A large-scale perspective on stress-induced alterations in resting-state networks
NASA Astrophysics Data System (ADS)
Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron
2016-02-01
Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.
'Fracking', Induced Seismicity and the Critical Earth
NASA Astrophysics Data System (ADS)
Leary, P.; Malin, P. E.
2012-12-01
Issues of 'fracking' and induced seismicity are reverse-analogous to the equally complex issues of well productivity in hydrocarbon, geothermal and ore reservoirs. In low hazard reservoir economics, poorly producing wells and low grade ore bodies are many while highly producing wells and high grade ores are rare but high pay. With induced seismicity factored in, however, the same distribution physics reverses the high/low pay economics: large fracture-connectivity systems are hazardous hence low pay, while high probability small fracture-connectivity systems are non-hazardous hence high pay. Put differently, an economic risk abatement tactic for well productivity and ore body pay is to encounter large-scale fracture systems, while an economic risk abatement tactic for 'fracking'-induced seismicity is to avoid large-scale fracture systems. Well productivity and ore body grade distributions arise from three empirical rules for fluid flow in crustal rock: (i) power-law scaling of grain-scale fracture density fluctuations; (ii) spatial correlation between spatial fluctuations in well-core porosity and the logarithm of well-core permeability; (iii) frequency distributions of permeability governed by a lognormality skewness parameter. The physical origin of rules (i)-(iii) is the universal existence of a critical-state-percolation grain-scale fracture-density threshold for crustal rock. Crustal fractures are effectively long-range spatially-correlated distributions of grain-scale defects permitting fluid percolation on mm to km scales. The rule is, the larger the fracture system the more intense the percolation throughput. As percolation pathways are spatially erratic and unpredictable on all scales, they are difficult to model with sparsely sampled well data. Phenomena such as well productivity, induced seismicity, and ore body fossil fracture distributions are collectively extremely difficult to predict. Risk associated with unpredictable reservoir well productivity and ore body distributions can be managed by operating in a context which affords many small failures for a few large successes. In reverse view, 'fracking' and induced seismicity could be rationally managed in a context in which many small successes can afford a few large failures. However, just as there is every incentive to acquire information leading to higher rates of productive well drilling and ore body exploration, there are equal incentives for acquiring information leading to lower rates of 'fracking'-induced seismicity. Current industry practice of using an effective medium approach to reservoir rock creates an uncritical sense that property distributions in rock are essentially uniform. Well-log data show that the reverse is true: the larger the length scale the greater the deviation from uniformity. Applying the effective medium approach to large-scale rock formations thus appears to be unnecessarily hazardous. It promotes the notion that large scale fluid pressurization acts against weakly cohesive but essentially uniform rock to produce large-scale quasi-uniform tensile discontinuities. Indiscriminate hydrofacturing appears to be vastly more problematic in reality than as pictured by the effective medium hypothesis. The spatial complexity of rock, especially at large scales, provides ample reason to find more controlled pressurization strategies for enhancing in situ flow.
Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow
Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi
2017-01-01
Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076
NASA Astrophysics Data System (ADS)
Frolov, V. L.; Komrakov, G. P.; Glukhov, Ya. V.; Andreeva, E. S.; Kunitsyn, V. E.; Kurbatov, G. A.
2016-07-01
We consider the experimental results obtained by studying the large-scale structure of the HF-disturbed ionospheric region. The experiments were performed using the SURA heating facility. The disturbed ionospheric region was sounded by signals radiated by GPS navigation satellite beacons as well as by signals of low-orbit satellites (radio tomography). The results of the experiments show that large-scale plasma density perturbations induced at altitudes higher than the F2 layer maximum can contribute significantly to the measured variations of the total electron density and can, with a certain arrangement of the reception points, be measured by the GPS sounding method.
NASA Astrophysics Data System (ADS)
Kleeorin, N.
2018-06-01
We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.
The formation of cosmic structure in a texture-seeded cold dark matter cosmogony
NASA Technical Reports Server (NTRS)
Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III
1992-01-01
The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.
Transport induced by large scale convective structures in a dipole-confined plasma.
Grierson, B A; Mauel, M E; Worstell, M W; Klassen, M
2010-11-12
Convective structures characterized by E×B motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, A. K.; Goossens, M.
2013-11-01
We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In themore » deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ≈ 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.« less
Characterization of spray-induced turbulence using fluorescence PIV
NASA Astrophysics Data System (ADS)
van der Voort, Dennis D.; Dam, Nico J.; Clercx, Herman J. H.; Water, Willem van de
2018-07-01
The strong shear induced by the injection of liquid sprays at high velocities induces turbulence in the surrounding medium. This, in turn, influences the motion of droplets as well as the mixing of air and vapor. Using fluorescence-based tracer particle image velocimetry, the velocity field surrounding 125-135 m/s sprays exiting a 200-μm nozzle is analyzed. For the first time, the small- and large-scale turbulence characteristics of the gas phase surrounding a spray has been measured simultaneously, using a large eddy model to determine the sub-grid scales. This further allows the calculation of the Stokes numbers of droplets, which indicates the influence of turbulence on their motion. The measurements lead to an estimate of the dissipation rate ɛ ≈ 35 m2 s^{-3}, a microscale Reynolds number Re_{λ } ≈ 170, and a Kolmogorov length scale of η ≈ 10^{-4} m. Using these dissipation rates to convert a droplet size distribution to a distribution of Stokes numbers, we show that only the large scale motion of turbulence disperses the droplet in the current case, but the small scales will grow in importance with increasing levels of atomization and ambient pressures.
USDA-ARS?s Scientific Manuscript database
Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies...
Large-Scale Structure and Hyperuniformity of Amorphous Ices
NASA Astrophysics Data System (ADS)
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto
2017-09-01
We investigate the large-scale structure of amorphous ices and transitions between their different forms by quantifying their large-scale density fluctuations. Specifically, we simulate the isothermal compression of low-density amorphous ice (LDA) and hexagonal ice to produce high-density amorphous ice (HDA). Both HDA and LDA are nearly hyperuniform; i.e., they are characterized by an anomalous suppression of large-scale density fluctuations. By contrast, in correspondence with the nonequilibrium phase transitions to HDA, the presence of structural heterogeneities strongly suppresses the hyperuniformity and the system becomes hyposurficial (devoid of "surface-area fluctuations"). Our investigation challenges the largely accepted "frozen-liquid" picture, which views glasses as structurally arrested liquids. Beyond implications for water, our findings enrich our understanding of pressure-induced structural transformations in glasses.
Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp
Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.
Scale Dependence of Dark Energy Antigravity
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.
2002-09-01
We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.
Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.
Seshadri, T R; Subramanian, Kandaswamy
2009-08-21
Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David; Johnson, Kenneth
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David O.; Johnson, Kenneth L.
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
van Scheppingen, Arjella R; de Vroome, Ernest M M; Ten Have, Kristin C J M; Bos, Ellen H; Zwetsloot, Gerard I J M; van Mechelen, W
2014-11-01
To examine the effectiveness of an organizational large-scale intervention applied to induce a health-promoting organizational change process. A quasi-experimental, "as-treated" design was used. Regression analyses on data of employees of a Dutch dairy company (n = 324) were used to examine the effects on bonding social capital, openness, and autonomous motivation toward health and on employees' lifestyle, health, vitality, and sustainable employability. Also, the sensitivity of the intervention components was examined. Intervention effects were found for bonding social capital, openness toward health, smoking, healthy eating, and sustainable employability. The effects were primarily attributable to the intervention's dialogue component. The change process initiated by the large-scale intervention contributed to a social climate in the workplace that promoted health and ownership toward health. The study confirms the relevance of collective change processes for health promotion.
Expansion of Human Induced Pluripotent Stem Cells in Stirred Suspension Bioreactors.
Almutawaa, Walaa; Rohani, Leili; Rancourt, Derrick E
2016-01-01
Human induced pluripotent stem cells (hiPSCs) hold great promise as a cell source for therapeutic applications and regenerative medicine. Traditionally, hiPSCs are expanded in two-dimensional static culture as colonies in the presence or absence of feeder cells. However, this expansion procedure is associated with lack of reproducibility and low cell yields. To fulfill the large cell number demand for clinical use, robust large-scale production of these cells under defined conditions is needed. Herein, we describe a scalable, low-cost protocol for expanding hiPSCs as aggregates in a lab-scale bioreactor.
Contribution of peculiar shear motions to large-scale structure
NASA Technical Reports Server (NTRS)
Mueler, Hans-Reinhard; Treumann, Rudolf A.
1994-01-01
Self-gravitating shear flow instability simulations in a cold dark matter-dominated expanding Einstein-de Sitter universe have been performed. When the shear flow speed exceeds a certain threshold, self-gravitating Kelvin-Helmoholtz instability occurs, forming density voids and excesses along the shear flow layer which serve as seeds for large-scale structure formation. A possible mechanism for generating shear peculiar motions are velocity fluctuations induced by the density perturbations of the postinflation era. In this scenario, short scales grow earlier than large scales. A model of this kind may contribute to the cellular structure of the luminous mass distribution in the universe.
Chan, H B; Stambaugh, C
2007-08-10
We explore fluctuation-induced switching in parametrically driven micromechanical torsional oscillators. The oscillators possess one, two, or three stable attractors depending on the modulation frequency. Noise induces transitions between the coexisting attractors. Near the bifurcation points, the activation barriers are found to have a power law dependence on frequency detuning with critical exponents that are in agreement with predicted universal scaling relationships. At large detuning, we observe a crossover to a different power law dependence with an exponent that is device specific.
NASA Astrophysics Data System (ADS)
Lague, Marysa
Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.
NASA Astrophysics Data System (ADS)
Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L.
2018-01-01
Nowcasting is a new method of statistically classifying seismicity and seismic risk (Rundle et al. 2016). In this paper, the method is applied to the induced seismicity at the Geysers geothermal region in California and the induced seismicity due to fluid injection in Oklahoma. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say M_{λ } ≥ 4, and one small say M_{σ } ≥ 2. The method utilizes the number of small earthquakes that occurs between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that has occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of M_{σ } ≥ 2.75 earthquakes in Oklahoma to nowcast the number of M_{λ } ≥ 4.0 earthquakes in Oklahoma. The applicability of the scaling is illustrated during the rapid build-up of injection-induced seismicity between 2012 and 2016, and the subsequent reduction in seismicity associated with a reduction in fluid injections. The same method is applied to the geothermal-induced seismicity at the Geysers, California, for comparison.
Impact of large-scale tides on cosmological distortions via redshift-space power spectrum
NASA Astrophysics Data System (ADS)
Akitsu, Kazuyuki; Takada, Masahiro
2018-03-01
Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.
The impact of Lyman-α radiative transfer on large-scale clustering in the Illustris simulation
NASA Astrophysics Data System (ADS)
Behrens, C.; Byrohl, C.; Saito, S.; Niemeyer, J. C.
2018-06-01
Context. Lyman-α emitters (LAEs) are a promising probe of the large-scale structure at high redshift, z ≳ 2. In particular, the Hobby-Eberly Telescope Dark Energy Experiment aims at observing LAEs at 1.9 < z < 3.5 to measure the baryon acoustic oscillation (BAO) scale and the redshift-space distortion (RSD). However, it has been pointed out that the complicated radiative transfer (RT) of the resonant Lyman-α emission line generates an anisotropic selection bias in the LAE clustering on large scales, s ≳ 10 Mpc. This effect could potentially induce a systematic error in the BAO and RSD measurements. Also, there exists a recent claim to have observational evidence of the effect in the Lyman-α intensity map, albeit statistically insignificant. Aims: We aim at quantifying the impact of the Lyman-α RT on the large-scale galaxy clustering in detail. For this purpose, we study the correlations between the large-scale environment and the ratio of an apparent Lyman-α luminosity to an intrinsic one, which we call the "observed fraction", at 2 < z < 6. Methods: We apply our Lyman-α RT code by post-processing the full Illustris simulations. We simply assume that the intrinsic luminosity of the Lyman-α emission is proportional to the star formation rate of galaxies in Illustris, yielding a sufficiently large sample of LAEs to measure the anisotropic selection bias. Results: We find little correlation between large-scale environment and the observed fraction induced by the RT, and hence a smaller anisotropic selection bias than has previously been claimed. We argue that the anisotropy was overestimated in previous work due to insufficient spatial resolution; it is important to keep the resolution such that it resolves the high-density region down to the scale of the interstellar medium, that is, 1 physical kpc. We also find that the correlation can be further enhanced by assumptions in modeling intrinsic Lyman-α emission.
NASA Astrophysics Data System (ADS)
Berloff, P. S.
2016-12-01
This work aims at developing a framework for dynamically consistent parameterization of mesoscale eddy effects for use in non-eddy-resolving ocean circulation models. The proposed eddy parameterization framework is successfully tested on the classical, wind-driven double-gyre model, which is solved both with explicitly resolved vigorous eddy field and in the non-eddy-resolving configuration with the eddy parameterization replacing the eddy effects. The parameterization focuses on the effect of the stochastic part of the eddy forcing that backscatters and induces eastward jet extension of the western boundary currents and its adjacent recirculation zones. The parameterization locally approximates transient eddy flux divergence by spatially localized and temporally periodic forcing, referred to as the plunger, and focuses on the linear-dynamics flow solution induced by it. The nonlinear self-interaction of this solution, referred to as the footprint, characterizes and quantifies the induced eddy forcing exerted on the large-scale flow. We find that spatial pattern and amplitude of each footprint strongly depend on the underlying large-scale flow, and the corresponding relationships provide the basis for the eddy parameterization and its closure on the large-scale flow properties. Dependencies of the footprints on other important parameters of the problem are also systematically analyzed. The parameterization utilizes the local large-scale flow information, constructs and scales the corresponding footprints, and then sums them up over the gyres to produce the resulting eddy forcing field, which is interactively added to the model as an extra forcing. Thus, the assumed ensemble of plunger solutions can be viewed as a simple model for the cumulative effect of the stochastic eddy forcing. The parameterization framework is implemented in the simplest way, but it provides a systematic strategy for improving the implementation algorithm.
Anomalies of the Asian Monsoon Induced by Aerosol Forcings
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kim, M. K.
2004-01-01
Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.
[Japanese epidemiologic investigation for non-steroidal anti-inflammatory drugs-induced ulcers].
Miyake, Kazumasa; Sakamoto, Choitsu
2011-06-01
This review summaried epidemiologic investigation for non-steroidal anti-inflammatory drugs (NSAIDs)-induced ulcers to focus on the Japanese evidence. In Japan, national health insurance does not cover procedures that prevent or lower the risk for NSAIDs-induced ulcer. In NSAIDs treatment to patients with risk factors, it is desirable to administer antiulcer agents. However, in Japan, there are no large-scale studies on the efficacy of co-medication such as proton pump inhibitors, prostaglandin analogs (misoprostol) or histamine-H2 receptor antagonists or on the effectiveness of H. pylori eradication or selective COX-2 antagonists. In the future, large-scale clinical studies should be conducted to accumulate high quality evidence including cost-effectiveness and overall safety including cardiovascular events, because Japanese differ from Westerners in several genetical or acquired factors.
NASA Astrophysics Data System (ADS)
Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey
2017-04-01
Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this research. Hopefully, all results developed from this research can be used as a warning system for Predicting Large Scale Landslides in the southern Taiwan. Keywords:Heavy Rainfall, Large Scale, landslides, Critical Rainfall Value
The role of large eddy fluctuations in the magnetic dynamics of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kaplan, Elliot
The Madison Dynamo Experiment (MDE), a liquid sodium magnetohydrodynamics experiment in a 1 m diameter sphere at the University of Wisconsin-Madison, had measured [in Spence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, A. S., E-mail: alexis-belov@yandex.ru
2015-10-15
Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.
Magnetic storm generation by large-scale complex structure Sheath/ICME
NASA Astrophysics Data System (ADS)
Grigorenko, E. E.; Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.; Riazantseva, M.; Borodkova, N. L.
2017-12-01
We study temporal profiles of interplanetary plasma and magnetic field parameters as well as magnetospheric indices. We use our catalog of large-scale solar wind phenomena for 1976-2000 interval (see the catalog for 1976-2016 in web-side ftp://ftp.iki.rssi.ru/pub/omni/ prepared on basis of OMNI database (Yermolaev et al., 2009)) and the double superposed epoch analysis method (Yermolaev et al., 2010). Our analysis showed (Yermolaev et al., 2015) that average profiles of Dst and Dst* indices decrease in Sheath interval (magnetic storm activity increases) and increase in ICME interval. This profile coincides with inverted distribution of storm numbers in both intervals (Yermolaev et al., 2017). This behavior is explained by following reasons. (1) IMF magnitude in Sheath is higher than in Ejecta and closed to value in MC. (2) Sheath has 1.5 higher efficiency of storm generation than ICME (Nikolaeva et al., 2015). The most part of so-called CME-induced storms are really Sheath-induced storms and this fact should be taken into account during Space Weather prediction. The work was in part supported by the Russian Science Foundation, grant 16-12-10062. References. 1. Nikolaeva N.S., Y. I. Yermolaev and I. G. Lodkina (2015), Modeling of the corrected Dst* index temporal profile on the main phase of the magnetic storms generated by different types of solar wind, Cosmic Res., 53(2), 119-127 2. Yermolaev Yu. I., N. S. Nikolaeva, I. G. Lodkina and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Res., , 47(2), 81-94 3. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, 2177-2186 4. Yermolaev Yu. I., I. G. Lodkina, N. S. Nikolaeva and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274 5. Yermolaev Y. I., I. G. Lodkina, N. S. Nikolaeva, M. Y. Yermolaev, M. O. Riazantseva (2017), Some Problems of Identification of Large-Scale Solar Wind types and Their Role in the Physics of the Magnetosphere, Cosmic Res., 55(3), pp. 178-189. DOI: 10.1134/S0010952517030029
Nakamura, T K M; Hasegawa, H; Daughton, W; Eriksson, S; Li, W Y; Nakamura, R
2017-11-17
Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.
Budde, Kristin S.; Barron, Daniel S.; Fox, Peter T.
2015-01-01
Developmental stuttering is a speech disorder most likely due to a heritable form of developmental dysmyelination impairing the function of the speech-motor system. Speech-induced brain-activation patterns in persons who stutter (PWS) are anomalous in various ways; the consistency of these aberrant patterns is a matter of ongoing debate. Here, we present a hierarchical series of coordinate-based meta-analyses addressing this issue. Two tiers of meta-analyses were performed on a 17-paper dataset (202 PWS; 167 fluent controls). Four large-scale (top-tier) meta-analyses were performed, two for each subject group (PWS and controls). These analyses robustly confirmed the regional effects previously postulated as “neural signatures of stuttering” (Brown 2005) and extended this designation to additional regions. Two smaller-scale (lower-tier) meta-analyses refined the interpretation of the large-scale analyses: 1) a between-group contrast targeting differences between PWS and controls (stuttering trait); and 2) a within-group contrast (PWS only) of stuttering with induced fluency (stuttering state). PMID:25463820
Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”
Naguib, Michael; Unocic, Raymond R.; Armstrong, Beth L.; ...
2015-04-17
Herein we report on a general approach to delaminate multi-layered MXenes using an organic base to induce swelling that in turn weakens the bonds between the MX layers. Simple agitation or mild sonication of the swollen MXene in water resulted in the large-scale delamination of the MXene layers. The delamination method is demonstrated for vanadium carbide, and titanium carbonitrides MXenes.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; Pękala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śacute; Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşąu, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.
2011-11-01
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60°, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~ 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for.
Low-severity fire increases tree defense against bark beetle attacks
Sharon Hood; Anna Sala; Emily K. Heyerdahl; Marion Boutin
2015-01-01
Induced defense is a common plant strategy in response to herbivory. Although abiotic damage, such as physical wounding, pruning, and heating, can induce plant defense, the effect of such damage by large-scale abiotic disturbances on induced defenses has not been explored and could have important consequences for plant survival facing future biotic...
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hua
2016-10-01
Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.
Omega from the anisotropy of the redshift correlation function
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1993-01-01
Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.
NASA Technical Reports Server (NTRS)
Gatski, T. B.
1979-01-01
The sound due to the large-scale (wavelike) structure in an infinite free turbulent shear flow is examined. Specifically, a computational study of a plane shear layer is presented, which accounts, by way of triple decomposition of the flow field variables, for three distinct component scales of motion (mean, wave, turbulent), and from which the sound - due to the large-scale wavelike structure - in the acoustic field can be isolated by a simple phase average. The computational approach has allowed for the identification of a specific noise production mechanism, viz the wave-induced stress, and has indicated the effect of coherent structure amplitude and growth and decay characteristics on noise levels produced in the acoustic far field.
ERIC Educational Resources Information Center
Andrich, David; Marais, Ida; Humphry, Stephen Mark
2016-01-01
Recent research has shown how the statistical bias in Rasch model difficulty estimates induced by guessing in multiple-choice items can be eliminated. Using vertical scaling of a high-profile national reading test, it is shown that the dominant effect of removing such bias is a nonlinear change in the unit of scale across the continuum. The…
Ectopically tethered CP190 induces large-scale chromatin decondensation
NASA Astrophysics Data System (ADS)
Ahanger, Sajad H.; Günther, Katharina; Weth, Oliver; Bartkuhn, Marek; Bhonde, Ramesh R.; Shouche, Yogesh S.; Renkawitz, Rainer
2014-01-01
Insulator mediated alteration in higher-order chromatin and/or nucleosome organization is an important aspect of epigenetic gene regulation. Recent studies have suggested a key role for CP190 in such processes. In this study, we analysed the effects of ectopically tethered insulator factors on chromatin structure and found that CP190 induces large-scale decondensation when targeted to a condensed lacO array in mammalian and Drosophila cells. In contrast, dCTCF alone, is unable to cause such a decondensation, however, when CP190 is present, dCTCF recruits it to the lacO array and mediates chromatin unfolding. The CP190 induced opening of chromatin may not be correlated with transcriptional activation, as binding of CP190 does not enhance luciferase activity in reporter assays. We propose that CP190 may mediate histone modification and chromatin remodelling activity to induce an open chromatin state by its direct recruitment or targeting by a DNA binding factor such as dCTCF.
Rossby waves and two-dimensional turbulence in a large-scale zonal jet
NASA Technical Reports Server (NTRS)
Shepherd, Theodor G.
1987-01-01
Homogeneous barotropic beta-plane turbulence is investigated, taking into account the effects of spatial inhomogeneity in the form of a zonal shear flows. Attention is given to the case of zonal flows that are barotropically stable and of larger scale than the resulting transient eddy field. Numerical simulations reveal that large-scale zonal flows alter the picture of classical beta-plane turbulence. It is found that the disturbance field penetrates to the largest scales of motion, that the larger disturbance scales show a tendency to meridional rather than zonal anisotropy, and that the initial spectral transfer rate away from an isotropic intermediate-scale source is enhanced by the shear-induced transfer associated with straining by the zonal flow.
Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott; ...
2017-11-17
Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott
Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less
Budde, Kristin S; Barron, Daniel S; Fox, Peter T
2014-12-01
Developmental stuttering is a speech disorder most likely due to a heritable form of developmental dysmyelination impairing the function of the speech-motor system. Speech-induced brain-activation patterns in persons who stutter (PWS) are anomalous in various ways; the consistency of these aberrant patterns is a matter of ongoing debate. Here, we present a hierarchical series of coordinate-based meta-analyses addressing this issue. Two tiers of meta-analyses were performed on a 17-paper dataset (202 PWS; 167 fluent controls). Four large-scale (top-tier) meta-analyses were performed, two for each subject group (PWS and controls). These analyses robustly confirmed the regional effects previously postulated as "neural signatures of stuttering" (Brown, Ingham, Ingham, Laird, & Fox, 2005) and extended this designation to additional regions. Two smaller-scale (lower-tier) meta-analyses refined the interpretation of the large-scale analyses: (1) a between-group contrast targeting differences between PWS and controls (stuttering trait); and (2) a within-group contrast (PWS only) of stuttering with induced fluency (stuttering state). Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Katamzi, Zama; Bosco Habarulema, John
2017-04-01
Large scale traveling ionospheric disturbances (LSTIDs) are a key dynamic ionospheric process that transports energy and momentum vertically and horizontally during storms. These disturbances are observed as electron density irregularities in total electron content and other ionospheric parameters. This study reports on various explorations of LSTIDs characteristics, in particular horizontal and vertical propagation, during some major/severe storms of solar cycles 23-24. We have employed GNSS TEC to estimate horizontal propagation and radio occultation data from COSMIC/FORMOSAT-3 and SWARM satellites to estimate vertical motion. The work presented here reveals the evolution of the characterisation efficiency from using sparsely populated stations, resulting in limited spatial resolution through rudimentary analysis to more densely populated GNSS network leading to more accurate temporal and spatial determinations. For example, early observations of LSTIDs largely revealed unidirectional propagation whereas later studies have showed that one storm can induce multi-directional propagation, e.g. Halloween 2003 storm induced equatorward LSTIDs on a local scale whereas the 9 March 2012 storm induced simultaneous equatorward and poleward LSTIDs on a global scale. This later study, i.e. 9 March 2012 storm, revealed for the first time that ionospheric electrodynamics, specifically variations in ExB drift, is also an efficient generator of LSTIDs. Results from these studies also revealed constructive and destructive interference pattern of storm induced LSTIDs. Constellations of LEO satellites such as COSMIC/FORMOSAT-3 and SWARM have given sufficient spatial and temporal resolution to study vertical propagation of LSTIDs in addition to the meridional propagation given by GNSS TEC; the former (i.e. vertical velocities) were found to fall below 100 m/s.
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.; ...
2017-09-12
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimblin, Clare; Trainham, Rusty; Capelle, Gene A.
Experimental investigations into the characteristics of laser-induced plasmas indicate that LIBS provides a relatively inexpensive and easily replicable laboratory technique to isolate and measure reactions germane to understanding aspects of high-explosive detonations under controlled conditions. Furthermore, we examine spectral signatures and derived physical parameters following laser ablation of aluminum, graphite and laser-sparked air as they relate to those observed following detonation of high explosives and as they relate to shocked air. Laser-induced breakdown spectroscopy (LIBS) reliably correlates reactions involving atomic Al and aluminum monoxide (AlO) with respect to both emission spectra and temperatures, as compared to small- and large-scale high-explosivemore » detonations. Atomic Al and AlO resulting from laser ablation and a cited small-scale study, decay within ~10 -5 s, roughly 100 times faster than the Al and AlO decay rates (~10 -3 s) observed following the large-scale detonation of an Al-encased explosive. Temperatures and species produced in laser-sparked air are compared to those produced with laser ablated graphite in air. With graphite present, CN is dominant relative to N 2 + . Thus, in studies where the height of the ablating laser's focus was altered relative to the surface of the graphite substrate, CN concentration was found to decrease with laser focus below the graphite surface, indicating that laser intensity is a critical factor in the production of CN, via reactive nitrogen.« less
Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A
2014-05-01
Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. To test the hypothesis that the strength of coupling among 3 large-scale brain networks--salience, executive control, and default mode--will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. Twenty-four hours of abstinence vs smoking satiety. Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = -0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = -0.66, P = .003; posterior cingulate cortex, r = -0.65, P = .001). Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi
2012-06-01
Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes
NASA Astrophysics Data System (ADS)
Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.
2016-12-01
Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.
Rascher, U; Alonso, L; Burkart, A; Cilia, C; Cogliati, S; Colombo, R; Damm, A; Drusch, M; Guanter, L; Hanus, J; Hyvärinen, T; Julitta, T; Jussila, J; Kataja, K; Kokkalis, P; Kraft, S; Kraska, T; Matveeva, M; Moreno, J; Muller, O; Panigada, C; Pikl, M; Pinto, F; Prey, L; Pude, R; Rossini, M; Schickling, A; Schurr, U; Schüttemeyer, D; Verrelst, J; Zemek, F
2015-12-01
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress. © 2015 John Wiley & Sons Ltd.
Superfluid-like turbulence in cosmology
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami
1991-01-01
A network of vortices in a superfluid system exhibits turbulent behavior. It is argued that the universe may have experienced such a phase of superfluid-like turbulence due to the existence of a coherent state with non-topological charge and a network of global strings. The unique feature of a distribution of turbulent domains is that it can yield non-gravitationally induced large-scale coherent velocities. It may be difficult, however, to relate these velocities to the observed large-scale bulk motion.
NASA Astrophysics Data System (ADS)
Yen, Hsin-Yi; Lin, Guan-Wei
2017-04-01
Understanding the rainfall condition which triggers mass moment on hillslope is the key to forecast rainfall-induced slope hazards, and the exact time of landslide occurrence is one of the basic information for rainfall statistics. In the study, we focused on large-scale landslides (LSLs) with disturbed area larger than 10 ha and conducted a string of studies including the recognition of landslide-induced ground motions and the analyses of different terms of rainfall thresholds. More than 10 heavy typhoons during the periods of 2005-2014 in Taiwan induced more than hundreds of LSLs and provided the opportunity to characterize the rainfall conditions which trigger LSLs. A total of 101 landslide-induced seismic signals were identified from the records of Taiwan seismic network. These signals exposed the occurrence time of landslide to assess rainfall conditions. Rainfall analyses showed that LSLs occurred when cumulative rainfall exceeded 500 mm. The results of rainfall-threshold analyses revealed that it is difficult to distinct LSLs from small-scale landslides (SSLs) by the I-D and R-D methods, but the I-R method can achieve the discrimination. Besides, an enhanced three-factor threshold considering deep water content was proposed as the rainfall threshold for LSLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.; /Lisbon, IST; Aglietta, M.
2011-11-01
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shownmore » to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.« less
NASA Astrophysics Data System (ADS)
Schoelz, J. K.; Neek Amal, M.; Xu, P.; Barber, S. D.; Ackerman, M. L.; Thibado, P. M.; Sadeghi, A.; Peeters, F. M.
2014-03-01
Scanning tunneling microscopy has been an invaluable tool in the study of graphene at the atomic scale. Several STM groups have managed to obtain atomic scale images of freestanding graphene membranes providing insight into the behavior of the stabilized ripple geometry. However, we found that the interaction between the STM tip and the freestanding graphene sample may induce additional effects. By varying the tunneling parameters, we can tune the position of the sample, in either a smooth or step like fashion. These phenomena were investigated by STM experiments, continuum elasticity theory and large scale molecular dynamics simulations. These results confirm that by increasing the tip bias, the electrostatic attraction between the tip and sample increases. When applied on a concave surface, this can result in mirror buckling which leads to a large scale movement of the sample. Interestingly, due in part to the negative coefficient of thermal expansion of graphene, buckling transitions can also be induced through local heating of the surface using the STM tip. Financial support by O.N.R. grant N00014-10-1-0181, N.S.F grant DMR-0855358, EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N. A.), ESF-EuroGRAPHENE project CONGRAN, F.S.F (FWO-Vl), and Methusalem Foundation of the Flemish Government.
Alavash, Mohsen; Lim, Sung-Joo; Thiel, Christiane; Sehm, Bernhard; Deserno, Lorenz; Obleser, Jonas
2018-05-15
Dopamine underlies important aspects of cognition, and has been suggested to boost cognitive performance. However, how dopamine modulates the large-scale cortical dynamics during cognitive performance has remained elusive. Using functional MRI during a working memory task in healthy young human listeners, we investigated the effect of levodopa (l-dopa) on two aspects of cortical dynamics, blood oxygen-level-dependent (BOLD) signal variability and the functional connectome of large-scale cortical networks. We here show that enhanced dopaminergic signaling modulates the two potentially interrelated aspects of large-scale cortical dynamics during cognitive performance, and the degree of these modulations is able to explain inter-individual differences in l-dopa-induced behavioral benefits. Relative to placebo, l-dopa increased BOLD signal variability in task-relevant temporal, inferior frontal, parietal and cingulate regions. On the connectome level, however, l-dopa diminished functional integration across temporal and cingulo-opercular regions. This hypo-integration was expressed as a reduction in network efficiency and modularity in more than two thirds of the participants and to different degrees. Hypo-integration co-occurred with relative hyper-connectivity in paracentral lobule and precuneus, as well as posterior putamen. Both, l-dopa-induced BOLD signal variability modulation and functional connectome modulations proved predictive of an individual's l-dopa-induced benefits in behavioral performance, namely response speed and perceptual sensitivity. Lastly, l-dopa-induced modulations of BOLD signal variability were correlated with l-dopa-induced modulation of nodal connectivity and network efficiency. Our findings underline the role of dopamine in maintaining the dynamic range of, and communication between, cortical systems, and their explanatory power for inter-individual differences in benefits from dopamine during cognitive performance. Copyright © 2018 Elsevier Inc. All rights reserved.
A simple model of intraseasonal oscillations
NASA Astrophysics Data System (ADS)
Fuchs, Željka; Raymond, David J.
2017-06-01
The intraseasonal oscillations and in particular the MJO have been and still remain a "holy grail" of today's atmospheric science research. Why does the MJO propagate eastward? What makes it unstable? What is the scaling for the MJO, i.e., why does it prefer long wavelengths or planetary wave numbers 1-3? What is the westward moving component of the intraseasonal oscillation? Though linear WISHE has long been discounted as a plausible model for intraseasonal oscillations and the MJO, the version we have developed explains many of the observed features of those phenomena, in particular, the preference for large zonal scale. In this model version, the moisture budget and the increase of precipitation with tropospheric humidity lead to a "moisture mode." The destabilization of the large-scale moisture mode occurs via WISHE only and there is no need to postulate large-scale radiatively induced instability or negative effective gross moist stability. Our WISHE-moisture theory leads to a large-scale unstable eastward propagating mode in n = -1 case and a large-scale unstable westward propagating mode in n = 1 case. We suggest that the n = -1 case might be connected to the MJO and the observed westward moving disturbance to the observed equatorial Rossby mode.
Large-scale structures of solar wind and dynamics of parameters in them
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael
2017-04-01
On the basis of OMNI dataset and our catalog of large-scale solar wind (SW) phenomena (see web-site ftp://ftp.iki.rssi.ru/pub/omni/ and paper by Yermolaev et al., 2009) we study temporal profile of interplanetary and magnetospheric parameters in following SW phenomena: interplanetary manifestation of coronal mass ejection (ICME) including magnetic cloud (MC) and Ejecta, Sheath—compression region before ICME and corotating interaction region (CIR)—compression region before high-speed stream (HSS) of solar wind. To take into account a possible influence of other SW types, following sequences of phenomena, which include all typical sequences of non-stationary SW events, are analyzed: (1) SW/ CIR/ SW, (2) SW/ IS/ CIR/ SW, (3) SW/ Ejecta/ SW, (4) SW/ Sheath/Ejecta/ SW, (5) SW/ IS/ Sheath/ Ejecta/ SW, (6) SW/ MC/ SW, (7) SW/Sheath/ MC/ SW, (8) SW/ IS/ Sheath/ MC/ SW (where SW is undisturbed solar wind, and IS is interplanetary shock) (Yermolaev et al., 2015) using the method of double superposed epoch analysis for large numbers of events (Yermolaev et al., 2010). Similarities and distinctions of different SW phenomena depending on neighboring SW types and their geoeffectiveness are discussed. The work was supported by the Russian Science Foundation, projects 16-12-10062. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274.
NASA Technical Reports Server (NTRS)
Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna
2016-01-01
This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.
Phase transitions triggered by quantum fluctuations in the inflationary universe
NASA Technical Reports Server (NTRS)
Nagasawa, Michiyasu; Yokoyama, Junichi
1991-01-01
The dynamics of a second-order phase transition during inflation, which is induced by time-variation of spacetime curvature, is studied as a natural mechanism to produce topological defects of typical grand unification scales such as cosmic strings or global textures. It is shown that their distribution is almost scale-invariant with small- and large-scale cutoffs. Also discussed is how these cutoffs are given.
Dissecting the large-scale galactic conformity
NASA Astrophysics Data System (ADS)
Seo, Seongu
2018-01-01
Galactic conformity is an observed phenomenon that galaxies located in the same region have similar properties such as star formation rate, color, gas fraction, and so on. The conformity was first observed among galaxies within in the same halos (“one-halo conformity”). The one-halo conformity can be readily explained by mutual interactions among galaxies within a halo. Recent observations however further witnessed a puzzling connection among galaxies with no direct interaction. In particular, galaxies located within a sphere of ~5 Mpc radius tend to show similarities, even though the galaxies do not share common halos with each other ("two-halo conformity" or “large-scale conformity”). Using a cosmological hydrodynamic simulation, Illustris, we investigate the physical origin of the two-halo conformity and put forward two scenarios. First, back-splash galaxies are likely responsible for the large-scale conformity. They have evolved into red galaxies due to ram-pressure stripping in a given galaxy cluster and happen to reside now within a ~5 Mpc sphere. Second, galaxies in strong tidal field induced by large-scale structure also seem to give rise to the large-scale conformity. The strong tides suppress star formation in the galaxies. We discuss the importance of the large-scale conformity in the context of galaxy evolution.
Large scale EMF in current sheets induced by tearing modes
NASA Astrophysics Data System (ADS)
Mizerski, Krzysztof A.
2018-02-01
An extension of the analysis of resistive instabilities of a sheet pinch from a famous work by Furth et al (1963 Phys. Fluids 6 459) is presented here, to study the mean electromotive force (EMF) generated by the developing instability. In a Cartesian configuration and in the presence of a current sheet first the boundary layer technique is used to obtain global, matched asymptotic solutions for the velocity and magnetic field and then the solutions are used to calculate the large-scale EMF in the system. It is reported, that in the bulk the curl of the mean EMF is linear in {{j}}0\\cdot {{B}}0, a simple pseudo-scalar quantity constructed from the large-scale quantities.
Energy spectrum of tearing mode turbulence in sheared background field
NASA Astrophysics Data System (ADS)
Hu, Di; Bhattacharjee, Amitava; Huang, Yi-Min
2018-06-01
The energy spectrum of tearing mode turbulence in a sheared background magnetic field is studied in this work. We consider the scenario where the nonlinear interaction of overlapping large-scale modes excites a broad spectrum of small-scale modes, generating tearing mode turbulence. The spectrum of such turbulence is of interest since it is relevant to the small-scale back-reaction on the large-scale field. The turbulence we discuss here differs from traditional MHD turbulence mainly in two aspects. One is the existence of many linearly stable small-scale modes which cause an effective damping during the energy cascade. The other is the scale-independent anisotropy induced by the large-scale modes tilting the sheared background field, as opposed to the scale-dependent anisotropy frequently encountered in traditional critically balanced turbulence theories. Due to these two differences, the energy spectrum deviates from a simple power law and takes the form of a power law multiplied by an exponential falloff. Numerical simulations are carried out using visco-resistive MHD equations to verify our theoretical predictions, and a reasonable agreement is found between the numerical results and our model.
Tropical agricultural is a major threat to biodiversity worldwide. In addition to the direct impacts of converting native vegetation to agriculture this process is accompanied by a wider set of human-induced disturbances, many of which are poorly addressed by existing environment...
Clustering fossils in solid inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhshik, Mohammad, E-mail: m.akhshik@ipm.ir
In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tenor perturbation induces observable clustering fossils in the form of quadrupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar bispectrum for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with the Planck constraints. Specializing to this allowed range of model parameter we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum ofmore » the scalar perturbations. We argue that the imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.« less
Induced Seismicity Potential of Energy Technologies
NASA Astrophysics Data System (ADS)
Hitzman, Murray
2013-03-01
Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.
Self and world: large scale installations at science museums.
Shimojo, Shinsuke
2008-01-01
This paper describes three examples of illusion installation in a science museum environment from the author's collaboration with the artist and architect. The installations amplify the illusory effects, such as vection (visually-induced sensation of self motion) and motion-induced blindness, to emphasize that perception is not just to obtain structure and features of objects, but rather to grasp the dynamic relationship between the self and the world. Scaling up the size and utilizing the live human body turned out to be keys for installations with higher emotional impact.
Copolovici, Lucian; Pag, Andreea; Kännaste, Astrid; Bodescu, Adina; Tomescu, Daniel; Copolovici, Dana; Soran, Maria-Loredana; Niinemets, Ülo
2018-01-01
Gypsy moth (Lymantria dispar L., Lymantriinae) is a major pest of pedunculate oak (Quercus robur) forests in Europe, but how its infections scale with foliage physiological characteristics, in particular with photosynthesis rates and emissions of volatile organic compounds has not been studied. Differently from the majority of insect herbivores, large larvae of L. dispar rapidly consume leaf area, and can also bite through tough tissues, including secondary and primary leaf veins. Given the rapid and devastating feeding responses, we hypothesized that infection of Q. robur leaves by L. dispar leads to disproportionate scaling of leaf photosynthesis and constitutive isoprene emissions with damaged leaf area, and to less prominent enhancements of induced volatile release. Leaves with 0% (control) to 50% of leaf area removed by larvae were studied. Across this range of infection severity, all physiological characteristics were quantitatively correlated with the degree of damage, but all these traits changed disproportionately with the degree of damage. The net assimilation rate was reduced by almost 10-fold and constitutive isoprene emissions by more than 7-fold, whereas the emissions of green leaf volatiles, monoterpenes, methyl salicylate and the homoterpene (3E)-4,8-dimethy-1,3,7-nonatriene scaled negatively and almost linearly with net assimilation rate through damage treatments. This study demonstrates that feeding by large insect herbivores disproportionately alters photosynthetic rate and constitutive isoprene emissions. Furthermore, the leaves have a surprisingly large capacity for enhancement of induced emissions even when foliage photosynthetic function is severely impaired. PMID:29367792
NASA Astrophysics Data System (ADS)
Obabko, Aleksandr Vladimirovich
Numerical solutions of the unsteady Navier-Stokes equations are considered for the flow induced by a thick-core vortex convecting along an infinite surface in a two-dimensional incompressible flow. The formulation is considered as a model problem of the dynamic-stall vortex and is relevant to other unsteady separation phenomena including vorticity ejections in juncture flows and the vorticity production mechanism in turbulent boundary-layers. Induced by an adverse streamwise pressure gradient due to the presence of the vortex above the wall, a primary recirculation region forms and evolves toward a singular solution of the unsteady non-interacting boundary-layer equations. The resulting eruptive spike provokes a small-scale viscous-inviscid interaction in the high-Reynolds-number regime. In the moderate-Reynolds-numbers regime, the growing recirculation region initiates a large-scale interaction in the form of local changes in the streamwise pressure gradient accelerating the spike formation and resulting small-scale interaction through development of a region of streamwise compression. It also was found to induce regions of streamwise expansion and "child" recirculation regions that contribute to ejections of near-wall vorticity and splitting of the "parent" region into multiple co-rotating eddies. These eddies later merge into a single amalgamated eddy that is observed to pair with the detaching vortex similar to the low-Reynolds-number regime where the large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. It is also found that increasing the wall speed or vortex convection velocity toward a critical value results in solutions that are indicative of flows at lower Reynolds numbers eventually leading to suppression of unsteady separation and vortex detachment processes.
NASA Astrophysics Data System (ADS)
Chen, Xiao; Dong, Gang; Jiang, Hua
2017-04-01
The instabilities of a three-dimensional sinusoidally premixed flame induced by an incident shock wave with Mach = 1.7 and its reshock waves were studied by using the Navier-Stokes (NS) equations with a single-step chemical reaction and a high resolution, 9th-order weighted essentially non-oscillatory scheme. The computational results were validated by the grid independence test and the experimental results in the literature. The computational results show that after the passage of incident shock wave the flame interface develops in symmetric structure accompanied by large-scale transverse vortex structures. After the interactions by successive reshock waves, the flame interface is gradually destabilized and broken up, and the large-scale vortex structures are gradually transformed into small-scale vortex structures. The small-scale vortices tend to be isotropic later. The results also reveal that the evolution of the flame interface is affected by both mixing process and chemical reaction. In order to identify the relationship between the mixing and the chemical reaction, a dimensionless parameter, η , that is defined as the ratio of mixing time scale to chemical reaction time scale, is introduced. It is found that at each interaction stage the effect of chemical reaction is enhanced with time. The enhanced effect of chemical reaction at the interaction stage by incident shock wave is greater than that at the interaction stages by reshock waves. The result suggests that the parameter η can reasonably character the features of flame interface development induced by the multiple shock waves.
NASA Astrophysics Data System (ADS)
Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie
2014-05-01
Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault reactivation and seismicity induced by fluid injection. By assessing the occurrence of earthquakes (M>2) evenly across large geographic regions, this project differs from previous studies of injection-induced seismicity that focused on earthquakes large enough to cause public concern in well-populated areas. The understanding of triggered seismicity gained through this project is expected to allow for improved design strategies for waste fluid injection to industry and public decision makers.
Cosmic microwave background trispectrum and primordial magnetic field limits.
Trivedi, Pranjal; Seshadri, T R; Subramanian, Kandaswamy
2012-06-08
Primordial magnetic fields will generate non-gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic non-gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10(-29) and 10(-19), respectively. Observational limits on CMB non-gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
Asymmetric noise-induced large fluctuations in coupled systems
NASA Astrophysics Data System (ADS)
Schwartz, Ira B.; Szwaykowska, Klimka; Carr, Thomas W.
2017-10-01
Networks of interacting, communicating subsystems are common in many fields, from ecology, biology, and epidemiology to engineering and robotics. In the presence of noise and uncertainty, interactions between the individual components can lead to unexpected complex system-wide behaviors. In this paper, we consider a generic model of two weakly coupled dynamical systems, and we show how noise in one part of the system is transmitted through the coupling interface. Working synergistically with the coupling, the noise on one system drives a large fluctuation in the other, even when there is no noise in the second system. Moreover, the large fluctuation happens while the first system exhibits only small random oscillations. Uncertainty effects are quantified by showing how characteristic time scales of noise-induced switching scale as a function of the coupling between the two coupled parts of the experiment. In addition, our results show that the probability of switching in the noise-free system scales inversely as the square of reduced noise intensity amplitude, rendering the virtual probability of switching an extremely rare event. Our results showing the interplay between transmitted noise and coupling are also confirmed through simulations, which agree quite well with analytic theory.
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar; Bellini, Mauricio
2009-08-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Seismic Parameters of Mining-Induced Aftershock Sequences for Re-entry Protocol Development
NASA Astrophysics Data System (ADS)
Vallejos, Javier A.; Estay, Rodrigo A.
2018-03-01
A common characteristic of deep mines in hard rock is induced seismicity. This results from stress changes and rock failure around mining excavations. Following large seismic events, there is an increase in the levels of seismicity, which gradually decay with time. Restricting access to areas of a mine for enough time to allow this decay of seismic events is the main approach in re-entry strategies. The statistical properties of aftershock sequences can be studied with three scaling relations: (1) Gutenberg-Richter frequency magnitude, (2) the modified Omori's law (MOL) for the temporal decay, and (3) Båth's law for the magnitude of the largest aftershock. In this paper, these three scaling relations, in addition to the stochastic Reasenberg-Jones model are applied to study the characteristic parameters of 11 large magnitude mining-induced aftershock sequences in four mines in Ontario, Canada. To provide guidelines for re-entry protocol development, the dependence of the scaling relation parameters on the magnitude of the main event are studied. Some relations between the parameters and the magnitude of the main event are found. Using these relationships and the scaling relations, a space-time-magnitude re-entry protocol is developed. These findings provide a first approximation to concise and well-justified guidelines for re-entry protocol development applicable to the range of mining conditions found in Ontario, Canada.
Large-scale velocities and primordial non-Gaussianity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Fabian
2010-09-15
We study the peculiar velocities of density peaks in the presence of primordial non-Gaussianity. Rare, high-density peaks in the initial density field can be identified with tracers such as galaxies and clusters in the evolved matter distribution. The distribution of relative velocities of peaks is derived in the large-scale limit using two different approaches based on a local biasing scheme. Both approaches agree, and show that halos still stream with the dark matter locally as well as statistically, i.e. they do not acquire a velocity bias. Nonetheless, even a moderate degree of (not necessarily local) non-Gaussianity induces a significant skewnessmore » ({approx}0.1-0.2) in the relative velocity distribution, making it a potentially interesting probe of non-Gaussianity on intermediate to large scales. We also study two-point correlations in redshift space. The well-known Kaiser formula is still a good approximation on large scales, if the Gaussian halo bias is replaced with its (scale-dependent) non-Gaussian generalization. However, there are additional terms not encompassed by this simple formula which become relevant on smaller scales (k > or approx. 0.01h/Mpc). Depending on the allowed level of non-Gaussianity, these could be of relevance for future large spectroscopic surveys.« less
Induced groundwater flux by increases in the aquifer's total stress.
Chang, Ching-Min; Yeh, Hund-Der
2015-01-01
Fluid-filled granular soils experience changes in total stress because of earth and oceanic tides, earthquakes, erosion, sedimentation, and changes in atmospheric pressure. The pore volume may deform in response to the changes in stress and this may lead to changes in pore fluid pressure. The transient fluid flow can therefore be induced by the gradient in excess pressure in a fluid-saturated porous medium. This work demonstrates the use of stochastic methodology in prediction of induced one-dimensional field-scale groundwater flow through a heterogeneous aquifer. A closed-form of mean groundwater flux is developed to quantify the induced field-scale mean behavior of groundwater flow and analyze the impacts of the spatial correlation length scale of log hydraulic conductivity and the pore compressibility. The findings provided here could be useful for the rational planning and management of groundwater resources in aquifers that contain lenses with large vertical aquifer matrix compressibility values. © 2014, National Ground Water Association.
Cosmic string induced peculiar velocities
NASA Technical Reports Server (NTRS)
Van Dalen, Anthony; Schramm, David N.
1988-01-01
This paper considers the scenario of a flat universe with a network of heavy cosmic strings as the primordial fluctuation spectrum. The joint probability of finding streaming velocities of at least 600 km/s on large scales and local peculiar velocities of less than 800 km/s is calculated. It is shown how the effects of loops breaking up and being born with a spectrum of sizes can be estimated. It is found that to obtain large-scale streaming velocities of at least 600 km/s, it is necessary that either a large value for beta G mu exist or the effect of loop fissioning and production details be considerable.
The ellipsoidal universe in the Planck satellite era
NASA Astrophysics Data System (ADS)
Cea, Paolo
2014-06-01
Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ΔTpol = (1.20 ± 0.38) μK. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.
NASA Astrophysics Data System (ADS)
Dechant, B.; Ryu, Y.; Jiang, C.; Yang, K.
2017-12-01
Solar-induced chlorophyll fluorescence (SIF) is rapidly becoming an important tool to remotely estimate terrestrial gross primary productivity (GPP) at large spatial scales. Many findings, however, are based on empirical relationships between SIF and GPP that have been found to be dependent on plant functional types. Therefore, combining model-based analysis with observations is crucial to improve our understanding of SIF-GPP relationships. So far, most model-based results were based on SCOPE, a complex ecophysiological model with explicit description of canopy layers and a large number of parameters that may not be easily obtained reliably on large scales. Here, we report on our efforts to incorporate SIF into a two-big leaf (sun and shade) process-based model that is suitable for obtaining its inputs entirely from satellite products. We examine if the SIF-GPP relationships are consistent with the findings from SCOPE simulations and investigate if incorporation of the SIF signal into BESS can help improve GPP estimation. A case study in a rice paddy is presented.
Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation
NASA Astrophysics Data System (ADS)
Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.
2016-04-01
A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.
Lerman, Caryn; Gu, Hong; Loughead, James; Ruparel, Kosha; Yang, Yihong; Stein, Elliot A.
2014-01-01
IMPORTANCE Interactions of large-scale brain networks may underlie cognitive dysfunctions in psychiatric and addictive disorders. OBJECTIVES To test the hypothesis that the strength of coupling among 3 large-scale brain networks–salience, executive control, and default mode–will reflect the state of nicotine withdrawal (vs smoking satiety) and will predict abstinence-induced craving and cognitive deficits and to develop a resource allocation index (RAI) that reflects the combined strength of interactions among the 3 large-scale networks. DESIGN, SETTING, AND PARTICIPANTS A within-subject functional magnetic resonance imaging study in an academic medical center compared resting-state functional connectivity coherence strength after 24 hours of abstinence and after smoking satiety. We examined the relationship of abstinence-induced changes in the RAI with alterations in subjective, behavioral, and neural functions. We included 37 healthy smoking volunteers, aged 19 to 61 years, for analyses. INTERVENTIONS Twenty-four hours of abstinence vs smoking satiety. MAIN OUTCOMES AND MEASURES Inter-network connectivity strength (primary) and the relationship with subjective, behavioral, and neural measures of nicotine withdrawal during abstinence vs smoking satiety states (secondary). RESULTS The RAI was significantly lower in the abstinent compared with the smoking satiety states (left RAI, P = .002; right RAI, P = .04), suggesting weaker inhibition between the default mode and salience networks. Weaker inter-network connectivity (reduced RAI) predicted abstinence-induced cravings to smoke (r = −0.59; P = .007) and less suppression of default mode activity during performance of a subsequent working memory task (ventromedial prefrontal cortex, r = −0.66, P = .003; posterior cingulate cortex, r = −0.65, P = .001). CONCLUSIONS AND RELEVANCE Alterations in coupling of the salience and default mode networks and the inability to disengage from the default mode network may be critical in cognitive/affective alterations that underlie nicotine dependence. PMID:24622915
Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda
2015-10-01
Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.
Impact phenomena as factors in the evolution of the Earth
NASA Technical Reports Server (NTRS)
Grieve, R. A. F.; Parmentier, E. M.
1984-01-01
It is estimated that 30 to 200 large impact basins could have been formed on the early Earth. These large impacts may have resulted in extensive volcanism and enhanced endogenic geologic activity over large areas. Initial modelling of the thermal and subsidence history of large terrestrial basins indicates that they created geologic and thermal anomalies which lasted for geologically significant times. The role of large-scale impact in the biological evolution of the Earth has been highlighted by the discovery of siderophile anomalies at the Cretaceous-Tertiary boundary and associated with North American microtektites. Although in neither case has an associated crater been identified, the observations are consistent with the deposition of projectile-contaminated high-speed ejecta from major impact events. Consideration of impact processes reveals a number of mechanisms by which large-scale impact may induce extinctions.
NASA Astrophysics Data System (ADS)
Aliseda, Alberto; Bourgoin, Mickael; Eswirp Collaboration
2014-11-01
We present preliminary results from a recent grid turbulence experiment conducted at the ONERA wind tunnel in Modane, France. The ESWIRP Collaboration was conceived to probe the smallest scales of a canonical turbulent flow with very high Reynolds numbers. To achieve this, the largest scales of the turbulence need to be extremely big so that, even with the large separation of scales, the smallest scales would be well above the spatial and temporal resolution of the instruments. The ONERA wind tunnel in Modane (8 m -diameter test section) was chosen as a limit of the biggest large scales achievable in a laboratory setting. A giant inflatable grid (M = 0.8 m) was conceived to induce slowly-decaying homogeneous isotropic turbulence in a large region of the test section, with minimal structural risk. An international team or researchers collected hot wire anemometry, ultrasound anemometry, resonant cantilever anemometry, fast pitot tube anemometry, cold wire thermometry and high-speed particle tracking data of this canonical turbulent flow. While analysis of this large database, which will become publicly available over the next 2 years, has only started, the Taylor-scale Reynolds number is estimated to be between 400 and 800, with Kolmogorov scales as large as a few mm . The ESWIRP Collaboration is formed by an international team of scientists to investigate experimentally the smallest scales of turbulence. It was funded by the European Union to take advantage of the largest wind tunnel in Europe for fundamental research.
NASA Astrophysics Data System (ADS)
Vallefuoco, Donato; Naso, Aurore; Godeferd, Fabien S.
2018-02-01
We study the effect of large-scale spectral forcing on the scale-dependent anisotropy of the velocity field in direct numerical simulations of homogeneous turbulence. ABC-type forcing and helical or non-helical Euler-type forcing are considered. We propose a scale-dependent characterisation of anisotropy based on a modal decomposition of the two-point velocity tensor spectrum. This produces direction-dependent spectra of energy, helicity and polarisation. We examine the conditions that allow anisotropy to develop in the small scales due to forcing and we show that the theoretically expected isotropy is not exactly obtained, even in the smallest scales, for ABC and helical Euler forcings. When adding rotation, the anisotropy level in ABC-forced simulations is similar to that of lower Rossby number Euler-forced runs. Moreover, even at low rotation rate, the natural anisotropy induced by the Coriolis force is visible at all scales, and two distinct wavenumber ranges appear from our fine-grained characterisation, not separated by the Zeman scale but by a scale where rotation and dissipation are balanced.
NASA Technical Reports Server (NTRS)
Herron, Andrew J.; Reed, Darren K.; Nance, Donald K.
2015-01-01
Characterization of flight vehicle unsteady aerodynamics is often studied via large scale wind tunnel testing. Boundary layer noise is measured by miniature pressure transducers installed in a model. Noise levels (2-5 dB ref. 20 µPa) can be induced when transducer is mounted out of flush with model outer surface. This effect must be minimized to accurately determine aerodynamically induced acoustic environments.
Effects of orography on planetary scale flow
NASA Technical Reports Server (NTRS)
Smith, R. B.
1986-01-01
The earth's orography is composed of a wide variety of scales, each contributing to the spectrum of atmospheric motions. A well studied subject (originating with Charney and Eliassen) is the direct forcing of planetary scale waves by the planetary scale orography: primarily the Tibetan plateau and the Rockies. However, because of the non-linear terms in the equations of dynamic meteorology, even the smallest scales of mountain induced flow can contribute to the planetary scale if the amplitude of the small scale disturbance is sufficintly large. Two possible mechanisms for this are illustrated. First, preferentially located lee cyclones can force planetary waves by their meridional transport of heat and momentum (Hansen and Chen). Recent theories are helping to explain the phenomena of lee cyclogenesis (e.g., Smith, 1984, J.A.S.). Second, mesoscale mountain wave and severe downslope wind phenomena produce such a large local drag, that planetary scale waves can be produced. The mechanism of upscale transfer is easy to understand in this case as the standing planetary scale wave has a wavelength which depends on the mean structure of the atmosphere, and not on the width of the mountain (just as in small scale lee wave theory). An example of a theoretical description of a severe wind flow with very large drag is shown.
NASA Astrophysics Data System (ADS)
Frolov, Vladimir
2015-06-01
In the review, the results of experimental studies of spatial structure of small-, middle-, and large scale plasma density perturbations induced in the ionosphere by its pumping by powerful HF O-mode (ordinary) radio waves, are analyzed. It is shown that the region with induced plasma density perturbations occupied all ionosphere body from its E-region up to the topside ionosphere in the height and it has the horizontal length of about of 300-500 km. Peculiarities of generation of artificial ionosphere irregularities of different scale-lengths in the magnetic zenith region are stated. Experimental results obtained under conditions of ionosphere periodical pumping when the generation of travel ionosphere disturbances is revealed are also discussed.
''Tilting'' the universe with the landscape multiverse: the dark flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mersini-Houghton, L.; Holman, R., E-mail: mersini@physics.unc.edu, E-mail: rh4a@andrew.cmu.edu
2009-02-15
We argue that the recent observations of large scale bulk flows by Kashlinsky et al. has a natural explanation in terms of superhorizon inhomogeneities induced by nonlocal entanglement of our Hubble volume with modes and domains beyond the horizon. This entanglement gives rise to corrections to the Newtonian potential on a characteristic scale L{sub 1} {approx_equal} 10{sup 3}H{sup -1}, and it induces a dipole and quadrupole contribution in the CMB. We also show that these induced multipoles are aligned with each other, with the alignment axis normal to their plane being oriented along the preferred frame determined by the dipole.more » We also give other potential tests of our hypothesis.« less
NASA Technical Reports Server (NTRS)
1971-01-01
A preliminary investigation of the parameters included in run-up dust reactions is presented. Two types of tests were conducted: (1) ignition criteria of large bulk pyrotechnic dusts, and (2) optimal run-up conditions of large bulk pyrotechnic dusts. These tests were used to evaluate the order of magnitude and gross scale requirements needed to induce run-up reactions in pyrotechnic dusts and to simulate at reduced scale an accident that occurred in a manufacturing installation. Test results showed that propagation of pyrotechnic dust clouds resulted in a fireball of relatively long duration and large size. In addition, a plane wave front was observed to travel down the length of the gallery.
Nian, Qiong; Callahan, Michael; Saei, Mojib; Look, David; Efstathiadis, Harry; Bailey, John; Cheng, Gary J.
2015-01-01
A new method combining aqueous solution printing with UV Laser crystallization (UVLC) and post annealing is developed to deposit highly transparent and conductive Aluminum doped Zinc Oxide (AZO) films. This technique is able to rapidly produce large area AZO films with better structural and optoelectronic properties than most high vacuum deposition, suggesting a potential large-scale manufacturing technique. The optoelectronic performance improvement attributes to UVLC and forming gas annealing (FMG) induced grain boundary density decrease and electron traps passivation at grain boundaries. The physical model and computational simulation developed in this work could be applied to thermal treatment of many other metal oxide films. PMID:26515670
Agitation, Mixing, and Transfers Induced by Bubbles
NASA Astrophysics Data System (ADS)
Risso, Frédéric
2018-01-01
Bubbly flows involve bubbles randomly distributed within a liquid. At large Reynolds number, they experience an agitation that can combine shear-induced turbulence (SIT), large-scale buoyancy-driven flows, and bubble-induced agitation (BIA). The properties of BIA strongly differ from those of SIT. They have been determined from studies of homogeneous swarms of rising bubbles. Regarding the bubbles, agitation is mainly caused by the wake-induced path instability. Regarding the liquid, two contributions must be distinguished. The first one corresponds to the anisotropic flow disturbances generated near the bubbles, principally in the vertical direction. The second one is the almost isotropic turbulence induced by the flow instability through a population of bubbles, which turns out to be the main cause of horizontal fluctuations. Both contributions generate a k-3 spectral subrange and exponential probability density functions. The subsequent issue will be to understand how BIA interacts with SIT.
NASA Astrophysics Data System (ADS)
Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.
2018-05-01
Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.
Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu
2016-01-01
Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. © 2015 Wiley Periodicals, Inc.
Racking Response of Reinforced Concrete Cut and Cover Tunnel
DOT National Transportation Integrated Search
2016-01-01
Currently, the knowledge base and quantitative data sets concerning cut and cover tunnel seismic response are scarce. In this report, a large-scale experimental program is conducted to assess: i) stiffness, capacity, and potential seismically-induced...
Visualization of nanocrystal breathing modes at extreme strains
NASA Astrophysics Data System (ADS)
Szilagyi, Erzsi; Wittenberg, Joshua S.; Miller, Timothy A.; Lutker, Katie; Quirin, Florian; Lemke, Henrik; Zhu, Diling; Chollet, Matthieu; Robinson, Joseph; Wen, Haidan; Sokolowski-Tinten, Klaus; Lindenberg, Aaron M.
2015-03-01
Nanoscale dimensions in materials lead to unique electronic and structural properties with applications ranging from site-specific drug delivery to anodes for lithium-ion batteries. These functional properties often involve large-amplitude strains and structural modifications, and thus require an understanding of the dynamics of these processes. Here we use femtosecond X-ray scattering techniques to visualize, in real time and with atomic-scale resolution, light-induced anisotropic strains in nanocrystal spheres and rods. Strains at the percent level are observed in CdS and CdSe samples, associated with a rapid expansion followed by contraction along the nanosphere or nanorod radial direction driven by a transient carrier-induced stress. These morphological changes occur simultaneously with the first steps in the melting transition on hundreds of femtosecond timescales. This work represents the first direct real-time probe of the dynamics of these large-amplitude strains and shape changes in few-nanometre-scale particles.
Endocytic reawakening of motility in jammed epithelia
NASA Astrophysics Data System (ADS)
Malinverno, Chiara; Corallino, Salvatore; Giavazzi, Fabio; Bergert, Martin; Li, Qingsen; Leoni, Marco; Disanza, Andrea; Frittoli, Emanuela; Oldani, Amanda; Martini, Emanuele; Lendenmann, Tobias; Deflorian, Gianluca; Beznoussenko, Galina V.; Poulikakos, Dimos; Ong, Kok Haur; Uroz, Marina; Trepat, Xavier; Parazzoli, Dario; Maiuri, Paolo; Yu, Weimiao; Ferrari, Aldo; Cerbino, Roberto; Scita, Giorgio
2017-05-01
Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.
Thermophoretically induced large-scale deformations around microscopic heat centers
NASA Astrophysics Data System (ADS)
Puljiz, Mate; Orlishausen, Michael; Köhler, Werner; Menzel, Andreas M.
2016-05-01
Selectively heating a microscopic colloidal particle embedded in a soft elastic matrix is a situation of high practical relevance. For instance, during hyperthermic cancer treatment, cell tissue surrounding heated magnetic colloidal particles is destroyed. Experiments on soft elastic polymeric matrices suggest a very long-ranged, non-decaying radial component of the thermophoretically induced displacement fields around the microscopic heat centers. We theoretically confirm this conjecture using a macroscopic hydrodynamic two-fluid description. Both thermophoretic and elastic effects are included in this theory. Indeed, we find that the elasticity of the environment can cause the experimentally observed large-scale radial displacements in the embedding matrix. Additional experiments confirm the central role of elasticity. Finally, a linearly decaying radial component of the displacement field in the experiments is attributed to the finite size of the experimental sample. Similar results are obtained from our theoretical analysis under modified boundary conditions.
NASA Astrophysics Data System (ADS)
Eltahir, E. A. B.; IM, E. S.
2014-12-01
This study investigates the impact of potential large-scale (about 400,000 km2) and medium-scale (about 60,000 km2) irrigation on the climate of West Africa using the MIT Regional Climate Model. A new irrigation module is implemented to assess the impact of location and scheduling of irrigation on rainfall distribution over West Africa. A control simulation (without irrigation) and various sensitivity experiments (with irrigation) are performed and compared to discern the effects of irrigation location, size and scheduling. In general, the irrigation-induced surface cooling due to anomalously wet soil tends to suppress moist convection and rainfall, which in turn induces local subsidence and low level anti-cyclonic circulation. These local effects are dominated by a consistent reduction of local rainfall over the irrigated land, irrespective of its location. However, the remote response of rainfall distribution to irrigation exhibits a significant sensitivity to the latitudinal position of irrigation. The low-level northeasterly flow associated with anti-cyclonic circulation centered over the irrigation area can enhance the extent of low level convergence through interaction with the prevailing monsoon flow, leading to significant increase in rainfall. Despite much reduced forcing of irrigation water, the medium-scale irrigation seems to draw the same response as large-scale irrigation, which supports the robustness of the response to irrigation in our modeling system. Both large-scale and medium-scale irrigation experiments show that an optimal irrigation location and scheduling exists that would lead to a more efficient use of irrigation water. The approach of using a regional climate model to investigate the impact of location and size of irrigation schemes may be the first step in incorporating land-atmosphere interactions in the design of location and size of irrigation projects. However, this theoretical approach is still in early stages of development and further research is needed before any practical application in water resources planning. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong
2015-01-01
β-Lactoglobulin (BLG) is a major goat’s milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine. PMID:25994151
Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong
2015-05-21
β-Lactoglobulin (BLG) is a major goat's milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.
Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam
2017-01-01
Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2–99.8% and 95.2–99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs. PMID:28640824
Akerele, David; Ljolje, Dragan; Talundzic, Eldin; Udhayakumar, Venkatachalam; Lucchi, Naomi W
2017-01-01
Accurate diagnosis of malaria infections continues to be challenging and elusive, especially in the detection of submicroscopic infections. Developing new malaria diagnostic tools that are sensitive enough to detect low-level infections, user friendly, cost effective and capable of performing large scale diagnosis, remains critical. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. ovale by real-time PCR. In our study, a total of 173 clinical samples, consisting of different malaria species, were utilized to test this novel PET-PCR primer. The sensitivity and specificity were calculated using nested-PCR as the reference test. The novel primer set demonstrated a sensitivity of 97.5% and a specificity of 99.2% (95% CI 85.2-99.8% and 95.2-99.9% respectively). Furthermore, the limit of detection for P. ovale was found to be 1 parasite/μl. The PET-PCR assay is a new molecular diagnostic tool with comparable performance to other commonly used PCR methods. It is relatively easy to perform, and amiable to large scale malaria surveillance studies and malaria control and elimination programs. Further field validation of this novel primer will be helpful to ascertain the utility for large scale malaria screening programs.
Large-scale structure in brane-induced gravity. I. Perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scoccimarro, Roman
2009-11-15
We study the growth of subhorizon perturbations in brane-induced gravity using perturbation theory. We solve for the linear evolution of perturbations taking advantage of the symmetry under gauge transformations along the extra-dimension to decouple the bulk equations in the quasistatic approximation, which we argue may be a better approximation at large scales than thought before. We then study the nonlinearities in the bulk and brane equations, concentrating on the workings of the Vainshtein mechanism by which the theory becomes general relativity (GR) at small scales. We show that at the level of the power spectrum, to a good approximation, themore » effect of nonlinearities in the modified gravity sector may be absorbed into a renormalization of the gravitational constant. Since the relation between the lensing potential and density perturbations is entirely unaffected by the extra physics in these theories, the modified gravity can be described in this approximation by a single function, an effective gravitational constant for nonrelativistic motion that depends on space and time. We develop a resummation scheme to calculate it, and provide predictions for the nonlinear power spectrum. At the level of the large-scale bispectrum, the leading order corrections are obtained by standard perturbation theory techniques, and show that the suppression of the brane-bending mode leads to characteristic signatures in the non-Gaussianity generated by gravity, generic to models that become GR at small scales through second-derivative interactions. We compare the predictions in this work to numerical simulations in a companion paper.« less
Wittman; Tyson; Kirkman; Dell'Antonio; Bernstein
2000-05-11
Most of the matter in the Universe is not luminous, and can be observed only through its gravitational influence on the appearance of luminous matter. Weak gravitational lensing is a technique that uses the distortions of the images of distant galaxies as a tracer of dark matter: such distortions are induced as the light passes through large-scale distributions of dark matter in the foreground. The patterns of the induced distortions reflect the density of mass along the line of sight and its distribution, and the resulting 'cosmic shear' can be used to distinguish between alternative cosmologies. But previous attempts to measure this effect have been inconclusive. Here we report the detection of cosmic shear on angular scales of up to half a degree using 145,000 galaxies and along three separate lines of sight. We find that the dark matter is distributed in a manner consistent with either an open universe, or a flat universe that is dominated by a cosmological constant. Our results are inconsistent with the standard cold-dark-matter model.
Polymer Dispersed Liquid Crystal Displays
NASA Astrophysics Data System (ADS)
Doane, J. William
The following sections are included: * INTRODUCTION AND HISTORICAL DEVELOPMENT * PDLC MATERIALS PREPARATION * Polymerization induced phase separation (PIPS) * Thermally induced phase separation (TIPS) * Solvent induced phase separation (SIPS) * Encapsulation (NCAP) * RESPONSE VOLTAGE * Dielectric and resistive effects * Radial configuration * Bipolar configuration * Other director configurations * RESPONSE TIME * DISPLAY CONTRAST * Light scattering and index matching * Incorporation of dyes * Contrast measurements * PDLC DISPLAY DEVICES AND INNOVATIONS * Reflective direct view displays * Large-scale, flexible displays * Switchable windows * Projection displays * High definition spatial light modulator * Haze-free PDLC shutters: wide angle view displays * ENVIRONMENTAL STABILITY * ACKNOWLEDGEMENTS * REFERENCES
NASA Astrophysics Data System (ADS)
Konno, Yohko; Suzuki, Keiji
This paper describes an approach to development of a solution algorithm of a general-purpose for large scale problems using “Local Clustering Organization (LCO)” as a new solution for Job-shop scheduling problem (JSP). Using a performance effective large scale scheduling in the study of usual LCO, a solving JSP keep stability induced better solution is examined. In this study for an improvement of a performance of a solution for JSP, processes to a optimization by LCO is examined, and a scheduling solution-structure is extended to a new solution-structure based on machine-division. A solving method introduced into effective local clustering for the solution-structure is proposed as an extended LCO. An extended LCO has an algorithm which improves scheduling evaluation efficiently by clustering of parallel search which extends over plural machines. A result verified by an application of extended LCO on various scale of problems proved to conduce to minimizing make-span and improving on the stable performance.
Statistical simulation of the magnetorotational dynamo.
Squire, J; Bhattacharjee, A
2015-02-27
Turbulence and dynamo induced by the magnetorotational instability (MRI) are analyzed using quasilinear statistical simulation methods. It is found that homogenous turbulence is unstable to a large-scale dynamo instability, which saturates to an inhomogenous equilibrium with a strong dependence on the magnetic Prandtl number (Pm). Despite its enormously reduced nonlinearity, the dependence of the angular momentum transport on Pm in the quasilinear model is qualitatively similar to that of nonlinear MRI turbulence. This demonstrates the importance of the large-scale dynamo and suggests how dramatically simplified models may be used to gain insight into the astrophysically relevant regimes of very low or high Pm.
Ye, Fei; Tang, Wentao; Xie, Fengxian; Yin, Maoshu; He, Jinjin; Wang, Yanbo; Chen, Han; Qiang, Yinghuai; Yang, Xudong; Han, Liyuan
2017-09-01
Large-scale high-quality perovskite thin films are crucial to produce high-performance perovskite solar cells. However, for perovskite films fabricated by solvent-rich processes, film uniformity can be prevented by convection during thermal evaporation of the solvent. Here, a scalable low-temperature soft-cover deposition (LT-SCD) method is presented, where the thermal convection-induced defects in perovskite films are eliminated through a strategy of surface tension relaxation. Compact, homogeneous, and convection-induced-defects-free perovskite films are obtained on an area of 12 cm 2 , which enables a power conversion efficiency (PCE) of 15.5% on a solar cell with an area of 5 cm 2 . This is the highest efficiency at this large cell area. A PCE of 15.3% is also obtained on a flexible perovskite solar cell deposited on the polyethylene terephthalate substrate owing to the advantage of presented low-temperature processing. Hence, the present LT-SCD technology provides a new non-spin-coating route to the deposition of large-area uniform perovskite films for both rigid and flexible perovskite devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Micron-scale coherence in interphase chromatin dynamics
Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.
2013-01-01
Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504
Radiation-induced genomic instability: radiation quality and dose response
NASA Technical Reports Server (NTRS)
Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.
2003-01-01
Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.
Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.
Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R
2016-11-01
Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.
Large scale mass redistribution and surface displacement from GRACE and SLR
NASA Astrophysics Data System (ADS)
Cheng, M.; Ries, J. C.; Tapley, B. D.
2012-12-01
Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Gavrishchaka, Valeriy V.
1999-01-01
Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.
Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...
2015-12-28
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
USDA-ARS?s Scientific Manuscript database
Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...
Simulating statistics of lightning-induced and man made fires
NASA Astrophysics Data System (ADS)
Krenn, R.; Hergarten, S.
2009-04-01
The frequency-area distributions of forest fires show power-law behavior with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organized criticality. Examples of self-organized critical behavior can be found in computer simulations of simple cellular automata. The established self-organized critical Drossel-Schwabl forest fire model (DS-FFM) is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the DS-FFM apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a straightforward modification of the model rules that increases the scaling exponent α by approximately 13 and brings the simulated event-size statistics close to those observed in nature. In addition, combined simulations of both the original and the modified model predict a dependence of the overall distribution on the ratio of lightning induced and man made fires as well as a difference between their respective event-size statistics. The increase of the scaling exponent with decreasing lightning probability as well as the splitting of the partial distributions are confirmed by the analysis of the Canadian Large Fire Database. As a consequence, lightning induced and man made forest fires cannot be treated separately in wildfire modeling, hazard assessment and forest management.
NASA Astrophysics Data System (ADS)
Merkel, Philipp M.; Schäfer, Björn Malte
2017-10-01
Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.
Synchronization of two coupled turbulent fires
NASA Astrophysics Data System (ADS)
Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.
2018-04-01
We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.
Depth of origin of ocean-circulation-induced magnetic signals
NASA Astrophysics Data System (ADS)
Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik
2018-01-01
As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.
Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall
NASA Astrophysics Data System (ADS)
Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team
2015-11-01
Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).
Lateral transport of soil carbon and land−atmosphere CO2 flux induced by water erosion in China
Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof
2016-01-01
Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land−atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt C⋅y−1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt C⋅y−1, equivalent to 8–37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g C⋅m−2⋅y−1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty. PMID:27247397
Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China
NASA Astrophysics Data System (ADS)
Yue, Yao; Ni, Jinren; Ciais, Philippe; Piao, Shilong; Wang, Tao; Huang, Mengtian; Borthwick, Alistair G. L.; Li, Tianhong; Wang, Yichu; Chappell, Adrian; Van Oost, Kristof
2016-06-01
Soil erosion by water impacts soil organic carbon stocks and alters CO2 fluxes exchanged with the atmosphere. The role of erosion as a net sink or source of atmospheric CO2 remains highly debated, and little information is available at scales larger than small catchments or regions. This study attempts to quantify the lateral transport of soil carbon and consequent land-atmosphere CO2 fluxes at the scale of China, where severe erosion has occurred for several decades. Based on the distribution of soil erosion rates derived from detailed national surveys and soil carbon inventories, here we show that water erosion in China displaced 180 ± 80 Mt Cṡy-1 of soil organic carbon during the last two decades, and this resulted a net land sink for atmospheric CO2 of 45 ± 25 Mt Cṡy-1, equivalent to 8-37% of the terrestrial carbon sink previously assessed in China. Interestingly, the “hotspots,” largely distributed in mountainous regions in the most intensive sink areas (>40 g Cṡm-2ṡy-1), occupy only 1.5% of the total area suffering water erosion, but contribute 19.3% to the national erosion-induced CO2 sink. The erosion-induced CO2 sink underwent a remarkable reduction of about 16% from the middle 1990s to the early 2010s, due to diminishing erosion after the implementation of large-scale soil conservation programs. These findings demonstrate the necessity of including erosion-induced CO2 in the terrestrial budget, hence reducing the level of uncertainty.
Fast Adjustments of the Asian Summer Monsoon to Anthropogenic Aerosols
NASA Astrophysics Data System (ADS)
Li, Xiaoqiong; Ting, Mingfang; Lee, Dong Eun
2018-01-01
Anthropogenic aerosols are a major factor contributing to human-induced climate change, particularly over the densely populated Asian monsoon region. Understanding the physical processes controlling the aerosol-induced changes in monsoon rainfall is essential for reducing the uncertainties in the future projections of the hydrological cycle. Here we use multiple coupled and atmospheric general circulation models to explore the physical mechanisms for the aerosol-driven monsoon changes on different time scales. We show that anthropogenic aerosols induce an overall reduction in monsoon rainfall and circulation, which can be largely explained by the fast adjustments over land north of 20∘N. This fast response occurs before changes in sea surface temperature (SST), largely driven by aerosol-cloud interactions. However, aerosol-induced SST feedbacks (slow response) cause substantial changes in the monsoon meridional circulation over the oceanic regions. Both the land-ocean asymmetry and meridional temperature gradient are key factors in determining the overall monsoon circulation response.
NASA Astrophysics Data System (ADS)
Habarulema, John Bosco; Yizengaw, Endawoke; Katamzi-Joseph, Zama T.; Moldwin, Mark B.; Buchert, Stephan
2018-01-01
This paper discusses the ionosphere's response to the largest storm of solar cycle 24 during 16-18 March 2015. We have used the Global Navigation Satellite Systems (GNSS) total electron content data to study large-scale traveling ionospheric disturbances (TIDs) over the American, African, and Asian regions. Equatorward large-scale TIDs propagated and crossed the equator to the other side of the hemisphere especially over the American and Asian sectors. Poleward TIDs with velocities in the range ≈400-700 m/s have been observed during local daytime over the American and African sectors with origin from around the geomagnetic equator. Our investigation over the American sector shows that poleward TIDs may have been launched by increased Lorentz coupling as a result of penetrating electric field during the southward turning of the interplanetary magnetic field, Bz. We have observed increase in SWARM satellite electron density (Ne) at the same time when equatorward large-scale TIDs are visible over the European-African sector. The altitude Ne profiles from ionosonde observations show a possible link that storm-induced TIDs may have influenced the plasma distribution in the topside ionosphere at SWARM satellite altitude.
Highly Efficient Large-Scale Lentiviral Vector Concentration by Tandem Tangential Flow Filtration
Cooper, Aaron R.; Patel, Sanjeet; Senadheera, Shantha; Plath, Kathrin; Kohn, Donald B.; Hollis, Roger P.
2014-01-01
Large-scale lentiviral vector (LV) concentration can be inefficient and time consuming, often involving multiple rounds of filtration and centrifugation. This report describes a simpler method using two tangential flow filtration (TFF) steps to concentrate liter-scale volumes of LV supernatant, achieving in excess of 2000-fold concentration in less than 3 hours with very high recovery (>97%). Large volumes of LV supernatant can be produced easily through the use of multi-layer flasks, each having 1720 cm2 surface area and producing ~560 mL of supernatant per flask. Combining the use of such flasks and TFF greatly simplifies large-scale production of LV. As a demonstration, the method is used to produce a very high titer LV (>1010 TU/mL) and transduce primary human CD34+ hematopoietic stem/progenitor cells at high final vector concentrations with no overt toxicity. A complex LV (STEMCCA) for induced pluripotent stem cell generation is also concentrated from low initial titer and used to transduce and reprogram primary human fibroblasts with no overt toxicity. Additionally, a generalized and simple multiplexed real- time PCR assay is described for lentiviral vector titer and copy number determination. PMID:21784103
Laser-filamentation-induced condensation and snow formation in a cloud chamber.
Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan
2012-04-01
Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.
Large-scale solar wind streams: Average temporal evolution of parameters
NASA Astrophysics Data System (ADS)
Yermolaev, Yuri; Lodkina, Irina; Yermolaev, Michael; Nikolaeva, Nadezhda
2016-07-01
In the report we describe the average temporal profiles of plasma and field parameters in the disturbed large-scale types of solar wind (SW): corotating interaction regions (CIR), interplanetary coronal mass ejections (ICME) (both magnetic cloud (MC) and Ejecta), and Sheath as well as the interplanetary shock (IS) on the basis of OMNI database and our Catalog of large-scale solar wind phenomena during 1976-2000 (see website ftp://ftp.iki.rssi.ru/pub/omni/ and paper [Yermolaev et al., 2009]). To consider influence of both the surrounding undisturbed solar wind, and the interaction of the disturbed types of the solar wind on the parameters, we separately analyze the following sequences of the phenomena: (1) SW/CIR/SW, (2) SW/IS/CIR/SW, (3) SW/Ejecta/SW, (4) SW/Sheath/Ejecta/SW, (5) SW/IS/Sheath/Ejecta/SW, (6) SW/MC/SW, (7) SW/Sheath/MC/SW, and (8) SW/IS/Sheath/MC/SW. To take into account the different durations of SW types, we use the double superposed epoch analysis (DSEA) method: rescaling the duration of the interval for all types in such a manner that, respectively, beginning and end for all intervals of selected type coincide [Yermolaev et al., 2010; 2015]. Obtained data allow us to suggest that (1) the behavior of parameters in Sheath and in CIR is very similar not only qualitatively but also quantitatively, and (2) the speed angle phi in ICME changes from 2 to -2deg. while in CIR and Sheath it changes from -2 to 2 deg., i.e., the streams in CIR/Sheath and ICME deviate in the opposite side. The work was supported by the Russian Foundation for Basic Research, project 16-02-00125 and by Program of Presidium of the Russian Academy of Sciences. References: Yermolaev, Yu. I., N. S. Nikolaeva, I. G. Lodkina, and M. Yu. Yermolaev (2009), Catalog of Large-Scale Solar Wind Phenomena during 1976-2000, Cosmic Research, , Vol. 47, No. 2, pp. 81-94. Yermolaev, Y. I., N. S. Nikolaeva, I. G. Lodkina, and M. Y. Yermolaev (2010), Specific interplanetary conditions for CIR-induced, Sheath-induced, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis, Ann. Geophys., 28, pp. 2177-2186. Yermolaev, Yu. I., I. G. Lodkina, N. S. Nikolaeva, and M. Yu. Yermolaev (2015), Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021274
Thick strings, the liquid crystal blue phase, and cosmological large-scale structure
NASA Technical Reports Server (NTRS)
Luo, Xiaochun; Schramm, David N.
1992-01-01
A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.
Social welfare as small-scale help: evolutionary psychology and the deservingness heuristic.
Petersen, Michael Bang
2012-01-01
Public opinion concerning social welfare is largely driven by perceptions of recipient deservingness. Extant research has argued that this heuristic is learned from a variety of cultural, institutional, and ideological sources. The present article provides evidence supporting a different view: that the deservingness heuristic is rooted in psychological categories that evolved over the course of human evolution to regulate small-scale exchanges of help. To test predictions made on the basis of this view, a method designed to measure social categorization is embedded in nationally representative surveys conducted in different countries. Across the national- and individual-level differences that extant research has used to explain the heuristic, people categorize welfare recipients on the basis of whether they are lazy or unlucky. This mode of categorization furthermore induces people to think about large-scale welfare politics as its presumed ancestral equivalent: small-scale help giving. The general implications for research on heuristics are discussed.
Nowcasting Induced Seismicity at the Groningen Gas Field in the Netherlands
NASA Astrophysics Data System (ADS)
Luginbuhl, M.; Rundle, J. B.; Turcotte, D. L.
2017-12-01
The Groningen natural gas field in the Netherlands has recently been a topic of controversy for many residents in the surrounding area. The gas field provides energy for the majority of the country; however, for a minority of Dutch citizens who live nearby, the seismicity induced by the gas field is a cause for major concern. Since the early 2000's, the region has seen an increase in both number and magnitude of events, the largest of which was a magnitude 3.6 in 2012. Earthquakes of this size and smaller easily cause infrastructural damage to older houses and farms built with single brick walls. Nowcasting is a new method of statistically classifying seismicity and seismic risk. In this paper, the method is applied to the induced seismicity at the natural gas fields in Groningen, Netherlands. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say , and one small say . The method utilizes the number of small earthquakes that occur between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that have occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time, which it does in this case. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of earthquakes in Groningen to nowcast the number of earthquakes in Groningen. The applicability of the scaling is illustrated during the rapid build up of seismicity between 2004 and 2016. It can now be used to forecast the expected reduction in seismicity associated with reduction in gas production.
Bias to CMB lensing reconstruction from temperature anisotropies due to large-scale galaxy motions
NASA Astrophysics Data System (ADS)
Ferraro, Simone; Hill, J. Colin
2018-01-01
Gravitational lensing of the cosmic microwave background (CMB) is expected to be amongst the most powerful cosmological tools for ongoing and upcoming CMB experiments. In this work, we investigate a bias to CMB lensing reconstruction from temperature anisotropies due to the kinematic Sunyaev-Zel'dovich (kSZ) effect, that is, the Doppler shift of CMB photons induced by Compton scattering off moving electrons. The kSZ signal yields biases due to both its own intrinsic non-Gaussianity and its nonzero cross-correlation with the CMB lensing field (and other fields that trace the large-scale structure). This kSZ-induced bias affects both the CMB lensing autopower spectrum and its cross-correlation with low-redshift tracers. Furthermore, it cannot be removed by multifrequency foreground separation techniques because the kSZ effect preserves the blackbody spectrum of the CMB. While statistically negligible for current data sets, we show that it will be important for upcoming surveys, and failure to account for it can lead to large biases in constraints on neutrino masses or the properties of dark energy. For a stage 4 CMB experiment, the bias can be as large as ≈15 % or 12% in cross-correlation with LSST galaxy lensing convergence or galaxy overdensity maps, respectively, when the maximum temperature multipole used in the reconstruction is ℓmax=4000 , and about half of that when ℓmax=3000 . Similarly, we find that the CMB lensing autopower spectrum can be biased by up to several percent. These biases are many times larger than the expected statistical errors. We validate our analytical predictions with cosmological simulations and present the first complete estimate of secondary-induced CMB lensing biases. The predicted bias is sensitive to the small-scale gas distribution, which is affected by pressure and feedback mechanisms, thus making removal via "bias-hardened" estimators challenging. Reducing ℓmax can significantly mitigate the bias at the cost of a decrease in the overall lensing reconstruction signal-to-noise. A bias ≲1 % on large scales requires ℓmax≲2000 , which leads to a reduction in signal-to-noise by a factor of ≈3 - 5 for a stage 4 CMB experiment. Polarization-only reconstruction may be the most robust mitigation strategy.
Large vein injection alleviates rocuronium-induced pain in gynaecologic patients.
Zhang, Xing-Mei; Wang, Qun; Wang, Wei-Si; Wang, Meng
2017-08-01
Rocuronium-induced pain upon injection is very common in the clinical setting. Using the antecubital rather than the hand vein can avoid pain due to propofol injection. We aimed to investigate whether the use of the antecubital vein for injection would alleviate rocuronium-induced pain in a similar fashion. Sixty patients (ASA classes I and II) scheduled for gynaecologic laparoscopy were randomised into two groups. Rocuronium (0.6mg/kg) was injected either into the vein on the dorsum of the hand (group D) or a large vein in the antecubital fossa (group A). Pain was assessed and recorded using a four-point scale. Compared with group D, the incidence of pain and severe pain was lower in group A patients. The rate of no pain was also higher in group A patients. The incidence and severity of rocuronium-induced injection pain were significantly alleviated via use of a large vein for rocuronium injection. Copyright © 2016 Société française d'anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.
Shock induced crystallization of amorphous Nickel powders
NASA Astrophysics Data System (ADS)
Cherukara, Mathew; Strachan, Alejandro
2015-06-01
Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).
To the horizon and beyond: Weak lensing of the CMB and binary inspirals into horizonless objects
NASA Astrophysics Data System (ADS)
Kesden, Michael
This thesis examines two predictions of general relativity: weak lensing and gravitational waves. The cosmic microwave background (CMB) is gravitationally lensed by the large-scale structure between the observer and the last- scattering surface. This weak lensing induces non-Gaussian correlations that can be used to construct estimators for the deflection field. The error and bias of these estimators are derived and used to analyze the viability of lensing reconstruction for future CMB experiments. Weak lensing also affects the one-point probability distribution function of the CMB. The skewness and kurtosis induced by lensing and the Sunayev- Zel'dovich (SZ) effect are calculated as functions of the angular smoothing scale of the map. While these functions offer the advantage of easy computability, only the skewness from lensing-SZ correlations can potentially be detected, even in the limit of the largest amplitude fluctuations allowed by observation. Lensing estimators are also essential to constrain inflation, the favored explanation for large-scale isotropy and the origin of primordial perturbations. B-mode polarization is considered to be a "smoking-gun" signature of inflation, and lensing estimators can be used to recover primordial B-modes from lensing-induced contamination. The ability of future CMB experiments to constrain inflation is assessed as functions of survey size and instrumental sensitivity. A final application of lensing estimators is to constrain a possible cutoff in primordial density perturbations on near-horizon scales. The paucity of independent modes on such scales limits the statistical certainty of such a constraint. Measurements of the deflection field can be used to constrain at the 3s level the existence of a cutoff large enough to account for current CMB observations. A final chapter of this thesis considers an independent topic: the gravitational-wave (GW) signature of a binary inspiral into a horizonless object. If the supermassive objects at galactic centers lack the horizons of traditional black holes, inspiraling objects could emit GWs after passing within their surfaces. The GWs produced by such an inspiral are calculated, revealing distinctive features potentially observable by future GW observatories.
Time evolution of shear-induced particle margination and migration in a cellular suspension
NASA Astrophysics Data System (ADS)
Qi, Qin M.; Shaqfeh, Eric S. G.
2016-11-01
The inhomogeneous center-of-mass distributions of red blood cells and platelets normal to the flow direction in small vessels play a significant role in hemostasis and drug delivery. Under pressure-driven flow in channels, the migration of deformable red blood cells at steady state is characterized by a cell-free or Fahraeus-Lindqvist layer near the vessel wall. Rigid particles such as platelets, however, "marginate" and thus develop a near-wall excess concentration. In order to evaluate the role of branching and design suitable microfluidic devices, it is important to investigate the time evolution of particle margination and migration from a non-equilibrium state and determine the corresponding entrance lengths. From a mechanistic point of view, deformability-induced hydrodynamic lift and shear-induced diffusion are essential mechanisms for the cross-flow migration and margination. In this talk, we determine the concentration distribution of red blood cells and platelets by solving coupled Boltzmann advection-diffusion equations for both species and explore their time evolution. We verify our model by comparing with large-scale, multi-cell simulations and experiments. Our Boltzmann collision theory serves as a fast alternative to large-scale simulations.
NASA Astrophysics Data System (ADS)
Ni, Weidan; Lu, Lipeng; Fang, Jian; Moulinec, Charles; Yao, Yufeng
2018-05-01
The effect of spanwise alternatively distributed strips (SADS) control on turbulent flow in a plane channel has been studied by direct numerical simulations to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuation, and their potential in suppressing flow separation. SADS control is realized by alternatively arranging out-of-phase control (OPC) and in-phase control (IPC) wall actuations on the lower channel wall surface, in the spanwise direction. It is found that the coherent structures are suppressed or enhanced alternatively by OPC or IPC, respectively, leading to the formation of a vertical shear layer, which is responsible for the LSSVs’ presence. Large-scale low-speed region can also be observed above the OPC strips, which resemble large-scale low-speed streaks. LSSVs are found to be in a statistically-converged steady state and their cores are located between two neighboring OPC and IPC strips. Their motions contribute significantly to the momentum transport in the wall-normal and spanwise directions, demonstrating their potential ability to suppress flow separation.
NASA Astrophysics Data System (ADS)
Lam, Simon K. H.
2017-09-01
A promising direction to improve the sensitivity of a SQUID is to increase its junction's normal resistance value, Rn, as the SQUID modulation voltage scales linearly with Rn. As a first step to develop highly sensitive single layer SQUID, submicron scale YBCO grain boundary step edge junctions and SQUIDs with large Rn were fabricated and studied. The step-edge junctions were reduced to submicron scale to increase their Rn values using focus ion beam, FIB and the measurement of transport properties were performed from 4.3 to 77 K. The FIB induced deposition layer proves to be effective to minimize the Ga ion contamination during the FIB milling process. The critical current-normal resistance value of submicron junction at 4.3 K was found to be 1-3 mV, comparable to the value of the same type of junction in micron scale. The submicron junction Rn value is in the range of 35-100 Ω, resulting a large SQUID modulation voltage in a wide temperature range. This performance promotes further investigation of cryogen-free, high field sensitivity SQUID applications at medium low temperature, e.g. at 40-60 K.
Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer
NASA Technical Reports Server (NTRS)
Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas
2011-01-01
The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and test scale. The amplitude and frequency of oscillations varied considerably over the pump s operating space, making it difficult to predict blade loads.
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan; Constantinescu, George
2009-06-01
Detailed knowledge of the dynamics of large-scale turbulence structures is needed to understand the geomorphodynamic processes around in-stream obstacles present in rivers. Detached Eddy Simulation is used to study the flow past a high-aspect-ratio rectangular cylinder (plate) mounted on a flat-bed relatively shallow channel at a channel Reynolds number of 2.4 × 105. Similar to other flows past surface-mounted bluff bodies, the large amplification of the turbulence inside the horseshoe vortex system is because the core of the main necklace vortex is subject to large-scale bimodal oscillations. The presence of a sharp edge at the flanks of the obstruction fixes the position of the flow separation at all depths and induces the formation and shedding of very strong wake rollers over the whole channel depth. Compared with the case of a circular cylinder where the intensity of the rollers decays significantly in the near-bed region because the incoming flow velocity is not sufficient to force the wake to transition from subcritical to supercritical regime, in the case of a high-aspect-ratio rectangular cylinder the passage of the rollers was found to induce high bed-shear stresses at large distances (6-8 D) behind the obstruction. Also, the nondimensional values of the pressure root-mean-square fluctuations at the bed were found to be about 1 order of magnitude higher than the ones predicted for circular cylinders. Overall, this shows that the shape of the in-stream obstruction can greatly modify the dynamics of the large-scale coherent structures, the nature of their interactions, and ultimately, their capability to entrain and transport sediment particles and the speed at which the scour process evolves during its initial stages.
Field-scale and wellbore modeling of compaction-induced casing failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.
1999-06-01
Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less
Direct EUV/X-Ray Modulation of the Ionosphere During the August 2017 Total Solar Eclipse
NASA Astrophysics Data System (ADS)
Mrak, Sebastijan; Semeter, Joshua; Drob, Douglas; Huba, J. D.
2018-05-01
The great American total solar eclipse of 21 August 2017 offered a fortuitous opportunity to study the response of the atmosphere and ionosphere using a myriad of ground instruments. We have used the network of U.S. Global Positioning System receivers to examine perturbations in maps of ionospheric total electron content (TEC). Coherent large-scale variations in TEC have been interpreted by others as gravity wave-induced traveling ionospheric disturbances. However, the solar disk had two active regions at that time, one near the center of the disk and one at the edge, which resulted in an irregular illumination pattern in the extreme ultraviolet (EUV)/X-ray bands. Using detailed EUV occultation maps calculated from the National Aeronautics and Space Administration Solar Dynamics Observatory Atmospheric Imaging Assembly images, we show excellent agreement between TEC perturbations and computed gradients in EUV illumination. The results strongly suggest that prominent large-scale TEC disturbances were consequences of direct EUV modulation, rather than gravity wave-induced traveling ionospheric disturbances.
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-03-14
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.
Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.
2016-01-01
The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.
Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J
2017-01-01
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700
Lam, Siew Hong; Mathavan, Sinnakarupan; Tong, Yan; Li, Haixia; Karuturi, R. Krishna Murthy; Wu, Yilian; Vega, Vinsensius B.; Liu, Edison T.; Gong, Zhiyuan
2008-01-01
The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly), is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated) aromatic hydrocarbons [P(H)AHs] and estrogenic compounds (ECs), we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology. PMID:18618001
Xu, Weifeng; Wolff, Brian S.
2014-01-01
Low-intensity alternating electric fields applied to the scalp are capable of modulating cortical activity and brain functions, but the underlying mechanisms remain largely unknown. Here, we report two distinct components of voltage-sensitive dye signals induced by low-intensity, alternating electric fields in rodent cortical slices: a “passive component,” which corresponds to membrane potential changes directly induced by the electric field; and an “active component,” which is a widespread depolarization that is dependent on excitatory synaptic transmission. The passive component is stationary, with amplitude and phase accurately reflecting the cortical cytoarchitecture. In contrast, the active component is initiated from a local “hot spot” of activity and spreads to a large population as a propagating wave with rich local dynamics. The propagation of the active component may play a role in modulating large-scale cortical activity by spreading a low level of excitation from a small initiation point to a vast neuronal population. PMID:25122710
Experimental investigation of large-scale vortices in a freely spreading gravity current
NASA Astrophysics Data System (ADS)
Yuan, Yeping; Horner-Devine, Alexander R.
2017-10-01
A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.
Impact of post-Born lensing on the CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratten, Geraint; Lewis, Antony, E-mail: G.Pratten@Sussex.ac.uk, E-mail: antony@cosmologist.info
Lensing of the CMB is affected by post-Born lensing, producing corrections to the convergence power spectrum and introducing field rotation. We show numerically that the lensing convergence power spectrum is affected at the ∼< 0.2% level on accessible scales, and that this correction and the field rotation are negligible for observations with arcminute beam and noise levels ∼> 1 μK arcmin. The field rotation generates ∼ 2.5% of the total lensing B-mode polarization amplitude (0.2% in power on small scales), but has a blue spectrum on large scales, making it highly subdominant to the convergence B modes on scales wheremore » they are a source of confusion for the signal from primordial gravitational waves. Since the post-Born signal is non-linear, it also generates a bispectrum with the convergence. We show that the post-Born contributions to the bispectrum substantially change the shape predicted from large-scale structure non-linearities alone, and hence must be included to estimate the expected total signal and impact of bispectrum biases on CMB lensing reconstruction quadratic estimators and other observables. The field-rotation power spectrum only becomes potentially detectable for noise levels || 1 μK arcmin, but its bispectrum with the convergence may be observable at ∼ 3σ with Stage IV observations. Rotation-induced and convergence-induced B modes are slightly correlated by the bispectrum, and the bispectrum also produces additional contributions to the lensed BB power spectrum.« less
Andrich, David; Marais, Ida; Humphry, Stephen Mark
2015-01-01
Recent research has shown how the statistical bias in Rasch model difficulty estimates induced by guessing in multiple-choice items can be eliminated. Using vertical scaling of a high-profile national reading test, it is shown that the dominant effect of removing such bias is a nonlinear change in the unit of scale across the continuum. The consequence is that the proficiencies of the more proficient students are increased relative to those of the less proficient. Not controlling the guessing bias underestimates the progress of students across 7 years of schooling with important educational implications. PMID:29795871
Enhanced peculiar velocities in brane-induced gravity
NASA Astrophysics Data System (ADS)
Wyman, Mark; Khoury, Justin
2010-08-01
The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the ΛCDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are inconsistent at the nearly 3σ level with ΛCDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1E0657-57) is unlikely at a 6.5-5.8σ level, with an estimated probability between 3.3×10-11 and 3.6×10-9 in ΛCDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravity becomes higher-dimensional at ultralarge distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2σ level with bulk flow observations. The occurrence of the bullet cluster in these theories is ≈104 times more probable than in ΛCDM cosmology.
Enhanced peculiar velocities in brane-induced gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyman, Mark; Khoury, Justin
The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge for the {Lambda}CDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are inconsistent at the nearly 3{sigma} level with {Lambda}CDM predictions. Meanwhile, Lee and Komatsu have recently estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1E0657-57) is unlikely at a 6.5-5.8{sigma} level, with an estimated probability between 3.3x10{sup -11} and 3.6x10{sup -9} in {Lambda}CDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed gravity theories, called brane-induced gravity, in which gravitymore » becomes higher-dimensional at ultralarge distances. These theories include additional scalar forces that enhance gravitational attraction and therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent at the 2{sigma} level with bulk flow observations. The occurrence of the bullet cluster in these theories is {approx_equal}10{sup 4} times more probable than in {Lambda}CDM cosmology.« less
NASA Astrophysics Data System (ADS)
Cappa, F.; Guglielmi, Y.; De Barros, L.; Wynants-Morel, N.; Duboeuf, L.
2017-12-01
During fluid injection, the observations of an enlarging cloud of seismicity are generally explained by a direct response to the pore pressure diffusion in a permeable fractured rock. However, fluid injection can also induce large aseismic deformations which provide an alternative mechanism for triggering and driving seismicity. Despite the importance of these two mechanisms during fluid injection, there are few studies on the effects of fluid pressure on the partitioning between seismic and aseismic motions under controlled field experiments. Here, we describe in-situ meter-scale experiments measuring synchronously the fluid pressure, the fault motions and the seismicity directly in a fault zone stimulated by controlled fluid injection at 280 m depth in carbonate rocks. The experiments were conducted in a gallery of an underground laboratory in south of France (LSBB, http://lsbb.eu). Thanks to the proximal monitoring at high-frequency, our data show that the fluid overpressure mainly induces a dilatant aseismic slip (several tens of microns up to a millimeter) at the injection. A sparse seismicity (-4 < Mw < -3) is observed several meters away from the injection, in a part of the fault zone where the fluid overpressure is null or very low. Using hydromechanical modeling with friction laws, we simulated an experiment and investigated the relative contribution of the fluid pressure diffusion and stress transfer on the seismic and aseismic fault behavior. The model reproduces the hydromechanical data measured at injection, and show that the aseismic slip induced by fluid injection propagates outside the pressurized zone where accumulated shear stress develops, and potentially triggers seismicity. Our models also show that the permeability enhancement and friction evolution are essential to explain the fault slip behavior. Our experimental results are consistent with large-scale observations of fault motions at geothermal sites (Wei et al., 2015; Cornet, 2016), and suggest that controlled field experiments at meter-scale are important for better assessing the role of fluid pressure in natural and human-induced earthquakes.
Amplification of large scale magnetic fields in a decaying MHD system
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-10-01
Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.
Elberry, Ahmed A.; Al-Maghrabi, Jaudah; Abdel Sattar, Essam; Ghareib, Salah A.; Mosli, Hisham A.; Gabr, Salah A.
2014-01-01
Red onion scales (ROS) contain large amounts of flavonoids that are responsible for the reported antioxidant activity, immune enhancement, and anticancer property. Atypical prostatic hyperplasia (APH) was induced in adult castrated Wistar rats by both s.c. injection of testosterone (0.5 mg/rat/day) and by smearing citral on shaved skin once every 3 days for 30 days. Saw palmetto (100 mg/kg) as a positive control and ROS suspension at doses of 75, 150, and 300 mg/kg/day were given orally every day for 30 days. All medications were started 7 days after castration and along with testosterone and citral. The HPLC profile of ROS methanolic extract displayed two major peaks identified as quercetin and quercetin-4′-β-O-D-glucoside. Histopathological examination of APH-induced prostatic rats revealed evidence of hyperplasia and inflammation with cellular proliferation and reduced apoptosis Immunohistochemistry showed increased tissue expressions of IL-6, IL-8, TNF-α, IGF-1, and clusterin, while TGF-β1 was decreased, which correlates with the presence of inflammation. Both saw palmetto and RO scale treatment have ameliorated these changes. These ameliorative effects were more evident in RO scale groups and were dose dependent. In conclusion, methanolic extract of ROS showed a protective effect against APH induced rats that may be attributed to potential anti-inflammatory and immunomodulatory effects. PMID:24829522
Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET.
Dutta, Sangya; Kumar, Vinay; Shukla, Aditya; Mohapatra, Nihar R; Ganguly, Udayan
2017-08-15
Neuro-biology inspired Spiking Neural Network (SNN) enables efficient learning and recognition tasks. To achieve a large scale network akin to biology, a power and area efficient electronic neuron is essential. Earlier, we had demonstrated an LIF neuron by a novel 4-terminal impact ionization based n+/p/n+ with an extended gate (gated-INPN) device by physics simulation. Excellent improvement in area and power compared to conventional analog circuit implementations was observed. In this paper, we propose and experimentally demonstrate a compact conventional 3-terminal partially depleted (PD) SOI- MOSFET (100 nm gate length) to replace the 4-terminal gated-INPN device. Impact ionization (II) induced floating body effect in SOI-MOSFET is used to capture LIF neuron behavior to demonstrate spiking frequency dependence on input. MHz operation enables attractive hardware acceleration compared to biology. Overall, conventional PD-SOI-CMOS technology enables very-large-scale-integration (VLSI) which is essential for biology scale (~10 11 neuron based) large neural networks.
A correlation between the cosmic microwave background and large-scale structure in the Universe.
Boughn, Stephen; Crittenden, Robert
2004-01-01
Observations of distant supernovae and the fluctuations in the cosmic microwave background (CMB) indicate that the expansion of the Universe may be accelerating under the action of a 'cosmological constant' or some other form of 'dark energy'. This dark energy now appears to dominate the Universe and not only alters its expansion rate, but also affects the evolution of fluctuations in the density of matter, slowing down the gravitational collapse of material (into, for example, clusters of galaxies) in recent times. Additional fluctuations in the temperature of CMB photons are induced as they pass through large-scale structures and these fluctuations are necessarily correlated with the distribution of relatively nearby matter. Here we report the detection of correlations between recent CMB data and two probes of large-scale structure: the X-ray background and the distribution of radio galaxies. These correlations are consistent with those predicted by dark energy, indicating that we are seeing the imprint of dark energy on the growth of structure in the Universe.
Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount
NASA Astrophysics Data System (ADS)
Chang, Ming-Huei; Jheng, Sin-Ya; Lien, Ren-Chieh
2016-08-01
Trains of large Kelvin-Helmholtz (KH) billows within the Kuroshio current at ~230 m depth off southeastern Taiwan and above a seamount were observed by shipboard instruments. The trains of large KH billows were present in a strong shear band along the 0.55 m s-1 isotach within the Kuroshio core; they are presumably produced by flow interactions with the rapidly changing topography. Each individual billow, resembling a cat's eye, had a horizontal length scale of 200 m, a vertical scale of 100 m, and a timescale of 7 min, near the local buoyancy frequency. Overturns were observed frequently in the billow cores and the upper eyelids. The turbulent kinetic energy dissipation rates estimated using the Thorpe scale had an average value of O(10-4) W kg-1 and a maximum value of O(10-3) W kg-1. The turbulence mixing induced by the KH billows may exchange Kuroshio water with the surrounding water masses.
Carbon nanotubes (CNTs) have been incorporated into numerous consumer products, and have also been employed in various industrial areas because of their extraordinary properties. The large scale production and wide applications of CNTs make their release into the environment a ma...
The relation between land use and subsidence in the Vietnamese Mekong delta
The Vietnamese Mekong delta is subsiding due to a combination of natural and human-induced causes. Over the past several decades, large-scale anthropogenic land-use changes have taken place as a result of increased agricultural production, population growth and urbanization in th...
2010-01-01
snapshot of SM-induced toxicity. Over the past few years, innovations in systems biology and biotechnology have led to important advances in our under...perturbations. SILAC has been used to study tumor metastasis (3, 4), focal adhesion- associated proteins, growth factor signaling, and insulin regula- tion (5...stained with colloidal Coomassie blue. After it was destained, the gel lane was excised into six regions, and each region was cut into 1 mm cubes
Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.
Takayama, Kazuo; Mizuguchi, Hiroyuki
2017-02-01
Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
In-chip direct laser writing of a centimeter-scale acoustic micromixer
NASA Astrophysics Data System (ADS)
van't Oever, Jorick; Spannenburg, Niels; Offerhaus, Herman; van den Ende, Dirk; Herek, Jennifer; Mugele, Frieder
2015-04-01
A centimeter-scale micromixer was fabricated by two-photon polymerization inside a closed microchannel using direct laser writing. The structure consists of a repeating pattern of 20 μm×20 μm×155 μm acrylate pillars and extends over 1.2 cm. Using external ultrasonic actuation, the micropillars locally induce streaming with flow speeds of 30 μm s-1. The fabrication method allows for large flexibility and more complex designs.
Billion-scale production of hepatocyte-like cells from human induced pluripotent stem cells.
Yamashita, Tomoki; Takayama, Kazuo; Sakurai, Fuminori; Mizuguchi, Hiroyuki
2018-02-19
Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells are expected to be utilized in drug screening and regenerative medicine. However, hepatocyte-like cells have not been fully used in such applications because it is difficult to produce such cells on a large scale. In this study, we tried to establish a method to mass produce hepatocyte-like cells using a three-dimensional (3D) cell culture bioreactor called the Rotary Cell Culture System (RCCS). RCCS enabled us to obtain homogenous hepatocyte-like cells on a billion scale (>10 9 cells). The gene expression levels of some hepatocyte markers (alpha-1 antitrypsin, cytochrome (CYP) 1A2, CYP2D6, and hepatocyte nuclear factor 4alpha) were higher in 3D-cultured hepatocyte-like cells than in 2D-cultured hepatocyte-like cells. This result suggests that RCCS could provide more suitable conditions for hepatocyte maturation than the conventional 2D cell culture conditions. In addition, more than 90% of hepatocyte-like cells were positive for albumin and could uptake low-density lipoprotein in the culture medium. We succeeded in the large-scale production of homogenous and functional hepatocyte-like cells from human iPS cells. This technology will be useful in drug screening and regenerative medicine, which require enormous numbers of hepatocyte-like cells. Copyright © 2018 Elsevier Inc. All rights reserved.
Major coastal impact induced by a 1000-year storm event
Fruergaard, Mikkel; Andersen, Thorbjørn J.; Johannessen, Peter N.; Nielsen, Lars H.; Pejrup, Morten
2013-01-01
Extreme storms and storm surges may induce major changes along sandy barrier coastlines, potentially causing substantial environmental and economic damage. We show that the most destructive storm (the 1634 AD storm) documented for the northern Wadden Sea within the last thousand years both caused permanent barrier breaching and initiated accumulation of up to several metres of marine sand. An aggradational storm shoal and a prograding shoreface sand unit having thicknesses of up to 8 m and 5 m respectively were deposited as a result of the storm and during the subsequent 30 to 40 years long healing phase, on the eroded shoreface. Our results demonstrate that millennial-scale storms can induce large-scale and long-term changes on barrier coastlines and shorefaces, and that coastal changes assumed to take place over centuries or even millennia may occur in association with and be triggered by a single extreme storm event.
Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg
2010-01-01
An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.
NASA Astrophysics Data System (ADS)
Alberts, Samantha J.
The investigation of microgravity fluid dynamics emerged out of necessity with the advent of space exploration. In particular, capillary research took a leap forward in the 1960s with regards to liquid settling and interfacial dynamics. Due to inherent temperature variations in large spacecraft liquid systems, such as fuel tanks, forces develop on gas-liquid interfaces which induce thermocapillary flows. To date, thermocapillary flows have been studied in small, idealized research geometries usually under terrestrial conditions. The 1 to 3m lengths in current and future large tanks and hardware are designed based on hardware rather than research, which leaves spaceflight systems designers without the technological tools to effectively create safe and efficient designs. This thesis focused on the design and feasibility of a large length-scale thermocapillary flow experiment, which utilizes temperature variations to drive a flow. The design of a helical channel geometry ranging from 1 to 2.5m in length permits a large length-scale thermocapillary flow experiment to fit in a seemingly small International Space Station (ISS) facility such as the Fluids Integrated Rack (FIR). An initial investigation determined the proposed experiment produced measurable data while adhering to the FIR facility limitations. The computational portion of this thesis focused on the investigation of functional geometries of fuel tanks and depots using Surface Evolver. This work outlines the design of a large length-scale thermocapillary flow experiment for the ISS FIR. The results from this work improve the understanding thermocapillary flows and thus improve technological tools for predicting heat and mass transfer in large length-scale thermocapillary flows. Without the tools to understand the thermocapillary flows in these systems, engineers are forced to design larger, heavier vehicles to assure safety and mission success.
The use of imprecise processing to improve accuracy in weather & climate prediction
NASA Astrophysics Data System (ADS)
Düben, Peter D.; McNamara, Hugh; Palmer, T. N.
2014-08-01
The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost.
Induced earthquake magnitudes are as large as (statistically) expected
Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran
2016-01-01
A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.
Yapuncich, Gabriel S; Boyer, Doug M
2014-01-01
The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether ‘muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between ‘muscle vs. mass' dominance is likely bone-and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces. PMID:24219027
Interactions between hyporheic flow produced by stream meanders, bars, and dunes
Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.
2013-01-01
Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.
On the spatial distribution of small heavy particles in homogeneous shear turbulence
NASA Astrophysics Data System (ADS)
Nicolai, C.; Jacob, B.; Piva, R.
2013-08-01
We report on a novel experiment aimed at investigating the effects induced by a large-scale velocity gradient on the turbulent transport of small heavy particles. To this purpose, a homogeneous shear flow at Reλ = 540 and shear parameter S* = 4.5 is set-up and laden with glass spheres whose size d is comparable with the Kolmogorov lengthscale η of the flow (d/η ≈ 1). The particle Stokes number is approximately 0.3. The analysis of the instantaneous particle fields by means of Voronoï diagrams confirms the occurrence of intense turbulent clustering at small scales, as observed in homogeneous isotropic flows. It also indicates that the anisotropy of the velocity fluctuations induces a preferential orientation of the particle clusters. In order to characterize the fine-scale features of the dispersed phase, spatial correlations of the particle field are employed in conjunction with statistical tools recently developed for anisotropic turbulence. The scale-by-scale analysis of the particle field clarifies that isotropy of the particle distribution is tendentially recovered at small separations, even though the signatures of the mean shear persist down to smaller scales as compared to the fluid velocity field.
Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR.
Lucchi, Naomi W; Narayanan, Jothikumar; Karell, Mara A; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs.
Montanino, Daniele; Vazza, Franco; Mirizzi, Alessandro; Viel, Matteo
2017-09-08
Large-scale extragalactic magnetic fields may induce conversions between very-high-energy photons and axionlike particles (ALPs), thereby shielding the photons from absorption on the extragalactic background light. However, in simplified "cell" models, used so far to represent extragalactic magnetic fields, this mechanism would be strongly suppressed by current astrophysical bounds. Here we consider a recent model of extragalactic magnetic fields obtained from large-scale cosmological simulations. Such simulated magnetic fields would have large enhancement in the filaments of matter. As a result, photon-ALP conversions would produce a significant spectral hardening for cosmic TeV photons. This effect would be probed with the upcoming Cherenkov Telescope Array detector. This possible detection would give a unique chance to perform a tomography of the magnetized cosmic web with ALPs.
Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.
2013-01-01
Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737
Molecular Structure-Based Large-Scale Prediction of Chemical-Induced Gene Expression Changes.
Liu, Ruifeng; AbdulHameed, Mohamed Diwan M; Wallqvist, Anders
2017-09-25
The quantitative structure-activity relationship (QSAR) approach has been used to model a wide range of chemical-induced biological responses. However, it had not been utilized to model chemical-induced genomewide gene expression changes until very recently, owing to the complexity of training and evaluating a very large number of models. To address this issue, we examined the performance of a variable nearest neighbor (v-NN) method that uses information on near neighbors conforming to the principle that similar structures have similar activities. Using a data set of gene expression signatures of 13 150 compounds derived from cell-based measurements in the NIH Library of Integrated Network-based Cellular Signatures program, we were able to make predictions for 62% of the compounds in a 10-fold cross validation test, with a correlation coefficient of 0.61 between the predicted and experimentally derived signatures-a reproducibility rivaling that of high-throughput gene expression measurements. To evaluate the utility of the predicted gene expression signatures, we compared the predicted and experimentally derived signatures in their ability to identify drugs known to cause specific liver, kidney, and heart injuries. Overall, the predicted and experimentally derived signatures had similar receiver operating characteristics, whose areas under the curve ranged from 0.71 to 0.77 and 0.70 to 0.73, respectively, across the three organ injury models. However, detailed analyses of enrichment curves indicate that signatures predicted from multiple near neighbors outperformed those derived from experiments, suggesting that averaging information from near neighbors may help improve the signal from gene expression measurements. Our results demonstrate that the v-NN method can serve as a practical approach for modeling large-scale, genomewide, chemical-induced, gene expression changes.
Moreira, Xoaquín; Abdala-Roberts, Luis; Galmán, Andrea; Francisco, Marta; Fuente, María de la; Butrón, Ana; Rasmann, Sergio
2018-06-07
Biogeographical factors and phylogenetic history are key determinants of inter-specific variation in plant defences. However, few studies have conducted broad-scale geographical comparisons of plant defences while controlling for phylogenetic relationships, and, in doing so, none have separated constitutive from induced defences. This gap has limited our understanding of how historical or large-scale processes mediate biogeographical patterns in plant defences since these may be contingent upon shared evolutionary history and phylogenetic constraints. We conducted a phylogenetically-controlled experiment testing for differences in constitutive leaf chemical defences and their inducibility between Palearctic and Nearctic oak species (Quercus, total 18 species). We induced defences in one-year old plants by inflicting damage by gypsy moth larvae (Lymantria dispar), estimated the amount of leaf area consumed, and quantified various groups of phenolic compounds. There was no detectable phylogenetic signal for constitutive or induced levels of most defensive traits except for constitutive condensed tannins, as well as no phylogenetic signal in leaf herbivory. We did, however, find marked differences in defence levels between oak species from each region: Palearctic species had higher levels of constitutive condensed tannins, but less constitutive lignins and less constitutive and induced hydrolysable tannins compared with Nearctic species. Additionally, Palearctic species had lower levels of leaf damage compared with Nearctic species. These differences in leaf damage, lignins and hydrolysable (but not condensed) tannins were lost after accounting for phylogeny, suggesting that geographical structuring of phylogenetic relationships mediated biogeographical differences in defences and herbivore resistance. Together, these findings suggest that historical processes and large-scale drivers have shaped differences in allocation to constitutive defences (and in turn resistance) between Palearctic and Nearctic oaks. Moreover, although evidence of phylogenetic conservatism in the studied traits is rather weak, shared evolutionary history appears to mediate some of these biogeographical patterns in allocation to chemical defences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Cheng; Dong, Shanliang; Zheng, Yang; He, Ciwang; Chen, Jiaolong; Zhen, Jingsen; Qiu, Lihua; Xu, Xinfang
2018-01-31
A thermally induced, substrate-dependent reaction of alkynyl diazo compounds has been developed. This transformation produces spiro-4H-pyrazole-oxindoles and fused 1H-pyrazoles in good to high yields from the corresponding alpha-cyano and alpha-sulfonyl diazo compounds. The salient features of this reaction include excellent chemoselectivity and atom-economy, mild reaction conditions, simple purification and potential for large scale production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo
High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less
On the Role of Multi-Scale Processes in CO2 Storage Security and Integrity
NASA Astrophysics Data System (ADS)
Pruess, K.; Kneafsey, T. J.
2008-12-01
Consideration of multiple scales in subsurface processes is usually referred to the spatial domain, where we may attempt to relate process descriptions and parameters from pore and bench (Darcy) scale to much larger field and regional scales. However, multiple scales occur also in the time domain, and processes extending over a broad range of time scales may be very relevant to CO2 storage and containment. In some cases, such as in the convective instability induced by CO2 dissolution in saline waters, space and time scales are coupled in the sense that perturbations induced by CO2 injection will grow concurrently over many orders of magnitude in both space and time. In other cases, CO2 injection may induce processes that occur on short time scales, yet may affect large regions. Possible examples include seismicity that may be triggered by CO2 injection, or hypothetical release events such as "pneumatic eruptions" that may discharge substantial amounts of CO2 over a short time period. This paper will present recent advances in our experimental and modeling studies of multi-scale processes. Specific examples that will be discussed include (1) the process of CO2 dissolution-diffusion-convection (DDC), that can greatly accelerate the rate at which free-phase CO2 is stored as aqueous solute; (2) self- enhancing and self-limiting processes during CO2 leakage through faults, fractures, or improperly abandoned wells; and (3) porosity and permeability reduction from salt precipitation near CO2 injection wells, and mitigation of corresponding injectivity loss. This work was supported by the Office of Basic Energy Sciences and by the Zero Emission Research and Technology project (ZERT) under Contract No. DE-AC02-05CH11231 with the U.S. Department of Energy.
NASA Technical Reports Server (NTRS)
Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh
2003-01-01
We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.
Role of absorbing aerosols on hot extremes in India in a GCM
NASA Astrophysics Data System (ADS)
Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.
2017-12-01
Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is concurrently important to mitigate emissions of warming black carbon particles, to manage future climate change-induced hot extremes.
Effect of small scale transport processes on phytoplankton distribution in coastal seas.
Hernández-Carrasco, Ismael; Orfila, Alejandro; Rossi, Vincent; Garçon, Veronique
2018-06-05
Coastal ocean ecosystems are major contributors to the global biogeochemical cycles and biological productivity. Physical factors induced by the turbulent flow play a crucial role in regulating marine ecosystems. However, while large-scale open-ocean dynamics is well described by geostrophy, the role of multiscale transport processes in coastal regions is still poorly understood due to the lack of continuous high-resolution observations. Here, the influence of small-scale dynamics (O(3.5-25) km, i.e. spanning upper submesoscale and mesoscale processes) on surface phytoplankton derived from satellite chlorophyll-a (Chl-a) is studied using Lagrangian metrics computed from High-Frequency Radar currents. The combination of complementary Lagrangian diagnostics, including the Lagrangian divergence along fluid trajectories, provides an improved description of the 3D flow geometry which facilitates the interpretation of two non-exclusive physical mechanisms affecting phytoplankton dynamics and patchiness. Attracting small-scale fronts, unveiled by backwards Lagrangian Coherent Structures, are associated to negative divergence where particles and Chl-a standing stocks cluster. Filaments of positive divergence, representing large accumulated upward vertical velocities and suggesting accrued injection of subsurface nutrients, match areas with large Chl-a concentrations. Our findings demonstrate that an accurate characterization of small-scale transport processes is necessary to comprehend bio-physical interactions in coastal seas.
Size dependent fragmentation of argon clusters in the soft x-ray ionization regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gisselbrecht, Mathieu; Lindgren, Andreas; Burmeister, Florian
Photofragmentation of argon clusters of average size ranging from 10 up to 1000 atoms is studied using soft x-ray radiation below the 2p threshold and multicoincidence mass spectroscopy technique. For small clusters (
Cipriani, B; Borsellino, G; Knowles, H; Tramonti, D; Cavaliere, F; Bernardi, G; Battistini, L; Brosnan, C F
2001-09-15
Curcumin, in addition to its role as a spice, has been used for centuries to treat inflammatory disorders. Although the mechanism of action remains unclear, it has been shown to inhibit the activation of NF-kappaB and AP-1, transcription factors required for induction of many proinflammatory mediators. Due to its low toxicity it is currently under consideration as a broad anti-inflammatory, anti-tumor cell agent. In this study we investigated whether curcumin inhibited the response of gammadelta T cells to protease-resistant phosphorylated derivatives found in the cell wall of many pathogens. The results showed that curcumin levels > or =30 microM profoundly inhibited isopentenyl pyrophosphate-induced release of the chemokines macrophage inflammatory protein-1alpha and -1beta and RANTES. Curcumin also blocked isopentenyl pyrophosphate-induced activation of NF-kappaB and AP-1. Commencing around 16 h, treatment with curcumin lead to the induction of cell death that could not be reversed by APC, IL-15, or IL-2. This cytotoxicity was associated with increased annexin V reactivity, nuclear expression of active caspase-3, cleavage of poly(ADP-ribose) polymerase, translocation of apoptosis-inducing factor to the nucleus, and morphological evidence of nuclear disintegration. However, curcumin led to only large scale DNA chromatolysis, as determined by a combination of TUNEL staining and pulse-field and agarose gel electrophoresis, suggesting a predominantly apoptosis-inducing factor-mediated cell death process. We conclude that gammadelta T cells activated by these ubiquitous Ags are highly sensitive to curcumin, and that this effect may contribute to the anti-inflammatory properties of this compound.
NASA Astrophysics Data System (ADS)
Giese, M.; Reimann, T.; Bailly-Comte, V.; Maréchal, J.-C.; Sauter, M.; Geyer, T.
2018-03-01
Due to the duality in terms of (1) the groundwater flow field and (2) the discharge conditions, flow patterns of karst aquifer systems are complex. Estimated aquifer parameters may differ by several orders of magnitude from local (borehole) to regional (catchment) scale because of the large contrast in hydraulic parameters between matrix and conduit, their heterogeneity and anisotropy. One approach to deal with the scale effect problem in the estimation of hydraulic parameters of karst aquifers is the application of large-scale experiments such as long-term high-abstraction conduit pumping tests, stimulating measurable groundwater drawdown in both, the karst conduit system as well as the fractured matrix. The numerical discrete conduit-continuum modeling approach MODFLOW-2005 Conduit Flow Process Mode 1 (CFPM1) is employed to simulate laminar and nonlaminar conduit flow, induced by large-scale experiments, in combination with Darcian matrix flow. Effects of large-scale experiments were simulated for idealized settings. Subsequently, diagnostic plots and analyses of different fluxes are applied to interpret differences in the simulated conduit drawdown and general flow patterns. The main focus is set on the question to which extent different conduit flow regimes will affect the drawdown in conduit and matrix depending on the hydraulic properties of the conduit system, i.e., conduit diameter and relative roughness. In this context, CFPM1 is applied to investigate the importance of considering turbulent conditions for the simulation of karst conduit flow. This work quantifies the relative error that results from assuming laminar conduit flow for the interpretation of a synthetic large-scale pumping test in karst.
Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?
Baldini, James U.L.; Brown, Richard J.; McElwaine, Jim N.
2015-01-01
The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events. PMID:26616338
Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?
Baldini, James U L; Brown, Richard J; McElwaine, Jim N
2015-11-30
The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events.
NASA Astrophysics Data System (ADS)
Pankratova, Evgeniya V.; Kalyakulina, Alena I.
2016-12-01
We study the dynamics of multielement neuronal systems taking into account both the direct interaction between the cells via linear coupling and nondiffusive cell-to-cell communication via common environment. For the cells exhibiting individual bursting behavior, we have revealed the dependence of the network activity on its scale. Particularly, we show that small-scale networks demonstrate the inability to maintain complicated oscillations: for a small number of elements in an ensemble, the phenomenon of amplitude death is observed. The existence of threshold network scales and mechanisms causing firing in artificial and real multielement neural networks, as well as their significance for biological applications, are discussed.
Roccuzzo, Sebastiana; Beckerman, Andrew P; Pandhal, Jagroop
2016-12-01
Open raceway ponds are regarded as the most economically viable option for large-scale cultivation of microalgae for low to mid-value bio-products, such as biodiesel. However, improvements are required including reducing the costs associated with harvesting biomass. There is now a growing interest in exploiting natural ecological processes within biotechnology. We review how chemical cues produced by algal grazers induce colony formation in algal cells, which subsequently leads to their sedimentation. A statistical meta-analysis of more than 80 studies reveals that Daphnia grazers can induce high levels of colony formation and sedimentation in Scenedesmus obliquus and that these natural, infochemical induced sedimentation rates are comparable to using commercial chemical equivalents. These data suggest that natural ecological interactions can be co-opted in biotechnology as part of a promising, low energy and clean harvesting method for use in large raceway systems.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei
2018-04-01
In this study, we conducted nested high-resolution simulations using the Weather Research and Forecasting model coupled with a single-layer urban canopy model to investigate the impact of extensive urbanization on regional precipitation over the Beijing-Tianjin-Hebei region in China. The results showed that extensive urbanization decreased precipitation considerably over and downwind of Beijing city. The prevalence of impermeable urban land inhibits local evaporation that feeds moisture into the overlying atmosphere, decreasing relative humidity and atmospheric instability. The dynamic precipitation recycling model was employed to estimate the precipitation that originates from local surface evaporation and large-scale advection of moisture. Results showed that about 11% of the urbanization-induced decrease in total precipitation over the Greater Beijing Region and its surroundings was contributed by the decrease in local recycled precipitation, while the other part (89%) was due to decreasing large-scale advected precipitation. Results suggest that the low evaporation from urban land surfaces not only reduces the supply of water vapor for local recycled precipitation directly but also decreases the convective available potential energy and hence the conversion efficiency of atmospheric moisture into rainfall. The urbanization-induced variations in local recycled precipitation were found to be correlated with the net atmospheric moisture flux on a monthly time scale.
Geologic implications and potential hazards of scour depressions on bering shelf, Alaska
Larsen, M.C.; Nelson, H.; Thor, D.R.
1979-01-01
Flat-bottomed depression 50-150 m in diameter and 60-80 cm deep occur in the floor of Norton Sound, Bering Sea. These large erosional bedforms and associated current ripples are found in areas where sediment grain size is 0.063-0.044 mm (4-4.5 ??), speeds of bottom currents are greatest (20-30 cm/s mean speeds under nonstorm conditions, 70 cm/s during typical storms), circulation of water is constricted by major topographic shoals (kilometers in scale), and small-scale topographic disruptions, such as ice gouges, occur locally on slopes of shoals. These local obstructions on shoals appear to disrupt currents, causing separation of flow and generating eddies that produce large-scale scour. Offshore artificial structures also may disrupt bottom currents in these same areas and have the potential to generate turbulence and induce extensive scour in the area of disrupted flow. The size and character of natural scour depressions in areas of ice gouging suggest that large-scale regions of scour may develop from enlargement of local scour sites around pilings, platforms, or pipelines. Consequently, loss of substrate support for pipelines and gravity structures is possible during frequent autumn storms. ?? 1979 Springer-Verlag New York Inc.
NASA Astrophysics Data System (ADS)
Duro, Javier; Iglesias, Rubén; Blanco, Pablo; Albiol, David; Koudogbo, Fifamè
2015-04-01
The Wide Area Product (WAP) is a new interferometric product developed to provide measurement over large regions. Persistent Scatterers Interferometry (PSI) has largely proved their robust and precise performance in measuring ground surface deformation in different application domains. In this context, however, the accurate displacement estimation over large-scale areas (more than 10.000 km2) characterized by low magnitude motion gradients (3-5 mm/year), such as the ones induced by inter-seismic or Earth tidal effects, still remains an open issue. The main reason for that is the inclusion of low quality and more distant persistent scatterers in order to bridge low-quality areas, such as water bodies, crop areas and forested regions. This fact yields to spatial propagation errors on PSI integration process, poor estimation and compensation of the Atmospheric Phase Screen (APS) and the difficult to face residual long-wavelength phase patterns originated by orbit state vectors inaccuracies. Research work for generating a Wide Area Product of ground motion in preparation for the Sentinel-1 mission has been conducted in the last stages of Terrafirma as well as in other research programs. These developments propose technological updates for keeping the precision over large scale PSI analysis. Some of the updates are based on the use of external information, like meteorological models, and the employment of GNSS data for an improved calibration of large measurements. Usually, covering wide regions implies the processing over areas with a land use which is chiefly focused on livestock, horticulture, urbanization and forest. This represents an important challenge for providing continuous InSAR measurements and the application of advanced phase filtering strategies to enhance the coherence. The advanced PSI processing has been performed out over several areas, allowing a large scale analysis of tectonic patterns, and motion caused by multi-hazards as volcanic, landslide and flood. Several examples of the application of the PSI WAP to wide regions for measuring ground displacements related to different types of hazards, natural and human induced will be presented. The InSAR processing approach to measure accurate movements at local and large scales for allowing multi-hazard interpretation studies will also be discussed. The test areas will show deformations related to active faults systems, landslides in mountains slopes, ground compaction over underneath aquifers and movements in volcanic areas.
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.
2017-05-01
Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.
River logjams cause frequent large-scale forest die-off events in southwestern Amazonia
NASA Astrophysics Data System (ADS)
Lombardo, Umberto
2017-07-01
This paper investigates the dynamics of logjam-induced floods and alluvial deposition in the Bolivian Amazon and the effects these have on forest disturbance and recovery cycles. It expands on previous work by Gullison et al. (1996) who reported a case of catastrophic floods triggered by logjams in the Chimane Forest in the Bolivian Amazon. No further studies have followed up on this observation and no research has been published on the effects of large wood in tropical lowland rivers. The study is based on the analysis of a time series of Landsat imagery (1984-2016) and field evidence. Results show that logjam-induced floods are a major driver of forest disturbance along the Andean piedmont in the Bolivian Amazon. New logjams form on an almost yearly basis, always further upriver, until an avulsion takes place. Logjam-induced floods are characterized here by the sudden deposition of a thick sand layer and the death of forest in a V-shaped area. The Bolivian Amazon offers a unique opportunity for further research on how large wood affects river behavior in lowland tropical settings and how large and frequent forest disturbance events resulting from river logjams affect forest biodiversity and community successions.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2016-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2017-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
Management of phosgene-induced acute lung injury.
Grainge, Christopher; Rice, Paul
2010-07-01
Phosgene is a substance of immense importance in the chemical industry. Because of its widespread industrial use, there is potential for small-scale exposures within the workplace, large-scale accidental release, or even deliberate release into a built-up area. This review aims to examine all published studies concerning potential treatments for phosgene-induced acute lung injury and incorporate them into up-to-date clinical guidance. In addition, it aims to contrast the approaches when dealing with small numbers of patients known to be exposed (possibly with dose information) with the presentation of a large and heterogeneous population of casualties following a significant industrial accident or deliberate release; no published guidelines have specifically addressed this second problem. PubMed and Embase were searched for all available years till April 2010 and 584 papers were identified and considered. Because of the nature of the injury, there have been no human trials of patients exposed to phosgene. Multiple small and large animal studies have been performed to examine potential treatments of phosgene-induced acute lung injury, but many of these used isolated organ models, pretreatment regimens, or clinically improbable doses. Recent studies in large animals using both realistic time frames and dosing regimens have improved our knowledge, but clinical guidance remains based on incomplete data. Management of a small-scale, confirmed exposure. In the circumstance of a small-scale, confirmed industrial release where a few individuals are exposed and present rapidly, an intravenous bolus of high-dose corticosteroid (e.g., methylprednisolone 1 g) should be considered, although there are no experimental data to support this recommendation. The evidence is that there is no benefit from nebulized steroid even when administered 1 h after exposure, or methylprednisolone if administered intravenously ≥6 h after exposure. Consideration should also be given to administration of nebulized acetylcysteine 1-2 g, though there is no substantive evidence of benefit outside a small animal, isolated lung model and there is a possibility of adverse effects. If the oxygen saturation falls below 94%, patients should receive the lowest concentration of supplemental oxygen to maintain their SaO(2) in the normal range. Once patients require oxygen, nebulized β-agonists [e.g., salbutamol (albuterol) 5 mg by nebulizer every 4 h] may reduce lung inflammation if administered within 1 h of exposure. Elective intubation should be considered early using an ARDSnet protective ventilation strategy. Management of a large-scale, non-confirmed exposure. In the circumstances of a large-scale industrial or urban release, not all patients presenting will have been exposed and health services are likely to be highly stretched. In this situation, patients should not be treated immediately as there is no evidence that delaying therapy causes harm, rather they should be rested and observed with regular physical examination and measurement of peripheral oxygen saturations. Once a patient's oxygen saturation falls below 94%, treatment with the lowest concentration of oxygen required to maintain their oxygen saturations in the normal range should be started. Once oxygen has been started, nebulized β-agonists [e.g., salbutamol (albuterol) 5 mg by nebulizer every 4 h] may reduce lung inflammation if administered within 1 h of exposure, though delayed administration which is likely following a large-scale release has not been tested formally. There is no benefit from nebulized steroid even when administered 1 h after exposure, or high-dose corticosteroid if administered intravenously ≥6 h after exposure. Although there are no experimental data to support this recommendation, an intravenous bolus of high-dose corticosteroid (e.g., methylprednisolone 1 g) may be considered if presentation is <6 h and resources allow. Depending on the numbers of casualties presenting, invasive ventilation should be initiated either electively once symptoms present (especially where there is a short latent period, indicating likelihood of more significant injury), or delayed until required. Ventilation should be with high positive end expiratory pressure, ARDSnet recommended ventilation. The mechanisms underlying the phosgene-induced acute lung injury are not well understood. Future experimental work should ensure that potential treatments are tested in a large animal model using realistic dosing regimens and clinically relevant timings, such as those that might be found in a mass casualty situation.
NASA Astrophysics Data System (ADS)
Justham, T.; Jarvis, S.; Clarke, A.; Garner, C. P.; Hargrave, G. K.; Halliwell, N. A.
2006-07-01
Simultaneous intake and in-cylinder digital particle image velocimetry (DPIV) experimental data is presented for a motored spark ignition (SI) optical internal combustion (IC) engine. Two individual DPIV systems were employed to study the inter-relationship between the intake and in-cylinder flow fields at an engine speed of 1500 rpm. Results for the intake runner velocity field at the time of maximum intake valve lift are compared to incylinder velocity fields later in the same engine cycle. Relationships between flow structures within the runner and cylinder were seen to be strong during the intake stroke but less significant during compression. Cyclic variations within the intake runner were seen to affect the large scale bulk flow motion. The subsequent decay of the large scale motions into smaller scale turbulent structures during the compression stroke appear to reduce the relationship with the intake flow variations.
Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.
Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B
2012-06-01
This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System.
Paik, Hanhee; Mezzacapo, A; Sandberg, Martin; McClure, D T; Abdo, B; Córcoles, A D; Dial, O; Bogorin, D F; Plourde, B L T; Steffen, M; Cross, A W; Gambetta, J M; Chow, Jerry M
2016-12-16
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.
Experimental Demonstration of a Resonator-Induced Phase Gate in a Multiqubit Circuit-QED System
NASA Astrophysics Data System (ADS)
Paik, Hanhee; Mezzacapo, A.; Sandberg, Martin; McClure, D. T.; Abdo, B.; Córcoles, A. D.; Dial, O.; Bogorin, D. F.; Plourde, B. L. T.; Steffen, M.; Cross, A. W.; Gambetta, J. M.; Chow, Jerry M.
2016-12-01
The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.
Failure mechanism of the polymer infiltration of carbon nanotube forests
NASA Astrophysics Data System (ADS)
Buchheim, Jakob; Park, Hyung Gyu
2016-11-01
Polymer melt infiltration is one of the feasible methods for manufacturing filter membranes out of carbon nanotubes (CNTs) on large scales. Practically, however, its process suffers from low yields, and the mechanism behind this failure is rather poorly understood. Here, we investigate a failure mechanism of polymer melt infiltration of vertical aligned (VA-) CNTs. In penetrating the VA-CNT interstices, polymer melts exert a capillarity-induced attractive force laterally on CNTs at the moving meniscus, leading to locally agglomerated macroscale bunches. Such a large configurational change can deform and distort individual CNTs so much as to cause buckling or breakdown of the alignment. In view of membrane manufacturing, this irreversible distortion of nanotubes is detrimental, as it could block the transport path of the membranes. The failure mechanism of the polymer melt infiltration is largely attributed to steric hindrance and an energy penalty of confined polymer chains. Euler beam theory and scaling analysis affirm that CNTs with low aspect ratio, thick walls and sparse distribution can maintain their vertical alignment. Our results can enrich a mechanistic understanding of the polymer melt infiltration process and offer guidelines to the facile large-scale manufacturing of the CNT-polymer filter membranes.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
National Mandates and Statewide Enactments: Inquiry in/to Large-Scale Reform
ERIC Educational Resources Information Center
Hines, Mary Beth; Conner, Jenny; Campano, Gerald; Damico, James; Enoch, Melissa; Nam, Daehyeon
2007-01-01
Since the inauguration of the No Child Left Behind Act of 2001 (NCLB) in the United States, with a billion-dollar budget to induce educational reform, American schools have been under the microscope for meeting accountability standards for students. The performance pressures have intensified as the consequences for not achieving academic…
Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y; Tanaka, Minoru; Miyajima, Atsushi
2015-10-13
To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM(+) cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM(+) cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM(+) cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kido, Taketomo; Koui, Yuta; Suzuki, Kaori; Kobayashi, Ayaka; Miura, Yasushi; Chern, Edward Y.; Tanaka, Minoru; Miyajima, Atsushi
2015-01-01
Summary To develop a culture system for large-scale production of mature hepatocytes, liver progenitor cells (LPCs) with a high proliferation potential would be advantageous. We have found that carboxypeptidase M (CPM) is highly expressed in embryonic LPCs, hepatoblasts, while its expression is decreased along with hepatic maturation. Consistently, CPM expression was transiently induced during hepatic specification from human-induced pluripotent stem cells (hiPSCs). CPM+ cells isolated from differentiated hiPSCs at the immature hepatocyte stage proliferated extensively in vitro and expressed a set of genes that were typical of hepatoblasts. Moreover, the CPM+ cells exhibited a mature hepatocyte phenotype after induction of hepatic maturation and also underwent cholangiocytic differentiation in a three-dimensional culture system. These results indicated that hiPSC-derived CPM+ cells share the characteristics of LPCs, with the potential to proliferate and differentiate bi-directionally. Thus, CPM is a useful marker for isolating hiPSC-derived LPCs, which allows development of a large-scale culture system for producing hepatocytes and cholangiocytes. PMID:26365514
Urban adaptation can roll back warming of emerging megapolitan regions
Georgescu, Matei; Morefield, Philip E.; Bierwagen, Britta G.; Weaver, Christopher P.
2014-01-01
Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions. PMID:24516126
Xu, Qingsong; Huang, Tong; Li, Shanlong; Li, Ke; Li, Chuanlong; Liu, Yannan; Wang, Yuling; Yu, Chunyang; Zhou, Yongfeng
2018-05-09
Hierarchical solution self-assembly has nowadays become an important biomimetic method to prepare highly complex and multifunctional supramolecular structures. However, despites the great progress, it is still highly challenging to prepare hierarchical self-assemblies in a large scale since the self-assembly processes are generally performed at high dilution. Herein, we report an emulsion-assisted polymerization-induced self-assembly (EAPISA) method with the advantages of in-situ self-assembly process, scalable preparation and facile functionalization to prepare hierarchical multiscale sea urchin-like aggregates (SUAs). It also extends horizons of PISA in monomers and in polymerization method. The obtained SUAs from amphiphilic alternating copolymers represent a novel self-assembled structure with micron-sized rattan ball-like capsule (RBC) acting as the hollow core body and radiating nanotubes tens of micrometers in length as the hollow spines. They can effectively capture model proteins at an ultra-low concentration (≈10 nM) after functionalized with amino groups through click copolymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kelly, R. F.; Meaney, K. D.; Gilmore, M.; Desjardins, T. R.; Zhang, Y.
2016-11-01
In order to investigate the role of both neutral and ion dynamics in large-scale helicon discharges, a laser induced fluorescence (LIF) system capable of measuring both ArI and ArII fluorescence using a single tunable laser is being developed. The system is based on a >250 mW solid state laser. For ArI measurements, the laser pumps the metastable (2P03/2)4s level to the (2P01/2)4p level using 696.7352 nm light, and fluorescence radiation from decay to the (2P01/2)4s level at 772.6333 nm is observed. For ArII, currently in development, the metastable (3P)3d 4F7/2 level will be pumped to the (3P)4p 4D07/2 level using 688.8511 nm, and decay fluorescence to the (3P)4s 4P5/2 level at 434.9285 nm measured. Here all wavelengths are in a vacuum.
Kelly, R F; Meaney, K D; Gilmore, M; Desjardins, T R; Zhang, Y
2016-11-01
In order to investigate the role of both neutral and ion dynamics in large-scale helicon discharges, a laser induced fluorescence (LIF) system capable of measuring both ArI and ArII fluorescence using a single tunable laser is being developed. The system is based on a >250 mW solid state laser. For ArI measurements, the laser pumps the metastable ( 2 P 0 3/2 )4s level to the ( 2 P 0 1/2 )4p level using 696.7352 nm light, and fluorescence radiation from decay to the ( 2 P 0 1/2 )4s level at 772.6333 nm is observed. For ArII, currently in development, the metastable ( 3 P)3d 4 F 7/2 level will be pumped to the ( 3 P)4p 4 D 0 7/2 level using 688.8511 nm, and decay fluorescence to the ( 3 P)4s 4 P 5/2 level at 434.9285 nm measured. Here all wavelengths are in a vacuum.
Impact of landslides induced by 2014 northeast monsoon extreme rain in Malaysia
NASA Astrophysics Data System (ADS)
Fukuoka, Hiroshi; Koay, Swee Peng; Sakai, Naoki; Lateh, Habibah
2016-04-01
In December 2014, northeast monsoon brought extreme rainfalls to Malaysia, mainly in the eastern coast of Peninsular Malaysia and coastal area in Sabah and Sarawak. In this month, many of the rain gauge records in this area exceeded 1,000 mm, which is about 1/3 of average annual rainfall precipitation (2,850mm/year) in Malaysia. This unexpected heavy rainfall induced landslides and floods which brought about large-scale losses in Malaysia equivalent to several hundred million USD as thousands of residents had evacuated from hometown for months, and factories, schools and business activities were shut down for weeks. Among the major infrastructure of the nation, East-west Highway was subjected to damages by 21 landslides. Two large-scale landslides cut off the highway for a week. Authors had installed landslide monitoring instruments at reactivated landslide sites along the highway at N05° 36.042' E101° 35.546'. Records by in-situ inclinometers showed clear deformation from 17th December to 26th December, associated with certain change in piezometeres record for groundwater level monitoring. Several cracks occurred in the slope.
NASA Technical Reports Server (NTRS)
Falarski, M. D.; Koenig, D. G.
1972-01-01
The investigation of the in-ground-effect, longitudinal aerodynamic characteristics of a large scale swept augmentor wing model is presented, using 40 x 80 ft wind tunnel. The investigation was conducted at three ground heights; h/c equals 2.01, 1.61, and 1.34. The induced effect of underwing nacelles, was studied with two powered nacelle configurations. One configuration used four JT-15D turbofans while the other used two J-85 turbojet engines. Two conical nozzles on each J-85 were used to deflect the thrust at angles from 0 to 120 deg. Tests were also performed without nacelles to allow comparison with previous data from ground effect.
Fluctuations, ghosts, and the cosmological constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, T.; Holdom, B.
2004-12-15
For a large region of parameter space involving the cosmological constant and mass parameters, we discuss fluctuating spacetime solutions that are effectively Minkowskian on large time and distance scales. Rapid, small amplitude oscillations in the scale factor have a frequency determined by the size of a negative cosmological constant. A field with modes of negative energy is required. If it is gravity that induces a coupling between the ghostlike and normal fields, we find that this results in stochastic rather than unstable behavior. The negative energy modes may also permit the existence of Lorentz invariant fluctuating solutions of finite energymore » density. Finally we consider higher derivative gravity theories and find oscillating metric solutions in these theories without the addition of other fields.« less
Mapping Shallow Landslide Slope Inestability at Large Scales Using Remote Sensing and GIS
NASA Astrophysics Data System (ADS)
Avalon Cullen, C.; Kashuk, S.; Temimi, M.; Suhili, R.; Khanbilvardi, R.
2015-12-01
Rainfall induced landslides are one of the most frequent hazards on slanted terrains. They lead to great economic losses and fatalities worldwide. Most factors inducing shallow landslides are local and can only be mapped with high levels of uncertainty at larger scales. This work presents an attempt to determine slope instability at large scales. Buffer and threshold techniques are used to downscale areas and minimize uncertainties. Four static parameters (slope angle, soil type, land cover and elevation) for 261 shallow rainfall-induced landslides in the continental United States are examined. ASTER GDEM is used as bases for topographical characterization of slope and buffer analysis. Slope angle threshold assessment at the 50, 75, 95, 98, and 99 percentiles is tested locally. Further analysis of each threshold in relation to other parameters is investigated in a logistic regression environment for the continental U.S. It is determined that lower than 95-percentile thresholds under-estimate slope angles. Best regression fit can be achieved when utilizing the 99-threshold slope angle. This model predicts the highest number of cases correctly at 87.0% accuracy. A one-unit rise in the 99-threshold range increases landslide likelihood by 11.8%. The logistic regression model is carried over to ArcGIS where all variables are processed based on their corresponding coefficients. A regional slope instability map for the continental United States is created and analyzed against the available landslide records and their spatial distributions. It is expected that future inclusion of dynamic parameters like precipitation and other proxies like soil moisture into the model will further improve accuracy.
Low mass planet migration in magnetically torqued dead zones - I. Static migration torque
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Nelson, Richard P.; Paardekooper, Sijme-Jan; Gressel, Oliver; Lyra, Wladimir
2017-12-01
Motivated by models suggesting that the inner planet forming regions of protoplanetary discs are predominantly lacking in viscosity-inducing turbulence, and are possibly threaded by Hall-effect generated large-scale horizontal magnetic fields, we examine the dynamics of the corotation region of a low-mass planet in such an environment. The corotation torque in an inviscid, isothermal, dead zone ought to saturate, with the libration region becoming both symmetrical and of a uniform vortensity, leading to fast inward migration driven by the Lindblad torques alone. However, in such a low viscosity situation, the material on librating streamlines essentially preserves its vortensity. If there is relative radial motion between the disc gas and the planet, the librating streamlines will no longer be symmetrical. Hence, if the gas is torqued by a large-scale magnetic field so that it undergoes a net inflow or outflow past the planet, driving evolution of the vortensity and inducing asymmetry of the corotation region, the corotation torque can grow, leading to a positive torque. In this paper, we treat this effect by applying a symmetry argument to the previously studied case of a migrating planet in an inviscid disc. Our results show that the corotation torque due to a laminar Hall-induced magnetic field in a dead zone behaves quite differently from that studied previously for a viscous disc. Furthermore, the magnetic field induced corotation torque and the dynamical corotation torque in a low viscosity disc can be regarded as one unified effect.
Chen, Changlong; Chen, Yongpan; Jian, Heng; Yang, Dan; Dai, Yiran; Pan, Lingling; Shi, Fengwei; Yang, Shanshan; Liu, Qian
2018-01-01
Heterodera avenae is one of the most important plant pathogens and causes vast losses in cereal crops. As a sedentary endoparasitic nematode, H. avenae secretes effectors that modify plant defenses and promote its biotrophic infection of its hosts. However, the number of effectors involved in the interaction between H. avenae and host defenses remains unclear. Here, we report the identification of putative effectors in H. avenae that regulate plant defenses on a large scale. Our results showed that 78 of the 95 putative effectors suppressed programmed cell death (PCD) triggered by BAX and that 7 of the putative effectors themselves caused cell death in Nicotiana benthamiana. Among the cell-death-inducing effectors, three were found to be dependent on their specific domains to trigger cell death and to be expressed in esophageal gland cells by in situ hybridization. Ten candidate effectors that suppressed BAX-triggered PCD also suppressed PCD triggered by the elicitor PsojNIP and at least one R-protein/cognate effector pair, suggesting that they are active in suppressing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Notably, with the exception of isotig16060, these putative effectors could also suppress PCD triggered by cell-death-inducing effectors from H. avenae, indicating that those effectors may cooperate to promote nematode parasitism. Collectively, our results indicate that the majority of the tested effectors of H. avenae may play important roles in suppressing cell death induced by different elicitors in N. benthamiana. PMID:29379510
Drought in the Horn of Africa: attribution of a damaging and repeating extreme event
NASA Astrophysics Data System (ADS)
Marthews, Toby; Otto, Friederike; Mitchell, Daniel; Dadson, Simon; Jones, Richard
2015-04-01
We have applied detection and attribution techniques to the severe drought that hit the Horn of Africa in 2014. The short rains failed in late 2013 in Kenya, South Sudan, Somalia and southern Ethiopia, leading to a very dry growing season January to March 2014, and subsequently to the current drought in many agricultural areas of the sub-region. We have made use of the weather@home project, which uses publicly-volunteered distributed computing to provide a large ensemble of simulations sufficient to sample regional climate uncertainty. Based on this, we have estimated the occurrence rates of the kinds of the rare and extreme events implicated in this large-scale drought. From land surface model runs based on these ensemble simulations, we have estimated the impacts of climate anomalies during this period and therefore we can reliably identify some factors of the ongoing drought as attributable to human-induced climate change. The UNFCCC's Adaptation Fund is attempting to support projects that bring about an adaptation to "the adverse effects of climate change", but in order to formulate such projects we need a much clearer way to assess how much climate change is human-induced and how much is a consequence of climate anomalies and large-scale teleconnections, which can only be provided by robust attribution techniques.
Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities
NASA Astrophysics Data System (ADS)
Doster, F.; Celia, M. A.; Nordbotten, J. M.
2012-12-01
Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.
Lepton number violation in theories with a large number of standard model copies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalenko, Sergey; Schmidt, Ivan; Paes, Heinrich
2011-03-01
We examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. On the other hand, the violation of the lepton number can be a potential phenomenological problem of this N-copy extension of the standard model as due to the low quantum gravity scale black holes may induce TeV scale LNV operators generating unacceptably large rates of LNV processes. We show, however, that this issue can be avoided bymore » introducing a spontaneously broken U{sub 1(B-L)}. Then, due to the existence of a specific compensation mechanism between contributions of different Majorana neutrino states, LNV processes in the standard model copy become extremely suppressed with rates far beyond experimental reach.« less
Laser-induced plasmonic colours on metals
NASA Astrophysics Data System (ADS)
Guay, Jean-Michel; Calà Lesina, Antonino; Côté, Guillaume; Charron, Martin; Poitras, Daniel; Ramunno, Lora; Berini, Pierre; Weck, Arnaud
2017-07-01
Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and aluminium. We demonstrate the process on silver coins weighing up to 5 kg and bearing large topographic variations (~1.5 cm). We find that colours are related to a single parameter, the total accumulated fluence, making the process suitable for high-throughput industrial applications. Statistical image analyses of laser-irradiated surfaces reveal various nanoparticle size distributions. Large-scale finite-difference time-domain computations based on these nanoparticle distributions reproduce trends seen in reflectance measurements, and demonstrate the key role of plasmonic resonances in colour formation.
Laser-induced plasmonic colours on metals
Guay, Jean-Michel; Calà Lesina, Antonino; Côté, Guillaume; Charron, Martin; Poitras, Daniel; Ramunno, Lora; Berini, Pierre; Weck, Arnaud
2017-01-01
Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and aluminium. We demonstrate the process on silver coins weighing up to 5 kg and bearing large topographic variations (∼1.5 cm). We find that colours are related to a single parameter, the total accumulated fluence, making the process suitable for high-throughput industrial applications. Statistical image analyses of laser-irradiated surfaces reveal various nanoparticle size distributions. Large-scale finite-difference time-domain computations based on these nanoparticle distributions reproduce trends seen in reflectance measurements, and demonstrate the key role of plasmonic resonances in colour formation. PMID:28719576
NASA Astrophysics Data System (ADS)
Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.
2014-12-01
Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones" resulting from lateral and vertical shear in the wedge above the slab gap, produce slow transit times. These 4-D ascent pathways are being incorporated into numerical models on the thermal and melting evolution of diapirs. Models show subduction-induced circulation significantly alters diapir ascent beneath arcs.
Scale-specific effects: A report on multiscale analysis of acupunctured EEG in entropy and power
NASA Astrophysics Data System (ADS)
Song, Zhenxi; Deng, Bin; Wei, Xile; Cai, Lihui; Yu, Haitao; Wang, Jiang; Wang, Ruofan; Chen, Yingyuan
2018-02-01
Investigating acupuncture effects contributes to improving clinical application and understanding neuronal dynamics under external stimulation. In this report, we recorded electroencephalography (EEG) signals evoked by acupuncture at ST36 acupoint with three stimulus frequencies of 50, 100 and 200 times per minutes, and selected non-acupuncture EEGs as the control group. Multiscale analyses were introduced to investigate the possible acupuncture effects on complexity and power in multiscale level. Using multiscale weighted-permutation entropy, we found the significant effects on increased complexity degree in EEG signals induced by acupuncture. The comparison of three stimulation manipulations showed that 100 times/min generated most obvious effects, and affected most cortical regions. By estimating average power spectral density, we found decreased power induced by acupuncture. The joint distribution of entropy and power indicated an inverse correlation, and this relationship was weakened by acupuncture effects, especially under the manipulation of 100 times/min frequency. Above findings are more evident and stable in large scales than small scales, which suggests that multiscale analysis allows evaluating significant effects in specific scale and enables to probe the inherent characteristics underlying physiological signals.
Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor
Sheu, Jonathan; Beltzer, Jim; Fury, Brian; Wilczek, Katarzyna; Tobin, Steve; Falconer, Danny; Nolta, Jan; Bauer, Gerhard
2015-01-01
Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs), we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s) and in 10-layer cell factories (CF10s), while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation. PMID:26151065
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less
NASA Astrophysics Data System (ADS)
Schramm, David N.
1992-07-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
NASA Astrophysics Data System (ADS)
Schramm, D. N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Large-scale filament formation inhibits the activity of CTP synthetase
Barry, Rachael M; Bitbol, Anne-Florence; Lorestani, Alexander; Charles, Emeric J; Habrian, Chris H; Hansen, Jesse M; Li, Hsin-Jung; Baldwin, Enoch P; Wingreen, Ned S; Kollman, Justin M; Gitai, Zemer
2014-01-01
CTP Synthetase (CtpS) is a universally conserved and essential metabolic enzyme. While many enzymes form small oligomers, CtpS forms large-scale filamentous structures of unknown function in prokaryotes and eukaryotes. By simultaneously monitoring CtpS polymerization and enzymatic activity, we show that polymerization inhibits activity, and CtpS's product, CTP, induces assembly. To understand how assembly inhibits activity, we used electron microscopy to define the structure of CtpS polymers. This structure suggests that polymerization sterically hinders a conformational change necessary for CtpS activity. Structure-guided mutagenesis and mathematical modeling further indicate that coupling activity to polymerization promotes cooperative catalytic regulation. This previously uncharacterized regulatory mechanism is important for cellular function since a mutant that disrupts CtpS polymerization disrupts E. coli growth and metabolic regulation without reducing CTP levels. We propose that regulation by large-scale polymerization enables ultrasensitive control of enzymatic activity while storing an enzyme subpopulation in a conformationally restricted form that is readily activatable. DOI: http://dx.doi.org/10.7554/eLife.03638.001 PMID:25030911
Local gravity and large-scale structure
NASA Technical Reports Server (NTRS)
Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.
1990-01-01
The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.
Natural disasters and population mobility in Bangladesh.
Gray, Clark L; Mueller, Valerie
2012-04-17
The consequences of environmental change for human migration have gained increasing attention in the context of climate change and recent large-scale natural disasters, but as yet relatively few large-scale and quantitative studies have addressed this issue. We investigate the consequences of climate-related natural disasters for long-term population mobility in rural Bangladesh, a region particularly vulnerable to environmental change, using longitudinal survey data from 1,700 households spanning a 15-y period. Multivariate event history models are used to estimate the effects of flooding and crop failures on local population mobility and long-distance migration while controlling for a large set of potential confounders at various scales. The results indicate that flooding has modest effects on mobility that are most visible at moderate intensities and for women and the poor. However, crop failures unrelated to flooding have strong effects on mobility in which households that are not directly affected but live in severely affected areas are the most likely to move. These results point toward an alternate paradigm of disaster-induced mobility that recognizes the significant barriers to migration for vulnerable households as well their substantial local adaptive capacity.
A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release
NASA Technical Reports Server (NTRS)
Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.
1989-01-01
Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.
Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe
2017-01-01
Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379
NASA Astrophysics Data System (ADS)
Moro, M.; Saroli, M.; Gori, S.; Falcucci, E.; Galadini, F.; Messina, P.
2012-05-01
Paleoseismological techniques have been applied to characterize the kinematic behaviour of large-scale gravitational phenomena located in proximity of the seismogenic fault responsible for the Mw 7.0, 1915 Avezzano earthquake and to identify evidence of a possible coseismic reactivation. The above mentioned techniques were applied to the surface expression of the main sliding planes of the Mt. Serrone gravitational deformation, located in the southeastern border of the Fucino basin (central Italy). The approach allows us to detect instantaneous events of deformation along the uphill-facing scarp. These events are testified by the presence of faulted deposits and colluvial wedges. The identified and chronologically-constrained episodes of rapid displacement can be probably correlated with seismic events determined by the activation of the Fucino seismogenic fault, affecting the toe of the gravitationally unstable rock mass. Indeed this fault can produce strong, short-term dynamic stresses able to trigger the release of local gravitational stress accumulated by Mt. Serrone's large-scale gravitational phenomena. The applied methodology could allow us to better understand the geometric and kinematic relationships between active tectonic structures and large-scale gravitational phenomena. It would be more important in seismically active regions, since deep-seated gravitational slope deformations can evolve into a catastrophic collapse and can strongly increase the level of earthquake-induced hazards.
Study of muon-induced neutron production using accelerator muon beam at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.
2015-08-17
Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experimentmore » for more comprehensive study of muon-induced neutron production.« less
Upwelling and downwelling induced by mesoscale circulation in the DeSoto Canyon region
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Chassignet, E.; Morey, S. L.; Dukhovskoy, D. S.
2014-12-01
Ocean dynamics are complex over irregular topography areas, and the northeastern Gulf of Mexico, specifically the DeSoto Canyon region, is a challenge for modelers and oceanographers. Vertical movement of waters, especially upwelling, is observed to take place over the canyon's head and along the coast; however, it is not well understood. We focus on upwelling/downwelling processes induced by the Loop Current and its associated eddy field using multi-decadal Hybrid Coordinate Ocean Model simulations. The Loop Current, part of the Gulf Stream, can develop northward into the Gulf through the Yucatan Channel and exit through the Florida Straits. It can reach the continental slope of the study domain and directly depress the isopycnals. Cyclonic eddies in front of the Loop Current also induce upwelling underneath. On the other hand, the Loop Current sometimes impinges on the West Florida Shelf and generates a high pressure disturbance, which travels northward along the shelf into the study region. Consequently, large-scale downwelling occurs across the continental slopes. Our analysis of sea surface height shows that the Loop Current pressure disturbance tends to propagate along the shallow isobaths of 100 to 300 m in the topographic wave direction from south of the West Florida Shelf to the Mississippi Delta. In addition, after shedding a large anticyclonic eddy, the Loop Current retracts southward and can touch the southeastern corner of the West Florida Shelf. This can result in a higher pressure disturbance, and therefore stronger large-scale downwelling in the DeSoto Canyon region.
Drought and heatwaves in Europe: historical reconstruction and future projections
NASA Astrophysics Data System (ADS)
Samaniego, Luis; Thober, Stephan; Kumar, Rohini; Rakovec, Olda; Wood, Eric; Sheffield, Justin; Pan, Ming; Wanders, Niko; Prudhomme, Christel
2017-04-01
Heat waves and droughts are creeping hydro-meteorological events that may bring societies and natural systems to their limits by inducing large famines, increasing health risks to the population, creating drinking and irrigation water shortfalls, inducing natural fires and degradation of soil and water quality, and in many cases causing large socio-economic losses. Europe, in particular, has endured large scale drought-heat-wave events during the recent past (e.g., 2003 European drought), which have induced enormous socio-economic losses as well as casualties. Recent studies showed that the prediction of droughts and heatwaves is subject to large-scale forcing and parametric uncertainties that lead to considerable uncertainties in the projections of extreme characteristics such as drought magnitude/duration and area under drought, among others. Future projections are also heavily influenced by the RCP scenario uncertainty as well as the coarser spatial resolution of the models. The EDgE project funded by the Copernicus programme (C3S) provides an unique opportunity to investigate the evolution of droughts and heatwaves from 1950 until 2099 over the Pan-EU domain at a scale of 5x5 km2. In this project, high-resolution multi-model hydrologic simulations with the mHM (www.ufz.de/mhm), Noah-MP, VIC and PCR-GLOBWB have been completed for the historical period 1955-2015. Climate projections have been carried out with five CMIP-5 GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M from 2006 to 2099 under RCP2.6 and RCP8.5. Using these multi-model unprecedented simulations, daily soil moisture index and temperature anomalies since 1955 until 2099 will be estimated. Using the procedure proposed by Samaniego et al. (2013), the probabilities of exceeding the benchmark events in the reference period 1980-2010 will be estimated for each RCP scenario. References http://climate.copernicus.eu/edge-end-end-demonstrator-improved-decision-making-water-sector-europe Samaniego, L., R. Kumar, and M. Zink, 2013: Implications of parameter uncertainty on soil moisture drought analysis in Germany. J. Hydrometeor., 14, 47-68, doi:10.1175/JHM-D-12-075.1. Samaniego, L., et al. 2016: Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins. Climatic Change. 1-15.
Molecular Diagnosis of Malaria by Photo-Induced Electron Transfer Fluorogenic Primers: PET-PCR
Lucchi, Naomi W.; Narayanan, Jothikumar; Karell, Mara A.; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J.; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs. PMID:23437209
NASA Astrophysics Data System (ADS)
Bilanych, V.; Komanicky, V.; Lacková, M.; Feher, A.; Kuzma, V.; Rizak, V.
2015-10-01
We observe the change of surface relief on amorphous Ge-As-Se thin films after irradiation with an electron beam. The beam softens the glass and induces various topological surface changes in the irradiated area. The film relief change depends on the film thickness, deposited charge, and film composition. Various structures are formed: Gausian-like cones, extremely sharp Taylor cones, deep craters, and craters with large spires grown on the side. Our investigation shows that these effects can be at least partially a result of electro-hydrodynamic material flow, but the observed phenomena are likely more complex. When we irradiated structural patterns formed by the electron beam with a red laser beam, we could not only fully relax the produced patterns, but also form very complex and intricate superstructures. These organized meso- and nano-scale structures are formed by a combination of photo-induced structural relaxation, light interference on structures fabricated by the e-beam, and photo-induced material flow.
Fractional Stochastic Field Theory
NASA Astrophysics Data System (ADS)
Honkonen, Juha
2018-02-01
Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.
Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale
Berman, Diana; Deshmukh, Sanket; Narayanan, Badri; ...
2016-07-04
The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here in this article, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the processmore » can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. Additionally, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.« less
Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Diana; Deshmukh, Sanket; Narayanan, Badri
The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here in this article, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the processmore » can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. Additionally, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.« less
Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames
NASA Technical Reports Server (NTRS)
Bahadori, M. Y.; Hegde, U.; Stocker, D. P.
1999-01-01
The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.
Motion of Deformable Drops Through Porous Media
NASA Astrophysics Data System (ADS)
Zinchenko, Alexander Z.; Davis, Robert H.
2017-01-01
This review describes recent progress in the fundamental understanding of deformable drop motion through porous media with well-defined microstructures, through rigorous first-principles hydrodynamical simulations and experiments. Tight squeezing conditions, when the drops are much larger than the pore throats, are particularly challenging numerically, as the drops nearly coat the porous material skeleton with small surface clearance, requiring very high surface resolution in the algorithms. Small-scale prototype problems for flow-induced drop motion through round capillaries and three-dimensional (3D) constrictions between solid particles, and for gravity-induced squeezing through round orifices and 3D constrictions, show how forcing above critical conditions is needed to overcome trapping. Scaling laws for the squeezing time are suggested. Large-scale multidrop/multiparticle simulations for emulsion flow through a random granular material with multiple drop breakup show that the drop phase generally moves faster than the carrier fluid; both phase velocities equilibrate much faster to the statistical steady state than does the drop-size distribution.
SUSY’s Ladder: Reframing sequestering at Large Volume
Reece, Matthew; Xue, Wei
2016-04-07
Theories with approximate no-scale structure, such as the Large Volume Scenario, have a distinctive hierarchy of multiple mass scales in between TeV gaugino masses and the Planck scale, which we call SUSY's Ladder. This is a particular realization of Split Supersymmetry in which the same small parameter suppresses gaugino masses relative to scalar soft masses, scalar soft masses relative to the gravitino mass, and the UV cutoff or string scale relative to the Planck scale. This scenario has many phenomenologically interesting properties, and can avoid dangers including the gravitino problem, flavor problems, and the moduli-induced LSP problem that plague othermore » supersymmetric theories. We study SUSY's Ladder using a superspace formalism that makes the mysterious cancelations in previous computations manifest. This opens the possibility of a consistent effective field theory understanding of the phenomenology of these scenarios, based on power-counting in the small ratio of string to Planck scales. We also show that four-dimensional theories with approximate no-scale structure enforced by a single volume modulus arise only from two special higher-dimensional theories: five-dimensional supergravity and ten-dimensional type IIB supergravity. As a result, this gives a phenomenological argument in favor of ten dimensional ultraviolet physics which is different from standard arguments based on the consistency of superstring theory.« less
Land Use Induced Hydroclimatic Variability Over Large Deforested Areas in Southern Amazon Rainforest
NASA Astrophysics Data System (ADS)
Khanna, J.; Medvigy, D.
2017-12-01
Contemporary Amazonian deforestation, which occurs at scales of a few hundreds of kilometers, has been found to induce systematic changes in the regional dry season precipitation. The replacement of rough forest with smooth pasture induces a low level atmospheric convergence and uplift in the downwind and divergence and subsidence in the upwind deforested areas. The resulting precipitation change is about ±30% of the deforested area mean in the two regions respectively. Compared with the increase in non-precipitating cloudiness triggered by small scale clearings prevalent in the early phases of deforestation, this `dynamical mesoscale circulation' can have regional ecological impacts by altering precipitation seasonality and in turn ecosystem dynamics. However, the seasonality and variability of this phenomenon hasn't been studied. Using observations and numerical simulations this study investigates the relationships between the dynamical mechanism and the local- and continental-scale atmospheric conditions to understand the physical controls on this phenomenon on the inter-annual, inter-seasonal and daily time scales. We find that the strength of the dynamical mechanism is controlled mostly by regional scale thermal and dynamical conditions of the boundary layer and not the continental and global scale atmospheric state. The lifting condensation level (thermodynamic control) and wind speed (dynamic control) within the boundary layer have the largest and positive correlations with the dipole strength, which is true although not always significant across time scales. Due to this dependence it is found to be strongest during parts of the year when the atmosphere is relatively stable. Hence, overall this phenomenon is found to be the prevalent convective triggering mechanism during the dry and parts of transition seasons (especially spring), significantly affecting the hydroclimate during this period.
Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.
2017-04-01
Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.
Implications of Gun Launch to Space for Nanosatellite Architectures
NASA Technical Reports Server (NTRS)
Palmer, Miles R.
1995-01-01
Engineering and economic scaling factors for gun launch to space (GLTS) systems are compared to conventional rocket launch systems. It is argued that GLTS might reduce the cost of small satellite development and launch in the mid to far term, thereby inducing a shift away from large centralized geosynchronous communications satellites to small proliferated low earth orbit systems.
Researching Returns Emanating from Participation in Adult Education Courses: A Quantitative Approach
ERIC Educational Resources Information Center
Panitsides, Eugenia
2013-01-01
Throughout contemporary literature, participants in adult education courses have been reported to acquire knowledge and skills, develop understanding and enhance self-confidence, parameters that induce changes in their personal lives, while enabling them to play a more active role in their family, community or work. In this vein, a large-scale,…
Regional assessment of N saturation using foliar and root δ15N
L.H. Pardo; P.H. Templer; C.L. Goodale; S. Duke; P.M. Groffman; M.B. Adams; P. Boeckx; J. Boggs; J. Campbell; B. Colman; J. Compton; B. Emmett; P. Gundersen; J. Kjonaas; G. Lovett; M. Mack; A. Magill; M. Mbila; M.J. Mitchell; G. McGee; S. McNulty; K. Nadelhoffer; S. Ollinger; D. Ross; H. Rueth; L. Rustad; P. Schaberg; S. Schiff; P. Schleppi; J. Spoelstra; W. Wessel
2006-01-01
N saturation induced by atmospheric N deposition can have serious consequences for forest health in many regions. In order to evaluate whether foliar δ15N may be a robust, regional-scale measure of the onset of N saturation in forest ecosystems, we assembled a large dataset on atmospheric N deposition, foliar and root δ
NASA Astrophysics Data System (ADS)
Burov, E.; Guillou-Frottier, L.
2005-05-01
Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.
NASA Astrophysics Data System (ADS)
Wang, Dongxiao; Shu, Yeqiang; Xue, Huijie; Hu, Jianyu; Chen, Ju; Zhuang, Wei; Zu, TingTing; Xu, Jindian
2014-04-01
Topographically induced upwelling caused by the interaction between large-scale currents and topography was observed during four cruises in the northern South China Sea (NSCS) when the upwelling favorable wind retreated. Using a high-resolution version of the Princeton Ocean Model, we investigate relative contributions of local wind and topography to the upwelling intensity in the NSCS. The results show that the topographically induced upwelling is sensitive to alongshore large-scale currents, which have an important contribution to the upwelling intensity. The topographically induced upwelling is comparable with the wind-driven upwelling at surface and has a stronger contribution to the upwelling intensity than the local wind does at bottom in the near-shore shelf region. The widened shelf to the southwest of Shanwei and west of the Taiwan Banks intensifies the bottom friction, especially off Shantou, which is a key factor for topographically induced upwelling in terms of bottom Ekman transport and Ekman pumping. The local upwelling favorable wind enhances the bottom friction as well as net onshore transport along the 50 m isobath, whereas it has less influence along the 30 m isobath. This implies the local wind is more important in upwelling intensity in the offshore region than in the nearshore region. The contribution of local upwelling favorable wind on upwelling intensity is comparable with that of topography along the 50 m isobath. The effects of local upwelling favorable wind on upwelling intensity are twofold: on one hand, the wind transports surface warm water offshore, and as a compensation of mass the bottom current transports cold water onshore; on the other hand, the wind enhances the coastal current, and the bottom friction in turn increases the topographically induced upwelling intensity.
NASA Astrophysics Data System (ADS)
Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.
2016-03-01
Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.
Is the 'great attractor' a loop of cosmic string?
NASA Astrophysics Data System (ADS)
Hoffman, Y.; Zurek, W. H.
1988-05-01
Recent measurements of galaxy velocities suggest that the observed large-scale streaming may be attributed to a massive "attractor". The authors explore the idea that the streaming was induced by a large, moving loop of cosmic string. A stationary loop induces a velocity field that falls off as r-1, where r is the distance from the loop. This is somewhat modified by the motion of the loop, but the r-1 profile still persists in much of the wake of the string. The standard inflationary models of cold or hot dark matter predict, on the other hand, a velocity that should fall off as r-3 away from the density peak. Extension of this model to the Local Supercluster allows one to understand its Virgocentric velocity field of r-1.
Modeling quiescent phase transport of air bubbles induced by breaking waves
NASA Astrophysics Data System (ADS)
Shi, Fengyan; Kirby, James T.; Ma, Gangfeng
Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.
Ancient geodynamics and global-scale hydrology on Mars.
Phillips, R J; Zuber, M T; Solomon, S C; Golombek, M P; Jakosky, B M; Banerdt, W B; Smith, D E; Williams, R M; Hynek, B M; Aharonson, O; Hauck , S A
2001-03-30
Loading of the lithosphere of Mars by the Tharsis rise explains much of the global shape and long-wavelength gravity field of the planet, including a ring of negative gravity anomalies and a topographic trough around Tharsis, as well as gravity anomaly and topographic highs centered in Arabia Terra and extending northward toward Utopia. The Tharsis-induced trough and antipodal high were largely in place by the end of the Noachian Epoch and exerted control on the location and orientation of valley networks. The release of carbon dioxide and water accompanying the emplacement of approximately 3 x 10(8) cubic kilometers of Tharsis magmas may have sustained a warmer climate than at present, enabling the formation of ancient valley networks and fluvial landscape denudation in and adjacent to the large-scale trough.
Tidal interactions in the expanding universe - The formation of prolate systems
NASA Technical Reports Server (NTRS)
Binney, J.; Silk, J.
1979-01-01
The study estimates the magnitude of the anisotropy that can be tidally induced in neighboring initially spherical protostructures, be they protogalaxies, protoclusters, or even uncollapsed density enhancements in the large-scale structure of the universe. It is shown that the linear analysis of tidal interactions developed by Peebles (1969) predicts that the anisotropy energy of a perturbation grows to first order in a small dimensionless parameter, whereas the net angular momentum acquired is of second order. A simple model is presented for the growth of anisotropy by tidal interactions during the nonlinear stage of the development of perturbations. A possible observational test is described of the alignment predicted by the model between the orientations of large-scale perturbations and the positions of neighboring density enhancements.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Erlich, Joshua; Hollowood, Timothy J.; Terning, John
2001-03-01
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowski space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.
Holographic renormalization group and cosmology in theories with quasilocalized gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Csaki, Csaba; Erlich, Joshua; Hollowood, Timothy J.
2001-03-15
We study the long distance behavior of brane theories with quasilocalized gravity. The five-dimensional (5D) effective theory at large scales follows from a holographic renormalization group flow. As intuitively expected, the graviton is effectively four dimensional at intermediate scales and becomes five dimensional at large scales. However, in the holographic effective theory the essentially 4D radion dominates at long distances and gives rise to scalar antigravity. The holographic description shows that at large distances the Gregory-Rubakov-Sibiryakov (GRS) model is equivalent to the model recently proposed by Dvali, Gabadadze, and Porrati (DGP), where a tensionless brane is embedded into 5D Minkowskimore » space, with an additional induced 4D Einstein-Hilbert term on the brane. In the holographic description the radion of the GRS model is automatically localized on the tensionless brane, and provides the ghostlike field necessary to cancel the extra graviton polarization of the DGP model. Thus, there is a holographic duality between these theories. This analysis provides physical insight into how the GRS model works at intermediate scales; in particular it sheds light on the size of the width of the graviton resonance, and also demonstrates how the holographic renormalization group can be used as a practical tool for calculations.« less
Thermal runaway of metal nano-tips during intense electron emission
NASA Astrophysics Data System (ADS)
Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.
2018-06-01
When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.
Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube
Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena
2016-04-12
We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF 6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shockedmore » interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.« less
Turbulent diffusion with memories and intrinsic shear
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1974-01-01
The first part of the present theory is devoted to the derivation of a Fokker-Planck equation. The eddies smaller than the hydrodynamic scale of the diffusion cloud form a diffusivity, while the inhomogeneous, bigger eddies give rise to a nonuniform migratory drift. This introduces an eddy-induced shear which reflects on the large-scale diffusion. The eddy-induced shear does not require the presence of a permanent wind shear and is intrinsic to the diffusion. Secondly, a transport theory of diffusivity is developed by the method of repeated-cascade and is based upon a relaxation of a chain of memories with decreasing information. The full range of diffusion consists of inertia, composite, and shear subranges, for which variance and eddy diffusivities are predicted. The coefficients are evaluated. Comparison with experiments in the upper atmosphere and oceans is made.
Soares, Filipa A.C.; Chandra, Amit; Thomas, Robert J.; Pedersen, Roger A.; Vallier, Ludovic; Williams, David J.
2014-01-01
The transfer of a laboratory process into a manufacturing facility is one of the most critical steps required for the large scale production of cell-based therapy products. This study describes the first published protocol for scalable automated expansion of human induced pluripotent stem cell lines growing in aggregates in feeder-free and chemically defined medium. Cells were successfully transferred between different sites representative of research and manufacturing settings; and passaged manually and using the CompacT SelecT automation platform. Modified protocols were developed for the automated system and the management of cells aggregates (clumps) was identified as the critical step. Cellular morphology, pluripotency gene expression and differentiation into the three germ layers have been used compare the outcomes of manual and automated processes. PMID:24440272
Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Pittock, A. B.; Walsh, K.
1990-01-01
The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.
Climate anomalies generate an exceptional dinoflagellate bloom in San Francisco Bay
Cloern, J.E.; Schraga, T.S.; Lopez, C.B.; Knowles, N.; Grover, Labiosa R.; Dugdale, R.
2005-01-01
We describe a large dinoflagellate bloom, unprecedented in nearly three decades of observation, that developed in San Francisco Bay (SFB) during September 2004. SFB is highly enriched in nutrients but has low summer-autumn algal biomass because wind stress and tidally induced bottom stress produce a well mixed and light-limited pelagic habitat. The bloom coincided with calm winds and record high air temperatures that stratified the water column and suppressed mixing long enough for motile dinoflagellates to grow and accumulate in surface waters. This event-scale climate pattern, produced by an upper-atmosphere high-pressure anomaly off the U.S. west coast, followed a summer of weak coastal upwelling and high dinoflagellate biomass in coastal waters that apparently seeded the SFB bloom. This event suggests that some red tides are responses to changes in local physical dynamics that are driven by large-scale atmospheric processes and operate over both the event scale of biomass growth and the antecedent seasonal scale that shapes the bloom community. Copyright 2005 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, W.
High-resolution satellite data provide detailed, quantitative descriptions of land surface characteristics over large areas so that objective scale linkage becomes feasible. With the aid of satellite data, Sellers et al. and Wood and Lakshmi examined the linearity of processes scaled up from 30 m to 15 km. If the phenomenon is scale invariant, then the aggregated value of a function or flux is equivalent to the function computed from aggregated values of controlling variables. The linear relation may be realistic for limited land areas having no large surface contrasts to cause significant horizontal exchange. However, for areas with sharp surfacemore » contrasts, horizontal exchange and different dynamics in the atmospheric boundary may induce nonlinear interactions, such as at interfaces of land-water, forest-farm land, and irrigated crops-desert steppe. The linear approach, however, represents the simplest scenario, and is useful for developing an effective scheme for incorporating subgrid land surface processes into large-scale models. Our studies focus on coupling satellite data and ground measurements with a satellite-data-driven land surface model to parameterize surface fluxes for large-scale climate models. In this case study, we used surface spectral reflectance data from satellite remote sensing to characterize spatial and temporal changes in vegetation and associated surface parameters in an area of about 350 {times} 400 km covering the southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site of the US Department of Energy`s Atmospheric Radiation Measurement (ARM) Program.« less
The imprint of surface fluxes and transport on variations in total column carbon dioxide
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.
2011-07-01
New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.
The imprint of surface fluxes and transport on variations in total column carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA
2012-01-01
New observations of the vertically integrated CO{sub 2} mixing ratio,
The imprint of surface fluxes and transport on variations in total column carbon dioxide
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.
2012-03-01
New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.
Strain localisation in the continental lithosphere, a scale-dependent process
NASA Astrophysics Data System (ADS)
Jolivet, Laurent; Burov, Evguenii
2013-04-01
Strain localisation in continents is a general question tackled by specialists of various disciplines in Earth Sciences. Field geologists working at regional scale are able to describe the succession of events leading to the formation of large strain zones that accommodate large displacement within plate boundaries. On the other end of the spectrum, laboratory experiments provide numbers that quantitatively describe the rheology of rock material at the scale of a few mm and at deformation rates up to 8-10 orders of magnitude faster than in nature. Extrapolating from the scale of the experiment to the scale of the continental lithosphere is a considerable leap across 8-10 orders of magnitude both in space and time. It is however quite obvious that different processes are at work for each scale considered. At the scale of a grain aggregate diffusion within individual grains, dislocation or grain boundary sliding, depending on temperature and fluid conditions, are of primary importance. But at the scale of a mountain belt, a major detachment or a strike-slip shear zone that have accommodated tens or hundreds of kilometres of relative displacement, other parameters will take over such as structural softening and the heterogeneity of the crust inherited from past tectonic events that have juxtaposed rock units of very different compositions and induced a strong orientation of rocks. Once the deformation is localised along major shear zones, grain size reduction, interaction between rocks and fluids and metamorphic reactions and other small-scale processes tend to further localise the strain. Because the crust is colder and more lithologically complex this heterogeneity is likely much more prominent in the crust than in the mantle and then the relative importance of "small-scale" and "large-scale" parameters will be very different in the crust and in the mantle. Thus, depending upon the relative thickness of the crust and mantle in the deforming lithosphere, the role of each mechanism will have more or less important consequences on strain localisation. This complexity sometimes leads to disregard of experimental parameters in large-scale thermo-mechanical models and to use instead ad hoc "large-scale" numbers that better fit the observed geological history. The goal of the ERC RHEOLITH project is to associate to each tectonic process the relevant rheological parameters depending upon the scale considered, in an attempt to elaborate a generalized "Preliminary Rheology Model Set for Lithosphere" (PReMSL), which will cover the entire time and spatial scale range of deformation.
D'Aiuto, Leonardo; Zhi, Yun; Kumar Das, Dhanjit; Wilcox, Madeleine R; Johnson, Jon W; McClain, Lora; MacDonald, Matthew L; Di Maio, Roberto; Schurdak, Mark E; Piazza, Paolo; Viggiano, Luigi; Sweet, Robert; Kinchington, Paul R; Bhattacharjee, Ayantika G; Yolken, Robert; Nimgaonka, Vishwajit L; Nimgaonkar, Vishwajit L
2014-01-01
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
Rayapuram, Channabasavangowda; Idänheimo, Niina; Hunter, Kerri; Kimura, Sachie; Merilo, Ebe; Vaattovaara, Aleksia; Oracz, Krystyna; Kaufholdt, David; Pallon, Andres; Anggoro, Damar Tri; Glów, Dawid; Lowe, Jennifer; Zhou, Ji; Mohammadi, Omid; Puukko, Tuomas; Albert, Andreas; Lang, Hans; Ernst, Dieter; Kollist, Hannes; Brosché, Mikael; Durner, Jörg; Borst, Jan Willem; Collinge, David B.; Karpiński, Stanisław; Lyngkjær, Michael F.; Robatzek, Silke; Wrzaczek, Michael; Kangasjärvi, Jaakko
2015-01-01
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance. PMID:26197346
Jet evolution in a dense medium: event-by-event fluctuations and multi-particle correlations
NASA Astrophysics Data System (ADS)
Escobedo, Miguel A.; Iancu, Edmond
2017-11-01
We study the gluon distribution produced via successive medium-induced branchings by an energetic jet propagating through a weakly-coupled quark-gluon plasma. We show that under suitable approximations, the jet evolution is a Markovian stochastic process, which is exactly solvable. For this process, we construct exact analytic solutions for all the n-point correlation functions describing the gluon distribution in the space of energy [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv:arxiv:arXiv:1601.03629, doi:http://dx.doi.org/10.1007/JHEP05(2016)008, M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv:arxiv:arXiv:1609.06104, doi:http://dx.doi.org/10.1007/JHEP12(2016)104]. Using these results, we study the event-by-event distribution of the energy lost by the jet at large angles and of the multiplicities of the soft particles which carry this energy. We find that the event-by-event fluctuations are huge: the standard deviation in the energy loss is parametrically as large as its mean value [M. A. Escobedo, E. Iancu, Event-by-event fluctuations in the medium-induced jet evolution, JHEP 05 (2016) 008. arXiv:arxiv:arXiv:1601.03629, doi:http://dx.doi.org/10.1007/JHEP05(2016)008]. This has important consequences for the phenomenology of di-jet asymmetry in Pb+Pb collisions at the LHC: it implies that the fluctuations in the branching process can contribute to the measured asymmetry on an equal footing with the geometry of the di-jet event (i.e. as the difference between the in-medium path lengths of the two jets). We compute the higher moments of the multiplicity distribution and identify a remarkable regularity known as Koba-Nielsen-Olesen (KNO) scaling [M. A. Escobedo, E. Iancu, Multi-particle correlations and KNO scaling in the medium-induced jet evolution, JHEP 12 (2016) 104. arXiv:arxiv:arXiv:1609.06104, doi:http://dx.doi.org/10.1007/JHEP12(2016)104
Coupled land surface/hydrologic/atmospheric models
NASA Technical Reports Server (NTRS)
Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers
1993-01-01
The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passot, T.; Sulem, P. L., E-mail: passot@oca.eu, E-mail: sulem@oca.eu
A phenomenological turbulence model for kinetic Alfvén waves in a magnetized collisionless plasma that is able to reproduce the non-universal power-law spectra observed at the sub-ion scales in the solar wind and the terrestrial magnetosphere is presented. The process of temperature homogenization along distorted magnetic field lines, induced by Landau damping, affects the turbulence transfer time and results in a steepening of the sub-ion power-law spectrum of critically balanced turbulence, whose exponent is sensitive to the ratio between the Alfvén wave period and the nonlinear timescale. Transition from large-scale weak turbulence to smaller scale strong turbulence is captured and nonlocalmore » interactions, relevant in the case of steep spectra, are accounted for.« less
Thatcher, T L; Wilson, D J; Wood, E E; Craig, M J; Sextro, R G
2004-08-01
Scale modeling is a useful tool for analyzing complex indoor spaces. Scale model experiments can reduce experimental costs, improve control of flow and temperature conditions, and provide a practical method for pretesting full-scale system modifications. However, changes in physical scale and working fluid (air or water) can complicate interpretation of the equivalent effects in the full-scale structure. This paper presents a detailed scaling analysis of a water tank experiment designed to model a large indoor space, and experimental results obtained with this model to assess the influence of furniture and people in the pollutant concentration field at breathing height. Theoretical calculations are derived for predicting the effects from losses of molecular diffusion, small scale eddies, turbulent kinetic energy, and turbulent mass diffusivity in a scale model, even without Reynolds number matching. Pollutant dispersion experiments were performed in a water-filled 30:1 scale model of a large room, using uranine dye injected continuously from a small point source. Pollutant concentrations were measured in a plane, using laser-induced fluorescence techniques, for three interior configurations: unobstructed, table-like obstructions, and table-like and figure-like obstructions. Concentrations within the measurement plane varied by more than an order of magnitude, even after the concentration field was fully developed. Objects in the model interior had a significant effect on both the concentration field and fluctuation intensity in the measurement plane. PRACTICAL IMPLICATION: This scale model study demonstrates both the utility of scale models for investigating dispersion in indoor environments and the significant impact of turbulence created by furnishings and people on pollutant transport from floor level sources. In a room with no furniture or occupants, the average concentration can vary by about a factor of 3 across the room. Adding furniture and occupants can increase this spatial variation by another factor of 3.
Understanding and Controlling Sialylation in a CHO Fc-Fusion Process
Lewis, Amanda M.; Croughan, William D.; Aranibar, Nelly; Lee, Alison G.; Warrack, Bethanne; Abu-Absi, Nicholas R.; Patel, Rutva; Drew, Barry; Borys, Michael C.; Reily, Michael D.; Li, Zheng Jian
2016-01-01
A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability. PMID:27310468
FALCON reactor-pumped laser description and program overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1989-12-01
The FALCON (Fission Activated Laser CONcept) reactor-pumped laser program at Sandia National Laboratories is examining the feasibility of high-power systems pumped directly by the energy from a nuclear reactor. In this concept we use the highly energetic fission fragments from neutron induced fission to excite a large volume laser medium. This technology has the potential to scale to extremely large optical power outputs in a primarily self-powered device. A laser system of this type could also be relatively compact and capable of long run times without refueling.
Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Vandresar, N. T.
1994-01-01
Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.
The Vortex Lattice Method for the Rotor-Vortex Interaction Problem
NASA Technical Reports Server (NTRS)
Padakannaya, R.
1974-01-01
The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.
Fast solver for large scale eddy current non-destructive evaluation problems
NASA Astrophysics Data System (ADS)
Lei, Naiguang
Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.
Wildfire as a hydrological and geomorphological agent
NASA Astrophysics Data System (ADS)
Shakesby, R. A.; Doerr, S. H.
2006-02-01
Wildfire can lead to considerable hydrological and geomorphological change, both directly by weathering bedrock surfaces and changing soil structure and properties, and indirectly through the effects of changes to the soil and vegetation on hydrological and geomorphological processes. This review summarizes current knowledge and identifies research gaps focusing particularly on the contribution of research from the Mediterranean Basin, Australia and South Africa over the last two decades or so to the state of knowledge mostly built on research carried out in the USA. Wildfire-induced weathering rates have been reported to be high relative to other weathering processes in fire-prone terrain, possibly as much as one or two magnitudes higher than frost action, with important implications for cosmogenic-isotope dating of the length of rock exposure. Wildfire impacts on soil properties have been a major focus of interest over the last two decades. Fire usually reduces soil aggregate stability and can induce, enhance or destroy soil water repellency depending on the temperature reached and its duration. These changes have implications for infiltration, overland flow and rainsplash detachment. A large proportion of publications concerned with fire impacts have focused on post-fire soil erosion by water, particularly at small scales. These have shown elevated, sometimes extremely large post-fire losses before geomorphological stability is re-established. Soil losses per unit area are generally negatively related to measurement scale reflecting increased opportunities for sediment storage at larger scales. Over the last 20 years, there has been much improvement in the understanding of the forms, causes and timing of debris flow and landslide activity on burnt terrain. Advances in previously largely unreported processes (e.g. bio-transfer of sediment and wind erosion) have also been made. Post-fire hydrological effects have generally also been studied at small rather than large scales, with soil water repellency effects on infiltration and overland flow being a particular focus. At catchment scales, post-fire accentuated peakflow has received more attention than changes in total flow, reflecting easier measurement and the greater hazard posed by the former. Post-fire changes to stream channels occur over both short and long terms with complex feedback mechanisms, though research to date has been limited. Research gaps identified include the need to: (1) develop a fire severity index relevant to soil changes rather than to degree of biomass destruction; (2) isolate the hydrological and geomorphological impacts of fire-induced soil water repellency changes from other important post-fire changes (e.g. litter and vegetation destruction); (3) improve knowledge of the hydrological and geomorphological impacts of wildfire in a wider range of fire-prone terrain types; (4) solve important problems in the determination and analysis of hillslope and catchment sediment yields including poor knowledge about soil losses other than at small spatial and short temporal scales, the lack of a clear measure of the degradational significance of post-fire soil losses, and confusion arising from errors in and lack of scale context for many quoted post-fire soil erosion rates; and (5) increase the research effort into past and potential future hydrological and geomorphological changes resulting from wildfire.
Large increase in fracture resistance of stishovite with crack extension less than one micrometer
Yoshida, Kimiko; Wakai, Fumihiro; Nishiyama, Norimasa; Sekine, Risako; Shinoda, Yutaka; Akatsu, Takashi; Nagoshi, Takashi; Sone, Masato
2015-01-01
The development of strong, tough, and damage-tolerant ceramics requires nano/microstructure design to utilize toughening mechanisms operating at different length scales. The toughening mechanisms so far known are effective in micro-scale, then, they require the crack extension of more than a few micrometers to increase the fracture resistance. Here, we developed a micro-mechanical test method using micro-cantilever beam specimens to determine the very early part of resistance-curve of nanocrystalline SiO2 stishovite, which exhibited fracture-induced amorphization. We revealed that this novel toughening mechanism was effective even at length scale of nanometer due to narrow transformation zone width of a few tens of nanometers and large dilatational strain (from 60 to 95%) associated with the transition of crystal to amorphous state. This testing method will be a powerful tool to search for toughening mechanisms that may operate at nanoscale for attaining both reliability and strength of structural materials. PMID:26051871
Climate-induced changes in vulnerability to biological threats in the southern United States
Rabiu Olatinwo; Qinfeng Guo; Songlin Fei; William Otrosina; Kier Klepzig; Douglas Streett
2014-01-01
Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make...
Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.
2016-01-01
The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.
Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities
NASA Technical Reports Server (NTRS)
Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim
2016-01-01
The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.
Power suppression at large scales in string inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar, E-mail: mcicoli@ictp.it, E-mail: sddownes@physics.tamu.edu, E-mail: dutta@physics.tamu.edu
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflationmore » is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.« less
Power suppression at large scales in string inflation
NASA Astrophysics Data System (ADS)
Cicoli, Michele; Downes, Sean; Dutta, Bhaskar
2013-12-01
We study a possible origin of the anomalous suppression of the power spectrum at large angular scales in the cosmic microwave background within the framework of explicit string inflationary models where inflation is driven by a closed string modulus parameterizing the size of the extra dimensions. In this class of models the apparent power loss at large scales is caused by the background dynamics which involves a sharp transition from a fast-roll power law phase to a period of Starobinsky-like slow-roll inflation. An interesting feature of this class of string inflationary models is that the number of e-foldings of inflation is inversely proportional to the string coupling to a positive power. Therefore once the string coupling is tuned to small values in order to trust string perturbation theory, enough e-foldings of inflation are automatically obtained without the need of extra tuning. Moreover, in the less tuned cases the sharp transition responsible for the power loss takes place just before the last 50-60 e-foldings of inflation. We illustrate these general claims in the case of Fibre Inflation where we study the strength of this transition in terms of the attractor dynamics, finding that it induces a pivot from a blue to a redshifted power spectrum which can explain the apparent large scale power loss. We compute the effects of this pivot for example cases and demonstrate how magnitude and duration of this effect depend on model parameters.
Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew
2011-01-01
Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.
Role of special cross-links in structure formation of bacterial DNA polymer
NASA Astrophysics Data System (ADS)
Agarwal, Tejal; Manjunath, G. P.; Habib, Farhat; Lakshmi Vaddavalli, Pavana; Chatterji, Apratim
2018-01-01
Using data from contact maps of the DNA-polymer of Escherichia coli (E. Coli) (at kilobase pair resolution) as an input to our model, we introduce cross-links between monomers in a bead-spring model of a ring polymer at very specific points along the chain. Via suitable Monte Carlo simulations, we show that the presence of these cross-links leads to a particular organization of the chain at large (micron) length scales of the DNA. We also investigate the structure of a ring polymer with an equal number of cross-links at random positions along the chain. We find that though the polymer does get organized at the large length scales, the nature of the organization is quite different from the organization observed with cross-links at specific biologically determined positions. We used the contact map of E. Coli bacteria which has around 4.6 million base pairs in a single circular chromosome. In our coarse-grained flexible ring polymer model, we used 4642 monomer beads and observed that around 80 cross-links are enough to induce the large-scale organization of the molecule accounting for statistical fluctuations caused by thermal energy. The length of a DNA chain even of a simple bacterial cell such as E. Coli is much longer than typical proteins, hence we avoided methods used to tackle protein folding problems. We define new suitable quantities to identify the large scale structure of a polymer chain with a few cross-links.
Experimental investigation on cavitating flow shedding over an axisymmetric blunt body
NASA Astrophysics Data System (ADS)
Hu, Changli; Wang, Guoyu; Huang, Biao
2015-03-01
Nowadays, most researchers focus on the cavity shedding mechanisms of unsteady cavitating flows over different objects, such as 2D/3D hydrofoils, venturi-type section, axisymmetric bodies with different headforms, and so on. But few of them pay attention to the differences of cavity shedding modality under different cavitation numbers in unsteady cavitating flows over the same object. In the present study, two kinds of shedding patterns are investigated experimentally. A high speed camera system is used to observe the cavitating flows over an axisymmetric blunt body and the velocity fields are measured by a particle image velocimetry (PIV) technique in a water tunnel for different cavitation conditions. The U-type cavitating vortex shedding is observed in unsteady cavitating flows. When the cavitation number is 0.7, there is a large scale cavity rolling up and shedding, which cause the instability and dramatic fluctuation of the flows, while at cavitation number of 0.6, the detached cavities can be conjunct with the attached part to induce the break-off behavior again at the tail of the attached cavity, as a result, the final shedding is in the form of small scale cavity and keeps a relatively steady flow field. It is also found that the interaction between the re-entrant flow and the attached cavity plays an important role in the unsteady cavity shedding modality. When the attached cavity scale is insufficient to overcome the re-entrant flow, it deserves the large cavity rolling up and shedding just as that at cavitation number of 0.7. Otherwise, the re-entrant flow is defeated by large enough cavity to induce the cavity-combined process and small scale cavity vortexes shedding just as that of the cavitation number of 0.6. This research shows the details of two different cavity shedding modalities which is worthful and meaningful for the further study of unsteady cavitation.
Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.
Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel
2017-12-01
Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Gu, Yejun; El-Awady, Jaafar A.
2018-03-01
We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.
Visual analysis of inter-process communication for large-scale parallel computing.
Muelder, Chris; Gygi, Francois; Ma, Kwan-Liu
2009-01-01
In serial computation, program profiling is often helpful for optimization of key sections of code. When moving to parallel computation, not only does the code execution need to be considered but also communication between the different processes which can induce delays that are detrimental to performance. As the number of processes increases, so does the impact of the communication delays on performance. For large-scale parallel applications, it is critical to understand how the communication impacts performance in order to make the code more efficient. There are several tools available for visualizing program execution and communications on parallel systems. These tools generally provide either views which statistically summarize the entire program execution or process-centric views. However, process-centric visualizations do not scale well as the number of processes gets very large. In particular, the most common representation of parallel processes is a Gantt char t with a row for each process. As the number of processes increases, these charts can become difficult to work with and can even exceed screen resolution. We propose a new visualization approach that affords more scalability and then demonstrate it on systems running with up to 16,384 processes.
NASA Astrophysics Data System (ADS)
Duan, Huaiyu; Fuller, George M.; Carlson, J.; Qian, Yong-Zhong
2006-11-01
We present results of large-scale numerical simulations of the evolution of neutrino and antineutrino flavors in the region above the late-time post-supernova-explosion proto-neutron star. Our calculations are the first to allow explicit flavor evolution histories on different neutrino trajectories and to self-consistently couple flavor development on these trajectories through forward scattering-induced quantum coupling. Employing the atmospheric-scale neutrino mass-squared difference (|δm2|≃3×10-3eV2) and values of θ13 allowed by current bounds, we find transformation of neutrino and antineutrino flavors over broad ranges of energy and luminosity in roughly the “bi-polar” collective mode. We find that this large-scale flavor conversion, largely driven by the flavor off-diagonal neutrino-neutrino forward scattering potential, sets in much closer to the proto-neutron star than simple estimates based on flavor-diagonal potentials and Mikheyev-Smirnov-Wolfenstein evolution would indicate. In turn, this suggests that models of r-process nucleosynthesis sited in the neutrino-driven wind could be affected substantially by active-active neutrino flavor mixing, even with the small measured neutrino mass-squared differences.
Natural disasters and population mobility in Bangladesh
Gray, Clark L.; Mueller, Valerie
2012-01-01
The consequences of environmental change for human migration have gained increasing attention in the context of climate change and recent large-scale natural disasters, but as yet relatively few large-scale and quantitative studies have addressed this issue. We investigate the consequences of climate-related natural disasters for long-term population mobility in rural Bangladesh, a region particularly vulnerable to environmental change, using longitudinal survey data from 1,700 households spanning a 15-y period. Multivariate event history models are used to estimate the effects of flooding and crop failures on local population mobility and long-distance migration while controlling for a large set of potential confounders at various scales. The results indicate that flooding has modest effects on mobility that are most visible at moderate intensities and for women and the poor. However, crop failures unrelated to flooding have strong effects on mobility in which households that are not directly affected but live in severely affected areas are the most likely to move. These results point toward an alternate paradigm of disaster-induced mobility that recognizes the significant barriers to migration for vulnerable households as well their substantial local adaptive capacity. PMID:22474361
NASA Astrophysics Data System (ADS)
Wagner, Sebastian; Zorita, Eduardo
2015-04-01
The climate of the 1st millennium AD shows some remarkable differences compared to the last millennium concerning variation in external forcings. Together with an orbitally induced increased solar insolation during the northern hemisphere summer season and a general lack of strong solar minima, the frequency and intensity of large tropical and extratropical eruptions is decreased. Here we present results of a new climate simulation carried out with the comprehensive Earth System Model MPI-ESM-P forced with variations in orbital, solar, volcanic and greenhouse gas variations and land use changes for the last 2,100 years. The atmospheric model has a horizontal resolution of T63 (approx. 125x125 km) and therefore also allows investigations of regional-to-continental scale climatic phenomena. The volcanic forcing was reconstructed based on a publication by Sigl et al. (2013) using the sulfate records of the NEEM and WAIS ice cores. To obtain information on the aerosol optical depth (AOD) these sulfate records were scaled to an established reconstruction from Crowley and Unterman (2010), which is also a standard forcing in the framework of CMIP5/PMIP3. A comparison between the newly created data set with the Crowley and Unterman dataset reveals that the new reconstruction shows in general weaker intensities, especially of the large tropical outbreaks and fewer northern hemispheric small-to-medium scale eruptions. However, the general pattern in the overlapping period is similar. A hypothesis that can be tested with the simulation is whether the reduced volcanic intensity of the 1st millennium AD contributed to the elevated temperature levels over Europe, evident within a new proxy-based reconstruction. On the other hand, the few but large volcanic eruptions, e.g. the 528 AD event, also induced negative decadal-scale temperature anomalies. Another interesting result of the simulation relates to the 79 AD eruption of the Vesuvius, which caused the collapse of the city of Pompeii and its surroundings. Despite its severe local effects the eruption does not show a clear-cut hemispheric or global cooling. Therefore the simulation allows investigations on the effect of individual and clustered eruptions on the climate in the 1st millennium AD and its potential influence to human induced migration periods and decay of cultures in different regions.
Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward
NASA Astrophysics Data System (ADS)
Daley, T. M.
2012-12-01
The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.
Hart, Roger C; Herring, G C; Balla, R Jeffrey
2007-06-15
Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Simulations of Instabilities in Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.
2006-01-01
CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.
NASA Astrophysics Data System (ADS)
Kuwahara, Takuya; Moras, Gianpietro; Moseler, Michael
2017-09-01
Large-scale quantum molecular dynamics of water-lubricated diamond (111) surfaces in sliding contact reveals multiple friction regimes. While water starvation causes amorphization of the tribological interface, small H2O traces are sufficient to preserve crystallinity. This can result in high friction due to cold welding via ether groups or in ultralow friction due to aromatic surface passivation triggered by tribo-induced Pandey reconstruction. At higher water coverage, Grotthuss-type diffusion and H2O dissociation yield dense H /OH surface passivation leading to another ultralow friction regime.
Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking
Tan, Hong-Kee; Toh, Cheng-Xu Delon; Ma, Dongrui; Yang, Binxia; Liu, Tong Ming; Lu, Jun; Wong, Chee-Wai; Tan, Tze-Kai; Li, Hu; Syn, Christopher; Tan, Eng-Lee; Lim, Bing; Lim, Yoon-Pin; Cook, Stuart A.
2014-01-01
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients can be a good model for studying human diseases and for future therapeutic regenerative medicine. Current initiatives to establish human iPSC (hiPSC) banking face challenges in recruiting large numbers of donors with diverse diseased, genetic, and phenotypic representations. In this study, we describe the efficient derivation of transgene-free hiPSCs from human finger-prick blood. Finger-prick sample collection can be performed on a “do-it-yourself” basis by donors and sent to the hiPSC facility for reprogramming. We show that single-drop volumes of finger-prick samples are sufficient for performing cellular reprogramming, DNA sequencing, and blood serotyping in parallel. Our novel strategy has the potential to facilitate the development of large-scale hiPSC banking worldwide. PMID:24646489
Planetary Structures And Simulations Of Large-scale Impacts On Mars
NASA Astrophysics Data System (ADS)
Swift, Damian; El-Dasher, B.
2009-09-01
The impact of large meteroids is a possible cause for isolated orogeny on bodies devoid of tectonic activity. On Mars, there is a significant, but not perfect, correlation between large, isolated volcanoes and antipodal impact craters. On Mercury and the Moon, brecciated terrain and other unusual surface features can be found at the antipodes of large impact sites. On Earth, there is a moderate correlation between long-lived mantle hotspots at opposite sides of the planet, with meteoroid impact suggested as a possible cause. If induced by impacts, the mechanisms of orogeny and volcanism thus appear to vary between these bodies, presumably because of differences in internal structure. Continuum mechanics (hydrocode) simulations have been used to investigate the response of planetary bodies to impacts, requiring assumptions about the structure of the body: its composition and temperature profile, and the constitutive properties (equation of state, strength, viscosity) of the components. We are able to predict theoretically and test experimentally the constitutive properties of matter under planetary conditions, with reasonable accuracy. To provide a reference series of simulations, we have constructed self-consistent planetary structures using simplified compositions (Fe core and basalt-like mantle), which turn out to agree surprisingly well with the moments of inertia. We have performed simulations of large-scale impacts, studying the transmission of energy to the antipodes. For Mars, significant antipodal heating to depths of a few tens of kilometers was predicted from compression waves transmitted through the mantle. Such heating is a mechanism for volcanism on Mars, possibly in conjunction with crustal cracking induced by surface waves. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boxx, I.; Stoehr, M.; Meier, W.
This paper presents observations and analysis of the time-dependent behavior of a 10 kW partially pre-mixed, swirl-stabilized methane-air flame exhibiting self-excited thermo-acoustic oscillations. This analysis is based on a series of measurements wherein particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical were performed simultaneously at 5 kHz repetition rate over durations of 0.8 s. Chemiluminescence imaging of the OH{sup *} radical was performed separately, also at 5 kHz over 0.8 s acquisition runs. These measurements were of sufficient sampling frequency and duration to extract usable spatial and temporal frequency information on the medium to large-scalemore » flow-field and heat-release characteristics of the flame. This analysis is used to more fully characterize the interaction between the self-excited thermo-acoustic oscillations and the dominant flow-field structure of this flame, a precessing vortex core (PVC) present in the inner recirculation zone. Interpretation of individual measurement sequences yielded insight into various physical phenomena and the underlying mechanisms driving flame dynamics. It is observed for this flame that location of the reaction zone tracks large-scale fluctuations in axial velocity and also conforms to the passage of large-scale vortical structures through the flow-field. Local extinction of the reaction zone in regions of persistently high principal compressive strain is observed. Such extinctions, however, are seen to be self healing and thus do not induce blowout. Indications of auto-ignition in regions of unburned gas near the exit are also observed. Probable auto-ignition events are frequently observed coincident with the centers of large-scale vortical structures, suggesting the phenomenon is linked to the enhanced mixing and longer residence times associated with fluid at the core of the PVC as it moves through the flame. (author)« less
Das, Subha Narayan; Madhuprakash, Jogi; Sarma, P V S R N; Purushotham, Pallinti; Suma, Katta; Manjeet, Kaur; Rambabu, Samudrala; Gueddari, Nour Eddine El; Moerschbacher, Bruno M; Podile, Appa Rao
2015-03-01
Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.
Large-Scale Discovery of Induced Point Mutations With High-Throughput TILLING
Till, Bradley J.; Reynolds, Steven H.; Greene, Elizabeth A.; Codomo, Christine A.; Enns, Linda C.; Johnson, Jessica E.; Burtner, Chris; Odden, Anthony R.; Young, Kim; Taylor, Nicholas E.; Henikoff, Jorja G.; Comai, Luca; Henikoff, Steven
2003-01-01
TILLING (Targeting Induced Local Lesions in Genomes) is a general reverse-genetic strategy that provides an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and low-cost discovery of induced point mutations in populations of chemically mutagenized individuals. As chemical mutagenesis is widely applicable and mutation detection for TILLING is dependent only on sufficient yield of PCR products, TILLING can be applied to most organisms. We have developed TILLING as a service to the Arabidopsis community known as the Arabidopsis TILLING Project (ATP). Our goal is to rapidly deliver allelic series of ethylmethanesulfonate-induced mutations in target 1-kb loci requested by the international research community. In the first year of public operation, ATP has discovered, sequenced, and delivered >1000 mutations in >100 genes ordered by Arabidopsis researchers. The tools and methodologies described here can be adapted to create similar facilities for other organisms. PMID:12618384
Large-Eddy Simulation of Internal Flow through Human Vocal Folds
NASA Astrophysics Data System (ADS)
Lasota, Martin; Šidlof, Petr
2018-06-01
The phonatory process occurs when air is expelled from the lungs through the glottis and the pressure drop causes flow-induced oscillations of the vocal folds. The flow fields created in phonation are highly unsteady and the coherent vortex structures are also generated. For accuracy it is essential to compute on humanlike computational domain and appropriate mathematical model. The work deals with numerical simulation of air flow within the space between plicae vocales and plicae vestibulares. In addition to the dynamic width of the rima glottidis, where the sound is generated, there are lateral ventriculus laryngis and sacculus laryngis included in the computational domain as well. The paper presents the results from OpenFOAM which are obtained with a large-eddy simulation using second-order finite volume discretization of incompressible Navier-Stokes equations. Large-eddy simulations with different subgrid scale models are executed on structured mesh. In these cases are used only the subgrid scale models which model turbulence via turbulent viscosity and Boussinesq approximation in subglottal and supraglottal area in larynx.
Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases
Lin, Chen; Mak, Wayne; Hong, Pengyu; Sepp, Katharine; Perrimon, Norbert
2010-01-01
Recently, High-content screening (HCS) has been combined with RNA interference (RNAi) to become an essential image-based high-throughput method for studying genes and biological networks through RNAi-induced cellular phenotype analyses. However, a genome-wide RNAi-HCS screen typically generates tens of thousands of images, most of which remain uncategorized due to the inadequacies of existing HCS image analysis tools. Until now, it still requires highly trained scientists to browse a prohibitively large RNAi-HCS image database and produce only a handful of qualitative results regarding cellular morphological phenotypes. For this reason we have developed intelligent interfaces to facilitate the application of the HCS technology in biomedical research. Our new interfaces empower biologists with computational power not only to effectively and efficiently explore large-scale RNAi-HCS image databases, but also to apply their knowledge and experience to interactive mining of cellular phenotypes using Content-Based Image Retrieval (CBIR) with Relevance Feedback (RF) techniques. PMID:21278820
Worobec, E A; Martin, N L; McCubbin, W D; Kay, C M; Brayer, G D; Hancock, R E
1988-04-07
A large-scale purification scheme was developed for lipopolysaccharide-free protein P, the phosphate-starvation-inducible outer-membrane porin from Pseudomonas aeruginosa. This highly purified protein P was used to successfully form hexagonal crystals in the presence of n-octyl-beta-glucopyranoside. Amino-acid analysis indicated that protein P had a similar composition to other bacterial outer membrane proteins, containing a high percentage (50%) of hydrophilic residues. The amino-terminal sequence of this protein, although not homologous to either outer membrane protein, PhoE or OmpF, of Escherichia coli, was found to have an analogous protein-folding pattern. Protein P in the native trimer form was capable of maintaining a stable functional trimer after proteinase cleavage. This suggested the existence of a strongly associated tertiary and quaternary structure. Circular dichroism studies confirmed these results in that a large proportion of the protein structure was determined to be beta-sheet and resistant to acid pH and heating in 0.1% sodium dodecyl sulphate.
NASA Astrophysics Data System (ADS)
Tkáč, V.; Tarasenko, R.; Orendáčová, A.; Orendáč, M.; Sechovský, V.; Feher, A.
2018-05-01
The experimental and theoretical study of magnetocaloric effect and magnetic relaxation of the powder sample of CsGd(MoO4)2 were performed. The large conventional magnetocaloric effect was found around 2 K with - ΔSmax ≈ 26.5 J/(kg K) for B = 7 T. AC susceptibility measurement revealed multiple-time scale magnetic relaxation effects on different time scales. Slowest relaxation effect was attributed to the direct process with a bottleneck effect and two faster relaxation processes are effectively temperature independent, probably as a result of averaging in the powder sample.
International Intercomparison of Regular Transmittance Scales
NASA Astrophysics Data System (ADS)
Eckerle, K. L.; Sutter, E.; Freeman, G. H. C.; Andor, G.; Fillinger, L.
1990-01-01
An intercomparison of the regular spectral transmittance scales of NIST, Gaithersburg, MD (USA); PTB, Braunschweig (FRG); NPL, Teddington, Middlesex (UK); and OMH, Budapest (H) was accomplished using three sets of neutral glass filters with transmittances ranging from approximately 0.92 to 0.001. The difference between the results from the reference spectrophotometers of the laboratories was generally smaller than the total uncertainty of the interchange. The relative total uncertainty ranges from 0.05% to 0.75% for transmittances from 0.92 to 0.001. The sample-induced error was large - contributing 40% or more of the total except in a few cases.
Gyrodampers for large space structures
NASA Technical Reports Server (NTRS)
Aubrun, J. N.; Margulies, G.
1979-01-01
The problem of controlling the vibrations of a large space structures by the use of actively augmented damping devices distributed throughout the structure is addressed. The gyrodamper which consists of a set of single gimbal control moment gyros which are actively controlled to extract the structural vibratory energy through the local rotational deformations of the structure, is described and analyzed. Various linear and nonlinear dynamic simulations of gyrodamped beams are shown, including results on self-induced vibrations due to sensor noise and rotor imbalance. The complete nonlinear dynamic equations are included. The problem of designing and sizing a system of gyrodampers for a given structure, or extrapolating results for one gyrodamped structure to another is solved in terms of scaling laws. Novel scaling laws for gyro systems are derived, based upon fundamental physical principles, and various examples are given.
Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom
2015-09-21
Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm.
[Stress management in large-scale establishments].
Fukasawa, Kenji
2002-07-01
Due to a recent dramatic change in industrial structures in Japan, the role of large-scale enterprises is changing. Mass production used to be the major income sources of companies, but nowadays it has changed to high value-added products, including, software development. As a consequence of highly competitive inter-corporate development, there are various sources of job stress which induce health problems in employees, especially those concerned with development or management. To simply to obey the law or offer medical care are not enough to achieve management of these problems. Occupational health staff need to act according to the disease type and provide care with support from the Supervisor and Personnel Division. And for the training, development and consultation system, occupational health staff must work with the Personnel Division and Safety Division, and be approved by management supervisors.
NASA Astrophysics Data System (ADS)
Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas
2015-12-01
Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.
Large-Scale Phase Synchrony Reflects Clinical Status After Stroke: An EEG Study.
Kawano, Teiji; Hattori, Noriaki; Uno, Yutaka; Kitajo, Keiichi; Hatakenaka, Megumi; Yagura, Hajime; Fujimoto, Hiroaki; Yoshioka, Tomomi; Nagasako, Michiko; Otomune, Hironori; Miyai, Ichiro
2017-06-01
Stroke-induced focal brain lesions often exert remote effects via residual neural network activity. Electroencephalographic (EEG) techniques can assess neural network modifications after brain damage. Recently, EEG phase synchrony analyses have shown associations between the level of large-scale phase synchrony of brain activity and clinical symptoms; however, few reports have assessed such associations in stroke patients. The aim of this study was to investigate the clinical relevance of hemispheric phase synchrony in stroke patients by calculating its correlation with clinical status. This cross-sectional study included 19 patients with post-acute ischemic stroke admitted for inpatient rehabilitation. Interhemispheric phase synchrony indices (IH-PSIs) were computed in 2 frequency bands (alpha [α], and beta [β]), and associations between indices and scores of the Functional Independence Measure (FIM), the National Institutes of Health Stroke Scale (NIHSS), and the Fugl-Meyer Motor Assessment (FMA) were analyzed. For further assessments of IH-PSIs, ipsilesional intrahemispheric PSIs (IntraH-PSIs) as well as IH- and IntraH-phase lag indices (PLIs) were also evaluated. IH-PSIs correlated significantly with FIM scores and NIHSS scores. In contrast, IH-PSIs did not correlate with FMA scores. IntraH-PSIs correlate with FIM scores after removal of the outlier. The results of analysis with PLIs were consistent with IH-PSIs. The PSIs correlated with performance on the activities of daily living scale but not with scores on a pure motor impairment scale. These results suggest that large-scale phase synchrony represented by IH-PSIs provides a novel surrogate marker for clinical status after stroke.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter
2016-04-01
The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.
Chiral fermions in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Qiao, Jie; Papa, J.; Liu, X.
2015-09-24
Monolithic large-scale diffraction gratings are desired to improve the performance of high-energy laser systems and scale them to higher energy, but the surface deformation of these diffraction gratings induce spatio-temporal coupling that is detrimental to the focusability and compressibility of the output pulse. A new deformable-grating-based pulse compressor architecture with optimized actuator positions has been designed to correct the spatial and temporal aberrations induced by grating wavefront errors. An integrated optical model has been built to analyze the effect of grating wavefront errors on the spatio-temporal performance of a compressor based on four deformable gratings. Moreover, a 1.5-meter deformable gratingmore » has been optimized using an integrated finite-element-analysis and genetic-optimization model, leading to spatio-temporal performance similar to the baseline design with ideal gratings.« less
Chiral fermions in asymptotically safe quantum gravity.
Meibohm, J; Pawlowski, J M
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-03-27
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.
Pairing induced superconductivity in holography
NASA Astrophysics Data System (ADS)
Bagrov, Andrey; Meszena, Balazs; Schalm, Koenraad
2014-09-01
We study pairing induced superconductivity in large N strongly coupled systems at finite density using holography. In the weakly coupled dual gravitational theory the mechanism is conventional BCS theory. An IR hard wall cut-off is included to ensure that we can controllably address the dynamics of a single confined Fermi surface. We address in detail the interplay between the scalar order parameter field and fermion pairing. Adding an explicitly dynamical scalar operator with the same quantum numbers as the fermion-pair, the theory experiences a BCS/BEC crossover controlled by the relative scaling dimensions. We find the novel result that this BCS/BEC crossover exposes resonances in the canonical expectation value of the scalar operator. This occurs not only when the scaling dimension is degenerate with the Cooper pair, but also with that of higher derivative paired operators. We speculate that a proper definition of the order parameter which takes mixing with these operators into account stays finite nevertheless.
Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Zubkov, M. A.
2017-09-01
The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .
NASA Astrophysics Data System (ADS)
Oudar, Thomas; Sanchez-Gomez, Emilia; Chauvin, Fabrice; Cattiaux, Julien; Terray, Laurent; Cassou, Christophe
2017-12-01
The large-scale and synoptic-scale Northern Hemisphere atmospheric circulation responses to projected late twenty-first century Arctic sea ice decline induced by increasing Greenhouse Gases (GHGs) concentrations are investigated using the CNRM-CM5 coupled model. An original protocol, based on a flux correction technique, allows isolating the respective roles of GHG direct radiative effect and induced Arctic sea ice loss under RCP8.5 scenario. In winter, the surface atmospheric response clearly exhibits opposing effects between GHGs increase and Arctic sea ice loss, leading to no significant pattern in the total response (particularly in the North Atlantic region). An analysis based on Eady growth rate shows that Arctic sea ice loss drives the weakening in the low-level meridional temperature gradient, causing a general decrease of the baroclinicity in the mid and high latitudes, whereas the direct impact of GHGs increase is more located in the mid-to-high troposphere. Changes in the flow waviness, evaluated from sinuosity and blocking frequency metrics, are found to be small relative to inter-annual variability.
Cyclone-induced rapid creation of extreme Antarctic sea ice conditions
Wang, Zhaomin; Turner, John; Sun, Bo; Li, Bingrui; Liu, Chengyan
2014-01-01
Two polar vessels, Akademik Shokalskiy and Xuelong, were trapped by thick sea ice in the Antarctic coastal region just to the west of 144°E and between 66.5°S and 67°S in late December 2013. This event demonstrated the rapid establishment of extreme Antarctic sea ice conditions on synoptic time scales. The event was associated with cyclones that developed at lower latitudes. Near the event site, cyclone-enhanced strong southeasterly katabatic winds drove large westward drifts of ice floes. In addition, the cyclones also gave southward ice drift. The arrival and grounding of Iceberg B9B in Commonwealth Bay in March 2011 led to the growth of fast ice around it, forming a northward protruding barrier. This barrier blocked the westward ice drift and hence aided sea ice consolidation on its eastern side. Similar cyclone-induced events have occurred at this site in the past after the grounding of Iceberg B9B. Future events may be predictable on synoptic time scales, if cyclone-induced strong wind events can be predicted. PMID:24937550
Autophoretic locomotion from geometric asymmetry.
Michelin, Sébastien; Lauga, Eric
2015-02-01
Among the few methods which have been proposed to create small-scale swimmers, those relying on self-phoretic mechanisms present an interesting design challenge in that chemical gradients are required to generate net propulsion. Building on recent work, we propose that asymmetries in geometry are sufficient to induce chemical gradients and swimming. We illustrate this idea using two different calculations. We first calculate exactly the self-propulsion speed of a system composed of two spheres of unequal sizes but identically chemically homogeneous. We then consider arbitrary, small-amplitude, shape deformations of a chemically homogeneous sphere, and calculate asymptotically the self-propulsion velocity induced by the shape asymmetries. Our results demonstrate how geometric asymmetries can be tuned to induce large locomotion speeds without the need of chemical patterning.
Nonlinear Tollmien-Schlichting/vortex interaction in boundary layers
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1988-01-01
The nonlinear reaction between two oblique 3-D Tollmein-Schlichting (TS) waves and their induced streamwise-vortex flow is considered theoretically for an imcompressible boundary layer. The same theory applies to the destabilization of an incident vortex motion by subharmonic TS waves, followed by interaction. The scales and flow structure involved are addressed for high Reynolds numbers. The nonlionear interaction is powerful, starting at quite low amplitudes with a triple-deck structure for the TS waves but a large-scale structure for the induced vortex, after which strong nonlinear amplification occurs. This includes nonparallel-flow effects. The nonlinear interaction is governed by a partial differential system for the vortex flow coupled with an ordinary-differential one for the TS pressure. The solution properties found sometimes produce a breakup within a finite distance and sometimes further downstream, depending on the input amplitudes upstream and on the wave angles, and that then leads to the second stages of interaction associated with higher amplitudes, the main second stages giving either long-scale phenomena significantly affected by nonparallelism or shorter quasi-parallel ones governed by the full nonlinear triple-deck response.
Li, Yantao; Hu, Weida; Ye, Zhenhua; Chen, Yiyu; Chen, Xiaoshuang; Lu, Wei
2017-04-01
Mercury cadmium telluride is the standard material to fabricate high-performance infrared focal plane array (FPA) detectors. However, etch-induced damage is a serious obstacle for realizing highly uniform and damage-free FPA detectors. In this Letter, the high signal-to-noise ratio and high spatial resolution scanning photocurrent microscopy (SPCM) is used to characterize the dry etch-induced inversion layer of vacancy-doped p-type Hg1-xCdxTe (x=0.22) material under different etching temperatures. It is found that the peak-to-peak magnitude of the SPCM profile decreases with a decrease in etching temperature, showing direct proof of controlling dry etch-induced type conversion. Our work paves the way toward seeking optimal etching processes in large-scale infrared FPAs.
NASA Astrophysics Data System (ADS)
Agrawal, Ankit; Ganai, Nirmalendu; Sengupta, Surajit; Menon, Gautam I.
2017-01-01
Active matter models describe a number of biophysical phenomena at the cell and tissue scale. Such models explore the macroscopic consequences of driving specific soft condensed matter systems of biological relevance out of equilibrium through ‘active’ processes. Here, we describe how active matter models can be used to study the large-scale properties of chromosomes contained within the nuclei of human cells in interphase. We show that polymer models for chromosomes that incorporate inhomogeneous activity reproduce many general, yet little understood, features of large-scale nuclear architecture. These include: (i) the spatial separation of gene-rich, low-density euchromatin, predominantly found towards the centre of the nucleus, vis a vis. gene-poor, denser heterochromatin, typically enriched in proximity to the nuclear periphery, (ii) the differential positioning of individual gene-rich and gene-poor chromosomes, (iii) the formation of chromosome territories, as well as (iv), the weak size-dependence of the positions of individual chromosome centres-of-mass relative to the nuclear centre that is seen in some cell types. Such structuring is induced purely by the combination of activity and confinement and is absent in thermal equilibrium. We systematically explore active matter models for chromosomes, discussing how our model can be generalized to study variations in chromosome positioning across different cell types. The approach and model we outline here represent a preliminary attempt towards a quantitative, first-principles description of the large-scale architecture of the cell nucleus.
Shifts in tree functional composition amplify the response of forest biomass to climate
NASA Astrophysics Data System (ADS)
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.
2018-04-01
Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Shifts in tree functional composition amplify the response of forest biomass to climate.
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W
2018-04-05
Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Prostate Cancer Prevention Through Induction of Phase 2 Enzymes
2001-04-01
enzymes. During our Phase I Award, we identified sulforaphane as the most potent inducer of carcinogen defenses in the prostate cell. We have...characterized global effects of sulforaphane in prostate cancer cell lines using cDNA microarray technology that allows large-scale determination of changes...of sulforaphane ) and decreased risk of prostate cancer. These findings argue strongly for a preventive intervention trial involving supplementation
Nate G. McDowell; Michael G. Ryan; Melanie J. B. Zeppel; David T. Tissue
2013-01-01
Regional and continental-scale forest and woodland mortality appears to be accelerating over recent decades (Allen et al., 2010; Peng et al., 2011). These contemporary increases in mortality are just the beginning, as temperature is rising rapidly and global models predict a large decline in the strength of the terrestrial carbon sink over the next century (Arora et al...
Lejiang Yu; Shiyuan Zhong; Lisi Pei; Xindi (Randy) Bian; Warren E. Heilman
2016-01-01
The mean global climate has warmed as a result of the increasing emission of greenhouse gases induced by human activities. This warming is considered the main reason for the increasing number of extreme precipitation events in the US. While much attention has been given to extreme precipitation events occurring over several days, which are usually responsible for...
Optical and Radio Remote Sensing of Space Plasma Turbulence
2008-03-31
Helbert, Guilhelm Moreaux, Pierre-Emmanuel Godet (2006), Ground based GPS tomography of ionospheric post-seismic signal., Planet. Space. Science, 54...occurring and radio wave-induced ionospheric plasma turbulence. The intriguing phenomena reported here include large-scale turbulence created by tsunami...in Puerto Rico [Labno et al., J. Geophys. Res., 2007]. Presented are ionospheric measurements using Arecibo 430 MHz radar supported by data from
ERIC Educational Resources Information Center
de Vet, Emely; Gebhardt, Winifred Anne; Sinnige, Judith; Van Puffelen, Anne; Van Lettow, Britt; de Wit, John B. F.
2011-01-01
Forming implementation intentions (i.e. action plans that specify when, where and how a person will act) could be effective in promoting condom use on a large scale. However, the technique implies that people are able to form high quality implementation plans that are likely to induce behaviour change. Young single females, aged 16-30 years old,…
Probing large-scale magnetism with the cosmic microwave background
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2018-04-01
Prior to photon decoupling magnetic random fields of comoving intensity in the nano-Gauss range distort the temperature and the polarization anisotropies of the microwave background, potentially induce a peculiar B-mode power spectrum and may even generate a frequency-dependent circularly polarized V-mode. We critically analyze the theoretical foundations and the recent achievements of an interesting trialogue involving plasma physics, general relativity and astrophysics.
NASA Astrophysics Data System (ADS)
Kobayashi, Satoru; Kikuchi, Nobuhiro; Takahashi, Seiki; Kamada, Yasuhiro; Kikuchi, Hiroaki
2010-08-01
We study the scaling behavior of magnetic minor hysteresis loops in strain-induced ferromagnetic α' martensites in an austenitic 316-type stainless steel. A scaling relationship between the hysteresis loss and the remanence, with a power law exponent of approximately 1.35, was found irrespective of the volume fraction of the α' martensites as well as temperature. The coefficient of the power law largely decreases with volume fraction, whereas it increases with a decrease in temperature and exhibits a kink at around 40 K, close to the Néel temperature of an austenitic γ' phase. The behavior of the coefficient was interpreted from the viewpoint of the morphology and exchange interaction of α' martensites.
Impact Cratering Physics al Large Planetary Scales
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.
2007-06-01
Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).
Induced-fit Mechanism for Prolyl Endopeptidase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Min; Chen, Changqing; Davies, David R.
2010-11-15
Prolyl peptidases cleave proteins at proline residues and are of importance for cancer, neurological function, and type II diabetes. Prolyl endopeptidase (PEP) cleaves neuropeptides and is a drug target for neuropsychiatric diseases such as post-traumatic stress disorder, depression, and schizophrenia. Previous structural analyses showing little differences between native and substrate-bound structures have suggested a lock-and-key catalytic mechanism. We now directly demonstrate from seven structures of Aeromonus punctata PEP that the mechanism is instead induced fit: the native enzyme exists in a conformationally flexible opened state with a large interdomain opening between the {beta}-propeller and {alpha}/{beta}-hydrolase domains; addition of substrate tomore » preformed native crystals induces a large scale conformational change into a closed state with induced-fit adjustments of the active site, and inhibition of this conformational change prevents substrate binding. Absolute sequence conservation among 28 orthologs of residues at the active site and critical residues at the interdomain interface indicates that this mechanism is conserved in all PEPs. This finding has immediate implications for the use of conformationally targeted drug design to improve specificity of inhibition against this family of proline-specific serine proteases.« less
Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853
Using unplanned fires to help suppressing future large fires in Mediterranean forests.
Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís
2014-01-01
Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.
The effects of the stellar wind and orbital motion on the jets of high-mass microquasars
NASA Astrophysics Data System (ADS)
Bosch-Ramon, V.; Barkov, M. V.
2016-05-01
Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.
Ellinas, Christos; Allan, Neil; Durugbo, Christopher; Johansson, Anders
2015-01-01
Current societal requirements necessitate the effective delivery of complex projects that can do more while using less. Yet, recent large-scale project failures suggest that our ability to successfully deliver them is still at its infancy. Such failures can be seen to arise through various failure mechanisms; this work focuses on one such mechanism. Specifically, it examines the likelihood of a project sustaining a large-scale catastrophe, as triggered by single task failure and delivered via a cascading process. To do so, an analytical model was developed and tested on an empirical dataset by the means of numerical simulation. This paper makes three main contributions. First, it provides a methodology to identify the tasks most capable of impacting a project. In doing so, it is noted that a significant number of tasks induce no cascades, while a handful are capable of triggering surprisingly large ones. Secondly, it illustrates that crude task characteristics cannot aid in identifying them, highlighting the complexity of the underlying process and the utility of this approach. Thirdly, it draws parallels with systems encountered within the natural sciences by noting the emergence of self-organised criticality, commonly found within natural systems. These findings strengthen the need to account for structural intricacies of a project's underlying task precedence structure as they can provide the conditions upon which large-scale catastrophes materialise.
Soini, Jaakko; Ukkonen, Kaisa; Neubauer, Peter
2008-01-01
Background For the cultivation of Escherichia coli in bioreactors trace element solutions are generally designed for optimal growth under aerobic conditions. They do normally not contain selenium and nickel. Molybdenum is only contained in few of them. These elements are part of the formate hydrogen lyase (FHL) complex which is induced under anaerobic conditions. As it is generally known that oxygen limitation appears in shake flask cultures and locally in large-scale bioreactors, function of the FHL complex may influence the process behaviour. Formate has been described to accumulate in large-scale cultures and may have toxic effects on E. coli. Although the anaerobic metabolism of E. coli is well studied, reference data which estimate the impact of the FHL complex on bioprocesses of E. coli with oxygen limitation have so far not been published, but are important for a better process understanding. Results Two sets of fed-batch cultures with conditions triggering oxygen limitation and formate accumulation were performed. Permanent oxygen limitation which is typical for shake flask cultures was caused in a bioreactor by reduction of the agitation rate. Transient oxygen limitation, which has been described to eventually occur in the feed-zone of large-scale bioreactors, was mimicked in a two-compartment scale-down bioreactor consisting of a stirred tank reactor and a plug flow reactor (PFR) with continuous glucose feeding into the PFR. In both models formate accumulated up to about 20 mM in the culture medium without addition of selenium, molybdenum and nickel. By addition of these trace elements the formate accumulation decreased below the level observed in well-mixed laboratory-scale cultures. Interestingly, addition of the extra trace elements caused accumulation of large amounts of lactate and reduced biomass yield in the simulator with permanent oxygen limitation, but not in the scale-down two-compartment bioreactor. Conclusion The accumulation of formate in oxygen limited cultivations of E. coli can be fully prevented by addition of the trace elements selenium, nickel and molybdenum, necessary for the function of FHL complex. For large-scale cultivations, if glucose gradients are likely, the results from the two-compartment scale-down bioreactor indicate that the addition of the extra trace elements is beneficial. No negative effects on the biomass yield or on any other bioprocess parameters could be observed in cultures with the extra trace elements if the cells were repeatedly exposed to transient oxygen limitation. PMID:18687130
Material System Engineering for Advanced Electrocaloric Cooling Technology
NASA Astrophysics Data System (ADS)
Qian, Xiaoshi
Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor ferroelectric polymers which possess both giant ECE (27 Kelvin temperature drop) and much wider operating temperature window (over 50 kelvin covering RT) by proper defect modification which delicately tailors ferroelectrics in meso-, micro- and molecular scales. In addition, in order to be practical, EC device requires EC material can be driven at low electric fields upon achieve the large ECE. It is demonstrated in this dissertation that by facially modifying materials structure in meso-, micro- and molecular scale, lowfield ECE can be greatly improved. Large ECE, induced by low electric fields and existing in wide temperature window, is a major improvement in EC materials for practical applications. Besides EC polymers, this thesis also investigated EC ceramics. Due to several unique opportunities offered by the EC ceramics, Ba(ZrxTi 1-x)O3 (BZT), that is studied. (i) This class of EC ceramics offers a possibility to explore the invariant critical point (ICP), which maximizes the number of coexistent phase and provides a nearly vanishing energy barrier for switching among different phases. As demonstrated in this thesis, the BZT bulk ceramics at x˜ 0.2 exhibits a large adiabatic temperature drop DeltaTc=4.5 K, a large isothermal entropy change DeltaS = 8 Jkg-1K-1, a large EC coefficient (|DeltaT c/DeltaE| = 0.52x10-6 KmV-1 and DeltaS/DeltaE=0.93x10 -6 Jmkg-1K-1V-1) over a wide operating temperature range Tspan>30K. (ii) The thermal conductivity of EC ceramics is in general, much higher than that of EC polymers, and consequently they will allow EC cooling configurations which are not accessible by the EC polymers. Moreover, in the same device configuration, the high thermal conductivity of EC ceramics (kappa> 5 W/mK, compared with EC polymer, ˜ 0.25 W/mK) allows higher operation frequency and therefore a higher cooling power. (iii) Well-established fabrication processes of multilayer ceramic capacitor (MLCC) provide a foundation for the EC ceramic toward mass production. In this thesis, BZT thick film double layers have been fabricated and large ECE has been directly measured. EC induced temperature drop (DeltaT) around 6.3 °C and entropy change (DeltaS) of 11.0 Jkg-1K -1 are observed under an electric field of DeltaE=14.6 MV/m at 40 °C was observed in BZT thick film double layers. The result encourages further investigations on ECE in MLCC for practical applications. (Abstract shortened by ProQuest.).
Hollow microcarriers for large-scale expansion of anchorage-dependent cells in a stirred bioreactor.
YekrangSafakar, Ashkan; Acun, Aylin; Choi, Jin-Woo; Song, Edward; Zorlutuna, Pinar; Park, Kidong
2018-03-26
With recent advances in biotechnology, mammalian cells are used in biopharmaceutical industries to produce valuable protein therapeutics and investigated as effective therapeutic agents to permanently degenerative diseases in cell based therapy. In these exciting and actively expanding fields, a reliable, efficient, and affordable platform to culture mammalian cells on a large scale is one of the most vital necessities. To produce and maintain a very large population of anchorage-dependent cells, a microcarrier-based stirred tank bioreactor is commonly used. In this approach, the cells are exposed to harmful hydrodynamic shear stress in the bioreactor and the mass transfer rates of nutrients and gases in the bioreactor are often kept below an optimal level to prevent cellular damages from the shear stress. In this paper, a hollow microcarrier (HMC) is presented as a novel solution to protect cells from shear stress in stirred bioreactors, while ensuring sufficient and uniform mass transfer rate of gases and nutrients. HMC is a hollow microsphere and cells are cultured on its inner surface to be protected, while openings on the HMC provide sufficient exchange of media inside the HMC. As a proof of concept, we demonstrated the expansion of fibroblasts, NIH/3T3 and the expansion and cardiac differentiation of human induced pluripotent stem cells, along with detailed numerical analysis. We believe that the developed HMC can be a practical solution to enable large-scale expansion of shear-sensitive anchorage-dependent cells in an industrial scale with stirred bioreactors. © 2018 Wiley Periodicals, Inc.
Flexible sampling large-scale social networks by self-adjustable random walk
NASA Astrophysics Data System (ADS)
Xu, Xiao-Ke; Zhu, Jonathan J. H.
2016-12-01
Online social networks (OSNs) have become an increasingly attractive gold mine for academic and commercial researchers. However, research on OSNs faces a number of difficult challenges. One bottleneck lies in the massive quantity and often unavailability of OSN population data. Sampling perhaps becomes the only feasible solution to the problems. How to draw samples that can represent the underlying OSNs has remained a formidable task because of a number of conceptual and methodological reasons. Especially, most of the empirically-driven studies on network sampling are confined to simulated data or sub-graph data, which are fundamentally different from real and complete-graph OSNs. In the current study, we propose a flexible sampling method, called Self-Adjustable Random Walk (SARW), and test it against with the population data of a real large-scale OSN. We evaluate the strengths of the sampling method in comparison with four prevailing methods, including uniform, breadth-first search (BFS), random walk (RW), and revised RW (i.e., MHRW) sampling. We try to mix both induced-edge and external-edge information of sampled nodes together in the same sampling process. Our results show that the SARW sampling method has been able to generate unbiased samples of OSNs with maximal precision and minimal cost. The study is helpful for the practice of OSN research by providing a highly needed sampling tools, for the methodological development of large-scale network sampling by comparative evaluations of existing sampling methods, and for the theoretical understanding of human networks by highlighting discrepancies and contradictions between existing knowledge/assumptions of large-scale real OSN data.
Summer circulation in the Mexican tropical Pacific
NASA Astrophysics Data System (ADS)
Trasviña, A.; Barton, E. D.
2008-05-01
The main components of large-scale circulation of the eastern tropical Pacific were identified in the mid 20th century, but the details of the circulation at length scales of 10 2 km or less, the mesoscale field, are less well known particularly during summer. The winter circulation is characterized by large mesoscale eddies generated by intense cross-shore wind pulses. These eddies propagate offshore to provide an important source of mesoscale variability for the eastern tropical Pacific. The summer circulation has not commanded similar attention, the main reason being that the frequent generation of hurricanes in the area renders in situ observations difficult. Before the experiment presented here, the large-scale summer circulation of the Gulf of Tehuantepec was thought to be dominated by a poleward flow along the coast. A drifter-deployment experiment carried out in June 2000, supported by satellite altimetry and wind data, was designed to characterize this hypothesized Costa Rica Coastal Current. We present a detailed comparison between altimetry-estimated geostrophic and in situ currents estimated from drifters. Contrary to expectation, no evidence of a coherent poleward coastal flow across the gulf was found. During the 10-week period of observations, we documented a recurrent pattern of circulation within 500 km of shore, forced by a combination of local winds and the regional-scale flow. Instead of the Costa Rica Coastal Current, we found a summer eddy field capable of influencing large areas of the eastern tropical Pacific. Even in summer, the cross-isthmus wind jet is capable of inducing eddy formation.
Large-Scale Flow Structure in Turbulent Nonpremixed Flames under Normal- And Low-Gravity Conditions
NASA Technical Reports Server (NTRS)
Clemens, N. T.; Idicheria, C. A.; Boxx, I. G.
2001-01-01
It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. Buoyancy acts by inducing baroclinic torques, which generate large-scale vortical structures that can significantly modify the flow field. Furthermore, some suggest that buoyancy can substantially influence the large-scale structure of even nominally momentum-dominated flames, since the low velocity flow outside of the flame will be more susceptible to buoyancy effects. Even subtle buoyancy effects may be important because changes in the large-scale structure affects the local entrainment and fluctuating strain rate, and hence the structure of the flame. Previous studies that have compared the structure of normal- and micro-gravity nonpremixed jet flames note that flames in microgravity are longer and wider than in normal-gravity. This trend was observed for jet flames ranging from laminar to turbulent regimes. Furthermore, imaging of the flames has shown possible evidence of helical instabilities and disturbances starting from the base of the flame in microgravity. In contrast, these characteristics were not observed in normal-gravity. The objective of the present study is to further advance our knowledge of the effects of weak levels of buoyancy on the structure of transitional and turbulent nonpremixed jet flames. In later studies we will utilize the drop tower facilities at NASA Glenn Research Center (GRC), but the preliminary work described in this paper was conducted using the 1.25-second drop tower located at the University of Texas at Austin. A more detailed description of these experiments can be found in Idicheria et al.
NASA Astrophysics Data System (ADS)
Xie, Dongfeng; Gao, Shu; Wang, Zheng Bing; Pan, Cunhong; Wu, Xiuguang; Wang, Qiushun
2017-08-01
We investigate the evolution of a large-scale sand body, a unique type of sandbars in a convergent estuary. Specifically, we analyze and simulate the sand deposition system (defined as an inside bar) in the Qiantang Estuary (QE) in China. The deposit is 130 km long and up to 10 m thick and is characterized by a dextral morphology in the lower QE. Numerical simulation is carried out using an idealized horizontal 2-D morphodynamic model mimicking the present QE settings. Our results indicate that the morphological evolution is controlled by the combination of river discharge and tides. The seasonal and interannual cycles of river discharges play a major role on the inside bar evolution. The bar is eroding during high river discharge periods, but accretion prevails during low river discharge periods. Meanwhile, the highest part of the sand body can move downstream or upstream by several kilometers, modifying the seasonal sediment exchange patterns. We also show that the Coriolis force plays an important role on the dextral morphology patterns in wide, convergent estuaries. It induces a significant lateral water level difference and a large-scale gyre of residual sediment transport. Subsequently, the seaward tail of the inside bar shifts southward to help create a condition for the development of tidal flats in the lower reach of the estuary. The lateral bed level differences induced by Coriolis force are up to several meters. Coriolis effects also modify the behavior of flood and ebb tidal channels.
Automated X-Ray Diffraction of Irradiated Materials
Rodman, John; Lin, Yuewei; Sprouster, David; ...
2017-10-26
Synchrotron-based X-ray diffraction (XRD) and small-angle Xray scattering (SAXS) characterization techniques used on unirradiated and irradiated reactor pressure vessel steels yield large amounts of data. Machine learning techniques, including PCA, offer a novel method of analyzing and visualizing these large data sets in order to determine the effects of chemistry and irradiation conditions on the formation of radiation induced precipitates. In order to run analysis on these data sets, preprocessing must be carried out to convert the data to a usable format and mask the 2-D detector images to account for experimental variations. Once the data has been preprocessed, itmore » can be organized and visualized using principal component analysis (PCA), multi-dimensional scaling, and k-means clustering. In conclusion, from these techniques, it is shown that sample chemistry has a notable effect on the formation of the radiation induced precipitates in reactor pressure vessel steels.« less
Large Scale Water Vapor Sources Relative to the October 2000 Piedmont Flood
NASA Technical Reports Server (NTRS)
Turato, Barbara; Reale, Oreste; Siccardi, Franco
2003-01-01
Very intense mesoscale or synoptic-scale rainfall events can occasionally be observed in the Mediterranean region without any deep cyclone developing over the areas affected by precipitation. In these perplexing cases the synoptic situation can superficially look similar to cases in which very little precipitation occurs. These situations could possibly baffle the operational weather forecasters. In this article, the major precipitation event that affected Piedmont (Italy) between 13 and 16 October 2000 is investigated. This is one of the cases in which no intense cyclone was observed within the Mediterranean region at any time, only a moderate system was present, and yet exceptional rainfall and flooding occurred. The emphasis of this study is on the moisture origin and transport. Moisture and energy balances are computed on different space- and time-scales, revealing that precipitation exceeds evaporation over an area inclusive of Piedmont and the northwestern Mediterranean region, on a time-scale encompassing the event and about two weeks preceding it. This is suggestive of an important moisture contribution originating from outside the region. A synoptic and dynamic analysis is then performed to outline the potential mechanisms that could have contributed to the large-scale moisture transport. The central part of the work uses a quasi-isentropic water-vapor back trajectory technique. The moisture sources obtained by this technique are compared with the results of the balances and with the synoptic situation, to unveil possible dynamic mechanisms and physical processes involved. It is found that moisture sources on a variety of atmospheric scales contribute to this event. First, an important contribution is caused by the extratropical remnants of former tropical storm Leslie. The large-scale environment related to this system allows a significant amount of moisture to be carried towards Europe. This happens on a time- scale of about 5-15 days preceding the Piedmont event. Second, water-vapor intrusions from the African Inter-Tropical Convergence Zone and evaporation from the eastern Atlantic contribute on the 2-5 day time-scale. The large-scale moist dynamics appears therefore to be one important factor enabling a moderate Mediterranean cyclone to produce heavy precipitation. Finally, local evaporation from the Mediterranean, water-vapor recycling, and orographically-induced low-level convergence enhance and concentrate the moisture over the area where heavy precipitation occurs. This happens on a 12-72 hour time-scale.
NASA Astrophysics Data System (ADS)
Sudjai, W.; Juntasaro, V.; Juttijudata, V.
2018-01-01
The accuracy of predicting turbulence induced secondary flows is crucially important in many industrial applications such as turbine blade internal cooling passages in a gas turbine and fuel rod bundles in a nuclear reactor. A straight square duct is popularly used to reveal the characteristic of turbulence induced secondary flows which consists of two counter rotating vortices distributed in each corner of the duct. For a rotating duct, the flow can be divided into the pressure side and the suction side. The turbulence induced secondary flows are converted to the Coriolis force driven two large circulations with a pair of additional vortices on the pressure wall due to the rotational effect. In this paper, the Large Eddy Simulation (LES) of turbulence induced secondary flows in a straight square duct is performed using the ANSYS FLUENT CFD software. A dynamic kinetic energy subgrid-scale model is used to describe the three-dimensional incompressible turbulent flows in the stationary and the rotating straight square ducts. The Reynolds number based on the friction velocity and the hydraulic diameter is 300 with the various rotation numbers for the rotating cases. The flow is assumed fully developed by imposing the constant pressure gradient in the streamwise direction. For the rotating cases, the rotational axis is placed perpendicular to the streamwise direction. The simulation results on the secondary flows and the turbulent statistics are found to be in good agreement with the available Direct Numerical Simulation (DNS) data. Finally, the details of the Coriolis effects are discussed.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Ochoa, Andrew J.; Katzgraber, Helmut G.
2018-05-01
The search for problems where quantum adiabatic optimization might excel over classical optimization techniques has sparked a recent interest in inducing a finite-temperature spin-glass transition in quasiplanar topologies. We have performed large-scale finite-temperature Monte Carlo simulations of a two-dimensional square-lattice bimodal spin glass with next-nearest ferromagnetic interactions claimed to exhibit a finite-temperature spin-glass state for a particular relative strength of the next-nearest to nearest interactions [Phys. Rev. Lett. 76, 4616 (1996), 10.1103/PhysRevLett.76.4616]. Our results show that the system is in a paramagnetic state in the thermodynamic limit, despite zero-temperature simulations [Phys. Rev. B 63, 094423 (2001), 10.1103/PhysRevB.63.094423] suggesting the existence of a finite-temperature spin-glass transition. Therefore, deducing the finite-temperature behavior from zero-temperature simulations can be dangerous when corrections to scaling are large.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamek, Julian; Daverio, David; Durrer, Ruth
We present a new N-body code, gevolution , for the evolution of large scale structure in the Universe. Our code is based on a weak field expansion of General Relativity and calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation which we write in terms of a canonical momentum such that it remains valid also for relativistic particles. We validate the code by considering the Schwarzschild solution and, in the Newtonian limit, by comparing with the Newtonian N-body codes Gadget-2 and RAMSES . We then proceed with a simulation ofmore » large scale structure in a Universe with massive neutrinos where we study the gravitational slip induced by the neutrino shear stress. The code can be extended to include different kinds of dark energy or modified gravity models and going beyond the usually adopted quasi-static approximation. Our code is publicly available.« less
Distant storms as drivers of environmental change at Pacific atolls.
Gardner, Jonathan P A; Garton, David W; Collen, John D; Zwartz, Daniel
2014-01-01
The central Pacific Ocean with its many low lying islands and atolls is under threat from sea level rise and increased storm activity. Here, we illustrate how increasing frequency and severity of large scale storm events associated with global climate change may be particularly profound at the local scale for human populations that rely on lagoon systems for provision of a variety of goods and services. In August 2011 a storm originating in the Southern Ocean caused a large amplitude ocean swell to move northward through the Pacific Ocean. Its arrival at Palmyra Atoll coincided with transient elevated sea surface height and triggered turnover of the lagoon water column. This storm-induced change to the lagoon reflects long distance connectivity with propagated wave energy from the Southern Ocean and illustrates the increasing threats generated by climate change that are faced by human populations on most low-lying Pacific islands and atolls.
Distant Storms as Drivers of Environmental Change at Pacific Atolls
Gardner, Jonathan P. A.; Garton, David W.; Collen, John D.; Zwartz, Daniel
2014-01-01
The central Pacific Ocean with its many low lying islands and atolls is under threat from sea level rise and increased storm activity. Here, we illustrate how increasing frequency and severity of large scale storm events associated with global climate change may be particularly profound at the local scale for human populations that rely on lagoon systems for provision of a variety of goods and services. In August 2011 a storm originating in the Southern Ocean caused a large amplitude ocean swell to move northward through the Pacific Ocean. Its arrival at Palmyra Atoll coincided with transient elevated sea surface height and triggered turnover of the lagoon water column. This storm-induced change to the lagoon reflects long distance connectivity with propagated wave energy from the Southern Ocean and illustrates the increasing threats generated by climate change that are faced by human populations on most low-lying Pacific islands and atolls. PMID:24498232
NASA Astrophysics Data System (ADS)
Wang, Fei; Wu, Lei; Yang, Jin Min; Zhang, Mengchao
2016-08-01
We propose to interpret the 750 GeV diphoton excess in deflected anomaly mediation supersymmetry breaking scenarios, which can naturally predict couplings between a singlet field and vector-like messengers. The CP-even scalar component (S) of the singlet field can serve as the 750 GeV resonance. The messenger scale, which is of order the gravitino scale, can be as light as Fϕ ∼ O (10) TeV when the messenger species NF and the deflection parameter d are moderately large. Such messengers can induce the large loop decay process S → γγ. Our results show that such a scenario can successfully accommodate the 125 GeV Higgs boson, the 750 GeV diphoton excess and the muon g - 2 without conflicting with the LHC constraints. We also comment on the possible explanations in the gauge mediation supersymmetry breaking scenario.
Shear-banding and superdiffusivity in entangled polymer solutions
NASA Astrophysics Data System (ADS)
Shin, Seunghwan; Dorfman, Kevin D.; Cheng, Xiang
2017-12-01
Using high-resolution confocal rheometry, we study the shear profiles of well-entangled DNA solutions under large-amplitude oscillatory shear in a rectilinear planar shear cell. With increasing Weissenberg number (Wi), we observe successive transitions from normal Newtonian linear shear profiles to wall-slip dominant shear profiles and, finally, to shear-banding profiles at high Wi. To investigate the microscopic origin of the observed shear banding, we study the dynamics of micron-sized tracers embedded in DNA solutions. Surprisingly, tracer particles in the shear frame exhibit transient superdiffusivity and strong dynamic heterogeneity. The probability distribution functions of particle displacements follow a power-law scaling at large displacements, indicating a Lévy-walk-type motion, reminiscent of tracer dynamics in entangled wormlike micelle solutions and sheared colloidal glasses. We further characterize the length and time scales associated with the abnormal dynamics of tracer particles. We hypothesize that the unusual particle dynamics arise from localized shear-induced chain disentanglement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintonen, Sakari, E-mail: sakari.sintonen@aalto.fi; Suihkonen, Sami; Jussila, Henri
2014-08-28
The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and themore » SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.« less
NASA Astrophysics Data System (ADS)
Norris, J. Q.
2016-12-01
Published 60 years ago, the Gutenburg-Richter law provides a universal frequency-magnitude distribution for natural and induced seismicity. The GR law is a two parameter power-law with the b-value specifying the relative frequency of small and large events. For large catalogs of natural seismicity, the observed b-values are near one, while fracking associated seismicity has observed b-values near two, indicating relatively fewer large events. We have developed a computationally inexpensive percolation model for fracking that allows us to generate large catalogs of fracking associated seismicity. Using these catalogs, we show that different power-law fitting procedures produce different b-values for the same data set. This shows that care must be taken when determining and comparing b-values for fracking associated seismicity.
Noise-Induced Sleep Disturbance in Residences Near Two Civil Airports
NASA Technical Reports Server (NTRS)
Fidell, Sanford; Howe, Richard R.; Tabachnick, Barbara G.; Pearsons, Karl S.; Sneddon, Matthew D.
1995-01-01
A large-scale field study of noise-induced sleep disturbance was conducted in the vicinities of Stapleton International Airport (DEN) and Denver International Airport (DIA) in anticipation of the closure of the former and opening of the latter. Both indoor and outdoor measurements of aircraft and other nighttime noises were made during four time periods. Measurements were made in 57 homes located as close as feasible to the runway ends of the two airports. Sleep disturbance was measured by several indices of behaviorally confirmed awakening (button pushes upon awakening) and body movement (as measured with wrist-worn actimeters). A total of 2717 subject-nights of observations were made over the course of the study. Although average noise event levels measured outdoors decreased markedly at DEN after closure of the airport and increased slightly at DIA after its opening, indoor noise event levels varied much less in homes near both airports. No large differences were observed in noise-induced sleep disturbance at either airport. Indoor sound exposure levels of noise events were, however, closely related to and good predictors of actimetrically defined motility and arousal.
a Cumulus Parameterization Study with Special Attention to the Arakawa-Schubert Scheme
NASA Astrophysics Data System (ADS)
Kao, Chih-Yue Jim
Arakawa and Schubert (1974) developed a cumulus parameterization scheme in a framework that conceptually divides the mutual interaction of the cumulus convection and large-scale disturbance into the categories of large -scale budget requirements and the quasi-equilibrium assumption of cloud work function. We have applied the A-S scheme through a semi-prognostic approach to two different data sets: one is for an intense tropical cloud band event; the other is for tropical composite easterly wave disturbances. Both were observed in GATE. The cloud heating and drying effects predicted by the Arakawa-Schubert scheme are found to agree rather well with the observations. However, it is also found that the Arakawa-Schubert scheme underestimates both condensation and evaporation rates substantially when compared with the cumulus ensemble model results (Soong and Tao, 1980; Tao, 1983). An inclusion of the downdraft effects, as formulated by Johnson (1976), appears to alleviate this deficiency. In order to examine how the Arakawa-Schubert scheme works in a fully prognostic problem, a simulation of the evolution and structure of the tropical cloud band, mentioned above, under the influence of an imposed large-scale low -level forcing has been made, using a two-dimensional hydrostatic model with the inclusion of the Arakawa-Schubert scheme. Basically, the model result indicates that the meso-scale convective system is driven by the excess of the convective heating derived from the Arakawa-Schubert scheme over the adiabatic cooling due to the imposed large-scale lifting and induced meso-scale upward motion. However, as the convective system develops, the adiabatic warming due to the subsidence outside the cloud cluster gradually accumulates into a secondary temperature anomaly which subsequently reduces the original temperature contrast and inhibits the further development of the convective system. A 24 hour integration shows that the model is capable of simulating many important features such as the life cycle, intensity of circulation, and rainfall rates.
Continuum theory of phase separation kinetics for active Brownian particles.
Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E
2013-10-04
Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.
The Regional Differences of Gpp Estimation by Solar Induced Fluorescence
NASA Astrophysics Data System (ADS)
Wang, X.; Lu, S.
2018-04-01
Estimating gross primary productivity (GPP) at large spatial scales is important for studying the global carbon cycle and global climate change. In this study, the relationship between solar-induced chlorophyll fluorescence (SIF) and GPP is analysed in different levels of annual average temperature and annual total precipitation respectively using simple linear regression analysis. The results showed high correlation between SIF and GPP, when the area satisfied annual average temperature in the range of -5 °C to 15 °C and the annual total precipitation is higher than 200 mm. These results can provide a basis for future estimation of GPP research.
Bakker, Elisabeth S.; Gill, Jacquelyn L.; Johnson, Christopher N.; Vera, Frans W. M.; Sandom, Christopher J.; Asner, Gregory P.; Svenning, Jens-Christian
2016-01-01
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World’s terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions. PMID:26504223
Bakker, Elisabeth S; Gill, Jacquelyn L; Johnson, Christopher N; Vera, Frans W M; Sandom, Christopher J; Asner, Gregory P; Svenning, Jens-Christian
2016-01-26
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World's terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falceta-Gonçalves, D.; Kowal, G.
2015-07-20
In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growthmore » rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.« less
Patterns Cancer Prevention Through Induction of Phase 2 Enzymes
2003-04-01
2) enzymes. During our Phase I Award, we identified sulforaphane as the most potent inducer of carcinogen defenses in the prostate cell. We have...characterized global effects of sulforaphane in prostate cancer cell lines using cDNA microarray technology that allows large-scale determination of...changes in gene expression. These findings argue strongly for a preventive intervention trial involving with sulforaphane . During our Phase 2 Award, we used
Assessment of aerodynamic performance of V/STOL and STOVL fighter aircraft
NASA Technical Reports Server (NTRS)
Nelms, W. P.
1984-01-01
The aerodynamic performance of V/STOL and STOVL fighter/attack aircraft was assessed. Aerodynamic and propulsion/airframe integration activities are described and small and large scale research programs are considered. Uncertainties affecting aerodynamic performance that are associated with special configuration features resulting from the V/STOL requirement are addressed. Example uncertainties relate to minimum drag, wave drag, high angle of attack characteristics, and power induced effects.
Large-scale analysis of gene expression using cDNA microarrays promises the
rapid detection of the mode of toxicity for drugs and other chemicals. cDNA
microarrays were used to examine chemically-induced alterations of gene
expression in HepG2 cells exposed to oxidative ...
Kavazanjian, Edward; Gutierrez, Angel
2017-10-01
A large scale centrifuge test of a geomembrane-lined landfill subject to waste settlement and seismic loading was conducted to help validate a numerical model for performance based design of geomembrane liner systems. The test was conducted using the 240g-ton centrifuge at the University of California at Davis under the U.S. National Science Foundation Network for Earthquake Engineering Simulation Research (NEESR) program. A 0.05mm thin film membrane was used to model the liner. The waste was modeled using a peat-sand mixture. The side slope membrane was underlain by lubricated low density polyethylene to maximize the difference between the interface shear strength on the top and bottom of the geomembrane and the induced tension in it. Instrumentation included thin film strain gages to monitor geomembrane strains and accelerometers to monitor seismic excitation. The model was subjected to an input design motion intended to simulate strong ground motion from the 1994 Hyogo-ken Nanbu earthquake. Results indicate that downdrag waste settlement and seismic loading together, and possibly each phenomenon individually, can induce potentially damaging tensile strains in geomembrane liners. The data collected from this test is publically available and can be used to validate numerical models for the performance of geomembrane liner systems. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Fritts, David
1987-01-01
Gravity waves contributed to the establishment of the thermal structure, small scale (80 to 100 km) fluctuations in velocity (50 to 80 m/sec) and density (20 to 30%, 0 to peak). Dominant gravity wave spectrum in the middle atmosphere: x-scale, less than 100 km; z-scale, greater than 10 km; t-scale, less than 2 hr. Theorists are beginning to understand middle atmosphere motions. There are two classes: Planetary waves and equatorial motions, gravity waves and tidal motions. The former give rise to variability at large scales, which may alter apparent mean structure. Effects include density and velocity fluctuations, induced mean motions, and stratospheric warmings which lead to the breakup of the polar vortex and cooling of the mesosphere. On this scale are also equatorial quasi-biennial and semi-annual oscillations. Gravity wave and tidal motions produce large rms fluctuations in density and velocity. The magnitude of the density fluctuations compared to the mean density is of the order of the vertical wavelength, which grows with height. Relative density fluctuations are less than, or of the order of 30% below the mesopause. Such motions may cause significant and variable convection, and wind shear. There is a strong seasonal variation in gravity wave amplitude. Additional observations are needed to address and quantify mean and fluctuation statistics of both density and mean velocity, variability of the mean and fluctuations, and to identify dominant gravity wave scales and sources as well as causes of variability, both temporal and geographic.
Volcanic influence on centennial to millennial Holocene Greenland temperature change.
Kobashi, Takuro; Menviel, Laurie; Jeltsch-Thömmes, Aurich; Vinther, Bo M; Box, Jason E; Muscheler, Raimund; Nakaegawa, Toshiyuki; Pfister, Patrik L; Döring, Michael; Leuenberger, Markus; Wanner, Heinz; Ohmura, Atsumu
2017-05-03
Solar variability has been hypothesized to be a major driver of North Atlantic millennial-scale climate variations through the Holocene along with orbitally induced insolation change. However, another important climate driver, volcanic forcing has generally been underestimated prior to the past 2,500 years partly owing to the lack of proper proxy temperature records. Here, we reconstruct seasonally unbiased and physically constrained Greenland Summit temperatures over the Holocene using argon and nitrogen isotopes within trapped air in a Greenland ice core (GISP2). We show that a series of volcanic eruptions through the Holocene played an important role in driving centennial to millennial-scale temperature changes in Greenland. The reconstructed Greenland temperature exhibits significant millennial correlations with K + and Na + ions in the GISP2 ice core (proxies for atmospheric circulation patterns), and δ 18 O of Oman and Chinese Dongge cave stalagmites (proxies for monsoon activity), indicating that the reconstructed temperature contains hemispheric signals. Climate model simulations forced with the volcanic forcing further suggest that a series of large volcanic eruptions induced hemispheric-wide centennial to millennial-scale variability through ocean/sea-ice feedbacks. Therefore, we conclude that volcanic activity played a critical role in driving centennial to millennial-scale Holocene temperature variability in Greenland and likely beyond.
Lensing corrections to the Eg(z) statistics from large scale structure
NASA Astrophysics Data System (ADS)
Moradinezhad Dizgah, Azadeh; Durrer, Ruth
2016-09-01
We study the impact of the often neglected lensing contribution to galaxy number counts on the Eg statistics which is used to constrain deviations from GR. This contribution affects both the galaxy-galaxy and the convergence-galaxy spectra, while it is larger for the latter. At higher redshifts probed by upcoming surveys, for instance at z = 1.5, neglecting this term induces an error of (25-40)% in the spectra and therefore on the Eg statistics which is constructed from the combination of the two. Moreover, including it, renders the Eg statistics scale and bias-dependent and hence puts into question its very objective.
Magnetic Shear Damped Polar Convective Fluid Instabilities
NASA Astrophysics Data System (ADS)
Atul, Jyoti K.; Singh, Rameswar; Sarkar, Sanjib; Kravchenko, Oleg V.; Singh, Sushil K.; Chattopadhyaya, Prabal K.; Kaw, Predhiman K.
2018-01-01
The influence of the magnetic field shear is studied on the E × B (and/or gravitational) and the Current Convective Instabilities (CCI) occurring in the high-latitude F layer ionosphere. It is shown that magnetic shear reduces the growth rate of these instabilities. The magnetic shear-induced stabilization is more effective at the larger-scale sizes (≥ tens of kilometers) while at the scintillation causing intermediate scale sizes (˜ a few kilometers), the growth rate remains largely unaffected. The eigenmode structure gets localized about a rational surface due to finite magnetic shear and has broken reflectional symmetry due to centroid shift of the mode by equilibrium parallel flow or current.
Uneven flows: On cosmic bulk flows, local observers, and gravity
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Bilicki, Maciej; Libeskind, Noam I.
2018-05-01
Using N -body simulations we study the impact of various systematic effects on the low-order moments of the cosmic velocity field: the bulk flow (BF) and the cosmic Mach number (CMN). We consider two types of systematics: those related to survey properties and those induced by the observer's location in the Universe. In the former category we model sparse sampling, velocity errors, and survey incompleteness (radial and geometrical). In the latter, we consider local group (LG) analogue observers, placed in a specific location within the cosmic web, satisfying various observational criteria. We differentiate such LG observers from Copernican ones, who are at random locations. We report strong systematic effects on the measured BF and CMN induced by sparse sampling, velocity errors and radial incompleteness. For BF most of these effects exceed 10% for scales R ≲100 h-1 Mpc . For CMN some of these systematics can be catastrophically large (i.e., >50 %) also on bigger scales. Moreover, we find that the position of the observer in the cosmic web significantly affects the locally measured BF (CMN), with effects as large as ˜20 % (30 % ) at R ≲50 h-1 Mpc for a LG-like observer as compared to a random one. This effect is comparable to the sample variance at the same scales. Such location-dependent effects have not been considered previously in BF and CMN studies and here we report their magnitude and scale for the first time. To highlight the importance of these systematics, we additionally study a model of modified gravity with ˜15 % enhanced growth rate (compared to general relativity). We found that the systematic effects can mimic the modified gravity signal. The worst-case scenario is realized for a case of a LG-like observer, when the effects induced by local structures are degenerate with the enhanced growth rate fostered by modified gravity. Our results indicate that dedicated constrained simulations and realistic mock galaxy catalogs will be absolutely necessary to fully benefit from the statistical power of the forthcoming peculiar velocity data from surveys such as TAIPAN, WALLABY, COSMICFLOWS-4 and SKA.
The dynamics of droplets in moist Rayleigh-Benard turbulence
NASA Astrophysics Data System (ADS)
Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond
2017-11-01
Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.
Winkel, Lenny H. E.; Trang, Pham Thi Kim; Lan, Vi Mai; Stengel, Caroline; Amini, Manouchehr; Ha, Nguyen Thi; Viet, Pham Hung; Berg, Michael
2011-01-01
Arsenic contamination of shallow groundwater is among the biggest health threats in the developing world. Targeting uncontaminated deep aquifers is a popular mitigation option although its long-term impact remains unknown. Here we present the alarming results of a large-scale groundwater survey covering the entire Red River Delta and a unique probability model based on three-dimensional Quaternary geology. Our unprecedented dataset reveals that ∼7 million delta inhabitants use groundwater contaminated with toxic elements, including manganese, selenium, and barium. Depth-resolved probabilities and arsenic concentrations indicate drawdown of arsenic-enriched waters from Holocene aquifers to naturally uncontaminated Pleistocene aquifers as a result of > 100 years of groundwater abstraction. Vertical arsenic migration induced by large-scale pumping from deep aquifers has been discussed to occur elsewhere, but has never been shown to occur at the scale seen here. The present situation in the Red River Delta is a warning for other As-affected regions where groundwater is extensively pumped from uncontaminated aquifers underlying high arsenic aquifers or zones. PMID:21245347
Proper horizontal photospheric flows below an eruptive filament
NASA Astrophysics Data System (ADS)
Schmieder, Brigitte; Mein, Pierre; Mein, Nicole; Roudier, Thierry; Chandra, Ramseh
An analysis of the proper motions using SDO/HMI continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track the granules as well as the large scale photospheric flows, was perfomed during three hours in a region containing a large filament channel on September 17, 2010. Supergranules were idenfied in the filament channel. Diverging flows inside the supergranules are similar in and out the filament channel. Using corks, we derived the passive scalar points and produced maps of cork distribution. The anchorage structures with the photosphere (feet) of the filament are located in the areas of converging flows with accumulations of corks. Averaging the velocity vectors for each latitude we defined a profile of the differential rotation. We conclude that the coupling between the convection and magnetic field in the photosphere is relatively strong. The filament experienced the convection motions through its feet. On a large scale point-of-view the differential rotation induced a shear of 0.1 km/s in the filament. On a small scale point-of-view convection motions favored the interaction/cancellation of the parasitic polarities at the base of the feet with the surrounding network explaining the brightenings,/jets and the eruption that were observed in the EUV filament.
2013-01-01
Large-scale nanopatterned sapphire substrates were fabricated by annealing of patterned Al thin films. Patterned Al thin films were obtained by soft UV-nanoimprint lithography and reactive ion etching. The soft mold with 550-nm-wide lines separated by 250-nm space was composed of the toluene-diluted polydimethylsiloxane (PDMS) layer supported by the soft PDMS. Patterned Al thin films were subsequently subjected to dual-stage annealing due to the melting temperature of Al thin films (660°C). The first comprised a low-temperature oxidation anneal at 450°C for 24 h. This was followed by a high-temperature annealing in the range of 1,000°C and 1,200°C for 1 h to induce growth of the underlying sapphire single crystal to consume the oxide layer. The SEM results indicate that the patterns were retained on sapphire substrates after high-temperature annealing at less than 1,200°C. Finally, large-scale nanopatterned sapphire substrates were successfully fabricated by annealing of patterned Al thin films for 24 h at 450°C and 1 h at 1,000°C by soft UV-nanoimprint lithography. PMID:24215718
General relativistic screening in cosmological simulations
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Paranjape, Aseem
2016-10-01
We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic "screening" scale ℓ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation—δN(k )≈δsim(k )×(k2+ℓ-2)/k2 —to convert the density field δsim of standard collisionless N -body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale ℓ in the evolution of ψ , in particular, leads to a natural resolution of the "Jeans swindle" in the presence of superhorizon modes.
Viral Activation of Cellular Metabolism
Sanchez, Erica L.; Lagunoff, Michael
2015-01-01
To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect. Many viruses tested also induce fatty acid synthesis as well as glutaminolysis. These modifications of carbon source utilization by infected cells can increase available energy for virus replication and virion production, provide specific cellular substrates for virus particles and create viral replication niches while increasing infected cell survival. Each virus species also likely requires unique metabolic changes for successful spread and recent research has identified additional virus-specific metabolic changes induced by many virus species. A better understanding of the metabolic alterations required for each virus may lead to novel therapeutic approaches through targeted inhibition of specific cellular metabolic pathways. PMID:25812764
Intermediate-Size Inducer Pump design report. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boardman, T.J.
1979-06-15
This report summarizes the mechanical, structural, and hydrodynamic design of the Intermediate-Size Inducer Pump (ISIP). The design was performed under Atomics International's DOE Base Technology Program by the Atomics International and Rocketdyne Divisions of Rockwell International. The pump was designed to utilize the FFTF prototype pump frame as a test vehicle to test the inducer, impeller, and diffuser plus necessary adapter hardware under simulated Large Scale Liquid Metal Fast Breeder Reactor service conditions. The report describes the design requirements including the purpose and objectives, and discusses those design efforts and considerations made to meet the requirements. Included in the reportmore » are appendices showing calculative methods and results. Also included are overall assembly and layout drawings plus some details used as illustrations for discussion of the design results and the results of water tests performed on a model of the inducer.« less
NASA Technical Reports Server (NTRS)
Langel, R. A.; Estes, R. H.
1983-01-01
Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.
NASA Technical Reports Server (NTRS)
Langel, R. A.; Estes, R. H.
1985-01-01
Data from Magsat analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The Magsat data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.
Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas
2016-11-03
The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.
NASA Astrophysics Data System (ADS)
Ramu, Dandi A.; Chowdary, Jasti S.; Ramakrishna, S. S. V. S.; Kumar, O. S. R. U. B.
2018-04-01
Realistic simulation of large-scale circulation patterns associated with El Niño-Southern Oscillation (ENSO) is vital in coupled models in order to represent teleconnections to different regions of globe. The diversity in representing large-scale circulation patterns associated with ENSO-Indian summer monsoon (ISM) teleconnections in 23 Coupled Model Intercomparison Project Phase 5 (CMIP5) models is examined. CMIP5 models have been classified into three groups based on the correlation between Niño3.4 sea surface temperature (SST) index and ISM rainfall anomalies, models in group 1 (G1) overestimated El Niño-ISM teleconections and group 3 (G3) models underestimated it, whereas these teleconnections are better represented in group 2 (G2) models. Results show that in G1 models, El Niño-induced Tropical Indian Ocean (TIO) SST anomalies are not well represented. Anomalous low-level anticyclonic circulation anomalies over the southeastern TIO and western subtropical northwest Pacific (WSNP) cyclonic circulation are shifted too far west to 60° E and 120° E, respectively. This bias in circulation patterns implies dry wind advection from extratropics/midlatitudes to Indian subcontinent. In addition to this, large-scale upper level convergence together with lower level divergence over ISM region corresponding to El Niño are stronger in G1 models than in observations. Thus, unrealistic shift in low-level circulation centers corroborated by upper level circulation changes are responsible for overestimation of ENSO-ISM teleconnections in G1 models. Warm Pacific SST anomalies associated with El Niño are shifted too far west in many G3 models unlike in the observations. Further large-scale circulation anomalies over the Pacific and ISM region are misrepresented during El Niño years in G3 models. Too strong upper-level convergence away from Indian subcontinent and too weak WSNP cyclonic circulation are prominent in most of G3 models in which ENSO-ISM teleconnections are underestimated. On the other hand, many G2 models are able to represent most of large-scale circulation over Indo-Pacific region associated with El Niño and hence provide more realistic ENSO-ISM teleconnections. Therefore, this study advocates the importance of representation/simulation of large-scale circulation patterns during El Niño years in coupled models in order to capture El Niño-monsoon teleconnections well.
Laser jetting of femto-liter metal droplets for high resolution 3D printed structures
NASA Astrophysics Data System (ADS)
Zenou, M.; Sa'Ar, A.; Kotler, Z.
2015-11-01
Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures.
Machtans, Craig S.; Thogmartin, Wayne E.
2014-01-01
The publication of a U.S. estimate of bird–window collisions by Loss et al. is an example of the somewhat contentious approach of using extrapolations to obtain large-scale estimates from small-scale studies. We review the approach by Loss et al. and other authors who have published papers on human-induced avian mortality and describe the drawbacks and advantages to publishing what could be considered imperfect science. The main drawback is the inherent and somewhat unquantifiable bias of using small-scale studies to scale up to a national estimate. The direct benefits include development of new methodologies for creating the estimates, an explicit treatment of known biases with acknowledged uncertainty in the final estimate, and the novel results. Other overarching benefits are that these types of papers are catalysts for improving all aspects of the science of estimates and for policies that must respond to the new information.
NASA Astrophysics Data System (ADS)
Wuennemann, K.; Manske, L.; Zhu, M.; Nakajima, M.; Breuer, D.; Schwinger, S.; Plesa, A. C.
2017-12-01
Large collisions and giant impact events play an important role in the thermo-chemical evolution of planets during their early and late accretion phases. Besides material that is delivered by differentiated and primitive projectiles a significant amount of the kinetic impact energy is transferred to the planets interior resulting in heating and widespread melting of matter. As a consequence, giant impacts are thought to form global magma oceans. The amount and distribution of impact-induced heating and melting has been previously estimated by scaling laws derived from small-scale impact simulations and experiments, simple theoretical considerations, and observations at terrestrial craters. We carried out a suite of numerical models using the iSALE shock physics code and an SPH code combined with the ANEOS package to investigate the melt production in giant impacts and planetary collision events as a function of impactor size and velocity, and the target temperature. Our results are consistent with previously derived scaling laws only for smaller impactors (<10 km in diameter), but significantly deviate for larger impactors: (1) for hot planets, where the temperature below the lithosphere lies close to the solidus temperature, the melt production is significantly increased for impactors comparable in the size to the depth of the lithosphere. The resulting crater structures would drown in their own melt and only large igneous provinces (local magma oceans) would remain visible at the surface;(2) even bigger impacts (planetary collisions) generate global magma oceans; (3) impacts into a completely solidified (cold) target result in more localized heating in comparison to impacts into a magma ocean, where the impact-induced heating is distributed over a larger volume. In addition, we investigate the influence of impacts on a cooling and crystallization of magma oceans and use the lunar magma ocean as an example.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Barnard, H. R.; Biederman, J. A.; Borkhuu, B.; Edburg, S. L.; Ewers, B. E.; Gochis, D. J.; Gutmann, E. D.; Harpold, A. A.; Hicke, J. A.; Pendall, E.; Reed, D. E.; Somor, A. J.; Troch, P. A.
2011-12-01
Widespread tree mortality caused by insect infestations and drought has impacted millions of hectares across western North America in recent years. Although previous work on post-disturbance responses (e.g. experimental manipulations, fire, and logging) provides insight into how water and biogeochemical cycles may respond to insect infestations and drought, we find that the unique nature of these drivers of tree mortality complicates extrapolation to larger scales. Building from previous work on forest disturbance, we present a conceptual model of how temporal changes in forest structure impact the individual components of energy balance, hydrologic partitioning, and biogeochemical cycling and the interactions among them. We evaluate and refine this model using integrated observations and process modeling on multiple scales including plot, stand, flux tower footprint, hillslope, and catchment to identify scaling relationships and emergent patterns in hydrological and biogeochemical responses. Our initial results suggest that changes in forest structure at point or plot scales largely have predictable effects on energy, water, and biogeochemical cycles that are well captured by land surface, hydrological, and biogeochemical models. However, observations from flux towers and nested catchments suggest that both the hydrological and biogeochemical effects observed at tree and plot scales may be attenuated or exacerbated at larger scales. Compensatory processes are associated with attenuation (e.g. as transpiration decreases, evaporation and sublimation increase), whereas both attenuation and exacerbation may result from nonlinear scaling behavior across transitions in topography and ecosystem structure that affect the redistribution of energy, water, and solutes. Consequently, the effects of widespread tree mortality on ecosystem services of water supply and carbon sequestration will likely depend on how spatial patterns in mortality severity across the landscape affect large-scale hydrological partitioning.
NASA Astrophysics Data System (ADS)
Wang, Peng; Wang, Yueming; Wu, Mingzai; Ye, Zhenhua
2018-06-01
Third-generation HgCdTe-based infrared focal plane arrays require high aspect ratio trenches with admissible etch induced damage at the surface and sidewalls for effectively isolating the pixels. In this paper, the high-density inductively coupled plasma enhanced reaction ion etching technique has been used for micro-mesa delineation of HgCdTe for third-generation infrared focal-plane array detectors. A nondestructive junction-level optoelectronic characterization method called laser beam induced current (LBIC) is used to evaluate the lateral junction extent of HgCdTe etch-induced damage scanning electron microscopy. It is found that the LBIC profiles exhibit evident double peaks and valleys phenomena. The lateral extent of etch induced mesa damage of ∼2.4 μm is obtained by comparing the LBIC profile and the scanning electron microscopy image of etched sample. This finding will guide us to nondestructively identify the distributions of the etching damages in large scale HgCdTe micro-mesa.
Assessing Induced Seismicity Risk at CO 2 Storage Projects: Recent Progress and Remaining Challenges
White, Joshua A.; Foxall, William
2016-04-13
It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to magnitude 5+ events—by altering state-of-stress conditions in the subsurface. This paper reviews recent lessons learned regarding induced seismicity at carbon storage sites. While similar to other subsurface injection practices, CO 2 injection has distinctive features that should be included in a discussion of its seismic hazard. Induced events have been observed at CO 2 injection projects, though to date it has not been a major operational issue. Nevertheless, the hazard exists and experience with this issue will likely grow as new storage operations come online.more » This review paper focuses on specific technical difficulties that can limit the effectiveness of current risk assessment and risk management approaches, and highlights recent research aimed at overcoming them. Finally, these challenges form the heart of the induced seismicity problem, and novel solutions to them will advance our ability to responsibly deploy large-scale CO 2 storage.« less
Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow
NASA Astrophysics Data System (ADS)
Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick
2015-11-01
In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.
An inquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature
NASA Technical Reports Server (NTRS)
Lau, K.-M.; Sui, C.-H.; Chou, M.-D.; Tao, W.-K.
1994-01-01
In this paper, we investigate the relative importance of local vs remote control on cloud radiative forcing using a cumulus ensemble model. It is found that cloud and surface radiation forcings are much more sensitive to the mean vertical motion assoicated with large scale tropical circulation than to the local SST (sea surface temperature). When the local SST is increased with the mean vertical motion held constant, increased surface latent and sensible heat flux associated with enhanced moisture recycling is found to be the primary mechanism for cooling the ocean surface. Large changes in surface shortwave fluxes are related to changes in cloudiness induced by changes in the large scale circulation. These results are consistent with a number of earlier empirical studies, which raised concerns regarding the validity of the cirrus-thermostat hypothesis (Ramanathan and Collins, 1991). It is argued that for a better understanding of cloud feedback, both local and remote controls need to be considered and that a cumulus ensemble model is a powerful tool that should be explored for such purpose.
Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.
2014-01-01
Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093
NASA Astrophysics Data System (ADS)
Hullo, J.-F.; Thibault, G.; Boucheny, C.
2015-02-01
In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".
Temporal and Fine-Grained Pedestrian Action Recognition on Driving Recorder Database
Satoh, Yutaka; Aoki, Yoshimitsu; Oikawa, Shoko; Matsui, Yasuhiro
2018-01-01
The paper presents an emerging issue of fine-grained pedestrian action recognition that induces an advanced pre-crush safety to estimate a pedestrian intention in advance. The fine-grained pedestrian actions include visually slight differences (e.g., walking straight and crossing), which are difficult to distinguish from each other. It is believed that the fine-grained action recognition induces a pedestrian intention estimation for a helpful advanced driver-assistance systems (ADAS). The following difficulties have been studied to achieve a fine-grained and accurate pedestrian action recognition: (i) In order to analyze the fine-grained motion of a pedestrian appearance in the vehicle-mounted drive recorder, a method to describe subtle change of motion characteristics occurring in a short time is necessary; (ii) even when the background moves greatly due to the driving of the vehicle, it is necessary to detect changes in subtle motion of the pedestrian; (iii) the collection of large-scale fine-grained actions is very difficult, and therefore a relatively small database should be focused. We find out how to learn an effective recognition model with only a small-scale database. Here, we have thoroughly evaluated several types of configurations to explore an effective approach in fine-grained pedestrian action recognition without a large-scale database. Moreover, two different datasets have been collected in order to raise the issue. Finally, our proposal attained 91.01% on National Traffic Science and Environment Laboratory database (NTSEL) and 53.23% on the near-miss driving recorder database (NDRDB). The paper has improved +8.28% and +6.53% from baseline two-stream fusion convnets. PMID:29461473
NASA Astrophysics Data System (ADS)
Yoshiike, Satoki; Kawamura, Ryuichi
2009-07-01
The relationships between large-scale wintertime circulation and extratropical cyclones that develop explosively (the so-called bomb cyclones) over the western North Pacific are investigated using Japanese long-term reanalysis project data. On a monthly basis, the East Asian winter monsoon variability strongly modulates the bomb cyclone activity in terms of its geographical distribution. When the monsoon is strong, the bomb cyclone activity tends to concentrate in the vicinity of the Kuroshio Current and the Kuroshio Extension near Japan, while when the monsoon is weak, it disperses over the broader areas. The enhancement of the monsoon increases the heat and moisture supply from warm currents, facilitating unstable conditions within the atmospheric boundary layer and intensifying baroclinicity in the lower troposphere. These factors are believed to play a role in inducing bomb cyclones, particularly along the warm currents. On submonthly timescales, the stationary Rossby wave propagation along the South Asian waveguide serves as a prominent trigger for the rapid reinforcement of synoptic-scale disturbances around Japan. When a pronounced bomb cyclone comes to its mature stage northeast of Japan, it is capable of exciting stationary Rossby waves downstream from the Asian jet exit region as vorticity forcing. The stationary wave packets developing southeastward across the North Pacific Ocean basin induce surface cyclogenesis in the vicinity of the Hawaiian Islands by leading to the equatorward advection of higher potential vorticity from the midlatitudes, bringing about the occurrence of kona storms, which cause weather hazards in Hawaii.
Large Fluctuations for Spatial Diffusion of Cold Atoms
NASA Astrophysics Data System (ADS)
Aghion, Erez; Kessler, David A.; Barkai, Eli
2017-06-01
We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density Pt(x ) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.
Electrohydrodynamic and flow induced tip-streaming
NASA Astrophysics Data System (ADS)
Collins, Robert
2008-11-01
A liquid subjected to a strong electric field emits thin fluid jets from conical structures (Taylor cones) that form at its surface. Such behavior has both practical and fundamental implications, e.g. for raindrops in thunderclouds and in electrospray mass spectrometry. Theoretical analysis of the temporal development of such electrohydrodynamic (EHD) tip- streaming phenomena has been elusive given the large disparity in length scales between the macroscopic drops/films and the microscopic (nanoscopic) jets. Here, simulation and experiment are used to investigate the mechanisms of EHD tip-streaming from a film of finite conductivity. In the simulations, the full Taylor-Melcher leaky-dielectric model, which accounts for charge relaxation, is solved. Simulations show that tip- streaming does not occur for perfectly conducting or perfectly insulating liquids. Scaling laws for sizes of drops produced from the breakup of the thin jets is developed. Further, simulations demonstrate the critical role played by electrically induced surface shear stresses in the inception of tip-streaming. This invites a comparison to flow focusing, i.e. tip-streaming induced by co-flowing two fluids. The latter phenomenon is also investigated by simulation. In collaboration with Ronald Suryo, Exxon-Mobil; and Jeremy Jones, Michael Harris, and Osman Basaran, Purdue University.
Engineering functionality gradients by dip coating process in acceleration mode.
Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David
2014-10-08
In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.
Testing the gravitational instability hypothesis?
NASA Technical Reports Server (NTRS)
Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.
1994-01-01
We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests that show correlations between galaxy density and velocity fields can rule out some physically interesting models of large-scale structure. In particular, successful reconstructions constrain the nature of any bias between the galaxy and mass distributions, since processes that modulate the efficiency of galaxy formation on large scales in a way that violates the continuity equation also produce a mismatch between the observed galaxy density and the density inferred from the peculiar velocity field. We obtain successful reconstructions for a gravitational model with peaks biasing, but we also show examples of gravitational and nongravitational models that fail reconstruction tests because of more complicated modulations of galaxy formation.
Sigehuzi, Tomoo; Tanaka, Hajime
2004-11-01
We study phase-separation behavior of an off-symmetric fluid mixture induced by a "double temperature quench." We first quench a system into the unstable region. After a large phase-separated structure is formed, we again quench the system more deeply and follow the pattern-evolution process. The second quench makes the domains formed by the first quench unstable and leads to double phase separation; that is, small droplets are formed inside the large domains created by the first quench. The complex coarsening behavior of this hierarchic structure having two characteristic length scales is studied in detail by using the digital image analysis. We find three distinct time regimes in the time evolution of the structure factor of the system. In the first regime, small droplets coarsen with time inside large domains. There a large domain containing small droplets in it can be regarded as an isolated system. Later, however, the coarsening of small droplets stops when they start to interact via diffusion with the large domain containing them. Finally, small droplets disappear due to the Lifshitz-Slyozov mechanism. Thus the observed behavior can be explained by the crossover of the nature of a large domain from the isolated to the open system; this is a direct consequence of the existence of the two characteristic length scales.
Research frontiers for improving our understanding of drought‐induced tree and forest mortality
Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael
2018-01-01
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Coarse gaining of molecular crystals: limitations imposed by molecular flexibility
NASA Astrophysics Data System (ADS)
Picu, Catalin; Pal, Anirban
Molecular crystals include molecular electronics, energetic materials, pharmaceuticals and some food components. In many of these applications the small scale mechanical behavior of the crystal is important such as for example in energetic materials where detonation is induced by the formation of hot spots which are induced thermomechanically, and in pharmaceuticals where phase stability is critical for the biochemical activity of the drug. Accurate modeling of these processes requires resolving the atomistic scale details of the material. However, the cost of these models is very large due to the complexity of the molecules forming the crystal, and some form of coarse graning is necessary. In this study we identify the limitations imposed by the need to accurately capture molecular flexibility on the development of coarse grained models for the energetic molecular crystal RDX. We define guidelines for the definition of coarse grained models that target elastic and plastic crystal scale properties such as elastic constants, thermal expansion, compressibility, the critical stress for the motion of dislocations (Peierls stress) and the stacking fault energy This work was supported by the ARO through Grant W911NF-09-1-0330 and AFRL through Grant FA8651-16-1-0004.
Inception of supraglacial channelization under turbulent flow conditions
NASA Astrophysics Data System (ADS)
Mantelli, E.; Camporeale, C.; Ridolfi, L.
2013-12-01
Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers, glacier surface slope, and Froude number and temperature of the water stream. The most remarkable result is that critical transversal wavelengths of order of meters are obtained, which are in general agreement with the patterns observed on glaciers during the melting season. Moreover, the key role played by the free surface of the water film, turbulent heat transfer and Reynolds stresses on the inception of channelization is highlighted and discussed. [1] Camporeale, C. & Ridolfi, L. (2012) Ice ripple formation at large Reynolds number. J. Fluid Mech. 694, 225-251.
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of small (i.e. insufficient to produce solely any significant deformation) uniaxial extensional tectonic stress field, the plume-produced surface and LAB features have anisotropic linear shapes perpendicular to the far-field tectonic forces, typical for continental rifts. Compressional field results in singular sub-linear folds above the plume head, perpendicular to the direction of compression. Small bi-axial tectonic stress fields (compression in one direction and extension in the orthogonal direction) result in oblique, almost linear segmented normal or inverse faults with strike-slip components (or visa verse , strike-slip faults with normal or inverse components)
Typical Geo-Hazards and Countermeasures of Mines in Yunnan Province, Southwest China
NASA Astrophysics Data System (ADS)
Cheng, Xianfeng; Qi, Wufu; Huang, Qianrui; Zhao, Xueqiong; Fang, Rong; Xu, Jun
2016-10-01
Mining-induced geo-hazards have caused enormous destruction and threat to mines. Known as the "kingdom of nonferrous metals" and located in Southwest China, Yunnan Province developed mining-induced geo-hazards well with characteristics of multiple types, widespread distribution and serious damage. Landslides and debris flows are two common sub-types of geohazards causing most serious damage in Yunnan, and some of them were very representative in the world. Two landslides and two debris flows were chosen to analyze deeply. Both Laojinshan Landslide and Sunjiaqing Landslide possess the characteristic of rock avalanches. The high sliding speed and long distance made the landslides translate into clastic flows with impact force and caused enormous destruction. Rainstorm and mining waste rock were two main factors to induce debris flows in Yunnan mines. Heishan valley debris flow of Dongchuan copper mine was a super large rainstorm type viscose debris flow with very low frequency, which brought a good caution to utilize valleys which looked an unlikely debris flow. Nandagou Valley of Jinding lead-zinc mine in Lanping County was a rainstorm stimulating, gully-type, high frequency and large scale debris flow, which was induced by mining activities. Many countermeasures have been used for Yunnan mines, including engineering treatment technology and ecological remediation, monitoring and forecasting, relocation and public administration.
Cook, Brian L.; Steuerwald, Dirk; Kaiser, Liselotte; Graveland-Bikker, Johanna; Vanberghem, Melanie; Berke, Allison P.; Herlihy, Kara; Pick, Horst; Vogel, Horst; Zhang, Shuguang
2009-01-01
Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and recognition of odorant ligands. The structure and functional mechanisms of these receptors still remain a tantalizing enigma, because numerous previous attempts at the large-scale production of functional olfactory receptors (ORs) have not been successful to date. To investigate the elusive biochemistry and molecular mechanisms of olfaction, we have developed a mammalian expression system for the large-scale production and purification of a functional OR protein in milligram quantities. Here, we report the study of human OR17-4 (hOR17-4) purified from a HEK293S tetracycline-inducible system. Scale-up of production yield was achieved through suspension culture in a bioreactor, which enabled the preparation of >10 mg of monomeric hOR17-4 receptor after immunoaffinity and size exclusion chromatography, with expression yields reaching 3 mg/L of culture medium. Several key post-translational modifications were identified using MS, and CD spectroscopy showed the receptor to be ≈50% α-helix, similar to other recently determined G protein-coupled receptor structures. Detergent-solubilized hOR17-4 specifically bound its known activating odorants lilial and floralozone in vitro, as measured by surface plasmon resonance. The hOR17-4 also recognized specific odorants in heterologous cells as determined by calcium ion mobilization. Our system is feasible for the production of large quantities of OR necessary for structural and functional analyses and research into OR biosensor devices. PMID:19581598
Cook, Brian L; Steuerwald, Dirk; Kaiser, Liselotte; Graveland-Bikker, Johanna; Vanberghem, Melanie; Berke, Allison P; Herlihy, Kara; Pick, Horst; Vogel, Horst; Zhang, Shuguang
2009-07-21
Although understanding of the olfactory system has progressed at the level of downstream receptor signaling and the wiring of olfactory neurons, the system remains poorly understood at the molecular level of the receptors and their interaction with and recognition of odorant ligands. The structure and functional mechanisms of these receptors still remain a tantalizing enigma, because numerous previous attempts at the large-scale production of functional olfactory receptors (ORs) have not been successful to date. To investigate the elusive biochemistry and molecular mechanisms of olfaction, we have developed a mammalian expression system for the large-scale production and purification of a functional OR protein in milligram quantities. Here, we report the study of human OR17-4 (hOR17-4) purified from a HEK293S tetracycline-inducible system. Scale-up of production yield was achieved through suspension culture in a bioreactor, which enabled the preparation of >10 mg of monomeric hOR17-4 receptor after immunoaffinity and size exclusion chromatography, with expression yields reaching 3 mg/L of culture medium. Several key post-translational modifications were identified using MS, and CD spectroscopy showed the receptor to be approximately 50% alpha-helix, similar to other recently determined G protein-coupled receptor structures. Detergent-solubilized hOR17-4 specifically bound its known activating odorants lilial and floralozone in vitro, as measured by surface plasmon resonance. The hOR17-4 also recognized specific odorants in heterologous cells as determined by calcium ion mobilization. Our system is feasible for the production of large quantities of OR necessary for structural and functional analyses and research into OR biosensor devices.
Elastocapillarity: When Surface Tension Deforms Elastic Solids
NASA Astrophysics Data System (ADS)
Bico, José; Reyssat, Étienne; Roman, Benoît
2018-01-01
Although negligible at large scales, capillary forces may become dominant for submillimetric objects. Surface tension is usually associated with the spherical shape of small droplets and bubbles, wetting phenomena, imbibition, or the motion of insects at the surface of water. However, beyond liquid interfaces, capillary forces can also deform solid bodies in their bulk, as observed in recent experiments with very soft gels. Capillary interactions, which are responsible for the cohesion of sandcastles, can also bend slender structures and induce the bundling of arrays of fibers. Thin sheets can spontaneously wrap liquid droplets within the limit of the constraints dictated by differential geometry. This review aims to describe the different scaling parameters and characteristic lengths involved in elastocapillarity. We focus on three main configurations, each characterized by a specific dimension: three-dimensional (3D), deformations induced in bulk solids; 1D, bending and bundling of rod-like structures; and 2D, bending and stretching of thin sheets. Although each configuration deserves a detailed review, we hope our broad description provides a general view of elastocapillarity.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-01-01
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate. PMID:29584699
Quantifying adsorption-induced deformation of nanoporous materials on different length scales
Morak, Roland; Braxmeier, Stephan; Ludescher, Lukas; Hüsing, Nicola; Reichenauer, Gudrung
2017-01-01
A new in situ setup combining small-angle neutron scattering (SANS) and dilatometry was used to measure water-adsorption-induced deformation of a monolithic silica sample with hierarchical porosity. The sample exhibits a disordered framework consisting of macropores and struts containing two-dimensional hexagonally ordered cylindrical mesopores. The use of an H2O/D2O water mixture with zero scattering length density as an adsorptive allows a quantitative determination of the pore lattice strain from the shift of the corresponding diffraction peak. This radial strut deformation is compared with the simultaneously measured macroscopic length change of the sample with dilatometry, and differences between the two quantities are discussed on the basis of the deformation mechanisms effective at the different length scales. It is demonstrated that the SANS data also provide a facile way to quantitatively determine the adsorption isotherm of the material by evaluating the incoherent scattering contribution of H2O at large scattering vectors. PMID:29021735
NASA Astrophysics Data System (ADS)
Fang, Yiqi; Lu, Qinghong; Wang, Xiaolei; Zhang, Wuhong; Chen, Lixiang
2017-02-01
The study of vortex dynamics is of fundamental importance in understanding the structured light's propagation behavior in the realm of singular optics. Here, combining with the large-angle holographic lithography in photoresist, a simple experiment to trace and visualize the vortex birth and splitting of light fields induced by various fractional topological charges is reported. For a topological charge M =1.76 , the recorded microstructures reveal that although it finally leads to the formation of a pair of fork gratings, these two vortices evolve asynchronously. More interestingly, it is observed on the submicron scale that high-order topological charges M =3.48 and 3.52, respectively, give rise to three and four characteristic forks embedded in the samples with one-wavelength resolution of about 450 nm. Numerical simulations based on orbital angular momentum eigenmode decomposition support well the experimental observations. Our method could be applied effectively to study other structured matter waves, such as the electron and neutron beams.
Li, Wen-Hsien; Lee, Chi-Hung; Kuo, Chen-Chen
2016-05-28
We report on the generation of large inverse remanent magnetizations in nano-sized core/shell structure of Au/Ni by turning off the applied magnetic field. The remanent magnetization is very sensitive to the field reduction rate as well as to the thermal and field processes before the switching off of the magnetic field. Spontaneous reversal in direction and increase in magnitude of the remanent magnetization in subsequent relaxations over time were found. All of the various types of temporal relaxation curves of the remanent magnetizations are successfully scaled by a stretched exponential decay profile, characterized by two pairs of relaxation times and dynamic exponents. The relaxation time is used to describe the reduction rate, while the dynamic exponent describes the dynamical slowing down of the relaxation through time evolution. The key to these effects is to have the induced eddy current running beneath the amorphous Ni shells through Faraday induction.
Dynamic fracture of tantalum under extreme tensile stress.
Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily; Faenov, Anatoly; Habara, Hideaki; Harmand, Marion; Hartley, Nicholas; Ilnitsky, Denis; Inogamov, Nail; Inubushi, Yuichi; Ishikawa, Tetsuya; Katayama, Tetsuo; Koyama, Takahisa; Koenig, Michel; Krygier, Andrew; Matsuoka, Takeshi; Matsuyama, Satoshi; McBride, Emma; Migdal, Kirill Petrovich; Morard, Guillaume; Ohashi, Haruhiko; Okuchi, Takuo; Pikuz, Tatiana; Purevjav, Narangoo; Sakata, Osami; Sano, Yasuhisa; Sato, Tomoko; Sekine, Toshimori; Seto, Yusuke; Takahashi, Kenjiro; Tanaka, Kazuo; Tange, Yoshinori; Togashi, Tadashi; Tono, Kensuke; Umeda, Yuhei; Vinci, Tommaso; Yabashi, Makina; Yabuuchi, Toshinori; Yamauchi, Kazuto; Yumoto, Hirokatsu; Kodama, Ryosuke
2017-06-01
The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of [Formula: see text] ~2 × 10 8 to 3.5 × 10 8 s -1 . A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.
Dynamic fracture of tantalum under extreme tensile stress
Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily; Faenov, Anatoly; Habara, Hideaki; Harmand, Marion; Hartley, Nicholas; Ilnitsky, Denis; Inogamov, Nail; Inubushi, Yuichi; Ishikawa, Tetsuya; Katayama, Tetsuo; Koyama, Takahisa; Koenig, Michel; Krygier, Andrew; Matsuoka, Takeshi; Matsuyama, Satoshi; McBride, Emma; Migdal, Kirill Petrovich; Morard, Guillaume; Ohashi, Haruhiko; Okuchi, Takuo; Pikuz, Tatiana; Purevjav, Narangoo; Sakata, Osami; Sano, Yasuhisa; Sato, Tomoko; Sekine, Toshimori; Seto, Yusuke; Takahashi, Kenjiro; Tanaka, Kazuo; Tange, Yoshinori; Togashi, Tadashi; Tono, Kensuke; Umeda, Yuhei; Vinci, Tommaso; Yabashi, Makina; Yabuuchi, Toshinori; Yamauchi, Kazuto; Yumoto, Hirokatsu; Kodama, Ryosuke
2017-01-01
The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power optical laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of ε. ~2 × 108 to 3.5 × 108 s−1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions. PMID:28630909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily
The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power opticalmore » laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of Embedded Image ~2 × 10 8 to 3.5 × 10 8 s -1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.« less
Quantitative controls on submarine slope failure morphology
Lee, H.J.; Schwab, W.C.; Edwards, B.D.; Kayen, R.E.
1991-01-01
The concept of the steady-state of deformation can be applied to predicting the ultimate form a landslide will take. The steady-state condition, defined by a line in void ratio-effective stress space, exists at large levels of strain and remolding. Conceptually, if sediment initially exists with void ratio-effective stress conditions above the steady-state line, the sediment shear strength will decrease during a transient loading event, such as an earthquake or storm. If the reduced shear strength existing at the steady state is less than the downslope shear stress induced by gravity, then large-scale internal deformation, disintegration, and flow will occur. -from Authors
Origin of the cosmic network in ΛCDM: Nature vs nurture
NASA Astrophysics Data System (ADS)
Shandarin, Sergei; Habib, Salman; Heitmann, Katrin
2010-05-01
The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure formation, we elucidate how the network has its origin in the properties of the initial density field (nature) and how its contrast is then amplified by the nonlinear mapping induced by the gravitational instability (nurture).
Studying and understanding the environmental impacts of the Three Gorges Dam in China
NASA Astrophysics Data System (ADS)
Schönbrodt-Stitt, Sarah; Stumpf, Felix; Schmidt, Karsten; Althaus, Paul; Bi, Renneng; Bieger, Katrin; Buzzo, Giovanni; Dumperth, Christian; Fohrer, Nicola; Rohn, Joachim; Strehmel, Alexander; Udelhoven, Thomas; Wei, Xiang; Zimmermann, Karsten; Scholten, Thomas
2013-04-01
Since its planning phase and its completion and start of operation in 2009, the Three Gorges Dam (TGD) at the Yangtze River, has been discussed in a controversial manner. Due to considerable resettlements along with the associated expansion of the infrastructure network and large-scale shifts in land use and management, the TGD in Central China is among the most prominent human-induced examples for large-scale environmental impacts. As a consequence of the rapid ecosystem changes, the region is largely characterized by an enormous boost of typical geo-risks such as soil erosion, mass movements, and diffuse sediment and matter fluxes into the reservoir. Within the joint research project YANGTZE-GEO, Chinese and German scientists jointly focus on the human-induced environmental changes in the reservoir of the TGD after the impoundment of the Yangtze River and its tributaries. An integrative approach was set up in order to combine multi-scale investigation methods and state-of-the-art techniques from soil science, geology, hydrology, geophysics, geodesy, remote sensing, and data survey and monitoring. By means of eco-hydrological and soil erosion modeling, geo-statistical approaches such as digital soil mapping and Artificial Neuronal Networks, spatially and temporally differentiated simulation of the water budget as well as the balance of diffuse matter such as phosphorus and sediment, three-dimensional dynamic modeling, seismoacoustics and terrestrial radarinterferometry, multi-temporal land use classification from recent and historical remote sensing data and laser scanning, the research aims at (i) the understanding of the mechanisms and anthropogenic and environmental control factors of the environmental changes in the highly dynamic region and (ii) the development of spatially explicit land use options and recommendations for a sustainable land use management. Finally, based on the integrate modelling, we aim at the conception of a monitoring- and measuring network and early-warning system including local and regional authorities. Thus, the studies will contribute to a better understanding of the dimensions and dynamics of the ecological consequences of such large dam projects at the Yangtze River and worldwide.
Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)
NASA Technical Reports Server (NTRS)
Chao, Winston C.
2012-01-01
Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.
Michaelian, Michael; Hogg, Edward H; Hall, Ronald J; Arsenault, Eric
2011-01-01
Drought-induced, regional-scale dieback of forests has emerged as a global concern that is expected to escalate under model projections of climate change. Since 2000, drought of unusual severity, extent, and duration has affected large areas of western North America, leading to regional-scale dieback of forests in the southwestern US. We report on drought impacts on forests in a region farther north, encompassing the transition between boreal forest and prairie in western Canada. A central question is the significance of drought as an agent of large-scale tree mortality and its potential future impact on carbon cycling in this cold region. We used a combination of plot-based, meteorological, and remote sensing measures to map and quantify aboveground, dead biomass of trembling aspen (Populus tremuloides Michx.) across an 11.5 Mha survey area where drought was exceptionally severe during 2001–2002. Within this area, a satellite-based land cover map showed that aspen-dominated broadleaf forests occupied 2.3 Mha. Aerial surveys revealed extensive patches of severe mortality (>55%) resembling the impacts of fire. Dead aboveground biomass was estimated at 45 Mt, representing 20% of the total aboveground biomass, based on a spatial interpolation of plot-based measurements. Spatial variation in percentage dead biomass showed a moderately strong correlation with drought severity. In the prairie-like, southern half of the study area where the drought was most severe, 35% of aspen biomass was dead, compared with an estimated 7% dead biomass in the absence of drought. Drought led to an estimated 29 Mt increase in dead biomass across the survey area, corresponding to 14 Mt of potential future carbon emissions following decomposition. Many recent, comparable episodes of drought-induced forest dieback have been reported from around the world, which points to an emerging need for multiscale monitoring approaches to quantify drought effects on woody biomass and carbon cycling across large areas.
NASA Astrophysics Data System (ADS)
Arazi, L.; Coimbra, A. E. C.; Erdal, E.; Israelashvili, I.; Rappaport, M. L.; Shchemelinin, S.; Vartsky, D.; dos Santos, J. M. F.; A, Breskin
2015-11-01
Dual-phase noble-liquid TPCs are presently the most sensitive instruments for direct dark matter detection. Scaling up existing ton-scale designs to the multi-ton regime may prove to be technologically challenging. This includes both large-area coverage with affordable high-QE UV-photon detectors, and maintaining high precision in measuring the charge and light signals of rare events with keV-scale energy depositions. We present our recent advances in two complementary approaches to these problems: large-area cryogenic gaseous photomultipliers (GPM) for UV-photon detection, and liquid-hole multipliers (LHM) that provide electroluminescence light in response to ionization electrons and primary scintillation photons, using perforated electrodes immersed within the noble liquid. Results from a 10 cm diameter GPM coupled to a dual-phase liquid- xenon TPC demonstrate the feasibility of recording - for the first time - both primary (“S1”) and secondary (“S2”) scintillation signals, over a very broad dynamic range. The detector, comprising a triple-THGEM structure with CsI on the first element, has been operating stably at 180 K with gains larger than 105; it provided high single-photon detection efficiency - in the presence of massive alpha-particle induced S2 signals; S1 scintillation signals were recorded with time resolutions of 1.2 ns (RMS). Results with the LHM operated in liquid xenon yielded large photon gains, with a pulse-height resolution of 11% (RMS) for alpha-particle induced S2 signals. The detector response was stable over several months. The response of the S2 signals to rapid changes in pressure lead to the conclusion that the underlying mechanism for S2 light is electroluminescence in xenon bubbles trapped below the immersed THGEM electrode. Both studies have the potential of paving the way towards new designs of dual- and single-phase noble-liquid TPCs that could simplify the conception of future multi-ton detectors of dark matter and other rare events.
NASA Astrophysics Data System (ADS)
Michael, H. A.; Voss, C. I.
2009-12-01
Widespread arsenic poisoning is occurring in large areas of Bangladesh and West Bengal, India due to high arsenic levels in shallow groundwater, which is the primary source of irrigation and drinking water in the region. The high-arsenic groundwater exists in aquifers of the Bengal Basin, a huge sedimentary system approximately 500km x 500km wide and greater than 15km deep in places. Deeper groundwater (>150m) is nearly universally low in arsenic and a potential source of safe drinking water, but evaluation of its sustainability requires understanding of the entire, interconnected regional aquifer system. Numerical modeling of flow and arsenic transport in the basin introduces problems of scale: challenges in representing the system in enough detail to produce meaningful simulations and answer relevant questions while maintaining enough simplicity to understand controls on processes and operating within computational constraints. A regional groundwater flow and transport model of the Bengal Basin was constructed to assess the large-scale functioning of the deep groundwater flow system, the vulnerability of deep groundwater to pumping-induced migration from above, and the effect of chemical properties of sediments (sorption) on sustainability. The primary challenges include the very large spatial scale of the system, dynamic monsoonal hydrology (small temporal scale fluctuations), complex sedimentary architecture (small spatial scale heterogeneity), and a lack of reliable hydrologic and geologic data. The approach was simple. Detailed inputs were reduced to only those that affect the functioning of the deep flow system. Available data were used to estimate upscaled parameter values. Nested small-scale simulations were performed to determine the effects of the simplifications, which include treatment of the top boundary condition and transience, effects of small-scale heterogeneity, and effects of individual pumping wells. Simulation of arsenic transport at the large scale adds another element of complexity. Minimization of numerical oscillation and mass balance errors required experimentation with solvers and discretization. In the face of relatively few data in a very large-scale model, sensitivity analyses were essential. The scale of the system limits evaluation of localized behavior, but results clearly identified the primary controls on the system and effects of various pumping scenarios and sorptive properties. It was shown that limiting deep pumping to domestic supply may result in sustainable arsenic-safe water for 90% of the arsenic-affected region over a 1000 year timescale, and that sorption of arsenic onto deep, oxidized Pleistocene sediments may increase the breakthrough time in unsustainable zones by more than an order of magnitude. Thus, both hydraulic and chemical defenses indicate the potential for sustainable, managed use of deep, safe groundwater resources in the Bengal Basin.
Verdon, James P.; Kendall, J.-Michael; Stork, Anna L.; Chadwick, R. Andy; White, Don J.; Bissell, Rob C.
2013-01-01
Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ∼1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site. PMID:23836635
Verdon, James P; Kendall, J-Michael; Stork, Anna L; Chadwick, R Andy; White, Don J; Bissell, Rob C
2013-07-23
Geological storage of CO2 that has been captured at large, point source emitters represents a key potential method for reduction of anthropogenic greenhouse gas emissions. However, this technology will only be viable if it can be guaranteed that injected CO2 will remain trapped in the subsurface for thousands of years or more. A significant issue for storage security is the geomechanical response of the reservoir. Concerns have been raised that geomechanical deformation induced by CO2 injection will create or reactivate fracture networks in the sealing caprocks, providing a pathway for CO2 leakage. In this paper, we examine three large-scale sites where CO2 is injected at rates of ~1 megatonne/y or more: Sleipner, Weyburn, and In Salah. We compare and contrast the observed geomechanical behavior of each site, with particular focus on the risks to storage security posed by geomechanical deformation. At Sleipner, the large, high-permeability storage aquifer has experienced little pore pressure increase over 15 y of injection, implying little possibility of geomechanical deformation. At Weyburn, 45 y of oil production has depleted pore pressures before increases associated with CO2 injection. The long history of the field has led to complicated, sometimes nonintuitive geomechanical deformation. At In Salah, injection into the water leg of a gas reservoir has increased pore pressures, leading to uplift and substantial microseismic activity. The differences in the geomechanical responses of these sites emphasize the need for systematic geomechanical appraisal before injection in any potential storage site.
Small-scale open ocean currents have large effects on wind wave heights
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen
2017-06-01
Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>
NASA Astrophysics Data System (ADS)
Zaidel'Man, F. R.
2009-01-01
The adverse human-induced changes in the water regime of soils leading to their degradation are considered. Factors of the human activity related to the water industry, agriculture, and silviculture are shown to play the most active role in the soil degradation. Among them are the large-scale hydraulic works on rivers, drainage and irrigation of soils, ameliorative and agricultural impacts, road construction, and uncontrolled impacts of industry and silviculture on the environment. The reasons for each case of soil degradation related to changes in the soil water regime are considered, and preventive measures are proposed. The role of secondary soil degradation processes is shown.
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ye
Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less
NASA Astrophysics Data System (ADS)
Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin
2016-01-01
In this study, the global quantum correlation, monogamy relation and quantum phase transition of the Heisenberg XXZ model are investigated by the method of quantum renormalization group. We obtain, analytically, the expressions of the global negativity, the global measurement-induced disturbance and the monogamy relation for the system. The result shows that for a three-site block state, the partial transpose of an asymmetric block can get stronger entanglement than that of the symmetric one. The residual entanglement and the difference of the monogamy relation of measurement-induced disturbance show a scaling behavior with the size of the system becoming large. Moreover, the monogamy nature of entanglement measured by negativity exists in the model, while the nonclassical correlation quantified by measurement-induced disturbance violates the monogamy relation and demonstrates polygamy.
Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I
Zhou, Ye
2017-09-06
Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less
Trost, F; Hahn, S; Müller, Y; Gasilov, S; Hofmann, R; Baumbach, T
2017-12-18
Recently, the diffractogram, that is, the Fourier transform of the intensity contrast induced by Fresnel free-space propagation of a given (exit) wave field, was investigated non-perturbatively in the phase-scaling factor S (controlling the strength of phase variation) for the special case of a Gaussian phase of width [Formula: see text]. Surprisingly, an additional low-frequency zero σ * = σ * (S, F) >0 emerges critically at small Fresnel number F (σ proportional to square of 2D spatial frequency). Here, we study the S-scaling behavior of the entire diffractogram. We identify a valley of maximum S-scaling linearity in the F - σ plane corresponding to a nearly universal physical frequency ξml = (0:143 ± 0.001)w -1/2 . Large values of F (near field) are shown to imply S-scaling linearity for low σ but nowhere else (overdamped non-oscillatory). In contrast, small F values (far field) entail distinct, sizable s-bands of good S-scaling linearity (damped oscillatory). These bands also occur in simulated diffractograms induced by a complex phase map (Lena). The transition from damped oscillatory to overdamped non-oscillatory diffractograms is shown to be a critical phenomenon for the Gaussian case. We also give evidence for the occurrence of this transition in an X-ray imaging experiment. Finally, we show that the extreme far-field limit generates a σ-universal diffractogram under certain requirements on the phase map: information on phase shape then is solely encoded in S-scaling behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elghozi, Thomas; Mavromatos, Nick E.; Sakellariadou, Mairi
In a previous publication by some of the authors (N.E.M., M.S. and M.F.Y.), we have argued that the ''D-material universe'', that is a model of a brane world propagating in a higher-dimensional bulk populated by collections of D-particle stringy defects, provides a model for the growth of large-scale structure in the universe via the vector field in its spectrum. The latter corresponds to D-particle recoil velocity excitations as a result of the interactions of the defects with stringy matter and radiation on the brane world. In this article, we first elaborate further on the results of the previous study onmore » the galactic growth era and analyse the circumstances under which the D-particle recoil velocity fluid may ''mimic'' dark matter in galaxies. A lensing phenomenology is also presented for some samples of galaxies, which previously were known to provide tension for modified gravity (TeVeS) models. The current model is found in agreement with these lensing data. Then we discuss a cosmic evolution for the D-material universe by analysing the conditions under which the late eras of this universe associated with large-scale structure are connected to early epochs, where inflation takes place. It is shown that inflation is induced by dense populations of D-particles in the early universe, with the rôle of the inflaton field played by the condensate of the D-particle recoil-velocity fields under their interaction with relativistic stringy matter, only for sufficiently large brane tensions and low string mass scales compared to the Hubble scale. On the other hand, for large string scales, where the recoil-velocity condensate fields are weak, inflation cannot be driven by the D-particle defects alone. In such cases inflation may be driven by dilaton (or other moduli) fields in the underlying string theory.« less
NASA Astrophysics Data System (ADS)
Thompson, Aidan P.; Shan, Tzu-Ray
2014-05-01
Ammonium nitrate mixed with fuel oil (ANFO) is a commonly used blasting agent. In this paper we investigated the shock properties of pure ammonium nitrate (AN) and two different mixtures of ammonium nitrate and n-dodecane by characterizing their Hugoniot states. We simulated shock compression of pure AN and ANFO mixtures using the Multi-scale Shock Technique, and observed differences in chemical reaction. We also performed a large-scale explicit sub-threshold shock of AN crystal with a 10 nm void filled with 4.4 wt% of n-dodecane. We observed the formation of hotspots and enhanced reactivity at the interface region between AN and n-dodecane molecules.
Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow.
Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo
2012-02-01
We present an experimental study of the transition to turbulence in a plane Poiseuille flow. Using a well-controlled perturbation, we analyze the flow by using extensive particle image velocimetry and flow visualization (using laser-induced fluorescence) measurements, and use the deformation of the mean velocity profile as a criterion to characterize the state of the flow. From a large parametric study, four different states are defined, depending on the values of the Reynolds number and the amplitude of the perturbation. We discuss the role of coherent structures, such as hairpin vortices, in the transition. We find that the minimal amplitude of the perturbation triggering transition scales asymptotically as Re(-1).
NASA Technical Reports Server (NTRS)
Stevens, Joseph E.
1955-01-01
Free-flight tests of two rocket-propelled l/20-scale models of the Bell MX-776 missile have been conducted to obtain measurements of the aileron deflection required to counteract the induced rolling moments caused by combined angles of attack and sideslip and thus to determine whether the ailerons provided were capable of controlling the model at the attitudes produced by the test conditions. Inability to obtain reasonably steady-state conditions and superimposed high-frequency oscillations in the data precluded any detailed analysis of the results obtained from the tests. For these reasons, the data presented are limited largely to qualitative results.
NASA Astrophysics Data System (ADS)
Donoghue, John F.
2017-08-01
In the description of general covariance, the vierbein and the Lorentz connection can be treated as independent fundamental fields. With the usual gauge Lagrangian, the Lorentz connection is characterized by an asymptotically free running coupling. When running from high energy, the coupling gets large at a scale which can be called the Planck mass. If the Lorentz connection is confined at that scale, the low energy theory can have the Einstein Lagrangian induced at low energy through dimensional transmutation. However, in general there will be new divergences in such a theory and the Lagrangian basis should be expanded. I construct a conformally invariant model with a larger basis size which potentially may have the same property.
An ignition key for atomic-scale engines
NASA Astrophysics Data System (ADS)
Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T.; Todorov, Tchavdar N.
2012-10-01
A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling.
Emission-angle and polarization-rotation effects in the lensed CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk
Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less
Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis
Whitmore, Alan C.; Blevins, Lance K.; Hueston, Linda; Fraser, Robert J.; Herrero, Lara J.; Ramirez, Ruben; Smith, Paul N.; Mahalingam, Suresh; Heise, Mark T.
2012-01-01
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis. PMID:22457620
NASA Astrophysics Data System (ADS)
Kergaravat, Charlie; Ribes, Charlotte; Darnault, Romain; Callot, Jean-Paul; Ringenbach, Jean-Claude
2017-04-01
The aim of this study is to present the influence of regional shortening on the evolution of a minibasin province and the associated foldbelt geometry based on a natural example, the Sivas Basin, then compared to a physical experiment. The Sivas Basin in the Central Anatolian Plateau (Turkey) is a foreland fold-and-thrust belt, displaying in the central part a typical wall and basin province characterized by spectacularly exposed minibasins, separated by continuous steep-flanked walls and diapirs over a large area (45x25 km). The advance of the orogenic wedge is expressed within the second generation of minibasins by a shortening-induced squeezing of diapirs. Network of walls and diapirs evolve form polygonal to linear pattern probably induced by the squeezing of pre-existing evaporite walls and diapirs, separating linear primary minibasins. From base to top of secondary minibasins, halokinetic structures seem to evolve from small-scale objects along diapir flanks, showing hook and wedges halokinetic sequences, to large stratigraphic wedging, megaflap and salt sheets. Minibasins show progressively more linear shape at right angle to the regional shortening and present angular unconformities along salt structures related to the rejuvenation of pre-existing salt diapirs and walls probably encouraged by the shortening tectonic regime. The advance of the fold-and-thrust belts during the minibasins emplacement is mainly expressed during the late stage of minibasins development by a complex polygonal network of small- and intermediate-scale tectonic objects: (1) squeezed evaporite walls and diapirs, sometimes thrusted forming oblique or vertical welds, (2) allochthonous evaporite sheets, (3) thrusts and strike-slip faults recording translation and rotation of minibasins about vertical axis. Some minibasins are also tilted, with up to vertical position, associated with both the salt expulsion during minibasins sinking, recorded by large stratigraphic wedge, and the late thrust faults developments. The influence of the regional shortening deformation seems to be effective when the majority of the evaporite is remobilized toward the foreland. Results of scaled physical experiments, where continuous shortening is applied during minibasins emplacement, closely match with the deformation patterns observed in the Sivas minibasins. Shortening induce deformations such as translation of minibasins basinward, strike-slip fault zones along minibasin margin, rejuvenation of silicon walls and diapirs, emergence of silicon glaciers and rotation of minibasins along vertical and horizontal axis.
Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S
2015-12-01
This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold. © 2015 Wiley Periodicals, Inc.
Shock-induced damage in rocks: Application to impact cratering
NASA Astrophysics Data System (ADS)
Ai, Huirong
Shock-induced damage beneath impact craters is studied in this work. Two representative terrestrial rocks, San Marcos granite and Bedford limestone, are chosen as test target. Impacts into the rock targets with different combinations of projectile material, size, impact angle, and impact velocity are carried out at cm scale in the laboratory. Shock-induced damage and fracturing would cause large-scale compressional wave velocity reduction in the recovered target beneath the impact crater. The shock-induced damage is measured by mapping the compressional wave velocity reduction in the recovered target. A cm scale nondestructive tomography technique is developed for this purpose. This technique is proved to be effective in mapping the damage in San Marcos granite, and the inverted velocity profile is in very good agreement with the result from dicing method and cut open directly. Both compressional velocity and attenuation are measured in three orthogonal directions on cubes prepared from one granite target impacted by a lead bullet at 1200 m/s. Anisotropy is observed from both results, but the attenuation seems to be a more useful parameter than acoustic velocity in studying orientation of cracks. Our experiments indicate that the shock-induced damage is a function of impact conditions including projectile type and size, impact velocity, and target properties. Combined with other crater phenomena such as crater diameter, depth, ejecta, etc., shock-induced damage would be used as an important yet not well recognized constraint for impact history. The shock-induced damage is also calculated numerically to be compared with the experiments for a few representative shots. The Johnson-Holmquist strength and failure model, initially developed for ceramics, is applied to geological materials. Strength is a complicated function of pressure, strain, strain rate, and damage. The JH model, coupled with a crack softening model, is used to describe both the inelastic response of rocks in the compressive field near the impact source and the tensile failure in the far field. The model parameters are determined either from direct static measurements, or from indirect numerical adjustment. The agreement between the simulation and experiment is very encouraging.
Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo
2015-09-01
Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.
NASA Astrophysics Data System (ADS)
Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Laurino, Marco; Piarulli, Andrea; Gemignani, Angelo
2015-09-01
Criticality reportedly describes brain dynamics. The main critical feature is the presence of scale-free neural avalanches, whose auto-organization is determined by a critical branching ratio of neural-excitation spreading. Other features, directly associated to second-order phase transitions, are: (i) scale-free-network topology of functional connectivity, stemming from suprathreshold pairwise correlations, superimposable, in waking brain activity, with that of ferromagnets at Curie temperature; (ii) temporal long-range memory associated to renewal intermittency driven by abrupt fluctuations in the order parameters, detectable in human brain via spatially distributed phase or amplitude changes in EEG activity. Herein we study intermittent events, extracted from 29 night EEG recordings, including presleep wakefulness and all phases of sleep, where different levels of mentation and consciousness are present. We show that while critical avalanching is unchanged, at least qualitatively, intermittency and functional connectivity, present during conscious phases (wakefulness and REM sleep), break down during both shallow and deep non-REM sleep. We provide a theory for fragmentation-induced intermittency breakdown and suggest that the main difference between conscious and unconscious states resides in the backwards causation, namely on the constraints that the emerging properties at large scale induce to the lower scales. In particular, while in conscious states this backwards causation induces a critical slowing down, preserving spatiotemporal correlations, in dreamless sleep we see a self-organized maintenance of moduli working in parallel. Critical avalanches are still present, and establish transient auto-organization, whose enhanced fluctuations are able to trigger sleep-protecting mechanisms that reinstate parallel activity. The plausible role of critical avalanches in dreamless sleep is to provide a rapid recovery of consciousness, if stimuli are highly arousing.
Time-evolving of very large-scale motions in a turbulent channel flow
NASA Astrophysics Data System (ADS)
Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.
2014-11-01
Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.
Body size mediated coexistence of consumers competing for resources in space
Basset, A.; Angelis, D.L.
2007-01-01
Body size is a major phenotypic trait of individuals that commonly differentiates co-occurring species. We analyzed inter-specific competitive interactions between a large consumer and smaller competitors, whose energetics, selection and giving-up behaviour on identical resource patches scaled with individual body size. The aim was to investigate whether pure metabolic constraints on patch behaviour of vagile species can determine coexistence conditions consistent with existing theoretical and experimental evidence. We used an individual-based spatially explicit simulation model at a spatial scale defined by the home range of the large consumer, which was assumed to be parthenogenic and semelparous. Under exploitative conditions, competitive coexistence occurred in a range of body size ratios between 2 and 10. Asymmetrical competition and the mechanism underlying asymmetry, determined by the scaling of energetics and patch behaviour with consumer body size, were the proximate determinant of inter-specific coexistence. The small consumer exploited patches more efficiently, but searched for profitable patches less effectively than the larger competitor. Therefore, body-size related constraints induced niche partitioning, allowing competitive coexistence within a set of conditions where the large consumer maintained control over the small consumer and resource dynamics. The model summarises and extends the existing evidence of species coexistence on a limiting resource, and provides a mechanistic explanation for decoding the size-abundance distribution patterns commonly observed at guild and community levels. ?? Oikos.
NASA Astrophysics Data System (ADS)
Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros
2017-10-01
The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.
Diffraction measurements using the LHC Beam Loss Monitoring System
NASA Astrophysics Data System (ADS)
Kalliokoski, Matti
2017-03-01
The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.
Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate
NASA Astrophysics Data System (ADS)
Liang, Xinfeng; Spall, Michael; Wunsch, Carl
2017-10-01
Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
Li, Shuai; Liang, Wei; Fu, Bojie; Lü, Yihe; Fu, Shuyi; Wang, Shuai; Su, Huimin
2016-11-01
Recently, relationship between vegetation activity and temperature variability has received much attention in China. However, vegetation-induced changes in water resources through changing land surface energy balance (e.g. albedo), has not been well documented. This study investigates the underlying causes of vegetation change and subsequent impacts on runoff for the Northern Shaanxi Loess Plateau. Results show that satellite-derived vegetation index has experienced a significantly increasing trend during the past three decades, especially during 2000-2012. Large-scale ecological restorations, i.e., the Natural Forest Conservation project and the Grain for Green project, are found to be the primary driving factors for vegetation increase. The increased vegetation coverage induces decrease in surface albedo and results in an increase in temperature. This positive effect can be counteracted by higher evapotranspiration and the net effect is a decrease in daytime land surface temperature. A higher evapotranspiration rate from restored vegetation is the primary reason for the reduced runoff coefficient. Other factors including less heavy precipitation, increased water consumption from town, industry and agriculture also appear to be the important causes for the reduction of runoff. These two ecological restoration projects produce both positive and negative effects on the overall ecosystem services. Thus, long-term continuous monitoring is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Deguchi, Y.; Noda, M.; Fukuda, Y.; Ichinose, Y.; Endo, Y.; Inada, M.; Abe, Y.; Iwasaki, S.
2002-10-01
Industrial applications of laser diagnostics have been demonstrated for the purpose of clarifying combustor chemical reaction mechanisms, as well as temperature and harmful substance monitoring in large-scale burners and commercial plant exhaust ducts, and the combustion control of commercial plants. Laser induced fluorescence (LIF), laser induced breakdown spectroscopy (LIBS), and tunable diode laser absorption spectroscopy (TDLAS) have accordingly been applied in various industrial fields. In this study, temperature and species concentration were measured inside gas turbine combustors, a diesel engine, and a large-scale industrial burner using LIF. This technique introduces a new tool with respect to practical combustors for the analysis of NO formation characteristics, turbulent flame front structure, and differences between standard and improved combustors. On-line monitoring of trace elements to the ppb level was also successfully demonstrated using LIBS. The automated LIBS unit was found to be capable of monitoring trace element concentration fluctuations at ppb levels with a 1 min detection time under actual plant conditions. In addition, real-time measurement of O2 and CO concentrations in a commercial incinerator furnace was performed using TDLAS to improve the combustion control. By using the multiple-point laser measurement results to control secondary air allocation, higher secondary combustion efficiency was achieved, and CO concentration (considered to be a substitute indicator for dioxins) was reduced from 11.9 to 8.0 ppm.
Molecular Mechanisms in the shock induced decomposition of FOX-7
NASA Astrophysics Data System (ADS)
Mishra, Ankit; Tiwari, Subodh C.; Nakano, Aiichiro; Vashishta, Priya; Kalia, Rajiv; CACS Team
Experimental and first principle computational studies on FOX 7 have either involved a very small system consisting of a few atoms or they did not take into account the decomposition mechanisms under extreme conditions of temperature and pressure. We have performed a large-scale reactive MD simulation using ReaxFF-lg force field to study the shock decomposition of FOX 7. The chemical composition of the principal decomposition products correlates well with experimental observations. Furthermore, we observed that the production of N2 and H2O was inter molecular in nature and was through different chemical pathways. Moreover, the production of CO and CO2 was delayed due to production of large stable C,O atoms cluster. These critical insights into the initial processes involved in the shock induced decomposition of FOX-7 will greatly help in understanding the factors playing an important role in the insensitiveness of this high energy material. This research is supported by AFOSR Award No. FA9550-16-1-0042.
Liberato, Marcelo V; Silveira, Rodrigo L; Prates, Érica T; de Araujo, Evandro A; Pellegrini, Vanessa O A; Camilo, Cesar M; Kadowaki, Marco A; Neto, Mario de O; Popov, Alexander; Skaf, Munir S; Polikarpov, Igor
2016-04-01
Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.
Characteristics of a Sensitive Well Showing Pre-Earthquake Water-Level Changes
NASA Astrophysics Data System (ADS)
King, Chi-Yu
2018-04-01
Water-level data recorded at a sensitive well next to a fault in central Japan between 1989 and 1998 showed many coseismic water-level drops and a large (60 cm) and long (6-month) pre-earthquake drop before a rare local earthquake of magnitude 5.8 on 17 March 1997, as well as 5 smaller pre-earthquake drops during a 7-year period prior to this earthquake. The pre-earthquake changes were previously attributed to leakage through the fault-gouge zone caused by small but broad-scaled crustal-stress increments. These increments now seem to be induced by some large slow-slip events. The coseismic changes are attributed to seismic shaking-induced fissures in the adjacent aquitards, in addition to leakage through the fault. The well's high-sensitivity is attributed to its tapping a highly permeable aquifer, which is connected to the fractured side of the fault, and its near-critical condition for leakage, especially during the 7 years before the magnitude 5.8 earthquake.
NASA Astrophysics Data System (ADS)
Liberato, Marcelo V.; Silveira, Rodrigo L.; Prates, Érica T.; de Araujo, Evandro A.; Pellegrini, Vanessa O. A.; Camilo, Cesar M.; Kadowaki, Marco A.; Neto, Mario De O.; Popov, Alexander; Skaf, Munir S.; Polikarpov, Igor
2016-04-01
Glycoside hydrolases (GHs) play fundamental roles in the decomposition of lignocellulosic biomaterials. Here, we report the full-length structure of a cellulase from Bacillus licheniformis (BlCel5B), a member of the GH5 subfamily 4 that is entirely dependent on its two ancillary modules (Ig-like module and CBM46) for catalytic activity. Using X-ray crystallography, small-angle X-ray scattering and molecular dynamics simulations, we propose that the C-terminal CBM46 caps the distal N-terminal catalytic domain (CD) to establish a fully functional active site via a combination of large-scale multidomain conformational selection and induced-fit mechanisms. The Ig-like module is pivoting the packing and unpacking motions of CBM46 relative to CD in the assembly of the binding subsite. This is the first example of a multidomain GH relying on large amplitude motions of the CBM46 for assembly of the catalytically competent form of the enzyme.
Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells
NASA Astrophysics Data System (ADS)
Bershteyn, Marina; Hayashi, Yohei; Desachy, Guillaume; Hsiao, Edward C.; Sami, Salma; Tsang, Kathryn M.; Weiss, Lauren A.; Kriegstein, Arnold R.; Yamanaka, Shinya; Wynshaw-Boris, Anthony
2014-03-01
Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of `chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.
Beier, Susann; Ormiston, John; Webster, Mark; Cater, John; Norris, Stuart; Medrano-Gracia, Pau; Young, Alistair; Gilbert, Kathleen; Cowan, Brett
2016-08-01
The majority of patients with angina or heart failure have coronary artery disease. Left main bifurcations are particularly susceptible to pathological narrowing. Flow is a major factor of atheroma development, but limitations in imaging technology such as spatio-temporal resolution, signal-to-noise ratio (SNRv), and imaging artefacts prevent in vivo investigations. Computational fluid dynamics (CFD) modelling is a common numerical approach to study flow, but it requires a cautious and rigorous application for meaningful results. Left main bifurcation angles of 40°, 80° and 110° were found to represent the spread of an atlas based 100 computed tomography angiograms. Three left mains with these bifurcation angles were reconstructed with 1) idealized, 2) stented, and 3) patient-specific geometry. These were then approximately 7× scaled-up and 3D printing as large phantoms. Their flow was reproduced using a blood-analogous, dynamically scaled steady flow circuit, enabling in vitro phase-contrast magnetic resonance (PC-MRI) measurements. After threshold segmentation the image data was registered to true-scale CFD of the same coronary geometry using a coherent point drift algorithm, yielding a small covariance error (σ 2 <;5.8×10 -4 ). Natural-neighbour interpolation of the CFD data onto the PC-MRI grid enabled direct flow field comparison, showing very good agreement in magnitude (error 2-12%) and directional changes (r 2 0.87-0.91), and stent induced flow alternations were measureable for the first time. PC-MRI over-estimated velocities close to the wall, possibly due to partial voluming. Bifurcation shape determined the development of slow flow regions, which created lower SNRv regions and increased discrepancies. These can likely be minimised in future by testing different similarity parameters to reduce acquisition error and improve correlation further. It was demonstrated that in vitro large phantom acquisition correlates to true-scale coronary flow simulations when dynamically scaled, and thus can overcome current PC-MRI's spatio-temporal limitations. This novel method enables experimental assessment of stent induced flow alternations, and in future may elevate CFD coronary flow simulations by providing sophisticated boundary conditions, and enable investigations of stenosis phantoms.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian
2017-01-01
Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the “immune system” of mental health recently developed in relation to flexible hub theory. PMID:28736535
NASA Astrophysics Data System (ADS)
Kirkil, Gokhan; Constantinescu, George
2014-11-01
Large Eddy Simulation is used to investigate the structure of the laminar horseshoe vortex (HV) system and the dynamics of the necklace vortices as they fold around the base of a circular cylinder mounted on the flat bed of an open channel for Reynolds numbers defined with the cylinder diameter, D, smaller than 4,460. The study concentrates on the analysis of the structure of the HV system in the periodic breakaway sub-regime which is characterized by the formation of three main necklace vortices. For the relatively shallow flow conditions considered in this study (H/D 1, H is the channel depth), at times, the disturbances induced by the legs of the necklace vortices do not allow the SSLs on the two sides of the cylinder to interact in a way that allows the vorticity redistribution mechanism to lead to the formation of a new wake roller. As a result, the shedding of large scale rollers in the turbulent wake is suppressed for relatively large periods of time. Simulation results show that the wake structure changes randomly between time intervals when large-scale rollers are forming and are convected in the wake (von Karman regime), and time intervals when the rollers do not form.
Wei, Gao-Xia; Gong, Zhu-Qing; Yang, Zhi; Zuo, Xi-Nian
2017-01-01
Cognitive control impairment is a typical symptom largely reported in populations with neurological disorders. Previous studies have provided evidence about the changes in cognitive control induced by mind-body training. However, the neural correlates underlying the effect of extensive mind-body practice on cognitive control remain largely unknown. Using resting-state functional magnetic resonance imaging, we characterized dynamic fluctuations in large-scale intrinsic connectivity networks associated with mind-body practice, and examined their differences between healthy controls and Tai Chi Chuan (TCC) practitioners. Compared with a control group, the TCC group revealed significantly decreased fractional Amplitude of Low Frequency Fluctuations (fALFF) in the bilateral frontoparietal network, default mode network and dorsal prefrontal-angular gyri network. Furthermore, we detected a significant association between mind-body practice experience and fALFF in the default mode network, as well as an association between cognitive control performance and fALFF of the frontoparietal network. This provides the first evidence of large-scale functional connectivity in brain networks associated with mind-body practice, shedding light on the neural network changes that accompany intensive mind-body training. It also highlights the functionally plastic role of the frontoparietal network in the context of the "immune system" of mental health recently developed in relation to flexible hub theory.
Zhou, Shu; Li, Guo-Bo; Huang, Lu-Yi; Xie, Huan-Zhang; Zhao, Ying-Lan; Chen, Yu-Zong; Li, Lin-Li; Yang, Sheng-Yong
2014-08-01
Drug-induced ototoxicity, as a toxic side effect, is an important issue needed to be considered in drug discovery. Nevertheless, current experimental methods used to evaluate drug-induced ototoxicity are often time-consuming and expensive, indicating that they are not suitable for a large-scale evaluation of drug-induced ototoxicity in the early stage of drug discovery. We thus, in this investigation, established an effective computational prediction model of drug-induced ototoxicity using an optimal support vector machine (SVM) method, GA-CG-SVM. Three GA-CG-SVM models were developed based on three training sets containing agents bearing different risk levels of drug-induced ototoxicity. For comparison, models based on naïve Bayesian (NB) and recursive partitioning (RP) methods were also used on the same training sets. Among all the prediction models, the GA-CG-SVM model II showed the best performance, which offered prediction accuracies of 85.33% and 83.05% for two independent test sets, respectively. Overall, the good performance of the GA-CG-SVM model II indicates that it could be used for the prediction of drug-induced ototoxicity in the early stage of drug discovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System
NASA Astrophysics Data System (ADS)
Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan
2015-11-01
Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.
Consciousness, cognition and brain networks: New perspectives.
Aldana, E M; Valverde, J L; Fábregas, N
2016-10-01
A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Hydrodynamics of isotropic and liquid crystalline active polymer solutions.
Ahmadi, Aphrodite; Marchetti, M C; Liverpool, T B
2006-12-01
We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.
Ávila, Sérgio P; Cordeiro, Ricardo; Madeira, Patrícia; Silva, Luís; Medeiros, António; Rebelo, Ana C; Melo, Carlos; Neto, Ana I; Haroun, Ricardo; Monteiro, António; Rijsdijk, Kenneth; Johnson, Markes E
2018-01-01
Past climate changes provide important clues for advancement of studies on current global change biology. We have tested large-scale biogeographic patterns through four marine groups from twelve Atlantic Ocean archipelagos and searched for patterns between species richness/endemism and littoral area, age, isolation, latitude and mean annual sea-surface temperatures. Species richness is strongly correlated with littoral area. Two reinforcing effects take place during glacial episodes: i) species richness is expected to decrease (in comparison with interglacial periods) due to the local disappearance of sandy/muddy-associated species; ii) because littoral area is minimal during glacial episodes, area per se induces a decrease on species richness (by extirpation/extinction of marine species) as well as affecting speciation rates. Maximum speciation rates are expected to occur during the interglacial periods, whereas immigration rates are expected to be higher at the LGM. Finally, sea-level changes are a paramount factor influencing marine biodiversity of animals and plants living on oceanic islands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sea-level-induced seismicity and submarine landslide occurrence
Brothers, Daniel S.; Luttrell, Karen M.; Chaytor, Jason D.
2013-01-01
The temporal coincidence between rapid late Pleistocene sea-level rise and large-scale slope failures is widely documented. Nevertheless, the physical mechanisms that link these phenomena are poorly understood, particularly along nonglaciated margins. Here we investigate the causal relationships between rapid sea-level rise, flexural stress loading, and increased seismicity rates along passive margins. We find that Coulomb failure stress across fault systems of passive continental margins may have increased more than 1 MPa during rapid late Pleistocene–early Holocene sea-level rise, an amount sufficient to trigger fault reactivation and rupture. These results suggest that sea-level–modulated seismicity may have contributed to a number of poorly understood but widely observed phenomena, including (1) increased frequency of large-scale submarine landslides during rapid, late Pleistocene sea-level rise; (2) emplacement of coarse-grained mass transport deposits on deep-sea fans during the early stages of marine transgression; and (3) the unroofing and release of methane gas sequestered in continental slope sediments.
Identifying and modeling the structural discontinuities of human interactions
NASA Astrophysics Data System (ADS)
Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo
2017-04-01
The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.
Identifying and modeling the structural discontinuities of human interactions
Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo
2017-01-01
The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales. PMID:28443647
Identifying and modeling the structural discontinuities of human interactions.
Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo
2017-04-26
The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.
Invisible water, visible impact: groundwater use and Indian agriculture under climate change
NASA Astrophysics Data System (ADS)
Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; Frolking, Steve; Lammers, Richard B.; Wrenn, Douglas H.; Prusevich, Alexander; Nicholas, Robert E.
2016-08-01
India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.
NASA Astrophysics Data System (ADS)
Andresen, Juan Carlos; Katzgraber, Helmut G.; Schechter, Moshe
2017-12-01
Random fields disorder Ising ferromagnets by aligning single spins in the direction of the random field in three space dimensions, or by flipping large ferromagnetic domains at dimensions two and below. While the former requires random fields of typical magnitude similar to the interaction strength, the latter Imry-Ma mechanism only requires infinitesimal random fields. Recently, it has been shown that for dilute anisotropic dipolar systems a third mechanism exists, where the ferromagnetic phase is disordered by finite-size glassy domains at a random field of finite magnitude that is considerably smaller than the typical interaction strength. Using large-scale Monte Carlo simulations and zero-temperature numerical approaches, we show that this mechanism applies to disordered ferromagnets with competing short-range ferromagnetic and antiferromagnetic interactions, suggesting its generality in ferromagnetic systems with competing interactions and an underlying spin-glass phase. A finite-size-scaling analysis of the magnetization distribution suggests that the transition might be first order.
The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.
Tang, Zaixiang; Shen, Yueping; Zhang, Xinyan; Yi, Nengjun
2017-01-01
Large-scale "omics" data have been increasingly used as an important resource for prognostic prediction of diseases and detection of associated genes. However, there are considerable challenges in analyzing high-dimensional molecular data, including the large number of potential molecular predictors, limited number of samples, and small effect of each predictor. We propose new Bayesian hierarchical generalized linear models, called spike-and-slab lasso GLMs, for prognostic prediction and detection of associated genes using large-scale molecular data. The proposed model employs a spike-and-slab mixture double-exponential prior for coefficients that can induce weak shrinkage on large coefficients, and strong shrinkage on irrelevant coefficients. We have developed a fast and stable algorithm to fit large-scale hierarchal GLMs by incorporating expectation-maximization (EM) steps into the fast cyclic coordinate descent algorithm. The proposed approach integrates nice features of two popular methods, i.e., penalized lasso and Bayesian spike-and-slab variable selection. The performance of the proposed method is assessed via extensive simulation studies. The results show that the proposed approach can provide not only more accurate estimates of the parameters, but also better prediction. We demonstrate the proposed procedure on two cancer data sets: a well-known breast cancer data set consisting of 295 tumors, and expression data of 4919 genes; and the ovarian cancer data set from TCGA with 362 tumors, and expression data of 5336 genes. Our analyses show that the proposed procedure can generate powerful models for predicting outcomes and detecting associated genes. The methods have been implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/). Copyright © 2017 by the Genetics Society of America.
High Strain Rate and Shock-Induced Deformation in Metals
NASA Astrophysics Data System (ADS)
Ravelo, Ramon
2012-02-01
Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as results from density functional theory calculations.
Lin, Youshan Melissa; Lim, Jessica Fang Yan; Lee, Jialing; Choolani, Mahesh; Chan, Jerry Kok Yen; Reuveny, Shaul; Oh, Steve Kah Weng
2016-06-01
Cartilage tissue engineering with human mesenchymal stromal cells (hMSC) is promising for allogeneic cell therapy. To achieve large-scale hMSC propagation, scalable microcarrier-based cultures are preferred over conventional static cultures on tissue culture plastic. Yet it remains unclear how microcarrier cultures affect hMSC chondrogenic potential, and how this potential is distinguished from that of tissue culture plastic. Hence, our study aims to compare the chondrogenic potential of human early MSC (heMSC) between microcarrier-spinner and tissue culture plastic cultures. heMSC expanded on either collagen-coated Cytodex 3 microcarriers in spinner cultures or tissue culture plastic were harvested for chondrogenic pellet differentiation with empirically determined chondrogenic inducer bone morphogenetic protein 2 (BMP2). Pellet diameter, DNA content, glycosaminoglycan (GAG) and collagen II production, histological staining and gene expression of chondrogenic markers including SOX9, S100β, MMP13 and ALPL, were investigated and compared in both conditions. BMP2 was the most effective chondrogenic inducer for heMSC. Chondrogenic pellets generated from microcarrier cultures developed larger pellet diameters, and produced more DNA, GAG and collagen II per pellet with greater GAG/DNA and collagen II/DNA ratios compared with that of tissue culture plastic. Moreover, they induced higher expression of chondrogenic genes (e.g., S100β) but not of hypertrophic genes (e.g., MMP13 and ALPL). A similar trend showing enhanced chondrogenic potential was achieved with another microcarrier type, suggesting that the mechanism is due to the agitated nature of microcarrier cultures. This is the first study demonstrating that scalable microcarrier-spinner cultures enhance the chondrogenic potential of heMSC, supporting their use for large-scale cell expansion in cartilage cell therapy. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Curcic, Milan; Chen, Shuyi S.; Özgökmen, Tamay M.
2016-03-01
Hurricane Isaac induced large surface waves and a significant change in upper ocean circulation in the Gulf of Mexico before making landfall at the Louisiana coast on 29 August 2012. Isaac was observed by 194 surface drifters during the Grand Lagrangian Deployment (GLAD). A coupled atmosphere-wave-ocean model was used to forecast hurricane impacts during GLAD. The coupled model and drifter observations provide an unprecedented opportunity to study the impacts of hurricane-induced Stokes drift on ocean surface currents. The Stokes drift induced a cyclonic (anticyclonic) rotational flow on the left (right) side of the hurricane and accounted for up to 20% of the average Lagrangian velocity. In a significant deviation from drifter measurements prior to Isaac, the scale-dependent relative diffusivity is estimated to be 6 times larger during the hurricane, which represents a deviation from Okubo's (1971) canonical results for lateral dispersion in nonhurricane conditions at the ocean surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Yann-Cherng; Wu, Hung-Ruei; Chen, Yen-Chu
2015-08-15
A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area asmore » large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.« less
Psychometric Evaluation of the Altered States of Consciousness Rating Scale (OAV)
Studerus, Erich; Gamma, Alex; Vollenweider, Franz X.
2010-01-01
Background The OAV questionnaire has been developed to integrate research on altered states of consciousness (ASC). It measures three primary and one secondary dimensions of ASC that are hypothesized to be invariant across ASC induction methods. The OAV rating scale has been in use for more than 20 years and applied internationally in a broad range of research fields, yet its factorial structure has never been tested by structural equation modeling techniques and its psychometric properties have never been examined in large samples of experimentally induced ASC. Methodology/Principal Findings The present study conducted a psychometric evaluation of the OAV in a sample of psilocybin (n = 327), ketamine (n = 162), and MDMA (n = 102) induced ASC that was obtained by pooling data from 43 experimental studies. The factorial structure was examined by confirmatory factor analysis, exploratory structural equation modeling, hierarchical item clustering (ICLUST), and multiple indicators multiple causes (MIMIC) modeling. The originally proposed model did not fit the data well even if zero-constraints on non-target factor loadings and residual correlations were relaxed. Furthermore, ICLUST suggested that the “oceanic boundlessness” and “visionary restructuralization” factors could be combined on a high level of the construct hierarchy. However, because these factors were multidimensional, we extracted and examined 11 new lower order factors. MIMIC modeling indicated that these factors were highly measurement invariant across drugs, settings, questionnaire versions, and sexes. The new factors were also demonstrated to have improved homogeneities, satisfactory reliabilities, discriminant and convergent validities, and to differentiate well among the three drug groups. Conclusions/Significance The original scales of the OAV were shown to be multidimensional constructs. Eleven new lower order scales were constructed and demonstrated to have desirable psychometric properties. The new lower order scales are most likely better suited to assess drug induced ASC. PMID:20824211
NASA Astrophysics Data System (ADS)
Menant, Armel; Jolivet, Laurent; Sternai, Pietro; Ducoux, Maxime; Augier, Romain; Rabillard, Aurélien; Gerya, Taras; Guillou-Frottier, Laurent
2014-05-01
In subduction environment, magmatic-hydrothermal processes, responsible for the emplacement of magmatic bodies and related mineralization, are strongly controlled by slab dynamics. This 3D dynamics is often complex, resulting notably in spatial evolution through time of mineralization and magmatism types and in fast kinematic changes at the surface. Study at different scales of the distribution of these magmatic and hydrothermal products is useful to better constrain subduction dynamics. This work is focused on the eastern Mediterranean, where the complex dynamics of the Tethyan active margin since the upper Cretaceous is still largely debated. We propose new kinematic reconstructions of the region also showing the distribution of magmatic products and mineralization in space and time. Three main periods have thus been identified with a general southward migration of magmatic and ore bodies. (1) From late Cretaceous to lower Paleocene, calc-alkaline magmatism and porphyry Cu deposits emplaced notably in the Balkans, along a long linear cordillera. (2) From late Paleocene to Eocene, a barren period occurred while the Pelagonian microcontinent was buried within the subduction zone. (3) Since the Oligocene, Au-rich deposits and related K-rich magmatism emplaced in the Rhodopes, the Aegean and western Anatolian extensional domains in response to fast slab retreat and related mantle flow inducing the partial melting of the lithospheric mantle or the base of the upper crust where Au was previously stored. The emplacement at shallow level of this mineralization was largely controlled by large-scale structures that drained the magmatic-hydrothermal fluids. In the Cyclades for instance, field studies show that Au-rich but also base metal-rich ore deposits are syn-extensional and spatially related to large-scale detachment systems (e.g. on Tinos, Mykonos, Serifos islands), which are recognized as subduction-related structures. These results highlight the importance at different scales of subduction dynamics and related mantle flow on the emplacement of mineralization and magmatic bodies. Indeed, besides a general southward migration of the magmatic-hydrothermal activity since the upper Cretaceous from the Balkans to the present-day Aegean volcanic arc, a secondary westward migration is observed during the Miocene from the Menderes massif to the Cyclades. This feature is a possible consequence of a slab tearing event and related mantle flow, as suggested notably by tomographic models below western Anatolia. To further test the effects of slab retreat and tearing on the flow and temperature field within the mantle, we performed 3D thermo-mechanical numerical modeling. Models suggest that the asthenospheric flow induced by the development of a slab tear controls the migration of magmatic products stored at the base of the crust, influencing the distribution of potentially fertile magmas within the upper crust.
Dynamic DNA Methylation Controls Glutamate Receptor Trafficking and Synaptic Scaling
Sweatt, J. David
2016-01-01
Hebbian plasticity, including LTP and LTD, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and de-methylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. PMID:26849493
Laser-induced incandescence measurements of soot in turbulent pool fires.
Frederickson, Kraig; Kearney, Sean P; Grasser, Thomas W
2011-02-01
We present what we believe to be the first application of the laser-induced incandescence (LII) technique to large-scale fire testing. The construction of an LII instrument for fire measurements is presented in detail. Soot volume fraction imaging from 2 m diameter pool fires burning blended toluene/methanol liquid fuels is demonstrated along with a detailed report of measurement uncertainty in the challenging pool fire environment. Our LII instrument relies upon remotely located laser, optical, and detection systems and the insertion of water-cooled, fiber-bundle-coupled collection optics into the fire plume. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner, which allowed for the extraction of absolute soot volume fractions from the LII images. Single-laser-shot two-dimensional images of the soot layer structure are presented with very high volumetric spatial resolution of the order of 10(-5) cm3. Probability density functions of the soot volume fraction fluctuations are constructed from the large LII image ensembles. The results illustrate a highly intermittent soot fluctuation field with potentially large macroscale soot structures and clipped soot probability densities.
Early warning of climate tipping points
NASA Astrophysics Data System (ADS)
Lenton, Timothy M.
2011-07-01
A climate 'tipping point' occurs when a small change in forcing triggers a strongly nonlinear response in the internal dynamics of part of the climate system, qualitatively changing its future state. Human-induced climate change could push several large-scale 'tipping elements' past a tipping point. Candidates include irreversible melt of the Greenland ice sheet, dieback of the Amazon rainforest and shift of the West African monsoon. Recent assessments give an increased probability of future tipping events, and the corresponding impacts are estimated to be large, making them significant risks. Recent work shows that early warning of an approaching climate tipping point is possible in principle, and could have considerable value in reducing the risk that they pose.
Origin of the cosmic network in {Lambda}CDM: Nature vs nurture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shandarin, Sergei; Habib, Salman; Heitmann, Katrin
The large-scale structure of the Universe, as traced by the distribution of galaxies, is now being revealed by large-volume cosmological surveys. The structure is characterized by galaxies distributed along filaments, the filaments connecting in turn to form a percolating network. Our objective here is to quantitatively specify the underlying mechanisms that drive the formation of the cosmic network: By combining percolation-based analyses with N-body simulations of gravitational structure formation, we elucidate how the network has its origin in the properties of the initial density field (nature) and how its contrast is then amplified by the nonlinear mapping induced by themore » gravitational instability (nurture).« less
Methods and apparatus of analyzing electrical power grid data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Critchlow, Terence J.; Gibson, Tara D.
Apparatus and methods of processing large-scale data regarding an electrical power grid are described. According to one aspect, a method of processing large-scale data regarding an electrical power grid includes accessing a large-scale data set comprising information regarding an electrical power grid; processing data of the large-scale data set to identify a filter which is configured to remove erroneous data from the large-scale data set; using the filter, removing erroneous data from the large-scale data set; and after the removing, processing data of the large-scale data set to identify an event detector which is configured to identify events of interestmore » in the large-scale data set.« less
The Imaging Properties of a Silicon Wafer X-Ray Telescope
NASA Technical Reports Server (NTRS)
Joy, M. K.; Kolodziejczak, J. J.; Weisskopf, M. C.; Fair, S.; Ramsey, B. D.
1994-01-01
Silicon wafers have excellent optical properties --- low microroughness and good medium-scale flatness --- which Make them suitable candidates for inexpensive flat-plate grazing-incidence x-ray mirrors. On short spatial scales (less than 3 mm) the surface quality of silicon wafers rivals that expected of the Advanced X-Ray Astrophysics Facility (AXAF) high-resolution optics. On larger spatial scales, however, performance may be degraded by the departure from flatness of the wafer and by distortions induced by the mounting scheme. In order to investigate such effects, we designed and constructed a prototype silicon-wafer x-ray telescope. The device was then tested in both visible light and x rays. The telescope module consists of 94 150-mm-diameter wafers, densely packed into the first stage of a Kirkpatrick-Baez configuration. X-ray tests at three energies (4.5, 6.4, and 8.0 keV) showed an energy-independent line spread function with full width at half maximum (FWHM) of 150 arcseconds, dominated by deviations from large-scale flatness.
Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravenni, Andrea; Verde, Licia; Cuesta, Antonio J., E-mail: andrea.ravenni@pd.infn.it, E-mail: liciaverde@icc.ub.edu, E-mail: ajcuesta@icc.ub.edu
2016-08-01
We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidencemore » for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.« less
Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure
NASA Astrophysics Data System (ADS)
Ravenni, Andrea; Verde, Licia; Cuesta, Antonio J.
2016-08-01
We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.
Isolation of an inducible amidase from Pseudomonas acidovorans AE1.
Alt, J; Krisch, K
1975-04-01
A bacterial strain, AEI, which hydrolysed acetanilide, was isolated from soil and identified as Pseudomonas acidovorans. Numerous amides, esters and enzyme inhibitors were tested as amidase inducers. Phenacetin was chosen as inducer for the large scale cultivation of these organisms because it was less toxic to the bacteria than acetanilide. The induction increased the enzymic activity 250-fold. In comparison, the type culture strain of P. acidovorans, ATTCCI5668, had no amidase activity which could be induced by phenacetin. Optimal growth conditions were established with respect to the concentration of carbon source and inducer so that about 10% of the extractable bacterial protein consisted of the amidase. The organisms were lysed with lysozyme in the presence of EDTA and the enzyme was isolated mainly by column chromatography procedures. A preparation form 60 g (wet wt) bacteria yielded about 100 mg highly purified amidase with a specific activity of 137 mugmol substrate hydrolysed/min/mg protien. In addition to acetanilide, the purified enzyme hydrolysed several other amides and esters. As standard substrate, p-nitroacetanilide was chosen.
Dynamic fracture of tantalum under extreme tensile stress
Albertazzi, Bruno; Ozaki, Norimasa; Zhakhovsky, Vasily; ...
2017-06-02
The understanding of fracture phenomena of a material at extremely high strain rates is a key issue for a wide variety of scientific research ranging from applied science and technological developments to fundamental science such as laser-matter interaction and geology. Despite its interest, its study relies on a fine multiscale description, in between the atomic scale and macroscopic processes, so far only achievable by large-scale atomic simulations. Direct ultrafast real-time monitoring of dynamic fracture (spallation) at the atomic lattice scale with picosecond time resolution was beyond the reach of experimental techniques. We show that the coupling between a high-power opticalmore » laser pump pulse and a femtosecond x-ray probe pulse generated by an x-ray free electron laser allows detection of the lattice dynamics in a tantalum foil at an ultrahigh strain rate of Embedded Image ~2 × 10 8 to 3.5 × 10 8 s -1. A maximal density drop of 8 to 10%, associated with the onset of spallation at a spall strength of ~17 GPa, was directly measured using x-ray diffraction. The experimental results of density evolution agree well with large-scale atomistic simulations of shock wave propagation and fracture of the sample. Our experimental technique opens a new pathway to the investigation of ultrahigh strain-rate phenomena in materials at the atomic scale, including high-speed crack dynamics and stress-induced solid-solid phase transitions.« less
Chemical sensing of plant stress at the ecosystem scale
NASA Astrophysics Data System (ADS)
Karl, T.; Guenther, A.; Turnipseed, A.; Patton, E. G.; Jardine, K.
2008-09-01
Significant ecosystem-scale emissions of methylsalicylate (MeSA), a semivolatile plant hormone thought to act as the mobile signal for systemic acquired resistance (SAR), were observed in an agroforest. Our measurements show that plant internal defence mechanisms can be activated in response to temperature stress and are modulated by water availability on large scales. Highest MeSA fluxes (up to 0.25 mg/m2/h) were observed after plants experienced ambient night-time temperatures of ~7.5°C followed by a large daytime temperature increase (e.g. up to 22°C). Under these conditions estimated night-time leaf temperatures were as low as ~4.6°C, likely inducing a response to prevent chilling injury. Our observations imply that plant hormones can be a significant component of ecosystem scale volatile organic compound (VOC) fluxes (e.g. as high as the total monoterpene (MT) flux) and therefore contribute to the missing VOC budget. If generalized to other ecosystems and different types of stresses these findings suggest that semivolatile plant hormones have been overlooked by investigations of the impact of biogenic VOCs on aerosol formation events in forested regions. Our observations show that the presence of MeSA in canopy air serves as an early chemical warning signal indicating ecosystem-scale stresses before visible damage becomes apparent. As a chemical metric, ecosystem emission measurements of MeSA in ambient air could therefore support field studies investigating factors that adversely affect plant growth.
Medium-Induced QCD Cascade: Democratic Branching and Wave Turbulence
NASA Astrophysics Data System (ADS)
Blaizot, J.-P.; Iancu, E.; Mehtar-Tani, Y.
2013-08-01
We study the average properties of the gluon cascade generated by an energetic parton propagating through a quark-gluon plasma. We focus on the soft, medium-induced emissions which control the energy transport at large angles with respect to the leading parton. We show that the effect of multiple branchings is important. In contrast with what happens in a usual QCD cascade in vacuum, medium-induced branchings are quasidemocratic, with offspring gluons carrying sizable fractions of the energy of their parent gluon. This results in an efficient mechanism for the transport of energy toward the medium, which is akin to wave turbulence with a scaling spectrum ˜1/ω. We argue that the turbulent flow may be responsible for the excess energy carried by very soft quanta, as revealed by the analysis of the dijet asymmetry observed in Pb-Pb collisions at the LHC.