxicity was associated with increased annexin V reactivity, nuclear expression of active caspase-3, cleavage of poly(ADP-ribose) polymerase, translocation of apoptosis-inducing factor to the nucleus, and morphological evidence of nuclear disintegration. However, curcumin led to only large scale DNA chromatolysis, as determined by a combination of TUNEL staining and pulse-field and agarose gel electrophoresis, suggesting a predominantly apoptosis-inducing factor-mediated cell death process. We conclude that gammadelta T cells activated by these ubiquitous Ags are highly sensitive to curcumin, and that this effect may contribute to the anti-inflammatory properties of this compound.
Ramnath, Raina Devi; Sun, Jia; Adhikari, Sharmila; Bhatia, Madhav
2007-01-01
Abstract Substance P, acting via its neurokinin 1 receptor (NK1 R), plays an important role in mediating a variety of inflammatory processes. Its interaction with chemokines is known to play a crucial role in the pathogenesis of acute pancreatitis. In pancreatic acinar cells, substance P stimulates the release of NFκB-driven chemokines. However, the signal transduction pathways by which substance P-NK1 R interaction induces chemokine production are still unclear. To that end, we went on to examine the participation of mitogen-activated protein kinases (MAPKs) in substance P-induced synthesis of pro-inflammatory chemokines, monocyte chemoanractant protein-1 (MCP-I), macrophage inflammatory protein-lα (MIP-lα) and macrophage inflammatory protein-2 (MIP-2), in pancreatic acini. In this study, we observed a time-dependent activation of ERK1/2, c-Jun N-terminal kinase (JNK), NFκB and activator protein-1 (AP-1) when pancreatic acini were stimulated with substance P. Moreover, substance P-induced ERK 1/2, JNK, NFκB and AP-1 activation as well as chemokine synthesis were blocked by pre-treatment with either extracellular signal-regulated protein kinase kinase 1 (MEK1) inhibitor or JNK inhibitor. In addition, substance P-induced activation of ERK 112, JNK, NFκB and AP-1-driven chemokine production were attenuated by CP96345, a selective NK1 R antagonist, in pancreatic acinar cells. Taken together, these results suggest that substance P-NK1 R induced chemokine production depends on the activation of MAPKs-mediated NFκB and AP-1 signalling pathways in mouse pancreatic acini. PMID:18205703
Morrison, Martine; van der Heijden, Roel; Heeringa, Peter; Kaijzel, Eric; Verschuren, Lars; Blomhoff, Rune; Kooistra, Teake; Kleemann, Robert
2014-03-01
Previous studies investigating flavanol-rich foods provide indications for potential cardioprotective effects of these foods, but the effects of individual flavanols remain unclear. We investigated whether the flavanol epicatechin can reduce diet-induced atherosclerosis, with particular emphasis on the cardiovascular risk factors dyslipidaemia and inflammation. ApoE*3-Leiden mice were fed a cholesterol-containing atherogenic diet with or without epicatechin (0.1% w/w) to study effects on early- and late-stage atherosclerosis (8 w and 20 w). In vivo effects of epicatechin on diet-induced inflammation were studied in human-CRP transgenic mice and NFκB-luciferase reporter mice. Epicatechin attenuated atherosclerotic lesion area in ApoE*3-Leiden mice by 27%, without affecting plasma lipids. This anti-atherogenic effect of epicatechin was specific to the severe lesion types, with no effect on mild lesions. Epicatechin mitigated diet-induced increases in plasma SAA (in ApoE*3-Leiden mice) and plasma human-CRP (in human-CRP transgenic mice). Microarray analysis of aortic gene expression revealed an attenuating effect of epicatechin on several diet-induced pro-atherogenic inflammatory processes in the aorta (e.g. chemotaxis of cells, matrix remodelling), regulated by NFκB. These findings were confirmed immunohistochemically by reduced lesional neutrophil content in HCE, and by inhibition of diet-induced NFκB activity in epicatechin-treated NFκB-luciferase reporter mice. Epicatechin attenuates development of atherosclerosis and impairs lesion progression from mild to severe lesions in absence of an effect on dyslipidaemia. The observed reduction of circulating inflammatory risk factors by epicatechin (e.g. SAA, human-CRP), as well as its local anti-inflammatory activity in the vessel wall, provide a rationale for epicatechin's anti-atherogenic effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin
2017-03-01
Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.
Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan
2013-03-22
Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.
Lamraoui, Amal; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima
2015-10-01
Scorpion venoms are known to cause different inflammatory disorders through complex mechanisms in various tissues. In the study here, the involvement of phospholipase A2 (PLA2) and cyclo-oxygenase (COX)-derived metabolites in hepatic and renal inflammation responses were examined. Mice were envenomed with Androctonus australis hector scorpion venom in the absence or presence of inhibitors that can interfere with lipid inflammatory mediator synthesis, i.e., dexamethasone (PLA2 inhibitor), indomethacin (non-selective COX-1/COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor). The inflammatory response was assessed by evaluating vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels, and by histologic and functional analyses of the liver and kidney. Results revealed that the venom alone induced an inflammatory response in this tissues marked by increased microvascular permeability and inflammatory cell infiltration, increases in levels of nitric oxide and lipid peroxidation, and decreases in antioxidant defense. Moreover, significant alterations in the histological architecture of these organs were associated with increased serum levels of some metabolic enzymes, as well as urea and uric acid. Pre-treatment of mice with dexamethasone led to significant decreases of the inflammatory disorders in the hepatic parenchyma; celecoxib pre-treatment seemed to be more effective against renal inflammation. Indomethacin pre-treatment only slightly reduced the inflammatory disorders in the tissues. These results suggest that the induced inflammation response in liver was mediated mainly by PLA2 activation, while the renal inflammatory process was mediated by prostaglandin formation by COX-2. These findings provide additional insight toward the understanding of activated pathways and related mechanisms involved in scorpion envenoming syndrome.
2013-01-01
Background Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. Results EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat’s paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. Conclusions The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats. PMID:23517865
APOC3 induces endothelial dysfunction through TNF-α and JAM-1.
Tao, Yun; Xiong, Yisong; Wang, Huimin; Chu, Shaopeng; Zhong, Renqian; Wang, Jianxin; Wang, Guihua; Ren, Xiumei; Yu, Juan
2016-09-13
The fatality rate for cardiovascular disease (CVD) has increased in recent years and higher levels of triglyceride have been shown to be an independent risk factor for atherosclerotic CVD. Dysfunction of endothelial cells (ECs) is also a key factor of CVD. APOC3 is an important molecule in lipid metabolism that is closely associated with hyperlipidemia and an increased risk of developing CVD. But the direct effects of APOC3 on ECs were still unknown. This study was aimed at determining the effects of APOC3 on inflammation, chemotaxis and exudation in ECs. ELISA, qRT-PCR, immunofluorescence, flow cytometry and transwell assays were used to investigate the effects of APOC3 on human umbilical vein endothelial cells (HUVECs). SiRNA-induced TNF-α and JAM-1 silencing were used to observe how APOC3 influenced the inflammatory process in the ECs. Our results showed that APOC3 was closely associated with the inflammatory process in ECs, and that this process was characterized by the increased expression of TNF-α. Inflammatory processes further disrupted the tight junctions (TJs) between HUVECs by causing increased expression of JAM-1. JAM-1 was involved in maintaining the integrity of TJs, and it promoted the assembly of platelets and the exudation of leukocytes. Changes in its expression promoted chemotaxis and the exudation of ECs, which contributed to atherosclerosis. While the integrity of the TJs was disrupted, the adhesion of THP-1 cells to HUVECs was also increased by APOC3. In this study, we describe the mechanism by which APOC3 causes inflammation, chemotaxis and the exudation of ECs, and we suggest that controlling the inflammatory reactions that are caused by APOC3 may be a new method to treat CVD.
Alves, C Henrique; Farrell, Eric; Vis, Marijn; Colin, Edgar M; Lubberts, Erik
2016-08-01
Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions.
Cao, Xing-Yuan; Dong, Mei; Shen, Jian-Zhong; Wu, Bei-Bei; Wu, Cong-Ming; Du, Xiang-Dang; Wang, Zhuo; Qi, Yi-Tao; Li, Bing-Yu
2006-05-01
Macrolides have been reported to modify the host immune and inflammatory responses both in vivo and in vitro. We examined the in vitro effect of the macrolides tilmicosin and tylosin, which are only used in the veterinary clinic, on the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and cytokines by lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and mouse peripheral blood mononuclear cells (PBMCs). Compared with 5 microg/mL, tilmicosin and tylosin concentrations of 10 microg/mL and 20 microg/mL significantly decreased the production of 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), PGE(2), NO, tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta and IL-6, and increased IL-10 production. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression were also significantly reduced. These results support the opinion that macrolides may exert an anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process.
Jin, Chang Hyun; Park, Han Chul; So, Yangkang; Nam, Bomi; Han, Sung Nim; Kim, Jin-Baek
2017-02-17
In this study, we aimed to compare supercritical carbon dioxide extraction and ethanol extraction for isoegomaketone (IK) content in perilla leaf extracts and to identify the optimal method. We measured the IK concentration using HPLC and inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells from the extracts. The IK concentration was 10-fold higher in perilla leaf extracts by supercritical carbon dioxide extraction (SFE) compared with that in perilla leaf extracts by ethanol extraction (EE). When the extracts were treated in LPS-induced RAW 264.7 cells at 25 μg/mL, the SFE inhibited the expression of inflammatory mediators such as nitric oxide (NO), monocyte chemoattractant protein-1 (MCP-1), interleutkin-6 (IL-6), interferon-β (IFN-β), and inducible nitric oxide synthase (iNOS) to a much greater extent compared with EE. Taken together, supercritical carbon dioxide extraction is considered the optimal process for obtaining high IK content and anti-inflammatory activities in leaf extracts from the P. frutescens Britt. radiation mutant.
Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele
2016-01-01
Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104
Tonin, Talita Dacroce; Thiesen, Liliani Carolini; de Oliveira Nunes, Maria Luisa; Broering, Milena Fronza; Donato, Marcos Paulo; Goss, Marina Jagielski; Petreanu, Marcel; Niero, Rivaldo; Machado, Isabel Daufenback; Santin, José Roberto
2016-11-01
Here, we evaluate the anti-inflammatory and wound-healing effects of methanolic crude extract obtained from aerial parts (leaves and branches) of Rubus imperialis Chum. Schl. (Rosaceae) and the pure compound niga-ichigoside F1. Anti-inflammatory activity was determined in vivo and in vitro, and the healing effect was evaluated in surgical lesions in mice skin. The 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay and H 2 O 2 -induced oxidative stress were used to determine antioxidant activity. The efferocytosis activity was also determined. The data obtained show that the extract of R. imperialis promote reduction in the inflammatory process induced by lipopolysaccharide (LPS) or carrageenan in the air pouch model; the effects could be reinforced by nitric oxide reduction in LPS-stimulated neutrophils, and an increase in the efferocytosis. The extract showed wound healing property in vitro and in vivo, scavenging activity for DPPH, and cytoprotection in the H 2 O 2 -induced oxidative stress in L929 cells. In addition, the compound niga-ichigoside F1 was able to reduce the NO secretion; however, it did not present wound-healing activity in vitro. Together, the data obtained point out the modulatory actions of R. imperialis extract on leukocyte migration to the inflamed tissue, the antioxidant, and the pro-resolutive activity. However, the R. imperialis anti-inflammatory activity may be mediated in parts by niga-ichigoside F1, and on wound healing do not correlated with niga-ichigoside F1.
Meshram, Girish Gulab; Kumar, Anil; Rizvi, Waseem; Tripathi, C.D.; Khan, R.A.
2015-01-01
Albizzia lebbeck Benth. (Mimosaceae) is a medicinal tree used to treat several inflammatory ailments in the Indian traditional Ayurvedic system of medicine. The aim of the present study was to evaluate the possible anti-inflammatory activity of the aqueous (AE) and ethanolic (EE) extracts of the leaves of A. lebbeck to support the ethnopharmacological claims. The study was carried out using Wistar rats (100–150 g). The AE and EE were prepared using the Soxhlet extraction process. The anti-inflammatory activity of the AE and EE of the leaves of A. lebbeck were studied using carrageenan-induced paw edema and cotton pellet-induced granuloma models. The AE and EE of the leaves of A. lebbeck at doses of 50, 100, and 200 mg/kg p.o. (oral administration) showed a dose-dependent and significant (p < 0.05) inhibition of carrageenan-induced hind paw edema with maximum percentage inhibition (PI) values of 22.34, 30.85, 39.36 and 22.53, 32.98, 42.55, respectively. The AE and EE at doses of 50, 100, 200 mg/kg p.o. significantly (p < 0.05) inhibited granuloma formation with PI values of 19.07, 27.57, 38.55 and 23.93, 32.23, 42.33, respectively. The AE and EE of the leaves of A. lebbeck showed significant (p < 0.05) anti-inflammatory activity. PMID:27114941
Meshram, Girish Gulab; Kumar, Anil; Rizvi, Waseem; Tripathi, C D; Khan, R A
2016-04-01
Albizzia lebbeck Benth. (Mimosaceae) is a medicinal tree used to treat several inflammatory ailments in the Indian traditional Ayurvedic system of medicine. The aim of the present study was to evaluate the possible anti-inflammatory activity of the aqueous (AE) and ethanolic (EE) extracts of the leaves of A. lebbeck to support the ethnopharmacological claims. The study was carried out using Wistar rats (100-150 g). The AE and EE were prepared using the Soxhlet extraction process. The anti-inflammatory activity of the AE and EE of the leaves of A. lebbeck were studied using carrageenan-induced paw edema and cotton pellet-induced granuloma models. The AE and EE of the leaves of A. lebbeck at doses of 50, 100, and 200 mg/kg p.o. (oral administration) showed a dose-dependent and significant (p < 0.05) inhibition of carrageenan-induced hind paw edema with maximum percentage inhibition (PI) values of 22.34, 30.85, 39.36 and 22.53, 32.98, 42.55, respectively. The AE and EE at doses of 50, 100, 200 mg/kg p.o. significantly (p < 0.05) inhibited granuloma formation with PI values of 19.07, 27.57, 38.55 and 23.93, 32.23, 42.33, respectively. The AE and EE of the leaves of A. lebbeck showed significant (p < 0.05) anti-inflammatory activity.
Scortegagna, Marzia; Cataisson, Christophe; Martin, Rebecca J.; Hicklin, Daniel J.; Schreiber, Robert D.; Yuspa, Stuart H.
2008-01-01
Hypoxia inducible factor-1 (HIF-1) is a master regulatory transcription factor controlling multiple cell-autonomous and non–cell-autonomous processes, such as metabolism, angiogenesis, matrix invasion, and cancer metastasis. Here we used a new line of transgenic mice with constitutive gain of HIF-1 function in basal keratinocytes and demonstrated a signaling pathway from HIF-1 to nuclear factor κ B (NFκB) activation to enhanced epithelial chemokine and cytokine elaboration. This pathway was responsible for a phenotypically silent accumulation of stromal inflammatory cells and a marked inflammatory hypersensitivity to a single 12-O-tetradecanoylphorbol-13-acetate (TPA) challenge. HIF-1–induced NFκB activation was composed of 2 elements, IκB hyperphosphorylation and phosphorylation of Ser276 on p65, enhancing p65 nuclear localization and transcriptional activity, respectively. NFκB transcriptional targets macrophage inflammatory protein-2 (MIP-2/CXCL2/3), keratinocyte chemokine (KC/CXCL1), and tumor necrosis factor [alfa] (TNFα) were constitutively up-regulated and further increased after TPA challenge both in cultured keratinocytes and in transgenic mice. Whole animal KC, MIP-2, or TNFα immunodepletion each abrogated TPA-induced inflammation, whereas blockade of either VEGF or placenta growth factor (PlGF) signaling did not affect transgenic inflammatory hyper-responsiveness. Thus, epithelial HIF-1 gain of function remodels the local environment by cell-autonomous NFκB-mediated chemokine and cytokine secretion, which may be another mechanism by which HIF-1 facilitates either inflammatory diseases or malignant progression. PMID:18199827
Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang
2016-01-01
Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases. PMID:27390516
Ge, Xiangting; Feng, Zhiguo; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Xu, Fengli; Fu, Lili; Shan, Xiaoou; Dai, Yuanrong; Zhang, Yali; Liang, Guang
2016-01-01
Sepsis remains a leading cause of death worldwide. Despite years of extensive research, effective drugs to treat sepsis in the clinic are lacking. In this study, we found a novel imidazopyridine derivative, X22, which has powerful anti-inflammatory activity. X22 dose-dependently inhibited lipopolysaccharide (LPS)-induced proinflammatory cytokine production in mouse primary peritoneal macrophages and RAW 264.7 macrophages. X22 also downregulated the LPS-induced proinflammatory gene expression in vitro. In vivo, X22 exhibited a significant protection against LPS-induced death. Pretreatment or treatment with X22 attenuated the sepsis-induced lung and liver injury by inhibiting the inflammatory response. In addition, X22 showed protection against LPS-induced acute lung injury. We additionally found that pretreatment with X22 reduced the inflammatory pain in the acetic acid and formalin models and reduced the dimethylbenzene-induced ear swelling and acetic acid-increased vascular permeability. Together, these data confirmed that X22 has multiple anti-inflammatory effects and may be a potential therapeutic option in the treatment of inflammatory diseases.
Metformin activation of AMPK suppresses AGE-induced inflammatory response in hNSCs.
Chung, Ming-Min; Nicol, Christopher J; Cheng, Yi-Chuan; Lin, Kuan-Hung; Chen, Yen-Lin; Pei, Dee; Lin, Chien-Hung; Shih, Yi-Nuo; Yen, Chia-Hui; Chen, Shiang-Jiuun; Huang, Rong-Nan; Chiang, Ming-Chang
2017-03-01
A growing body of evidence suggests type 2 diabetes mellitus (T2DM) is linked to neurodegenerative diseases such as Alzheimer's disease (AD). Although the precise mechanisms remain unclear, T2DM may exacerbate neurodegenerative processes. AMP-activated protein kinase (AMPK) signaling is an evolutionary preserved pathway that is important during homeostatic energy biogenesis responses at both the cellular and whole-body levels. Metformin, a ubiquitously prescribed anti-diabetic drug, exerts its effects by AMPK activation. However, while the roles of AMPK as a metabolic mediator are generally well understood, its performance in neuroprotection and neurodegeneration are not yet well defined. Given hyperglycemia is accompanied by an accelerated rate of advanced glycosylation end product (AGE) formation, which is associated with the pathogenesis of diabetic neuronal impairment and, inflammatory response, clarification of the role of AMPK signaling in these processes is needed. Therefore, we tested the hypothesis that metformin, an AMPK activator, protects against diabetic AGE induced neuronal impairment in human neural stem cells (hNSCs). In the present study, hNSCs exposed to AGE had significantly reduced cell viability, which correlated with elevated inflammatory cytokine expression, such as IL-1α, IL-1β, IL-2, IL-6, IL-12 and TNF-α. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. In addition, metformin rescued the transcript and protein expression levels of acetyl-CoA carboxylase (ACC) and inhibitory kappa B kinase (IKK) in AGE-treated hNSCs. NF-κB is a transcription factor with a key role in the expression of a variety of genes involved in inflammatory responses, and metformin did prevent the AGE-mediated increase in NF-κB mRNA and protein levels in the hNSCs exposed to AGE. Indeed, co-treatment with metformin significantly restored inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) levels in AGE-treated hNSCs. These findings extend our understanding of the central role of AMPK in AGE induced inflammatory responses, which increase the risk of neurodegeneration in diabetic patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Vogl, Sylvia; Picker, Paolo; Mihaly-Bison, Judit; Fakhrudin, Nanang; Atanasov, Atanas G.; Heiss, Elke H.; Wawrosch, Christoph; Reznicek, Gottfried; Dirsch, Verena M.; Saukel, Johannes; Kopp, Brigitte
2013-01-01
Ethnopharmacological relevance In Austria, like in most Western countries, knowledge about traditional medicinal plants is becoming scarce. Searching the literature concerning Austria's ethnomedicine reveals its scant scientific exploration. Aiming to substantiate the potential of medicinal plants traditionally used in Austria, 63 plant species or genera with claimed anti-inflammatory properties listed in the VOLKSMED database were assessed for their in vitro anti-inflammatory activity. Material and methods 71 herbal drugs from 63 plant species or genera were extracted using solvents of varying polarities and subsequently depleted from the bulk constituents, chlorophylls and tannins to avoid possible interferences with the assays. The obtained 257 extracts were assessed for their in vitro anti-inflammatory activity. The expression of the inflammatory mediators E-selectin and interleukin-8 (IL-8), induced by the inflammatory stimuli tumor necrosis factor alpha (TNF-α) and the bacterial product lipopolysaccharide (LPS) was measured in endothelial cells. The potential of the extracts to activate the nuclear factors PPARα and PPARγ and to inhibit TNF-α-induced activation of the nuclear factor-kappa B (NF-κB) in HEK293 cells was determined by luciferase reporter gene assays. Results In total, extracts from 67 of the 71 assessed herbal drugs revealed anti-inflammatory activity in the applied in vitro test systems. Thereby, 30 could downregulate E-selectin or IL-8 gene expression, 28 were strong activators of PPARα or PPARγ (inducing activation of more than 2-fold at a concentration of 10 µg/mL) and 21 evoked a strong inhibition of NF-κB (inhibition of more than 80% at 10 µg/mL). Conclusion Our research supports the efficacy of herbal drugs reported in Austrian folk medicine used for ailments associated with inflammatory processes. Hence, an ethnopharmacological screening approach is a useful tool for the discovery of new drug leads. PMID:23770053
Ojha, Durbadal; Mukherjee, Hemanta; Mondal, Supriya; Jena, Aditya; Dwivedi, Ved Prakash; Mondal, Keshab C; Malhotra, Bharti; Samanta, Amalesh; Chattopadhyay, Debprasad
2014-01-01
Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB) for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA), using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2), and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12). Further, we determine the toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), c-Jun N-terminal kinases (JNK), nuclear factor kappa-B cells (NF-κB), and NF-kB inhibitor alpha (IK-Bα) by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway.
Ojha, Durbadal; Mukherjee, Hemanta; Mondal, Supriya; Jena, Aditya; Dwivedi, Ved Prakash; Mondal, Keshab C.; Malhotra, Bharti; Samanta, Amalesh; Chattopadhyay, Debprasad
2014-01-01
Inflammation is part of self-limiting non-specific immune response, which occurs during bodily injury. In some disorders the inflammatory process becomes continuous, leading to the development of chronic inflammatory diseases including cardiovascular diseases, diabetes, cancer etc. Several Indian tribes used the bark of Odina wodier (OWB) for treating inflammatory disorders. Thus, we have evaluated the immunotherapeutic potential of OWB methanol extract and its major constituent chlorogenic acid (CA), using three popular in vivo antiinflammatory models: Carrageenan- and Dextran-induced paw edema, Cotton pellet granuloma, and Acetic acid-induced vascular permeability. To elucidate the possible anti-inflammatory mechanism of action we determine the level of major inflammatory mediators (NO, iNOS, COX-2-dependent prostaglandin E2 or PGE2), and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-12). Further, we determine the toll-like receptor 4 (TLR4), Myeloid differentiation primary response gene 88 (MyD88), c-Jun N-terminal kinases (JNK), nuclear factor kappa-B cells (NF-κB), and NF-kB inhibitor alpha (IK-Bα) by protein and mRNA expression, and Western blot analysis in drug treated LPS-induced murine macrophage model. Moreover, we determined the acute and sub-acute toxicity of OWB extract in BALB/c mice. Our study demonstrated a significant anti-inflammatory activity of OWB extract and CA along with the inhibition of TNF-α, IL-1β, IL-6 and IL-12 expressions. Further, the expression of TLR4, NF-κBp65, MyD88, iNOS and COX-2 molecules were reduced in drug-treated groups, but not in the LPS-stimulated untreated or control groups, Thus, our results collectively indicated that the OWB extract and CA can efficiently inhibit inflammation through the down regulation of TLR4/MyD88/NF-kB signaling pathway. PMID:25153081
Yu, Tao; Rhee, Man Hee; Lee, Jongsung; Kim, Seung Hyung; Yang, Yanyan; Kim, Han Gyung; Kim, Yong; Kim, Chaekyun; Kwak, Yi-Seong; Kim, Jong-Hoon; Cho, Jae Youl
2016-01-01
Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng's various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that G-Rc may be a major component of KRG with useful anti-inflammatory properties due to its suppression of IRF-3 and AP-1 pathways.
Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman
2017-03-15
It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.
Ophir, Noa; Shai, Amir Bar; Alkalay, Yifat; Israeli, Shani; Korenstein, Rafi; Kramer, Mordechai R; Fireman, Elizabeth
2016-01-01
The manufacture of kitchen and bath countertops in Israel is based mainly on artificial stone that contains 93% silica as natural quartz, and ∼3500 workers are involved in cutting and processing it. Artificial stone produces high concentrations of silica dust. Exposure to crystalline silica may cause silicosis, an irreversible lung disease. Our aim was to screen exposed workers by quantitative biometric monitoring of functional and inflammatory parameters. 68 exposed artificial stone workers were compared to 48 nonexposed individuals (controls). Exposed workers filled in questionnaires, and all participants underwent pulmonary function tests and induced sputum analyses. Silica was quantitated by a Niton XL3 X-ray fluorescence spectrometer. Pulmonary function test results of exposed workers were significantly lower and induced sputa showed significantly higher neutrophilic inflammation compared to controls; both processes were slowed down by the use of protective measures in the workplace. Particle size distribution in induced sputum samples of exposed workers was similar to that of artificial stone dust, which contained aluminium, zirconium and titanium in addition to silica. In conclusion, the quantitation of biometric parameters is useful for monitoring workers exposed to artificial stone in order to avoid deterioration over time.
Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero
2014-11-01
Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.
Quines, Caroline B; Chagas, Pietro M; Hartmann, Diane; Carvalho, Nélson R; Soares, Félix A; Nogueira, Cristina W
2017-09-01
It is has been demonstrated that mitochondrial dysfunction, oxidative stress, and chronic inflammatory process are associated with progress of morbid obesity in human patients. For this reason, the searching for safe and effective antiobesity drugs has been the subject of intense research. In this context, the organic selenium compounds have attracted much attention due to their pharmacological properties, such as antihyperglycemic, antioxidant, and anti-inflammatory. The aim of this study was to evaluate the hepatoprotective action of p-chloro-diphenyl diselenide (p-ClPhSe) 2 , an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. Wistar rats were treated during the first ten postnatal days with MSG (4 g/kg by subcutaneous injections) and received (p-ClPhSe) 2 (10 mg/kg, intragastrically) from 90th to 97th postnatal day. Mitochondrial function, purine content and the levels of proteins involved in apoptotic (poly [ADP-ribose] polymerase [PARP]) and inflammatory processes (inducible nitric oxide synthases [iNOS] and p38) were determined in the liver of rats. The present study, demonstrated that postnatal administration of MSG to male rats induced a mitochondrial dysfunction, accompanied by oxidative stress and an increase in the ADP levels, without altering the efficiency of phosphorylation in the liver of adult rats. Furthermore, the MSG administration also induces hepatotoxicity, through an increase in PARP, iNOS, and p38 levels. (p-ClPhSe) 2 treatment had beneficial effects against mitochondrial dysfunction, oxidative stress, and modulated protein markers of apoptosis and inflammation in the liver of MSG-treated rats. J. Cell. Biochem. 118: 2877-2886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Karamese, Murat; Erol, Huseyin Serkan; Albayrak, Mevlut; Findik Guvendi, Gulname; Aydin, Emsal; Aksak Karamese, Selina
2016-06-01
We hypothesize that apigenin may inhibit some cellular process of sepsis-induced spleen injury and simultaneously improve inflammation and oxidative stress. Therefore, the aim of this study was to investigate the potential protective effects of apigenin in a polymicrobial sepsis rat model of by cecal ligation and puncture. 64 female Wistar albino rats were divided into 8 groups. The pro-inflammatory (tumor necrosis factor-alpha, interleukin-6, and interleukin-1-beta) and anti-inflammatory (tumor growth factor-beta and interleukin-10) cytokine levels were measured by enzyme-linked immunosorbent assay. CD3, CD68, and nuclear factor kappa B (NF-κB) positivity rates were detected by immunohistochemical methods. Oxidative stress parameters were measured by tissue biochemistry. Sepsis caused a significant increase in TNF-alpha, IL-1-beta, IL-6, and TGF-beta levels whereas it reduced IL-10 level. Additionally, it led to an increase in CD3, CD68, and NF-κB positivity rates as well as oxidative stress parameters levels. However, apigenin inhibited the inflammation process, increased the IL-10 level and normalized the oxidative stress parameters. Pretreatment with apigenin results in a significant reduction in the amount of inflammatory cells. The beneficial effect of apigenin on spleen injury also involved inhibition of NF-κB pathway, suppression of proinflammatory cytokines, and induction of anti-inflammatory cytokine production. Additionally, it led to a decrease in oxidative stress in spleen tissue. Taking everything into account, apigenin may be an alternative therapeutic option for prevention of sepsis-induced organ.
Capra, Valérie; Accomazzo, Maria Rosa; Gardoni, Fabrizio; Barbieri, Silvia; Rovati, G. Enrico
2010-01-01
Cysteinyl-leukotrienes (cysteinyl-LT) are rapidly generated at sites of inflammation and, in addition to their role in asthma, rhinitis, and other immune disorders, are increasingly regarded as significant inflammatory factors in cancer, gastrointestinal, cardiovascular diseases. We recently demonstrated that in monocyte/macrophage–like U937 cells, extracellular nucleotides heterologously desensitize CysLT1 receptor (CysLT1R)-induced Ca2+ transients. Given that monocytes express a number of other inflammatory and chemoattractant receptors, this study was aimed at characterizing transregulation between these different stimuli. We demonstrate that in U937 cells and in primary human monocytes, a series of inflammatory mediators activating Gi-coupled receptor (FPR1, BLT1) desensitize CysLT1R-induced Ca2+ response unidirectionally through activation of PKC. Conversely, PAF-R, exclusively coupled to Gq, cross-desensitizes CysLT1R without the apparent involvement of any kinase. Interestingly, Gs-coupled receptors (β2AR, H1/2R, EP2/4R) are also able to desensitize CysLT1R response through activation of PKA. Heterologous desensitization seems to affect mostly the Gi-mediated signaling of the CysLT1R. The hierarchy of desensitization among agonists may be important for leukocyte signal processing at the site of inflammation. Considering that monocytes/macrophages are likely to be the major source of cysteinyl-LT in many immunological and inflammatory processes, shedding light on how their receptors are regulated will certainly help to better understand the role of these cells in orchestrating this complex network of integrated signals. PMID:19965602
Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele
2014-01-01
Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB–mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. PMID:25260046
Risitano, Roberto; Currò, Monica; Cirmi, Santa; Ferlazzo, Nadia; Campiglia, Pietro; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele
2014-01-01
Plant polyphenols exert anti-inflammatory activity through both anti-oxidant effects and modulation of pivotal pro-inflammatory genes. Recently, Citrus bergamia has been studied as a natural source of bioactive molecules with antioxidant activity, but few studies have focused on molecular mechanisms underlying their potential beneficial effects. Several findings have suggested that polyphenols could influence cellular function by acting as activators of SIRT1, a nuclear histone deacetylase, involved in the inhibition of NF-κB signaling. On the basis of these observations we studied the anti-inflammatory effects produced by the flavonoid fraction of the bergamot juice (BJe) in a model of LPS-stimulated THP-1 cell line, focusing on SIRT1-mediated NF-κB inhibition. We demonstrated that BJe inhibited both gene expression and secretion of LPS-induced pro-inflammatory cytokines (IL-6, IL-1β, TNF-α) by a mechanism involving the inhibition of NF-κB activation. In addition, we showed that BJe treatment reversed the LPS-enhanced acetylation of p65 in THP-1 cells. Interestingly, increasing concentrations of Sirtinol were able to suppress the inhibitory effect of BJe via p65 acetylation, underscoring that NF-κB-mediated inflammatory cytokine production may be directly linked to SIRT1 activity. These results suggest that BJe may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process.
Díaz, Fernando Erra; Dantas, Ezequiel; Cabrera, Maia; Benítez, Constanza A; Delpino, María V; Duette, Gabriel; Rubione, Julia; Sanjuan, Norberto; Trevani, Analía S; Geffner, Jorge
2016-10-27
Neutrophils have the shortest lifespan among leukocytes and usually die via apoptosis, limiting their deleterious potential. However, this tightly regulated cell death program can be modulated by pathogen-associated molecular patterns (PAMPs), danger-associated molecular pattern (DAMPs), and inflammatory cytokines. We have previously reported that low pH, a hallmark of inflammatory processes and solid tumors, moderately delays neutrophil apoptosis. Here we show that fever-range hyperthermia accelerates the rate of neutrophil apoptosis at neutral pH but markedly increases neutrophil survival induced by low pH. Interestingly, an opposite effect was observed in lymphocytes; hyperthermia plus low pH prevents lymphocyte activation and promotes the death of lymphocytes and lymphoid cell lines. Analysis of the mechanisms through which hyperthermia plus low pH increased neutrophil survival revealed that hyperthermia further decreases cytosolic pH induced by extracellular acidosis. The fact that two Na + /H + exchanger inhibitors, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and amiloride, reproduced the effects induced by hyperthermia suggested that it prolongs neutrophil survival by inhibiting the Na + /H + antiporter. The neutrophil anti-apoptotic effect induced by PAMPs, DAMPs, and inflammatory cytokines usually leads to the preservation of the major neutrophil effector functions such as phagocytosis and reactive oxygen species (ROS) production. In contrast, our data revealed that the anti-apoptotic effect induced by low pH and hyperthermia induced a functional profile characterized by a low phagocytic activity, an impairment in ROS production and a high ability to suppress T-cell activation and to produce the angiogenic factors VEGF, IL-8, and the matrix metallopeptidase 9 (MMP-9). These results suggest that acting together fever and local acidosis might drive the differentiation of neutrophils into a profile able to promote both cancer progression and tissue repair during the late phase of inflammation, two processes that are strongly dependent on the local production of angiogenic factors by infiltrating immune cells.
Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Demenesku, Jelena; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena
2017-09-01
Warfarin (WF) is an anticoagulant which also affects physiological processes other than hemostasis. Our previous investigations showed the effect of WF which gained access to the organism via skin on resting peripheral blood granulocytes. Based on these data, the aim of the present study was to examine whether WF could modulate the inflammatory processes as well. To this aim the effect of WF on the inflammatory response induced by subcutaneous sponge implantation in rats was examined. Warfarin-soaked polyvinyl sponges (WF-sponges) were implanted subcutaneously and cell infiltration into sponges, the levels of nitric oxide (NO) and inflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) production by sponge cells were measured as parameters of inflammation. T cell infiltration and cytokine interferon-γ (IFN-γ), interleukin-17 (IL-17) and interleukin-10 (IL-10) were measured at day 7 post implantation. Warfarin exerted both stimulatory and suppressive effects depending on the parameter examined. Flow cytometry of cells recovered from sponges showed higher numbers of granulocytes (HIS48 + cells) at days 1 and 3 post implantation and CD11b + cells at day 1 compared to control sponges. Cells from WF-sponges had an increased NO production (Griess reaction) at days 1 and 7. In contrast, lower levels of TNF (measured by ELISA) production by cells recovered from WF-soaked sponges were found in the early (day one) phase of reaction with unchanged levels at other time points. While IL-6 production by cells recovered from WF-soaked sponges was decreased at day 1, it was increased at day 7. Higher T cell numbers were noted in WF sponges at day 7 post implantation, and recovered cells produced more IFN-γ and IL-17, while IL-10 production remained unchanged. Warfarin affects some of the parameters of inflammatory reaction induced by subcutaneous polyvinyl sponge implantation. Differential (both stimulatory as well as inhibitory) effects of WF on inflammatory response to sponge implants might affect the course and/or duration of this reaction.
Into, Takeshi; Horie, Toshi; Inomata, Megumi; Gohda, Jin; Inoue, Jun-Ichiro; Murakami, Yukitaka; Niida, Shumpei
2017-04-21
Autophagy, the processes of delivery of intracellular components to lysosomes, regulates induction of inflammation. Inducible macroautophagy degrades inflammasomes and dysfunctional mitochondria to downregulate inflammatory signals. Nonetheless, the effects of constitutive basal autophagy on inflammatory signals are largely unknown. Here, we report a previously unknown effect of basal autophagy. Lysosomal inhibition induced weak inflammatory signals in the absence of a cellular stimulus and in the presence of a nutrient supply, and their induction was impaired by MyD88 deficiency. During lysosomal inhibition, MyD88 was accumulated, and overabundant MyD88 autoactivated downstream signaling or enhanced TLR/IL-1R-mediated signaling. MyD88 is probably degraded via basal microautophagy because macroautophagy inhibitors, ATG5 deficiency, and an activator of chaperone-mediated autophagy did not affect MyD88. Analysis using a chimeric protein whose monomerization/dimerization can be switched revealed that monomeric MyD88 is susceptible to degradation. Immunoprecipitation of monomeric MyD88 revealed its interaction with TRAF6. In TRAF6-deficient cells, degradation of basal MyD88 was enhanced, suggesting that TRAF6 participates in protection from basal autophagy. Thus, basal autophagy lowers monomeric MyD88 expression, and thereby autoactivation of inflammatory signals is prevented. Given that impairment of lysosomes occurs in various settings, our results provide novel insights into the etiology of inflammatory signals that affect consequences of inflammation.
De Melo, Giany O; Muzitano, Michelle F; Legora-Machado, Alexandre; Almeida, Thais A; De Oliveira, Daniela B; Kaiser, Carlos R; Koatz, Vera Lucia G; Costa, Sônia S
2005-04-01
The infusion of aerial parts (EI) of Eleusine indica Gaertn (Poaceae) is used in Brazil against airway inflammatory processes like influenza and pneumonia. Pre-treatment with 400 mg/kg of crude extract inhibited 98% of lung neutrophil recruitment in mice exposed to aerosols of lipopolysaccharide (LPS) from Gram-negative bacteria, in a dose-dependent manner. At 400 microg/kg, schaftoside (6-C-beta-glucopyranosyl-8-C-alpha-arabinopyranosylapigenin) and vitexin (8-C-beta-glucopyranosylapigenin), isolated from EI, inhibited 62% and 80% of lung neutrophil influx, respectively. These results may justify the popular use of E. indica against airway inflammatory processes.
NASA Astrophysics Data System (ADS)
Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.
2018-06-01
Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI + 10 J cm‑2, and ALI + 20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.
Akt, mTOR and NF-κB pathway activation in Treponema pallidum stimulates M1 macrophages.
Lin, Li-Rong; Gao, Zheng-Xiang; Lin, Yong; Zhu, Xiao-Zhen; Liu, Wei; Liu, Dan; Gao, Kun; Tong, Man-Li; Zhang, Hui-Lin; Liu, Li-Li; Xiao, Yao; Niu, Jian-Jun; Liu, Fan; Yang, Tian-Ci
2018-06-01
The polarization of macrophages and the molecular mechanism involved during the early process of syphilis infection remain unknown. This study was conducted to explore the influence of Treponema pallidum (T. pallidum) treatment on macrophage polarization and the Akt-mTOR-NFκB signaling pathway mechanism involved in this process. M0 macrophages derived from the phorbol-12-myristate-13-acetate-induced human acute monocytic leukemia cell line THP-1 were cultured with T. pallidum. T. pallidum induced inflammatory cytokine (IL-1β and TNF-α) expression in a dose- and time-dependent manner. However IL-10 cytokine expression decreased at the mRNA and protein levels. Additionally, the expression of the M1 surface marker iNOS was up-regulated with incubation time, and the expression of the M2 surface marker CD206 was low (vs. PBS treated macrophages, P < 0.001) and did not fluctuate over 12 h. Further studies revealed that Akt-mTOR-NFκB pathway proteins, including p-Akt, p-mTOR, p-S6, p-p65, and p-IκBα, were significantly higher in the T. pallidum-treated macrophages than in the PBS-treated macrophages (P < 0.05). In addition, inflammatory cytokine expression was suppressed in T. pallidum-induced M1 macrophages pretreated with LY294002 (an Akt-specific inhibitor) or PDTC (an NF-κB inhibitor), while inflammatory cytokine levels increased in T. pallidum-induced M1 macrophages pretreated with rapamycin (an mTOR inhibitor). These findings revealed that T. pallidum promotes the macrophage transition to pro-inflammatory M1 macrophages in vitro. The present study also provides evidence that Akt, mTOR and NF-κB pathway activation in T. pallidum stimulates M1 macrophages. This study provides novel insights into the innate immune response to T. pallidum infection. Copyright © 2018. Published by Elsevier B.V.
Immune-regulating effects of exercise on cigarette smoke-induced inflammation
Madani, Ashkan; Alack, Katharina; Richter, Manuel Jonas; Krüger, Karsten
2018-01-01
Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic antioxidative capacity and several compensatory mechanisms in tissues such as an increased anabolic signaling in muscle or an increased compliance of the vascular system. Accordingly, regular exercise training seems to protect long-term smokers against some important negative local and systemic consequences of smoking. Data suggest that it seems to be important to start exercise training as early as possible. PMID:29731655
Puntorieri, Valeria; McCaig, Lynda A; Howlett, Christopher J; Yao, Li-Juan; Lewis, James F; Yamashita, Cory M; Veldhuizen, Ruud A W
2016-09-01
The acute respiratory distress syndrome (ARDS) is a complex pulmonary disorder in which the local release of cytokines and chemokines appears central to the pathophysiology. Based on the known role of matrix metalloproteinase-3 (MMP3) in inflammatory processes, the objective was to examine the role of MMP3 in the pathogenesis of ARDS through the modulation of pulmonary inflammation. Female and male, wild type (MMP3 +/+ ) and knock out (MMP3 -/- ) mice were exposed to two, clinically relevant models of ARDS including (i) lipopolysaccharide (LPS)-induced lung injury, and (ii) hydrochloric acid-induced lung injury. Parameters of lung injury and inflammation were assessed through measurements in lung lavage including total protein content, inflammatory cell influx, and concentrations of mediators such as TNF-α, IL-6, G-CSF, CXCL1, CXCL2, and CCL2. Lung histology and compliance were also evaluated in the LPS model of injury. Following intra-tracheal LPS instillation, all mice developed lung injury, as measured by an increase in lavage neutrophils, and decrease in lung compliance, with no overall effect of genotype observed. Increased concentrations of lavage inflammatory cytokines and chemokines were also observed following LPS injury, however, LPS-instilled female MMP3 -/- mice had lower levels of inflammatory mediators compared to LPS-instilled female MMP3 +/+ mice. This effect of the genotype was not observed in male mice. Similar findings, including the MMP3-related sex differences, were also observed after acid-induced lung injury. MMP3 contributes to the pathogenesis of ARDS, by affecting the pulmonary inflammatory response in female mice in relevant models of lung injury.
Soria-Castro, Irene; Krzyzanowska, Agnieszka; Pelaéz, Marta López; Regadera, Javier; Ferrer, Gema; Montoliu, Lluis; Rodríguez-Ramos, Rosario; Fernández, Margarita; Alemany, Susana
2010-10-29
Cot/tpl2 (also known as MAP3K8) has emerged as a new and potentially interesting therapeutic anti-inflammatory target. Here, we report the first study of Cot/tpl2 involvement in acute peripheral inflammation in vivo. Six hours after an intraplantar injection of zymosan, Cot/tpl2(-/-) mice showed a 47% reduction in myeloperoxidase activity, concomitant with a 46% lower neutrophil recruitment and a 40% decreased luminol-mediated bioluminescence imaging in vivo. Accordingly, Cot/tpl2 deficiency provoked a 25-30% reduction in luminol-mediated bioluminescence and neutrophil recruitment together with a 65% lower macrophage recruitment 4 h following zymosan-induced peritonitis. Significantly impaired levels of G-CSF and GM-CSF and of other cytokines such as TNFα, IL-1β, and IL-6, as well as some chemokines such as MCP-1, MIP-1β, and keratinocyte-derived chemokine, were detected during the acute zymosan-induced intraplantar inflammatory response in Cot/tpl2(-/-) mice. Moreover, Cot/tpl2 deficiency dramatically decreased the production of the hypernociceptive ligand NGF at the inflammatory site during the course of inflammation. Most importantly, Cot/tpl2 deficiency significantly reduced zymosan-induced inflammatory hypernociception in mice, with a most pronounced effect of a 50% decrease compared with wild type (WT) at 24 h following intraplantar injection of zymosan. At this time, Cot/tpl2(-/-) mice showed significantly reduced NGF, TNFα, and prostaglandin E(2) levels compared with WT littermates. In conclusion, our study demonstrates an important role of Cot/tpl2 in the NGF, G-CSF, and GM-CSF production and myeloperoxidase activity in the acute inflammatory response process and its implication in inflammatory hypernociception.
Shin, Jihyun; Yang, Soo Jin
2016-01-01
Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1-α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1. PMID:28211759
Shin, Jihyun; Yang, Soo Jin; Lim, Yunsook
2017-03-01
Delayed wound healing is one of the major diabetic complications. During wound healing process, the early inflammatory stage is important for better prognosis. One of antioxidant nutrient, gamma-tocopherol (GT) is considered to regulate inflammatory conditions. This study investigated the effect of GT supplementation on mechanism associated with inflammation, oxidative stress, and apoptosis during early cutaneous wound healing in diabetic mice. Diabetes was induced by alloxan injection in ICR mice. All mice were divided into three groups: non-diabetic control mice (CON), diabetic control mice (DMC), and diabetic mice supplemented with GT (GT). After two weeks of GT supplementation, excisional wounds were made by biopsy punches (4 mm). Diabetic mice showed increases in fasting blood glucose (FBG) level, hyper-inflammatory response, oxidative stress, and delayed wound closure rate compared to non-diabetic mice. However, GT supplementation reduced FBG level and accelerated wound closure rate by regulation of inflammatory response-related proteins such as nuclear factor kappa B, interleukin-1β, tumor necrosis factor-α, and c-reactive protein, and oxidative stress-related markers including nuclear factor (erythroid derived 2)-like 2, NAD(P)H dehydrogenase quinone1, heme oxygenase-1, manganese superoxide dismutase, catalase and glutathione peroxidase and apoptosis-related markers such as sirtuin-1, peroxisome proliferator-activated receptor gamma coactivator 1- α, and p53 in diabetic mice. Taken together, GT would be a potential therapeutic to prevent diabetes-induced delayed wound healing by regulation of inflammatory response, apoptosis, and oxidative stress. Impact statement Gamma tocopherol has shown ameliorative effect on diabetic wound healing by regulation of inflammation, oxidative stress, and apoptosis demonstrated by nuclear factor kappa B, nuclear factor (erythroid derived 2)-like 2, and sirtuin-1.
Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei
2015-06-26
The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β2-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis.
de Morais, Núbia Cristina Rodrigues; Barbosa, Ana Maria; Vale, Mariana Lima; Villaverde, Antonio Balbin; de Lima, Carlos José; Cogo, José Carlos; Zamuner, Stella Regina
2010-04-01
The aim of this work was to investigate the effect of low-level laser therapy (LLLT) and light-emitting diode (LED) on formation of edema, increase in vascular permeability, and articular joint hyperalgesia in zymosan-induced arthritis. It has been suggested that low-level laser and LED irradiation can modulate inflammatory processes. Arthritis was induced in male Wistar rats (250-280 g) by intra-articular injection of zymosan (1 mg in 50 microL of a sterile saline solution) into one rear knee joint. Animals were irradiated immediately, 1 h, and 2 h after zymosan administration with a semiconductor laser (685 nm and 830 nm) and an LED at 628 nm, with the same dose (2.5 J/cm(2)) for laser and LED. In the positive control group, animals were injected with the anti-inflammatory drug dexamethasone 1 h prior to the zymosan administration. Edema was measured by the wet/dry weight difference of the articular tissue, the increase in vascular permeability was assessed by the extravasation of Evans blue dye, and joint hyperalgesia was measured using the rat knee-joint articular incapacitation test. Irradiation with 685 nm and 830 nm laser wavelengths significantly inhibited edema formation, vascular permeability, and hyperalgesia. Laser irradiation, averaged over the two wavelengths, reduced the vascular permeability by 24%, edema formation by 23%, and articular incapacitation by 59%. Treatment with LED (628 nm), with the same fluence as the laser, had no effect in zymosan-induced arthritis. LLLT reduces inflammatory signs more effectively than LED irradiation with similar irradiation times (100 sec), average outputs (20 mW), and energy doses (2 J) in an animal model of zymosan-induced arthritis. The anti-inflammatory effects of LLLT appear to be a class effect, which is not wavelength specific in the red and infrared parts of the optical spectrum.
Tawara, Shunsuke; Sakai, Takumi; Matsuzaki, Osamu
2016-11-01
Thrombomodulin (TM) alfa, a recombinant human soluble TM, enhances activation of pro-carboxypeptidase B2 (pro-CPB2) by thrombin. Activated pro-CPB2 (CPB2) exerts anti-inflammatory and anti-fibrinolytic activities. Therefore, TM alfa may also have anti-inflammatory and anti-fibrinolytic effects through CPB2. However, these effects of TM alfa have not been elucidated. In the present study, we investigated the effects of TM alfa on inactivation of complement component C5a as an anti-inflammatory effect and prolongation of clot lysis time as an anti-fibrinolytic effect via CPB2 in vitro. CPB2 activity and tissue factor-induced thrombin generation was examined by a chromogenic assay. C5a inactivation was evaluated by C-terminal cleavage of C5a and inhibition of C5a-induced human neutrophil migration. Clot lysis time prolongation was examined by a tissue-type plasminogen activator-induced clot lysis assay. CPB2 activity in human plasma was increased by TM alfa and thrombin in a concentration-dependent manner. TM alfa inhibited tissue factor-induced thrombin generation and enhanced pro-CPB2 activation in human plasma simultaneously. The mass spectrum of C5a treated with TM alfa, thrombin, and pro-CPB2 was decreased at 156m/z, indicating that TM alfa enhanced the processing of C5a to C-terminal-cleaved C5a, an inactive form of C5a. C5a-induced human neutrophil migration was decreased after C5a treatment with TM alfa, thrombin, and pro-CPB2. TM alfa prolonged the clot lysis time in human plasma, and this effect was completely abolished by addition of a CPB2 inhibitor. TM alfa exerts anti-inflammatory and anti-fibrinolytic effects through CPB2 in the presence of thrombin in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J
2015-08-01
TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.
Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J
2015-01-01
TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses. PMID:25613374
Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens
2012-01-01
Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection. PMID:22691598
Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens.
Cortés-Vieyra, Ricarda; Bravo-Patiño, Alejandro; Valdez-Alarcón, Juan J; Juárez, Marcos Cajero; Finlay, B Brett; Baizabal-Aguirre, Víctor M
2012-06-12
Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.
NASA Astrophysics Data System (ADS)
Tomazoni, Shaiane Silva; Leal-Junior, Ernesto Cesar Pinto; Frigo, Lúcio; Pallotta, Rodney Capp; Teixeira, Simone; de Almeida, Patricia; Bjordal, Jan Magnus; Lopes-Martins, Rodrigo Álvaro Brandão
2016-10-01
Osteoarthritis (OA) is a chronic inflammatory disease and is characterized as a degenerative process. This study aimed to evaluate and compare the effects of a topical nonsteroidal anti-inflammatory drug (NSAID), physical activity, and photobiomodulation therapy (PBMT) applied alone and/or in combination between them in an experimental model of knee OA. OA was induced by injection of papain in the knees of rats. After 21 days, the animals started to be treated with the above treatment. Histological analysis shows that the experimental model of OA induction causes morphological changes consistent with the disease, and among treatments, the PBMT is the most effective for reducing these changes. Moreover, the results demonstrate that PBMT and NSAID reduce the total number of cells in the inflammatory infiltrate (p<0.05) and PBMT was the most effective for reducing the activity of myeloperoxidase (p<0.05). Finally, we observed that both NSAID and PBMT were effective for reducing the gene expression of MMP-3 (p<0.05), but in relation to the gene expression of MMP-13, PBMT was the most effective treatment (p<0.05). The results of this study indicate that PBMT is the most effective therapy in stopping disease progression, and improving inflammatory conditions observed in OA.
Ortiz, Mario I; Cariño-Cortés, Raquel; Ponce-Monter, Héctor A; González-García, Martha P; Castañeda-Hernández, Gilberto; Salinas-Caballero, Mireya
2017-11-01
Preclinical Research The coadministration of non-steroidal anti-inflammatory drugs (NSAIDs) with medicinal plant extracts may increase anti-inflammatory activity, thus permitting the use of lower NSAID doses and limiting the side effects. The aim of this study was to explore the interactions between an ethanolic extract of M. chamomilla extract (MCE) with two NSAIDs, diclofenac and indomethacin on carrageenan-induced paw inflammation and gastric injury in rats. Diclofenac, indomethacin and MCE, or combinations with MCE produced an anti-inflammatory effect. Effective dose (ED) values were estimated for the individual drugs, and isobolograms were constructed. The final experimental ED values were 483.7 mg/kg for diclofenac + MCE combination, and 212.6 mg/kg for indomethacin + MCE. These values were lower (p < 0.05) than the theoretical ED values (1186.9 mg/kg for diclofenac + MCE combination, and 1183.8 mg/kg for indomethacin + MCE). These data suggest that the interactions between NSAIDs and MCE that mediate the anti-inflammatory effects at the systemic level are synergistic and may have therapeutic advantages for the clinical treatment of inflammatory processes. Drug Dev Res 78 : 360-367, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zhang, Hong-Bo; Sun, Li-Chao; Zhi, Li-da; Wen, Qian-Kuan; Qi, Zhi-Wei; Yan, Sheng-Tao; Li, Wen; Zhang, Guo-Qiang
2017-10-01
Sepsis is a systemic inflammatory response syndrome caused by severe infections. Astilbin is a dihydroflavonol derivative found in many medicinal and food plants with multiple pharmacological functions. To investigate the effects of astilbin on sepsis-induced acute lung injury (ALI), cecal ligation and puncture was performed on rats to establish a sepsis-induced ALI model; these rats were then treated with astilbin at different concentrations. Lung injury scores, including lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration were determined to evaluate the effects of astilbin on sepsis-induced ALI. We found that astilbin treatment significantly attenuates sepsis-induced lung injury and improves survival rate, lung injury scores, lung wet/dry ratio, protein leakage, myeloperoxidase activity, and inflammatory cell infiltration. Astilbin treatment also dramatically decreased the production of inflammatory cytokines and chemokines in bronchoalveolar lavage fluid. Further, astilbin treatment inhibited the expression and production of macrophage inhibitory factor (MIF), which inhibits the inflammatory response. Collectively, these data suggest that astilbin has a protective effect against sepsis-induced ALI by inhibiting MIF-mediated inflammatory responses. This study provides a molecular basis for astilbin as a new medical treatment for sepsis-induced ALI.
Chetsawang, Jirapa; Nudmamud-Thanoi, Sutisa; Phonchai, Ruchee; Abubakar, Zuroida; Govitrapong, Piyarat; Chetsawang, Banthit
2018-06-23
Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca 2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression. Copyright © 2018. Published by Elsevier B.V.
Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei
2016-01-01
Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent.
Chen, Chin-Chaun; Lin, Ming-Wei; Liang, Chan-Jung; Wang, Shu-Huei
2016-01-01
Eupafolin is a flavone isolated from Artemisia princeps Pampanini (family Asteraceae). The aim of this study was to examine the anti-inflammatory effects of eupafolin in lipopolysaccharide (LPS)-treated RAW264.7 macrophages and LPS-induced mouse skin and lung inflammation models and to identify the mechanism underlying these effects. Eupafolin decreased the LPS-induced release of inflammatory mediators (iNOS, COX-2 and NO) and proinflammatory cytokines (IL-6 and TNF-α) from the RAW264.7 macrophages. Eupafolin inhibited the LPS-induced phosphorylation of p38 MAPK, ERK1/2, JNK, AKT and p65 and the nuclear translocation of p65 and c-fos. These effects were mainly mediated by the inhibition of JNK. In the mouse paw and lung models, eupafolin effectively suppressed the LPS-induced edema formation and down-regulated iNOS and COX-2 expression. These results demonstrated that eupafolin exhibits anti-inflammatory properties and suggested that eupafolin can be developed as an anti-inflammatory agent. PMID:27414646
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuai; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Lv, Jiaju
2012-03-30
Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responsesmore » in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNF{alpha}-induced RASMC migration and monocyte adhesion to RASMCs were inhibited by the Cyld knockdown. Finally, immunochemical staining revealed a dramatic augment of CYLD expression in the injured coronary artery with neointimal hyperplasia. Taken together, our results uncover an unexpected role of CYLD in promoting inflammatory responses in VSMCs via a mechanism involving MAPK activation but independent of NF-{kappa}B activity, contributing to the pathogenesis of vascular disease.« less
Anti-inflammatory and antinociceptive activities of azadirachtin in mice.
Soares, Darly G; Godin, Adriana M; Menezes, Raquel R; Nogueira, Rafaela D; Brito, Ana Mercy S; Melo, Ivo S F; Coura, Giovanna Maria E; Souza, Danielle G; Amaral, Flávio A; Paulino, Tony P; Coelho, Márcio M; Machado, Renes R
2014-06-01
Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we investigated the effects induced by azadirachtin in experimental models of pain and inflammation in mice. Carrageenan-induced paw edema and fibrovascular tissue growth induced by subcutaneous cotton pellet implantation were used to investigate the anti-inflammatory activity of azadirachtin in mice. Zymosan-induced writhing and hot plate tests were employed to evaluate the antinociceptive activity. To explore putative mechanisms of action, the level of tumor necrosis factor-α in inflammatory tissue was measured and the effect induced by opioidergic and serotonergic antagonists was evaluated. Previous per os (p. o.) administration of azadirachtin (120 mg/kg) significantly reduced the acute paw edema induced by carrageenan. However, the concomitant increase of the paw concentration of tumor necrosis factor-α induced by this inflammatory stimulus was not reduced by azadirachtin. In addition to inhibiting the acute paw edema induced by carrageenan, azadirachtin (6, 60, and 120 mg/kg) inhibited the proliferative phase of the inflammatory response, as demonstrated by the reduced formation of fibrovascular tissue growth. Azadirachtin (120 mg/kg) also inhibited the nociceptive response in models of nociceptive (hot plate) and inflammatory (writhing induced by zymosan) pain. The activity of azadirachtin (120 mg/kg) in the model of nociceptive pain was attenuated by a nonselective opioid antagonist, naltrexone (10 mg/kg, i. p.), but not by a nonselective serotonergic antagonist, cyproheptadine. In conclusion, this study demonstrates the activity of azadirachtin in experimental models of nociceptive and inflammatory pain, and also in models of acute and chronic inflammation. Finally, multiple mechanisms, including the inhibition of the production of inflammatory mediators and activation of endogenous opioid pathways, may mediate azadirachtin activities in experimental models of inflammation and pain. Georg Thieme Verlag KG Stuttgart · New York.
Apical closure of mature molar roots with the use of calcium hydroxide.
Rotstein, I; Friedman, S; Katz, J
1990-11-01
Calcium hydroxide may induce apical root closure in affected mature teeth as well as in immature teeth. Once an apical hard tissue barrier is formed, a permanent root canal filling can be safely condensed. Two cases are described in which calcium hydroxide induced apical root closure in mature molar teeth where the apical constriction was lost because of chronic inflammatory process.
Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.
Intahphuak, S; Khonsung, P; Panthong, A
2010-02-01
This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO.
Aguayo-Patrón, Sandra V.; Calderón de la Barca, Ana M.
2017-01-01
Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for obesity and chronic non-transmissible diseases; additionally, they could impact in the prevalence of autoimmune diseases such as type 1 diabetes and celiac disease. The rationale is that the nutritional composition of ultra-processed foodstuffs can induce gut dysbiosis, promoting a pro-inflammatory response and consequently, a “leaky gut”. These factors have been associated with increased risk of autoimmunity in genetically predisposed children. In addition, food emulsifiers, commonly used in ultra-processed products could modify the gut microbiota and intestinal permeability, which could increase the risk of autoimmunity. In contrast, unprocessed and minimally processed food-based diets have shown the capacity to promote gut microbiota eubiosis, anti-inflammatory response, and epithelial integrity, through bacterial butyrate production. Thus, to decrease the susceptibility to autoimmunity, genetically predisposed children should avoid ultra-processed food products and encourage the consumption of fresh and minimally processed foods. PMID:29140275
Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.
Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun
2014-04-01
Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.
Wang, Qingsong; He, Yuhu; Shen, Yujun; Zhang, Qianqian; Chen, Di; Zuo, Caojian; Qin, Jing; Wang, Hui; Wang, Junwen; Yu, Ying
2014-01-01
Inadequate vitamin D status has been linked to increased risk of type 2 diabetes and cardiovascular disease. Inducible cyclooxygenase (COX) isoform COX-2 has been involved in the pathogenesis of such chronic inflammatory diseases. We found that the active form of vitamin D, 1,25(OH)2D produces dose-dependent inhibition of COX-2 expression in murine macrophages under both basal and LPS-stimulated conditions and suppresses proinflammatory mediators induced by LPS. Administration of 1,25(OH)2D significantly alleviated local inflammation in a carrageenan-induced paw edema mouse model. Strikingly, the phosphorylation of both Akt and its downstream target IκBα in macrophages were markedly suppressed by 1,25(OH)2D in the presence and absence of LPS stimulation through up-regulation of THEM4 (thioesterase superfamily member 4), an Akt modulator protein. Knockdown of both vitamin D receptor and THEM4 attenuated the inhibitory effect of 1,25(OH)2D on COX-2 expression in macrophages. A functional vitamin D-responsive element in the THEM4 promoter was identified by chromatin immunoprecipitation and luciferase reporter assay. Our results indicate that vitamin D restrains macrophage-mediated inflammatory processes by suppressing the Akt/NF-κB/COX-2 pathway, suggesting that vitamin D supplementation might be utilized for adjunctive therapy for inflammatory disease. PMID:24619416
Xie, Jianhui; Lin, Zhixiu; Xian, Yanfang; Kong, Songzhi; Lai, Zhengquan; Ip, Siupo; Chen, Haiming; Guo, Huizhen; Su, Zuqing; Yang, Xiaobo; Xu, Yang; Su, Ziren
2016-06-01
(-)-Patchouli alcohol (PA), the major active principle of Pogostemonis Herba, has been reported to have anti-Helicobacter pylori and gastroprotective effects. In the present work, we aimed to investigate the possible protective effect of PA on H. pylori urease (HPU)-injured human gastric epithelial cells (GES-1) and to elucidate the underlying mechanisms of action. Results showed that pre-treatment with PA (5.0, 10.0, 20.0μM) was able to remarkably ameliorate the cytotoxicity induced by 17.0U/mg HPU in GES-1 cells. Flow cytometric analysis on cellular apoptosis showed that pre-treatment with PA effectively attenuated GES-1 cells from the HPU-induced apoptosis. Moreover, the cytoprotective effect of PA was found to be associated with amelioration of the HPU-induced disruption of MMP, attenuating oxidative stress by decreasing contents of intracellular ROS and MDA, and increasing superoxide dismutase (SOD) and catalase (CAT) enzymatic activities. In addition, pre-treatment with PA markedly attenuated the secretion of nitric oxide (NO) and pro-inflammatory cytokines such as interleukin-2 (IL-2), interleukin-4 (IL-4) and tumor necrosis factor-α (TNF-α), whereas elevated the anti-inflammatory cytokine interleukin-13 (IL-13) in the HPU-stimulated GES-1 cells. Molecular docking assay suggested that PA engaged in the active site of urease bearing nickel ions and interacted with important residues via covalent binding, thereby restricting the active urease catalysis conformation. Our experimental findings suggest that PA could inhibit the cellular processes critically involved in the pathogenesis of H. pylori infection, and its protective effects against the HPU-induced cytotoxicity in GES-1 cells are believed to be associated with its anti-apoptotic, antioxidative, anti-inflammatory and HPU inhibitory actions. Copyright © 2016. Published by Elsevier B.V.
Possible mechanisms of action of Caesalpinia pyramidalis against ethanol-induced gastric damage.
Diniz, Polyana B F; Ribeiro, Ana Roseli S; Estevam, Charles S; Bani, Cristiane C; Thomazzi, Sara M
2015-06-20
Caesalpinia pyramidalis Tul. (Fabaceae), known as "catingueira", is an endemic tree of the Northeast region of Brazil. This plant, mainly inner bark and flowers, has been used in traditional medicine to treat gastritis, heartburn, indigestion, stomachache, dysenteries, and diarrheas. The ethanol extract of C. pyramidalis inner bark was used in rats via oral route, at the doses of 30, 100, and 300 mg/kg, in the ethanol-induced ulcer model and some of the mechanisms underlying to the gastroprotective effect of this plant investigated. The ethanol extract of C. pyramidalis inner bark (100 mg/kg) produced reduction (P < 0.001) on the total lesion area in the ethanol-induced gastric damage. The gastroprotective response caused by the ethanol extract (100 mg/kg) was significantly attenuated (P < 0.05) by intraperitoneal treatment of rats with DL-Propargylglycine (PAG, a cystathionine-γ-lyase inhibitor; 25 mg/kg), but not by Nw-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase; 70 mg/kg), and confirmed by microscopic evidence. The ethanol extract significantly decreased the number of mucosal mast cells compared to vehicle-treated group. The inflammatory cells of the ethanol extract (100 mg/kg)-treated ulcerated rats exhibited an upregulation of interleukin (IL)-4 protein expression and downregulation of inducible nitric oxide synthase (iNOS) expression, observed by immunohistochemistry and flow cytometer. The present results suggest that the ethanol extract of C. pyramidalis produced dose-related gastroprotective response on ethanol-induce ulcer in rats through mechanisms that involved an interaction with endogenous hydrogen sulfide and reduction of inflammatory process with imbalance between pro-inflammatory and anti-inflammatory mediators, supporting the popular usage of this plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
CXCL4-induced macrophages in human atherosclerosis.
Domschke, Gabriele; Gleissner, Christian A
2017-09-09
Atherosclerosis is considered an inflammatory disease of the arterial wall. Monocytes and monocyte-derived cells (most often termed macrophages) play an essential role in the formation of atherosclerotic lesions, as they take up lipids leading to subsequent foam cell formation accompanied by release of pro-inflammatory cytokines. Similarly, platelets have been discovered to represent an important cell type mediating inflammatory and immune processes in atherogenesis, mainly by secreting chemokines, which are stored in the platelets' alpha granules, upon platelet activation. Therefore, the interaction between monocyte-derived cells and platelets is of exceptional importance. In this review, we specifically focus on the chemokine (platelet factor-4, PF4) and its effects on monocytes and monocyte-derived cells. By formation of heterodimers dimers and -oligomers with CCL5, CXCL4 induces binding of monocytes cells to endothelial cell and thereby promotes diapedesis of monocytes into the subendothelial space. CXCL4 also affects the differentiation of monocytes as it induces a specific macrophage phenotype, which we suggested to term "M4". For example, CXCL4-induced macrophages irreversibly lose the hemoglobin-haptoglobin scavenger receptor CD163. The combination of CD68, S100A8, and MMP7 turned out to reliably identify M4 macrophages both in vitro and in vivo within atherosclerotic lesions. In human atherosclerotic plaques, M4 macrophages are predominantly present in the adventitia and the intima and their prevalence is associated with plaque instability suggesting that they are a marker of pro-inflammatory activity. Overall, CXCL4-induced M4 macrophages may represent a target for diagnostic and therapeutic interventions in human atherosclerotic disease. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang
2017-01-01
Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094
Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation.
Wang, S; Wang, H; Guo, H; Kang, L; Gao, X; Hu, L
2011-06-30
Inhibition of microglial over-reaction and the inflammatory processes may represent a therapeutic target to alleviate the progression of neurological diseases, such as neurodegenerative diseases and stroke. Scutellarin is the major active component of Erigeron breviscapus (Vant.) Hand-Mazz, a herbal medicine in treatment of cerebrovascular diseases for a long time in the Orient. In this study, we explored the mechanisms of neuroprotection by Scutellarin, particularly its anti-inflammatory effects in microglia. We observed that Scutellarin inhibited lipopolysaccharide (LPS)-induced production of proinflammatory mediators such as nitric oxide (NO), tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and reactive oxygen species (ROS), suppressed LPS-stimulated inducible nitric oxide synthase (iNOS), TNFα, and IL-1β mRNA expression in rat primary microglia or BV-2 mouse microglial cell line. Scutellarin inhibited LPS-induced nuclear translocation and DNA binding activity of nuclear factor κB (NF-κB). It repressed the LPS-induced c-Jun N-terminal kinase (JNK) and p38 phosphorylation without affecting the activity of extracellular signal regulated kinase (ERK) mitogen-activated protein kinase. Moreover, Scutellarin also inhibited interferon-γ (IFN-γ)-induced NO production, iNOS mRNA expression and transcription factor signal transducer and activator of transcription 1α (STAT1α) activation. Concomitantly, conditioned media from Scutellarin pretreated BV-2 cells significantly reduced neurotoxicity compared with conditioned media from LPS treated alone. Together, the present study reported the anti-inflammatory activity of Scutellarin in microglial cells along with their underlying molecular mechanisms, and suggested Scutellarin might have therapeutic potential for various microglia mediated neuroinflammation. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang
2017-01-01
Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.
Omorogbe, Osarume; Ajayi, Abayomi M; Ben-Azu, Benneth; Oghwere, Ejiroghene E; Adebesin, Adaeze; Aderibigbe, Adegbuyi O; Okubena, Olajuwon; Umukoro, Solomon
2018-02-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects the physical and psychosocial wellbeing of the patients and a major cause of work disability. Current drugs for its treatment only provide palliative effect, as cure for the disease still remains elusive. Jobelyn ® (JB), a potent anti-oxidant and anti-inflammatory dietary supplement obtained from Sorghum bicolor, has been claimed to relieve arthritic pain. Thus, this study was designed to evaluate its effect on inflammatory and biochemical changes as well as neurobehavioural deficits associated with complete Freund-adjuvant (CFA)-induced arthritis in mice. The effect of JB (50, 100 and 200 mg/kg) on inflammatory oedema, neurobehavioural deficits, levels of biomarkers of oxidative stress and inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6) induced by 0.1 mL of CFA (10 mg/mL) was evaluated in male Swiss mice. Oral administration of JB (100 and 200 mg/kg) reduced inflammatory paw volume and reversed sensorimotor deficits induced by CFA. JB also reduced pain episodes, anxiety and depressive-like symptoms in CFA-mice. The increased level of oxidative stress in the joint and brain tissues of CFA-mice was reduced by JB. It also decreased tumor necrosis factor-alpha and interleukin-6 levels induced by CFA in the joint tissue of mice. These findings suggest that Jobelyn ® attenuates inflammatory responses induced by CFA in mice via inhibition of oxidative stress and release of inflammatory cytokines. The ability of JB to attenuate CFA-induced nociception, sensorimotor deficits and depressive-like symptom suggests it might improve the quality of life of patients with arthritic conditions. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Binesh, Ambika; Devaraj, Sivasithamparam Niranjali; Halagowder, Devaraj
2018-03-01
Atherogenic Diet (AD) was given to rats to understand the key role of inflammatory mediators in atherosclerotic lesion formation, as a serendipitous study, the diet induced inflammatory mediators in liver and brain, whereas pancreas, kidney and spleen were not affected. The efficacy of diosgenin in ameliorating atherosclerotic progression in heart and suppression of inflammatory mediators in liver and brain of Wistar rat fed on AD diet was investigated. Atherogenic diet triggered inflammatory mediators in heart, liver and brain by upregulating TNF-α, COX-2 and NFkBp65 which are the inflammatory hub, played a key role in pathophysiologic conditions. Endothelial dysfunction, liver tissue with prominent steatosis and the stress evoked in the brain by the atherogenic diet triggered these inflammatory mediators. TNF-α and COX-2 expression was upregulated and its elevation was associated with NFkBp65 activation in heart, liver and brain of atherogenic diet induced rat. Diosgenin downregulated these inflammatory mediators, thereby prevented the atherosclerotic disease progression and concomitant suppression of inflammatory mediators in liver and brain. Copyright © 2018. Published by Elsevier Inc.
Anti-inflammatory and antipyretic effects of Sonchus oleraceus in rats.
Vilela, Fabiana C; Bitencourt, Andressa D; Cabral, Layla D M; Franqui, Lidiane S; Soncini, Roseli; Giusti-Paiva, Alexandre
2010-02-17
Sonchus oleraceus L. has been used to relieve headaches, general pain, hepatitis, infections, inflammation and rheumatism in Brazilian folk medicine. Nevertheless, scientific information regarding this species is scarce; there are no reports related to its possible anti-inflammatory effects. This study was aimed at evaluating the scientific basis for the traditional use of Sonchus oleraceus using in vivo inflammatory models. Carrageenan-induced paw edema, peritonitis and febrile response induced by lipopolysaccharide tests, as well as fibrovascular tissue growth induced by s.c. cotton pellet implantation were used to investigate the anti-inflammatory activity of Sonchus oleraceus hydroethanolic extract (SoHE) in rats. The SoHE at test doses of 100-300 mg/kg p.o. clearly demonstrated anti-inflammatory effects by reduced paw edema induced by carragenan, inhibited leukocyte recruitment into the peritoneal cavity and reduced LPS-induced febrile response, and in the model of chronic inflammation using the cotton pellet-induced fibrovascular tissue growth in rats, the SoHE significantly inhibited the formation of granulomatous tissue. The extract administered at 300 mg/kg p.o. had a stronger anti-inflammatory effect than indomethacin (10mg/kg) or dexamethasone (1mg/kg). The hydroethanolic extract of Sonchus oleraceus markedly demonstrated anti-inflammatory action in rats, which supports previous claims of its traditional use. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.
Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong
2015-12-01
Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses. Copyright © 2015 Elsevier B.V. All rights reserved.
D'Angelo, Barbara; Astarita, Carlo; Boffo, Silvia; Massaro-Giordano, Mina; Antonella Ianuzzi, Carmelina; Caporaso, Antonella; Macaluso, Marcella; Giordano, Antonio
2017-01-01
Cell cycle reactivation in adult neurons is an early hallmark of neurodegeneration. The lipopolysaccharide (LPS) is a well-known pro-inflammatory factor that provokes neuronal cell death via glial cells activation. The retinoblastoma (RB) family includes RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (Rb2/p130). Several studies have indicated that RB proteins exhibit tumor suppressor activities, and play a central role in cell cycle regulation. In this study, we assessed LPS-mediated inflammatory effect on cell cycle reactivation and apoptosis of neuronally differentiated cells. Also, we investigated whether the LPS-mediated inflammatory response can influence the function and expression of RB proteins. Our results showed that LPS challenges triggered cell cycle reactivation of differentiated neuronal cells, indicated by an accumulation of cells in S and G2/M phase. Furthermore, we found that LPS treatment also induced apoptotic death of neurons. Interestingly, we observed that LPS-mediated inflammatory effect on cell cycle re-entry and apoptosis was concomitant with the aberrant expression of RBL1/p107 and RB1/p105. To the best of our knowledge, our study is the first to indicate a role of LPS in inducing cell cycle re-entry and/or apoptosis of differentiated neuronal cells, perhaps through mechanisms altering the expression of specific members of RB family proteins. This study provides novel information on the biology of post-mitotic neurons and could help in identifying novel therapeutic targets to prevent de novo cell cycle reactivation and/or apoptosis of neurons undergoing neurodegenerative processes.
2015-01-01
Antiangiogenesis has been extensively explored for the treatment of a variety of cancers and certain inflammatory processes. Fumagillin, a mycotoxin produced by Aspergillus fumigatus that binds methionine aminopeptidase 2 (MetAP-2), is a potent antiangiogenic agent. Native fumagillin, however, is poorly soluble and extremely unstable. We have developed a lipase-labile fumagillin prodrug (Fum-PD) that eliminated the photoinstability of the compound. Using αvβ3-integrin-targeted perfluorocarbon nanocarriers to deliver Fum-PD specifically to angiogenic vessels, we effectively suppressed clinical disease in an experimental model of rheumatoid arthritis (RA). The exact mechanism by which Fum-PD-loaded targeted nanoparticles suppressed inflammation in experimental RA, however, remained unexplained. We herein present evidence that Fum-PD nanotherapy indirectly suppresses inflammation in experimental RA through the local production of endothelial nitric oxide (NO). Fum-PD-induced NO activates AMP-activated protein kinase (AMPK), which subsequently modulates macrophage inflammatory response. In vivo, NO-induced AMPK activation inhibits mammalian target of rapamycin (mTOR) activity and enhances autophagic flux, as evidenced by p62 depletion and increased autolysosome formation. Autophagy in turn mediates the degradation of IkappaB kinase (IKK), suppressing the NF-κB p65 signaling pathway and inflammatory cytokine release. Inhibition of NO production by NG-nitro-l-arginine methyl ester (l-NAME), a nitric oxide synthase inhibitor, reverses the suppression of NF-κB-mediated inflammatory response induced by Fum-PD nanotherapy. These unexpected results uncover an activity of Fum-PD nanotherapy that may be further explored in the treatment of angiogenesis-dependent diseases. PMID:24941020
Lean, Qi Ying; Eri, Rajaraman D.; Randall-Demllo, Sarron; Sohal, Sukhwinder Singh; Stewart, Niall; Peterson, Gregory M.; Gueven, Nuri; Patel, Rahul P.
2015-01-01
Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis. PMID:26218284
Yuan, YiFeng; Das, Sushant K; Li, MaoQuan
2018-04-27
Diabetic wounds are characterized by delayed wound healing due to persistent inflammation and excessive production of reactive oxygen species. Vitamin D, which is well acknowledged to enhance intestinal calcium absorption and increase in plasma calcium level, has recently been shown to display beneficial effects in various vascular diseases by promoting angiogenesis and inhibiting inflammatory responses. However, the role of Vitamin D in diabetic wound healing is still unclear. In the present study, we investigated the role of Vitamin D in cutaneous wound healing in streptozotocin (STZ)-induced diabetic mice. Four weeks after injection of STZ, a full thickness excisional wound was created with a 6-mm diameter sterile biopsy punch on the dorsum of the mice. Vitamin D was given consecutively for 14 days by intraperitoneal injection. Vitamin D supplementation significantly accelerated wound healing in diabetic mice and improved the healing quality as assessed by measuring the wound closure rate and histomorphometric analyses. By monitoring the level of pro-inflammatory cytokines tumor necrosis factor-α ( TNF-α ), interleukin (IL) 6 ( IL-6 ), IL-1β ) in the wounds, reduced inflammatory response was found in VD treatment group. Furthermore, nuclear factor κB (NF-κB) pathway was found to be involved in the process of diabetic wound healing by assessing the relative proteins in diabetic wounds. Vitamin D supplementation obviously suppressed NF-κB pathway activation. These results demonstrated that Vitamin D improves impaired wound healing in STZ-induced diabetic mice through suppressing NF-κB-mediated inflammatory gene expression. © 2018 The Author(s).
Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.
Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve
2006-09-18
Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.
Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum
2014-01-01
Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti-inflammatory phytomedicine against hepatic inflammation induced by antibiotic mediated endotoxemia. These results thus suggest that zingerone treatment can be used as a co-therapy with antibiotics to reduced endotoxin induced inflammation during treatment of severe P.aeruginosa infections. PMID:25184525
Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum
2014-01-01
Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti-inflammatory phytomedicine against hepatic inflammation induced by antibiotic mediated endotoxemia. These results thus suggest that zingerone treatment can be used as a co-therapy with antibiotics to reduced endotoxin induced inflammation during treatment of severe P.aeruginosa infections.
Kozela, Ewa; Pietr, Maciej; Juknat, Ana; Rimmerman, Neta; Levy, Rivka; Vogel, Zvi
2010-01-01
Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation. We found that the two major cannabinoids present in marijuana, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), decrease the production and release of proinflammatory cytokines, including interleukin-1β, interleukin-6, and interferon (IFN)β, from LPS-activated microglial cells. The cannabinoid anti-inflammatory action does not seem to involve the CB1 and CB2 cannabinoid receptors or the abn-CBD-sensitive receptors. In addition, we found that THC and CBD act through different, although partially overlapping, mechanisms. CBD, but not THC, reduces the activity of the NF-κB pathway, a primary pathway regulating the expression of proinflammatory genes. Moreover, CBD, but not THC, up-regulates the activation of the STAT3 transcription factor, an element of homeostatic mechanism(s) inducing anti-inflammatory events. Following CBD treatment, but less so with THC, we observed a decreased level of mRNA for the Socs3 gene, a main negative regulator of STATs and particularly of STAT3. However, both CBD and THC decreased the activation of the LPS-induced STAT1 transcription factor, a key player in IFNβ-dependent proinflammatory processes. In summary, our observations show that CBD and THC vary in their effects on the anti-inflammatory pathways, including the NF-κB and IFNβ-dependent pathways. PMID:19910459
Gessner, D K; Ringseis, R; Siebers, M; Keller, J; Kloster, J; Wen, G; Eder, K
2012-12-01
In pigs and other monogastric animal, the weaning phase is commonly accompanied by an increased susceptibility to gut disorders such as diarrhoea owing to the induction of an inflammatory process in the intestine during weaning. Given the unfavourable effects of intestinal inflammation on feed consumption, digestive capacity of the intestine and growth of animals, controlling intestinal inflammation is a reasonable approach for the maintenance of performance characteristics of livestock animals. Therefore, this study aimed to study the anti-inflammatory potential of a commercial polyphenol-rich grape seed (GS) and grape marc (GM) meal-based feed additive in a well-established in vitro intestinal epithelium model (polarized Caco-2 cells). The anti-inflammatory potential was evaluated by studying the effect of an ethanolic extract obtained from the GS and GM meal-based feed additive (GSGME) on the pro-inflammatory transcription factor NF-κB, which is considered to play a key role in the induction of weaning-associated intestinal inflammation. The highest non-cytotoxic concentrations of the ethanolic GSGME dose dependently reduced TNFα-induced NF-κB transactivation and decreased TNFα-induced mRNA levels of the NF-κB target genes IL-1β, IL-8, MCP-1 and CXCL1 in Caco-2 intestinal cells (p < 0.05). No effect of the ethanolic GSGME was observed on the cytoprotective Nrf2 pathway in Caco-2 cells as evidenced by an unaltered Nrf2 transactivation and unchanged mRNA levels of Nrf2 target genes, such as GPX-2, NQO1, CYP1A1 and UGT1A1. In conclusion, this study shows that an ethanolic GSGME exerts anti-inflammatory effects in intestinal cells under in vitro conditions. Thus, polyphenol-rich GSGM meal-based feed additives may be useful for the inhibition or prevention of inflammatory processes in the intestine of livestock animals, in particular during states with inappropriate NF-κB activation in the intestinal tissue, such as the weaning phase. Future studies are warranted to prove the in vivo anti-inflammatory potential of GSGM meal-based feed additives. © 2011 Blackwell Verlag GmbH.
Shin, Ji-Sun; Cho, Eu-Jin; Choi, Hye-Eun; Seo, Ji-Hyung; An, Hyo-Jin; Park, Hee-Juhn; Cho, Young-Wuk; Lee, Kyung-Tae
2014-12-02
Rubus coreanus Miquel (Rosaceae), the Korean black raspberry, has traditionally been used to treat inflammatory diseases including diarrhea, asthma, stomach ailment, and cancer. Although previous studies showed that the 19α-hydroxyursane-type triterpenoids isolated from Rubus coreanus exerted anti-inflammatory activities, their effects on ulcerative colitis and mode of action have not been explored. This study was designed to assess the anti-inflammatory effects and the molecular mechanisms involving19α-hydroxyursane-type triterpenoid-rich fraction from Rubus coreanus (TFRC) on a mice model of colitis and lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Experimental colitis was induced by DSS for 7 days in ICR mice. Disease activity indices (DAI) took into account body weight, stool consistency, and gross bleeding. Histological changes and macrophage accumulation were observed by immunohistochemical analysis. Pro-inflammatory markers were determined using immunoassays, RT-PCR, and real time PCR. Signaling pathway involving nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) activation was determined by luciferase assay and Western blotting. In DSS-induced colitis mice, TFRC improved DAIs and pathological characteristics including colon shortening and colonic epithelium injury. TFRC suppressed tissue levels of pro-inflammatory cytokines and reduced macrophage infiltration into colonic tissues. In LPS-induced RAW 264.7 macrophages, TFRC inhibited the production of NO, PGE2, and pro-inflammatory cytokines by down-regulating the activation of NF-κB and p38 MAPK signaling. The study demonstrates that TFRC has potent anti-inflammatory effects on DSS-induced colonic injury and LPS-induced macrophage activation, and supports its possible therapeutic and preventive roles in colitis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
da Silva, Josiane M; Conegundes, Jéssica L M; Pinto, Nícolas C C; Mendes, Renata F; Castañon, Maria Christina M N; Scio, Elita
2018-04-01
This study aimed to evaluate the chronic topical anti-inflammatory activity of the pharmaceutical formulation ProHLP containing the hexane fraction of Lacistema pubescens (HLP). It was also investigated the possible cutaneous and systemic adverse effects of HLP and ProHLP in mice when compared to dexamethasone. The chronic topical anti-inflammatory activity was determined by croton oil multiple application-induced mouse ear oedema model. Histopathological analyses of ear tissue samples sensitized with croton oil were performed. Cutaneous atrophy induced by HLP and topical glucocorticoid treatments and excision skin wounds model to evidenced possible adverse reactions were also determined. ProHLP significantly reduced the mice ear oedema and considerably accelerated the wound-healing process. Also, HLP did not lead cutaneous atrophy and preserved the clinical aspect of the thymus, adrenal and spleen, unlike dexamethasone. The results suggested that ProHLP is an efficient and safer pharmaceutical formulation to treat chronic inflammatory diseases. © 2018 Royal Pharmaceutical Society.
Tan, Yunhao; Zanoni, Ivan; Cullen, Thomas W.; Goodman, Andrew L.; Kagan, Jonathan C.
2015-01-01
Microbe-induced receptor trafficking has emerged as an essential means to promote innate immune signal transduction. Upon detection of bacterial lipopolysaccharides (LPS), CD14 induces an inflammatory endocytosis pathway that delivers Toll-like Receptor 4 (TLR4) to endosomes. Although several regulators of CD14-dependent TLR4 endocytosis have been identified, the cargo selection mechanism during this process remains unknown. We reveal that, in contrast to classic cytosolic interactions that promoted the endocytosis of transmembrane receptors, TLR4 was selected as cargo for inflammatory endocytosis entirely through extracellular interactions. Mechanistically, the extracellular protein MD-2 bound to and dimerized TLR4 in order to promote this endocytic event. Our analysis of LPS variants from human pathogens and gut commensals revealed a common mechanism by which bacteria prevent inflammatory endocytosis. We suggest that evasion of CD14-dependent endocytosis is an attribute that transcends the concept of pathogenesis, and may be a fundamental feature of bacteria that inhabit eukaryotic hosts. PMID:26546281
Pathophysiology of preterm labor with intact membranes.
Talati, Asha N; Hackney, David N; Mesiano, Sam
2017-11-01
Preterm labor with intact membranes is a major cause of spontaneous preterm birth (sPTB). To prevent sPTB a clear understanding is needed of the hormonal interactions that initiate labor. The steroid hormone progesterone acting via its nuclear progesterone receptors (PRs) in uterine cells is essential for the establishment and maintenance of pregnancy and disruption of PR signaling (i.e., functional progesterone/PR withdrawal) is key trigger for labor. The process of parturition is also associated with inflammation within the uterine tissues and it is now generally accepted that inflammatory stimuli from multiple extrinsic and intrinsic sources induce labor. Recent studies suggest inflammatory stimuli induce labor by affecting PR transcriptional activity in uterine cells to cause functional progesterone/PR withdrawal. Advances in understanding the functional interaction of inflammatory load on the pregnancy uterus and progesterone/PR signaling is opening novel areas of research and may lead to rational therapeutic strategies to effectively prevent sPTB. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao
2018-02-05
Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Mi-Kyoung; Park, Hyun-Joo; Department of Dental Pharmacology, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 626-870
Gastrin-releasing peptide (GRP) is a neuropeptide that plays roles in various pathophysiological conditions including inflammatory diseases in peripheral tissues; however, little is known about whether GRP can directly regulate endothelial inflammatory processes. In this study, we showed that GRP promotes the adhesion of leukocytes to human umbilical vein endothelial cells (HUVECs) and the aortic endothelium. GRP increased the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) by activating nuclear factor-κB (NF-κB) in endothelial cells. In addition, GRP activated extracellular signal-regulated kinase 1/2 (ERK1/2), p38MAPK, and AKT, and the inhibition of these signaling pathways significantly reduced GRP-inducedmore » monocyte adhesion to the endothelium. Overall, our results suggested that GRP may cause endothelial dysfunction, which could be of particular relevance in the development of vascular inflammatory disorders. - Highlights: • GRP induces adhesion of monocytes to vascular endothelium. • GRP increases the expression of endothelial adhesion molecules through the activation of NF-κB. • ERK1/2, p38MAPK, and Akt pathways are involved in the GRP-induced leukocyte adhesiveness to endothelium.« less
Liu, Dali; Yumoto, Hiromichi; Hirota, Katsuhiko; Murakami, Keiji; Takahashi, Kanako; Hirao, Kouji; Matsuo, Takashi; Ohkura, Kazuto; Nagamune, Hideaki; Miyake, Yoichiro
2008-01-01
Streptococcus intermedius is a commensal associated with serious, deep-seated purulent infections in major organs, such as the brain and liver. Histone-like DNA binding protein (HLP) is an accessory architectural protein in a variety of bacterial cellular processes. In this study, we investigated the mechanisms of pro-inflammatory cytokine inductions in THP-1 cells by stimulation with recombinant HLP of S. intermedius (rSi-HLP). rSi-HLP stimulation-induced production of pro-inflammatory cytokines (IL-8, IL-1 beta and TNF-alpha) occurred in a time- and dose-dependent manner. In contrast with the heat-stable activity of DNA binding, the induction activity of rSi-HLP was heat-unstable. In subsequent studies, rSi-HLP acted cooperatively with lipoteichoic acid, the synthetic Toll-like receptor 2 agonist, Pam3CSK4, and the cytosolic nucleotide binding oligomerization domain 2 receptor agonist, muramyldipeptide. Furthermore, Western blot and blocking assays with specific inhibitors showed that rSi-HLP stimulation induced the activation of cell signal transduction pathways, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). In addition to its physiological role in bacterial growth through DNA binding, these results indicate that Si-HLP can trigger a cascade of events that induce pro-inflammatory responses via ERK1/2 and JNK signal pathways, and suggest that bacterial HLP may contribute to the activation of host innate immunity during bacterial infection.
Ferraz-Filha, Zilma Schimith; Ferrari, Fernanda Cristina; Araújo, Marcela Carolina de Paula Michel; Bernardes, Ana Catharina Fernandes P. F.
2017-01-01
Tabebuia species (Bignoniaceae) have long been used in folk medicine as anti-inflammatory, antirheumatic, antimicrobial, and antitumor. The aim of this study was to investigate if aqueous extract from the leaves (AEL) of Tabebuia roseoalba (Ridl.) Sandwith, Bignoniaceae, and its constituents could be useful to decrease serum uric acid levels and restrain the gout inflammatory process. HPLC analysis identified caffeic acid and chlorogenic acid in AEL. Antihyperuricemic effects and inhibition of liver XOD (xanthine oxidoreductase) by AEL and identified compounds were evaluated in hyperuricemic mice. Anti-inflammatory activity was evaluated on MSU (monosodium urate) crystal-induced paw edema. In addition, AEL antioxidant activity in vitro was evaluated. AEL, caffeic, and chlorogenic acids were able to reduce serum uric acid levels in hyperuricemic mice probably through inhibition of liver xanthine oxidase activity and significantly decreased the paw edema induced by MSU crystals. AEL showed significant antioxidant activity in all evaluated assays. The results show that the AEL of Tabebuia roseoalba can be a promising agent for treatment for gout and inflammatory diseases. We suggest that caffeic and chlorogenic acids may be responsible for the activities demonstrated by the species. PMID:29375639
Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-11-24
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.
Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-01-01
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance. PMID:26503466
Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian
2017-04-01
Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.
Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin
2013-01-01
Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.
Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan
2017-01-01
Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548
Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice.
Amirshahrokhi, Keyvan
2013-10-01
Thalidomide has been used in inflammatory and autoimmune disorders due to its anti-inflammatory activity. Paraquat (PQ) poisoning causes severe lung injury. PQ-induced pulmonary inflammation and fibrosis are due to its ability to induce oxidative stress, inflammatory and fibrotic reactions. This study was designed to evaluate the anti-inflammatory and anti-fibrotic effect of thalidomide on PQ-induced lung damage in a mouse model. Mice were injected with a single dose of PQ (20mg/kg, i.p.), and treated with thalidomide (25 and 50mg/kg/day, i.p.) for six days. Lung tissues were dissected six days after PQ injection. The results showed that thalidomide ameliorated the biochemical and histological lung alterations induced by PQ. Thalidomide decreased production of inflammatory and fibrogenic cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β1. In addition thalidomide reduced myeloperoxidase (MPO), nitric oxide (NO), and hydroxyproline content in lung tissue. Taken together, the results of this study suggest that thalidomide might be a valuable therapeutic drug in preventing the progression of PQ-induced pulmonary injury. Copyright © 2013 Elsevier B.V. All rights reserved.
Study of denture-induced fibrous hyperplasia cases diagnosed from 1979 to 2001.
Macedo Firoozmand, Leily; Dias Almeida, Janete; Guimarães Cabral, Luiz Antonio
2005-01-01
The purpose of this research was to study the cases of inflammatory fibrous hyperplasia (IFH) at the Clinic of Semiology, Department of Bioscience and Oral Diagnosis, São Jose dos Campos Dental School, State University of São Paulo, Brazil. A total of 141 clinical file cards indicating a final diagnosis of IFH, from the archives of the Department of Bioscience and Oral Diagnosis and dated from 1979 to 2001, were included in the study. Of these files, 50 indicated a diagnosis of denture-induced fibrous hyperplasia. Sex, age, race, duration, and clinical features that confirm their classification in the non-neoplastic proliferating process were analyzed statistically. Of the 50 analyzed cases of denture-induced lesion, 22% occurred in men and 78% in women. Patients in the age group of 41 to 50 years presented the highest frequency of the lesion. Inflammatory fibrous hyperplasia occurs more frequently in women (71.63%), and denture-induced lesions appear mainly in patients over 40 years of age (70% of cases). Patients with denture-induced hyperplasia reported pain associated with the lesion (70%).
Song, Yan; Zhao, Hongfeng; Liu, Jinyang; Fang, Chao; Miao, Renying
2016-04-01
Citral is an active compound of lemongrass oil which has been reported to have anti-inflammatory effects. In this study, we investigated the effects of citral on lipopolysaccharide (LPS)-induced inflammatory response in a rat model of peritonitis and human umbilical vein endothelial cells (HUVECs). LPS was intraperitoneally injected into rats to establish a peritonitis model. The HUVECs were treated with citral for 12 h before exposure to LPS. The levels of TNF-α and IL-8 were measured using ELISA. Western blotting was used to detect the expression of VCAM-1, ICAM-1, NF-κB, and PPAR-γ. The results showed that citral had a protective effect against LPS-induced peritonitis. Citral decreased the levels of WBCs and inflammatory cytokines TNF-α and IL-6. Citral also inhibited LPS-induced myeloperoxidase (MPO) activity in the peritoneal tissue. Treatment of HUVECs with citral significantly inhibited TNF-α and IL-8 expression induced by LPS. LPS-induced VCAM-1 and ICAM-1 expression were also suppressed by citral. Meanwhile, we found that citral inhibited LPS-induced NF-κB activation in HUVECs. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, citral inhibits LPS-induced inflammatory response via activating PPAR-γ which attenuates NF-κB activation and inflammatory mediator production.
Li, Liya; Liu, Wenjia; Wang, Hong; Yang, Qianjuan; Zhang, Liqiang; Jin, Fang; Jin, Yan
2018-04-24
Histone deacetylases (HDAC) plays important roles in the post-translational modifications of histone cores as well as non-histone targets. Many of them are involved in key inflammatory processes. Despite their importance, whether and how HDAC9 is regulated under inflammatory conditions remains unclear. The aim of this study was to evaluate the effects of HDAC9 under chronic inflammation condition in human periodontal ligament stromal cell (PDLSCs) and to explore the underlying regulatory mechanism. PDLSCs from healthy or periodontitis human tissue was compared. The therapeutic effects of HDAC inhibitors was determined in PDLSC pellet transplanted nude mice and LPS-induced rat periodontitis. We report that HDAC9 was the most affected HDAC family member under inflammatory conditions in PDLSCs. HDAC9 impaired osteogenic differentiation capacity of PDLSCs under inflammatory conditions. Downregulation of HDAC9 by HDAC inhibitors or si-HDAC9 rescued the osteogenic differentiation capacity of inflammatory PDLSC to a similar level with the healthy PDLSC. In this context, HDAC9 and miR-17 formed an inhibitory loop. The inhibition of miR-17 aggravated loss of calcified nodules in inflamed PDLSCs and interrupted the effect of HDAC inhibitor in rescuing osteogenesis. In vivo experiments using nude mice and LPS-induced periodontitis model confirmed that HDAC inhibitors could improve new bone formation. We conclude that HDAC inhibitors improved osteogenesis of PDLSCs in vitro and periodontitis in vivo.
Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization.
Lu, Hong; Wu, Lianfeng; Liu, Leping; Ruan, Qingqing; Zhang, Xing; Hong, Weilong; Wu, Shijia; Jin, Guihua; Bai, Yongheng
2018-05-15
Interstitial inflammation is the main pathological feature in kidneys following injury, and the polarization of macrophages is involved in the process of inflammatory injury. Previous studies have shown that quercetin has a renal anti-inflammatory activity, but the potential molecular mechanism remains unknown. In obstructive kidneys, administration of quercetin inhibited tubulointerstitial injury and reduced the synthesis and release of inflammatory factors. Further study revealed that quercetin inhibited the infiltration of CD68+ macrophages in renal interstitium. Moreover, the decrease in levels of iNOS and IL-12, as well as the proportion of F4/80+/CD11b+/CD86+ macrophages, indicated quercetin-mediated inhibition of M1 macrophage polarization in the injured kidneys. In cultured macrophages, lipopolysaccharide-induced inflammatory polarization was suppressed by quercetin treatment, resulting in the reduction of the release of inflammatory factors. Notably, quercetin-induced inhibitory effects on inflammatory macrophage polarization were associated with down-regulated activities of NF-κB p65 and IRF5, and thus led to the inactivation of upstream signaling TLR4/Myd88. Interestingly, quercetin also inhibited the polarization of F4/80+/CD11b+/CD206+ M2 macrophages, and reduced excessive accumulation of extracellular matrix and interstitial fibrosis by antagonizing the TGF-β1/Smad2/3 signaling. Thus, quercetin ameliorates kidney injury via modulating macrophage polarization, and may have therapeutic potential for patients with kidney injury. Copyright © 2018 Elsevier Inc. All rights reserved.
POZO, DAVID; GONZALEZ-REY, ELENA; CHORNY, ALEJO; ANDERSON, PER; VARELA, NIEVES; DELGADO, MARIO
2007-01-01
The induction of immune tolerance is essential for the maintenance of immune homeostasis and to limit the occurrence of exacerbated inflammatory and autoimmune conditions. Multiple mechanisms act together to ensure self-tolerance, including central clonal deletion, cytokine deviation and induction of regulatory T cells. Identifying the factors that regulate these processes is crucial for the development of new therapies of autoimmune diseases and transplantation. The vasoactive intestinal peptide (VIP) is a well-characterized endogenous anti-inflammatory neuropeptide with therapeutic potential for a variety of immune disorders. Here we examine the latest research findings, which indicate that VIP participates in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. PMID:17521775
Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender
2016-01-01
Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638
[Signaling mechanisms involved in resolution of inflammation].
Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel
2014-01-01
Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.
Wang, Wei; Chen, Jing; Li, Xiao Guang; Xu, Jie
2016-12-01
The AMP-activated protein kinase (AMPK) pathway has been shown to be able to regulate inflammation in several cell lines. We reported that fenoterol, a β 2 -adrenergic receptor (β 2 -AR) agonist, inhibited lipopolysaccharide (LPS)-induced AMPK activation and inflammatory cytokine production in THP-1 cells, a monocytic cell line in previous studies. 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR) is an agonist of AMPK. Whether AICAR induced AMPK activation and inflammatory cytokine production in THP-1 cells can be inhibited by fenoterol is unknown. In this study, we explored the mechanism of β 2 -AR stimulation with fenoterol in AICAR-induced inflammatory cytokine secretion in THP-1 cells. We studied AMPK activation using p-AMPK and AMPK antibodies, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion in THP-1 cells stimulated by β 2 -AR in the presence or absence of AICAR and small interfering RNA (siRNA)-mediated knockdown of β-arrestin-2 or AMPKα1 subunit. AICAR-induced AMPK activation, NF-κB activation and tumor necrosis factor (TNF)-α release were reduced by fenoterol. In addition, siRNA-mediated knockdown of β-arrestin-2 abolished fenoterol's inhibition of AICAR-induced AMPK activation and TNF-α release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol in AICAR-treated THP-1 cells. Furthermore, siRNA-mediated knockdown of AMPKα1 significantly attenuated AICAR-induced NF-κB activation and TNF-α release, so AMPKα1 was a key signaling molecule involved in AICAR-induced inflammatory cytokine production. These data suggested that fenoterol inhibited AICAR-induced AMPK activation and TNF-α release through β-arrestin-2 in THP-1 cells. Management especially inhibition of AMPK signaling may provide new approaches and strategies for the treatments of immune diseases including inflammatory diseases and other critical illness. Published by Elsevier Masson SAS.
Liu, Y-W; Ong, W-K; Su, Y-W; Hsu, C-C; Cheng, T-H; Tsai, Y-C
2016-06-01
Lactic acid bacteria (LAB) with anti-inflammatory effects may be beneficial to the prevention or treatment for inflammation-related diseases, such as inflammatory bowel diseases. In an in vitro assay, heat-killed Lactobacillus brevis K65 (K65) reduced lipopolysaccharide-induced production of nitric oxide, tumour necrosis factor (TNF)-α and prostaglandin E2 in RAW 264.7 cells. In RAW 264.7 cells stably expressing an ind=ucible nitric oxide synthase (iNOS) reporter, viable K65 showed greater inhibition of iNOS production than its heat-killed form. In order to further examine the in vivo anti-inflammatory effect of K65, viable K65 was orally administered to BALB/c mice before and during the period of dextran sulphate sodium (DSS)-induced ulcerative colitis (UC). K65 improved UC symptoms, including reduced the levels of the pro-inflammatory cytokines, TNF-α, interleukin (IL)-6 and IL-1β, and lowered the activity of myeloperoxidase. Furthermore, K65 inhibited TNF-α, cyclo-oxygenase 2, forkhead box P3, and Toll-like receptor 4 mRNA expression in the colonic tissue of DSS-induced UC mice. Taken together, K65, a LAB with in vitro anti-inflammatory activity showed preventive effects on mice with DSS-induced UC by lowering the expression of inflammatory molecules.
Xing, Fei; Liu, Yin; Sharma, Sambad; Wu, Kerui; Chan, Michael D.; Lo, Hui-Wen; Carpenter, Richard L.; Metheny-Barlow, Linda J.; Zhou, Xiaobo; Qasem, Shadi A.; Pasche, Boris; Watabe, Kounosuke
2016-01-01
Brain metastasis is one of the chief causes of mortality in breast cancer patients, but the mechanisms that drive this process remains poorly understood. Here we report that brain metastatic cells expressing high levels of c-Met promote the metastatic process via inflammatory cytokine upregulation and vascular reprogramming. Activated c-Met signaling promoted adhesion of tumor cells to brain endothelial cells and enhanced neovascularization by inducing the secretion of IL-8 and CXCL1. Additionally, stimulation of IL1β secretion by activation of c-Met induced tumor-associated astrocytes to secrete the c-Met ligand HGF. Thus, a feed-forward mechanism of cytokine release initiated and sustained by c-Met fed a vicious cycle which generated a favorable microenvironment for metastatic cells. Reinforcing our results, we found that pterostilbene, a compound that penetrates the blood-brain barrier, could suppress brain metastasis by targeting c-Met signaling. These findings suggest a potential utility of this natural compound for chemoprevention. PMID:27364556
Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.
Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R
2010-01-01
Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villar-Lorenzo, Andrea, E-mail: avillar@iib.uam.es
A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25 μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) andmore » increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation. - Highlights: • Compounds 18 (C18) and 25 (C25) exert anti-inflammatory effects in macrophages. • C18 enhanced nuclear translocation of Nrf2 and increased HO1 expression. • C25 inhibited the phosphorylation of JNK, p38 and ERK, members of the MAPKs family. • C25 reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β. • C18 and C25 may be therapeutic agents for diseases linked to inflammation.« less
Liu, Zhongning; Jiang, Ting; Wang, Xinzhi; Wang, Yixiang
2013-01-01
BACKGROUND AND PURPOSE Fluocinolone acetonide (FA) is commonly used as a steroidal anti-inflammatory drug. We recently found that in dental pulp cells (DPCs) FA has osteo-/odonto-inductive as well as anti-inflammatory effects. However, the mechanism by which FA induces these effects in DPCs is poorly understood. EXPERIMENTAL APPROACH The effect of FA on the mineralization of DPCs during inflammatory conditions and the underlying mechanism were investigated by real-time PCR, Western blot, EMSA, histochemical staining, immunostaining and pathway blockade assays. KEY RESULTS FA significantly inhibited the inflammatory response in LPS-treated DPCs not only by down-regulating the expression of pro–inflammation-related genes, but also by up-regulating the expression of the anti-inflammatory gene PPAR-γ and mineralization-related genes. Moreover, histochemical staining and immunostaining showed that FA could partially restore the expressions of alkaline phosphatase, osteocalcin and dentin sialophosphoprotein (DSPP) and mineralization in LPS-stimulated DPCs. Real-time PCR and Western blot analysis revealed that FA up-regulated DSPP and runt-related transcription factor 2 expression by inhibiting the expression of phosphorylated-NF-κB P65 and activating activator protein-1 (AP-1) (p-c-Jun and Fra-1). These results were further confirmed through EMSA, by detection of NF-κB DNA-binding activity and pathway blockade assays using a NF-κB pathway inhibitor, AP-1 pathway inhibitor and glucocorticoid receptor antagonist. CONCLUSIONS AND IMPLICATIONS Inflammation induced by LPS suppresses the mineralization process in DPCs. FA partially restored this osteo-/odonto-genesis process in LPS-treated DPCs and had an anti-inflammatory effect through inhibition of the NF-κB pathway and activation of the AP-1 pathway. Hence, FA is a potential new treatment for inflammation-associated bone/teeth diseases. PMID:24024985
King, Elizabeth M.; Chivers, Joanna E.; Rider, Christopher F.; Minnich, Anne; Giembycz, Mark A.; Newton, Robert
2013-01-01
Binding of glucocorticoid to the glucocorticoid receptor (GR/NR3C1) may repress inflammatory gene transcription via direct, protein synthesis-independent processes (transrepression), or by activating transcription (transactivation) of multiple anti-inflammatory/repressive factors. Using human pulmonary A549 cells, we showed that 34 out of 39 IL-1β-inducible mRNAs were repressed to varying degrees by the synthetic glucocorticoid, dexamethasone. Whilst these repressive effects were GR-dependent, they did not correlate with either the magnitude of IL-1β-inducibility or the NF-κB-dependence of the inflammatory genes. This suggests that induction by IL-1β and repression by dexamethasone are independent events. Roles for transactivation were investigated using the protein synthesis inhibitor, cycloheximide. However, cycloheximide reduced the IL-1β-dependent expression of 13 mRNAs, which, along with the 5 not showing repression by dexamethasone, were not analysed further. Of the remaining 21 inflammatory mRNAs, cycloheximide significantly attenuated the dexamethasone-dependent repression of 11 mRNAs that also showed a marked time-dependence to their repression. Such effects are consistent with repression occurring via the de novo synthesis of a new product, or products, which subsequently cause repression (i.e., repression via a transactivation mechanism). Conversely, 10 mRNAs showed completely cycloheximide-independent, and time-independent, repression by dexamethasone. This is consistent with direct GR transrepression. Importantly, the inflammatory mRNAs showing attenuated repression by dexamethasone in the presence of cycloheximide also showed a significantly greater extent of repression and a higher potency to dexamethasone compared to those mRNAs showing cycloheximide-independent repression. This suggests that the repression of inflammatory mRNAs by GR transactivation-dependent mechanisms accounts for the greatest levels of repression and the most potent repression by dexamethasone. In conclusion, our data indicate roles for both transrepression and transactivation in the glucocorticoid-dependent repression of inflammatory gene expression. However, transactivation appears to account for the more potent and efficacious mechanism of repression by glucocorticoids on these IL-1β-induced genes. PMID:23349769
Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong
2012-01-01
Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414
Yang, Xiu-Li; Kim, Chi Kyung; Kim, Tae Jung; Sun, Jing; Rim, Doeun; Kim, Young-Ju; Ko, Sang-Bae; Jang, Hyunduk; Yoon, Byung-Woo
2016-02-01
The aim of this study was to investigate whether fimasartan, a novel angiotensin II receptor blocker, modulates hemolysate-induced inflammation in astrocytes. We stimulated astrocytes with hemolysate to induce hemorrhagic inflammation in vitro. Astrocytes were pretreated with fimasartan and then incubated with hemolysate at different durations. Anti-inflammatory cell signaling molecules including Akt, extracellular signal regulated kinase (ERK), NFκB and cyclooxygenase-2 (COX-2) were assessed by western blotting. Pro-inflammatory mediators were evaluated by real-time RT-PCR and ELISA. The stimulation by hemolysate generated a robust activation of inflammatory signaling pathways in astrocytes. Hemolysate increased the phosphorylation of Akt at 1 h, and ERK1/2 at 20 min compared with the control group and promoted the degradation of IκBα. Pretreated fimasartan significantly decreased hemolysate-induced phosphorylation of Akt and ERK1/2. In addition, fimasartan also suppressed NFκB-related inflammatory pathways induced by hemolysate, including reduction of the gene expression of NFκB, and decreased nuclear translocation of NFκB and degradation of IκB. This reduction of inflammatory upstream pathways decreased the expression of inflammatory end-products: COX-2 and interleukin-1 (IL-1β). Furthermore, the expression of COX-2 was attenuated by both Akt inhibitor (LY294002) and ERK inhibitor (U0126), and IκBα degradation was suppressed by LY294002. These results demonstrate that pretreatment with fimasartan to astrocytes suppresses the inflammatory responses induced by hemolysate. Akt, ERK and NFκB were associated with hemolysate-induced COX-2 and IL-1β expression. Based on these mechanisms, fimasartan could be a candidate anti-inflammatory regulator for the treatment of intracerebral hemorrhage.
Idiopathic granulomatous lobular mastitis.
Pereira, Frederick A; Mudgil, Adarsh V; Macias, Edgar S; Karsif, Karen
2012-02-01
Idiopathic granulomatous lobular mastitis (IGLM) is a rare breast condition with prominent skin findings. It is typically seen in young parous women. Painful breast masses, draining sinuses, scarring, and breast atrophy are the main clinical manifestations. IGLM can resemble a variety of other inflammatory and neoplastic processes of the breast. It is thought to result from obstruction and rupture of breast lobules. Extravasated breast secretions then induce an inflammatory reaction. Corynebacteria have also been implicated in the pathogenesis. Treatment is surgical, but systemic corticosteroids, methotrexate, and antibiotics also play a role. © 2012 The International Society of Dermatology.
Maes, Michael; Yirmyia, Raz; Noraberg, Jens; Brene, Stefan; Hibbeln, Joe; Perini, Giulia; Kubera, Marta; Bob, Petr; Lerer, Bernard; Maj, Mario
2009-03-01
Despite extensive research, the current theories on serotonergic dysfunctions and cortisol hypersecretion do not provide sufficient explanations for the nature of depression. Rational treatments aimed at causal factors of depression are not available yet. With the currently available antidepressant drugs, which mainly target serotonin, less than two thirds of depressed patients achieve remission. There is now evidence that inflammatory and neurodegenerative (I&ND) processes play an important role in depression and that enhanced neurodegeneration in depression may-at least partly-be caused by inflammatory processes. Multiple inflammatory-cytokines, oxygen radical damage, tryptophan catabolites-and neurodegenerative biomarkers have been established in patients with depression and these findings are corroborated by animal models of depression. A number of vulnerability factors may predispose towards depression by enhancing inflammatory reactions, e.g. lower peptidase activities (dipeptidyl-peptidase IV, DPP IV), lower omega-3 polyunsaturated levels and an increased gut permeability (leaky gut). The cytokine hypothesis considers that external, e.g. psychosocial stressors, and internal stressors, e.g. organic inflammatory disorders or conditions, such as the postpartum period, may trigger depression via inflammatory processes. Most if not all antidepressants have specific anti-inflammatory effects, while restoration of decreased neurogenesis, which may be induced by inflammatory processes, may be related to the therapeutic efficacy of antidepressant treatments. Future research to disentangle the complex etiology of depression calls for a powerful paradigm shift, i.e. by means of a high throughput-high quality screening, including functional genetics and genotyping microarrays; established and novel animal and ex vivo-in vitro models for depression, such as new transgenic mouse models and endophenotype-based animal models, specific cell lines, in vivo and ex vivo electroporation, and organotypic brain slice culture models. This screening will allow to: 1) discover new I&ND biomarkers, both at the level of gene expression and the phenotype; and elucidate the underlying molecular I&ND pathways causing depression; and 2) identify new therapeutic targets in the I&ND pathways; develop new anti-I&ND drugs for these targets; select existing anti-I&ND drugs or substances that could augment the efficacy of antidepressants; and predict therapeutic response by genetic I&ND profiles.
Lin, Yen-You; Lin, Sung-Chun; Feng, Chien-Wei; Chen, Pei-Chin; Su, Yin-Di; Li, Chi-Min; Yang, San-Nan; Jean, Yen-Hsuan; Sung, Ping-Jyun; Duh, Chang-Yih; Wen, Zhi-Hong
2015-01-01
In recent years, several marine-derived compounds have been clinically evaluated. Diterpenes are secondary metabolites from soft coral that exhibit anti-inflammatory, anti-tumor and cytotoxic activities. In the present study, we isolated a natural diterpene product, excavatolide B, from cultured Formosan gorgonian Briareum excavatum and investigated its anti-inflammatory activities. We found that excavatolide B significantly inhibited the mRNA expression of the proinflammatory mediators, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide (LPS)-challenged murine macrophages (RAW 264.7). We also examined the anti-inflammatory and anti-nociceptive effects of excavatolide B on intraplantar carrageenan-induced inflammatory responses. Excavatolide B was found to significantly attenuate carrageenan-induced nociceptive behaviors, mechanical allodynia, thermal hyperalgesia, weight bearing deficits and paw edema. In addition, excavatolide B inhibited iNOS, as well as the infiltration of immune cells in carrageenan-induced inflammatory paw tissue. PMID:25923315
Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua
2016-11-23
In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.
Galectin-3 Inhibition Is Associated with Neuropathic Pain Attenuation after Peripheral Nerve Injury
Ai, Zisheng; Zheng, Yongjun
2016-01-01
Neuropathic pain remains a prevalent and persistent clinical problem because it is often poorly responsive to the currently used analgesics. It is very urgent to develop novel drugs to alleviate neuropathic pain. Galectin-3 (gal3) is a multifunctional protein belonging to the carbohydrate-ligand lectin family, which is expressed by different cells. Emerging studies showed that gal3 elicits a pro-inflammatory response by recruiting and activating lymphocytes, macrophages and microglia. In the study we investigated whether gal3 inhibition could suppress neuroinflammation and alleviate neuropathic pain following peripheral nerve injury. We found that L5 spinal nerve ligation (SNL) increases the expression of gal3 in dorsal root ganglions at the mRNA and protein level. Intrathecal administration of modified citrus pectin (MCP), a gal3 inhibitor, reduces gal3 expression in dorsal root ganglions. MCP treatment also inhibits SNL-induced gal3 expression in primary rat microglia. SNL results in an increased activation of autophagy that contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of MCP significantly suppresses SNL-induced autophagy activation. MCP also inhibits lipopolysaccharide (LPS)-induced autophagy in cultured microglia in vitro. MCP further decreases LPS-induced expression of proinflammatory mediators including IL-1β, TNF-α and IL-6 by regulating autophagy. Intrathecal administration of MCP results in adecreased mechanical and cold hypersensitivity following SNL. These results demonstrated that gal3 inhibition is associated with the suppression of SNL-induced inflammatory process andneurophathic pain attenuation. PMID:26872020
Tyagi, Asha; Bansal, Anuradha; Das, Shukla; Sethi, Ashok Kumar; Kakkar, Aanchal
2017-04-01
Epidural block decreases inflammation and oxidative stress in experimental models of sepsis as well as after surgery. There is, however, no clinical evidence evaluating its effect on infection-induced inflammatory process. The present trial evaluated the effect of thoracic epidural block (TEB) on systemic inflammatory response in patients with small intestinal perforation peritonitis. Outcome measures included systemic levels of interleukin (IL)-6, IL-10, procalcitonin, and C-reactive protein and postoperative Sepsis-Related Organ Failure Assessment scores. Sixty adult patients undergoing emergency abdominal laparotomy without any contraindication to TEB were randomized to receive general anesthesia alone or in combination with the TEB, which was continued for 48 hours postoperatively (n = 30 each). Use of TEB was associated with a statistically insignificant trend of preservation of anti-inflammatory response depicted by higher levels of IL-10 and lack of alteration in proinflammatory IL-6, along with appreciably lower procalcitonin levels, decreased incidence of raised C-reactive protein levels, and better postoperative SOFA score (P > .05). It resulted in significantly better postoperative respiratory function and faster return of bowel motility (P < .05). Although the sample size is too small for conclusive statement, none of the patients developed epidural abscess. Thoracic epidural block showed a trend toward better preservation of anti-inflammatory response and clinical recovery that, however, failed to achieve statistical significance (P > .05). Copyright © 2016 Elsevier Inc. All rights reserved.
[Antioxidant and anti-inflammatory activities of Moroccan Erica arborea L].
Amezouar, F; Badri, W; Hsaine, M; Bourhim, N; Fougrach, H
2013-12-01
The present study was carried out to evaluate the antioxidant and anti-inflammatory capacity, and acute toxicity of Moroccan Erica arborea leaves. Antioxidant capacity was assessed by diphenyle-picryl-hydrazyl (DPPH), phosphomolybdate (PPM) and ferric reducing antioxidant power (FRAP) tests and anti-inflammatory capacity was evaluated by hind paw oedema model using carrageenan-induced inflammation in rat. The acute toxicity was evaluated using mice. Acute toxicity of ethanolic extract of E. arborea showed no sign of toxicity at dose of 5 g/kg B.W. Our extracts have important antioxidant properties. The efficient concentration of the ethanolic extract (10.22 μg/ml) required for decreasing initial DPPH concentration by 50% was comparable to that of standard solution butyl-hydroxy-toluene (BHT) (8.87 μg/ml). The administration of ethanolic extract at doses of 200 and 400mg/kg B.W. was able to prevent plantar oedema and exhibited a significant inhibition against carrageenan-induced inflammation when compared to the control group (NaCl 0.9%) but comparable to those of diclofenac (reference drug). Our results show that the leaves of E. arborea may contain some bioactive compounds which are responsible for the antioxidant and anti-inflammatory activities observed here. Our finding may indicate the possibility of using the extracts of this plant to prevent the antioxidant and inflammatory processes. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Yang, Ping; Xiao, Yayun; Luo, Xuan; Zhao, Yunfei; Zhao, Lei; Wang, Yan; Wu, Tingting; Wei, Li; Chen, Yaxi
2017-07-01
Ectopic fat located in the kidney has emerged as a novel cause of obesity-related chronic kidney disease (CKD). In this study, we aimed to investigate whether inflammatory stress promotes ectopic lipid deposition in the kidney and causes renal injury in obese mice and whether the pathological process is mediated by the fatty acid translocase, CD36. High-fat diet (HFD) feeding alone resulted in obesity, hyperlipidemia, and slight renal lipid accumulation in mice, which nevertheless had normal kidney function. HFD-fed mice with chronic inflammation had severe renal steatosis and obvious glomerular and tubular damage, which was accompanied by increased CD36 expression. Interestingly, CD36 deficiency in HFD-fed mice eliminated renal lipid accumulation and pathological changes induced by chronic inflammation. In both human mesangial cells (HMCs) and human kidney 2 (HK2) cells, inflammatory stress increased the efficiency of CD36 protein incorporation into membrane lipid rafts, promoting FFA uptake and intracellular lipid accumulation. Silencing of CD36 in vitro markedly attenuated FFA uptake, lipid accumulation, and cellular stress induced by inflammatory stress. We conclude that inflammatory stress aggravates renal injury by activation of the CD36 pathway, suggesting that this mechanism may operate in obese individuals with chronic inflammation, making them prone to CKD. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Peralta Ramos, Javier María; Bussi, Claudio; Gaviglio, Emilia Andrea; Arroyo, Daniela Soledad; Baez, Natalia Soledad; Rodriguez-Galan, Maria Cecilia; Iribarren, Pablo
2017-01-01
Brain-resident microglia and peripheral migratory leukocytes play essential roles in shaping the immune response in the central nervous system. These cells activate and migrate in response to chemokines produced during active immune responses and may contribute to the progression of neuroinflammation. Herein, we addressed the participation of type I–II interferons in the response displayed by microglia and inflammatory monocytes to comprehend the contribution of these cytokines in the establishment and development of a neuroinflammatory process. Following systemic lipopolysaccharide (LPS) challenge, we found glial reactivity and an active recruitment of CD45hi leukocytes close to CD31+ vascular endothelial cells in circumventricular organs. Isolated CD11b+ CD45hi Ly6Chi Ly6G−-primed inflammatory monocytes were able to induce T cell proliferation, unlike CD11b+ CD45lo microglia. Moreover, ex vivo re-stimulation with LPS exhibited an enhancement of T cell proliferative response promoted by inflammatory monocytes. These myeloid cells also proved to be recruited in a type I interferon-dependent fashion as opposed to neutrophils, unveiling a role of these cytokines in their trafficking. Together, our results compares the phenotypic and functional features between tissue-resident vs peripheral recruited cells in an inflamed microenvironment, identifying inflammatory monocytes as key sentinels in a LPS-induced murine model of neuroinflammation. PMID:29255461
Funk, Steven Daniel; Yurdagul, Arif; Green, Jonette M.; Jhaveri, Krishna A.; Schwartz, Martin Alexander; Orr, A. Wayne
2010-01-01
Rationale Atherosclerosis is initiated by blood flow patterns that activate inflammatory pathways in endothelial cells. Activation of inflammatory signaling by fluid shear stress is highly dependent on the composition of the subendothelial extracellular matrix. The basement membrane proteins laminin and collagen found in normal vessels suppress flow-induced p21 activated kinase (PAK) and NF-κB activation. By contrast, the provisional matrix proteins fibronectin and fibrinogen found in wounded or inflamed vessels support flow-induced PAK and NF-κB activation. PAK mediates both flow-induced permeability and matrix-specific activation of NF-κB. Objective To elucidate the mechanisms regulating matrix-specific PAK activation. Methods and Results We now show that matrix composition does not affect the upstream pathway by which flow activates PAK (integrin activation, Rac). Instead basement membrane proteins enhance flow-induced protein kinase A (PKA) activation, which suppresses PAK. Inhibiting PKA restored flow-induced PAK and NF-κB activation in cells on basement membrane proteins, whereas stimulating PKA inhibited flow-induced activation of inflammatory signaling in cells on fibronectin. PKA suppressed inflammatory signaling through PAK inhibition. Activating PKA by injection of the PGI2 analog iloprost reduced PAK activation and inflammatory gene expression at sites of disturbed flow in vivo, whereas inhibiting PKA by PKI injection enhanced PAK activation and inflammatory gene expression. Inhibiting PAK prevented the enhancement of inflammatory gene expression by PKI. Conclusions Basement membrane proteins inhibit inflammatory signaling in endothelial cells via PKA-dependent inhibition of PAK. PMID:20224042
Orfila, C; Lepert, J C; Alric, L; Carrera, G; Beraud, M; Vinel, J P; Pipy, B
1999-10-01
In liver injury induced by carbon tetrachloride, secondary hepatic injury occurs from inflammatory processes originating from products released by activated Kupffer cells, which play a central role in hepatic inflammation. The purpose of our study was to demonstrate, in rats, the relationships between a function of the hepatic macrophages, TNF-alpha production and the state of activation of these cells, characterized by their phenotype, in the different phases of the process and development of fibrosis in a carbon tetrachloride-induced cirrhosis model. The immunohistochemical localization of proinflammatory cytokine TNF-alpha and surface surface makers (ED1 and ED2) was studied in hepatitis and cirrhosis in response to 3 and 9 weeks ingestion of carbon tetrachloride. After carbon tetrachloride ingestion, accompanying the increased necrosis, immunohistochemical analysis of liver tissue sections demonstrated the significantly increased number of cells expressing ED1, ED2 and TNF-alpha, compared to normal. The number of cells expressing the surface phenotypic markers of liver macrophages increased and this change was concomitantly associated with an increased cellular expression of TNF-alpha. Local macrophage proliferation and influx of newly recruited blood monocytes resulted in an increase of the macrophage population. The populational changes involved difference in functional activity and enhanced TNF-alpha expression. This cytokine expressed in the carbon tetrachloride-induced inflammatory process is associated with the development of fibrosis and may contribute to disease severity.
Melo, Caroline M; Morais, Talita C; Tomé, Adriana R; Brito, Gerly Anne C; Chaves, Mariana H; Rao, Vietla S; Santos, Flávia A
2011-07-01
To evaluate the anti-inflammatory effect of α,β-amyrin, a pentacyclic triterpenoid from Protium heptaphyllum, on cerulein-induced acute pancreatitis in mice. Acute pancreatitis was induced in Swiss mice by five intraperitoneal injections of cerulein (50 μg/kg), at 1 h intervals. Mice received α,β-amyrin (10, 30 and 100 mg/kg), thalidomide (200 mg/kg), or vehicle (3% Tween 80) orally 1 h before and 12 h after the cerulein challenge. The severity of pancreatitis was evaluated 24 h after cerulein by assessing serum pro-inflammatory cytokines and amylase activity, pancreatic myeloperoxidase (MPO), and thiobarbituric acid-reactive substances (TBARS), as well as by histology. α,β-Amyrin and thalidomide significantly attenuated the cerulein-induced increase in tumor necrosis factor (TNF)-α, interleukin-6, lipase, amylase, MPO, and TBARS. Moreover, α,β-amyrin greatly suppressed the pancreatic edema, inflammatory cell infiltration, acinar cell necrosis, and expressions of TNFα and inducible nitric oxide synthase. α,β-Amyrin ameliorates cerulein-induced acute pancreatitis by acting as an anti-inflammatory and antioxidant agent.
Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control
Badr, Mostafa
2004-01-01
Peroxisome proliferator-activated receptors (PPARs) were discovered over a decade ago, and were classified as orphan members of the nuclear receptor superfamily. To date, three PPAR subtypes have been discovered and characterized (PPARα, β/δ, γ). Different PPAR subtypes have been shown to play crucial roles in important diseases and conditions such as obesity, diabetes, atherosclerosis, cancer, and fertility. Among the most studied roles of PPARs is their involvement in inflammatory processes. Numerous studies have revealed that agonists of PPARα and PPARγ exert anti-inflammatory effects both in vitro and in vivo. Using the carrageenan-induced paw edema model of inflammation, a recent study in our laboratories showed that these agonists hinder the initiation phase, but not the late phase of the inflammatory process. Furthermore, in the same experimental model, we recently also observed that activation of PPARδ exerted an anti-inflammatory effect. Despite the fact that exclusive dependence of these effects on PPARs has been questioned, the bulk of evidence suggests that all three PPAR subtypes, PPARα, δ, γ, play a significant role in controlling inflammatory responses. Whether these subtypes act via a common mechanism or are independent of each other remains to be elucidated. However, due to the intensity of research efforts in this area, it is anticipated that these efforts will result in the development of PPAR ligands as therapeutic agents for the treatment of inflammatory diseases. PMID:15292582
Anti-inflammatory effects of Citrus sinensis L., Citrus paradisi L. and their combinations.
Khan, Rafeeq Alam; Mallick, Neelam; Feroz, Zeeshan
2016-05-01
Citrus bioflavonoids embrace a wide group of phenolic compounds effecting the production and scavenging of reactive oxygen species and the processes relating free radical-mediated injury. Keeping in view of the antioxidant and anti-inflammatory properties of Citrus sinensis and Citrus paradisi, present study was undertaken to explore the effects of C. sinensis (orange juice) and C. paradisi (grapefruit juice) at three different doses alone and their two combinations with the objective to examine the effects of these compounds in an experimental model of rat colitis induced by trinitrobenzenesulphonic acid (TNBS). Hence biochemical parameters e.g. myeloperoxidase, alkaline phosphatase, C-reactive protein (CRP) and glutathione were assessed. Data entry and analysis was accomplished by Statistical Package for the Social Sciences version 17 and was presented as mean ± S.E.M with 95% confidence interval. Present result shows that these juices, mainly C. paradisi, may be efficacious for the management of inflammatory bowel disease. In acute colitis model, C. paradise encouraged a decrease in the extension of the lesion escorted by a decrease in the occurrence of diarrhea and reinstatement of the glutathione content. Related effects were produced by the administration of C. sinensis, which also prevented the myeloperoxidase and alkaline phosphatase actions in acute intestinal inflammatory process. The effect of the citrus juices on the inflammatory process may be associated to their antioxidant and anti-inflammatory properties, as revealed in present investigation. The favorable effects exerted were demonstrated both by histological and biochemical changes and were related with a progress in the colonic oxidative status.
Zhou, Changcheng; Tabb, Michelle M; Sadatrafiei, Asal; Grün, Felix; Sun, Aixu; Blumberg, Bruce
2004-11-01
St. John's wort is widely used as an herbal antidepressant and is among the top-selling botanical products in the United States. Although St. John's wort has been reported to have minimal side effects compared with other antidepressants, here we show that hyperforin, the active component of St. John's wort, can stimulate interleukin-8 (IL-8) expression in human intestinal epithelia cells (IEC) and primary hepatocytes. Hyperforin is also able to induce expression of mRNA, encoding another major inflammatory mediator--intercellular adhesion molecule-1 (ICAM-1). IEC participate in the intestinal inflammatory process and serve as a first line of defense through bidirectional communication between host and infectious pathogens. Although hyperforin is a potent ligand for the steroid and xenobiotic receptor (SXR), we found that hyperforin induced IL-8 mRNA through an SXR-independent transcriptional activation pathway. IL-8 induction by hyperforin required the activation of AP-1 but not the NF-kappaB transcription factor, thereby distinguishing it from the NF-kappaB-dependent IL-8 induction mediated by tumor necrosis factor alpha (TNFalpha). Further study revealed that extracellular signal-regulated kinase 1 and 2 (ERK1/2) were required for the hyperforin-induced expression of IL-8. Our results suggest a previously unsuspected effect of St. John's wort in modulating the immune and inflammatory responses.
Changing the threshold-Signals and mechanisms of mast cell priming.
Halova, Ivana; Rönnberg, Elin; Draberova, Lubica; Vliagoftis, Harissios; Nilsson, Gunnar P; Draber, Petr
2018-03-01
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E 2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Wang, Jing-Jing; Wei, Zheng-Kai; Zhang, Xu; Wang, Ya-Nan; Fu, Yun-He; Yang, Zheng-Tao
2017-11-01
Short-chain fatty acids are fermentation end products produced by gut bacteria, which have been shown to ameliorate inflammatory bowel diseases and allergic asthma. However, the mechanism involved remains largely unknown. Here, we investigate the protective effects and mechanisms of sodium butyrate (SB) on LPS-induced mastitis model. Effects of increasing doses of SB on blood-milk barrier function and inflammation are studied in BALB/c mice with LPS-induced mastitis. The underlying mechanisms of anti-inflammatory effects of SB were further investigated in LPS-stimulated mouse mammary epithelial cells (mMECs). The results show that SB decreased LPS-induced disruption in mammary tissues, infiltration of inflammatory cells and the levels of TNF-α, IL-6 and IL-1β. SB up-regulated the tight junction proteins occludin and claudin-3 and reduced blood-milk barrier permeability in LPS-induced mastitis. Studies in vitro revealed that SB inhibited LPS-induced inflammatory response by inhibition of the NF-κB signalling pathway and histone deacetylases in LPS-stimulated mMECs. In our model, SB protected against LPS-induced mastitis by preserving blood-milk barrier function and depressing pro-inflammatory responses, suggesting the potential use of SB as a prophylactic agent to protect blood-milk barrier function in mastitis. © 2017 The British Pharmacological Society.
Anderson, Per; Delgado, Mario
2008-01-01
Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314
Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.
2014-01-01
Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory “side-effect” of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease. PMID:24525631
Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D
2014-06-01
Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.
Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J
2013-01-01
The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kgd−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases.
Antibacterial, anti-inflammatory, and antioxidant effects of Yinzhihuang injection.
Liu, Juan; Qiu, Hong; Zhu, Zhaorong; Zou, Tangbin
2015-01-01
The Yinzhihuang injection, a traditional Chinese medicine, has been the recent target of increasing interest due to its anti-inflammatory properties. The molecular basis by which Yinzhihuang injection could cure Riemerella anatipestifer (RA) serositis in ducks is unclear. This study evaluated the antibacterial, anti-inflammatory and antioxidant effects of Yinzhihuang injection, using disease models of RA-induced infectious serositis in ducks and heptane-induced inflammation in mice and rats. The duck mortality rate was reduced from 60% to 20% and both the inflammatory response and histological damage were ameliorated by treatment with Yinzhihuang injection (0.02 g/kg). Further studies indicated that superoxide dismutase (SOD), nitric oxide synthase (NOS), and inducible nitric oxide synthase (iNOS) were elevated while malondialdehyde (MDA), nitric oxide (NO) and RA growth were inhibited when the ducks were treated by Yinzhihuang injection. In addition, Yinzhihuang injection (0.04 g/ml) effectively inhibited xylene-induced auricle swelling in mice, (demonstrating an inhibition rate of 35.21%), egg albumen-induced paw metatarsus swelling in rats, (demonstrating an inhibition rate of 22.30%), and agar-induced formation of granulation tissue. These results suggest that Yinzhihuang injection ameliorates RA-induced infectious serositis in ducks by modulation of inflammatory mediators and antioxidation.
Effects of ZCR-2060 on allergic airway inflammation and cell activation in guinea-pigs.
Abe, T; Yoshida, K; Omata, T; Segawa, Y; Matsuda, K; Nagai, H
1994-11-01
The effects of 2-(2-(4-(diphenylmethyl)-1-piperadinyl) ethoxy) benzoic acid malate (ZCR-2060) on allergic airway inflammation and inflammatory cell activation in guinea-pigs were studied. Allergic airway inflammation was induced by inhalation of antigen into actively-sensitized animals and the increase in inflammatory cells into bronchoalveolar lavage fluid (BALF) was measured. Aeroantigen-induced infiltration of inflammatory cells, especially eosinophils and neutrophils, in BALF gradually increased, and reached a peak at 6 or 9 h after the challenge. ZCR-2060 (1 mg kg-1 p.o.) clearly inhibited the increase of eosinophil numbers in BALF. Moreover, the effect of ZCR-2060 on inflammatory cell activation in terms of chemotaxis and superoxide generation in-vitro was studied. ZCR-2060 (10(-6)-10(-4) M) inhibited the platelet-activating factor (PAF)-induced chemotaxis of eosinophils and neutrophils, but did not inhibit the leukotriene B4-induced chemotaxis of eosinophils and the formyl-Met-Leu-Phe-induced chemotaxis of neutrophils. PAF-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages was inhibited by ZCR-2060 (10(-6)-10(-4) M). However, ZCR-2060 did not affect phorbol myristate acetate-induced superoxide anion generation by eosinophils, neutrophils and alveolar macrophages. These results indicate that ZCR-2060 inhibits allergic airway inflammation, and PAF-induced inflammatory cell activation in guinea-pigs. ZCR-2060 may prove useful for the treatment of allergic airway inflammation or allergic disorders, especially inflammatory cell infiltration and activation.
Myeloid differentiation protein 2-dependent mechanisms in retinal ischemia-reperfusion injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Luqing
Retinal ischemia-reperfusion (I/R) injury is a common pathological process in many eye disorders. Oxidative stress and inflammation play a role in retinal I/R injury. Recent studies show that toll-like receptor 4 (TLR4) is involved in initiating sterile inflammatory response in retinal I/R. However, the molecular mechanism by which TLR4 is activated is not known. In this study, we show that retinal I/R injury involves a co-receptor of TLR4, myeloid differentiation 2 (MD2). Inhibition of MD2 prevented cell death and preserved retinal function following retinal I/R injury. We confirmed these findings using MD2 knockout mice. Furthermore, we utilized human retinal pigmentmore » epithelial cells (ARPE-19 cells) to show that oxidative stress-induced cell death as well as inflammatory response are mediated through MD2. Inhibition of MD2 through a chemical inhibitor or knockdown prevented oxidative stress-induced cell death and expression of inflammatory cytokines. Oxidative stress was found to activate TLR4 in a MD2-dependent manner via increasing the expression of high mobility group box 1. In summary, our study shows that oxidative stress in retinal I/R injury can activate TLR4 signaling via MD2, resulting in induction of inflammatory genes and retinal damage. MD2 may represent an attractive therapeutic target for retinal I/R injury. - Highlights: • MD2 inhibition reduced retinal damage after I/R induction in mice. • TBHP induced TLR4/MD2 binding via increasing HMGB-1 expression. • TLR4/MD2 initiated inflammatory response via activation of MAPKs and NF-κB. • MD2 could be the therapeutic target for the treatment of retinal I/R.« less
Sun, Chan; Zhang, Yuan-Yuan; Tang, Chuan-Ling; Wang, Song-Cun; Piao, Hai-Lan; Tao, Yu; Zhu, Rui; Du, Mei-Rong; Li, Da-Jin
2013-10-01
Spontaneous abortion is the most common complication of pregnancy. Immune activation and the subsequent inflammation-induced tissue injury are often observed at the maternal-fetal interface as the final pathological assault in recurrent spontaneous abortion. However, the precise mechanisms responsible for spontaneous abortion involving inflammation are not fully understood. Chemokine CCL28 and its receptors CCR3 and CCR10 are important regulators in inflammatory process. Here, we examined the expression of CCL28 and its receptors in decidual stromal cells (DSCs) by immunochemistry and flow cytometry (FCM), and compared their expression level in DSCs from normal pregnancy versus spontaneous abortion, and their relationship to inflammatory cytokines production by DSCs. We further analyzed regulation of the pro-inflammatory cytokines on CCL28 expression in DSCs by real-time polymerase chain reaction, In-cell Western and FCM. The effects of CCL28-CCR3/CCR10 interaction on DSC apoptosis was investigated by Annexin V staining and FCM analysis or DAPI staining and nuclear morphology. Higher levels of the inflammatory cytokines interleukin (IL)-1β, IL-17A and tumor necrosis factor-α, and increased CCR3/CCR10 expression were observed in DSCs from spontaneous abortion compared with normal pregnancy. Treatment with inflammatory cytokines differently affected CCL28 and CCR3/CCR10 expression in DSCs. Human recombinant CCL28 promoted DSC apoptosis, which was eliminated by pretreatment with neutralizing antibodies against CCR3/CCR10 and CCL28. However, CCL28 did not affect DSC growth. These results suggest that the inflammation-promoted up-regulation of CCL28 and its receptors interaction in DSCs is involved in human spontaneous abortion via inducing DSC apoptosis.
Notoginsenoside R1 attenuates renal ischemia-reperfusion injury in rats.
Liu, Wen-Jun; Tang, Hong-Tai; Jia, Yi-Tao; Ma, Bing; Fu, Jin-Feng; Wang, Yu; Lv, Kai-Yang; Xia, Zhao-Fan
2010-09-01
Ischemia-reperfusion (I/R) injury of the kidney is a complex pathophysiological process and a major cause of acute renal failure. It has been shown that I/R injury is related to inflammatory responses and activation of apoptotic pathways. Inhibition of certain elements of inflammatory responses and apoptotic pathway seemed to ameliorate renal I/R injury. As an effective element of Panax notoginseng, NR1 has antioxidant, anti-inflammatory, antiapoptotic, and immune-stimulatory activities. Therefore, we speculate that NR1 can attenuate renal I/R injury. Ischemia-reperfusion injury was induced by renal pedicle ligation followed by reperfusion along with a contralateral nephrectomy. Male Sprague-Dawley rats were randomized to four groups: sham group, I/R control group, NR1-1 group (rats treated with NR1, 20 mg.kg.d) and NR1-2 group (rats treated with NR1, 40 mg.kg.d). All animals were killed 72 h after I/R induction. Blood and renal tissues were collected. Renal dysfunction was observed by the level of serum creatinine and histological evaluation. Apoptosis and inflammatory response in the tissue of kidney were detected mainly with molecular biological methods. NR1 attenuated I/R-induced renal dysfunction as indicated by the level of serum creatinine and histological evaluation. It prevented the I/R-induced increases in the levels of proinflammatory cytokine TNF-alpha, myeloperoxidase activity, phosphorylation of p38, and activation of nuclear factor kappaB with cell apoptosis in the kidney and enhanced expression of antiapoptosis cytokine bcl-2. Treatment with NR1 improves renal function after I/R associated with a significant reduction in cell apoptosis and inflammatory responses, which may be related to p38 and nuclear factor kappaB inhibition.
Zen, Ke; Guo, Yalan; Bian, Zhen; Lv, Zhiyuan; Zhu, Dihan; Ohnishi, Hiroshi; Matozaki, Takashi; Liu, Yuan
2018-01-01
Signal regulatory protein α (SIRPα), an immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor, is an essential negative regulator of leukocyte inflammatory responses. Here we report that SIRPα cytoplasmic signalling ITIMs in neutrophils are cleaved during active inflammation and that the loss of SIRPα ITIMs enhances the polymorphonuclear leukocyte (PMN) inflammatory response. Using human leukocytes and two inflammatory models in mice, we show that the cleavage of SIRPα ITIMs in PMNs but not monocytes occurs at the post-acute stage of inflammation and correlates with increased PMN recruitment to inflammatory loci. Enhanced transmigration of PMNs and PMN-associated tissue damage are confirmed in mutant mice expressing SIRPα but lacking the ITIMs. Moreover, the loss of SIRPα ITIMs in PMNs during colitis is blocked by an anti-interleukin-17 (IL-17) antibody. These results demonstrate a SIRPα-based mechanism that dynamically regulates PMN inflammatory responses by generating a CD47-binding but non-signalling SIRPα ‘decoy’. PMID:24026300
Uto, Takuhiro; Hou, De-Xing; Morinaga, Osamu; Shoyama, Yukihiro
2012-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages. PMID:22927840
Uto, Takuhiro; Hou, De-Xing; Morinaga, Osamu; Shoyama, Yukihiro
2012-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.
A comparative study on the antinociceptive and anti-inflammatory activities of five Juniperus taxa.
Akkol, Esra Küpeli; Güvenç, Ayşegül; Yesilada, Erdem
2009-09-07
Juniperus L. (Cupressaceae) species have been used to various inflammatory and infectious diseases such as bronchitis, colds, cough, fungal infections, hemorrhoids, gynecological diseases, and wounds in Turkish folk medicine. To evaluate this traditional information, anti-inflammatory and antinociceptive activities of the methanolic and aqueous extracts prepared from different parts (stem, fruit and leaves) of the five Turkish taxa under Juniperus section of the gender; J. drupacea, J. communis var. communis, J. communis var. saxatilis, J. oxycedrus subsp. oxycedrus, and J. oxycedrus subsp. macrocarpa growing were investigated. For the anti-inflammatory activity, carrageenan-induced and PGE(2)-induced hind paw edema models, and for the antinociceptive activity p-benzoquinone-induced writhing and hot plate tests in mice were employed. The methanolic extracts of fruit and leaves from J. oxycedrus subsp. oxycedrus and J. communis var. saxatilis exhibited notable inhibition in carrageenan-induced edema model at a dose of 100mg/kg. The same extracts also displayed significant activity against PGE(2)-induced edema model. While, the remaining extracts were found inactive against these edema models. A similar activity pattern was observed against p-benzoquinone-induced abdominal constriction test without inducing any gastric damage or apparent acute toxicity, whereas all extracts were inactive in hot plate test. The experimental data demonstrated that J. oxycedrus subsp. oxycedrus and J. communis var. saxatilis displayed remarkable anti-inflammatory and antinociceptive activities; however, further studies are warranted to define and isolate the active anti-inflammatory and antinociceptive components from these active species which may yield safe and effective agents to be used in the treatment of inflammatory disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Solip; Nguyen, Van Thu; Tae, Nara
Ganoderma lucidum is a popular medicinal mushroom used in traditional medicine for preventing or treating a variety of diseases. In the present study, we investigated the anti-inflammatory and heme oxygenase (HO)-1 inducing effects of 12 lanostane triterpenes from G. lucidum in RAW264.7 cells. Of these, seven triterpenes, butyl lucidenateE{sub 2}, butyl lucidenateD{sub 2} (GT-2), butyl lucidenate P, butyl lucidenateQ, Ganoderiol F, methyl ganodenate J and butyl lucidenate N induced HO-1 expression and suppressed lipopolysaccharide (LPS)-induced nitric oxide (NO) production. Inhibiting HO-1 activity abrogated the inhibitory effects of these triterpenes on the production of NO in LPS-stimulated RAW264.7 cells, suggesting themore » involvement of HO-1 in the anti-inflammatory effects of these triterpenes. We further studied the anti-inflammatory and HO-1 inducing effects of GT-2. Mitogen-activated protein kinase inhibitors or N-acetylcysteine, an antioxidant, did not suppress GT-2-mediated HO-1 induction; however, LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, blocked GT-2-induced HO-1 mRNA and protein expression. GT-2 increased nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and knockdown of Nrf2 by small interfering RNA blocked GT-2-mediated HO-1 induction, suggesting that GT-2 induced HO-1 expression via the PI3K/AKT-Nrf2 pathway. Consistent with the notion that HO-1 has anti-inflammatory properties, GT-2 inhibited the production of tumor necrosis factor-α and interleukin-6, as well as inducible nitric oxide synthase and cyclooxygenase-2 expression. These findings suggest that HO-1 inducing activities of these lanostane triterpenes may be important in the understanding of a novel mechanism for the anti-inflammatory activity of G. lucidum. - Highlights: • The anti-inflammatory effects of selected triterpenes from Ganoderma lucidum are demonstrated. • Heme oxygenase-1 induction is attributable to the anti-inflammatory properties of these triterpenes. • The triterpenes induce heme oxygenase-1 expression via the AKT-Nrf2 pathway. • The mechanism explains the anti-inflammatory effect of triterpenes from G. lucidum.« less
Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W; Owens, Gary K
2012-04-02
Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.
Anti-inflammatory and analgesic activities of Chaenomeles speciosa fractions in laboratory animals.
Li, X; Yang, Y-B; Yang, Q; Sun, L-N; Chen, W-S
2009-10-01
The prescription of current existing anti-inflammatory drugs is hampered by their adverse effects over time. Botanical extracts are thought to be a potential source of a natural anti-inflammatory property with fewer adverse effects. Chaenomeles speciosa has long been used as an herbal medicine for treatment of various diseases such as rheumatoid arthritis, prosopalgia, and hepatitis. Until now there have been no reports on the specific anti-inflammatory fractions of extract of C. speciosa (ECS). In the present study the anti-inflammatory activities of different fractions of ECS were evaluated using carrageenan-induced paw edema in rats. The 10% ethanol fraction (C3) was found to have stronger anti-inflammatory effects compared with other fractions at the same dose. We also found that chlorogenic acid was one of the active constituents responsible for the anti-inflammatory effect using bioassay-guided fractionation by means of high-performance liquid chromatography. Compared with controls, fraction C3 demonstrated significant anti-inflammatory activity in the xylene-induced ear edema test (P < .01), acetic acid-induced peritoneal capillary permeability test, and the cotton pellet granuloma test in mice or rats (P < .01); it also showed marked analgesic activity in the acetic acid-induced abdominal contraction test and formalin-induced paw licking test in mice and rats (P < .05 or .01). However, fraction C3 showed no significant effect in the hot plate test in mice. These findings justify the use of the C. speciosa for treating pain and inflammation. These results support the proposal of C. speciosa fraction C3 as a potential anti-inflammatory agent.
Molecular inflammation: underpinnings of aging and age-related diseases.
Chung, Hae Young; Cesari, Matteo; Anton, Stephen; Marzetti, Emanuele; Giovannini, Silvia; Seo, Arnold Young; Carter, Christy; Yu, Byung Pal; Leeuwenburgh, Christiaan
2009-01-01
Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) upregulation of pro-inflammatory mediators (e.g., TNF-alpha, IL-1beta, IL-6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-kappaB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity.
Molecular Inflammation: Underpinnings of Aging and Age-related Diseases
Chung, Hae Young; Cesari, Matteo; Anton, Stephen; Marzetti, Emanuele; Giovannini, Silvia; Seo, Arnold Young; Carter, Christy; Yu, Byung Pal; Leeuwenburgh, Christiaan
2013-01-01
Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) up-regulation of pro-inflammatory mediators (e.g., TNF-α, IL-1β, 6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-κB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity. PMID:18692159
ASEPTIC INFLAMMATION IN THE LUNGS IN ACUTE RADIATION SICKNESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, A.E.
1963-09-01
Inflammation in the lungs of irradiated rabbits at the site of turpentine injection has much in common with the inflammatory changes arising in other tissues and organs during local irradiation or acute radiation sickness. The fact that the inflammatory changes under different conditions of irradiation are similar in type regardless of the character of the inflammatory agent suggests that the phenomenon has a common mechanism. The absence of polymorphonuclear (eosinophtlic) leukocytes from inflammatory foci in irradiated rabbits is due not only to the developing leukopenia, but also to a disturbance of the leukocyte emigration process into the inflammatory focus. Inmore » irradiated rabbits in cortrast to the controls, the normal arrangement of the fibrous structures is preserved in the necrotic lung tissue at the site of turpentine injection. In animals with severe acute radiation sickness induced by external irradiation in sublethal doses, the ability of the organism to respond to introduction of an inflammatory agent by an increase in the number of leukocytes in the blood and by a rise of the body temperature is to some extent preserved. (auth)« less
González-Trujano, María Eva; Pellicer, Francisco; Mena, Pedro; Moreno, Diego A; García-Viguera, Cristina
2015-01-01
Pomegranate (Punica granatum L.) has been used for centuries for the treatment of inflammatory diseases. However, there is a lack of comprehensive information focused on the properties of a certain pomegranate (poly)phenolic profile to cure pain and gastric injury induced by anti-inflammatory drugs. This study investigated the systemic effects of different doses of a HPLC-characterized pomegranate extract on the formalin-induced nociceptive behavior in mice. The effect of the extract against gastric injury caused by non-steroidal anti-inflammatory drugs and ethanol was also assessed. Pomegranate reduced nociception in both phases of the formalin test, suggesting central and peripheral activities to inhibit nociception. Indomethacin-induced gastric injury was not produced in the presence of pomegranate, which also protected against ethanol-induced gastric lesions. The present results reinforce the benefits of pomegranate (poly)phenolics in the treatment of pain as well as their anti-inflammatory properties.
Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.
Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi
2015-11-01
Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. Copyright © 2015 Elsevier Inc. All rights reserved.
Bach, Nicolai; Bølling, Anette Kocbach; Brinchmann, Bendik C; Totlandsdal, Annike I; Skuland, Tonje; Holme, Jørn A; Låg, Marit; Schwarze, Per E; Øvrevik, Johan
2015-10-14
Adsorbed soluble organics seem to be the main drivers of inflammatory responses induced by diesel exhaust particles (DEP). The specific compounds contributing to this process and the cellular mechanisms behind DEP-induced inflammation are not well known. We have assessed pro-inflammatory effects of DEP and various soluble DEP fractions, in human bronchial epithelial cells (BEAS-2B). DEP increased the expression of interleukin (IL)-6 and CXCL8. Silencing of the aryl hydrocarbon receptor (AhR) by siRNA or pretreatment with AhR-antagonists did not attenuate DEP-induced IL-6 and CXCL8 responses. However, the halogenated aromatic hydrocarbon (HAH)-selective AhR antagonist CH223191 caused a considerable reduction in DEP-induced CYP1A1 expression indicating that this response may be due to dioxin or dioxin-like constituents in DEP. Knock-down of protease activated receptor (PAR)-2 attenuated IL-6 responses without affecting CXCL8. Antioxidants did not affect IL-6 expression after 4h DEP-exposure and only partly reduced CXCL8 expression. However, after 24h exposure antioxidant treatment partly suppressed IL-6 protein release and completely blocked CXCL8 release. Furthermore, a heptane-soluble (non-polar) extract of DEP induced both IL-6 and CXCL8 release, whereas a PBS-soluble (highly polar) extract induced only IL-6. Thus, pro-inflammatory responses in DEP-exposed epithelial cells appear to be the result of both reactive oxygen species and receptor signaling, mediated through combinatorial effects between both non-polar and polar constituents adhered to the particle surface. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Peng, Tsui-Chin; Jan, Woan-Ching; Tsai, Pei-Shan; Huang, Chun-Jen
2011-05-15
Lower limb ischemia-reperfusion (I/R) imposes oxidative stress, elicits inflammatory response, and subsequently induces acute lung injury. Ischemic preconditioning (IP), a process of transient I/R, mitigates the acute lung injury induced by I/R. We sought to elucidate whether the protective effects of IP involve heme oxygenase-1 (HO-1). Adult male rats were randomized to receive I/R, I/R plus IP, I/R plus IP plus the HO-1 inhibitor tin protoporphyrin (SnPP) (n = 12 in each group). Control groups were run simultaneously. I/R was induced by applying rubber band tourniquet high around each thigh for 3 h followed by reperfusion for 3 h. To achieve IP, three cycles of bilateral lower limb I/R (i.e., ischemia for 10 min followed by reperfusion for 10 min) were performed. IP was performed immediately before I/R. After sacrifice, degree of lung injury was determined. Histologic findings, together with assays of leukocyte infiltration (polymorphonuclear leukocytes/alveoli ratio and myeloperoxidase activity) and lung water content (wet/dry weight ratio), confirmed that I/R induced acute lung injury. I/R also caused significant inflammatory response (increases in chemokine, cytokine, and prostaglandin E(2) concentrations), imposed significant oxidative stress (increases in nitric oxide and malondialdehyde concentrations), and up-regulated HO-1 expression in lung tissues. IP significantly enhanced HO-1 up-regulation and, in turn, mitigated oxidative stress, inflammatory response, and acute lung injury induced by I/R. In addition, the protective effects of IP were counteracted by SnPP. The protective effects of IP on mitigating acute lung injury induced by lower limb I/R are mediated by HO-1. Copyright © 2011 Elsevier Inc. All rights reserved.
Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity.
Li, Weifeng; Zhou, Ping; Zhang, Yanmin; He, Langchong
2011-01-27
Houttuynia cordata Thunb. (Saururaceae; HC) has been long used in traditional oriental medicine for the treatment of inflammation diseases. Modern research has implicated inducible cyclooxygenase-2 (COX-2) as a key regulator of the inflammatory process. In the present study, we aimed to investigate the effect of HC on COX-2. We examined the effects of HC on lipopolysaccharide (LPS)-induced prostaglandin (PG) E(2) production, an indirect indicator of COX-2 activity, and COX-2 gene and protein expression in mouse peritoneal macrophages. LPS-induced mouse peritoneal macrophages were employed as an in vitro model system. LPS-induced PGE(2) production was assessed by enzyme-linked immunosorbant assay and COX-2 protein expression was assessed by Western blot assay. The results showed that HC was able to inhibit the release of LPS-induced PGE(2) from mouse peritoneal macrophages (IC50 value: 44.8 μg/mL). Moreover, the inhibitory activity of HC essential oil elicited a dose-dependent inhibition of COX-2 enzyme activity (IC50 value: 30.9 μg/mL). HC was also found to cause reduction in LPS-induced COX-2 mRNA and protein expression, but did not affect COX-1 expression. The non-steroidal anti-inflammatory drug (NSAID) and specific COX-2 inhibitor NS398 functioned similarly in LPS-induced mouse peritoneal macrophages. Taken together, our data suggest HC mediates inhibition of COX-2 enzyme activity and can affect related gene and protein expression. HC works by a mechanism of action similar to that of NSAIDs. These results add a novel aspect to the biological profile of HC. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Hui, Wang; Litherland, Gary J; Elias, Martina S; Kitson, Gareth I; Cawston, Tim E; Rowan, Andrew D; Young, David A
2012-03-01
To investigate the effect of leptin on cartilage destruction. Collagen release was assessed in bovine cartilage explant cultures, while collagenolytic and gelatinolytic activities in culture supernatants were determined by bioassay and gelatin zymography. The expression of matrix metalloproteinases (MMP) was analysed by real-time RT-PCR. Signalling pathway activation was studied by immunoblotting. Leptin levels in cultured osteoarthritic joint infrapatellar fat pad or peri-enthesal deposit supernatants were measured by immunoassay. Leptin, either alone or in synergy with IL-1, significantly induced collagen release from bovine cartilage by upregulating collagenolytic and gelatinolytic activity. In chondrocytes, leptin induced MMP1 and MMP13 expression with a concomitant activation of STAT1, STAT3, STAT5, MAPK (JNK, Erk, p38), Akt and NF-κB signalling pathways. Selective inhibitor blockade of PI3K, p38, Erk and Akt pathways significantly reduced MMP1 and MMP13 expression in chondrocytes, and reduced cartilage collagen release induced by leptin or leptin plus IL-1. JNK inhibition had no effect on leptin-induced MMP13 expression or leptin plus IL-1-induced cartilage collagen release. Conditioned media from cultured white adipose tissue (WAT) from osteoarthritis knee joint fat pads contained leptin, induced cartilage collagen release and increased MMP1 and MMP13 expression in chondrocytes; the latter being partly blocked with an anti-leptin antibody. Leptin acts as a pro-inflammatory adipokine with a catabolic role on cartilage metabolism via the upregulation of proteolytic enzymes and acts synergistically with other pro-inflammatory stimuli. This suggests that the infrapatellar fat pad and other WAT in arthritic joints are local producers of leptin, which may contribute to the inflammatory and degenerative processes in cartilage catabolism, providing a mechanistic link between obesity and osteoarthritis.
Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan
2015-12-01
Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human. Copyright © 2015 Elsevier B.V. All rights reserved.
Verma, Nandini; Chakrabarti, Rina; Das, Rakha H; Gautam, Hemant K
2012-01-12
Shea butter is traditionally used in Africa for its anti-inflammatory and analgesic effects. In this study we explored the anti-inflammatory activities of the methanolic extract of shea butter (SBE) using lipopolysaccharide (LPS)-induced murine macrophage cell line J774. It was observed that SBE significantly reduced the levels of LPS-induced nitric oxide, Tumor necrosis factor-α (TNF-α), interleukins, 1β (IL-1β), and -12 (IL-12) in the culture supernatants in a dose dependent manner. Expression of pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were also inhibited by SBE. These anti-inflammatory effects were due to an inhibitory action of SBE on LPS-induced iNOS, COX-2, TNF-α, IL-1β, and IL-12 mRNA expressions. Moreover, SBE efficiently suppressed IκB phosphorylation and NF-κB nuclear translocation induced by LPS. These findings explain the molecular bases of shea butter's bioactivity against various inflammatory conditions and substantiate it as a latent source of novel therapeutic agents.
Choi, Hoon-Seong; Kang, Suk-Yun; Roh, Dae-Hyun; Choi, Sheu-Ran; Ryu, Yeonhee; Lee, Jang-Hern
2018-06-21
Respiratory inflammation is frequent and fatal pathologic state encountered in veterinary medicine. Although diluted bee venom (dBV) has potent anti-inflammatory effects, the clinical use of dBV is limited to several chronic inflammatory diseases. The present study was designed to propose the acupoint treatment of dBV as a novel therapeutic strategy for respiratory inflammatory disease. Experimental pleurisy was induced by injection of carrageenan into left pleural space in mouse. dBV was injected into a specific lung meridian acupoint (LU-5) or into arbitrary non-acupoint located near the midline of the back in mouse. The inflammatory responses were evaluated by analysis the inflammatory indicators in pleural exudate. dBV injection into LU-5 acupoint significantly suppressed the increase of pleural exudate volume, leukocyte accumulation, MPO activity. Moreover, dBV acupoint treatment effectively inhibited the production of IL-1β, but not TNF-α in pleural exudate. On the other hand, dBV treatment on non-acupoint did not inhibit the inflammatory responses in carrageenan-induced pleurisy. The present results demonstrate that dBV stimulation into the LU-5 lung meridian acupoint produces significant anti-inflammatory effects on carrageenan-induced pleurisy suggesting that dBV acupuncture as a promising alternative medicine therapy for respiratory inflammatory diseases.
Chen, Hai-Jing; Xie, Wei-Yan; Hu, Fang; Zhang, Ying; Wang, Jun; Wang, Yun
2012-04-01
Our previous study identified Threonine 161 (Thr-161), located in the second intracellular loop of the δ-opioid receptor (DOR), as the only consensus phosphorylation site for cyclin-dependent kinase 5 (Cdk5). The aim of this study was to assess the function of DOR phosphorylation by Cdk5 in complete Freund's adjuvant (CFA)-induced inflammatory pain and morphine tolerance. Dorsal root ganglion (DRG) neurons of rats with CFA-induced inflammatory pain were acutely dissociated and the biotinylation method was used to explore the membrane localization of phosphorylated DOR at Thr-161 (pThr-161-DOR), and paw withdrawal latency was measured after intrathecal delivery of drugs or Tat-peptide, using a radiant heat stimulator in rats with CFA-induced inflammatory pain. Both the total amount and the surface localization of pThr-161-DOR were significantly enhanced in the ipsilateral DRG following CFA injection. Intrathecal delivery of the engineered Tat fusion-interefering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L) increased inflammatory hypersensitivity, and inhibited DOR- but not µ-opioid receptor-mediated spinal analgesia in CFA-treated rats. However, intrathecal delivery of Tat-DOR-2L postponed morphine antinociceptive tolerance in rats with CFA-induced inflammatory pain. Phosphorylation of DOR at Thr-161 by Cdk5 attenuates hypersensitivity and potentiates morphine tolerance in rats with CFA-induced inflammatory pain, while disruption of the phosphorylation of DOR at Thr-161 attenuates morphine tolerance.
Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ.
Shen, Yongbin; Sun, Zhanfeng; Guo, Xiaotong
2015-01-15
Citral, a component of lemongrass oil, has been reported to have many pharmacological activities such as anti-bacterial and anti-inflammatory effects. However, the effects of citral on acute lung injury (ALI) and the molecular mechanisms have not been reported. The aim of this study was to detect the effects of citral on lipopolysaccharide (LPS)-induced acute lung injury and investigate the molecular mechanisms. LPS-induced acute lung injury model was used to detect the anti-inflammatory effect of citral in vivo. The alveolar macrophages were used to investigate the molecular mechanism of citral in vitro. The results showed that pretreatment with citral remarkably attenuated pulmonary edema, histological severities, TNF-α, IL-6 and IL-1β production in LPS-induced ALI in vivo. In vitro, citral inhibited LPS-induced TNF-α, IL-6 and IL-1β production in alveolar macrophages. LPS-induced NF-κB activation was also inhibited by citral. Furthermore, we found that citral activated PPAR-γ and the anti-inflammatory effects of citral can be reversed by PPAR-γ antagonist GW9662. In conclusion, this is the first to demonstrate that citral protects LPS-induced ALI in mice. The anti-inflammatory mechanism of citral is associated with activating PPAR-γ, thereby inhibiting LPS-induced inflammatory response. Copyright © 2014 Elsevier B.V. All rights reserved.
Fischer, Carrie D; Beatty, Jennifer K; Zvaigzne, Cheryl G; Morck, Douglas W; Lucas, Merlyn J; Buret, A G
2011-01-01
Clearance of apoptotic neutrophils is a central feature of the resolution of inflammation. Findings indicate that immuno-modulation and induction of neutrophil apoptosis by macrolide antibiotics generate anti-inflammatory benefits via mechanisms that remain obscure. Tulathromycin (TUL), a new antimicrobial agent for bovine respiratory disease, offers superior clinical efficacy for reasons not fully understood. The aim of this study was to identify the immuno-modulating effects of tulathromycin and, in this process, to establish tulathromycin as a new model for characterizing the novel anti-inflammatory properties of antibiotics. Bronchoalveolar lavage specimens were collected from Holstein calves 3 and 24 h postinfection, challenged intratracheally with live Mannheimia haemolytica (2 × 10(7) CFU), and treated with vehicle or tulathromycin (2.5 mg/kg body weight). Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and enzyme-linked immunosorbent assay (ELISA) revealed that tulathromycin treatment significantly increased leukocyte apoptosis and reduced levels of proinflammatory leukotriene B(4) in M. haemolytica-challenged calves. In vitro, tulathromycin concentration dependently induced apoptosis in freshly isolated bovine neutrophils from healthy steers in a capase-3-dependent manner but failed to induce apoptosis in bovine fibroblasts, epithelial cells, and endothelial cells, as well as freshly isolated bovine blood monocytes and monocyte-derived macrophages. The proapoptotic effects of TUL were also, in part, drug specific; equimolar concentrations of penicillin G, oxytetracycline, and ceftiofur failed to cause apoptosis in bovine neutrophils. In addition, tulathromycin significantly reduced levels of phosphorylated IκBα, nuclear translocation of NF-κB p65, and mRNA levels of proinflammatory interleukin-8 in lipopolysaccharide (LPS)-stimulated bovine neutrophils. The findings illustrate novel mechanisms through which tulathromycin confers anti-inflammatory benefits.
Teixeira, Juliana Maia; Bobinski, Franciane; Parada, Carlos Amílcar; Sluka, Kathleen A; Tambeli, Cláudia Herrera
2017-10-01
Osteoarthritis (OA) is a degenerative and progressive disease characterized by cartilage breakdown and by synovial membrane inflammation, which results in disability, joint swelling, and pain. The purinergic P2X3 and P2X2/3 receptors contribute to development of inflammatory hyperalgesia, participate in arthritis processes in the knee joint, and are expressed in chondrocytes and nociceptive afferent fibers innervating the knee joint. In this study, we hypothesized that P2X3 and P2X2/3 receptors activation by endogenous ATP (adenosine 5'-triphosphate) induces articular hyperalgesia in the knee joint of male and female rats through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration. We found that the blockade of articular P2X3 and P2X2/3 receptors significantly attenuated carrageenan-induced hyperalgesia in the knee joint of male and estrus female rats in a similar manner. The carrageenan-induced knee joint inflammation increased the expression of P2X3 receptors in chondrocytes of articular cartilage. Further, the blockade of articular P2X3 and P2X2/3 receptors significantly reduced the increased concentration of TNF-α, IL-6, and CINC-1 and the neutrophil migration induced by carrageenan. These findings indicate that P2X3 and P2X2/3 receptors activation by endogenous ATP is essential to hyperalgesia development in the knee joint through an indirect sensitization of primary afferent nociceptors dependent on the previous release of pro-inflammatory cytokines and/or on neutrophil migration.
Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.
Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu
2017-10-28
The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.
Daniela, Lulli; Alla, Potapovich; Maurelli, Riccardo; Elena, Dellambra; Giovanna, Pressi; Vladimir, Kostyuk; Roberto, Dal Toso; Chiara, De Luca; Saveria, Pastore; Liudmila, Korkina
2012-01-01
Edelweiss (Leontopodium alpinum Cass.) is traditionally employed in folk medicine as an anti-inflammatory remedy. In nature, the plant is sparsely available and protected; therefore production of callus cultures was established. A concentrated ethanolic extract of culture homogenate, with leontopodic acid representing 55 ± 2% of the total phenolic fraction (ECC55), was characterized for anti-inflammatory properties in primary human keratinocytes (PHKs) and endotheliocytes (HUVECs). Inflammatory responses were induced by UVA+UVB, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), and a mixture of proinflammatory cytokines. Trichostatin A, a sirtuin inhibitor, was used to induce keratinocyte inflammatory senescence. ECC55 (10–50 μg/mL) protected PHK from solar UV-driven damage, by enhancing early intracellular levels of nitric oxide, although not affecting UV-induced expression of inflammatory genes. Comparison of the dose-dependent inhibition of chemokine (IL-8, IP-10, MCP-1) and growth factor (GM-CSF) release from PHK activated by TNFα + IFNγ showed that leontopodic acid was mainly responsible for the inhibitory effects of ECC55. Sirtuin-inhibited cell cycle, proliferation, and apoptosis markers were restored by ECC55. The extract inhibited LPS-induced IL-6 and VCAM1 genes in HUVEC, as well as oxLDL-induced selective VCAM1 overexpression. Conclusion. Edelweiss cell cultures could be a valuable source of anti-inflammatory substances potentially applicable for chronic inflammatory skin diseases and bacterial and atherogenic inflammation. PMID:23093820
Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice
Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro
2014-01-01
Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534
Tesoriere, L; Attanzio, A; Allegra, M; Gentile, C; Livrea, M A
2014-02-01
Dietary redox-active/antioxidant phytochemicals may help control or mitigate the inflammatory response in chronic inflammatory bowel disease (IBD). In the present study, the anti-inflammatory activity of indicaxanthin (Ind), a pigment from the edible fruit of cactus pear (Opuntia ficus-indica, L.), was shown in an IBD model consisting of a human intestinal epithelial cell line (Caco-2 cells) stimulated by IL-1β, a cytokine known to play a major role in the initiation and amplification of inflammatory activity in IBD. The exposure of Caco-2 cells to IL-1β brought about the activation of NADPH oxidase (NOX-1) and the generation of reactive oxygen species (ROS) to activate intracellular signalling leading to the activation of NF-κB, with the over-expression of inflammatory enzymes and release of pro-inflammatory mediators. The co-incubation of the cells with Ind, at a nutritionally relevant concentration (5-25 μM), and IL-1β prevented the release of the pro-inflammatory cytokines IL-6 and IL-8, PGE2 and NO, the formation of ROS and the loss of thiols in a dose-dependent manner. The co-incubation of the cells with Ind and IL-1β also prevented the IL-1β-induced increase of epithelial permeability. It was also shown that the activation of NOX-1 and NF-κB was prevented by Ind and the expression of COX-2 and inducible NO synthase was reduced. The uptake of Ind in Caco-2 cell monolayers appeared to be unaffected by the inflamed state of the cells. In conclusion, our findings suggest that the dietary pigment Ind may have the potential to modulate inflammatory processes at the intestinal level.
Treating metabolic syndrome's metaflammation with low level light therapy: preliminary results
NASA Astrophysics Data System (ADS)
Yoshimura, Tania M.; Kato, Ilka T.; Deana, Alessandro M.; Ribeiro, Martha S.
2014-02-01
Metabolic syndrome comprises a constellation of morbidities such as insulin resistance, hyperinsulinemia, atherogenic dyslipidemia, dysglycemia and obesity (especially abdominal). Metabolic alterations are observed in major insulin target organs, increasing the risk of cardiovascular diseases, type-2 diabetes and therefore mortality. Tissue alterations are characterized by immune cells infiltrates (especially activated macrophages). Released inflammatory mediators such as TNF-α induce chronic inflammation in subjects with metabolic syndrome, since inflammatory pathways are activated in the neighboring cells. The intra-abdominal adipose tissue appears to be of particular importance in the onset of the inflammatory state, and strategies contributing to modulate the inflammatory process within this adipose tissue can mitigate the metabolic syndrome consequences. Considering the low level light therapy (LLLT) recognized benefits in inflammatory conditions, we hypothesized this therapeutic approach could promote positive effects in modulating the inflammatory state of metabolic syndrome. That being the scope of this study, male C57BL/6 mice were submitted to a high-fat/high-fructose diet among 8 weeks to induce metabolic syndrome. Animals were then irradiated on the abdominal region during 21 days using an 850 nm LED (6 sessions, 300 seconds per session, 60 mW output power, ~6 J/cm2 fluence, ~19 mW/cm2 fluence rate). Before and during treatment, blood was sampled either from the retroorbital plexus or from tail puncture for glucose, total cholesterol and triglycerides analysis. So far our results indicate no alterations on these metabolic parameters after LLLT. For further investigations, blood was collected for plasma inflammatory cytokine quantification and fresh ex vivo samples of liver and intra-abdominal adipose tissue were harvested for immunohistochemistry purposes.
Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin
2013-01-01
Objective Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Method and Results Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Conclusion Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis. PMID:24098801
He, Jiao; Yuan, Geheng; Cheng, Fangxiao; Zhang, Junqing; Guo, Xiaohui
2017-09-01
The global increase of obesity parallels the obesity-related glomerulopathy (ORG) epidemic. Dipeptidyl peptidase 4 inhibitors and glucagon-like peptide-1 receptor agonists were well recognized to attenuate renal injury independent of glucose control in diabetic nephropathy. There are limited studies focusing on their effects on ORG. We explored the effects of incretin-based therapies on early ORG and the inflammatory responses involved mainly concentrated on mast cell (MC) and macrophage (M) infiltration and local pro-inflammatory factors. ORG rat models were induced by high-fat diet and then divided into ORG vehicle, vildagliptin (3 mg/kg/day, qd) and liraglutide (200 μg/kg, bid) treated groups. After 8 weeks of treatments, albuminuria, glomerular histology, renal inflammatory cell infiltration, and pro-inflammatory factors were analyzed. Early ORG model was demonstrated by albuminuria, glomerulomegaly, foot process fusion, and mesangial and endothelial mild proliferation. Incretin-based therapies limited body weight gain and improved insulin sensitivity. ORG was alleviated, manifested by decreased average glomerular area, attenuated mesangial and endothelial cell proliferation, and revived cell-to-cell propagation of podocytes, which contributed to reduced albuminuria. Compared with ORG vehicle, MC and M1 macrophage (pro-inflammatory) infiltration and M1/M2 ratio were significantly decreased; M2 macrophage (anti-inflammatory) was not significantly increased after incretin-based treatments. Tumor necrosis factor-α (TNF-α) and IL-6 in renal cortex were significantly downregulated, while transforming growth factor-β1 (TGF-β1) remained unchanged. Incretin-based treatments could alleviate high-fat diet-induced ORG partly through the systemic insulin sensitivity improvement and the attenuated local inflammation, mainly by the decrease of MC and M1 macrophage infiltration and reduction of TNF-α and IL-6.
Rodrigues, Lindaiane Bezerra; Oliveira Brito Pereira Bezerra Martins, Anita; Cesário, Francisco Rafael Alves Santana; Ferreira E Castro, Fyama; de Albuquerque, Thaís Rodrigues; Martins Fernandes, Maria Neyze; Fernandes da Silva, Bruno Anderson; Quintans Júnior, Lucindo José; da Costa, José Galberto Martins; Melo Coutinho, Henrique Douglas; Barbosa, Roseli; Alencar de Menezes, Irwin Rose
2016-09-25
The genus Ocimum are used in cooking, however, their essential oils are utilized in traditional medicine as aromatherapy. The present study was carried out to investigate the chemical composition and systemic anti-inflammatory activity of the Ocimum basilicum essential oil (EOOB) and its major component estragole, as well as its possible mechanisms of action. The Ocimum basilicum essential oil was obtained by hydrodistillation and analyzed by GC-MS. The anti-inflammatory action was verified using acute and chronic in vivo tests as paw edema, peritonitis, and vascular permeability and granulomatous inflammation model. The anti-inflammatory mechanism of action was analyzed by the participation of histamine and arachidonic acid pathways. The chemical profile analysis identified fourteen components present in the essential oil, within them: estragole (60.96%). The in vivo test results show that treatment with EOOB (100 and 50 mg/kg) and estragole (60 and 30 mg/kg) significantly reduced paw edema induced by carrageenan and dextran. The smallest doses of EOOB (50 mg/kg) and estragole (30 mg/kg) showed efficacy in the reduction of paw edema induced by histamine and arachidonic acid, vascular permeability inhibition and leukocyte emigration in the peritoneal fluid. Theses doses were capable of reducing the chronic inflammatory process. The results observed between the EOOB and estragole demonstrate efficacy in anti-inflammatory activity, however, the essential oil is more efficacious in the acute and chronic anti-inflammatory action. This study confirms the therapeutic potential of this plant and reinforces the validity of its use in popular medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zhang, Yan; Igwe, Orisa J
2018-01-01
Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states. Copyright © 2017 Elsevier Inc. All rights reserved.
Nitric oxide secretion in human conjunctival fibroblasts is inhibited by alpha linolenic acid.
Erdinest, Nir; Shohat, Noam; Moallem, Eli; Yahalom, Claudia; Mechoulam, Hadas; Anteby, Irene; Ovadia, Haim; Solomon, Abraham
2015-01-01
It is known that both human conjunctival fibroblasts (HCF) and corneal epithelial (HCE) cells contribute to the inflammatory process in the ocular surface by releasing inflammatory cytokines. In addition, nitric oxide (NO) has an important role in inflammatory responses in the ocular surface. In the present study, we aimed to characterize the capacity of these cells to release nitric oxide in response to cytokines and Lipopolysaccharide (LPS), and show that Alpha-linoleic acid (ALA) inhibits these responses. HCF, HCE cells, peripheral blood mononuclear cells (PBMCs) and co-culture of HCF and PBMC were treated with different combinations of inflammatory inducers, including interleukin)IL- (6, tumor necrosis factors (TNF)-α, interferon (IFN)- γ and IL-1β and LPS. Nitrite levels were measured in cell supernatants with and without ALA by the Griess reaction test at 24, 48 and 72 h respectively. Expression of nitric oxide synthase 2 (NOS-2) was evaluated by real-time PCR. All cytokine combinations had an inducible effect on nitrite secretion in HCF, PBMC and co-cultured PBMC and HCF, but not in HCE cells. Treatment with a combination of IL-6, LPS, TNF-α, IFN- γ and IL-1β induced the highest nitrite secretion (2.91 fold, P < 0.01) as compared to cells incubated in medium alone. nitrite secretion was reduced by 38.9 % (P < 0.05) after treatment with ALA alone. Co-culturing PBMC with HCF with and without ALA treatment demonstrated similar results in nitrite level as,compared to PBMC alone. In addition, ALA significantly decreased NOS-2 expression in HCF by 48.9 % (P < 0. 001) after 72 h. The decrease in nitrite release and inhibition of NOS-2 expression indicate that ALA may have an anti-inflammatory effect both on HCF and on peripheral immune cells. This indicates that ALA may serve as a potent anti-inflammatory agent in ocular surface inflammation.
Chen, Meiling; Xu, Shuhong; Zhou, Peipei; He, Guangwei; Jie, Qiong; Wu, Yulin
2015-11-15
Chemokines have chemotactic properties on leukocyte subsets whose modulation plays a pivotal role in allergic inflammatory processes. Our present study was designed to investigate the anti-allergic and anti-inflammatory properties of desloratadine citrate disodium injection (DLC) and elucidate the molecular mechanisms of its anti-inflammatory properties. The anti-allergic effects of DLC were evaluated based on allergic symptoms, serological marker production and histological changes of the nasal mucosa in guinea pigs model of allergic rhinitis. The anti-inflammatory properties and molecular mechanisms of DLC were explored by studying the regulation of a set of chemokines and extracellular signal-regulated kinase (ERK)1/2 and nuclear factor-kappa B (NF-κB) pathways, after DLC treatment in guinea pigs model of allergic rhinitis in vivo and histamine-activated human nasal epithelial cells (HNECs) in vitro. In vivo model in guinea pigs, DLC alleviated the rhinitis symptoms, inhibited inflammatory cells infiltration in nasal lavage fluid (NLF) and histamine, monocyte chemotactic protein (MCP)-1, regulated on activation normal T cell expressed, and presumably secreted (RANTEs) and interleukin (IL)-8 release in sera and P-ERK1/2 and NF-κB activation in nasal mucosa. In vitro, DLC markedly inhibited histamine-induced production of MCP-1, RANTEs and IL-8 and suppressed c-Raf, mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) and ERK1/2 activation in HNECs. These results provide evidence that DLC possesses potent anti-allergic and anti-inflammatory properties. The mechanism of action underlying DLC in allergic inflammation appears to be inhibition of the phosphorylation of ERK1/2, in addition to blocking of the NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
Experimental evidence supports the abscess theory of development of radicular cysts.
Nair, P N R; Sundqvist, Göran; Sjögren, Ulf
2008-08-01
The objective of this study was to experimentally induce inflammatory cysts in an animal model so as to test the hypothesis that radicular cysts develop via the "abscess pathway." Twenty-eight perforated custom-made Teflon cages were surgically implanted into defined locations in the back of 7 Sprague Dawley rats. A week after the implantation of the cages, a known quantity of freshly grown, close allogeneic oral keratinocytes in phosphate buffer solution (PBS) was injected into each cage. One cage per animal was treated as the control that received only epithelial cells. The remaining 3 cages of each animal were trials. Seven days post epithelial cell inoculation; a suspension of 0.2 mL of Fusobacterium nucleatum (10(8) bacteria per mL) was injected into each of the 3 trial cages. Two, 12, and 24 weeks after the inoculation of the bacteria, the cages were taken out, and the tissue contents were fixed and processed by correlative light and transmission electron microscopy. Sixteen of the 21 trial cages could be processed and yielded results. Inoculations of epithelial cells followed 1 week later by F. nucleatum into tissue cages resulted in the development inflammatory cysts in 2 of the 16 cages. The 2 cages contained a total of 4 cystic sites. None of the control cages showed the presence of any cyst-like pathology. Inflammatory cysts were induced by initiating acute inflammatory foci (abscess/necrotic area) by bacterial injection that got enclosed by a proliferating epithelium. This finding provides strong experimental evidence in support of the "abscess theory" of development of radicular cysts.
Smith, Judith A.
2018-01-01
Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis. PMID:29556237
Makon-Sébastien, Njock; Francis, Fouchier; Eric, Seree; Henri, Villard Pierre; François, Landrier Jean; Laurent, Pechere; Yves, Barra; Serge, Champion
2014-01-01
We revisited the action of a carotenoid, the lycopene, on the expression of proinflammatory genes, reactive oxygen species (ROS) production, and metalloprotease (MMP9) activity. THP1 and Caco2 cell lines were used as in vitro models for the two main cell types found in intestine tissue, that is, monocytes and epithelial cells. Proinflammatory condition was induced using either phorbol ester acetate (PMA), lipopolysaccharide (LPS) or tumor necrosis factor (TNF). In THP1 cells, short term pretreatment (2 h) with a low concentration (2 μM) of lycopene reinforce proinflammatory gene expression. The extent of the effect of lycopene is dependent on the proinflammtory stimulus (PMA, LPS or TNF) used. Lycopene enhanced MMP9 secretion via a c-AMP-dependent process, and reduced ROS production at higher concentrations than 2 μM. Cell culture media, conditioned by PMA-treated monocytes and then transferred on CaCo-2 epithelial cells, induced a proinflammatory state in these cells. The extent of this inflammatory effect was reduced when cells has been pretreated (12 h) with lycopene. At low concentration (2 μM or less), lycopene appeared to promote an inflammatory state not correlated with ROS modulation. At higher concentration (5 μM–20 μM), an anti-inflammatory effect takes place as a decrease of ROS production was detected. So, both concentration and time have to be considered in order to define the exact issue of the effect of carotenoids present in meals. PMID:24891766
Xu, Xue-Tao; Mou, Xue-Qing; Xi, Qin-Mei; Liu, Wei-Ting; Liu, Wen-Feng; Sheng, Zhao-Jun; Zheng, Xi; Zhang, Kun; Du, Zhi-Yun; Zhao, Su-Qing; Wang, Shao-Hua
2016-11-01
2-Substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole, a key structural moiety exiting in many bioactive molecules, has been shown to have excellent selective activity on COX-2. In the present study, the anti-inflammatory activity and the underlying molecular mechanism of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on skin inflammation were assessed by 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice. Most of the compounds showed anti-inflammatory activity on TPA-induced skin inflammation. The anti-inflammatory activity of compound 4 showed higher anti-inflammatory activity than celecoxib (3.2-fold). Compound 4 pretreatment resulted in markedly suppression of TPA-induced IL-1β, IL-6, TNF-α, and COX-2, respectively. Furthermore, the mechanical study indicated that the anti-inflammatory activity of compound 4 was associated with its ability to inhibit activation of factor kappa-κB (NF-κB) by blocking IκB kinase (IKK) activities. Accordingly, compound 4 could be used as a potential anti-inflammatory agent for skin inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barker-Haliski, Melissa L; Löscher, Wolfgang; White, H Steve; Galanopoulou, Aristea S
2017-07-01
Animal models have provided a wealth of information on mechanisms of epileptogenesis and comorbidogenesis, and have significantly advanced our ability to investigate the potential of new therapies. Processes implicating brain inflammation have been increasingly observed in epilepsy research. Herein we discuss the progress on animal models of epilepsy and comorbidities that inform us on the potential role of inflammation in epileptogenesis and comorbidity pathogenesis in rodent models of West syndrome and the Theiler's murine encephalomyelitis virus (TMEV) mouse model of viral encephalitis-induced epilepsy. Rat models of infantile spasms were generated in rat pups after right intracerebral injections of proinflammatory compounds (lipopolysaccharides with or without doxorubicin, or cytokines) and were longitudinally monitored for epileptic spasms and neurodevelopmental and cognitive deficits. Anti-inflammatory treatments were tested after the onset of spasms. The TMEV mouse model was induced with intracerebral administration of TMEV and prospective monitoring for handling-induced seizures or seizure susceptibility, as well as long-term evaluations of behavioral comorbidities of epilepsy. Inflammatory processes are evident in both models and are implicated in the pathogenesis of the observed seizures and comorbidities. A common feature of these models, based on the data so far available, is their pharmacoresistant profile. The presented data support the role of inflammatory pathways in epileptogenesis and comorbidities in two distinct epilepsy models. Pharmacoresistance is a common feature of both inflammation-based models. Utilization of these models may facilitate the identification of age-specific, syndrome- or etiology-specific therapies for the epilepsies and attendant comorbidities, including the drug-resistant forms. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice.
Bagarolli, Renata A; Tobar, Natália; Oliveira, Alexandre G; Araújo, Tiago G; Carvalho, Bruno M; Rocha, Guilherme Z; Vecina, Juliana F; Calisto, Kelly; Guadagnini, Dioze; Prada, Patrícia O; Santos, Andrey; Saad, Sara T O; Saad, Mario J A
2017-12-01
Obesity and type 2 diabetes are characterized by subclinical inflammatory process. Changes in composition or modulation of the gut microbiota may play an important role in the obesity-associated inflammatory process. In the current study, we evaluated the effects of probiotics (Lactobacillus rhamnosus, L. acidophilus and Bifidobacterium bifidumi) on gut microbiota, changes in permeability, and insulin sensitivity and signaling in high-fat diet and control animals. More importantly, we investigated the effects of these gut modulations on hypothalamic control of food intake, and insulin and leptin signaling. Swiss mice were submitted to a high-fat diet (HFD) with probiotics or pair-feeding for 5 weeks. Metagenome analyses were performed on DNA samples from mouse feces. Blood was drawn to determine levels of glucose, insulin, LPS, cytokines and GLP-1. Liver, muscle, ileum and hypothalamus tissue proteins were analyzed by Western blotting and real-time polymerase chain reaction. In addition, liver and adipose tissues were analyzed using histology and immunohistochemistry. The HFD induced huge alterations in gut microbiota accompanied by increased intestinal permeability, LPS translocation and systemic low-grade inflammation, resulting in decreased glucose tolerance and hyperphagic behavior. All these obesity-related features were reversed by changes in the gut microbiota profile induced by probiotics. Probiotics also induced an improvement in hypothalamic insulin and leptin resistance. Our data demonstrate that the intestinal microbiome is a key modulator of inflammatory and metabolic pathways in both peripheral and central tissues. These findings shed light on probiotics as an important tool to prevent and treat patients with obesity and insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro
Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophagesmore » with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.« less
Rice hull smoke extract protects mice against a salmonella lipopolysaccharide-induced endotoxemia
USDA-ARS?s Scientific Manuscript database
Rice hulls accounting for 20% of the rice crop are a byproduct of post-harvest rice processing. Endotoxemia (sepsis, septic shock) is an inflammatory, virulent often fatal disease that results mainly from infection with Salmonella and other Gram-negative bacteria. The present study investigated the...
Chronic exercise conditioning has been shown to alter basal thermoregulatory processes as well as the response to inflammatory agents. Two such agents, lipopolysaccharide (LPS) and turpentine (TPT) are inducers of fever in rats. LPS, given intraperitoneally (i.p.), involves a sys...
Torres-Rêgo, Manoela; Furtado, Allanny Alves; Bitencourt, Mariana Angélica Oliveira; Lima, Maira Conceição Jerônimo de Souza; Andrade, Rafael Caetano Lisbôa Castro de; Azevedo, Eduardo Pereira de; Soares, Thaciane da Cunha; Tomaz, José Carlos; Lopes, Norberto Peporine; da Silva-Júnior, Arnóbio Antônio; Zucolotto, Silvana Maria; Fernandes-Pedrosa, Matheus de Freitas
2016-08-05
Hancornia speciosa Gomes (Apocynaceae), popularly known as "mangabeira," has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and gastric disorders. Although the ethnobotany indicates that its fruits can be used for the treatment of ulcers and inflammatory disorders, only few studies have been conducted to prove such biological activities. This study investigated the anti-inflammatory properties of the aqueous extract of the fruits of H. speciosa Gomes as well as its bioactive compounds using in vivo experimental models. The bioactive compounds were identified by High Performance Liquid Chromatography coupled with diode array detector (HPLC-DAD) and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). The anti-inflammatory properties were investigated through in vivo tests, which comprised xylene-induced ear edema, carrageenan-induced peritonitis and zymosan-induced air pouch. The levels of IL-1β, IL-6, IL-12 and TNF-α were determined using ELISA. Rutin and chlorogenic acid were identified in the extract as the main secondary metabolites. In addition, the extract as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and also reduced the cell migration in both carrageenan-induced peritonitis and zymosan-induced air pouch models. Reduced levels of cytokines were also observed. This is the first study that demonstrated the anti-inflammatory activity of the extract of H. speciosa fruits against different inflammatory agents in animal models, suggesting that its bioactive molecules, especially rutin and chlorogenic acid are, at least in part, responsible for such activity. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that its aqueous extract has therapeutical potential for the development of herbal drugs with anti-inflammatory properties.
The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse1
Edey, Lydia F.; O'Dea, Kieran P.; Herbert, Bronwen R.; Hua, Renyi; Waddington, Simon N.; MacIntyre, David A.; Bennett, Philip R.; Takata, Masao; Johnson, Mark R.
2016-01-01
Inflammation plays a key role in human term and preterm labor (PTL). Intrauterine LPS has been widely used to model inflammation-induced complications of pregnancy, including PTL. It has been shown to induce an intense myometrial inflammatory cell infiltration, but the role of LPS-induced inflammatory cell activation in labor onset and fetal demise is unclear. We investigated this using a mouse model of PTL, where an intrauterine injection of 10 μg of LPS (serotype 0111:B4) was given at E16 of CD1 mouse pregnancy. This dose induced PTL at an average of 12.7 h postinjection in association with 85% fetal demise. Flow cytometry showed that LPS induced a dramatic systemic inflammatory response provoking a rapid and marked leucocyte infiltration into the maternal lung and liver in association with increased cytokine levels. Although there was acute placental inflammatory gene expression, there was no corresponding increase in fetal brain inflammatory gene expression until after fetal demise. There was marked myometrial activation of NFκB and MAPK/AP-1 systems in association with increased chemokine and cytokine levels, both of which peaked with the onset of parturition. Myometrial macrophage and neutrophil numbers were greater in the LPS-injected mice with labor onset only; prior to labor, myometrial neutrophils and monocytes numbers were greater in PBS-injected mice, but this was not associated with an earlier onset of labor. These data suggest that intrauterine LPS induces parturition directly, independent of myometrial inflammatory cell infiltration, and that fetal demise occurs without fetal inflammation. Intrauterine LPS provokes a marked local and systemic inflammatory response but with limited inflammatory cell infiltration into the myometrium or placenta. PMID:27760748
Solleiro-Villavicencio, Helena; Rivas-Arancibia, Selva
2018-01-01
In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4 + T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4 + T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration.
Solleiro-Villavicencio, Helena; Rivas-Arancibia, Selva
2018-01-01
In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4+T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4+T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration. PMID:29755324
Sulforaphane suppresses LPS-induced or TPA-induced downregulation of PDCD4 in RAW 264.7 cells.
Cho, Jong-Ho; Kim, Young-Woo; Keum, Young-Sam
2014-11-01
Sulforaphane is a natural chemopreventive isothiocyanate and abundantly found in various cruciferous vegetables. Although chemopreventive activity of sulforaphane is well documented, the detailed biochemical mechanism(s), underlying how it regulates the protein translation process to antagonize pro-inflammatory responses are largely unclear. In the present study, we show that lipopolysaccharide (LPS) or 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment reduces cellular levels of PDCD4, and this event is mediated by affecting both transcription and proteolysis in RAW 264.7 cells. We show that LPS-mediated or TPA-mediated PDCD4 downregulation is catalyzed by the activation of intracellular Akt1 or S6K1 kinases and that sulforaphane suppresses LPS-induced or TPA-induced Akt1 or S6K1 activation, thereby resulting in the attenuation of PDCD4 downregulation in RAW 264.7 cells. We propose that sulforaphane suppression of PDCD4 downregulation serves as a novel molecular mechanism to control proliferation in response to pro-inflammatory signals. Copyright © 2014 John Wiley & Sons, Ltd.
Nakamura, Taichi; Ito, Tetsuhide; Igarashi, Hisato; Uchida, Masahiko; Hijioka, Masayuki; Oono, Takamasa; Fujimori, Nao; Niina, Yusuke; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi
2012-01-01
Pancreatitis is an inflammatory disease of unknown causes. There are many triggers causing pancreatitis, such as alcohol, common bile duct stone, virus and congenital or acquired stenosis of main pancreatic duct, which often involve tissue injuries. Pancreatitis often occurs in sterile condition, where the dead/dying pancreatic parenchymal cells and the necrotic tissues derived from self-digested-pancreas were observed. However, the causal relationship between tissue injury and pancreatitis and how tissue injury could induce the inflammation of the pancreas were not elucidated fully until now. This study demonstrates that cytosolic double-stranded DNA increases the expression of several inflammatory genes (cytokines, chemokines, type I interferon, and major histocompatibility complex) in rat pancreatic stellate cells. Furthermore, these increase accompanied the multiple signal molecules genes, such as interferon regulatory factors, nuclear factor-kappa B, low-molecular-weight protein 2, and transporter associated with antigen processing 1. We suggest that this phenomenon is a plausible mechanism that might explain how cell damage of the pancreas or tissue injury triggers acute, chronic, and autoimmune pancreatitis; it is potentially relevant to host immune responses induced during alcohol consumption or other causes. PMID:22550608
Kim, So Ra; Jung, Yu Ri; An, Hye Jin; Kim, Dae Hyun; Jang, Eun Ji; Choi, Yeon Ja; Moon, Kyoung Mi; Park, Min Hi; Park, Chan Hum; Chung, Ki Wung; Bae, Ha Ram; Choi, Yung Whan; Kim, Nam Deuk; Chung, Hae Young
2013-01-01
Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling. PMID:24066081
Kulkarni, S K; Mehta, A K; Kunchandy, J
1986-02-01
Clonidine (0.1-1.0 mg/kg, i.p.) exhibited anti-inflammatory activity in carrageenan-, formalin-, 5-HT- and histamine-induced paw oedema in rats. Similarly, other two alpha 2-adrenoceptor agonists, guanfacine and B-HT 920, also displayed an anti-inflammatory action in these models. The anti-inflammatory effect of all the three alpha 2-adrenoceptor agonists was reversed by yohimbine. However, prazosin failed to block the anti-inflammatory effect of clonidine. Intracerebroventricularly administered clonidine had a delayed onset of anti-inflammatory action, starting only from 60 min post carrageenan administration. This was in contrast to the systemically administered clonidine which was effective against both phases of carrageenan-induced oedema. On the other hand, irrespective of the route of administration, i.e. peripheral or central, guanfacine and B-HT 920 were effective against the early as well as against the delayed phases of the inflammatory reaction. The studies suggest that it is not the imidazoline moiety but the activation of alpha 2-adrenoceptors which is essential for the anti-inflammatory action of these agents.
Fourrier, Célia; Remus-Borel, Julie; Greenhalgh, Andrew D; Guichardant, Michel; Bernoud-Hubac, Nathalie; Lagarde, Michel; Joffre, Corinne; Layé, Sophie
2017-08-24
Neuroinflammatory processes are considered a double-edged sword, having both protective and detrimental effects in the brain. Microglia, the brain's resident innate immune cells, are a key component of neuroinflammatory response. There is a growing interest in developing drugs to target microglia and control neuroinflammatory processes. In this regard, docosahexaenoic acid (DHA), the brain's n-3 polyunsaturated fatty acid, is a promising molecule to regulate pro-inflammatory microglia and cytokine production. Several works reported that the bioavailability of DHA to the brain is higher when DHA is acylated to phospholipid. In this work, we analyzed the anti-inflammatory activity of DHA-phospholipid, either acetylated at the sn-1 position (AceDoPC, a stable form thought to have superior access to the brain) or acylated with palmitic acid at the sn-1 position (PC-DHA) using a lipopolysaccharide (LPS)-induced neuroinflammation model both in vitro and in vivo. In vivo, adult C57Bl6/J mice were injected intravenously (i.v.) with either AceDoPC or PC-DHA 24 h prior to LPS (i.p.). For in vitro studies, immortalized murine microglia cells BV-2 were co-incubated with DHA forms and LPS. AceDoPC and PC-DHA effect on brain or BV-2 PUFA content was assessed by gas chromatography. LPS-induced pro-inflammatory cytokines interleukin IL-1β, IL-6, and tumor necrosis factor (TNF) α production were measured by quantitative PCR (qPCR) or multiplex. IL-6 receptors and associated signaling pathway STAT3 were assessed by FACS analysis and western-blot in vitro. In vivo, a single injection of AceDoPC or PC-DHA decreased LPS-induced IL-6 production in the hippocampus of mice. This effect could be linked to their direct effect on microglia, as revealed in vitro. In addition, AceDoPC or PC-DHA reduced IL-6 receptor while only AceDoPC decreased IL-6-induced STAT3 phosphorylation. These results highlight the potency of administered DHA-acetylated to phospholipids-to rapidly regulate LPS-induced neuroinflammatory processes through their effect on microglia. In particular, both IL-6 production and signaling are targeted by AceDoPC in microglia.
Ramesh, Geeta; Martinez, Alejandra N; Martin, Dale S; Philipp, Mario T
2017-02-02
Lyme neuroborreliosis (LNB), caused by the spirochete Borrelia burgdorferi (Bb), affects both the central and peripheral nervous systems. Previously, we reported that in a model of acute LNB in rhesus monkeys, treatment with the anti-inflammatory drug dexamethasone significantly reduced both pleocytosis and levels of cerebrospinal fluid (CSF) immune mediators that were induced by Bb. Dexamethasone also inhibited the formation of inflammatory, neurodegenerative, and demyelinating lesions in the brain and spinal cord of these animals. In contrast, these signs were evident in the infected animals that were left untreated or in those that were treated with meloxicam, a non-steroidal anti-inflammatory drug. To address the differential anti-inflammatory effects of dexamethasone and meloxicam in the central nervous system (CNS), we evaluated the potential of these drugs to alter the levels of Bb-induced inflammatory mediators in culture supernatants of rhesus frontal cortex (FC) explants, primary rhesus astrocytes and microglia, and human oligodendrocytes. We also ascertained the potential of dexamethasone to modulate Bb-induced apoptosis in rhesus FC explants. As meloxicam is a known COX-2 inhibitor, we evaluated whether meloxicam altered the levels of COX-2 as induced by live Bb in cell lysates of primary rhesus astrocytes and microglia. Dexamethasone but not meloxicam significantly reduced the levels of several Bb-induced immune mediators in culture supernatants of FC explants, astrocytes, microglia, and oligodendrocytes. Dexamethasone also had a protective effect on Bb-induced neuronal and oligodendrocyte apoptosis in rhesus FC explants. Further, meloxicam significantly reduced the levels of Bb-induced COX-2 in microglia, while both Bb and meloxicam were unable to alter the constitutive levels of COX-2 in astrocytes. These data indicate that dexamethasone and meloxicam have differential anti-inflammatory effects on Bb-induced inflammation in glial and neuronal cells of the CNS and help explain the in vivo findings of significantly reduced inflammatory mediators in the CSF and lack of inflammatory neurodegenerative lesions in the brain and spinal cord of Bb-infected animals that were treated with dexamethasone but not meloxicam. Signaling cascades altered by dexamethasone could serve as possible therapeutic targets for limiting CNS inflammation and tissue damage in LNB.
Richebé, Philippe; Rivalan, Bertrand; Rivat, Cyril; Laulin, Jean-Paul; Janvier, Gérard; Maurette, Pierre; Simonnet, Guy
2009-02-01
Opioids are widely used for anesthesia but paradoxically induce postoperative pain hypersensitivity via N-methyl-D: -aspartate (NMDA) receptor modulation. Sevoflurane effects on opioid-induced hyperalgesia have not been yet evaluated in vivo. Nevertheless, some experimental in vitro studies reported anti-NMDA receptor properties for sevoflurane. The aim of this study was to evaluate sevoflurane effects on fentanyl-induced hyperalgesia in opioid-naive rats and in rats with inflammatory pain. Sevoflurane effects on hyperalgesia were evaluated in Sprague-Dawley rats: opioid-naive rats, rats treated with fentanyl (4 x 60 microg kg(-1)) and rats with inflammatory pain (carrageenan) treated with fentanyl (4 x 60 microg kg(-1)). On day zero, subcutaneous fentanyl injections were administered and inflammatory pain was induced with one carrageenan injection in one hind paw. Rats were exposed to low concentrations of sevoflurane (1.0 or 1.5%) on day zero prior to fentanyl injections and inflammatory pain induction, and for the duration of the fentanyl analgesic effect. The nociceptive threshold (Randall-Selitto test) was evaluated daily for 7 days. On day seven, naloxone was injected and the nociceptive threshold was assessed 5 min later. In rats without inflammatory pain but treated with fentanyl on day zero, sevoflurane 1.0% reversed the early (day zero) and long-lasting (day zero to day three) hyperalgesia classically described after high-doses of fentanyl (P < 0.05). This sevoflurane concentration antagonized the hyperalgesia induced by naloxone on day seven (P = 0.33). In a second experiment in rats with inflammatory pain, exposure to low concentrations of sevoflurane (1.0 and 1.5%) did not reduce fentanyl-induced hyperalgesia (P > 0.05), but nevertheless antagonized the naloxone induced hyperalgesia on day seven (P = 0.061). Relatively low sevoflurane concentrations (1.0%) reverse fentanyl-induced hyperalgesia in rats without inflammatory pain. Nevertheless, the lack of effect of sevoflurane concentrations of 1.0% and 1.5% to oppose hyperalgesia following high-dose fentanyl and inflammatory pain suggests that sevoflurane anti-hyperalgesic properties are weak.
Agus, Allison; Denizot, Jérémy; Thévenot, Jonathan; Martinez-Medina, Margarita; Massier, Sébastien; Sauvanet, Pierre; Bernalier-Donadille, Annick; Denis, Sylvain; Hofman, Paul; Bonnet, Richard; Billard, Elisabeth; Barnich, Nicolas
2016-01-08
Recent advances have shown that the abnormal inflammatory response observed in CD involves an interplay among intestinal microbiota, host genetics and environmental factors. The escalating consumption of fat and sugar in Western countries parallels an increased incidence of CD during the latter 20(th) century. The impact of a HF/HS diet in mice was evaluated for the gut micro-inflammation, intestinal microbiota composition, function and selection of an E. coli population. The HF/HS diet created a specific inflammatory environment in the gut, correlated with intestinal mucosa dysbiosis characterized by an overgrowth of pro-inflammatory Proteobacteria such as E. coli, a decrease in protective bacteria, and a significantly decreased of SCFA concentrations. The expression of GPR43, a SCFA receptor was reduced in mice treated with a HF/HS diet and reduced in CD patients compared with controls. Interestingly, mice treated with an agonist of GPR43 were protected against DSS-induced colitis. Finally, the transplantation of feces from HF/HS treated mice to GF mice increased susceptibility to AIEC infection. Together, our results demonstrate that a Western diet could aggravate the inflammatory process and that the activation of the GPR43 receptor pathway could be used as a new strategy to treat CD patients.
Agus, Allison; Denizot, Jérémy; Thévenot, Jonathan; Martinez-Medina, Margarita; Massier, Sébastien; Sauvanet, Pierre; Bernalier-Donadille, Annick; Denis, Sylvain; Hofman, Paul; Bonnet, Richard; Billard, Elisabeth; Barnich, Nicolas
2016-01-01
Recent advances have shown that the abnormal inflammatory response observed in CD involves an interplay among intestinal microbiota, host genetics and environmental factors. The escalating consumption of fat and sugar in Western countries parallels an increased incidence of CD during the latter 20th century. The impact of a HF/HS diet in mice was evaluated for the gut micro-inflammation, intestinal microbiota composition, function and selection of an E. coli population. The HF/HS diet created a specific inflammatory environment in the gut, correlated with intestinal mucosa dysbiosis characterized by an overgrowth of pro-inflammatory Proteobacteria such as E. coli, a decrease in protective bacteria, and a significantly decreased of SCFA concentrations. The expression of GPR43, a SCFA receptor was reduced in mice treated with a HF/HS diet and reduced in CD patients compared with controls. Interestingly, mice treated with an agonist of GPR43 were protected against DSS-induced colitis. Finally, the transplantation of feces from HF/HS treated mice to GF mice increased susceptibility to AIEC infection. Together, our results demonstrate that a Western diet could aggravate the inflammatory process and that the activation of the GPR43 receptor pathway could be used as a new strategy to treat CD patients. PMID:26742586
Roberto, Roncon-Albuquerque
2018-01-01
Puromycin aminonucleoside-induced nephrotic syndrome (PAN-NS) is characterized by cardiac remodeling and increased local inflammatory activity. Patients with NS and animal models of NS have vitamin D3 deficiency. The aim of the present study was to evaluate the influence of calcitriol on cardiac remodeling and local inflammatory state in PAN-NS rat model. Male Sprague-Dawley rats were injected with PAN or vehicle on day 0. PAN and control rats were divided into two subgroups for the administration of calcitriol (PAN-D and Ct-D groups) or the vehicle (PAN-V and Ct-V groups) during 21 days. On day 21, the renal function, metabolic balance, calcitriol and FGF-23 plasma levels, prohypertrophy and proinflammatory markers (ET-1, TGF-β1, TNF-α, and IL-1β), and calcium signaling molecules (PLB and SERCA-2a) were evaluated. Twenty-one days after injection, PAN-V group presented cardiac hypertrophy and a modulation of proinflammatory markers local expression. Calcitriol treatment of PAN rats prevented cardiac hypertrophy and was associated with marked reduction in the cardiac expression levels of proinflammatory markers. Our results suggest that vitamin D3 deficiency in PAN-NS may contribute to cardiac remodeling and to the increase in local inflammatory activity. Calcitriol treatment prevents both cardiac repercussions and local inflammatory processes in PAN-NS. PMID:29607318
Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.
Demyanenko, Ilya A; Popova, Ekaterina N; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Romashchenko, Valeria P; Fedorov, Artem V; Manskikh, Vasily N; Skulachev, Maxim V; Zinovkin, Roman A; Pletjushkina, Olga Yu; Skulachev, Vladimir P; Chernyak, Boris V
2015-07-01
The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.
Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice
Zakharova, Vlada V.; Ilyinskaya, Olga P.; Vasilieva, Tamara V.; Romashchenko, Valeria P.; Fedorov, Artem V.; Manskikh, Vasily N.; Skulachev, Maxim V.; Zinovkin, Roman A.; Pletjushkina, Olga Yu.; Skulachev, Vladimir P.; Chernyak, Boris V.
2015-01-01
The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlier in vitro. The Transforming Growth Factor beta (TGFβ)produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds. PMID:26187706
Cheng, Yu-Ting; Lu, Chi-Cheng; Yen, Gow-Chin
2017-06-01
The gastrointestinal (GI) mucosa provides the first protective barrier for digested food and xenobiotics, which are easily attacked by toxic substances. Nonsteroidal anti-inflammatory drugs, including aspirin, diclofenac, indomethacin, and ketoprofen, are widely used in clinical medicine, but these drugs may cause oxidative stress, leading to GI damage such as ulcers. Lansoprazol, omeprazole, and other clinical drugs are widely used to treat duodenal and gastric ulcers and have been shown to have multiple biological functions, such as antioxidant activity and the ability to upregulate antioxidant enzymes in vivo. Therefore, the reduction of oxidative stress may be an effective curative strategy for preventing and treating nonsteroidal anti-inflammatory drug induced ulcers of the GI mucosa. Phytochemicals, such as dietary phenolic compounds, phenolic acids, flavan-3-ols, flavonols, flavonoids, gingerols, carotenes, and organosulfur, are common antioxidants in fruits, vegetables, and beverages. A large amount of evidence has demonstrated that natural phytochemicals possess bioactivity and potential health benefits, such as antioxidant, anti-inflammatory, and antibacterial benefits, and they can prevent digestive disease processes. In this review, we summarize the literature on phytochemicals with biological effects, such as angiogenic, antioxidant, antiapoptotic, anti-inflammatory, and antiulceration effects, and their related mechanisms are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
El-Benna, Jamel; Dang, Pham My-Chan; Gougerot-Pocidalo, Marie-Anne
2008-07-01
Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of the NADPH oxidase, which can damage surrounding tissues and participate to inflammation. In order to avoid extensive damage to host tissues, NADPH oxidase priming and activation must be tightly regulated. In this review, we will discuss some of the mechanisms of NADPH oxidase priming in neutrophils and the relevance of this process to physiology and pathology.
Dianzani, Chiara; Foglietta, Federica; Ferrara, Benedetta; Rosa, Arianna Carolina; Muntoni, Elisabetta; Gasco, Paolo; Della Pepa, Carlo; Canaparo, Roberto; Serpe, Loredana
2017-01-01
AIM To improve anti-inflammatory activity while reducing drug doses, we developed a nanoformulation carrying dexamethasone and butyrate. METHODS Dexamethasone cholesteryl butyrate-solid lipid nanoparticles (DxCb-SLN) were obtained with the warm microemulsion method. The anti-inflammatory activity of this novel nanoformulation has been investigated in vitro (cell adhesion to human vascular endothelial cells and pro-inflammatory cytokine release by lipopolysaccharide-induced polymorphonuclear cells) and in vivo (disease activity index and cytokine plasma concentrations in a dextran sulfate sodium-induced mouse colitis) models. Each drug was also administered separately to compare its effects with those induced by their co-administration in SLN at the same concentrations. RESULTS DxCb-SLN at the lowest concentration tested (Dx 2.5 nmol/L and Cb 0.1 μmol/L) were able to exert a more than additive effect compared to the sum of the individual effects of each drug, inducing a significant in vitro inhibition of cell adhesion and a significant decrease of pro-inflammatory cytokine (IL-1β and TNF-α) in both in vitro and in vivo models. Notably, only the DxCb nanoformulation administration was able to achieve a significant cytokine decrease compared to the cytokine plasma concentration of the untreated mice with dextran sulfate sodium-induced colitis. Specifically, DxCb-SLN induced a IL-1β plasma concentration of 61.77% ± 3.19%, whereas Dx or Cb used separately induced a concentration of 90.0% ± 2.8% and 91.40% ± 7.5%, respectively; DxCb-SLN induced a TNF-α plasma concentration of 30.8% ± 8.9%, whereas Dx or Cb used separately induced ones of 99.5% ± 4.9% and 71.1% ± 10.9%, respectively. CONCLUSION Our results indicate that the co-administration of dexamethasone and butyrate by nanoparticles may be beneficial for inflammatory bowel disease treatment. PMID:28694660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Department of Infectious Diseases, Peking University Third Hospital, Beijing; Zhang, Yuan
The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β{sub 2}-adrenergic receptor (β{sub 2}-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β{sub 2}-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1βmore » (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β{sub 2}-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. - Highlights: • β{sub 2}-AR agonist fenoterol exerts its protective effect on LPS-treated THP-1 cells. • Fenoterol inhibits LPS-induced AMPK activation and IL-1β production. • β-arrestin2 mediates fenoterol-inhibited AMPK activation and IL-1β release. • AMPKα1 is involved in LPS-induced NF-κB activation and IL-1β production.« less
Luo, Jia; Xu, Yanwen; Zhang, Minfang; Gao, Ling; Fang, Cong; Zhou, Canquan
2013-10-01
Endometritis is an inflammation of the uterine lining that is commonly initiated at parturition. The uterine epithelial cells play an important role in defending against invading pathogens. Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been shown to have anti-inflammatory effects. The aim of this study was to investigate the anti-inflammatory effect of magnolol in modifying lipopolysaccharide (LPS)-induced signal pathways in mouse uterine epithelial cells. We found that magnolol inhibited TNF-α and IL-6 production in LPS-stimulated mouse uterine epithelial cells. We also found that magnolol inhibited LPS-induced NF-κB activation, IκBα degradation, phosphorylation of ERK, JNK, and P38. Furthermore, magnolol could significantly inhibit the expression of TLR4 stimulating by LPS. These results suggest that magnolol exerts an anti-inflammatory property by downregulating the expression of TLR4 upregulated by LPS, thereby attenuating TLR4-mediated NF-κB and MAPK signaling and the release of pro-inflammatory cytokines. These findings suggest that magnolol may be a therapeutic agent against endometritis.
Sadar, Smeeta S.; Vyawahare, Niraj S.; Bodhankar, Subhash L.
2016-01-01
Ulcerative colitis (UC) is a chronic immune-inflammatory disorder characterized by oxido-nitrosative stress, the release of pro-inflammatory cytokines and apoptosis. Ferulic acid (FA), a phenolic compound is considered to possess potent antioxidant, anti-apoptotic and anti-inflammatory activities. The aim is to evaluate possible mechanism of action of FA against trinitrobenzensulfonic acid (TNBS) induced ulcerative colitis (UC) in rats. UC was induced in Sprague-Dawley rats (150-200 g) by intrarectal administration of TNBS (100 mg/kg). FA was administered (10, 20 and 40 mg/kg, p.o.) for 14 days after colitis was induced. Various biochemical, molecular and histological changes were assessed in the colon. Intrarectal administration of TNBS caused significant induction of ulcer in the colon with an elevation of oxido-nitrosative stress, myeloperoxidase and hydroxyproline activity in the colon. Administration of FA (20 and 40 mg/kg) significantly decrease oxido-nitrosative stress, myeloperoxidase, and hydroxyproline activities. Up-regulated mRNA expression of TNF-α, IL-1β, IL-6, COX-2, and iNOs, as well as down-regulated IL-10 mRNA expressions after TNBS administration, were significantly inhibited by FA (20 and 40 mg/kg) treatment. Flow cytometric analysis revealed that intrarectal administration of TNBS-induced significantly enhanced the colonic apoptosis whereas administration of FA (20 and 40 mg/kg) significantly restored the elevated apoptosis. FA administration also significantly restored the histopathological aberration induced by TNBS. The findings of the present study demonstrated that FA ameliorates TNBS-induced colitis via inhibition of oxido-nitrosative stress, apoptosis, proinflammatory cytokines production, and down- regulation of COX-2 synthesis. Graphical Abstract: TNBS caused activation of T cells which interact with CD40 on antigen presenting cells i.e. dendritic cells (DC) that induce the key Interleukin 12 (IL-12)-mediated Th1 T cell immune inflammatory response. It releases interferon-γ (IFN-γ), which in turn induces macrophages (MAC) to produce TNF-α and other pro-inflammatory cytokines (e.g., IL-1β, IL-6). This inflammatory influx resulted in induction of ulcerative colitis (UC). Administration of FA may inhibit this IFN-γ induced inflammatory cascade via a decrease in the release of pro-inflammatory cytokines to ameliorate TNBS-induced colitis. PMID:27822176
Maher, F O; Nolan, Yvonne; Lynch, Marina A
2005-05-01
Ageing is characterized by deficits in learning and memory and by a deficit in long-term potentiation (LTP) in hippocampus. Several age-related changes, including dysfunction of calcium homeostatic mechanisms and upregulation of inflammatory processes are likely to contribute to these deficits. Here we exploited the fact that aged rats fall into a subgroup which fail to sustain LTP in perforant path granule cell synapses as a result of tetanic stimulation, and a subgroup which sustains LTP in a manner indistinguishable from young rats, in an effort to identify differential changes in the two subgroups. The age-related increase in IL-1beta concentration and IL-1beta-induced signalling was more profound in aged rats which failed to sustain LTP. We demonstrate that functional IL-4 receptors are expressed in rat hippocampus and that age is associated with a decrease in IL-4 concentration accompanied by a decrease in phosphorylation of JAK-1 and STAT-6. We propose that the imbalance between pro-inflammatory and anti-inflammatory cytokines in the aged brain significantly contributes to age-related deficits in synaptic function.
Li, Te-Mao; Liu, Shan-Chi; Huang, Ya-Hsin; Huang, Chien-Chung; Hsu, Chin-Jung; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin
2017-01-01
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18), and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs). We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK)/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis. PMID:28448439
Li, Te-Mao; Liu, Shan-Chi; Huang, Ya-Hsin; Huang, Chien-Chung; Hsu, Chin-Jung; Tsai, Chun-Hao; Wang, Shih-Wei; Tang, Chih-Hsin
2017-04-27
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18), and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs). We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK)/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, Tatsuya, E-mail: tatsuya.hasegawa@to.shiseido.co.jp; Nakashima, Masaya; Suzuki, Yoshiharu
Ultraviolet (UV) radiation in sunlight can result in DNA damage and an inflammatory reaction of the skin commonly known as sunburn, which in turn can lead to cutaneous tissue disorders. However, little has been known about how UV-induced DNA damage mediates the release of inflammatory mediators from keratinocytes. Here, we show that UVB radiation intensity-dependently increases NLRP3 gene expression and IL-1β production in human keratinocytes. Knockdown of NLRP3 with siRNA suppresses UVB-induced production of not only IL-1β, but also other inflammatory mediators, including IL-1α, IL-6, TNF-α, and PGE{sub 2}. In addition, inhibition of DNA damage repair by knockdown of XPA,more » which is a major component of the nucleotide excision repair system, causes accumulation of cyclobutane pyrimidine dimer (CPD) and activation of NLRP3 inflammasome. In vivo immunofluorescence analysis confirmed that NLRP3 expression is also elevated in UV-irradiated human epidermis. Overall, our findings indicate that UVB-induced DNA damage initiates NLRP3 inflammasome activation, leading to release of various inflammatory mediators from human keratinocytes. - Highlights: • UVB radiation induces NLRP3 inflammasome activation in human keratinocytes. • NLRP3 knockdown suppresses production of UVB-induced inflammatory mediators. • UVB-induced DNA damage triggers NLRP3 inflammasome activation. • NLRP3 expression in human epidermis is elevated in response to UV radiation.« less
Shin, Seung Kak; Cho, Jae Hee; Kim, Eui Joo; Kim, Eun-Kyung; Park, Dong Kyun; Kwon, Kwang An; Chung, Jun-Won; Kim, Kyoung Oh; Kim, Yoon Jae
2017-01-01
AIM To evaluate the anti-inflammatory and anti-apoptotic effects of rosuvastatin by regulation of oxidative stress in a dextran sulfate sodium (DSS)-induced colitis model. METHODS An acute colitis mouse model was induced by oral administration of 5% DSS in the drinking water for 7 d. In the treated group, rosuvastatin (0.3 mg/kg per day) was administered orally before and after DSS administration for 21 d. On day 21, mice were sacrificed and the colons were removed for macroscopic examination, histology, and Western blot analysis. In the in vitro study, IEC-6 cells were stimulated with 50 ng/mL tumor necrosis factor (TNF)-α and then treated with or without rosuvastatin (2 μmol/L). The levels of reactive oxygen species (ROS), inflammatory mediators, and apoptotic markers were measured. RESULTS In DSS-induced colitis mice, rosuvastatin treatment significantly reduced the disease activity index and histological damage score compared to untreated mice (P < 0.05). Rosuvastatin also attenuated the DSS-induced increase of 8-hydroxy-2’-deoxyguanosine and NADPH oxidase-1 expression in colon tissue. Multiplex ELISA analysis revealed that rosuvastatin treatment reduced the DSS-induced increase of serum IL-2, IL-4, IL-5, IL-6, IL-12 and IL-17, and G-CSF levels. The increased levels of cleaved caspase-3, caspase-7, and poly (ADP-ribose) polymerase in the DSS group were attenuated by rosuvastatin treatment. In vitro, rosuvastatin significantly reduced the production of ROS, inflammatory mediators and apoptotic markers in TNF-α-treated IEC-6 cells (P < 0.05). CONCLUSION Rosuvastatin had the antioxidant, anti-inflammatory and anti-apoptotic effects in DSS-induced colitis model. Therefore, it might be a candidate anti-inflammatory drug in patients with inflammatory bowel disease. PMID:28740344
Human mast cell and airway smooth muscle cell interactions: implications for asthma.
Page, S; Ammit, A J; Black, J L; Armour, C L
2001-12-01
Asthma is characterized by inflammation, hyperresponsiveness, and remodeling of the airway. Human mast cells (HMCs) play a central role in all of these changes by releasing mediators that cause exaggerated bronchoconstriction, induce human airway smooth muscle (HASM) cell proliferation, and recruit and activate inflammatory cells. Moreover, the number of HMCs present on asthmatic HASM is increased compared with that on nonasthmatic HASM. HASM cells also have the potential to actively participate in the inflammatory process by synthesizing cytokines and chemokines and expressing surface molecules, which have the capacity to perpetuate the inflammatory mechanisms present in asthma. This review specifically examines how the mediators of HMCs have the capacity to modulate many functions of HASM; how the synthetic function of HASM, particularly through the release and expression of stem cell factor, has the potential to influence HMC number and activation in an extraordinarily potent and proinflammatory manner; and how these interactions between HMCs and HASM have potential consequences for airway structure and inflammation relevant to the disease process of asthma.
Wang, Kaiyu; Wu, Dong; Chen, Zhuang; Zhang, Xianhui; Yang, Xiangyue; Yang, Chaoyong James; Lan, Xiaopeng
2016-09-01
Staphylococcal enterotoxin A (SEA) is an important component of Staphylococcus aureus pathogenesis. SEA induces T lymphocytes activation and proliferation, resulting in the release of a large number of inflammatory cytokines. Blocking the toxic cascade triggered by SEA may be an effective strategy for the treatment of SEA-induced diseases. Through a systematic evolution of ligands by exponential enrichment process, we obtained an aptamer (S3) that could bind SEA with both high affinity and specificity, with a Kd value 36.93 ± 7.29 nM (n = 3). This aptamer antagonist effectively inhibited SEA-mediated human peripheral blood mononuclear cells proliferation and inflammatory cytokines (IFN-γ, TNF-α, IL-2 and IL-6) secretion. Moreover, PEGylated S3 significantly reduced mortality in murine lethal toxic shock models established by lipopolysaccharide-potentiated SEA. Therefore, this novel aptamer antagonist has the potential to become a new strategy for treating S. aureus infections and SEA-induced diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Shanshan; Wang, Yonggang; Tan, Yi; Cai, Xiaohong; Cai, Lu; Cai, Jun; Zheng, Yang
2014-01-01
The present study was to explore the effect of metallothionein (MT) on intermittent hypoxia (IH) induced aortic pathogenic changes. Markers of oxidative damages, inflammation, and vascular remodeling were observed by immunohistochemical staining after 3 days and 1, 3, and 8 weeks after IH exposures. Endogenous MT was induced after 3 days of IH but was significantly decreased after 8 weeks of IH. Compared with the wild-type mice, MT knock-out mice exhibited earlier and more severe pathogenic changes of oxidative damages, inflammatory responses, and cellular apoptosis, as indicated by the significant accumulation of collagen, increased levels of connective tissue growth factor, transforming growth factor β1, tumor necrosis factor-alpha, vascular cell adhesion molecule 1,3-nitrotyrosine, and 4-hydroxy-2-nonenal in the aorta. These findings suggested that chronic IH may lead to aortic damages characterized by oxidative stress and inflammation, and MT may play a pivotal role in the above pathogenesis process.
In vivo imaging of leukocyte recruitment to glomeruli in mice using intravital microscopy.
Kitching, A Richard; Kuligowski, Michael P; Hickey, Michael J
2009-01-01
Leukocytes mediate some forms of glomerulonephritis, particularly severe proliferative and crescentic forms. The renal glomerulus is one of the few sites within the microvasculature in which leukocyte recruitment occurs in capillaries. However, due to the difficulty of directly visualising the glomerulus, the mechanisms of leukocyte recruitment to glomerular capillaries are poorly understood. To overcome this, a murine kidney can be rendered hydronephrotic, by ligating one ureter, and allowing the mouse to rest for 12 weeks. This allows the visualisation of the glomerular microvasculature during inflammatory responses. In inflammation, in this example induced by anti-glomerular basement membrane (GBM) antibody, leukocytes can be observed undergoing adhesion in glomerular capillaries using intravital microscopy. Leukocyte adhesion can be quantitated using this approach. An observation protocol involving few, limited periods of epifluorescence avoids phototoxicity-induced leukocyte recruitment. The process of hydronephrosis does not alter the ability of anti-GBM-antibody to induce a glomerular inflammatory response. This approach allows detailed investigation of the mechanisms of leukocyte recruitment within glomeruli.
Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain
Lumniczky, Katalin; Szatmári, Tünde; Sáfrány, Géza
2017-01-01
Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed. PMID:28529513
Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J
2014-01-09
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.
Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J
2014-01-01
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238
Redondo, Alejandro; Chamorro, Pablo Aníbal Ferreira; Riego, Gabriela; Leánez, Sergi; Pol, Olga
2017-12-01
The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts potent antioxidative and anti-inflammatory effects; however, its participation in the modulation of chronic inflammatory pain and on the antinociceptive effects of μ -opioid receptor (MOR) agonists has not been evaluated. We investigated whether the induction of Nrf2 could alleviate chronic inflammatory pain and augment the analgesic effects of morphine and mechanisms implicated. In male C57BL/6 mice with inflammatory pain induced by complete Freund's adjuvant (CFA) subplantarly administered, we assessed: 1) antinociceptive actions of the administration of 5 and 10 mg/kg of a Nrf2 activator, sulforaphane (SFN); and 2) effects of SFN on the antinociceptive actions of morphine and on protein levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) enzymes, microglial activation and inducible nitric oxide synthase (NOS2) overexpression, as well as on mitogen-activated protein kinase (MAPK) and MOR expression in the spinal cord and paw of animals with inflammatory pain. Results showed that treatment with SFN inhibited allodynia and hyperalgesia induced by CFA and increased the local antinociceptive actions of morphine. This treatment also augmented the expression of Nrf2, HO-1, NQO1, and MOR, and inhibited NOS2 and CD11b/c overexpression and MAPK phosphorylation induced by inflammation. Thus, this study shows that the induction of Nrf2 might inhibit inflammatory pain and enhance the analgesic effects of morphine by inhibiting oxidative stress and inflammatory responses induced by peripheral inflammation. This study suggests the administration of SFN alone and in combination with morphine are potential new ways of treating chronic inflammatory pain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Kang, Hyunju; Kim, Hyeyoung
2017-06-01
Helicobacter pylori is a dominant bacterium living in the human gastric tissues. In H. pylori -infected tissues, the infiltrated inflammatory cells produce reactive oxygen species (ROS), leading to gastric inflammation with production of various mediators. According to numerous epidemiological studies, dietary carotenoids may prevent gastric inflammation due to their antioxidant properties. Recent studies showed that antioxidant and anti-inflammatory effects of astaxanthin and β-carotene may contribute to inhibition of H. pylori -induced gastric inflammation. Astaxanthin changes H. pylori -induced activation of T helper cell type 1 response towards T helper cell type 2 response in the infected tissues. Astaxanthin inhibits the growth of H. pylori . Even though astaxanthin reduces H. pylori -induced gastric inflammation, it does not reduce cytokine levels in the infected tissues. β-Carotene suppresses ROS-mediated inflammatory signaling, including mitogen-activated protein kinases and redox-sensitive transcription factors, and reduces expression of inflammatory mediators, including interleukin-8, inducible nitric oxide synthase, and cyclooxygenase-2 in the infected tissues. Therefore, consumption of astaxanthin- and β-carotene-rich foods may be beneficial to prevent H. pylori -induced gastric inflammation. This review will summarize anti-inflammatory mechanisms of astaxanthin and β-carotene in H. pylori -mediated gastric inflammation.
Lee, Byung-Cheol; Lee, Jongsoon
2013-01-01
There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515
Zhang, Bo; Yan, Lingdi; Zhou, Peilan; Dong, Zhaoqi; Feng, Siliang; Liu, Keliang; Gong, Zehui
2013-02-01
Andrographolides, a type of diterpene lactone, are widely known to have anti-inflammatory and anti-oxidative properties. CHP1002, a synthetic derivative of andrographolide, has similar anti-inflammatory action in mouse ear swelling test and rat paw edema test. In the present study, the mechanism of anti-inflammatory effects of CHP1002 was investigated in RAW264.7 macrophages. CHP1002 potently suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CHP1002 reduced the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 (PGE2). CHP1002 induced heme oxygenase-1 (HO-1) expression via activation of extracellular signal-regulated kinase (ERK) and NF-E2 related factor 2 transcription factor (Nrf2). Down-regulation of LPS-induced iNOS and COX-2 expressions was partially reversed by the HO-1 inhibitor zinc protoporphyrin (ZnPP). In addition, CHP1002 significantly attenuated LPS-induced TNF-α, IL-1β and IL-6 production. CHP1002 effectively induced HO-1 and was capable of inhibiting some macrophage-derived pro-inflammatory mediators, which may be closely correlated with its anti-inflammatory action. Copyright © 2012 Elsevier B.V. All rights reserved.
Hoo, Ruby L. C.; Shu, Lingling; Cheng, Kenneth K. Y.; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin
2017-01-01
Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases. PMID:28094778
Cha, Ji Young; Jung, Ji Yun; Jung, Jae Yup; Lee, Jong Rok; Cho, Il Je; Ku, Sae Kwang; Byun, Sung Hui; Ahn, Yong-Tae; Lee, Chul Won; Kim, Sang Chan; An, Won G.
2013-01-01
Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)) and nuclear factor-kappa B (NF-κB) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF-κB, and MAPKs as well as production of prostaglandin E2 (PGE2), nitric oxide (NO), IL-6, and TNF-α induced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF-α. Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWS in vitro and in vivo. PMID:23533508
Suppression of LPS-induced inflammatory responses by the hydroxyl groups of dexamethasone
Chuang, Ting-Yun; Cheng, An-Jie; Chen, I-Ting; Lan, Tien-Yun; Huang, I-Hsuan; Shiau, Chung-Wai; Hsu, Chia-Lin; Liu, Ya-Wen; Chang, Zee-Fen; Tseng, Ping-Hui; Kuo, Jean-Cheng
2017-01-01
The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown. Furthermore, importantly, the role of Dex in the innate immune response remains unclear. Here we explore the mechanism of LPS-induced TNF-α secretion and reveal p38 MAPK signaling as a target of Dex that is involved in control of tumor necrosis factor-α (TNF-α)-converting enzyme (TACE) activity; that later mediates the shedding of TNF-α that allows its secretion. We further demonstrate that the 11-hydroxyl and 21-hydroxyl groups of Dex are the main groups that are involved in reducing LPS-induced TNF-α secretion by activated macrophages. Blockage of the hydroxyl groups of Dex inhibits immunosuppressant effect of Dex during LPS-induced TNF-α secretion and mouse mortality. Our findings demonstrate Dex signaling is involved in the control of innate immunity. PMID:28537905
Frank, Matthew G; Watkins, Linda R; Maier, Steven F
2011-06-01
Stress and stress-induced glucocorticoids (GCs) sensitize drug abuse behavior as well as the neuroinflammatory response to a subsequent pro-inflammatory challenge. Stress also predisposes or sensitizes individuals to develop substance abuse. There is an emerging evidence that glia and glia-derived neuroinflammatory mediators play key roles in the development of drug abuse. Drugs of abuse such as opioids, psychostimulants, and alcohol induce neuroinflammatory mediators such as pro-inflammatory cytokines (e.g. interleukin (IL)-1β), which modulate drug reward, dependence, and tolerance as well as analgesic properties. Drugs of abuse may directly activate microglial and astroglial cells via ligation of Toll-like receptors (TLRs), which mediate the innate immune response to pathogens as well as xenobiotic agents (e.g. drugs of abuse). The present review focuses on understanding the immunologic mechanism(s) whereby stress primes or sensitizes the neuroinflammatory response to drugs of abuse and explores whether stress- and GC-induced sensitization of neuroimmune processes predisposes individuals to drug abuse liability and the role of neuroinflammatory mediators in the development of drug addiction. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak
Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effectmore » of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince-rich regimen may help to prevent and improve the treatment of such diseases.« less
Glaser, Kirsten; Fehrholz, Markus; Henrich, Birgit; Claus, Heike; Papsdorf, Michael; Speer, Christian P
2017-02-01
Synthetic surfactants represent a promising alternative to animal-derived preparations in the treatment of neonatal respiratory distress syndrome. The synthetic surfactant CHF5633 has proven biophysical effectiveness and, moreover, demonstrated anti-inflammatory effects in LPS-stimulated monocytes. With ureaplasmas being relevant pathogens in preterm lung inflammation, the present study addressed immunomodulatory features on Ureaplasma-induced monocyte cytokine responses. Ureaplasma parvum-stimulated monocytes were exposed to CHF5633. TNF-α, IL-1β, IL-8, IL-10, TLR2 and TLR4 expression were analyzed using qPCR and flow cytometry. CHF5633 did not induce pro-inflammation, and did not aggravate Ureaplasma-induced pro-inflammatory cytokine responses. It suppressed U. parvum-induced intracellular TNF-α (p < 0.05) and IL-1β (p < 0.05) in neonatal monocytes and inhibited Ureaplasma-induced TNF-α mRNA (p < 0.05), TNF-α protein (p < 0.001), and IL-1β (p = 0.05) in adult monocytes. Ureaplasma-modulated IL-8, IL-10, TLR2 and TLR4 were unaffected. CHF5633 does neither act pro-apoptotic nor pro-inflammatory in native and Ureaplasma-infected monocytes. Suppression of Ureaplasma-induced TNF-α and IL-1β underlines anti-inflammatory features of CHF5633.
Liu, Shumei; Man, Yigang; Zhao, Li
2018-05-01
Recent studies have demonstrated that Sinomenine (SIN) exerted anti-inflammatory effect in various immune-related diseases. However, the effect of SIN on glucocorticoids dermatitis has not been investigated. In our study, we aimed to explore the effect of SIN on lipopolysaccharide (LPS)-induced inflammatory injury in HaCaT cells. We constructed an inflammatory injury model of LPS-induced HaCaT cells, then SIN was added to LPS-treated cells, cell viability, apoptosis, apoptosis-associated factors and inflammatory cytokines were detected by CCK-8, flow cytometry, western blot, qRT-PCR and ELISA. Subsequently, miR-101 mimic and mimic control were transfected into HaCaT cells to investigate the effect of SIN and miR-101 on LPS-induced cells injury. Furthermore, MKP-1 and JNK signal pathways were measured by qRT-PCR and western blot. Finally, the animal experiment was performed to further clarify the effect of SIN on inflammatoty injury. LPS suppressed cell viability, promoted apoptosis and increased IL-6, IL-8 and TNF-α expressions and secretions in HaCaT cells. SIN significantly alleviated LPS-induced HaCaT cells injury. Additionally, SIN down-regulated miR-101 expression, and the protective effect of SIN on LPS-induced inflammatory injury was abolished by miR-101 overexpression. Besides, SIN promoted MKP-1 expression by down-regulation of miR-101, and SIN inhibited JNK signal pathway by up-regulation of MKP-1 expression in LPS-treated HaCaT cells. Animal experiments revealed that SIN exhibited anti-inflammatory effects in vivo. The data indicated that SIN attenuated LPS-induced inflammatory injury by regulation of miR-101, MKP-1 and JNK pathway. These findings might provide a novel method for treatment of glucocorticoids dermatitis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun
2015-07-01
Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.
Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun
2015-07-16
Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.
Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure.
Woolbright, Benjamin L; Jaeschke, Hartmut
2017-04-01
Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A
2016-06-01
We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.
Igarashi, Yoko; Ohnishi, Kohta; Irie, Kazuhiro; Murakami, Akira
2016-01-01
Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.
Amara, Suneetha; Ivy, Michael T; Myles, Elbert L; Tiriveedhi, Venkataswarup
2015-01-01
Chronic inflammation is known to play a critical role in the development of cancer. Recent evidence suggests that high salt in the tissue microenvironment induces chronic inflammatory milieu. In this report, using three breast cancer-related cell lines, we determined the molecular basis of the potential synergistic inflammatory effect of sodium chloride (NaCl) with interleukin-17 (IL-17). Combined treatment of high NaCl (0.15 M) with sub-effective IL-17 (0.1 nM) induced enhanced growth in breast cancer cells along with activation of reactive nitrogen and oxygen (RNS/ROS) species known to promote cancer. Similar effect was not observed with equi-molar mannitol. This enhanced of ROS/RNS activity correlates with upregulation of γENaC an inflammatiory sodium channel. The similar culture conditions have also induced expression of pro-inflammatory cytokines such as IL-6, TNFα etc. Taken together, these data suggest that high NaCl in the cellular microenvironment induces a γENaC mediated chronic inflammatory response with a potential pro-carcinogenic effect. PMID:26723502
6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ.
Han, Qinghe; Yuan, Qinghai; Meng, Xiaolin; Huo, Junyuan; Bao, Yuxin; Xie, Guanghong
2017-06-27
6-Shogaol, a pungent agent isolated from Zingiber officinale Roscoe, has been known to have anti-tumor and anti-inflammatory effects. However, the anti-inflammatory effects and biological mechanism of 6-Shogaol in LPS-activated BV2 microglia remains largely unknown. In this study, we evaluated the anti-inflammatory effects of 6-Shogaol in LPS-activated BV2 microglia. 6-Shogaol was administrated 1 h before LPS treatment. The production of inflammatory mediators were detected by ELISA. The expression of NF-κB and PPAR-γ were detected by western blot analysis. Our results revealed that 6-Shogaol inhibited LPS-induced TNF-α, IL-1β, IL-6, and PGE2 production in a concentration dependent manner. Furthermore, 6-Shogaol inhibited LPS-induced NF-κB activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. In addition, 6-Shogaol could increase the expression of PPAR-γ. Moreover, inhibition of PPAR-γ by GW9662 could prevent the inhibition of 6-Shogaol on LPS-induced inflammatory mediator production. In conclusion, 6-Shogaol inhibits LPS-induced inflammation by activating PPAR-γ.
Effects of fluoxetine on changes of pain sensitivity in chronic stress model rats.
Lian, Yan-Na; Chang, Jin-Long; Lu, Qi; Wang, Yi; Zhang, Ying; Zhang, Feng-Min
2017-06-09
Exposure to stress could facilitate or inhibit pain responses (stress-induced hyperalgesia or hypoalgesia, respectively). Fluoxetine is a selective serotonin (5-HT) reuptake inhibitor antidepressant. There have been contradictory reports on whether fluoxetine produces antinociceptive effects. The purpose of this study was to elucidate changes in pain sensitivity after chronic stress exposure, and the effects of fluoxetine on these changes. We measured thermal, mechanical, and formalin-induced acute and inflammatory pain by using the tail-flick, von Frey, and formalin tests respectively. The results showed that rats exposed to chronic stress exhibited thermal and formalin-induced acute and inflammatory hypoalgesia and transient mechanical hyperalgesia. Furthermore, fluoxetine promoted hypoalgesia in thermal and inflammatory pain and induced mechanical hyperalgesia. Our results indicate that the 5-HT system could be involved in hypoalgesia of thermal and inflammatory pain and induce transient mechanical hyperalgesia after stress exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
Choi, Eun-Mi; Hwang, Jae-Kwan
2003-11-01
The anti-inflammatory activities of Piper cubeba (fruit), Physalis angulata (flower) and Rosa hybrida (flower) were determined by carrageenan-induced paw edema, arachidonic acid-induced ear edema and formaldehyde-induced arthritis in mice. The anti-allergic and analgesic activities of these plants were also studied by using 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity reaction (type IV) and hot plate test in mice, respectively. These plant extracts clearly exhibited inhibitory effects against acute and subacute inflammation by oral administration (200 mg/kg). Also, administration (200 mg/kg, p.o.) of plant extracts for 1 week significantly inhibited type IV allergic reaction in mice (P<0.05). Rosa hybrida showed an analgesic effect against hot plate-induced thermal stimulation at a dose of 200 mg/kg. These results provide support for the use of Rosa hybrida in relieving inflammatory pain, and insight into the development of new agents for treating inflammatory diseases.
Luchtefeld, Maren; Heuer, Wieland; Schuett, Harald; Divchev, Dimitar; Scherer, Ralph; Schmitz-Streit, Ruth; Langfeldt, Daniela; Stumpp, Nico; Staufenbiel, Ingmar
2013-01-01
Objectives We here investigated whether experimental gingivitis enhances systemic markers of inflammation which are also known as surrogate markers of atherosclerotic plaque development. Background Gingivitis is a low-level oral infection induced by bacterial deposits with a high prevalence within Western populations. A potential link between the more severe oral disease periodontitis and cardiovascular disease has already been shown. Methods 37 non-smoking young volunteers with no inflammatory disease or any cardiovascular risk factors participated in this single-subject interventional study with an intra-individual control. Intentionally experimental oral inflammation was induced by the interruption of oral hygiene for 21 days, followed by a 21-days resolving phase after reinitiation of oral hygiene. Primary outcome measures at baseline, day 21 and 42 were concentrations of hsCRP, IL-6, and MCP-1, as well as adhesion capacity and oxLDL uptake of isolated blood monocytes. Results The partial cessation of oral hygiene procedures was followed by the significant increase of gingival bleeding (34.0%, P<0.0001). This local inflammation was associated with a systemic increase in hsCRP (0.24 mg/L, P = 0.038), IL-6 (12.52 ng/L, P = 0.0002) and MCP-1 (9.10 ng/l, P = 0.124) in peripheral blood samples between baseline and day 21, which decreased at day 42. Monocytes showed an enhanced adherence to endothelial cells and increased foam cell formation after oxLDL uptake (P<0.050) at day 21 of gingivitis. Conclusions Bacterial-induced gingival low-level inflammation induced a systemic increase in inflammatory markers. Dental hygiene almost completely reversed this experimental inflammatory process, suggesting that appropriate dental prophylaxis may also limit systemic markers of inflammation in subjects with natural gingivitis. International Clinical Trials Register Platform of the World Health Organization, registry number: DRKS00003366, URL: http://apps.who.int/trialsearch/Default.aspx PMID:23408963
Scorza, Carla A; Marques, Marcia J G; Gomes da Silva, Sérgio; Naffah-Mazzacoratti, Maria da Graça; Scorza, Fulvio A; Cavalheiro, Esper A
2018-03-06
Mesial temporal lobe epilepsy is a serious brain disorder in adults that is often preceded by an initial brain insult, such as status epilepticus (SE), that after a latent period leads to recurrent seizures. Post-SE models are widely used for studies on epileptogenic processes. Previous findings of our laboratory suggested that the Neotropical rodents Proechimys exhibit endogenous antiepileptogenic mechanisms in post-SE models. Strong body of research supports that SE triggers a rapid and dramatic upregulation of inflammatory mediators and vascular endothelial growth factor (VEGF). In this work we found that, in the epilepsy-resistant Proechimys, hippocampal and cortical levels of inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α) and VEGF remained unchanged 24h after SE, strongly contrasting to the high levels of post-SE changes observed in Wistar rats. Furthermore, substantial differences in the brain baseline levels of these proteins were encountered between animal species studied. Since inflammatory cytokines and VEGF have been recognized as major orchestrators of the epileptogenic process, our results suggest their role in the antiepileptogenic mechanisms previously described in Proechimys. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Weidong; Liu, Chang; Zhang, Yaqi; Qiu, Xia; Zhang, Li; Zhao, Hongxia; Rong, Yi; Sun, Yun
2017-02-15
Ilexgenin A (IA) is a novel pentacyclic triterpenoid, which extracted from leaves of Ilex hainanensis Merr. In the present study, we aim to explore anti-inflammatory activity of IA on LPS-induced peritonitis and its underlying molecular mechanism. The results determined that IA was capable of suppressing peritonitis in mice induced by intraperitoneal (i.p.) injection of lipopolysaccaride (LPS). Furthermore, the results showed that IA dramatically inhibited levels of inflammatory cells infiltration in peritoneal cavity and serum in LPS-induced mice peritonitis model. Besides, IA could dramatically inhibit levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in peritoneal cavity in LPS-induced mice peritonitis model. In vitro study, the results showed that IA inhibited production of IL-1β, IL-6 and TNF-α at transcriptional and translational levels in RAW 264.7 cells induced by LPS. Furthermore, IA could suppress the LPS-induced activation of Akt and downstream degradation and phosphorylation of kappa B-α (IκB-α). Moreover, IA could significantly inhibit ERK 1/2 phosphorylation in RAW 264.7 cells induced by LPS. These results were concurrent with molecular docking which revealed ERK1/2 inhibition. These results demonstrated that IA might as an anti-inflammatory agent candidate for inflammatory disease therapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei
2015-01-01
Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005
Li, Chu-Wen; Zhang, Xiao-Jun
2013-01-01
The aim of this study was to analyze the chemical composition and investigate the anti-inflammatory property of the supercritical-carbon dioxide extract from flowers and buds of C. indicum (CISCFE). The anti-inflammatory effect was evaluated in four animal models including xylene-induced mouse ear edema, acetic acid-induced mouse vascular permeability, carrageenan-induced mouse hind paw edema, and cotton pellet-induced rat granuloma formation. The results indicated that CISCFE significantly attenuated xylene-induced ear edema, decreased acetic acid-induced capillary permeability, reduced carrageenan-induced paw, and inhibited the cotton pellet-induced granuloma formation in a dose-dependent manner. Histopathologically, CISCFE abated inflammatory response of the edema paw. Preliminary mechanistic studies demonstrated that CISCFE decreased the MDA level via increasing the activities of anti-oxidant enzymes (SOD, GPx, and GRd), attenuated the productions of NF-κB, TNF-α, IL-1β, IL-6, PGE2 and NO, and suppressed the activities of iNOS and COX-2. In phytochemical study, 35 compounds were identified by GC-MS, and 5 compounds (chlorogenic acid, luteolin-7-glucoside, linarin, luteolin and acacetin) were reconfirmed and quantitatively determined by HPLC-PAD. This paper firstly analyzed the chemical composition by combining GC-MS with HPLC-PAD and explored possible mechanisms for the anti-inflammatory effect of CISCFE. PMID:24223056
Kumar, Tekeshwar; Jain, Vishal
2014-01-01
Antinociceptive and anti-inflammatory potentials of methanolic extract of Bridelia retusa fruit (BRME) were evaluated against different animal models in rodents. Antinociceptive effects of BRME were assessed in mice using the acetic acid-induced writhing and formalin test. Anti-inflammatory effects of BRME in three different doses, namely, 100, 200, and 400 mg/kg, were evaluated by utilizing different animal models representing various changes associated with inflammation, namely, carrageenan-induced paw oedema, histamine and serotonin-induced paw oedema, arachidonic acid-induced paw oedema, formalin-induced paw oedema, TPA-induced ear oedema, acetic acid-induced vascular permeability, total WBC count in paw fluid, and myeloperoxidase assay. Also BRME was phytochemically evaluated using chromatographic method. The BRME did not exhibit any signs of toxicity up to a dose of 2000 mg/kg. The extract showed statistical significant inhibition of induced nociception and inflammation in dose dependent manner. The higher dose of extract significantly inhibited pain and inflammation against control (P < 0.001). HPLC results revealed the presence of gallic acid and ellagic acid as phytoconstituents in BRME and it was proven as anti-inflammatory agents. The present study scientifically demonstrated the antinociceptive and anti-inflammatory potential of fruit of B. retusa methanolic extract. These effects may be attributed to the presence of polyphenolic phytoconstituents in the extract. PMID:25506619
Fain, O; Mekinian, A
2017-09-01
Pachymeningitis is a fibrosing and inflammatory process, which involves the dura mater. Some pachymeningitis are cranial and induce headaches and cranial nerve palsies. Others are spinal and responsible for nerve roots or spinal cord compression. MRI shows contrast enhancement thickening of the dura mater. Etiologies are infectious (syphilis, tuberculosis, etc.) or inflammatory (sarcoidosis, granulomatosis with polyangiitis, IgG4-related disease, idiopathic). Corticosteroids are the main treatment. The use of immunosuppressive drugs or rituximab is yet to be determined and probably adapted to each etiology. Copyright © 2017 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.
Malpuech-Brugère, C; Rock, E; Astier, C; Nowacki, W; Mazur, A; Rayssiguier, Y
1998-01-01
The aim of this study was to assess the potential mechanism underlying the enhanced inflammatory processes during magnesium deficit. In this study, exacerbated response to live bacteria and platelet activating factors was shown in rats fed a magnesium-deficient diet. Peritoneal cells from these animals also showed enhanced superoxide anion production and calcium mobilising potency following in vitro stimulation. The latter effect occurred very early in the course of magnesium deficiency. These studies first showed that an abnormal calcium handling induced by extracellular magnesium depression in vivo may be at the origin of exacerbated inflammatory response.
NASA Astrophysics Data System (ADS)
Zamroni, Ahmad; Widjanarko, Simon B.; Rifa'i, Muhaimin; Zubaidah, Elok
2017-05-01
Diabetes is one of the fastest growing diseases in the world: its prevalence is estimated to reach 642 million people, or one-tenth of adults will have diabetes by 2040. Traditional herbal exploration and investigation are needed in order to discover medicines that have potential anti-diabetic activity, with no or lower side effects than the medicines clinically used today. In this research, we investigated the anti-hyperglycemic activity of an aqueous decoction of Sesbania grandiflora seeds in streptozotocin-induced diabetic mice, and analyzed the immune responses that occurred during the counter balance process to reach blood glucose homeostasis. Our results revealed that administration of the aqueous decoction (2.5 g/kg BW) could lower the blood glucose levels of diabetic mice from an initial blood glucose level of 435 mg/dl to 213 mg/dl within 18 days of treatment. Analysis of inflammatory markers showed that there was no significant difference in the relative amounts of CD4+CD62L-, CD8+CD62L-, TNF-α or IFN-γ between the experimental groups, which revealed that there were no pro-inflammatory responses involved either in hyperglycemia or in the blood glucose lowering process. On the other hand, an increased amount of interleukin-10 in diabetic mice treated with an S. grandiflora seed decoction indicated a role for IL-10 in maintaining blood glucose homeostasis.
Gan, Xueqi; Zhang, Ling; Liu, Beilei; Zhu, Zhuoli; He, Yuting; Chen, Junsheng; Zhu, Junfei; Yu, Haiyang
2018-04-20
Bone is a dynamic organ, the bone-forming osteoblasts and bone-resorbing osteoclasts form the physiological basis of bone remodeling process. During pathological process of numerous inflammatory diseases, these two aspects are uncoupled and the balance is usually tipped in favor of bone destruction. Evidence suggests that the inflammatory destruction of bone is mainly attributed to oxidative stress and is closely related to mitochondrial dysfunction. The mechanisms underlying osteogenic dysfunction in inflammation still need further investigation. Reactive oxygen species (ROS) is associated with mitochondrial dysfunction and cellular damage. Here, we reported an unexplored role of cyclophilin D (CypD), the major modulator of mitochondrial permeability transition pore (mPTP), and the CypD-mPTP axis in inflammation-induced mitochondrial dysfunction and bone damage. And the protective effects of knocking down CypD by siRNA interference or the addition of cyclosporin A (CsA), an inhibitor of CypD, were evidenced by rescued mitochondrial function and osteogenic function of osteoblast under tumor necrosis factor-α (TNF-α) treatment. These findings provide new insights into the role of CypD-mPTP-dependent mitochondrial pathway in the inflammatory bone injury. The protective effect of CsA or other moleculars affecting the mPTP formation may hold promise as a potential novel therapeutic strategy for inflammation-induced bone damage via mitochondrial pathways.
Weinreuter, Martin; Kreusser, Michael M; Beckendorf, Jan; Schreiter, Friederike C; Leuschner, Florian; Lehmann, Lorenz H; Hofmann, Kai P; Rostosky, Julia S; Diemert, Nathalie; Xu, Chang; Volz, Hans Christian; Jungmann, Andreas; Nickel, Alexander; Sticht, Carsten; Gretz, Norbert; Maack, Christoph; Schneider, Michael D; Gröne, Hermann-Josef; Müller, Oliver J; Katus, Hugo A; Backs, Johannes
2014-01-01
CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes. PMID:25193973
Pietrofesa, Ralph A; Chatterjee, Shampa; Park, Kyewon; Arguiri, Evguenia; Albelda, Steven M; Christofidou-Solomidou, Melpo
2018-03-02
Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2 - / - ) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm²) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2 -/- macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation.
Pietrofesa, Ralph A.; Chatterjee, Shampa; Park, Kyewon; Arguiri, Evguenia; Albelda, Steven M.; Christofidou-Solomidou, Melpo
2018-01-01
Asbestos exposure triggers inflammatory processes associated with oxidative stress and tissue damage linked to malignancy. LGM2605 is the synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant, and anti-inflammatory properties in diverse inflammatory cell and mouse models, including exposure to asbestos fibers. Nuclear factor-E2 related factor 2 (Nrf2) activation and boosting of endogenous tissue defenses were associated with the protective action of LGM2605 from asbestos-induced cellular damage. To elucidate the role of Nrf2 induction by LGM2605 in protection from asbestos-induced cellular damage, we evaluated LGM2605 in asbestos-exposed macrophages from wild-type (WT) and Nrf2 disrupted (Nrf2−/−) mice. Cells were pretreated with LGM2605 (50 µM and 100 µM) and exposed to asbestos fibers (20 µg/cm2) and evaluated 8 h and 24 h later for inflammasome activation, secreted cytokine levels (interleukin-1β (IL-1β), interleukin-18 (IL-18), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNFα)), cytotoxicity and cell death, nitrosative stress, and Nrf2-regulated enzyme levels. Asbestos exposure induced robust oxidative and nitrosative stress, cell death and cytotoxicity, which were equally mitigated by LGM2605. Inflammasome activation was significantly attenuated in Nrf2−/− macrophages compared to WT, and the protective action of LGM2605 was seen only in WT cells. In conclusion, in a cell model of asbestos-induced toxicity, LGM2605 acts via protective mechanisms that may not involve Nrf2 activation. PMID:29498660
Vitetta, Luis; Coulson, Samantha; Linnane, Anthony W.; Butt, Henry
2013-01-01
Natural medicines are an attractive option for patients diagnosed with common and debilitating musculoskeletal diseases such as Osteoarthritis (OA) or Rheumatoid Arthritis (RA). The high rate of self-medication with natural products is due to (1) lack of an available cure and (2) serious adverse events associated with chronic use of pharmaceutical medications in particular non-steroidal anti-inflammatory drugs (NSAIDs) and high dose paracetamol. Pharmaceuticals to treat pain may disrupt gastrointestinal (GIT) barrier integrity inducing GIT inflammation and a state of and hyper-permeability. Probiotics and prebiotics may comprise plausible therapeutic options that can restore GIT barrier functionality and down regulate pro-inflammatory mediators by modulating the activity of, for example, Clostridia species known to induce pro-inflammatory mediators. The effect may comprise the rescue of gut barrier physiological function. A postulated requirement has been the abrogation of free radical formation by numerous natural antioxidant molecules in order to improve musculoskeletal health outcomes, this notion in our view, is in error. The production of reactive oxygen species (ROS) in different anatomical environments including the GIT by the epithelial lining and the commensal microbe cohort is a regulated process, leading to the formation of hydrogen peroxide which is now well recognized as an essential second messenger required for normal cellular homeostasis and physiological function. The GIT commensal profile that tolerates the host does so by regulating pro-inflammatory and anti-inflammatory GIT mucosal actions through the activity of ROS signaling thereby controlling the activity of pathogenic bacterial species. PMID:25437335
Chen, Shih-Chung; Chang, Ying-Ling; Wang, Danny Ling; Cheng, Jing-Jy
2006-01-01
Magnolol (Mag), an active constituent isolated from the Chinese herb Hou p'u (Magnolia officinalis) has long been used to suppress inflammatory processes. Chronic inflammation is well known to be involved in vascular injuries such as atherosclerosis in which interleukin (IL)-6 may participate. Signal transducer and activator of transcription protein 3 (STAT3), a transcription factor involved in inflammation and the cell cycle, is activated by IL-6. In this study, we evaluated whether Mag can serve as an anti-inflammatory agent during endothelial injuries. The effects of Mag on IL-6-induced STAT3 activation and downstream target gene induction in endothelial cells (ECs) were examined. Pretreatment of ECs with Mag dose dependently inhibited IL-6-induced Tyr705 and Ser727 phosphorylation in STAT3 without affecting the phosphorylation of JAK1, JAK2, and ERK1/2. Mag pretreatment of these ECs dose dependently suppressed IL-6-induced promoter activity of intracellular cell adhesion molecule (ICAM)-1 that contains functional IL-6 response elements (IREs). An electrophoretic mobility shift assay (EMSA) revealed that Mag treatment significantly reduced STAT3 binding to the IRE region. Consistently, Mag treatment markedly inhibited ICAM-1 expression on the endothelial surface. As a result, reduced monocyte adhesion to IL-6-activated ECs was observed. Furthermore, Mag suppressed IL-6-induced promoter activity of cyclin D1 and monocyte chemotactic protein (MCP)-1 for which STAT3 activation plays a role. In conclusion, our results indicate that Mag inhibits IL-6-induced STAT3 activation and subsequently results in the suppression of downstream target gene expression in ECs. These results provide a therapeutic basis for the development of Mag as an anti-inflammatory agent for vascular disorders including atherosclerosis. PMID:16520748
Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation
Ribeiro, Carla M. P.; Lubamba, Bob A.
2017-01-01
Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361
Inflammatory pathways in children with insufficient or disordered sleep.
Kim, Jinkwan; Hakim, Fahed; Kheirandish-Gozal, Leila; Gozal, David
2011-09-30
Sleep is not only an essential physiological function, but also serves important roles in promoting growth, maturation, and overall health of children and adolescents. There is increasing interest regarding the impact of sleep and its disorders on the regulation of inflammatory processes and end-organ morbidities, particularly in the context of metabolic and cardiovascular diseases (CVD) and their complications. Obstructive sleep apnea syndrome (OSAS) is an increasingly common health problem in children, and in the last decade, the emergence of increasing obesity rates has further led to remarkable increases in the prevalence of OSAS, along with more prominent neurocognitive, behavioral, cardiovascular and metabolic morbidities. Although the underlying mechanisms leading to OSAS-induced morbidities are likely multi-factorial, and remain to be fully elucidated, activation of inflammatory pathways by OSAS has emerged as an important pathophysiological component of the end-organ injury associated with this disorder. To this effect, it would appear that OSAS could be viewed as a chronic, low-grade inflammatory disorder. Furthermore, the concurrent presence of obesity and OSAS poses a theoretically increased risk of OSAS-related complications. In this review, we will critically review the current state of research regarding the impact of insufficient and disrupted sleep and OSAS on the immune processes and inflammatory pathways that underlie childhood OSAS as a distinctive systemic inflammatory condition in children, and will explore potential interactions between OSAS and obesity. Copyright © 2011 Elsevier B.V. All rights reserved.
Vazquez, Bruna Perez; Vazquez, Thaís Perez; Miguel, Camila Botelho; Rodrigues, Wellington Francisco; Mendes, Maria Tays; de Oliveira, Carlo José Freire; Chica, Javier Emílio Lazo
2015-04-03
Chagas disease is caused by the protozoan Trypanosoma cruzi and is characterized by cardiac, gastrointestinal, and nervous system disorders. Although much about the pathophysiological process of Chagas disease is already known, the influence of the parasite burden on the inflammatory process and disease progression remains uncertain. We used an acute experimental disease model to evaluate the effect of T. cruzi on intestinal lesions and assessed correlations between parasite load and inflammation and intestinal injury at 7 and 14 days post-infection. Low (3 × 10(2)), medium (3 × 10(3)), and high (3 × 10(4)) parasite loads were generated by infecting C57BL/6 mice with "Y"-strain trypomastigotes. Statistical analysis was performed using analysis of variance with Tukey's multiple comparison post-test, Kruskal-Wallis test with Dunn's multiple comparison, χ2 test and Spearman correlation. High parasite load-bearing mice more rapidly and strongly developed parasitemia. Increased colon width, inflammatory infiltration, myositis, periganglionitis, ganglionitis, pro-inflammatory cytokines (e.g., TNF-α, INF-γ, IL-2, IL-17, IL-6), and intestinal amastigote nests were more pronounced in high parasite load-bearing animals. These results were remarkable because a positive correlation was observed between parasite load, inflammatory infiltrate, amastigote nests, and investigated cytokines. These experimental data support the idea that the parasite load considerably influences the T. cruzi-induced intestinal inflammatory response and contributes to the development of the digestive form of the disease.
Kim, Jaeyong; Kim, Heesook; Choi, Hakjoon; Jo, Ara; Kang, Huwon; Yun, Hyojeong; Im, Sojeong; Choi, Chulyung
2018-01-01
The fruit of Stauntonia hexaphylla is commonly used as a traditional anthelmintic in Korea, Japan, and China. However, its anti-inflammatory activity and the underlying mechanisms have not been studied systematically. In the present study, we examined the anti-inflammatory activities of an aqueous extract of S. hexaphylla fruit (SHF) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The SHF extract contained anti-inflammatory compounds, such as neochlorogenic acid, chlorogenic acid, and cryptochlorogenic acid. The extract inhibited protein levels of inducible nitric oxide synthase and the activity of cyclooxygenase enzyme, with concomitant reductions in the production of nitric oxide and prostaglandin E2 in LPS-activated RAW 264.7 cells. Additionally, the SHF extract reduced the production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The SHF extract attenuated LPS-induced nuclear factor-κB (NF-κB) activation by decreasing the phosphorylation of its inhibitor, IκBα. Furthermore, the SHF extract showed a significant anti-inflammatory effect in vivo by reducing the volume of carrageenan-induced paw edema in rats. Our results suggest that the SHF extract exerts potential anti-inflammatory properties against LPS-activated RAW 254.7 cells, and in an animal model of inflammation. PMID:29361789
Kim, Jaeyong; Kim, Heesook; Choi, Hakjoon; Jo, Ara; Kang, Huwon; Yun, Hyojeong; Im, Sojeong; Choi, Chulyung
2018-01-22
The fruit of Stauntonia hexaphylla is commonly used as a traditional anthelmintic in Korea, Japan, and China. However, its anti-inflammatory activity and the underlying mechanisms have not been studied systematically. In the present study, we examined the anti-inflammatory activities of an aqueous extract of S. hexaphylla fruit (SHF) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The SHF extract contained anti-inflammatory compounds, such as neochlorogenic acid, chlorogenic acid, and cryptochlorogenic acid. The extract inhibited protein levels of inducible nitric oxide synthase and the activity of cyclooxygenase enzyme, with concomitant reductions in the production of nitric oxide and prostaglandin E₂ in LPS-activated RAW 264.7 cells. Additionally, the SHF extract reduced the production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The SHF extract attenuated LPS-induced nuclear factor-κB (NF-κB) activation by decreasing the phosphorylation of its inhibitor, IκBα. Furthermore, the SHF extract showed a significant anti-inflammatory effect in vivo by reducing the volume of carrageenan-induced paw edema in rats. Our results suggest that the SHF extract exerts potential anti-inflammatory properties against LPS-activated RAW 254.7 cells, and in an animal model of inflammation.
Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar
2017-01-01
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Bueno, Carlos Roberto Emerenciano; Valentim, Diego; Marques, Vanessa Abreu Sanches; Gomes-Filho, João Eduardo; Cintra, Luciano Tavares Angelo; Jacinto, Rogério Castilho; Dezan-Junior, Eloi
2016-06-14
Obturation of the root canal system aims to fill empty spaces, promoting hermetic sealing and preventing bacterial activity in periapical tissues. This should provide optimal conditions for repair, stimulating the process of biomineralization. An endodontic sealer should be biocompatible once it is in direct contact with periapical tissues. The aim of this study was to evaluate the rat subcutaneous tissue response to implanted polyethylene tubes filled with Smartpaste Bio, Acroseal, and Sealapex and investigate mineralization ability of these endodontic sealers. Forty Wistar rats were assigned to the three sealers groups and control group, (n = 10 animals/group) and received subcutaneous implants containing the test sealers, and the control group were implanted with empty tubes. After days 7, 15, 30, and 60, animals were euthanized and polyethylene tubes were removed with the surrounding tissues. Inflammatory infiltrate and thickness of the fibrous capsule were histologically evaluated. Mineralization was analyzed by Von Kossa staining and polarized light. Data were tabulated and analyzed via Kruskal-Wallis and Dunn's test. All tested materials induced a moderate inflammatory reaction in the initial periods. Smartpaste Bio induced the mildest inflammatory reactions after day 15. No difference was observed among groups after days 30 or 60. Von Kossa-positive staining and birefringent structures observed under polarized light revealed a larger mineralization area in Sealapex-treated animals followed by Smartpaste Bio-treated animals. At the end of the experiment, all tested sealers were found to be biocompatible. All sealers induced biomineralization, except Acroseal, which induced a mild tissue reaction.
The protective effect of CDDO-Me on lipopolysaccharide-induced acute lung injury in mice.
Chen, Tong; Mou, Yi; Tan, Jiani; Wei, Linlin; Qiao, Yixue; Wei, Tingting; Xiang, Pengjun; Peng, Sixun; Zhang, Yihua; Huang, Zhangjian; Ji, Hui
2015-03-01
CDDO-Me, initiated in a phase II clinical trial, is a potential useful therapeutic agent for cancer and inflammatory dysfunctions, whereas the therapeutic efficacy of CDDO-Me on LPS-induced acute lung injury (ALI) has not been reported as yet. The purpose of the present study was to explore the protective effect of CDDO-Me on LPS-induced ALI in mice and to investigate its possible mechanism. BalB/c mice received CDDO-Me (0.5mg/kg, 2mg/kg) or dexamethasone (5mg/kg) intraperitoneally 1h before LPS stimulation and were sacrificed 6h later. W/D ratio, lung MPO activity, number of total cells and neutrophils, pulmonary histopathology, IL-6, IL-1β, and TNF-α in the BALF were assessed. Furthermore, we estimated iNOS, IL-6, IL-1β, and TNF-α mRNA expression and NO production as well as the activation of the three main MAPKs, AkT, IκB-α and p65. Pretreatment with CDDO-Me significantly ameliorated W/D ratio, lung MPO activity, inflammatory cell infiltration, and inflammatory cytokine production in BALF from the in vivo study. Additionally, CDDO-Me had beneficial effects on the intervention for pathogenesis process at molecular, protein and transcriptional levels in vitro. These analytical results provided evidence that CDDO-Me could be a potential therapeutic candidate for treating LPS-induced ALI. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Yuehui; Meng, Fanci; Sun, Xiaoyan; Sun, Xue; Hu, Min; Cui, Peng; Vestin, Edvin; Li, Xin; Li, Wei; Wu, Xiao-Ke; Jansson, John-Olov; Shao, Linus R.; Billig, Håkan
2018-01-01
Women with polycystic ovary syndrome (PCOS) are at high risk for nonalcoholic fatty liver disease (NAFLD). While insulin resistance is a common trait for both PCOS and NAFLD, hyperandrogenism is also considered to be a key factor contributing to PCOS, and the molecular mechanisms behind the interactions between insulin resistance and hyperandrogenism in the female liver remain largely unexplored. Using chronic treatment with insulin and/or human chorionic gonadotropin (hCG), we showed that all female rats with different treatments induced imbalance between de novo lipogenesis and mitochondrial β-oxidation via the Pparα/β–Srebp1/2–Acc1 axis, resulting in varying degrees of hepatic steatosis. Given the fact that hepatic lipid metabolism and inflammation are tightly linked processes, we found that hCG-induced hyperandrogenic rats had strongly aggravated hepatic inflammation. Further mechanistic investigations revealed that dysregulation of the IRS–PI3K–Akt signaling axis that integrated aberrant inflammatory, apoptotic and autophagic responses in the liver was strongly associated with hyperandrogenism itself or combined with insulin resistance. Additionally, we found that hCG-treated and insulin+hCG-induced rats developed visceral adipose tissue inflammation characterized by the presence of “crown like” structure and increased inflammatory gene expression. Because a more pronounced hepatic steatosis, inflammatory responses, and hepatocyte cell damage were observed in insulin+hCG-induced PCOS-like rats, our finding suggest that NAFLD seen in PCOS patients is dependent of hyperandrogenism and insulin resistance. PMID:29719598
Lamine, F; Eutamène, H; Fioramonti, J; Buéno, L; Théodorou, V
2004-12-01
It has recently been shown that Lactobacillus farciminis treatment exerts an anti-inflammatory effect in trinitrobenzene sulphonic acid (TNBS)-induced colitis partly through a nitric oxide release by this strain. The aim of this study was to evaluate whether L. farciminis treatment shares also the general mechanisms of action involved in the beneficial effect of probiotics in the colonic inflammatory process. Rats received L. farciminis for 15 days before and 4 days after intracolonic administration of TNBS or vehicle. The following parameters were evaluated: macroscopic damage of colonic mucosa, myeloperoxidase activity, cytokine mucosal levels, bacterial profile in colonic content and mucosa, bacterial translocation and colonic paracellular permeability. In the absence of TNBS, L. farciminis treatment reduced colonic paracellular permeability and increased the IL-10 level in the colonic wall. TNBS administration induced colonic macroscopic damage, associated with an increase of myeloperoxidase activity, bacterial translocation, colonic paracellular permeability and IL-1beta mucosal level, and a decrease in IL-10 mucosal level. Moreover, the bacterial profile of colonic content and mucosa was modified. All these alterations were abolished or significantly reduced by L. farciminis treatment. As previously shown, L. farciminis treatment improves TNBS-induced colitis. This study indicates that, in addition to the nitric oxide released by this bacterial strain, the anti-inflammatory action of L. farciminis involves also normalization of colonic microflora, prevention of bacterial translocation, enhancement of barrier integrity and a decrease in the IL-1beta mucosal level.
Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C O; Bausero, Maria A; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G; Carlsson, Lena M S; Carlsson, Björn
2006-03-01
Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1beta production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P<0.05). OxLDLsup could induce both interleukin (IL)-1beta and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL.
Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C.O.; Bausero, Maria A.; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G.; Carlsson, Lena M.S.; Carlsson, Björn
2006-01-01
Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1β production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P < 0.05). OxLDLsup could induce both interleukin (IL)-1β and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL. PMID:15993884
Woods, Katherine; Knights, Ashley J; Anaka, Matthew; Schittenhelm, Ralf B; Purcell, Anthony W; Behren, Andreas; Cebon, Jonathan
2016-01-01
A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes. We assessed steady state and IFNγ-induced immunoproteasome expression in melanoma cells. Using epitope specific T-lymphocyte clones, we studied processing and presentation of three NY-ESO-1 HLA-Cw3 restricted epitopes by melanoma cell lines. Our experimental model allowed comparison of the processing of three distinct epitopes from a single antigen presented on the same HLA complex. We further investigated processing of these epitopes by direct inhibition, or siRNA mediated knockdown, of the immunoproteasome catalytic subunit LMP7. Our data demonstrated a profound difference in the way in which immunogenic T-lymphocyte epitopes are presented by melanoma cells under IFNγ inflammatory versus non-inflammatory conditions. These alterations led to significant changes in the ability of T-lymphocytes to recognize and target melanoma cells. Our results illustrate a little-studied mechanism of immune escape by tumor cells which, with appropriate understanding and treatment, may be reversible. These data have implications for the design of cancer vaccines and adoptive T cell therapies.
Park, Jang-Su; Yaster, Myron; Guan, Xiaowei; Xu, Ji-Tian; Shih, Ming-Hung; Guan, Yun; Raja, Srinivasa N; Tao, Yuan-Xiang
2008-12-30
Spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA)-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 microg) and GYKI 52466 (50 microg), significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain.
Tan, Huabing; He, Qin; Li, Rugui; Lei, Feifei; Lei, Xu
2016-07-01
Trillin is an active ingredient isolated from Dioscorea nipponica Makino. This study investigated the anti-inflammatory and anti-fibrosis effects of trillin on CCl4-induced hepatotoxicity in C57BL/6 mice. Chronic inflammation and fibrosis were induced by intraperitoneal administration of CCl4 0.5 μL/g of body weight twice a week for 6 weeks. Trillin (50 mg/kg, 100 mg/kg) was administered by gavage for 12 days before finishing the CCl4 induction. Aspartate amino-transferase (AST) and glutamic-pyruvic transaminase (ALT) in serum were determined by AST and ALT kits. Superoxidase dismutase (SOD) activity and malondialdehyde (MDA) levels in serum were assayed by SOD and MDA kits. Meanwhile, the levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in serum were detected by enzyme-linked immunosorbent assay (ELISA) method. Pathological changes were observed by hematoxylin-eosin (HE) staining. The proteins of the NF-κB pathway and the TGF-β/Smad pathway were measured by western blot. The trillin-treated group exhibited reduced AST, ALT, MDA, IL-6, TNF-α, and IL-1β, and increased SOD. Histological analyses of the trillin-treated group exhibited reduced inflammatory process and prevented liver fibrosis. Western blot analyses of the trillin-treated group showed reduced NF-κB pathway and TGF-β/Smad pathway. Based on the results of the present study, trillin can be used as a potential anti-inflammatory drug for chronic hepatic inflammation.
Das, Kankana; Ghosh, Mahua
2017-02-01
Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.
Miao, Xiaoliang; Wang, Ying; Wang, Wang; Lv, Xiaobo; Wang, Min; Yin, Hongping
2015-03-05
Adipocyte fatty acid-binding protein (A-FABP) plays an important role in fatty acid-mediated processes and related metabolic and inflammatory responses. In this study, we prepared a novel monoclonal antibody against A-FABP, designated 2E4. Our data showed that 2E4 specifically binded to the recombinant A-FABP and native A-FABP of mice adipose tissue. Furthermore, we investigated the effect of 2E4 on metabolic and inflammatory responses in C57BL/6J obese mice fed on a high fat diet. 2E4 administration improved glucose response in high-fat-diet induced obese mice. The 2E4 treated groups exhibited lower free fatty acids, cholesterol, and triglycerides in a concentration-dependent manner. These changes were accompanied by down-regulated expression of pro-inflammatory cytokines in adipose tissue, including tumor necrosis factor α, monocyte chemotactic protein-1, and interleukin-6. Meanwhile, our data demonstrated that 2E4 significantly decreased the mRNA and protein levels of A-FABP in adipose tissue of mice. Further experiments showed that 2E4 notably suppressed the phosphorylation of IκBα and jun-N-terminal kinase through toll-like receptor 4 signaling pathway. Taken together, 2E4 is an effective monoclonal antibody against A-FABP, which attenuated the inflammatory responses induced in the high-fat-diet mice. These findings may provide scientific insight into the treatment of chronic low-grade inflammation in obesity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Lili; Zhang, Sheng; Xin, Yanfei; Sun, Junying; Xie, Feng; Yang, Lin; Chen, Zhiqin; Chen, Hao; Liu, Fang; Xuan, Yaoxian; You, Zhenqiang
2018-01-26
Quzhou Fructus Aurantii (QFA) is an authentic herb of local varieties in Zhejiang, China, which is usually used to treat gastrointestinal illnesses, but its effects on respiratory inflammation have not been reported yet. In our study, the anti-inflammatory activity of QFA extract (QFAE) was evaluated on copper sulfate pentahydrate (CuSO 4 ·5H 2 O)-induced transgenic neutrophil fluorescent zebrafish model. QFAE showed a significant effect of anti-inflammation in CuSO 4 ·5H 2 O-induced zebrafish by reducing the neutrophil number in the inflammatory site. We investigated the anti-inflammatory activity of QFAE on lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice models and RAW 264.7 cells. QFAE had an anti-inflammatory effect on reducing total cells, neutrophils, and macrophages in BALF and attenuated alveolus collapse, neutrophils infiltration, lung W/D ratio, myeloperoxidase (MPO) protein expression and other pulmonary histological changes in lung tissues, as well as hematological changes. Levels of pro-inflammatory cytokines, including TNF, IL-6, IFN-γ, MCP-1, and IL-12p70, were decreased, whereas anti-inflammatory cytokine IL-10 was increased after treatment with QFAE both in vivo and in vitro. In summary, our results suggested that QFAE had apparent anti-inflammatory effects on CuSO 4 ·5H 2 O-induced zebrafish, LPS-induced ALI mice, and RAW 264.7 cells. Furthermore, QFAE may be a therapeutic drug to treat ALI/ARDS and other respiratory inflammations.
Zschäbitz, A; Stofft, E
1988-01-01
The lectin binding sites of the synovium of patients with rheumatoid arthritis and osteoarthritis were investigated. It was shown that Ulex europaeus agglutinin is a constant marker of the vascular endothelium and is not induced during the course of inflammatory process in rheumatoid arthritis.
Oliveira, Eneida S; Colombarolli, Stella G; Nascimento, Camila S; Batista, Izabella C A; Ferreira, Jorge G G; Alvarenga, Daniele L R; de Sousa, Laís O B; Assis, Rafael R; Rocha, Marcele N; Alves, Érica A R; Calzavara-Silva, Carlos E
2018-02-28
The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus -induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage.
Oliveira, Eneida S.; Colombarolli, Stella G.; Nascimento, Camila S.; Batista, Izabella C. A.; Ferreira, Jorge G. G.; Alvarenga, Daniele L. R.; de Sousa, Laís O. B.; Assis, Rafael R.; Rocha, Marcele N.; Alves, Érica A. R.; Calzavara-Silva, Carlos E.
2018-01-01
The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus-induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage. PMID:29495587
Inhibition of Neuroinflammation by AIBP: Spinal Effects upon Facilitated Pain States.
Woller, Sarah A; Choi, Soo-Ho; An, Eun Jung; Low, Hann; Schneider, Dina A; Ramachandran, Roshni; Kim, Jungsu; Bae, Yun Soo; Sviridov, Dmitri; Corr, Maripat; Yaksh, Tony L; Miller, Yury I
2018-05-29
Apolipoprotein A-I binding protein (AIBP) reduces lipid raft abundance by augmenting the removal of excess cholesterol from the plasma membrane. Here, we report that AIBP prevents and reverses processes associated with neuroinflammatory-mediated spinal nociceptive processing. The mechanism involves AIBP binding to Toll-like receptor-4 (TLR4) and increased binding of AIBP to activated microglia, which mediates selective regulation of lipid rafts in inflammatory cells. AIBP-mediated lipid raft reductions downregulate LPS-induced TLR4 dimerization, inflammatory signaling, and expression of cytokines in microglia. In mice, intrathecal injections of AIBP reduce spinal myeloid cell lipid rafts, TLR4 dimerization, neuroinflammation, and glial activation. Intrathecal AIBP reverses established allodynia in mice in which pain states were induced by the chemotherapeutic cisplatin, intraplantar formalin, or intrathecal LPS, all of which are pro-nociceptive interventions known to be regulated by TLR4 signaling. These findings demonstrate a mechanism by which AIBP regulates neuroinflammation and suggest the therapeutic potential of AIBP in treating preexisting pain states. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
IL4-10 Fusion Protein Is a Novel Drug to Treat Persistent Inflammatory Pain.
Eijkelkamp, Niels; Steen-Louws, Cristine; Hartgring, Sarita A Y; Willemen, Hanneke L D M; Prado, Judith; Lafeber, Floris P J G; Heijnen, Cobi J; Hack, C E; van Roon, Joel A G; Kavelaars, Annemieke
2016-07-13
Chronic pain is a major clinical problem that is difficult to treat and requires novel therapies. Although most pain therapies primarily target neurons, neuroinflammatory processes characterized by spinal cord and dorsal root ganglion production of proinflammatory cytokines play an important role in persistent pain states and represent potential therapeutic targets. Anti-inflammatory cytokines are attractive candidates to regulate aberrant neuroinflammatory processes, but the therapeutic potential of these cytokines as stand-alone drugs is limited. Their optimal function requires concerted actions with other regulatory cytokines, and their relatively small size causes rapid clearance. To overcome these limitations, we developed a fusion protein of the anti-inflammatory cytokines interleukin 4 (IL4) and IL10. The IL4-10 fusion protein is a 70 kDa glycosylated dimeric protein that retains the functional activity of both cytokine moieties. Intrathecal administration of IL4-10 dose-dependently inhibited persistent inflammatory pain in mice: three IL4-10 injections induced full resolution of inflammatory pain in two different mouse models of persistent inflammatory pain. Both cytokine moieties were required for optimal effects. The IL4-10 fusion protein was more effective than the individual cytokines or IL4 plus IL10 combination therapy and also inhibited allodynia in a mouse model of neuropathic pain. Mechanistically, IL4-10 inhibited the activity of glial cells and reduced spinal cord and dorsal root ganglion cytokine levels without affecting paw inflammation. In conclusion, we developed a novel fusion protein with improved efficacy to treat pain, compared with wild-type anti-inflammatory cytokines. The IL4-10 fusion protein has potential as a treatment for persistent inflammatory pain. The treatment of chronic pain is a major clinical and societal challenge. Current therapies to treat persistent pain states are limited and often cause major side effects. Therefore, novel analgesic treatments are urgently needed. In search of a novel drug to treat chronic pain, we developed a fusion protein consisting of two prototypic regulatory cytokines, interleukin 4 (IL4) and IL10. The work presented in this manuscript shows that this IL4-10 fusion protein overcomes some major therapeutic limitations of pain treatment with individual cytokines. The IL4-10 fusion protein induces full resolution of persistent inflammatory pain in two different mouse models. These novel findings are significant, as they highlight the IL4-10 fusion protein as a long-needed potential new drug to stop persistent pain states. Copyright © 2016 the authors 0270-6474/16/367353-11$15.00/0.
IL4-10 Fusion Protein Is a Novel Drug to Treat Persistent Inflammatory Pain
Steen-Louws, Cristine; Hartgring, Sarita A. Y.; Willemen, Hanneke L. D. M.; Prado, Judith; Lafeber, Floris P. J. G.; Heijnen, Cobi J.; Hack, C. E.; van Roon, Joel A. G.; Kavelaars, Annemieke
2016-01-01
Chronic pain is a major clinical problem that is difficult to treat and requires novel therapies. Although most pain therapies primarily target neurons, neuroinflammatory processes characterized by spinal cord and dorsal root ganglion production of proinflammatory cytokines play an important role in persistent pain states and represent potential therapeutic targets. Anti-inflammatory cytokines are attractive candidates to regulate aberrant neuroinflammatory processes, but the therapeutic potential of these cytokines as stand-alone drugs is limited. Their optimal function requires concerted actions with other regulatory cytokines, and their relatively small size causes rapid clearance. To overcome these limitations, we developed a fusion protein of the anti-inflammatory cytokines interleukin 4 (IL4) and IL10. The IL4-10 fusion protein is a 70 kDa glycosylated dimeric protein that retains the functional activity of both cytokine moieties. Intrathecal administration of IL4-10 dose-dependently inhibited persistent inflammatory pain in mice: three IL4-10 injections induced full resolution of inflammatory pain in two different mouse models of persistent inflammatory pain. Both cytokine moieties were required for optimal effects. The IL4-10 fusion protein was more effective than the individual cytokines or IL4 plus IL10 combination therapy and also inhibited allodynia in a mouse model of neuropathic pain. Mechanistically, IL4-10 inhibited the activity of glial cells and reduced spinal cord and dorsal root ganglion cytokine levels without affecting paw inflammation. In conclusion, we developed a novel fusion protein with improved efficacy to treat pain, compared with wild-type anti-inflammatory cytokines. The IL4-10 fusion protein has potential as a treatment for persistent inflammatory pain. SIGNIFICANCE STATEMENT The treatment of chronic pain is a major clinical and societal challenge. Current therapies to treat persistent pain states are limited and often cause major side effects. Therefore, novel analgesic treatments are urgently needed. In search of a novel drug to treat chronic pain, we developed a fusion protein consisting of two prototypic regulatory cytokines, interleukin 4 (IL4) and IL10. The work presented in this manuscript shows that this IL4-10 fusion protein overcomes some major therapeutic limitations of pain treatment with individual cytokines. The IL4-10 fusion protein induces full resolution of persistent inflammatory pain in two different mouse models. These novel findings are significant, as they highlight the IL4-10 fusion protein as a long-needed potential new drug to stop persistent pain states. PMID:27413147
Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel
2014-08-01
The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.
Zhang, Xiaoxuan; Wang, Guangji; Gurley, Emily C.; Zhou, Huiping
2014-01-01
Background Apigenin is a non-toxic natural flavonoid that is abundantly present in common fruits and vegetables. It has been reported that apigenin has various beneficial health effects such as anti-inflammation and chemoprevention. Multiple studies have shown that inflammation is an important risk factor for atherosclerosis, diabetes, sepsis, various liver diseases, and other metabolic diseases. Although it has been long realized that apigenin has anti-inflammatory activities, the underlying functional mechanisms are still not fully understood. Methodology and Principal Findings In the present study, we examined the effect of apigenin on LPS-induced inflammatory response and further elucidated the potential underlying mechanisms in human THP-1-induced macrophages and mouse J774A.1 macrophages. By using the PrimePCR array, we were able to identify the major target genes regulated by apigenin in LPS-mediated immune response. The results indicated that apigenin significantly inhibited LPS-induced production of pro-inflammatory cytokines, such as IL-6, IL-1β, and TNF-α through modulating multiple intracellular signaling pathways in macrophages. Apigenin inhibited LPS-induced IL-1β production by inhibiting caspase-1 activation through the disruption of the NLRP3 inflammasome assembly. Apigenin also prevented LPS-induced IL-6 and IL-1β production by reducing the mRNA stability via inhibiting ERK1/2 activation. In addition, apigenin significantly inhibited TNF-α and IL-1β-induced activation of NF-κB. Conclusion and Significance Apigenin Inhibits LPS-induced Inflammatory Response through multiple mechanisms in macrophages. These results provided important scientific evidences for the potential application of apigenin as a therapeutic agent for inflammatory diseases. PMID:25192391
Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum.
Lau, Kit-Man; He, Zhen-Dan; Dong, Hui; Fung, Kwok-Pui; But, Paul Pui-Hay
2002-11-01
Aqueous extract of processed leaves of Ligustrum robustum could dose-dependently scavenge superoxide radicals, inhibit lipid peroxidation, and prevent AAPH-induced hemolysis of red blood cells. In comparison with green tea, oolong tea and black tea, processed leaves of L. robustum exhibited comparable antioxidant potency in scavenging superoxide radicals and in preventing red blood cell hemolysis. By activity-guided fractionation, a glycoside-rich fraction named fraction B2 was separated and demonstrated to possess strong antioxidant effect. It was evaluated for its anti-inflammatory and hepato-protective activities. A single oral dose of fraction B2 at 0.5 g/kg could provide 51.5% inhibition on the vascular permeability change induced by intraperitoneal injection of acetic acid, but it could not inhibit croton oil-induced ear edema. On the other hand, fraction B2 exhibited moderate hepato-protective effect. Intragastric application of fraction B2 at 1.25, 2.5 or 5 g/kg 6 h after carbon tetrachloride administration could reduce the elevations of serum levels of aminotransferases (AST and ALT). Also, liver integrity was preserved, as liver sections from rats post-treated with fraction B2 showed a milder degree of fatty accumulation and necrosis. These results offer partial support to the traditional uses of the leaves of L. robustum as Ku-Ding-Cha.
de Castro, Isabele C V; Rosa, Cristiane B; Carvalho, Carolina M; Aragão, Juliana S; Cangussu, Maria Cristina T; Dos Santos, Jean N; Pinheiro, Antonio L B
2015-11-01
Temporomandibular disorders (TMDs) are mostly inflammatory conditions widespread in the population. Previous studies have shown positive effects of either laser or light-emitting diode (LED) phototherapies on treating TMDs, but their action and mechanism in the inflammatory infiltrate of the temporomandibular joint are still poorly understood. The aim of this study was to assess, through histological analysis, the effectiveness of using laser light (λ 780 nm, 70 mW, continous wave (CW), 10 J) and LED (λ 850 ± 10 nm, 100 mW, CW, 10 J) on the inflammation of the temporomandibular joint of rats induced by carrageenan. Forty-five animals were divided into three groups with five animals each according to the experimental times of 2, 3, and 7 days: inflammation, inflammation+laser phototherapy, and inflammation+LED phototherapy. The first irradiation was performed 24 h after induction with an interval of 48 h between sessions. After animal death, specimens were processed and stained with hematoxylin-eosin (HE) and picrosirius. Then, the samples were examined histologically. Data were statistically analyzed. The inflammation group showed mild to moderate chronic inflammatory infiltrate between bone trabecules of the condyle. Over the time course of the study in the laser group, the region of the condyle presented mild chronic inflammation and intense vascularization. In the LED group, the condyle showed aspects of normality and absence of inflammation in some specimens. In all the time points, the laser-irradiated groups showed greater amount of collagen deposition in the condyle (p = 0.04) and in the disc (p = 0.03) when compared to the inflammation and LED groups, respectively. Laser- and LED-treated groups demonstrate a smaller number of layers of the synovial membrane when compared to the non-irradiated groups. It was concluded that, in general, laser and LED phototherapies resulted in a reduction of inflammatory infiltrate in the temporomandibular joint of rat.
Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica.
Silva, Rafaela Ribeiro; Oliveira e Silva, Davi; Fontes, Humberto Rollemberg; Alviano, Celuta Sales; Fernandes, Patricia Dias; Alviano, Daniela Sales
2013-05-16
Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as "gigante", was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected when the extract was combined with vancomycin. The extract exhibits anti-inflammatory activity through the inhibition of the cell migration. The mixture of extract constituents and methicillin could lead to the development of a new combination antibiotic against MRSA infections.
Huang, Junying; Chen, Zhiquan; Li, Jie; Chen, Qiuhong; Li, Jingyan; Gong, Wenyan; Huang, Jiani; Liu, Peiqing; Huang, Heqing
2017-05-15
Activation of casein kinase 2 (CK2) is closely linked to the body disturbance of carbohydrate metabolism and inflammatory reaction. The renal chronic inflammatory reaction in the setting of diabetes is one of the important hallmarks of diabetic renal fibrosis. However, it remains unknown whether CK2 influences the process of diabetic renal fibrosis. The current study is aimed to investigate if CK2α ameliorates renal inflammatory fibrosis in diabetes via NF-κB pathway. To explore potential regulatory mechanism of CK2α, the expression and activity of CK2α, which were studied by plasmid transfection, selective inhibitor, small-interfering RNA (siRNA) and adenovirus infection in vitro or in vivo, were analyzed by means of western blotting (WB), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The following findings were observed: (1) Expression of CK2α was upregulated in kidneys of db/db and KKAy diabetic mice; (2) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed high glucose-induced expressions of FN and ICAM-1 in glomerular mesangial cells (GMCs); (3) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression not only restrained IκB degradation, but also suppressed HG-induced nuclear accumulation, transcriptional activity and DNA binding activity of NF-κB in GMCs; (4) Treatment of TBB or CK2α RNAi adenovirus infection ameliorated renal fibrosis in diabetic animals; (5) Treatment of TBB or CK2α RNAi adenovirus infection suppressed IκB degradation and NF-κB nuclear accumulation in glomeruli of diabetic animals. This study indicates the essential role of CK2α in regulating the diabetic renal pathological process of inflammatory fibrosis via NF-κB pathway, and inhibition of CK2α may serve as a promising therapeutic strategy for diabetic nephropathy. Copyright © 2017 Elsevier Inc. All rights reserved.
Flaherty, Nicole L; Chandrasekaran, Akshaya; del Pilar Sosa Peña, Maria; Roth, Gary A; Brenner, Sara A; Begley, Thomas J; Melendez, J Andrés
2015-12-15
Continued expansion of the nanotechnology industry has necessitated the self-assessment of manufacturing processes, specifically in regards to understanding the health related aspects following exposure to nanomaterials. There exists a growing concern over potential occupational exposure in the semiconductor industry where Al2O3, CeO2 and SiO2 nanoparticles are commonly featured as part of the chemical mechanical planarization (CMP) process. Chronic exposure to toxicants can result not only in acute cytotoxicity but also initiation of a chronic inflammatory state associated with diverse pathologies. In the current investigation, pristine nanoparticles and CMP slurry formulations of Al2O3, SiO2 and CeO2 were employed to assess their ability to induce cytotoxicity, inflammatory responses and reactive oxygen species in a mouse alveolar macrophage cell model. The pristine nanoparticles and slurries were not intrinsically cytotoxic and did not generate free radicals but were found to act as scavengers in the presence of an oxidant stimulant. Al2O3 and SiO2 nanoparticles increased levels of pro-inflammatory cytokines while pristine SiO2 nanoparticles induced generation of F2-Isoprostanes. In co-treatment studies, the pristine nanomaterials modulated the response to the inflammatory stimulant lipopolysaccharide. The studies have established that pristine nanoparticles and slurries do not impact the cells in a similar way indicating that they should not be used as slurry substitutes in toxicity evaluations. Further, we have defined how an alveolar cell line, which would likely be the first challenged upon nanomaterial aerosolization, responds to diverse mixtures of nanomaterials. Moreover, our findings reinforce the importance of using multiple analytic methods to define the redox state of the cell following exposure to commonly used industrial nanomaterials and toxicants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhou, Kai; Zhong, Qi; Wang, Yan-Chun; Xiong, Xiao-Yi; Meng, Zhao-You; Zhao, Ting; Zhu, Wen-Yao; Liao, Mao-Fan; Wu, Li-Rong; Yang, Yuan-Rui; Liu, Juan; Duan, Chun-Mei; Li, Jie; Gong, Qiu-Wen; Liu, Liang; Yang, Mei-Hua; Xiong, Ao; Wang, Jian; Yang, Qing-Wu
2017-03-01
Inflammation mediated by the peripheral infiltration of inflammatory cells plays an important role in intracerebral hemorrhage (ICH) induced secondary injury. Previous studies have indicated that regulatory T lymphocytes (Tregs) might reduce ICH-induced inflammation, but the precise mechanisms that contribute to ICH-induced inflammatory injury remain unclear. Our results show that the number of Tregs in the brain increases after ICH. Inducing Tregs deletion using a CD25 antibody or Foxp3 DTR -mice increased neurological deficient scores (NDS), the level of inflammatory factors, hematoma volumes, and neuronal degeneration. Meanwhile, boosting Tregs using a CD28 super-agonist antibody reduced the inflammatory injury. Furthermore, Tregs depletion shifted microglia/macrophage polarization toward the M1 phenotype while boosting Tregs shifted this transition toward the M2 phenotype. In vitro, a transwell co-culture model of microglia and Tregs indicated that Tregs changed the polarization of microglia, decreased the expression of MHC-II, IL-6, and TNF-α and increased CD206 expression. IL-10 originating from Tregs mediated the microglia polarization by increasing the expression of Glycogen Synthase Kinase 3 beta (GSK3β), which phosphorylates and inactivates Phosphatase and Tensin homologue (PTEN) in microglia, TGF-β did not participate in this conversion. Thus, Tregs ameliorated ICH-induced inflammatory injury by modulating microglia/macrophage polarization toward the M2 phenotype through the IL-10/GSK3β/PTEN axis.
Nooh, Hanaa Z; Nour-Eldien, Nermeen M
2016-07-01
A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified. Copyright © 2016 Elsevier GmbH. All rights reserved.
[Analgesic and anti-inflammatory effects of the flower of Althaea rosea (L.) Cav].
Wang, D F; Shang, J Y; Yu, Q H
1989-01-01
The ethanolic extract of the flower of Althaea rosea inhibits significantly the acetic acid-induced twisting of mice and the heat induced (tail) flicking of rats, the acetic acid-induced increase in permeability of abdominal bloud capillaries, the edema of the rat paw induced by carrageenin or dextran, and the release of PGE from inflammatory tissue.
Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida
2015-01-01
Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794
Causes of CNS inflammation and potential targets for anticonvulsants.
Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos
2013-08-01
Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.
Yasmen, Nelufar; Tajmim, Afsana; Akter, Mst. Irin; Hazra, Amit Kumar; Rahman, S. M. Mushiur
2018-01-01
In folk medicine, Polyalthia suberosa is used as abortifacient, laxative, febrifuge analgesic, filler of tooth cavities, and anti-HIV drug and for rheumatism and various skin infections. The present study was directed to evaluate the analgesic and anti-inflammatory activities of diethyl ether and n-hexane extracts of Polyalthia suberosa leaves (PSDE and PSNH). A variety of tests including formalin-induced paw licking test, acetic acid induced writhing test, and tail immersion test were used to assess the analgesic activity. In addition, xylene-induced ear edema test was used to evaluate anti-inflammatory activity of PSDE and PSNH. PSDE and PSNH at 200 and 400 mg/kg doses expressed analgesic as well as anti-inflammatory activities in mice. In formalin-induced paw licking test, acetic acid induced writhing test, and xylene-induced ear edema test, the extracts exhibited significant inhibition (⁎P < 0.05 versus control) of pain and inflammation. Alternatively, in tail immersion test, PSDE 400 mg/kg showed significant (⁎P < 0.05 versus control) latency at 30 min but another tested sample had no significant latency. From this study, it could be shown that Polyalthia suberosa leaves may contain analgesic and anti-inflammatory agents which support its use in traditional medicine. PMID:29599807
Yasmen, Nelufar; Aziz, Md Abdullah; Tajmim, Afsana; Akter, Mst Irin; Hazra, Amit Kumar; Rahman, S M Mushiur
2018-01-01
In folk medicine, Polyalthia suberosa is used as abortifacient, laxative, febrifuge analgesic, filler of tooth cavities, and anti-HIV drug and for rheumatism and various skin infections. The present study was directed to evaluate the analgesic and anti-inflammatory activities of diethyl ether and n-hexane extracts of Polyalthia suberosa leaves (PSDE and PSNH). A variety of tests including formalin-induced paw licking test, acetic acid induced writhing test, and tail immersion test were used to assess the analgesic activity. In addition, xylene-induced ear edema test was used to evaluate anti-inflammatory activity of PSDE and PSNH. PSDE and PSNH at 200 and 400 mg/kg doses expressed analgesic as well as anti-inflammatory activities in mice. In formalin-induced paw licking test, acetic acid induced writhing test, and xylene-induced ear edema test, the extracts exhibited significant inhibition ( ⁎ P < 0.05 versus control) of pain and inflammation. Alternatively, in tail immersion test, PSDE 400 mg/kg showed significant ( ⁎ P < 0.05 versus control) latency at 30 min but another tested sample had no significant latency. From this study, it could be shown that Polyalthia suberosa leaves may contain analgesic and anti-inflammatory agents which support its use in traditional medicine.
Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats
Jeong, Yoo Kyung; Lee, Sle; Lim, Joo Weon
2017-01-01
Oxidative stress is an important regulator in the pathogenesis of acute pancreatitis (AP). Reactive oxygen species induce activation of inflammatory cascades, inflammatory cell recruitment, and tissue damage. NF-κB regulates inflammatory cytokine gene expression, which induces an acute, edematous form of pancreatitis. Protein kinase C δ (PKCδ) activates NF-κB as shown in a mouse model of cerulein-induced AP. Docosahexaenoic acid (DHA), an ω-3 fatty acid, exerts anti-inflammatory and antioxidant effects in various cells and tissues. This study investigated whether DHA inhibits cerulein-induced AP in rats by assessing pancreatic edema, myeloperoxidase activity, levels of lipid peroxide and IL-6, activation of NF-κB and PKCδ, and by histologic observation. AP was induced by intraperitoneal injection (i.p.) of cerulein (50 μg/kg) every hour for 7 h. DHA (13 mg/kg) was administered i.p. for three days before AP induction. Pretreatment with DHA reduced cerulein-induced activation of NF-κB, PKCδ, and IL-6 in pancreatic tissues of rats. DHA suppressed pancreatic edema and decreased the abundance of lipid peroxide, myeloperoxidase activity, and inflammatory cell infiltration into the pancreatic tissues of cerulein-stimulated rats. Therefore, DHA may help prevent the development of pancreatitis by suppressing the activation of NF-κB and PKCδ, expression of IL-6, and oxidative damage to the pancreas. PMID:28704954
Chan, Siu-Lung; Yeung, John H K
2006-04-18
Polysaccharide peptide (PSP), isolated from Coriolus versicolor COV-1, has been widely used as an adjunct to cancer chemotherapy and as an immuno-stimulator in China. In this study, the anti-nociceptive effects of PSP were investigated in two different pain models in the mouse. In the acetic acid-induced writhing model, initial studies showed that PSP decreased the number of acetic acid-induced writhing by 92.9%, which, by definition, would constitute an analgesic effect. However, further studies showed that PSP itself induced a dose-dependent writhing response. Studies on inflammatory mediator release showed that PSP increased the release of prostaglandin E2, tumor necrosis factor-alpha, interleukin-1beta, and histamine in mouse peritoneal macrophages and mast cells both in vitro and in vivo. The role of inflammatory mediator release in PSP-induced writhing was confirmed when diclofenac and dexamethasone decreased the number of writhing responses by 54% and 58.5%, respectively. Diphenhydramine totally inhibited the PSP-induced writhing. In the hot-plate test, PSP dose-dependently shortened the hind paw withdrawal latency, indicative of a hyperalgesic effect. The hyperalgesic effect was reduced by pretreatment with the anti-inflammatory drugs. In conclusion, the PSP-induced hyperalgesia was related to activation of peritoneal resident cells and an increase in the release of inflammatory mediators.
Involvement of Nitric Oxide in a Rat Model of Carrageenin-Induced Pleurisy
Iwata, Masahiro; Suzuki, Shigeyuki; Asai, Yuji; Inoue, Takayuki; Takagi, Kenji
2010-01-01
Some evidence indicates that nitric oxide (NO) contributes to inflammation, while other evidence supports the opposite conclusion. To clarify the role of NO in inflammation, we studied carrageenin-induced pleurisy in rats treated with an NO donor (NOC-18), a substrate for NO formation (L-arginine), and/or an NO synthase inhibitor (S-(2-aminoethyl) isothiourea or NG-nitro-L-arginine). We assessed inflammatory cell migration, nitrite/nitrate values, lipid peroxidation and pro-inflammatory mediators. NOC-18 and L-arginine reduced the migration of inflammatory cells and edema, lowered oxidative stress, and normalized antioxidant enzyme activities. NO synthase inhibitors increased the exudate formation and inflammatory cell number, contributed to oxidative stress, induced an oxidant/antioxidant imbalance by maintaining high O2 −, and enhanced the production of pro-inflammatory mediators. L-arginine and NOC-18 reversed the proinflammatory effects of NO synthase inhibitors, perhaps by reducing the expression of adhesion molecules on endothelial cells. Thus, our results indicate that NO is involved in blunting—not enhancing—the inflammatory response. PMID:20592757
Anti-inflammatory activity of Bromelia hieronymi: comparison with bromelain.
Errasti, María E; Caffini, Néstor O; Pelzer, Lilian E; Rotelli, Alejandra E
2013-03-01
Some plant proteases (e. g., papain, bromelain, ficin) have been used as anti-inflammatory agents for some years, and especially bromelain is still being used as alternative and/or complementary therapy to glucocorticoids, nonsteroidal antirheumatics, and immunomodulators. Bromelain is an extract rich in cysteine endopeptidases obtained from Ananas comosus. In this study the anti-inflammatory action of a partially purified extract of Bromelia hieronymi fruits, whose main components are cysteine endopeptidases, is presented. Different doses of a partially purified extract of B. hieronymi were assayed on carrageenan-induced and serotonine-induced rat paw edema, as well as in cotton pellet granuloma model. Doses with equal proteolytic activity of the partially purified extract and bromelain showed significantly similar anti-inflammatory responses. Treatment of the partially purified extract and bromelain with E-64 provoked loss of anti-inflammatory activity on carrageenan-induced paw edema, a fact which is consistent with the hypothesis that the proteolytic activity would be responsible for the anti-inflammatory action. Georg Thieme Verlag KG Stuttgart · New York.
Shang, Yu; Zhou, Qian; Wang, Tiantian; Jiang, Yuting; Zhong, Yufang; Qian, Guangren; Zhu, Tong; Qiu, Xinghua; An, Jing
2017-10-01
Ambient particulate matter (PM) is a worldwide health issue of concern. However, limited information is available regarding the toxic contributions of the nitro-derivatives of polycyclic aromatic hydrocarbons (nitro-PAHs). This study intend to examine whether 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) could activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) antioxidant defense system, and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway participates in regulating pro-inflammatory responses in A549 cells. Firstly, 1-NP and 3-NF concentration-dependently induced cellular apoptosis, reactive oxygen species (ROS) generation, DNA damage, S phase cell cycle arrest and differential expression of related cytokine genes. Secondly, 1-NP and 3-NF activated the Nrf2/ARE defense system, as evidenced by increased protein expression levels and nuclear translocation of transcription factor Nrf2, elevated Nrf2/ARE binding activity, up-regulated expression of the target gene heme oxygenase-1 (HO-1). Significantly increased protein expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylation level of Akt indicated that the PI3K/Akt pathway was activated during pro-inflammatory process. Further, both PI3K inhibitor (LY294002) and Akt inhibitor (MK-2206) reversed the elevated TNF-α expression to control level. Our results suggested that Nrf2/ARE pathway activation might cause an initiation step in cellular protection against oxidative stress caused by nitro-PAHs, and the PI3K/Akt pathway participated in regulating inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Díaz-Castro, Javier; Florido, Jesus; Kajarabille, Naroa; Prados, Sonia; de Paco, Catalina; Ocon, Olga; Pulido-Moran, Mario; Ochoa, Julio J
2015-01-01
The objective of the current study was to investigate for the first time and simultaneously the oxidative stress and inflammatory signaling induced during the delivery in healthy mothers and their neonates. 56 mothers with normal gestational course and spontaneous delivery were selected. Blood samples were taken from mother (before and after delivery) both from vein and artery of umbilical cord. Lower antioxidant enzymes activities were observed in neonates compared with their mothers and lower oxidative stress in umbilical cord artery with respect to vein. There was an overexpression of inflammatory cytokines in the mother, such as IL-6 and TNF-α, and, in addition, PGE2 was also increased. Neonates showed lower levels of IL-6 and TNF-α and higher values of sTNF-RII and PGE2 in comparison with their mothers. Parturition increases oxidative damage in the mother, although the indicators of oxidative damage were lower in umbilical cord artery with respect to umbilical vein. The overexpression of inflammatory cytokines reveals that fetus suffers its own inflammatory process during parturition.
Díaz-Castro, Javier; Florido, Jesus; Prados, Sonia; de Paco, Catalina; Ocon, Olga; Pulido-Moran, Mario; Ochoa, Julio J.
2015-01-01
The objective of the current study was to investigate for the first time and simultaneously the oxidative stress and inflammatory signaling induced during the delivery in healthy mothers and their neonates. 56 mothers with normal gestational course and spontaneous delivery were selected. Blood samples were taken from mother (before and after delivery) both from vein and artery of umbilical cord. Lower antioxidant enzymes activities were observed in neonates compared with their mothers and lower oxidative stress in umbilical cord artery with respect to vein. There was an overexpression of inflammatory cytokines in the mother, such as IL-6 and TNF-α, and, in addition, PGE2 was also increased. Neonates showed lower levels of IL-6 and TNF-α and higher values of sTNF-RII and PGE2 in comparison with their mothers. Parturition increases oxidative damage in the mother, although the indicators of oxidative damage were lower in umbilical cord artery with respect to umbilical vein. The overexpression of inflammatory cytokines reveals that fetus suffers its own inflammatory process during parturition. PMID:25722791
Blaser, Cornelia; Wittwer, Matthias; Grandgirard, Denis; Leib, Stephen L.
2011-01-01
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories “inflammation”, “growth”, “apoptosis” and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis. PMID:21412436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eunyoung
Low-level formaldehyde exposure is inevitable in industrialized countries. Although daily-life formaldehyde exposure level is practically impossible to induce cell death, most of mechanistic studies related to formaldehyde toxicity have been performed in cytotoxic concentrations enough to trigger cell death mechanism. Currently, toxicological mechanisms underlying the sub-cytotoxic exposure to formaldehyde are not clearly elucidated in skin cells. In this study, the genome-scale transcriptional analysis in normal human keratinocytes (NHKs) was performed to investigate cutaneous biological pathways associated with daily life formaldehyde exposure. We selected the 175 upregulated differentially expressed genes (DEGs) and 116 downregulated DEGs in NHKs treated with 200 μMmore » formaldehyde. In the Gene Ontology (GO) enrichment analysis of the 175 upregulated DEGs, the endoplasmic reticulum (ER) unfolded protein response (UPR) was identified as the most significant GO biological process in the formaldeyde-treated NHKs. Interestingly, the sub-cytotoxic formaldehyde affected NHKs to upregulate two enzymes important in the cellular transsulfuration pathway, cystathionine γ-lyase (CTH) and cystathionine-β-synthase (CBS). In the temporal expression analysis, the upregulation of the pro-inflammatory DEGs such as MMP1 and PTGS2 was detected earlier than that of CTH, CBS and other ER UPR genes. The metabolites of CTH and CBS, L-cystathionine and L-cysteine, attenuated the formaldehyde-induced upregulation of pro-inflammatory DEGs, MMP1, PTGS2, and CXCL8, suggesting that CTH and CBS play a role in the negative feedback regulation of formaldehyde-induced pro-inflammatory responses in NHKs. In this regard, the sub-cytotoxic formaldehyde-induced CBS and CTH may regulate inflammation fate decision to resolution by suppressing the early pro-inflammatory response. - Highlights: • Sub-cytotoxic formaldehyde upregulates ER UPR-associated genes in NHKs. • Formaldehyde-induced ER UPR genes includes cystathionine γ-lyase (CTH). • Sub-cytotoxic formaldehyde upregulates cystathionine-β-synthase (CBS) in NHKs. • Cystathionine metabolic enzymes may attenuate formaldehyde-induced inflammation in NHKs. • Cystathionine metabolic enzymes may play a role in the resolution of inflammation in NHKs.« less
Yao, Lan; Li, Linlin; Li, Xinxia; Li, Hui; Zhang, Yujie; Zhang, Rui; Wang, Jian; Mao, Xinmin
2015-09-07
Diabetic nephropathy is a serious complication of diabetes whose development process is associated with inflammation, renal hypertrophy, and fibrosis. Coreopsis tinctoria Nutt, traditionally used as a healthcare tea, has anti-inflammatory, anti-hyperlipidemia, and glycemic regulation activities. The aim of our study was to investigate the renal protective effect of ethyl acetate extract of C. tinctoria Nutt (AC) on high-glucose-fat diet and streptozotocin (STZ)-induced diabetic rats. A diabetic rat model was induced by high-glucose-fat diet and intraperitoneal injection of 35 mg/kg STZ. After treatment with AC at a daily dose of 150, 300 or, 600 mg/kg for 4 weeks, metabolic and renal function parameters of serum and urine were examined. Degree of renal damage, renal proinflammatory cytokines, and fibrotic protein expression were analyzed by histopathology and immunohistochemistry. Renal AMP-activated protein kinase (AMPK) and transforming growth factor (TGF)-β1/Smad signaling pathway were determined by western blotting. Diabetic rats showed obvious renal dysfunction, inflammation and fibrosis. However, AC significantly reduced levels of blood glucose, total cholesterol, triglyceride, blood urea nitrogen, serum creatinine and urinary albumin, as well as expression of kidney proinflammatory cytokines of monocyte chemoattractant protein-1 and intercellular adhesion molecule-1. AC also ameliorated renal hypertrophy and fibrosis by reducing fibronectin and collagen IV and suppressing the TGF-β1/Smad signaling pathway. Meanwhile, AMPKα as a protective cytokine was markedly stimulated by AC. In summary, AC controls blood glucose, inhibits inflammatory and fibrotic processes, suppresses the TGF-β1/Smad signaling pathway, and activates phosphorylation of AMPKα in the kidneys, which confirms the protective effects of AC in the early stage of diabetic kidney disease.
Ling, Jiang-Hong; Li, Jia-Bang; Shen, Ding-Zhu; Zhou, Bing
2006-03-01
To observe the inflammatory reaction, nuclear factor-kappaB (NF-kappaB) mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and the effect of Jianwei Yuyang granule (JYG) on them. Gastric ulcer and its recurrent lesion were successively induced by acetic acid and interliukin1-beta (IL-1beta), and the model rats were divided into the sham operation group, the model group, the omeprazole (correction of omepraxole) group and the JYG group to observe the state of chronic inflammatory cell, neutrophil count, NF-kappaBmRNA and protein expression in stomach tissue. On the 16th and 92th day after administration, the increase of chronic inflammatory cell, neutrophil, NF-kappaBmRNA and protein expression in the model group was more significant than those in the sham operated group (P < 0.01), while that was lower in the JYG group than in the model group (P < 0.05, P <0.01), but with no remarkable difference to the omepraxole group. In addition, the mRNA and protein expression of NF-kappaB were correlated closely with the count of chronic inflammatory cell and neutrophil respectively (P < 0.01). NF-kappaB may play an important role in regulating inflammatory reaction during the healing and recurrence processes of gastric ulcer induced by acetic acid. JYG may suppress inflammatory reaction by inhibiting the activation and expression of NF-kappaB in stomach tissue, which may be one of the mechanisms of JYG in preventing the recurrence of gastric ulcer.
Na-Phatthalung, Pinanong; Teles, Mariana; Voravuthikunchai, Supayang Piyawan; Tort, Lluís; Fierro-Castro, Camino
2018-04-01
Rhodomyrtus tomentosa is a medicinal plant that shows biological effects including immunomodulatory activity on human and other mammals but not in fish. In this study, we evaluated the in vitro immunomodulatory effects of R. tomentosa leaf extract and its active compound, rhodomyrtone, on the immune responses, using rainbow trout (Oncorhynchus mykiss) head kidney (HK) macrophages as a model. The tested immune functions included the expression of genes involved in innate immune and inflammatory responses and the production of reactive oxygen species (ROS). Gene expression was evaluated after exposure to 10 μg mL -1 of R. tomentosa and 1 μg mL -1 of rhodomyrtone for 4 and 24 h. R. tomentosa and rhodomyrtone induced changes in the expression of pro-inflammatory cytokines (il1β, il8, and tnfα), anti-inflammatory cytokines (il10 and tgfβ), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). Co-exposure of R. tomentosa with LPS resulted in a prominent reduction in the expression of genes related to an inflammatory process (il1β, il8, tnfα, inos, saa, hepcidin, and gpx1), suggesting anti-inflammatory effects. Similarly, co-exposure of rhodomyrtone with LPS led to a downregulation of inflammation-related genes (il1β, inos, saa, and hepcidin). In addition, exposure to both natural plant products caused a reduction in cellular ROS levels by HK macrophages. The present results indicate that R. tomentosa and rhodomyrtone exerted immunostimulatory and anti-inflammatory effects on fish macrophages, thus opening up the possibility of using these natural products to further develop immunostimulants for health management in aquaculture.
Min, Sung-Won; Kim, Nam-Jae; Baek, Nam-In; Kim, Dong-Hyun
2009-09-25
Artemisia princeps Pampanini (family Asteraceae) is an herbal medicine widely used as a hepatoprotective, antioxidative, anti-inflammatory, and antibacterial agent in Korea, China, and Japan. This study aimed to elucidate the anti-inflammatory effect of the main constituents, eupatilin and jaceosidin, isolated from Artemisia princeps. We used carrageenan-induced inflammation in an air pouch on the back of mice and carrageenan-induced hind paw edema in rats to determine the anti-inflammatory effects of eupatilin and jaceosidin. Inflammatory makers, such as expression of pro-inflammatory cytokines and cyclooxygenase (COX)-2, and activation of nuclear factor-kappa B (NF-kappaB), were measured by enzyme-linked immunosorbent assays and immunoblot analyses. Eupatilin and jaceosidin blocked carrageenan-induced increase in leukocyte number and protein levels in air pouch exudates. Eupatilin and jaceosidin inhibited COX-2 expression and NF-kappaB activation, and markedly reduced TNF-alpha, IL-1beta, and prostaglandin E2 (PGE(2)) levels. They also inhibited hind paw edema induced by carrageenan. Eupatilin and jaceosidin had similar activity. These findings suggest that eupatilin and jaceosidin may reduce inflammation by inhibiting NF-kappaB activation, and that Artemisia princeps inhibits inflammation because of these constituents.
6-Shogaol attenuates LPS-induced inflammation in BV2 microglia cells by activating PPAR-γ
Han, Qinghe; Yuan, Qinghai; Meng, Xiaolin; Huo, Junyuan; Bao, Yuxin; Xie, Guanghong
2017-01-01
6-Shogaol, a pungent agent isolated from Zingiber officinale Roscoe, has been known to have anti-tumor and anti-inflammatory effects. However, the anti-inflammatory effects and biological mechanism of 6-Shogaol in LPS-activated BV2 microglia remains largely unknown. In this study, we evaluated the anti-inflammatory effects of 6-Shogaol in LPS-activated BV2 microglia. 6-Shogaol was administrated 1 h before LPS treatment. The production of inflammatory mediators were detected by ELISA. The expression of NF-κB and PPAR-γ were detected by western blot analysis. Our results revealed that 6-Shogaol inhibited LPS-induced TNF-α, IL-1β, IL-6, and PGE2 production in a concentration dependent manner. Furthermore, 6-Shogaol inhibited LPS-induced NF-κB activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. In addition, 6-Shogaol could increase the expression of PPAR-γ. Moreover, inhibition of PPAR-γ by GW9662 could prevent the inhibition of 6-Shogaol on LPS-induced inflammatory mediator production. In conclusion, 6-Shogaol inhibits LPS-induced inflammation by activating PPAR-γ. PMID:28410218
Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu
2016-07-01
Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases.
Kim, Ha Ryong; Shin, Da Young; Chung, Kyu Hyuck
2015-03-04
Polyhexamethylene guanidine (PHMG) phosphate is a competitive disinfectant with strong antibacterial activity. However, epidemiologists revealed that inhaled PHMG-phosphate may increase the risk of pulmonary fibrosis associated with inflammation, resulting in the deaths of many people, including infants and pregnant women. In addition, in vitro and in vivo studies reported the inflammatory effects of PHMG-phosphate. Therefore, the aim of the present study was to clarify the inflammatory effects and its mechanism induced by PHMG-phosphate in murine RAW264.7 macrophages. Cell viability, inflammatory cytokine secretion, nuclear factor kappa B (NF-κB) activation, and reactive oxygen species (ROS) generation were investigated in macrophages exposed to PHMG-phosphate. PHMG-phosphate induced dose-dependent cytotoxicity, with LC50 values of 11.15-0.99mg/ml at 6 and 24h, respectively. PHMG-phosphate induced pro-inflammatory cytokines including IL-1β, IL-6, and IL-8. In particular, IL-8 expression was completely inhibited by the NF-κB inhibitor BAY11-7082. In addition, PHMG-phosphate decreased IκB-α protein expression and increased NF-κB-mediated luciferase activity, which was diminished by N-acetyl-l-cystein. However, abundant amounts of ROS were generated in the presence of PHMG-phosphate at high concentrations with a cytotoxic effect. Our results demonstrated that PHMG-phosphate triggered the activation of NF-κB signaling pathway by modulating the degradation of IκB-α. Furthermore, the NF-κB signaling pathway plays a critical role in the inflammatory responses induced by PHMG-phosphate. We assumed that ROS generated by PHMG-phosphate were associated with inflammatory responses as secondary mechanism. In conclusion, we suggest that PHMG-phosphate induces inflammatory responses via NF-κB signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Monocytes/Macrophages Control Resolution of Transient Inflammatory Pain
Willemen, Hanneke L. D. M.; Eijkelkamp, Niels; Carbajal, Anibal Garza; Wang, Huijing; Mack, Matthias; Zijlstra, Jitske; Heijnen, Cobi J.; Kavelaars, Annemieke
2014-01-01
Insights into mechanisms governing resolution of inflammatory pain are of great importance for many chronic pain–associated diseases. Here we investigate the role of macrophages/monocytes and the anti-inflammatory cytokine interleukin-10 (IL-10) in the resolution of transient inflammatory pain. Depletion of mice from peripheral monocytes/macrophages delayed resolution of intraplantar IL-1β- and carrageenan-induced inflammatory hyperalgesia from 1 to 3 days to >1 week. Intrathecal administration of a neutralizing IL-10 antibody also markedly delayed resolution of IL-1β- and carrageenan-induced inflammatory hyperalgesia. Recently, we showed that IL-1β- and carrageenan-induced hyperalgesia is significantly prolonged in LysM-GRK2+/− mice, which have reduced levels of G-protein-coupled receptor kinase 2 (GRK2) in LysM+ myeloid cells. Here we show that adoptive transfer of wild-type, but not of GRK2+/−, bone marrow-derived monocytes normalizes the resolution of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Adoptive transfer of IL-10−/− bone marrow-derived monocytes failed to normalize the duration of IL-1β-induced hyperalgesia in LysM-GRK2+/− mice. Mechanistically, we show that GRK2+/− macrophages produce less IL-10 in vitro. In addition, intrathecal IL-10 administration attenuated IL-1β-induced hyperalgesia in LysM-GRK2+/− mice, whereas it had no effect in wild-type mice. Our data uncover a key role for monocytes/macrophages in promoting resolution of inflammatory hyperalgesia via a mechanism dependent on IL-10 signaling in dorsal root ganglia. Perspective We show that IL-10-producing monocytes/macrophages promote resolution of transient inflammatory hyperalgesia. Additionally, we show that reduced monocyte/macrophage GRK2 impairs resolution of hyperalgesia and reduces IL-10 production. We propose that low GRK2 expression and/or impaired IL-10 production by monocytes/macrophages represent peripheral biomarkers for the risk of developing chronic pain after inflammation. PMID:24793056
Kodithuwakku, Nandani Darshika; Pan, Min; Zhu, Yi-lin; Zhang, Yan-yan; Feng, Yi-dong; Fang, Wei-rong; Li, Yun-man
2013-12-12
Shuang-Qi gout capsule is a traditional Chinese medicine prescription, which has been used in the treatment of joint pain, inflammation and gout arthritis. This study evaluates anti-inflammatory and antinociceptive effects of Shuang-Qi gout capsule and its modulation of pro-inflammatory cytokines with special reference to gout arthritis. Anti-inflammatory effect of Shuang-Qi gout capsule was investigated bymice tail-flick response, acetic acid induced writhing response, Xylene-induced auricle inflammation and the hind paw volume of the monosodium urate (MSU) crystal induced rats with different time durations. To investigate the effects on gout arthritis, ankle joint of rats induced by MSU crystals and assessed for edema and histopathological changes. In vitro, prepared serum was incubated with urate crystal induced HUVE cells and the release of TNF-α and IL-1β determined by ELISA. Shuang-Qi gout capsule showed significant and dose dependent anti-inflammatory effect via reducing edema and pain, throughout all the models. The high dose of Shuang-Qi gout capsule and Indomethacin significantly attenuated the edema. Histopathological results showed that high and medium dose of Shuang-Qi gout capsule and Indomethacin reduced gouty joint inflammatory features, while the high dose of Shuang-Qi gout capsule showed a better therapeutic effect. High and medium dose of Shuang-Qi gout capsule significantly reduced the release of TNF-α and IL-1β (p<0.05). Shuang-Qi gout capsule can effectively inhibit the inflammation, analgesia, through the modulation of emission of pro-inflammatory cytokines and the curative effect is dose dependent. Conversely, these MSU induced in vivo and in vitro studies of Shuang-Qi gout capsule suggest that, Shuang-Qi gout capsule may be a potential agent for treatment in gouty arthritis. © 2013 Published by Elsevier Ireland Ltd.
Lai, Jin-Lun; Liu, Yu-Hui; Peng, Yong-Chong; Ge, Pan; He, Chen-Fei; Liu, Chang; Chen, Ying-Yu; Guo, Ai-Zhen; Hu, Chang-Min
2017-01-01
Indirubin is a Chinese medicine extracted from indigo and known to be effective for treating chronic myelogenous leukemia, neoplasia, and inflammatory disease. This study evaluated the in vivo anti-inflammatory activity of indirubin in a lipopolysaccharide- (LPS-) induced mouse mastitis model. The indirubin mechanism and targets were evaluated in vitro in mouse mammary epithelial cells. In the mouse model, indirubin significantly attenuated the severity of inflammatory lesions, edema, inflammatory hyperemia, milk stasis and local tissue necrosis, and neutrophil infiltration. Indirubin significantly decreased myeloperoxidase activity and downregulated the production of tumor necrosis factor- α , interleukin-1 β (IL-1 β ), and IL-6 caused by LPS. In vitro, indirubin inhibited LPS-stimulated expression of proinflammatory cytokines in a dose-dependent manner. It also downregulated LPS-induced toll-like receptor 4 (TLR4) expression and inhibited phosphorylation of LPS-induced nuclear transcription factor-kappa B (NF- κ B) P65 protein and inhibitor of kappa B. In addition to its effect on the NF- κ B signaling pathway, indirubin suppressed the mitogen-activated protein kinase (MAPK) signaling by inhibiting phosphorylation of extracellular signal-regulated kinase (ERK), P38, and c-jun NH2-terminal kinase (JNK). Indirubin improved LPS-induced mouse mastitis by suppressing TLR4 and downstream NF- κ B and MAPK pathway inflammatory signals and might be a potential treatment of mastitis and other inflammatory diseases.
Chen, Jinglou; Xu, Jun; Li, Jingjing; Du, Lifen; Chen, Tao; Liu, Ping; Peng, Sisi; Wang, Mingwei; Song, Hongping
2015-05-01
Green tea (Camellia sinensis) is an extremely popular beverage worldwide. Epigallocatechin-3-gallate (EGCG) is one of the major catechins isolated from green tea and contributes to its beneficial therapeutic functions including antioxidant, anti-inflammatory and anti-cancer effects. However, the effect of EGCG on mastitis is not yet known. This study was to investigate the protective potential of EGCG against mastitis in rats. The rat mastitis model was induced by injecting lipopolysaccharide (LPS) into the duct of mammary gland. The mammary gland was collected after the experimental period. The levels of mammary oxidative stress and inflammatory responses were assessed by measuring the local activities of antioxidant enzymes and the levels of inflammatory cytokines. The mammary expressions of mitogen-activated protein kinases (MAPKs), nuclear factor κB-p65 (NFκB-p65) and hypoxia-inducible factor-1α (HIF-1α) were evaluated by western blot analysis. It was found that EGCG obviously normalized LPS-induced low activities of antioxidant enzymes as well as decreased the high levels of inflammatory cytokines. Additionally, EGCG inhibited the mammary over-expression of MAPKs, NFκB-p65 and HIF-1α. These results indicated that EGCG was able to attenuate LPS-induced mastitis in rats by suppressing MAPK related oxidative stress and inflammatory responses. Copyright © 2015 Elsevier B.V. All rights reserved.
Bonnet, J; Loiseau, A M; Orvoen, M; Bessin, P
1981-12-01
PAF-acether is a potent aggregating agent released by various cells involved in acute inflammatory process. In this paper, exogenous PAF-acether has been investigated for its ability to generate signs of inflammation (edema measured by plethysmometry) and hyperalgesia (Randall-Sellito test) by standard subplantar injection in the rat paw. From 0.005 microgram. PAF-acether induced significant edema of the paw, maximal 1 hour after injection; it was dose-dependent from 0.1 to 5 microgram. Significant dose-dependent hyperalgesia occurred from 1.25 microgram; it reached a plateau from 2 to 4 hours after injection. Both phenomena were long-lasting (greater than 6 h). PAF-acether was 1.5 to 10 times stronger than PGI2 and PGE2 in inducing edema, pain, and in increasing vascular permeability. We investigated the interaction of miscellaneous drugs with the edema and the hyperalgesia caused by 2.5 microgram of PAF-acether. Non-steroidal anti-inflammatory (NSAI) drugs exerted only moderate effects on the edema without affecting hyperalgesia. Edema was highly reduced by various agents: prednisolone, L-cysteine, anti-calcic drugs, theophylline, PGI2, salbutamol, clonidine. All of them, except clonidine, and in contrast to NSAI drugs, were more potent on PAF-acether edema than on kaolin edema; a possible link between these agents is their ability to increase cyclic AMP levels in the cells and consequently to reduce lysosomal enzyme release. PAF-acether itself, injected intra-peritoneally, inhibited PAF-acether edema without preventing pain, at doses inactive on arterial pressure and hematocrit, but inducing marked gastric mucosal damage. Among the drugs tested, including analgesics, only PGI2 and imidazole improved PAF-induced hyperalgesia, showing a dissociation between edema and hyperalgesia not only in their induction (doses of PAF required, time course of the phenomena), but in the drugs able to antagonize their development too.
Vakhrushev, Ia M; Loshchakova, O Iu
2007-01-01
A complex study of 147 patients who were taking non-steroid anti-inflammatory drugs (NSAIDs) revealed gastric lesions in 120 patients (81.6%). H2 blocker (ranitidine) was used for treating 40 patients with NSAID-induced gastropathy, proton pump inhibitor (omeprazole) was used for 40 patients, and Gastrozepin combined with Misoprostol--for 40 patients. Pain syndrome and dyspepsia were eliminated in most of the patients as a result of the treatment. Using Gastrozepin and Misoprostol produced an active effect on the trophic processes in the gastric mucous coat and caused erosion and ulcer healing. As compared to ranitidine and omeprazole, Gastrozepin used in combination with Cytotec produces a lower effect on the reduction of the acid-producing stomach function, yet it has a considerably greater effect on the normalization of the gastric mucus structure and restoration of metabolism of the gastric mucous coat collagen.
Hasegawa, Tomoya; Hall, Christopher J; Crosier, Philip S; Abe, Gembu; Kawakami, Koichi; Kudo, Akira; Kawakami, Atsushi
2017-02-23
Cellular responses to injury are crucial for complete tissue regeneration, but their underlying processes remain incompletely elucidated. We have previously reported that myeloid-defective zebrafish mutants display apoptosis of regenerative cells during fin fold regeneration. Here, we found that the apoptosis phenotype is induced by prolonged expression of interleukin 1 beta ( il1b ). Myeloid cells are considered to be the principal source of Il1b, but we show that epithelial cells express il1b in response to tissue injury and initiate the inflammatory response, and that its resolution by macrophages is necessary for survival of regenerative cells. We further show that Il1b plays an essential role in normal fin fold regeneration by regulating expression of regeneration-induced genes. Our study reveals that proper levels of Il1b signaling and tissue inflammation, which are tuned by macrophages, play a crucial role in tissue regeneration.
Gimsa, Ulrike; Mitchison, N Avrion; Brunner-Weinzierl, Monika C
2013-01-01
Astrocytes have many functions in the central nervous system (CNS). They support differentiation and homeostasis of neurons and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB) and make up the glia limitans. Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the CNS. Depending on the microenvironment, they may become potent antigen-presenting cells for T cells and they may contribute to inflammatory processes. They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory mediators. We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with lymphocytes, which may either aggravate or suppress neuroinflammation.
Movita, Dowty; Biesta, Paula; Kreefft, Kim; Haagmans, Bart; Zuniga, Elina; Herschke, Florence; De Jonghe, Sandra; Janssen, Harry L. A.; Gama, Lucio; Boonstra, Andre
2015-01-01
ABSTRACT Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80high-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of adequate animal model systems. This knowledge is, however, crucial to developing new antiviral strategies aimed at eradicating these chronic infections. We model virus-host interactions during the initial phase of liver inflammation 24 h after inoculating mice with LCMV. We show that infected Kupffer cells are rapidly outnumbered by infiltrating inflammatory monocytes, which secrete proinflammatory cytokines but are less phagocytic. Nevertheless, these recruited inflammatory monocytes start to resemble Kupffer cells on a transcript level. The specificity of these cellular changes for virus-induced liver inflammation is corroborated by demonstrating opposite functions of monocytes after LPS challenge. Overall, this demonstrates the enormous functional and genetic plasticity of infiltrating monocytes and identifies them as an important target cell for future treatment regimens. PMID:25673700
Anti‑inflammatory and anti‑proliferative effects of Rhus verniciflua Stokes in RAW264.7 cells.
Choi, Han-Seok; Seo, Hye Sook; Kim, Soon Re; Choi, Youn Kyung; Jang, Bo-Hyoung; Shin, Yong-Cheol; Ko, Seong-Gyu
2014-01-01
Inflammatory response is a major defense mechanism against pathogens and chemical or mechanical injury. Rhus verniciflua Stokes (RVS) has traditionally been used as an ingredient in East Asian medicine for the treatment of gastritis, stomach cancer and atherosclerosis. The aim of the current study was to analyze the effect of RVS on LPS‑induced inflammatory responses in the RAW264.7 mouse macrophage cell line. RAW264.7 cells were treated with various concentrations of RVS and LPS at specific time points. WST assay, trypan blue assay and quantification of activated cells revealed that RVS suppressed cell proliferation in a dose‑dependent manner. RVS induced G1 cell cycle arrest, suppressed iNOS and COX‑2 mRNA expression induced by LPS and decreased intracellular ROS levels induced by LPS. In addition, RVS induced PARP and caspase‑3 cleavage suggesting that RVS causes cell death. Results of the present study indicate that RVS may be advantageous in treating inflammatory disease.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.
Itraconazole inhibits TNF-α-induced CXCL10 expression in oral fibroblasts.
Ohta, K; Ishida, Y; Fukui, A; Nishi, H; Naruse, T; Takechi, M; Kamata, N
2015-01-01
Itraconazole (ICZ) has a broad spectrum of antifungal activity including a wide range of Candida spp. TNF-α, an inflammatory cytokine associated with Th1-mediated oral inflammatory disease, enhances inflammatory mediators, such as CXCR3-agonistic chemokines including CXCL10. We examined the anti-inflammatory potential of ICZ against TNF-α-induced chemokines in oral fibroblasts. We investigated the effects of ICZ on mRNA expressions of various TNF-α-induced chemokines in immortalized oral keratinocytes (RT7) and oral fibroblasts (GT1) using quantitative PCR analysis. Subsequently, the effects of ICZ and fluconazole (FLZ) on TNF-α-induced CXCL10 proteins in GT1 and primary fibroblasts were examined using enzyme-linked immunosorbent assays (ELISA). The effect of ICZ on signal transduction protein phosphorylation involved in CXCL10 production from TNF-α-stimulated GT1 was examined by western blotting. ICZ inhibited TNF-α-induced CXCL10 mRNA in GT1, but not RT7. Although ICZ did not affect TNF-α-induced IL-8 mRNA, the mRNAs of TNF-α-induced CXCR3-agonistic chemokines such as CXCL9 and CXCL11 were inhibited by ICZ in GT1. TNF-α-induced CXCL10 protein production in GT1 and primary fibroblasts was inhibited by ICZ, but not FLZ. Finally, ICZ inhibited TNF-α-induced phosphorylation of c-JUN, which is related to CXCL10 production by TNF-α-stimulated GT1. ICZ may be useful as therapy for Th1-mediated oral inflammatory disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin
2018-01-01
Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state. PMID:29410668
Wang, Qiang-Song; Xiang, Yaozu; Cui, Yuan-Lu; Lin, Ke-Ming; Zhang, Xin-Fang
2012-01-01
Background and Purpose The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported. Methodology/Principal Findings The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E2 (PGE2) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo. Conclusions and Implications These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the edible blue pigments to be developed as a new health-enhancing nutritional food for the prevention and treatment of inflammatory diseases. PMID:22479539
Miyamoto, H; Saura, R; Harada, T; Doita, M; Mizuno, K
2000-04-01
Lumbar disc herniation (LDH) is the disease which is the major cause of radiculopathy. In terms of the pathogenesis of disease, it is reported that prostaglandinE2 (PGE2) plays an important role to induce radiculopathy. Arachidonate cascade, which is the process of PGE2 synthesis, is mainly regulated by two kinds of enzymes, phospholipaseA2 (PLA2) and cyclooxy genase (COX). Previously, PLA2 was recognized as the rate-limiting enzyme of this cascade, and some authors reported the clinical significance of PLA2 at the site of LDH concerning the radicular pain. Recently, COX was elucidated to consist of 2 types of isoform, a constitutive form of COX-1 and an inducible form of COX-2. COX-2 has been focused as a key enzyme to regulate PGE2 synthesis and plays an important role in inflammation, because COX-2 was induced in many types of cells by the stimulation of inflammatory cytokines such as interleukin-1 beta (IL-1 beta) and tumor necrosis factor alpha (TNF alpha). However, it is not fully discussed whether or not, COX-2 is induced in lumbar disc tissue and if it plays a significant role in the pathogenesis of LDH. To clarify the role of COX-2 in the pathomechanism of radiculopathy of LDH, we have investigated the expression of COX-2, IL-1 beta and TNF alpha in herniated lumbar disc tissue. Immunohistologically, they were detected in the cytosol of chondrocytes constituting the disc tissue. RT-PCR showed that herniated lumbar disc-derived cells expressed mRNA of COX-2, IL-1 beta and TNF alpha in the presence of inflammatory cytokines in vitro. The disc-derived cells also produced much PGE2 by stimulating of inflammatory cytokines at the same time and this PGE2 production was distinctly suppressed by a selective inhibitor of COX-2, 6-methoxy-2-naphtyl acetic acids (6MNA). These results suggest that COX-2 and inflammatory cytokines might play a causative role in the radiculopathy of LDH through upregulating PGE2 synthesis.
Kostić, Milica; Kitić, Dušanka; Petrović, Milica B; Jevtović-Stoimenov, Tatjana; Jović, Marko; Petrović, Aleksandar; Živanović, Slavoljub
2017-03-06
Salvia sclarea L., clary, is an aromatic plant traditionally used in folk medicine for the treatment of various diseases and conditions. Although it has been primarily used as a stomachic, there are data on traditional use of S. sclarea as an agent against gingivitis, stomatitis and aphthae. The aim of the study was to examine the effect of the S. sclarea ethanolic extract on the lipopolysaccharide (LPS)-induced periodontitis in rats from the immunological and histopathological standpoint. Periodontal inflammation in rats was induced by repeated injections of LPS from Escherichia coli into the interdental papilla between the first and second right maxillary molars. The extract was administered two times a day by oral gavage (200mg/kg body weight). The inflammatory status was assessed by the measurements of proinflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) of gingival tissues and descriptive analysis of histological sections of periodontium. Chemical characterization of the extract was determined using high performance liquid chromatography system (HPLC). Antioxidant activity of the extract was estimated with two in vitro complementary methods: 2,2-diphenyl-1-picrylhydrazyl and β-carotene/linoleic acid models. Treatment with S. sclarea extract, compared to the untreated group of the rats, significantly diminished the process of inflammation decreasing the levels of IL-1β, IL-6 and TNF-α, reducing the gingival tissue lesions and preserving bone alveolar resorption. Considerably smaller number of inflammatory cells and larger number of fibroblasts was noticed. The administration of the extract three days earlier did not have significant preventive effects. Rosmarinic acid was the predominant compound in the extract. The extract showed strong antioxidant effects in both test systems. S. sclarea extract manifested anti-inflammatory effect in LPS-induced periodontitis suggesting that it may have a role as a therapeutic agent in periodontal diseases. Having in mind that overproduction of reactive oxygen species is connected to periodontitis, the strong antioxidant capacity may be contributable to anti-inflammatory properties of the extract. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Jiang, Zhongjia; Song, Fuyang; Li, Yanan; Xue, Di; Deng, Guangcun; Li, Min
2017-01-01
Mycoplasma ovipneumoniae (M. ovipneumoniae) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections. PMID:28553017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Keiko; Ninomiya, Yuichi; Iseki, Mioko
2008-03-14
(5E,7Z,10Z,13Z,16Z,19Z)-4-Hydroxy-5,7,10,13,16,19-docosahexaenoic acid (4-OHDHA) is a potential agonist of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) and antidiabetic agent as has been previously reported. As PPAR{gamma} agonists may also have anti-inflammatory functions, in this study, we investigated whether 4-OHDHA has an inhibitory effect on expression of inflammatory genes in vitro and whether 4-OHDHA could relieve the symptoms of dextran sodium sulfate (DSS)-induced colitis in a murine model of inflammatory bowel disease. 4-OHDHA inhibited production of nitric oxide and expression of a subset of inflammatory genes including inducible nitric oxide synthase (Nos2/iNOS) and interleukin 6 (Il6) by lipopolysaccharide (LPS)-activated macrophages. In addition, 4-OHDHA-treated mice whenmore » compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of 4-OHDHA-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). These results suggest that 4-OHDHA has potentially clinically useful anti-inflammatory effects mediated by suppression of inflammatory gene expression.« less
Yang, Lichao; Guo, Han; Li, Ying; Meng, Xianglan; Yan, Lu; Dan Zhang; Wu, Sangang; Zhou, Hao; Peng, Lu; Xie, Qiang; Jin, Xin
2016-10-10
The present study aimed to examine the anti-inflammatory actions of oleoylethanolamide (OEA) in lipopolysaccharide (LPS)-induced THP-1 cells. The cells were stimulated with LPS (1 μg/ml) in the presence or absence of OEA (10, 20 and 40 μM). The pro-inflammatory cytokines were evaluated by qRT-PCR and ELISA. The THP-1 cells were transiently transfected with PPARα small-interfering RNA, and TLR4 activity was determined with a blocking test using anti-TLR4 antibody. Additionally, a special inhibitor was used to analyse the intracellular signaling pathway. OEA exerted a potent anti-inflammatory effect by reducing the production of pro-inflammatory cytokines and TLR4 expression, and by enhancing PPARα expression. The modulatory effects of OEA on LPS-induced inflammation depended on PPARα and TLR4. Importantly, OEA inhibited LPS-induced NF-κB activation, IκBα degradation, expression of AP-1, and the phosphorylation of ERK1/2 and STAT3. In summary, our results demonstrated that OEA exerts anti-inflammatory effects by enhancing PPARα signaling, inhibiting the TLR4-mediated NF-κB signaling pathway, and interfering with the ERK1/2-dependent signaling cascade (TLR4/ERK1/2/AP-1/STAT3), which suggests that OEA may be a therapeutic agent for inflammatory diseases.
Methodological considerations on descriptive studies of induced periodontal diseases in rats.
Galvão, Mariane Ponzio; Chapper, Ana; Rösing, Cassiano Kuchenbecker; Ferreira, Maria Beatriz; de Souza, Maria Antonieta
2003-01-01
The aim of this study was to show the technique and the methodological approach used in describing histological characteristics of induced periodontal disease in rats. To reach that inflammatory process, periodontal disease was induced by ligature, with or without sucrose-rich diet. Twenty-four female adult (60 days old) Wistar rats were divided in four groups: Group 1, or control (which received standard diet), Group 2 (which received ligature around the upper second molars and a standard diet), Group 3 (which received a sucrose-rich diet), and Group 4 (which received ligature around the upper second molars and a sucrose-rich diet). The animals were followed for a period of 30 days, after which they were sacrificed. The upper second molars were removed, processed, and the histological characteristics were analyzed by a descriptive dichotomous method. The results were analyzed by the Fisher's exact test (significance level of 95%) and by a residual test, which showed the relation between groups and histological characteristics. The animals which received ligature (Groups 2 and 4) showed histological characteristics related with periodontitis, whilst the animals without ligatures showed no periodontal destruction. This was shown by a distribution of these groups in extremes of a graphic representation. The use of a ligature, as done in this study, was able to promote a chronic inflammatory process in the periodontium of rats, regardless of the adopted diet. The correspondence factorial analysis was capable of showing these characteristics, being one more tool to be used in histological research.
Treviño, Samuel; Aguilar-Alonso, Patrícia; Flores Hernandez, Jose Angel; Brambila, Eduardo; Guevara, Jorge; Flores, Gonzalo; Lopez-Lopez, Gustavo; Muñoz-Arenas, Guadalupe; Morales-Medina, Julio Cesar; Toxqui, Veronica; Venegas, Berenice; Diaz, Alfonso
2015-09-01
A high calorie intake can induce the appearance of the metabolic syndrome (MS), which is a serious public health problem because it affects glucose levels and triglycerides in the blood. Recently, it has been suggested that MS can cause complications in the brain, since chronic hyperglycemia and insulin resistance are risk factors for triggering neuronal death by inducing a state of oxidative stress and inflammatory response that affect cognitive processes. This process, however, is not clear. In this study, we evaluated the effect of the consumption of a high-calorie diet (HCD) on both neurodegeneration and spatial memory impairment in rats. Our results demonstrated that HCD (90 day consumption) induces an alteration of the main energy metabolism markers, indicating the development of MS in rats. Moreover, an impairment of spatial memory was observed. Subsequently, the brains of these animals showed activation of an inflammatory response (increase in reactive astrocytes and interleukin1-β as well as tumor necrosis factor-α) and oxidative stress (reactive oxygen species and lipid peroxidation), causing a reduction in the number of neurons in the temporal cortex and hippocampus. Altogether, these results suggest that a HCD promotes the development of MS and contributes to the development of a neurodegenerative process and cognitive failure. In this regard, it is important to understand the relationship between MS and neuronal damage in order to prevent the onset of neurodegenerative disorders. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Qilu; Diabetes Center and Department of Endocrinology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang; Wang, Jingying
High glucose-induced inflammatory response in diabetic complications plays an important role in disease occurrence and development. With inflammatory cytokines and signaling pathways as important mediators, targeting inflammation may be a new avenue for treating diabetic complications. Chalcones are a class of natural products with various pharmacological activities. Previously, we identified L2H17 as a chalcone with good anti-inflammatory activity, inhibiting LPS-induced inflammatory response in macrophages. In this study, we examined L2H17's effect on hyperglycemia-induced inflammation both in mouse peritoneal macrophages and a streptozotocin-induced T1D mouse model. Our results indicate that L2H17 exhibits a strong inhibitory effect on the expression of pro-inflammatorymore » cytokines, cell adhesion molecules, chemokines and macrophage adhesion via modulation of the MAPK/NF-κB pathway. Furthermore, in vivo oral administration of L2H17 resulted in a significant decrease in the expression of pro-inflammatory cytokines and cell adhesion molecules, contributing to a reduction of key markers for renal and cardiac dysfunction and improvements in fibrosis and pathological changes in both renal and cardiac tissues of diabetic mice. These findings provide the evidence supporting targeting MAPK/NF-κB pathway may be effective therapeutic strategy for diabetic complications, and suggest that L2H17 may be a promising anti-inflammatory agent with potential as a therapeutic agent in the treatment of renal and cardiac diabetic complications. - Highlights: • Chalcones are a class of natural products with various pharmacological activities. • We identified L2H17 a chalcone with good anti-inflammatory activity. • L2H17 improved histological abnormalities both in diabetic heart and kidney. • L2H17 reduced inflammatory responses in HG-stimulated mouse peritoneal macrophages. • MAPKs/NF-κB pathway may be a promising therapeutic target for diabetic complications.« less
Smith, Russell W; Coleman, Jeffrey D; Thompson, Jerry T; Vanden Heuvel, John P
2016-12-01
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor that is involved in the regulation of the inflammatory response via activation of anti-inflammatory target genes and ligand-induced disassociation with the transcriptional repressor B-cell lymphoma 6 (BCL6). Chronic pancreatitis is considered to be a significant etiological factor for pancreatic cancer development, and a better understanding of the underlying mechanisms of the transition between inflammation and carcinogenesis would help further elucidate chemopreventative options. The aim of this study was to determine the role of PPARβ/δ and BCL6 in human pancreatic cancer of ductal origin, as well as the therapeutic potential of PPARβ/δ agonist, GW501516. Over-expression of PPARβ/δ inhibited basal and TNFα-induced Nfkb luciferase activity. GW501516-activated PPARβ/δ suppressed TNFα-induced Nfkb reporter activity. RNAi knockdown of Pparb attenuated the GW501516 effect on Nfkb luciferase, while knockdown of Bcl6 enhanced TNFα-induced Nfkb activity. PPARβ/δ activation induced expression of several anti-inflammatory genes in a dose-dependent manner, and GW501516 inhibited Mcp1 promoter-driven luciferase in a BCL6-dependent manner. Several pro-inflammatory genes were suppressed in a BCL6-dependent manner. Conditioned media from GW501516-treated pancreatic cancer cells suppressed pro-inflammatory expression in THP-1 macrophages as well as reduced invasiveness across a basement membrane. These results demonstrate that PPARβ/δ and BCL6 regulate anti-inflammatory signaling in human pancreatic cancer cells by inhibiting NFκB and pro-inflammatory gene expression, and via induction of anti-inflammatory target genes. Activation of PPARβ/δ may be a useful target in pancreatic cancer therapeutics.
Sun, Shukai; Yin, Yue; Yin, Xin; Cao, Fale; Luo, Daoshu; Zhang, Ting; Li, Yunqing; Ni, Longxing
2012-09-01
Inflammatory pain is an important clinical symptom. The levels of extracellular signal-regulated kinases (ERKs) and the levels of cytokines such as interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) play important roles in inflammatory pain. Tanshinone IIA (TIIA) is an important component of Danshen, a traditional Chinese medicine that has been commonly used to treat cardiovascular disease. In this study, we investigated the potential anti-inflammatory nociceptive effects of TIIA on complete Freund's adjuvant (CFA)-induced inflammation and inflammatory pain in rats. The effects of TIIA on CFA-induced thermal and mechanical hypersensitivity were investigated using behavioral tests. The levels of ERKs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transient receptor potential vanilloid 1 (TRPV1) in the fifth segment of the lumbar spinal cord (L5) ganglia were detected by Western blot, and the levels of mRNA and protein production of IL1-β, IL-6 and TNF-α were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). In this study, we found that TIIA attenuates the development of CFA-induced mechanical and thermal hypersensitivity. In addition, p-ERK and NF-κB expression levels were inhibited by TIIA, and the levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced. Finally, we found that the expression level of TRPV1 was significantly decreased after TIIA injection. This study demonstrated that TIIA has significant anti-nociceptive effects in a rat model of CFA-induced inflammatory pain. TIIA can inhibit the activation of ERK signaling pathways and the expression of pro-inflammatory cytokines. These results suggest that TIIA may be a potential anti-inflammatory and anti-nociceptive drug. Copyright © 2012 Elsevier Inc. All rights reserved.
Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Abe, Jun-Ichi; Berk, Bradford C; Li, Jian-Dong; Yan, Chen
2010-05-25
Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.
Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism
Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Berk, Bradford C.; Li, Jian-Dong; Yan, Chen
2010-01-01
Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-α–induced NF-κB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-α- or LPS-induced up-regulation of proinflammatory mediators, including TNF-α, IL-1β, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-α- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-κB–dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca2+ regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases. PMID:20448200
Alijotas-Reig, J
2015-09-01
In 1964, Miyoshi reported a series of patients with diverse symptoms after receiving treatment with silicone or paraffin fillers. Miyoshi named this condition 'human adjuvant disease'. Since then, the literature has been flooded with case reports and case series of granulomatous and systemic autoimmune disorders related to vaccines, infection or other adjuvants such as silicone and other biomaterials. A new term -autoimmune/inflammatory syndrome induced by adjuvants--has recently been coined for a process that includes several clinical features previously described by Miyoshi plus other clinical and laboratory parameters related to exposure to diverse external stimuli. Disorders such as siliconosis, Gulf War syndrome, macrophagic myofasciitis syndrome, sick building syndrome and post-vaccination syndrome have been included in autoimmune/inflammatory syndrome induced by adjuvants. Disorders such as Spanish toxic oil syndrome and Ardystil syndrome could also be included. Furthermore, biomaterials other than silicone should also be considered as triggering factors for these adjuvant-related syndromes. New diagnostic criteria in this field have been proposed. Nevertheless, many of these criteria are too subjective, leading to some patients being diagnosed with chronic fatigue syndrome or other 'central sensitization syndromes'. Diagnostic criteria based only on objective clinical and laboratory data to be further discussed and validated are proposed herein. © The Author(s) 2015.
Berberine Ameliorates Diabetic Neuropathy: TRPV1 Modulation by PKC Pathway.
Zan, Yan; Kuai, Cui-Xing; Qiu, Zhi-Xia; Huang, Fang
2017-01-01
In recent years, berberine has increasingly become a topic of research as a treatment for diabetes due to its repair function, which recovers damaged pancreatic β cells. However, it is the complications of diabetes that seriously affect patients' life quality and longevity, among which diabetic neuropathy and the consequent acute pain are the most common. In this study, we established STZ-induced diabetic models to observe whether berberine, a main constitute of Coptis chinensis Franch which has shown good hypoglycemic effects, could relieve diabetes-induced pain and explored its possible mechanism in rats and mice. Behavior assays showed increasing mechanical allodynia and thermal hyperalgesia thresholds by the Von Frey test and tail flick test during the treatment of berberine. It was found that the administration of berberine (20, 60 mg/kg; 30, 90 mg/kg) suppressed the expression of PKCε and TRPV1 which could be activated by hyperglycemia-induced inflammatory reaction. Our results also presented its capability to reduce the over expression of TNF-[Formula: see text] in diabetic rats and mice. TNF-[Formula: see text] is an inflammatory cytokine, which is closely related to diabetic peripheral neuropathy (DPN). Consequently, we supposed that berberine exerts its therapeutic effects in part by suppressing the inflammatory process and blocking the PKC pathway to inhibit TRPV1 activation, which damages neurons and causes diabetic pain.
Feldman, Mark; La, Vu Dang; Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise Madalena; Grenier, Daniel
2011-12-01
Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Repeated, but Not Acute, Stress Suppresses Inflammatory Plasma Extravasation
NASA Astrophysics Data System (ADS)
Strausbaugh, Holly J.; Dallman, Mary F.; Levine, Jon D.
1999-12-01
Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.
Becker, F; Yi, P; Al-Kofahi, M; Ganta, V C; Morris, J; Alexander, J S
2014-03-01
Alterations in the intestinal lymphatic network are well-established features of human and experimental inflammatory bowel disease (IBD). Such lymphangiogenic expansion might enhance classic intestinal lymphatic transport, eliminating excess accumulations of fluid, inflammatory cells and mediators, and could therefore be interpreted as an 'adaptive' response to acute and chronic inflammatory processes. However, whether these new lymphatic vessels are functional, unregulated or immature (and what factors may promote 'maturation' of these vessels) is currently an area under intense investigation. It is still controversial whether impaired lymphatic function in IBD is a direct consequence of the intestinal inflammation, or a preceding lymphangitis-like event. Current research has uncovered novel regulatory factors as well as new roles for familiar signaling pathways, which appear to be linked to inflammation-induced lymphatic alterations. The current review summarizes mechanisms amplifying lymphatic dysregulation and remodeling in intestinal inflammation at the organ, cell and molecular levels and discusses the influence of lymphangiogenesis and intestinal lymphatic transport function as they relate to IBD pathophysiology.
Inflammation in the pathophysiology of essential hypertension.
Montecucco, Fabrizio; Pende, Aldo; Quercioli, Alessandra; Mach, François
2011-01-01
In spite of the huge amount of research recently performed in this area, the pathogenesis of human hypertension remains elusive. Thus, hypertension has to be defined as "essential" for the majority of patients with high blood pressure. Given the lack of animal models useful to investigate essential hypertension, we analyze and discuss both clinical and basic research studies indicating that essential hypertension should be considered as a potential multifactorial inflammatory disease. The pathophysiology of essential hypertension might result from interactions between genetic and environmental factors. Morphological abnormalities in the renal parenchyma and arteries have also been shown to determine hypertension. Inflammatory processes might induce renal vasoconstriction, ischemia and injury that can sustain systemic hypertension. Arterial and tubulointerstitial infiltration of inflammatory cells in response to renal damage might further increase renal and vascular alterations through the production of oxidants and other soluble inflammatory mediators. The present review gives an update regarding the latest research on the possible direct role of inflammation in the pathophysiology of essential hypertension.
Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia
2016-01-01
Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.
Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia
2016-01-01
Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534