Sample records for induced modulation instability

  1. The effects of control field detuning on the modulation instability in a three-level quantum well system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgohain, Nitu, E-mail: nituborgohain.ism@gmail.com; Konar, S.

    The paper presents a theoretical study of the modulation instability of a continuous or quasi-continuous optical probe in a three level quantum well system under electromagnetically induced transparency. The modulation instability is affected by the control field detuning, as well as even-order dispersion and by the strength of Kerr (third-order) and quintic (fifth-order) nonlinearities. The fourth-order dispersion reduces the bandwidth over which modulation instability occurs, whereas the quintic nonlinearity saturates the growth of the modulation instability. Detuning the control field from resonance can significantly reduce the growth of the modulation instability at both low and high power levels. At lowmore » powers, the system becomes stable against modulation instability for small detuning of the control field and at high powers modulation instability disappears for larger detuning.« less

  2. Higher-order modulation instability in nonlinear fiber optics.

    PubMed

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  3. Dynamic Stabilization of the Ablative Rayleigh-Taylor Instability for Heavy Ion Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Logan, B. Grant

    2012-10-04

    Dynamic stabilization of the ablative Rayleigh-Taylor instability of a heavy ion fusion target induced by a beam wobbling system is studied. Using a sharp-boundary model and Courant-Synder theory, it is shown, with an appropriately chosen modulation waveform, that the instability can be sta- bilized in certain parameter regimes. It is found that the stabilization e ect has a strong dependence on the modulation frequency and the waveform. Modulation with frequency comparable to the instability growth rate is the most e ective in terms of stabilizing the instability. A modulation with two frequency components can result in a reduction of themore » growth rate larger than the sum of that due to the two components when applied separately.« less

  4. Mode-locking via dissipative Faraday instability

    PubMed Central

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  5. Mode-locking via dissipative Faraday instability.

    PubMed

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  6. Modulation instability induced by cross-phase modulation with higher-order dispersions and cubic-quintic nonlinearities in metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Chuanxi; Xue, Yan Ling; Liu, Ying

    2014-07-01

    Based on the dispersive Drude model in metamaterials (MMs), coupled nonlinear Schodinger equations are derived for two co-propagating optical waves with higher-order dispersions and cubic-quintic nonlinearities. And modulation instabilities induced by the cross -phase modulation (XMI) are studied. The impact of 3rd-, 4th-order of dispersion and quintic nonlinearity on the gain spectra of XMI is analyzed. It is shown that the 3rd-order dispersion has no effect on XMI and its gain spectra. With the increment of 4th-order dispersion, the gain spectra appear in higher frequency region (2nd spectrum region) and gain peaks become smaller.

  7. Cross-phase-modulation-induced instability in photonic-crystal fibers.

    PubMed

    Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M

    2005-08-01

    Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.

  8. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation

    NASA Astrophysics Data System (ADS)

    Gurevich, Evgeny L.

    2016-06-01

    Here we analyze the formation of laser-induced periodic surface structures (LIPSS) on metal surfaces upon single femtosecond laser pulses. Most of the existing models of the femtosecond LIPSS formation discuss only the appearance of a periodic modulation of the electron and ion temperatures. However the mechanism how the inhomogeneous surface temperature distribution induces the periodically-modulated surface profile under the conditions corresponding to ultrashort-pulse laser ablation is still not clear. Estimations made on the basis of different hydrodynamic instabilities allow to sort out mechanisms, which can bridge the gap between the temperature modulation and the LIPSS. The proposed theory shows that the periodic structures can be generated by single ultrashort laser pulses due to ablative instabilities. The Marangoni and Rayleigh-Bénard convection on the contrary cannot cause the LIPSS formation.

  9. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    PubMed

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-08

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  10. Drifting cavity solitons and dissipative rogue waves induced by time-delayed feedback in Kerr optical frequency comb and in all fiber cavities

    NASA Astrophysics Data System (ADS)

    Tlidi, Mustapha; Panajotov, Krassimir; Ferré, Michel; Clerc, Marcel G.

    2017-11-01

    Time-delayed feedback plays an important role in the dynamics of spatially extended systems. In this contribution, we consider the generic Lugiato-Lefever model with delay feedback that describes Kerr optical frequency comb in all fiber cavities. We show that the delay feedback strongly impacts the spatiotemporal dynamical behavior resulting from modulational instability by (i) reducing the threshold associated with modulational instability and by (ii) decreasing the critical frequency at the onset of this instability. We show that for moderate input intensities it is possible to generate drifting cavity solitons with an asymmetric radiation emitted from the soliton tails. Finally, we characterize the formation of rogue waves induced by the delay feedback.

  11. Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities.

    PubMed

    Tombelaine, Vincent; Lesvigne, Christelle; Leproux, Philippe; Grossard, Ludovic; Couderc, Vincent; Auguste, Jean-Louis; Blondy, Jean-Marc; Huss, Guillaume; Pioger, Paul-Henri

    2005-09-19

    Second harmonic generation in an air-silica microstructured optical fiber pumped by subnanosecond pulses is used in order to initiate modulation instability processes in normal and anomalous dispersion regimes. This allows us to generate an ultra wide and flat supercontinuum (350-1750 nm), covering the entire transparency window of silica and exhibiting a singlemode transverse profile in visible range.

  12. Modulation Instability of Copropagating Optical Beams in Fractional Coupled Nonlinear Schrödinger Equations

    NASA Astrophysics Data System (ADS)

    Zhang, Jinggui

    2018-06-01

    In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.

  13. Infrasound induced instability by modulation of condensation process in the atmosphere.

    PubMed

    Naugolnykh, Konstantin; Rybak, Samuil

    2008-12-01

    A sound wave in supersaturated water vapor can modulate both the process of heat release caused by condensation, and subsequently, as a result, the resonance interaction of sound with the modulated heat release provides sound amplification. High-intensity atmospheric perturbations such as cyclones and thunderstorms generate infrasound, which is detectable at large distances from the source. The wave-condensation instability can lead to variation in the level of infrasound radiation by a developing cyclone, and this can be as a precursor of these intense atmospheric events.

  14. Static and Dynamic Water Motion-Induced Instability in Oxide Thin-Film Transistors and Its Suppression by Using Low-k Fluoropolymer Passivation.

    PubMed

    Choi, Seungbeom; Jo, Jeong-Wan; Kim, Jaeyoung; Song, Seungho; Kim, Jaekyun; Park, Sung Kyu; Kim, Yong-Hoon

    2017-08-09

    Here, we report static and dynamic water motion-induced instability in indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) and its effective suppression with the use of a simple, solution-processed low-k (ε ∼ 1.9) fluoroplastic resin (FPR) passivation layer. The liquid-contact electrification effect, in which an undesirable drain current modulation is induced by a dynamic motion of a charged liquid such as water, can cause a significant instability in IGZO TFTs. It was found that by adopting a thin (∼44 nm) FPR passivation layer for IGZO TFTs, the current modulation induced by the water-contact electrification was greatly reduced in both off- and on-states of the device. In addition, the FPR-passivated IGZO TFTs exhibited an excellent stability to static water exposure (a threshold voltage shift of +0.8 V upon 3600 s of water soaking), which is attributed to the hydrophobicity of the FPR passivation layer. Here, we discuss the origin of the current instability caused by the liquid-contact electrification as well as various static and dynamic stability tests for IGZO TFTs. On the basis of our findings, we believe that the use of a thin, solution-processed FPR passivation layer is effective in suppressing the static and dynamic water motion-induced instabilities, which may enable the realization of high-performance and environment-stable oxide TFTs for emerging wearable and skin-like electronics.

  15. Control of transversal instabilities in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Totz, Sonja; Löber, Jakob; Totz, Jan Frederik; Engel, Harald

    2018-05-01

    In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh–Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov–Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.

  16. Controlled generation of high-intensity optical rogue waves by induced modulation instability

    PubMed Central

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-01

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum. PMID:28051149

  17. Controlled generation of high-intensity optical rogue waves by induced modulation instability.

    PubMed

    Zhao, Saili; Yang, Hua; Chen, Nengsong; Zhao, Chujun

    2017-01-04

    Optical rogue waves are featured as the generation of high amplitude events at low probability in optical systems. Moreover, the formation of optical rogue waves is unpredictable and transient in photonic crystal fibers. In this paper, we put forward a method to generate high-intensity optical rogue waves in a more controlled way based on induced modulation instability, which can suppress the noise effect and hence play a leading role in the process of pulse evolution. Our numerical simulations indicate that the generation of rogue wave can be controlled when seeding at the optimal modulation frequency and the intensity of rogue wave can be enhanced with appropriate modulation depth. Further, high-intensity rogue wave can also be ejected in the fiber with a shorter propagation length by regulating the modulation depth. These results all provide a better understanding of optical rogue wave, which can contribute to the generation of tunable long-wavelength spectral components and selective excitation of mid-infrared supercontinuum.

  18. Influence of Stationary Crossflow Modulation on Secondary Instability

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Paredes, Pedro

    2016-01-01

    A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.

  19. Modulational-instability-induced supercontinuum generation with saturable nonlinear response

    NASA Astrophysics Data System (ADS)

    Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.

    2010-07-01

    We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS2-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schrödinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We also observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.

  20. Modulational-instability-induced supercontinuum generation with saturable nonlinear response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Vasantha Jayakantha; Porsezian, K.; Nithyanandan, K.

    2010-07-15

    We theoretically investigate the supercontinuum generation (SCG) on the basis of modulational instability (MI) in liquid-core photonic crystal fibers (LCPCF) with CS{sub 2}-filled central core. The effect of saturable nonlinearity of LCPCF on SCG in the femtosecond regime is studied using an appropriately modified nonlinear Schroedinger equation. We also compare the MI induced spectral broadening with SCG obtained by soliton fission. To analyze the quality of the pulse broadening, we study the coherence of the SC pulse numerically. It is evident from the numerical simulation that the response of the saturable nonlinearity suppresses the broadening of the pulse. We alsomore » observe that the MI induced SCG in the presence of saturable nonlinearity degrades the coherence of the SCG pulse when compared to unsaturated medium.« less

  1. A Novel Behavior of Pump Power in the Instability Induced Supercontinuum Generation of Saturable Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Porsezian, K.

    2015-04-01

    We investigate the modulational instability (MI) induced Supercontinuum generation (SCG) in exponential saturable nonlinearity. The pump power (P) is observed to behave in a unique way such that unlike the conventional Kerr case, the effective nonlinearity of saturable nonlinear system does not monotonously increases with an increase in power. The supercontinuum is observed at the shortest distance of propagation at power equal to the saturation power (Ps), whereas for all combinations of powers (P < Ps or P > Ps) spectral broadening occurs at longer distance.

  2. Microbunching-instability-induced sidebands in a seeded free-electron laser

    DOE PAGES

    Zhang, Zhen; Lindberg, Ryan; Fawley, William M.; ...

    2016-05-02

    Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL) undulator. Furthermore, we show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulatormore » length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.« less

  3. Modulational instability in a PT-symmetric vector nonlinear Schrödinger system

    NASA Astrophysics Data System (ADS)

    Cole, J. T.; Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2016-12-01

    A class of exact multi-component constant intensity solutions to a vector nonlinear Schrödinger (NLS) system in the presence of an external PT-symmetric complex potential is constructed. This type of uniform wave pattern displays a non-trivial phase whose spatial dependence is induced by the lattice structure. In this regard, light can propagate without scattering while retaining its original form despite the presence of inhomogeneous gain and loss. These constant-intensity continuous waves are then used to perform a modulational instability analysis in the presence of both non-hermitian media and cubic nonlinearity. A linear stability eigenvalue problem is formulated that governs the dynamical evolution of the periodic perturbation and its spectrum is numerically determined using Fourier-Floquet-Bloch theory. In the self-focusing case, we identify an intensity threshold above which the constant-intensity modes are modulationally unstable for any Floquet-Bloch momentum belonging to the first Brillouin zone. The picture in the self-defocusing case is different. Contrary to the bulk vector case, where instability develops only when the waves are strongly coupled, here an instability occurs in the strong and weak coupling regimes. The linear stability results are supplemented with direct (nonlinear) numerical simulations.

  4. p21/Cyclin E pathway modulates anticlastogenic function of Bmi-1 in cancer cells

    PubMed Central

    Deng, Wen; Zhou, Yuan; Tiwari, Agnes FY; Su, Hang; Yang, Jie; Zhu, Dandan; Lau, Victoria Ming Yi; Hau, Pok Man; Yip, Yim Ling; Cheung, Annie LM; Guan, Xin-Yuan; Tsao, Sai Wah

    2015-01-01

    Apart from regulating stem cell self-renewal, embryonic development and proliferation, Bmi-1 has been recently reported to be critical in the maintenance of genome integrity. In searching for novel mechanisms underlying the anticlastogenic function of Bmi-1, we observed, for the first time, that Bmi-1 positively regulates p21 expression. We extended the finding that Bmi-1 deficiency induced chromosome breaks in multiple cancer cell models. Interestingly, we further demonstrated that knockdown of cyclin E or ectopic overexpression of p21 rescued Bmi-1 deficiency-induced chromosome breaks. We therefore conclude that p21/cyclin E pathway is crucial in modulating the anticlastogenic function of Bmi-1. As it is well established that the overexpression of cyclin E potently induces genome instability and p21 suppresses the function of cyclin E, the novel and important implication from our findings is that Bmi-1 plays an important role in limiting genomic instability in cylin E-overexpressing cancer cells by positive regulation of p21. PMID:25131797

  5. Self-modulational formation of pulsar microstructures

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Chian, A. C.-L.

    1987-01-01

    A nonlinear plasma theory for self modulation of pulsar radio pulses is discussed. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron positron plasma. The nonlinearities arising from wave intensity induced particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary waveforms may account for the formation of pulsar microstructures.

  6. Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization.

    PubMed

    Tai, Zhaoyang; Yan, Lulu; Zhang, Yanyan; Zhang, Xiaofei; Guo, Wenge; Zhang, Shougang; Jiang, Haifeng

    2016-12-01

    The reduction of the residual amplitude modulation (RAM) induced by electro-optic modulation is essential for many applications of frequency modulation spectroscopy requiring a lower system noise floor. Here, we demonstrate a simple passive approach employing an electro-optic modulator (EOM) cut at Brewster's angle. The proposed EOM exhibits a RAM of a few parts per million, which is comparable with that achieved by a common EOM under critical active temperature and bias voltage controls. The frequency instability of a 10 cm cavity-stabilized laser induced by the RAM effect of the proposed EOM is below 3×10-17 for integration times from 1 to 1000 s, and below 4×10-16 for comprehensive noise contributions for integration times from 1 to 100 s.

  7. Thermo-capillary effect on the linear temporal and spatial instability of viscous liquid jets falling under gravity

    NASA Astrophysics Data System (ADS)

    Alsharif, Abdullah M.; Althubaiti, Shadiah A.

    2018-03-01

    The thermal modulation of Newtonian liquid jets at the orifice causes a variation in surface tension, which propagates downstream inducing Marangoni instability. Therefore, the linear temporal and spatial instability should be investigated to predict the same size of producing small spherical pellets. In this paper, we consider a viscous liquid jet emerging from a nozzle subject to thermo-capillary effects falling under gravity. Moreover, we use the asymptotic approach to reduce the governing equation into one-dimensional (1-D). The steady state solutions have been found using a modified Newton's method, and then the linear instability analysis has been investigated of the resulting set of equations.

  8. Active control: an investigation method for combustion instabilities

    NASA Astrophysics Data System (ADS)

    Poinsot, T.; Yip, B.; Veynante, D.; Trouvé, A.; Samaniego, J. M.; Candel, S.

    1992-07-01

    Closed-loop active control methods and their application to combustion instabilities are discussed. In these methods the instability development is impeded with a feedback control loop: the signal provided by a sensor monitoring the flame or pressure oscillations is processed and sent back to actuators mounted on the combustor or on the feeding system. Different active control systems tested on a non-premixed multiple-flame turbulent combustor are described. These systems can suppress all unstable plane modes of oscillation (i.e. low frequency modes). The active instability control (AIC) also constitutes an original and powerful technique for studies of mechanisms leading to instability or resulting from the instability. Two basic applications of this kind are described. In the first case the flame is initially controlled with AIC, the feedback loop is then switched off and the growth of the instability is analysed through high speed Schlieren cinematography and simultaneous sound pressure and reaction rate measurements. Three phases are identified during th growth of the oscillations: (1) a linear phase where acoustic waves induce a flapping motion of the flame sheets without interaction between sheets, (2) a modulation phase, where flame sheets interact randomly and (3) a nonlinear phase where the flame sheets are broken and a limit cycle is reached. In the second case we investigate different types of flame extinctions associated with combustion instability. It is shown that pressure oscillations may lead to partial or total extinctions. Extinctions occur in various forms but usually follow a rapid growth of pressure oscillations. The flame is extinguished during the modulation phase observed in the initiation experiments. In these studies devoted to transient instability phenomena, the control system constitutes a unique investigation tool because it is difficult to obtain the same information by other means. Implications for modelling and prediction of combustion instabilities are discussed.

  9. The modulational instability for the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we study the modulational instability for the TDNLS equations derived by Hada (1993) and Brio, Hunter, and Johnson to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. We employ Whitham's averaged Lagrangian method to study the modulational instability. This complements studies of the modulational instability by Hada (1993) and Hollweg (1994), who did not use the averaged Lagrangian approach.

  10. Modulation of Excitability in the Temporoparietal Junction Relieves Virtual Reality Sickness.

    PubMed

    Takeuchi, Naoyuki; Mori, Takayuki; Suzukamo, Yoshimi; Izumi, Shin-Ichi

    2018-06-01

    Virtual reality (VR) immersion often provokes subjective discomfort and postural instability, so called VR sickness. The neural mechanism of VR sickness is speculated to be related to visual-vestibular information mismatch and/or postural instability. However, the approaches proposed to relieve VR sickness through modulation of brain activity are poorly understood. Using transcranial direct current stimulation (tDCS), we aimed to investigate whether VR sickness could be relieved by the modulation of cortical excitability in the temporoparietal junction (TPJ), which is known to be involved in processing of both vestibular and visual information. Twenty healthy subjects received tDCS over right TPJ before VR immersion. The order of the three types of tDCS (anodal, cathodal, and sham) was counterbalanced across subjects. We evaluated the subjective symptoms, heart rate, and center of pressure at baseline, after tDCS, and after VR immersion. VR immersion using head-mounted displays provoked subjective discomfort and postural instability. However, anodal tDCS over right TPJ ameliorated subjective disorientation symptoms and postural instability induced by VR immersion compared with sham condition. The amelioration of VR sickness by anodal tDCS over the right TPJ might result from relief of the sensory conflict and/or facilitation of vestibular function. Our result not only has potential clinical implications for the neuromodulation approach of VR sickness but also implies a causal role of the TPJ in VR sickness.

  11. Phase separation and long-wavelength charge instabilities in spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Seibold, G.; Bucheli, D.; Caprara, S.; Grilli, M.

    2015-01-01

    We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wavelength charge density wave (CDW) where the associated second-order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kF. At higher density the instability criterion becomes independent of kF and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3/SrTiO3 or LaTiO3/SrTiO3 interfaces.

  12. Dust-acoustic waves modulational instability and rogue waves in a polarized dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouzit, Omar; Tribeche, Mouloud

    2015-10-15

    The polarization force-induced changes in the dust-acoustic waves (DAWs) modulational instability (MI) are examined. Using the reductive perturbation method, the nonlinear Schrödinger equation that governs the MI of the DAWs is obtained. It is found that the effect of the polarization term R is to narrow the wave number domain for the onset of instability. The amplitude of the wave envelope decreases as R increases, meaning that the polarization force effects render weaker the associated DA rogue waves. The latter may therefore completely damp in the vicinity of R ∼ 1, i.e., as the polarization force becomes close to the electrostatic onemore » (the net force acting on the dust particles becomes vanishingly small). The DA rogue wave profile is very sensitive to any change in the restoring force acting on the dust particles. It turns out that the polarization effects may completely smear out the DA rogue waves.« less

  13. A colloquium on the influence of versatile class of saturable nonlinear responses in the instability induced supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.; Uthayakumar, T.

    2013-08-01

    We investigate the modulational instability induced supercontinuum generation (MI-SCG) under versatile saturable nonlinear (SNL) responses. We identify and discuss the salient features of saturable nonlinear responses of various functional forms such as exponential, conventional and coupled type on modulational instability (MI) and the subsequent supercontinuum (SC) process. Firstly, we analyze the impact of SNL on the MI spectrum and found both analytically and numerically that MI gain and bandwidth is maximum for exponential nonlinearity in comparison to other types of SNL's. We also reported the unique behavior of the SNL system in the MI dynamics. Following the MI analysis, the proceeding section deals with the supercontinuum generation (SCG) process by virtue of MI. We examine exclusively the impact of each form of SNL on the SC spectrum and predicted numerically that exponential case attains the phase matching earlier and thus enable to achieve broad spectrum at a relatively shorter distance of propagation than the other cases of SNL's. Thus a direct evidence of SCG from MI is emphasized and the impact of SNL in MI-SCG is highlighted. To analyze the quality of the output continuum spectrum, we performed the coherence analysis for MI-SCG in the presence of SNL.

  14. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability

    PubMed Central

    Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.

    2016-01-01

    Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics. PMID:27991513

  15. Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: Ion acoustic wave bowing, breakup, and laser-seeded two-ion-wave decay

    DOE PAGES

    Albright, B. J.; Yin, L.; Bowers, K. J.; ...

    2016-03-04

    Two- and three-dimensional particle-in-cell simulations of stimulated Brillouin scattering(SBS) in laser speckle geometry have been analyzed to evaluate the relative importance of competing nonlinear processes in the evolution and saturation of SBS. It is found that ion-trapping-induced wavefront bowing and breakup of ion acoustic waves(IAW) and the associated side-loss of trapped ions dominate electron-trapping-induced IAW wavefront bowing and breakup, as well as the two-ion-wave decay instability over a range of ZT e/T i conditions and incident laser intensities. In the simulations, the latter instability does not govern the nonlinear saturation of SBS; however, evidence of two-ion-wave decay is seen, appearingmore » as a modulation of the ion acoustic wavefronts. This modulation is periodic in the laser polarization plane, anti-symmetric across the speckle axis, and of a wavenumber matching that of the incident laser pulse. Furthermore, a simple analytic model is provided for how spatial “imprinting” from a high frequency inhomogeneity (in this case, the density modulation from the laser) in an unstable system with continuum eigenmodes can selectively amplify modes with wavenumbers that match that of the inhomogeneity.« less

  16. Two-dimensional modulated ion-acoustic excitations in electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif S.; Tabi, Conrad B.; Kofané, Timoléon C.

    2017-09-01

    Two-dimensional modulated ion-acoustic waves are investigated in an electronegative plasma. Through the reductive perturbation expansion, the governing hydrodynamic equations are reduced to a Davey-Stewartson system with two-space variables. The latter is used to study the modulational instability of ion-acoustic waves along with the effect of plasma parameters, namely, the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). A parametric analysis of modulational instability is carried out, where regions of plasma parameters responsible for the emergence of modulated ion-acoustic waves are discussed, with emphasis on the behavior of the instability growth rate. Numerically, using perturbed plane waves as initial conditions, parameters from the instability regions give rise to series of dromion solitons under the activation of modulational instability. The sensitivity of the numerical solutions to plasma parameters is discussed. Some exact solutions in the form one- and two-dromion solutions are derived and their response to the effect of varying α and σn is discussed as well.

  17. Optical coherence transfer over 50-km spooled fiber with frequency instability of 2×10-17 at 1 s

    NASA Astrophysics Data System (ADS)

    Ma, Chao-Qun; Li-Fei, Wu; Jiang, Yan-Yi; Yu, Hong-Fu; Bi, Zhi-Yi; Ma, Long-Sheng

    2015-08-01

    We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding a correctional signal into an acousto-optic modulator. After being compensated, the fiber-induced frequency instability is 2×10-17 at 1-s averaging time and reaches 8×10-20 after 16 h. The noise floor of the compensation system could be as low as 2×10-18 at 1-s averaging time. Project supported by the National Natural Science Foundation of China (Grant Nos. 11127405, 11334002, and 11374102) and the National Basic Research Program of China (Grant No. 2012CB821302).

  18. Spatiotemporal character of the Bobylev-Pikin flexoelectric instability in a twisted nematic bent-core liquid crystal exposed to very low frequency fields.

    PubMed

    Krishnamurthy, K S

    2014-05-01

    The Bobylev-Pikin striped-pattern state induced by a homogeneous electric field is a volume flexoelectric instability, originating in the midregion of a planarly aligned nematic liquid crystal layer. We find that the instability acquires a spatiotemporal character upon excitation by a low frequency (0.5 Hz) square wave field. This is demonstrated using a bent-core liquid crystal, initially in the 90°-twisted planar configuration. The flexoelectric modulation appears close to the cathode at each polarity reversal and, at low voltage amplitudes, decays completely as the field becomes steady. Correspondingly, at successive polarity changes, the stripe direction switches between the alignment directions at the two substrates. For large voltages, the stripes formed nearly along the alignment direction at the cathode gradually reorient toward the midplane director. These observations are generally attributed to inhomogeneous and time-dependent field conditions that come to exist after each polarity reversal. Polarity dependence of the instability is attributed to the formation of intrinsic double layers that bring about an asymmetry in surface fields. Momentary field elevation near the cathode following a voltage sign reversal and concomitant gradient flexoelectric polarization are considered the key factors in accounting for the surfacelike modulation observed at low voltages.

  19. Modulational instability and discrete breathers in a nonlinear helicoidal lattice model

    NASA Astrophysics Data System (ADS)

    Ding, Jinmin; Wu, Tianle; Chang, Xia; Tang, Bing

    2018-06-01

    We investigate the problem on the discrete modulation instability of plane waves and discrete breather modes in a nonlinear helicoidal lattice model, which is described by a discrete nonlinear Schrödinger equation with the first-, second-, and third-neighbor coupling. By means of the linear stability analysis, we present an analytical expression of the instability growth rate and identify the regions of modulational instability of plane waves. It is shown that the introduction of the third-neighbor coupling will affect the shape of the areas of modulational instability significantly. Based on the results obtained by the modulational instability analysis, we predict the existence conditions for the stationary breather modes. Otherwise, by making use of the semidiscrete multiple-scale method, we obtain analytical solutions of discrete breather modes and analyze their properties for different types of nonlinearities. Our results show that the discrete breathers obtained are stable for a long time only when the system exhibits the repulsive nonlinearity. In addition, it is found that the existence of the stable bright discrete breather closely relates to the presence of the third-neighbor coupling.

  20. Modulated wave formation in myocardial cells under electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.

    2018-06-01

    We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.

  1. High-frequency combustion instability control through acoustic modulation at the inlet boundary for liquid rocket engine applications

    NASA Astrophysics Data System (ADS)

    Bennewitz, John William

    This research investigation encompasses experimental tests demonstrating the control of a high-frequency combustion instability by acoustically modulating the propellant flow. A model rocket combustor burned gaseous oxygen and methane using a single-element, pentad-style injector. Flow conditions were established that spontaneously excited a 2430 Hz first longitudinal combustion oscillation at an amplitude up to p'/pc ≈ 6%. An acoustic speaker was placed at the base of the oxidizer supply to modulate the flow and alter the oscillatory behavior of the combustor. Two speaker modulation approaches were investigated: (1) Bands of white noise and (2) Pure sinusoidal tones. The first approach adjusted 500 Hz bands of white noise ranging from 0-500 Hz to 2000-2500 Hz, while the second implemented single-frequency signals with arbitrary phase swept from 500-2500 Hz. The results showed that above a modulation signal amplitude threshold, both approaches suppressed 95+% of the spontaneous combustion oscillation. By increasing the applied signal amplitude, a wider frequency range of instability suppression became present for these two acoustic modulation approaches. Complimentary to these experiments, a linear modal analysis was undertaken to investigate the effects of acoustic modulation at the inlet boundary on the longitudinal instability modes of a dump combustor. The modal analysis employed acoustically consistent matching conditions with a specific impedance boundary condition at the inlet to represent the acoustic modulation. From the modal analysis, a naturally unstable first longitudinal mode was predicted in the absence of acoustic modulation, consistent with the spontaneously excited 2430 Hz instability observed experimentally. Subsequently, a detailed investigation involving variation of the modulation signal from 0-2500 Hz and mean combustor temperature from 1248-1685 K demonstrated the unstable to stable transition of a 2300-2500 Hz first longitudinal mode. The model-predicted mode stability transition was consistent with experimental observations, supporting the premise that inlet acoustic modulation is a means to control high-frequency combustion instabilities. From the modal analysis, it may be deduced that the inlet impedance provides a damping mechanism for instability suppression. Combined, this work demonstrates the strategic application of acoustic modulation within an injector as a potential method to control high-frequency combustion instabilities for liquid rocket engine applications.

  2. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence

    PubMed Central

    Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.

    2016-01-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005

  3. A coupled "AB" system: Rogue waves and modulation instabilities.

    PubMed

    Wu, C F; Grimshaw, R H J; Chow, K W; Chan, H N

    2015-10-01

    Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.

  4. Radiation pressure injection in laser-wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Kuramitsu, Y.; Isayama, S.; Chen, S. H.

    2018-01-01

    We investigated the injection of electrons in laser-wakefield acceleration induced by a self-modulated laser pulse by a two dimensional particle-in-cell simulation. The localized electric fields and magnetic fields are excited by the counter-streaming flows on the surface of the ion bubble, owing to the Weibel or two stream like instability. The electrons are injected into the ion bubble from the sides of it and then accelerated by the wakefield. Contrary to the conventional wave breaking model, the injection of monoenergetic electrons are mainly caused by the electromagnetic process. A simple model was proposed to address the instability, and the growth rate was verified numerically and theoretically.

  5. Interplay of phase sequence and electronic structure in the modulated martensites of Mn2NiGa from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kundu, Ashis; Gruner, Markus E.; Siewert, Mario; Hucht, Alfred; Entel, Peter; Ghosh, Subhradip

    2017-08-01

    We investigate the relative stability, structural properties, and electronic structure of various modulated martensites of the magnetic shape memory alloy Mn2NiGa by means of density functional theory. We observe that the instability in the high-temperature cubic structure first drives the system to a structure where modulation shuffles with a period of six atomic planes are taken into account. The driving mechanism for this instability is found to be the nesting of the minority band Fermi surface, in a similar way to that established for the prototype system Ni2MnGa . In agreement with experiments, we find 14M modulated structures with orthorhombic and monoclinic symmetries having energies lower than other modulated phases with the same symmetry. In addition, we also find energetically favorable 10M modulated structures which have not been observed experimentally for this system yet. The relative stability of various martensites is explained in terms of changes in the electronic structures near the Fermi level, affected mostly by the hybridization of Ni and Mn states. Our results indicate that the maximum achievable magnetic field-induced strain in Mn2NiGa would be larger than in Ni2MnGa . However, the energy costs for creating nanoscale adaptive twin boundaries are found to be one order of magnitude higher than that in Ni2MnGa .

  6. Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1986-01-01

    A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.

  7. Corrupting the DNA damage response: a critical role for Rad52 in tumor cell survival.

    PubMed

    Lieberman, Rachel; You, Ming

    2017-07-15

    The DNA damage response enables cells to survive, maintain genome integrity, and to safeguard the transmission of high-fidelity genetic information. Upon sensing DNA damage, cells respond by activating this multi-faceted DNA damage response leading to restoration of the cell, senescence, programmed cell death, or genomic instability if the cell survives without proper repair. However, unlike normal cells, cancer cells maintain a marked level of genomic instability. Because of this enhanced propensity to accumulate DNA damage, tumor cells rely on homologous recombination repair as a means of protection from the lethal effect of both spontaneous and therapy-induced double-strand breaks (DSBs) in DNA. Thus, modulation of DNA repair pathways have important consequences for genomic instability within tumor cell biology and viability maintenance under high genotoxic stress. Efforts are underway to manipulate specific components of the DNA damage response in order to selectively induce tumor cell death by augmenting genomic instability past a viable threshold. New evidence suggests that RAD52, a component of the homologous recombination pathway, is important for the maintenance of tumor genome integrity. This review highlights recent reports indicating that reducing homologous recombination through inhibition of RAD52 may represent an important focus for cancer therapy and the specific efforts that are already demonstrating potential.

  8. Generation of mesoscale magnetic fields and the dynamics of Cosmic Ray acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    The problem of the cosmic ray origin is discussed in connection with their acceleration in supernova remnant shocks. The diffusive shock acceleration mechanism is reviewed and its potential to accelerate particles to the maximum energy of (presumably) galactic cosmic rays (1018eV ) is considered. It is argued that to reach such energies, a strong magnetic field at scales larger than the particle gyroradius must be created as a result of the acceleration process, itself. One specific mechanism suggested here is based on the generation of Alfven wave at the gyroradius scale with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven waves. The generation mechanism is modulational instability of CR generated Alfven wave packets induced, in turn, by scattering off acoustic fluctuations in the shock precursor which are generated by Drury instability.

  9. Modulational instability of beat waves in a transversely magnetized plasma: Ion effects

    NASA Astrophysics Data System (ADS)

    Ferdous, T.; Amin, M. R.; Salimullah, M.

    1996-05-01

    The effect of ion dynamics on the modulational instability of the electrostatic beat wave at the difference frequency of two incident laser beams in a hot, collisionless, and transversely magnetized plasma has been studied theoretically. The full Vlasov equation in terms of gyrokinetic variables is employed to obtain the nonlinear response of ions and electrons. It is found that the growth rate of modulational instability is about two orders higher when ion motions are included.

  10. Formation of matter-wave soliton trains by modulational instability

    NASA Astrophysics Data System (ADS)

    Nguyen, Jason H. V.; Luo, De; Hulet, Randall G.

    2017-04-01

    Nonlinear systems can exhibit a rich set of dynamics that are inherently sensitive to their initial conditions. One such example is modulational instability, which is believed to be one of the most prevalent instabilities in nature. By exploiting a shallow zero-crossing of a Feshbach resonance, we characterize modulational instability and its role in the formation of matter-wave soliton trains from a Bose-Einstein condensate. We examine the universal scaling laws exhibited by the system and, through real-time imaging, address a long-standing question of whether the solitons in trains are created with effectively repulsive nearest-neighbor interactions or rather evolve into such a structure.

  11. Progress of plasma wakefield self-modulation experiments at FACET

    NASA Astrophysics Data System (ADS)

    Adli, E.; Berglyd Olsen, V. K.; Lindstrøm, C. A.; Muggli, P.; Reimann, O.; Vieira, J. M.; Amorim, L. D.; Clarke, C. I.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O`Shea, B. D.; Yakimenko, V.; Clayton, C.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Williams, O.

    2016-09-01

    Simulations and theory predict that long electron and positron beams may under favorable conditions self-modulate in plasmas. We report on the progress of experiments studying the self-modulation instability in plasma wakefield experiments at FACET. The experimental results obtained so far, while not being fully conclusive, appear to be consistent with the presence of the self-modulation instability.

  12. Quench-induced Floquet topological p-wave superfluids.

    PubMed

    Foster, Matthew S; Gurarie, Victor; Dzero, Maxim; Yuzbashyan, Emil A

    2014-08-15

    Ultracold atomic gases in two dimensions tuned close to a p-wave Feshbach resonance were expected to exhibit topological superfluidity, but these were found to be experimentally unstable. We show that one can induce a topological Floquet superfluid if weakly interacting atoms are brought suddenly close ("quenched") to such a resonance, in the time before the instability kicks in. The resulting superfluid possesses Majorana edge modes, yet differs from a conventional Floquet system as it is not driven externally. Instead, the periodic modulation is self-generated by the dynamics.

  13. Modulational Instability and Quantum Discrete Breather States of Cold Bosonic Atoms in a Zig-Zag Optical Lattice

    NASA Astrophysics Data System (ADS)

    Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing

    2018-07-01

    A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.

  14. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme wavesa)

    NASA Astrophysics Data System (ADS)

    Rahman, Ata-ur-; Kerr, Michael Mc; El-Taibany, Wael F.; Kourakis, Ioannis; Qamar, A.

    2015-02-01

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  15. Superregular breathers, characteristics of nonlinear stage of modulation instability induced by higher-order effects

    PubMed Central

    Zhang, Jian-Hui; Liu, Chong

    2017-01-01

    We study the higher-order generalized nonlinear Schrödinger (NLS) equation describing the propagation of ultrashort optical pulse in optical fibres. By using Darboux transformation, we derive the superregular breather solution that develops from a small localized perturbation. This type of solution can be used to characterize the nonlinear stage of the modulation instability (MI) of the condensate. In particular, we show some novel characteristics of the nonlinear stage of MI arising from higher-order effects: (i) coexistence of a quasi-Akhmediev breather and a multipeak soliton; (ii) two multipeak solitons propagation in opposite directions; (iii) a beating pattern followed by two multipeak solitons in the same direction. It is found that these patterns generated from a small localized perturbation do not have the analogues in the standard NLS equation. Our results enrich Zakharov’s theory of superregular breathers and could provide helpful insight on the nonlinear stage of MI in presence of the higher-order effects. PMID:28413335

  16. Enhancement of superexchange pairing in the periodically driven Hubbard model

    NASA Astrophysics Data System (ADS)

    Coulthard, J. R.; Clark, S. R.; Al-Assam, S.; Cavalleri, A.; Jaksch, D.

    2017-08-01

    Recent experiments performed on cuprates and alkali-doped fullerides have demonstrated that key signatures of superconductivity can be induced above the equilibrium critical temperature by optical modulation. These observations in disparate physical systems may indicate a general underlying mechanism. Multiple theories have been proposed, but these either consider specific features, such as competing instabilities, or focus on conventional BCS-type superconductivity. Here we show that periodic driving can enhance electron pairing in strongly correlated systems. Focusing on the strongly repulsive limit of the doped Hubbard model, we investigate in-gap, spatially inhomogeneous, on-site modulations. We demonstrate that such modulations substantially reduce electronic hopping, while simultaneously sustaining superexchange interactions and pair hopping via driving-induced virtual charge excitations. We calculate real-time dynamics for the one-dimensional case, starting from zero- and finite-temperature initial states, and we show that enhanced singlet-pair correlations emerge quickly and robustly in the out-of-equilibrium many-body state. Our results reveal a fundamental pairing mechanism that might underpin optically induced superconductivity in some strongly correlated quantum materials.

  17. Modulational instability of an electron plasma wave in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Ferdous, T.; Salimullah, M.

    1997-03-01

    The modulational instability of an electron plasma wave in a homogeneous, unmagnetized, hot, and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles with random static distribution of massive and charged dust grains having certain correlation. It is noticed that the growth rate of the modulational instability of the electron plasma wave through a new ultra-low-frequency dust mode is more efficient than that through the usual ion-acoustic mode in the dusty plasma.

  18. Rogue-wave pattern transition induced by relative frequency.

    PubMed

    Zhao, Li-Chen; Xin, Guo-Guo; Yang, Zhan-Ying

    2014-08-01

    We revisit a rogue wave in a two-mode nonlinear fiber whose dynamics is described by two-component coupled nonlinear Schrödinger equations. The relative frequency between two modes can induce different rogue wave patterns transition. In particular, we find a four-petaled flower structure rogue wave can exist in the two-mode coupled system, which possesses an asymmetric spectrum distribution. Furthermore, spectrum analysis is performed on these different type rogue waves, and the spectrum relations between them are discussed. We demonstrate qualitatively that different modulation instability gain distribution can induce different rogue wave excitation patterns. These results would deepen our understanding of rogue wave dynamics in complex systems.

  19. Hydrodynamic instability experiments with three-dimensional modulations at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Weber, S. V.; Casey, D. T.; ...

    2015-06-18

    The first hydrodynamic instability growth measurements with three-dimensional (3D) surface-roughness modulations were performed on CH shell spherical implosions at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)]. The initial capsule outer-surface amplitudes were increased approximately four times, compared with the standard specifications, to increase the signal-to-noise ratio, helping to qualify a technique for measuring small 3D modulations. The instability growth measurements were performed using x-ray through-foil radiography based on time-resolved pinhole imaging. Averaging over 15 similar images significantly increased the signal-to-noise ratio, making possible a comparison with 3Dmore » simulations. At a convergence ratio of ~2.4, the measured modulation levels were ~3 times larger than those simulated based on the growth of the known imposed initial surface modulations. Several hypotheses are discussed, including increased instability growth due to modulations of the oxygen content in the bulk of the capsule. In conclusion, future experiments will be focused on measurements with standard 3D ‘native-roughness’ capsules as well as with deliberately imposed oxygen modulations.« less

  20. Study of cavitating inducer instabilities

    NASA Technical Reports Server (NTRS)

    Young, W. E.; Murphy, R.; Reddecliff, J. M.

    1972-01-01

    An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.

  1. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability

    PubMed Central

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-01-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. PMID:25287622

  2. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  3. Critical Spin Superflow in a Spinor Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Kim, Joon Hyun; Seo, Sang Won; Shin, Y.

    2017-11-01

    We investigate the critical dynamics of spin superflow in an easy-plane antiferromagnetic spinor Bose-Einstein condensate. Spin-dipole oscillations are induced in a trapped condensate by applying a linear magnetic field gradient and we observe that the damping rate increases rapidly as the field gradient increases above a certain critical value. The onset of dissipation is found to be associated with the generation of dark-bright solitons due to the modulation instability of the counterflow of two spin components. Spin turbulence emerges as the solitons decay because of their snake instability. We identify another critical point for spin superflow, in which transverse magnon excitations are dynamically generated via spin-exchanging collisions, which leads to the transient formation of axial polar spin domains.

  4. Conservative and dissipative force imaging of switchable rotaxanes with frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Farrell, Alan A.; Fukuma, Takeshi; Uchihashi, Takayuki; Kay, Euan R.; Bottari, Giovanni; Leigh, David A.; Yamada, Hirofumi; Jarvis, Suzanne P.

    2005-09-01

    We compare constant amplitude frequency modulation atomic force microscopy (FM-AFM) in ambient conditions to ultrahigh vacuum (UHV) experiments by analysis of thin films of rotaxane molecules. Working in ambient conditions is important for the development of real-world molecular devices. We show that the FM-AFM technique allows quantitative measurement of conservative and dissipative forces without instabilities caused by any native water layer. Molecular resolution is achieved despite the low Q-factor in the air. Furthermore, contrast in the energy dissipation is observed even at the molecular level. This should allow investigations into stimuli-induced sub-molecular motion of organic films.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yunliang; International Centre for Advanced Studies in Physical Sciences and Institute for Theoretical Physics, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum; Lü, Xiaoxia

    A theoretical and numerical study of the modulational instability of large amplitude quantum magnetosonic waves (QMWs) in a relativistically degenerate plasma is presented. A modified nonlinear Schrödinger equation is derived by using the reductive perturbation method. The modulational instability regions of the QMWs and the corresponding growth rates are significantly affected by the relativistic degeneracy parameter, the Pauli spin magnetization effects, and the equilibrium magnetic field. The dynamics and nonlinear saturation of the modulational instability of QMWs are investigated numerically. It is found that the increase of the relativistic degeneracy parameter can increase the growth rate of the instability, andmore » the system is saturated nonlinearly by the formation of envelope solitary waves. The current investigation may have relevance to astrophysical magnetized compact objects, such as white dwarfs and pulsar magnetospheres.« less

  6. Non-destructive phase and intensity distributed measurements of the nonlinear stage of modulation instability in optical fibers

    NASA Astrophysics Data System (ADS)

    Mussot, Arnaud; Naveau, Corentin; Szriftgiser, Pascal; Copie, François; Kudlinski, Alexandre; Conforti, Matteo; Trillo, Stefano

    2018-02-01

    We report a novel experimental setup to perform distributed characterization in intensity and phase of the nonlinear stage of modulation instability by means of a non-invasive experimental setup : a heterodyne time domain reflectometer.

  7. Optical wave turbulence and the condensation of light

    NASA Astrophysics Data System (ADS)

    Bortolozzo, Umberto; Laurie, Jason; Nazarenko, Sergey; Residori, Stefania

    2009-11-01

    In an optical experiment, we report a wave turbulence regime that, starting with weakly nonlinear waves with randomized phases, shows an inverse cascade of photons towards the lowest wavenumbers. We show that the cascade is induced by a six-wave resonant interaction process and is characterized by increasing nonlinearity. At low wavenumbers the nonlinearity becomes strong and leads to modulational instability developing into solitons, whose number is decreasing further along the beam.

  8. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  9. Mix and hydrodynamic instabilities on NIF

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; Clark, D. S.; Döppner, T.; Haan, S. W.; Hammel, B. A.; MacPhee, A. G.; Martinez, D.; Milovich, J. L.; Peterson, J. L.; Pickworth, L.; Pino, J. E.; Raman, K.; Tipton, R.; Weber, C. R.; Baker, K. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Dixit, S. N.; Edwards, M. J.; Felker, S.; Field, J. E.; Fittinghoff, D. N.; Gharibyan, N.; Grim, G. P.; Hamza, A. V.; Hatarik, R.; Hohenberger, M.; Hsing, W. W.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Khan, S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; Masse, L.; Moore, A. S.; Nagel, S. R.; Nikroo, A.; Pak, A.; Patel, P. K.; Remington, B. A.; Sayre, D. B.; Spears, B. K.; Stadermann, M.; Tommasini, R.; Widmayer, C. C.; Yeamans, C. B.; Crippen, J.; Farrell, M.; Giraldez, E.; Rice, N.; Wilde, C. H.; Volegov, P. L.; Gatu Johnson, M.

    2017-06-01

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, several experimental platforms were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.

  10. Mix and hydrodynamic instabilities on NIF

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; ...

    2017-06-01

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. Here in the deceleration phase of implosions, several experimental platformsmore » were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.« less

  11. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  12. Discrete Breathers in One-Dimensional Diatomic Granular Crystals

    NASA Astrophysics Data System (ADS)

    Boechler, N.; Theocharis, G.; Job, S.; Kevrekidis, P. G.; Porter, Mason A.; Daraio, C.

    2010-06-01

    We report the experimental observation of modulational instability and discrete breathers in a one-dimensional diatomic granular crystal composed of compressed elastic beads that interact via Hertzian contact. We first characterize their effective linear spectrum both theoretically and experimentally. We then illustrate theoretically and numerically the modulational instability of the lower edge of the optical band. This leads to the dynamical formation of long-lived breather structures, whose families of solutions we compute throughout the linear spectral gap. Finally, we experimentally observe the manifestation of the modulational instability and the resulting generation of localized breathing modes with quantitative characteristics that agree with our numerical results.

  13. Real world ocean rogue waves explained without the modulational instability.

    PubMed

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-06-21

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas.

  14. Real world ocean rogue waves explained without the modulational instability

    PubMed Central

    Fedele, Francesco; Brennan, Joseph; Ponce de León, Sonia; Dudley, John; Dias, Frédéric

    2016-01-01

    Since the 1990s, the modulational instability has commonly been used to explain the occurrence of rogue waves that appear from nowhere in the open ocean. However, the importance of this instability in the context of ocean waves is not well established. This mechanism has been successfully studied in laboratory experiments and in mathematical studies, but there is no consensus on what actually takes place in the ocean. In this work, we question the oceanic relevance of this paradigm. In particular, we analyze several sets of field data in various European locations with various tools, and find that the main generation mechanism for rogue waves is the constructive interference of elementary waves enhanced by second-order bound nonlinearities and not the modulational instability. This implies that rogue waves are likely to be rare occurrences of weakly nonlinear random seas. PMID:27323897

  15. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    PubMed

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    Corrigan, Bob (Technical Monitor); DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    Active control of high-frequency (greater than 500 Hz) combustion instability has been demonstrated in the NASA single-nozzle combustor rig at United Technologies Research Center. The combustor rig emulates an actual engine instability and has many of the complexities of a real engine combustor (i.e. actual fuel nozzle and swirler, dilution cooling, etc.) In order to demonstrate control, a high-frequency fuel valve capable of modulating the fuel flow at up to 1kHz was developed. Characterization of the fuel delivery system was accomplished in a custom dynamic flow rig developed for that purpose. Two instability control methods, one model-based and one based on adaptive phase-shifting, were developed and evaluated against reduced order models and a Sectored-1-dimensional model of the combustor rig. Open-loop fuel modulation testing in the rig demonstrated sufficient fuel modulation authority to proceed with closed-loop testing. During closed-loop testing, both control methods were able to identify the instability from the background noise and were shown to reduce the pressure oscillations at the instability frequency by 30%. This is the first known successful demonstration of high-frequency combustion instability suppression in a realistic aero-engine environment. Future plans are to carry these technologies forward to demonstration on an advanced low-emission combustor.

  17. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  18. Kinetic effects on Alfven wave nonlinearity. II - The modified nonlinear wave equation

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1990-01-01

    A previously developed Vlasov theory is used here to study the role of resonant particle and other kinetic effects on Alfven wave nonlinearity. A hybrid fluid-Vlasov equation approach is used to obtain a modified version of the derivative nonlinear Schroedinger equation. The differences between a scalar model for the plasma pressure and a tensor model are discussed. The susceptibilty of the modified nonlinear wave equation to modulational instability is studied. The modulational instability normally associated with the derivative nonlinear Schroedinger equation will, under most circumstances, be restricted to left circularly polarized waves. The nonlocal term in the modified nonlinear wave equation engenders a new modulational instability that is independent of beta and the sense of circular polarization. This new instability may explain the occurrence of wave packet steepening for all values of the plasma beta in the vicinity of the earth's bow shock.

  19. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella

    PubMed Central

    Dutcher, S. K.

    2016-01-01

    Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This ‘flutter’ instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force. PMID:27798276

  20. Nonlinear modulation near the Lighthill instability threshold in 2+1 Whitham theory

    NASA Astrophysics Data System (ADS)

    Bridges, Thomas J.; Ratliff, Daniel J.

    2018-04-01

    The dispersionless Whitham modulation equations in 2+1 (two space dimensions and time) are reviewed and the instabilities identified. The modulation theory is then reformulated, near the Lighthill instability threshold, with a slow phase, moving frame and different scalings. The resulting nonlinear phase modulation equation near the Lighthill surfaces is a geometric form of the 2+1 two-way Boussinesq equation. This equation is universal in the same sense as Whitham theory. Moreover, it is dispersive, and it has a wide range of interesting multi-periodic, quasi-periodic and multi-pulse localized solutions. For illustration the theory is applied to a complex nonlinear 2+1 Klein-Gordon equation which has two Lighthill surfaces in the manifold of periodic travelling waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  1. Dispatching power system for preventive and corrective voltage collapse problem in a deregulated power system

    NASA Astrophysics Data System (ADS)

    Alemadi, Nasser Ahmed

    Deregulation has brought opportunities for increasing efficiency of production and delivery and reduced costs to customers. Deregulation has also bought great challenges to provide the reliability and security customers have come to expect and demand from the electrical delivery system. One of the challenges in the deregulated power system is voltage instability. Voltage instability has become the principal constraint on power system operation for many utilities. Voltage instability is a unique problem because it can produce an uncontrollable, cascading instability that results in blackout for a large region or an entire country. In this work we define a system of advanced analytical methods and tools for secure and efficient operation of the power system in the deregulated environment. The work consists of two modules; (a) contingency selection module and (b) a Security Constrained Optimization module. The contingency selection module to be used for voltage instability is the Voltage Stability Security Assessment and Diagnosis (VSSAD). VSSAD shows that each voltage control area and its reactive reserve basin describe a subsystem or agent that has a unique voltage instability problem. VSSAD identifies each such agent. VS SAD is to assess proximity to voltage instability for each agent and rank voltage instability agents for each contingency simulated. Contingency selection and ranking for each agent is also performed. Diagnosis of where, why, when, and what can be done to cure voltage instability for each equipment outage and transaction change combination that has no load flow solution is also performed. A security constrained optimization module developed solves a minimum control solvability problem. A minimum control solvability problem obtains the reactive reserves through action of voltage control devices that VSSAD determines are needed in each agent to obtain solution of the load flow. VSSAD makes a physically impossible recommendation of adding reactive generation capability to specific generators to allow a load flow solution to be obtained. The minimum control solvability problem can also obtain solution of the load flow without curtailing transactions that shed load and generation as recommended by VSSAD. A minimum control solvability problem will be implemented as a corrective control, that will achieve the above objectives by using minimum control changes. The control includes; (1) voltage setpoint on generator bus voltage terminals; (2) under load tap changer tap positions and switchable shunt capacitors; and (3) active generation at generator buses. The minimum control solvability problem uses the VSSAD recommendation to obtain the feasible stable starting point but completely eliminates the impossible or onerous recommendation made by VSSAD. This thesis reviews the capabilities of Voltage Stability Security Assessment and Diagnosis and how it can be used to implement a contingency selection module for the Open Access System Dispatch (OASYDIS). The OASYDIS will also use the corrective control computed by Security Constrained Dispatch. The corrective control would be computed off line and stored for each contingency that produces voltage instability. The control is triggered and implemented to correct the voltage instability in the agent experiencing voltage instability only after the equipment outage or operating changes predicted to produce voltage instability have occurred. The advantages and the requirements to implement the corrective control are also discussed.

  2. Current-driven plasmonic boom instability in three-dimensional gated periodic ballistic nanostructures

    NASA Astrophysics Data System (ADS)

    Aizin, G. R.; Mikalopas, J.; Shur, M.

    2016-05-01

    An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.

  3. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, M.; Engel, J.; Good, J.

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  4. Observation of the Self-Modulation Instability via Time-Resolved Measurements

    DOE PAGES

    Gross, M.; Engel, J.; Good, J.; ...

    2018-04-06

    Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximatelymore » $$200\\text{ }\\text{ }\\mathrm{keV}/c$$ amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.« less

  5. The nucleus is the target for radiation-induced chromosomal instability

    NASA Technical Reports Server (NTRS)

    Kaplan, M. I.; Morgan, W. F.

    1998-01-01

    We have previously described chromosomal instability in cells of a human-hamster hybrid cell line after exposure to X rays. Chromosomal instability in these cells is characterized by the appearance of novel chromosomal rearrangements multiple generations after exposure to ionizing radiation. To identify the cellular target(s) for radiation-induced chromosomal instability, cells were treated with 125I-labeled compounds and frozen. Radioactive decays from 125I cause damage to the cell primarily at the site of their decay, and freezing the cells allows damage to accumulate in the absence of other cellular processes. We found that the decay of 125I-iododeoxyuridine, which is incorporated into the DNA, caused chromosomal instability. While cell killing and first-division chromosomal rearrangements increased with increasing numbers of 125I decays, the frequency of chromosomal instability was independent of dose. Chromosomal instability could also be induced from incorporation of 125I-iododeoxyuridine without freezing the cells for accumulation of decays. This indicates that DNA double-strand breaks in frozen cells resulting from 125I decays failed to lead to instability. Incorporation of an 125I-labeled protein (125I-succinyl-concanavalin A), which was internalized into the cell and/or bound to the plasma membrane, neither caused chromosomal instability nor potentiated chromosomal instability induced by 125I-iododeoxyuridine. These results show that the target for radiation-induced chromosomal instability in these cells is the nucleus.

  6. Observations on instabilities of cavitating inducers

    NASA Technical Reports Server (NTRS)

    Braisted, D.; Brennen, C.

    1978-01-01

    Experimental observations of instability of cavitating inducers were made for two different inducers operating at different flow coefficients. In general, instability occurred just before head breakdown. Auto-oscillation and rotating cavitation were observed. Analysis of small-amplitude behavior of the inducer and hydraulic system is carried out, and analytical predictions of stability limits were compared with experiment.

  7. The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid

    NASA Astrophysics Data System (ADS)

    Saunders, B. V.; Murray, B. T.; McFadden, G. B.; Coriell, S. R.; Wheeler, A. A.

    1992-06-01

    The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress-free boundaries is investigated using Floquet theory for the linear stability analysis. Situations for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double-diffusive convection are considered. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency. The response to modulation of the fundamental instability of the unmodulated system is described both analytically and numerically; in the double-diffusive system this mode persists under subcritical conditions as a high-frequency lobe.

  8. The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid

    NASA Technical Reports Server (NTRS)

    Saunders, B. V.; Murray, B. T.; Mcfadden, G. B.; Coriell, S. R.; Wheeler, A. A.

    1992-01-01

    The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress-free boundaries is investigated using Floquet theory for the linear stability analysis. Situations for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double-diffusive convection are considered. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency. The response to modulation of the fundamental instability of the unmodulated system is described both analytically and numerically; in the double-diffusive system this mode persists under subcritical conditions as a high-frequency lobe.

  9. Indirect self-modulation instability measurement concept for the AWAKE proton beam

    NASA Astrophysics Data System (ADS)

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.

    2016-09-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.

  10. Toward a definition of affective instability.

    PubMed

    Renaud, Suzane M; Zacchia, Camillo

    2012-01-01

    Affective instability is a psychophysiological symptom observed in some psychopathologies. It is a complex construct that encompasses (1) primary emotions, or affects, and secondary emotions, with each category having its own characteristics, amplitude, and duration, (2) rapid shifting from neutral or valenced affect to intense affect, and (3) dysfunctional modulation of emotions. Affective instability is often confused with mood lability, as in bipolar disorders, as well as with other terms. To clarify the concept, we searched databases for the term affective instability and read related articles on the topic. In this article we situate the term within the current affective nomenclature and human emotional experience, explore its psychophysiological features, and place it within the context of psychopathology. We explain why the term can potentially be confused with mood pathology and then define affective instability as an inherited temperamental trait modulated by developmental experience.

  11. Six-state phase modulation for reduced crosstalk in a fiber optic gyroscope.

    PubMed

    Zhang, Chunxi; Zhang, Shaobo; Pan, Xiong; Jin, Jing

    2018-04-16

    Electrical crosstalk in an interferometric fiber-optic gyroscope (IFOG) is regarded as the most significant factor influencing dead bands. Here, we present a six-state modulation (SSM) technique to reduce crosstalk. Compared to conventional four-state modulation (FSM) or square-wave modulation (SWM), the SSM reduces the correlation between modulation voltage and demodulation reference by separating their fundamental frequencies, and thus reduces the bias error induced by crosstalk. The measured dead band of a 1500-m IFOG is approximately 0.02 °/h using FSM and approximately 0.08 °/h using SWM, whereas there is no evidence of dead band using SSM. The IFOG using SSM also exhibits better angular random walk (ARW) and bias instability performance compared to the same IFOG using FSM or SWM. These results verify the crosstalk reduction effect of SSM. In theory, by using the relative intensity noise (RIN) suppressing technique with the optimal modulation depth of 2π/3, the SSM can eliminate the crosstalk, which offers the potential for a high-performance IFOG with low noise, high sensitivity, wide dynamic range, and no dead band.

  12. Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.

    2011-08-15

    An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.

  13. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  14. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  15. Drive-induced delocalization in the Aubry-André model

    NASA Astrophysics Data System (ADS)

    Ray, S.; Ghosh, A.; Sinha, S.

    2018-01-01

    Motivated by the recent experiment by Bordia et al. [Nat. Phys. 13, 460 (2017), 10.1038/nphys4020], we study the single particle delocalization phenomena of the Aubry-André (AA) model subjected to periodic drives. In two distinct cases we construct an equivalent classical description to illustrate that the drive-induced delocalization phenomena stems from an instability and the onset of chaos in the underlying dynamics. In the first case we analyze the delocalization and the thermalization in a time modulated AA potential with respect to driving frequency and demonstrate that there exists a threshold value of the amplitude of the drive. In the next example, we show that the periodic modulation of the phase of the hopping amplitude induced by a gauge field leads to an unusual effect on delocalization with a nonmonotonic dependence on the driving frequency. Within a window of such a driving frequency a delocalized Floquet band with a mobility edge appears, exhibiting multifractality in the spectrum as well as in the Floquet eigenfunctions. Finally, we explore the effect of interaction and discuss how the results of the present analysis can be tested experimentally.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. Here in the deceleration phase of implosions, several experimental platformsmore » were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.« less

  17. Dynamic stabilization of Rayleigh-Taylor instability in an ablation front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Di Lucchio, L.; Rodriguez Prieto, G.

    2011-01-15

    Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering a modulation in the acceleration that consists of sequences of Dirac deltas. This allows obtaining explicit analytical expressions for the instability growth rate as well as for the boundaries of the stability region. As a general rule, it is found that it is possible to stabilize all wave numbers above a certain minimum value k{sub m}, but the requirements in the modulation amplitude and frequency become more exigent with smaller k{sub m}. The essential role of compressibility is phenomenologically addressed in order to find the constraint itmore » imposes on the stability region. The results for some different wave forms of the acceleration modulation are also presented.« less

  18. Power play in the supercontinuum spectra of saturable nonlinear media

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Vasantha Jayakantha Raja, R.; Porsezian, K.

    2014-04-01

    We investigate the role of pump power in the generation of supercontinua spectra induced by modulational instability (MI) in saturable nonlinear media (SNL). First, we analyze the dynamics of MI in the SNL using linear stability analysis. We then deal with the generation of a broadband spectrum by virtue of the instability process, and identify the unique behavior of MI in the SNL system. Unlike the case of Kerr-type nonlinearity, the so-called critical modulational frequency (CMF) does not monotonically increase, but behaves in a unique way, such that the increase in power increases the CMF up to the saturation power, and a further increase in power decreases the CMF. This behavior is identified to be unusual in the context of MI and thus makes the study of MI and supercontinuum generation (SCG) of interest. In order to confirm the above stated behavior in relation to SCG, we numerically analyzed the SCG using a split-step Fourier method, and the results confirm that at input power equal to saturation power, phase matching occurs at a short distance relative to other power levels and leads to a maximum enhancement of SCG in certain SNL materials.

  19. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Brooks, A. L.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    Cell growth, differentiation and death are directed in large part by extracellular signaling through the interactions of cells with other cells and with the extracellular matrix; these interactions are in turn modulated by cytokines and growth factors, i.e. the microenvironment. Here we discuss the idea that extracellular signaling integrates multicellular damage responses that are important deterrents to the development of cancer through mechanisms that eliminate abnormal cells and inhibit neoplastic behavior. As an example, we discuss the action of transforming growth factor beta (TGFB1) as an extracellular sensor of damage. We propose that radiation-induced bystander effects and genomic instability are, respectively, positive and negative manifestations of this homeostatic process. Bystander effects exhibited predominantly after a low-dose or a nonhomogeneous radiation exposure are extracellular signaling pathways that modulate cellular repair and death programs. Persistent disruption of extracellular signaling after exposure to relatively high doses of ionizing radiation may lead to the accumulation of aberrant cells that are genomically unstable. Understanding radiation effects in terms of coordinated multicellular responses that affect decisions regarding the fate of a cell may necessitate re-evaluation of radiation dose and risk concepts and provide avenues for intervention.

  20. Rotation-induced nonlinear wavepackets in internal waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk

    2014-05-15

    The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less

  1. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    DOE PAGES

    Halavanau, A.; Piot, P.

    2016-03-03

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. It was pointed out, however, that such \\micro-bunching instabilities" could be potentially useful to support the generation of broadband coherent radiation. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we augment these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program elegant. This high-fidelity model of the space charge ismore » used to benchmark conventional LSC models. We then employ the developed model to optimize the performance of a cascaded longitudinal space charge amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.« less

  2. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  3. Kuznetsov-Ma waves train generation in a left-handed material

    NASA Astrophysics Data System (ADS)

    Atangana, Jacques; Giscard Onana Essama, Bedel; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Crépin Kofane, Timoléon

    2015-03-01

    We analyze the behavior of an electromagnetic wave which propagates in a left-handed material. Second-order dispersion and cubic-quintic nonlinearities are considered. This behavior of an electromagnetic wave is modeled by a nonlinear Schrödinger equation which is solved by collective coordinates theory in order to characterize the light pulse intensity profile. More so, a specific frequency range has been outlined where electromagnetic wave behavior will be investigated. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton. When the quintic nonlinearity comes into play, it provokes strong and long internal perturbations which lead to Benjamin-Feir instability. This phenomenon, also called modulational instability, induces appearance of a Kuznetsov-Ma waves train. We numerically verify the validity of Kuznetsov-Ma theory by presenting physical conditions which lead to Kuznetsov-Ma waves train generation. Thereafter, some properties of such waves train are also verified.

  4. Instability-driven frequency decoupling between structure dynamics and wake fluctuations

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Kim, Jin-Tae; Chamorro, Leonardo P.

    2018-04-01

    Flow-induced dynamics of flexible structures is, in general, significantly modulated by periodic vortex shedding. Experiments and numerical simulations suggest that the frequencies associated with the dominant motions of structures are highly coupled with those of the wake under low-turbulence uniform flow. Here we present experimental evidence that demonstrates a significant decoupling between the dynamics of simple structures and wake fluctuations for various geometries, Reynolds numbers, and mass ratios. High-resolution particle tracking velocimetry and hot-wire anemometry are used to quantitatively characterize the dynamics of the structures and wake fluctuations; a complementary planar particle image velocimetry measurement is conducted to illustrate distinctive flow patterns. Results show that for structures with directional stiffness, von Kármán vortex shedding might dominate the wake of bodies governed by natural-frequency motion. This phenomenon can be a consequence of Kelvin-Helmholtz instability, where the structural characteristics of the body dominate the oscillations.

  5. Moiré superlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate

    NASA Astrophysics Data System (ADS)

    Shi, Ruoyu; Gao, Lei; Lu, Hongliang; Li, Qunyang; Ma, Tian-Bao; Guo, Hui; Du, Shixuan; Feng, Xi-Qiao; Zhang, Shuai; Liu, Yanmin; Cheng, Peng; Hu, Yuan-Zhong; Gao, Hong-Jun; Luo, Jianbin

    2017-06-01

    Two dimensional (2D) materials often exhibit novel properties due to various coupling effects with their supporting substrates. Here, using friction force microscopy (FFM), we report an unusual moiré superlattice-level stick-slip instability on monolayer graphene epitaxially grown on Ru(0 0 0 1) substrate. Instead of smooth friction modulation, a significant long-range stick-slip sawtooth modulation emerges with a period coinciding with the moiré superlattice structure, which is robust against high external loads and leads to an additional channel of energy dissipation. In contrast, the long-range stick-slip instability reduces to smooth friction modulation on graphene/Ir(1 1 1) substrate. The moiré superlattice-level slip instability could be attributed to the large sliding energy barrier, which arises from the morphological corrugation of graphene on Ru(0 0 0 1) surface as indicated by density functional theory (DFT) calculations. The locally steep humps acting as obstacles opposing the tip sliding, originates from the strong interfacial electronic interaction between graphene and Ru(0 0 0 1). This study opens an avenue for modulating friction by tuning the interfacial atomic interaction between 2D materials and their substrates.

  6. Stereo Particle Image Velocimetry Measurements of Transition Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Yao, Chung-Sheng

    2017-01-01

    Stereo particle image velocimetry measurements were performed downstream of a backward-facing step in a stationary-cross flow dominated flow. The PIV measurements exhibit excellent quantitative and qualitative agreement with the previously acquired hotwire data. Instantaneous PIV snapshots reveal new information about the nature and cause of the \\spikes" that occurred prior to breakdown in both the hotwire and PIV data. The PIV snapshots show that the events occur simultaneously across multiple stationary cross flow wavelengths, indicating that this is not simply a local event, but is likely caused by the 2D Tollmien-Schlichting instability that is introduced by the step. While the TS instability is a 2D instability, it is also modulated in the spanwise direction due to interactions with the stationary cross flow, as are the other unsteady disturbances present. Because of this modulation, the "spike" events cause an instantaneous increase of the spanwise modulation of the streamwise and spanwise velocity initially caused by the stationary cross flow. Breakdown appears to be caused by this instantaneous modulation, possibly due to a high-frequency secondary instability similar to a traveling-cross flow breakdown scenario. These results further illuminate the respective roles of the stationary cross flow and unsteady disturbances in transition downstream of a backward-facing step.

  7. Stochastic resonance based on modulation instability in spatiotemporal chaos.

    PubMed

    Han, Jing; Liu, Hongjun; Huang, Nan; Wang, Zhaolu

    2017-04-03

    A novel dynamic of stochastic resonance in spatiotemporal chaos is presented, which is based on modulation instability of perturbed partially coherent wave. The noise immunity of chaos can be reinforced through this effect and used to restore the coherent signal information buried in chaotic perturbation. A theoretical model with fluctuations term is derived from the complex Ginzburg-Landau equation via Wigner transform. It shows that through weakening the nonlinear threshold and triggering energy redistribution, the coherent component dominates the instability damped by incoherent component. The spatiotemporal output showing the properties of stochastic resonance may provide a potential application of signal encryption and restoration.

  8. Convective and morphological instabilities during crystal growth: Effect of gravity modulation

    NASA Technical Reports Server (NTRS)

    Coreill, S. R.; Murray, B. T.; Mcfadden, G. B.; Wheeler, A. A.; Saunders, B. V.

    1992-01-01

    During directional solidification of a binary alloy at constant velocity in the vertical direction, morphological and convective instabilities may occur due to the temperature and solute gradients associated with the solidification process. The effect of time-periodic modulation (vibration) is studied by considering a vertical gravitational acceleration which is sinusoidal in time. The conditions for the onset of solutal convection are calculated numerically, employing two distinct computational procedures based on Floquet theory. In general, a stable state can be destabilized by modulation and an unstable state can be stabilized. In the limit of high frequency modulation, the method of averaging and multiple-scale asymptotic analysis can be used to simplify the calculations.

  9. Do the freak waves exist in soliton gas?

    NASA Astrophysics Data System (ADS)

    Shurgalina, Ekaterina; Pelinovsky, Efim

    2016-04-01

    The possibility of short-lived anomalous large waves (rogue waves) in soliton gas in the frameworks of integrable models like the Korteweg - de Vries - type equations is studied. It is shown that the dynamics of heteropolar soliton gas differs sufficiently from the dynamics of unipolar soliton fields. In particular, in the wave fields consisting of solitons with different polarities the freak wave appearance is possible. It is shown numerically in [Shurgalina and Pelinovsky, 2015]. Freak waves in the framework of the modified Korteweg-de Vries equation have been studied previously in the case of narrowband initial conditions [Grimshaw et al, 2005, 2010; Talipova, 2011]. In this case, the mechanism of freak wave generation was modulation instability of modulated quasi-sinusoidal wave packets. At the same time the modulation instability of modulated cnoidal waves was studied in the mathematical work [Driscoll & O'Neil, 1976]. Since a sequence of solitary waves can be a special case of cnoidal wave, the modulation instability can be a possible mechanism of freak wave appearance in a soliton gas. Thus, we expect that rogue wave phenomenon in soliton gas appears in nonlinear integrable models admitting an existence of modulation instability of periodic waves (like cnoidal waves). References: 1. Shurgalina E.G., Pelinovsky E.N. Dynamics of irregular wave ensembles in the coastal zone, Nizhny Novgorod State Technical University n.a. R.E. Alekseev. - Nizhny Novgorod, 2015, 179 pp. 2. Grimshaw R., Pelinovsky E., Talipova T., Sergeeva A. Rogue internal waves in the ocean: long wave model. European Physical Journal Special Topics, 2010, 185, 195 - 208. 3. Grimshaw R., Pelinovsky E., Talipova T., Ruderman M. Erdelyi R. Short-lived large-amplitude pulses in the nonlinear long-wave model described by the modified Korteweg-de Vries equation. Studied Applied Mathematics, 2005, 114 (2), 189. 4. Talipova T.G. Mechanisms of internal freak waves, Fundamental and Applied Hydrophysics, 2011, 4(4), 58-70. 5. Driscoll F., O'Neil T.M. Modulational instability of cnoidal wave solutions of the modified Korteweg-de Vries equation. Journal of Mathematical Physics, 1976, 17 (7), 1196-1200.

  10. Electronegative nonlinear oscillating modes in plasmas

    NASA Astrophysics Data System (ADS)

    Panguetna, Chérif Souleman; Tabi, Conrad Bertrand; Kofané, Timoléon Crépin

    2018-02-01

    The emergence of nonlinear modulated waves is addressed in an unmagnetized electronegative plasma made of Boltzmann electrons, Boltzmann negative ions and cold mobile positive ions. The reductive perturbation method is used to reduce the dynamics of the whole system to a cubic nonlinear Schrödinger equation, whose the nonlinear and dispersion coefficients, P and Q, are function of the negative ion parameters, namely the negative ion concentration ratio (α) and the electron-to-negative ion temperature ratio (σn). It is observed that these parameters importantly affect the formation of modulated ion-acoustic waves, either as exact solutions or via the activation of modulational instability. Especially, the theory of modulational instability is used to show the correlation between the parametric analysis and the formation of modulated solitons, obtained here as bright envelopes and kink-wave solitons.

  11. Evidence for a bubble-competition regime in indirectly driven ablative Rayleigh-Taylor instability experiments on the NIF.

    PubMed

    Martinez, D A; Smalyuk, V A; Kane, J O; Casner, A; Liberatore, S; Masse, L P

    2015-05-29

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130  μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  12. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOEpatents

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  13. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; Casner, A.; Liberatore, S.; Masse, L. P.

    2015-05-01

    We investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μ m thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation front is achieved for the first time in indirect drive. The mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chong; Yang, Zhan-Ying, E-mail: zyyang@nwu.edu.cn; Zhao, Li-Chen, E-mail: zhaolichen3@163.com

    We study vector localized waves on continuous wave background with higher-order effects in a two-mode optical fiber. The striking properties of transition, coexistence, and interaction of these localized waves arising from higher-order effects are revealed in combination with corresponding modulation instability (MI) characteristics. It shows that these vector localized wave properties have no analogues in the case without higher-order effects. Specifically, compared to the scalar case, an intriguing transition between bright–dark rogue waves and w-shaped–anti-w-shaped solitons, which occurs as a result of the attenuation of MI growth rate to vanishing in the zero-frequency perturbation region, is exhibited with the relativemore » background frequency. In particular, our results show that the w-shaped–anti-w-shaped solitons can coexist with breathers, coinciding with the MI analysis where the coexistence condition is a mixture of a modulation stability and MI region. It is interesting that their interaction is inelastic and describes a fusion process. In addition, we demonstrate an annihilation phenomenon for the interaction of two w-shaped solitons which is identified essentially as an inelastic collision in this system. -- Highlights: •Vector rogue wave properties induced by higher-order effects are studied. •A transition between vector rogue waves and solitons is obtained. •The link between the transition and modulation instability (MI) is demonstrated. •The coexistence of vector solitons and breathers coincides with the MI features. •An annihilation phenomenon for the vector two w-shaped solitons is presented.« less

  15. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ye

    Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less

  16. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I

    DOE PAGES

    Zhou, Ye

    2017-09-06

    Rayleigh–Taylor (RT) and Richtmyer–Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. Furthermore, the objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin–Helmholtz (KH) instabilities. Historical efforts to study these instabilitiesmore » are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion.« less

  17. Heterogeneity of colon cancer: from bench to bedside

    PubMed Central

    Merlano, Marco C; Granetto, Cristina; Fea, Elena; Ricci, Vincenzo; Garrone, Ornella

    2017-01-01

    The large bowel shows biomolecular, anatomical and bacterial changes that proceed from the proximal to the distal tract. These changes account for the different behaviour of colon cancers arising from the diverse sides of the colon–rectum as well as for the sensitivity to the therapy, including immunotherapy. The gut microbiota plays an important role in the modulation of the immune response and differs between the right colon cancer and the left colorectal cancer. The qualitative and quantitative difference of the commensal bacteria between the right side and the left side induces epigenetic changes in the intestinal epithelial cells as well as in the resident immune population. The second player in the pathological homeostasis of colorectal cancer is the differences of the genetic features of cancer cells and the different effects that microsatellite instability, chromosomal instability and the CpG island methylator phenotype induce on the immunological organisation of the tumour microenvironment. The third player is the immunological composition of the tumour microenvironment, which changes under the influence of both genetic structures and gut microbiota. All these three players influence each other. This review describes these three aspects, highlights their interactions and discusses data from reported clinical trials. Click here to listen to the Podcast PMID:29209524

  18. Influence of an anomalous dimension effect on thermal instability in amorphous-InGaZnO thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kuan-Hsien; Chou, Wu-Ching, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw; Chang, Ting-Chang, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw

    2014-10-21

    This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of themore » surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast I{sub D}-V{sub G} and modulated peak/base pulse time I{sub D}-V{sub D} measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.« less

  19. Modulational Instability of Cylindrical and Spherical NLS Equations. Statistical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grecu, A. T.; Grecu, D.; Visinescu, Anca

    2010-01-21

    The modulational (Benjamin-Feir) instability for cylindrical and spherical NLS equations (c/s NLS equations) is studied using a statistical approach (SAMI). A kinetic equation for a two-point correlation function is written and analyzed using the Wigner-Moyal transform. The linear stability of the Fourier transform of the two-point correlation function is studied and an implicit integral form for the dispersion relation is found. This is solved for different expressions of the initial spectrum (delta-spectrum, Lorentzian, Gaussian), and in the case of a Lorentzian spectrum the total growth of the instability is calculated. The similarities and differences with the usual one-dimensional NLS equationmore » are emphasized.« less

  20. Are chromosomal instabilities induced by exposure of cultured normal human cells to low- or high-LET radiation?

    NASA Technical Reports Server (NTRS)

    Dugan, Lawrence C.; Bedford, Joel S.

    2003-01-01

    Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.

  1. Modulational instabilities in acetanilide taking into account both the N H and the C=O vibrational self-trappings

    NASA Astrophysics Data System (ADS)

    Simo, Elie

    2007-02-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schrödinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  2. Parametric instabilities in resonantly-driven Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lellouch, S.; Goldman, N.

    2018-04-01

    Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.

  3. Peierls instability as the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers

    NASA Astrophysics Data System (ADS)

    Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul

    2018-03-01

    Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.

  4. Emergent rogue wave structures and statistics in spontaneous modulation instability.

    PubMed

    Toenger, Shanti; Godin, Thomas; Billet, Cyril; Dias, Frédéric; Erkintalo, Miro; Genty, Goëry; Dudley, John M

    2015-05-20

    The nonlinear Schrödinger equation (NLSE) is a seminal equation of nonlinear physics describing wave packet evolution in weakly-nonlinear dispersive media. The NLSE is especially important in understanding how high amplitude "rogue waves" emerge from noise through the process of modulation instability (MI) whereby a perturbation on an initial plane wave can evolve into strongly-localised "breather" or "soliton on finite background (SFB)" structures. Although there has been much study of such structures excited under controlled conditions, there remains the open question of how closely the analytic solutions of the NLSE actually model localised structures emerging in noise-seeded MI. We address this question here using numerical simulations to compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE. Our results show that both elementary breather and higher-order SFB structures are observed in chaotic MI, with the characteristics of the noise-induced peaks clustering closely around analytic NLSE predictions. A significant conclusion of our work is to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited. Rather, we confirm earlier suggestions that NLSE rogue waves are most appropriately identified as collisions between elementary SFB solutions.

  5. Emergent rogue wave structures and statistics in spontaneous modulation instability

    PubMed Central

    Toenger, Shanti; Godin, Thomas; Billet, Cyril; Dias, Frédéric; Erkintalo, Miro; Genty, Goëry; Dudley, John M.

    2015-01-01

    The nonlinear Schrödinger equation (NLSE) is a seminal equation of nonlinear physics describing wave packet evolution in weakly-nonlinear dispersive media. The NLSE is especially important in understanding how high amplitude “rogue waves” emerge from noise through the process of modulation instability (MI) whereby a perturbation on an initial plane wave can evolve into strongly-localised “breather” or “soliton on finite background (SFB)” structures. Although there has been much study of such structures excited under controlled conditions, there remains the open question of how closely the analytic solutions of the NLSE actually model localised structures emerging in noise-seeded MI. We address this question here using numerical simulations to compare the properties of a large ensemble of emergent peaks in noise-seeded MI with the known analytic solutions of the NLSE. Our results show that both elementary breather and higher-order SFB structures are observed in chaotic MI, with the characteristics of the noise-induced peaks clustering closely around analytic NLSE predictions. A significant conclusion of our work is to suggest that the widely-held view that the Peregrine soliton forms a rogue wave prototype must be revisited. Rather, we confirm earlier suggestions that NLSE rogue waves are most appropriately identified as collisions between elementary SFB solutions. PMID:25993126

  6. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability

    PubMed Central

    Sansregret, Laurent; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J.; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R.; Medema, René H.; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-01-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. Significance We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. PMID:28069571

  7. Modulated electron cyclotron drift instability in a high-power pulsed magnetron discharge.

    PubMed

    Tsikata, Sedina; Minea, Tiberiu

    2015-05-08

    The electron cyclotron drift instability, implicated in electron heating and anomalous transport, is detected in the plasma of a planar magnetron. Electron density fluctuations associated with the mode are identified via an adapted coherent Thomson scattering diagnostic, under direct current and high-power pulsed magnetron operation. Time-resolved analysis of the mode amplitude reveals that the instability, found at MHz frequencies and millimeter scales, also exhibits a kHz-scale modulation consistent with the observation of larger-scale plasma density nonuniformities, such as the rotating spoke. Sharply collimated axial fluctuations observed at the magnetron axis are consistent with the presence of escaping electrons in a region where the magnetic and electric fields are antiparallel. These results distinguish aspects of magnetron physics from other plasma sources of similar geometry, such as the Hall thruster, and broaden the scope of instabilities which may be considered to dictate magnetron plasma features.

  8. Femtosecond-laser-induced periodic surface structures on magnetic layer targets: The roles of femtosecond-laser interaction and of magnetization

    NASA Astrophysics Data System (ADS)

    Czajkowski, Klaus; Ratzke, Markus; Varlamova, Olga; Reif, Juergen

    2017-09-01

    We investigate femtosecond laser induced periodic surface structures (LIPSS) on a complex multilayer target, namely a 20-GB computer hard disk (HD), consisting of a metallic substrate, a magnetic layer, and a thin polymeric protective layer. Depending on the dose (fluence × number of pulses) first the polymeric cover layer is completely removed, revealing a periodic surface modulation of the magnetic layer which seems not to be induced by the laser action. At higher dose, the magnetic layer morphology is strongly modified by laser-induced periodic structures (LIPS) and, finally, kind of an etch stop is reached at the bottom of the magnetic layer. The LIPS shows very high modulation depth below and above the original surface level. In the present work, the role of magnetization and magneto-mechanic forces in the structure formation process is studied by monitoring the bit-wise magnetization of the HD with a magnetic force microscope. It is shown that the structures at low laser dose are reflecting the magnetic bits. At higher dose the magnetic influence appears to be extinguished on the account of LIPS. This suggests a transient overcoming the Curie temperature and an associated loss of magnetic order. The results compare well with our model of LIPS/LIPSS formation by self-organized relaxation from a laser-induced thermodynamic instability.

  9. Instability growth seeded by oxygen in CH shells on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haan, S. W., E-mail: haan1@llnl.gov; Johnson, M. A.; Stadermann, M.

    Fusion targets imploded on the National Ignition Facility are subject to hydrodynamic instabilities. These have generally been assumed to be seeded primarily by surface roughness, as existing work had suggested that internal inhomogeneity was small enough not to contribute significantly. New simulations presented here examine this in more detail, and consider modulations in internal oxygen content in CH plastic ablators. The oxygen is configured in a way motivated by measurement of oxygen in the shells. We find that plausible oxygen nonuniformity, motivated by target characterization experiments, seeds instability growth that is 3–5× bigger than expected from surface roughness. Pertinent existingmore » capsule characterization is discussed, which suggests the presence of internal modulations that could be oxygen at levels large enough to be the dominant seed for hydrodynamic instability growth. Oxygen-seeded growth is smaller for implosions driven by high-foot pulse shapes, consistent with the performance improvement seen with these pulse shapes. Growth is somewhat smaller for planned future pulse shapes that were optimized to minimize growth of surface ripples. A possible modified specification for oxygen modulations is discussed, which is about 1/5 of the current requirement.« less

  10. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    PubMed Central

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  11. Anticipating Terrorist Safe Havens from Instability Induced Conflict

    NASA Astrophysics Data System (ADS)

    Shearer, Robert; Marvin, Brett

    This chapter presents recent methods developed at the Center for Army Analysis to classify patterns of nation-state instability that lead to conflict. The ungoverned areas endemic to failed nation-states provide terrorist organizations with safe havens from which to plan and execute terrorist attacks. Identification of those states at risk for instability induced conflict should help to facilitate effective counter terrorism policy planning efforts. Nation-states that experience instability induced conflict are similar in that they share common instability factors that make them susceptible to experiencing conflict. We utilize standard pattern classification algorithms to identify these patterns. First, we identify features (political, military, economic and social) that capture the instability of a nation-state. Second, we forecast the future levels of these features for each nation-state. Third, we classify each future state’s conflict potential based upon the conflict level of those states in the past most similar to the future state.

  12. Quasi-periodicity of vector solitons in a graphene mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Song, Yu Feng; Li, Lei; Tang, Ding Yuan; Shen, De Yuan

    2013-12-01

    We report on the experimental observation of quasi-periodic dynamics of vector solitons in an erbium-doped fiber laser passively mode-locked with atomic layer graphene. Apart from the stable polarization-locked vector soliton emission, it was found that under certain conditions the fiber laser could also emit vector solitons with quasi-periodic pulse energy variation and polarization rotation during the cavity roundtrips. We show that the physical mechanism for the quasi-periodic vector soliton evolution is cavity-induced soliton modulation instability. Quasi-periodic evolution of multiple vector solitons was also observed in the same laser.

  13. Generation of dark-bright soliton trains in superfluid-superfluid counterflow.

    PubMed

    Hamner, C; Chang, J J; Engels, P; Hoefer, M A

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics.

  14. Generation of Dark-Bright Soliton Trains in Superfluid-Superfluid Counterflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamner, C.; Chang, J. J.; Engels, P.

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics.

  15. Periodic, complexiton solutions and stability for a (2+1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Yin, Hui-Min; Tian, Bo; Zhao, Xin-Chao

    2018-06-01

    This paper presents an investigation of a (2 + 1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation. Periodic and complexiton solutions are obtained. Solitons solutions are also gotten through the periodic solutions. Numerical solutions via the split step method are stable. Effects of the weak and strong modulation instability on the solitons are shown: the weak modulation instability permits an observable soliton, and the strong one overwhelms its development.

  16. Anderson localisation and optical-event horizons in rogue-soliton generation.

    PubMed

    Saleh, Mohammed F; Conti, Claudio; Biancalana, Fabio

    2017-03-06

    We unveil the relation between the linear Anderson localisation process and nonlinear modulation instability. Anderson localised modes are formed in certain temporal intervals due to the random background noise. Such localised modes seed the formation of solitary waves that will appear during the modulation instability process at those preferred intervals. Afterwards, optical-event horizon effects between dispersive waves and solitons produce an artificial collective acceleration that favours the collision of solitons, which could eventually lead to a rogue-soliton generation.

  17. Dispersive optical solitons and modulation instability analysis of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2018-01-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.

  18. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  19. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia.

    PubMed

    Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman

    2017-01-01

    The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001-1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT.

  20. Effect of different doses of oxytocin on cardiac electrophysiology and arrhythmias induced by ischemia

    PubMed Central

    Houshmand, Fariba; Faghihi, Mahdieh; Imani, Alireza; Kheiri, Soleiman

    2017-01-01

    The onset of acute myocardial ischemia (MI) is accompanied by a rapid increase in electrical instability and often fatal ventricular arrhythmias. This study investigated that whether oxytocin (OT) can modulate ischemia-induced arrhythmias and considered relationships between the severity of arrhythmia and the electrocardiogram parameters during ischemia. OT (0.0001–1 μg) was administrated intraperitoneally 30 min before ischemia. To examine receptor involved, a selective OT-receptor antagonist, atosiban (ATO), was infused 10 min before OT. OT caused a significant and biphasic dose-dependent reduction in ectopic heart activity and arrhythmia score. OT doses that reduced ventricular arrhythmia elicited significant increase in QT interval. OT attenuated the electrophysiological changes associated with MI and there was significant direct relationship between QRS duration and arrhythmia score. ATO treatment reduced beneficial effects of OT on arrhythmogenesis. Nevertheless, ATO failed to alter OT effects on premature ventricular contractions. We assume that the ability of OT to modulate the electrical activity of the heart may play an important role in the antiarrhythmic actions of OT. PMID:29184844

  1. Fermi-Pasta-Ulam recurrence and modulation instability

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.

    2017-01-01

    We give a qualitative conceptual explanation of the Fermi-Pasta-Ulam (FPU) like recurrence in the onedimensional focusing nonlinear Schrodinger equation (NLSE). The recurrence can be considered as a result of the nonlinear development of the modulation instability. All known exact localized solitary wave solutions describing propagation on the background of the modulationally unstable condensate show the recurrence to the condensate state after its interaction with solitons. The condensate state locally recovers its original form with the same amplitude but a different phase after soliton leave its initial region. Based on the integrability of the NLSE, we demonstrate that the FPU recurrence takes place not only for condensate, but also for a more general solution in the form of the cnoidal wave. This solution is periodic in space and can be represented as a solitonic lattice. That lattice reduces to isolated soliton solution in the limit of large distance between solitons. The lattice transforms into the condensate in the opposite limit of dense soliton packing. The cnoidal wave is also modulationally unstable due to soliton overlapping. The recurrence happens at the nonlinear stage of the modulation instability. Due to generic nature of the underlying mathematical model, the proposed concept can be applied across disciplines and nonlinear systems, ranging from optical communications to hydrodynamics.

  2. Curvature-Induced Instabilities of Shells

    NASA Astrophysics Data System (ADS)

    Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.

    2018-01-01

    Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.

  3. Optical Peregrine rogue waves of self-induced transparency in a resonant erbium-doped fiber.

    PubMed

    Chen, Shihua; Ye, Yanlin; Baronio, Fabio; Liu, Yi; Cai, Xian-Ming; Grelu, Philippe

    2017-11-27

    The resonant interaction of an optical field with two-level doping ions in a cryogenic optical fiber is investigated within the framework of nonlinear Schrödinger and Maxwell-Bloch equations. We present explicit fundamental rational rogue wave solutions in the context of self-induced transparency for the coupled optical and matter waves. It is exhibited that the optical wave component always features a typical Peregrine-like structure, while the matter waves involve more complicated yet spatiotemporally balanced amplitude distribution. The existence and stability of these rogue waves is then confirmed by numerical simulations, and they are shown to be excited amid the onset of modulation instability. These solutions can also be extended, using the same analytical framework, to include higher-order dispersive and nonlinear effects, highlighting their universality.

  4. Soap films burst like flapping flags.

    PubMed

    Lhuissier, Henri; Villermaux, Emmanuel

    2009-07-31

    When punctured, a flat soap film bursts by opening a hole driven by liquid surface tension. The hole rim does not, however, remain smooth but soon develops indentations at the tip of which ligaments form, ultimately breaking and leaving the initially connex film into a mist of disjointed drops. We report on original observations showing that these indentations result from a flaglike instability between the film and the surrounding atmosphere inducing an oscillatory motion out of its plane. Just like a flag edge flaps in the wind, the film is successively accelerated on both sides perpendicularly to its plane, inducing film thickness modulations and centrifuging liquid ligaments that finally pinch off to form the observed spray. This effect exemplifies how the dynamics of fragile objects such as thin liquid films is sensitive to their embedding medium.

  5. Effect of gravity modulation on thermosolutal convection in an infinite layer of fluid

    NASA Astrophysics Data System (ADS)

    Saunders, B. V.; Murray, B. T.; McFadden, G. B.; Coriell, S. R.; Wheeler, A. A.

    1991-10-01

    The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress free boundaries is studied using Floquet theory for the linear stability analysis. Situations are considered for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double diffusive convection. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency.

  6. Parametric instability induced by X-mode wave heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  7. Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; Kane, J. O.; ...

    2015-05-29

    In this paper, we investigate on the National Ignition Facility the ablative Rayleigh-Taylor instability in the transition from weakly nonlinear to highly nonlinear regimes. A planar plastic package with preimposed two-dimensional broadband modulations is accelerated for up to 12 ns by the x-ray drive of a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. This extended tailored drive allows a distance traveled in excess of 1 mm for a 130 μm thick foil. Measurements of the modulation optical density performed by x-ray radiography show that a bubble-merger regime for the Rayleigh-Taylor instability at an ablation frontmore » is achieved for the first time in indirect drive. Finally, the mutimode modulation amplitudes are in the nonlinear regime, grow beyond the Haan multimode saturation level, evolve toward the longer wavelengths, and show insensitivity to the initial conditions.« less

  8. Experimental evidence of ion-induced instabilities in the NSLS-II storage ring

    DOE PAGES

    Cheng, Weixing; Li, Yongjun; Podobedov, Boris

    2017-03-12

    Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less

  9. Experimental evidence of ion-induced instabilities in the NSLS-II storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing; Li, Yongjun; Podobedov, Boris

    Fast ion instability has been identified as one of the most prominent instabilities in the recently constructed NSLS-II storage ring at Brookhaven National Laboratory. At a relatively low beam current (~ 25 mA) multi-bunch fills, ion-induced instabilities have already been observed during the early stages of machine commissioning. At present user operation with 250 mA in ~1000 bunches, the fast ion still remains the dominant instability, even after months of vacuum conditioning at high current. Ion-induced dipole motions of the electron beam have been suppressed using the transverse bunch-by-bunch (BxB) feedback system. However other adverse effects of this instability, suchmore » as the vertical beam size increase along the bunch train cannot be cured by the feedback system. Therefore, to achieve the NSLS-II design current of 500 mA while maintaining a small vertical beam emittance, it is important to further understand the fast ion instability and develop mitigation techniques. This paper reports on a series of ion-instability observations at various fill patterns and beam currents using start-of-art NSLS-II diagnostic tools.« less

  10. Time-on-task decrement in vigilance is modulated by inter-individual vulnerability to homeostatic sleep pressure manipulation

    PubMed Central

    Maire, Micheline; Reichert, Carolin F.; Gabel, Virginie; Viola, Antoine U.; Krebs, Julia; Strobel, Werner; Landolt, Hans-Peter; Bachmann, Valérie; Cajochen, Christian; Schmidt, Christina

    2014-01-01

    Under sleep loss, vigilance is reduced and attentional failures emerge progressively. It becomes difficult to maintain stable performance over time, leading to growing performance variability (i.e., state instability) in an individual and among subjects. Task duration plays a major role in the maintenance of stable vigilance levels, such that the longer the task, the more likely state instability will be observed. Vulnerability to sleep-loss-dependent performance decrements is highly individual and is also modulated by a polymorphism in the human clock gene PERIOD3 (PER3). By combining two different protocols, we manipulated sleep-wake history by once extending wakefulness for 40 h (high sleep pressure condition) and once by imposing a short sleep-wake cycle by alternating 160 min of wakefulness and 80 min naps (low sleep pressure condition) in a within-subject design. We observed that homozygous carriers of the long repeat allele of PER3 (PER35/5) experienced a greater time-on-task dependent performance decrement (i.e., a steeper increase in the number of lapses) in the Psychomotor Vigilance Task compared to the carriers of the short repeat allele (PER34/4). These genotype-dependent effects disappeared under low sleep pressure conditions, and neither motivation, nor perceived effort accounted for these differences. Our data thus suggest that greater sleep-loss related attentional vulnerability based on the PER3 polymorphism is mirrored by a greater state instability under extended wakefulness in the short compared to the long allele carriers. Our results undermine the importance of time-on-task related aspects when investigating inter-individual differences in sleep loss-induced behavioral vulnerability. PMID:24639634

  11. Effect of higher order nonlinearity, directionality and finite water depth on wave statistics: Comparison of field data and numerical simulations

    NASA Astrophysics Data System (ADS)

    Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro

    2014-05-01

    This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if kh<1.36. In this regard, the aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.

  12. Experiences with integral microelectronics on smart structures for space

    NASA Astrophysics Data System (ADS)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically noticeable within minutes of unstable operation.

  13. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  14. Epithelial Folding Driven by Apical or Basal-Lateral Modulation: Geometric Features, Mechanical Inference, and Boundary Effects.

    PubMed

    Wen, Fu-Lai; Wang, Yu-Chiun; Shibata, Tatsuo

    2017-06-20

    During embryonic development, epithelial sheets fold into complex structures required for tissue and organ functions. Although substantial efforts have been devoted to identifying molecular mechanisms underlying epithelial folding, far less is understood about how forces deform individual cells to sculpt the overall sheet morphology. Here we describe a simple and general theoretical model for the autonomous folding of monolayered epithelial sheets. We show that active modulation of intracellular mechanics along the basal-lateral as well as the apical surfaces is capable of inducing fold formation in the absence of buckling instability. Apical modulation sculpts epithelia into shallow and V-shaped folds, whereas basal-lateral modulation generates deep and U-shaped folds. These characteristic tissue shapes remain unchanged when subject to mechanical perturbations from the surroundings, illustrating that the autonomous folding is robust against environmental variabilities. At the cellular scale, how cells change shape depends on their initial aspect ratios and the modulation mechanisms. Such cell deformation characteristics are verified via experimental measurements for a canonical folding process driven by apical modulation, indicating that our theory could be used to infer the underlying folding mechanisms based on experimental data. The mechanical principles revealed in our model could potentially guide future studies on epithelial folding in diverse systems. Copyright © 2017. Published by Elsevier Inc.

  15. Dielectric elastomer peristaltic pump module with finite deformation

    NASA Astrophysics Data System (ADS)

    Mao, Guoyong; Huang, Xiaoqiang; Liu, Junjie; Li, Tiefeng; Qu, Shaoxing; Yang, Wei

    2015-07-01

    Inspired by various peristaltic structures existing in nature, several bionic peristaltic actuators have been developed. In this study, we propose a novel dielectric elastomer peristaltic pump consisting of short tubular modules, with the saline solution as the electrodes. We investigate the performance of this soft pump module under hydraulic pressure and voltage via experiments and an analytical model based on nonlinear field theory. It is observed that the individual pump module undergoes finite deformation and may experience electromechanical instability during operations. The driving pressure and displaced volume of the peristaltic pump module can be modulated by applied voltage. The efficiency of the pump module is enhanced by alternating current voltage, which can suppress the electromechanical pull-in instability. An analytical model is developed within the framework of the nonlinear field theory, and its predictive capacity is checked by experimental observations. The effects of the prestretch, aspect ratio, and voltage on the performance of the pump modules are characterized by the analytical model. This work can guide the designs of soft active peristaltic pumps in the field of artificial organs and industrial conveying systems.

  16. Neural basis of postural instability identified by VTC and EEG

    PubMed Central

    Cao, Cheng; Jaiswal, Niharika; Newell, Karl M.

    2010-01-01

    In this study, we investigated the neural basis of virtual time to contact (VTC) and the hypothesis that VTC provides predictive information for future postural instability. A novel approach to differentiate stable pre-falling and transition-to-instability stages within a single postural trial while a subject was performing a challenging single leg stance with eyes closed was developed. Specifically, we utilized wavelet transform and stage segmentation algorithms using VTC time series data set as an input. The VTC time series was time-locked with multichannel (n = 64) EEG signals to examine its underlying neural substrates. To identify the focal sources of neural substrates of VTC, a two-step approach was designed combining the independent component analysis (ICA) and low-resolution tomography (LORETA) of multichannel EEG. There were two major findings: (1) a significant increase of VTC minimal values (along with enhanced variability of VTC) was observed during the transition-to-instability stage with progression to ultimate loss of balance and falling; and (2) this VTC dynamics was associated with pronounced modulation of EEG predominantly within theta, alpha and gamma frequency bands. The sources of this EEG modulation were identified at the cingulate cortex (ACC) and the junction of precuneus and parietal lobe, as well as at the occipital cortex. The findings support the hypothesis that the systematic increase of minimal values of VTC concomitant with modulation of EEG signals at the frontal-central and parietal–occipital areas serve collectively to predict the future instability in posture. PMID:19655130

  17. Time Resolved Stereo Particle Image Velocimetry Measurements of the Instabilities Downstream of a Backward-Facing Step in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Eppink, Jenna L.; Yao, Chung-Sheng

    2017-01-01

    Time-resolved particle image velocimetry (TRPIV) measurements are performed down-stream of a swept backward-facing step, with a height of 49% of the boundary-layer thickness. The results agree well qualitatively with previously reported hotwire measurements, though the amplitudes of the fluctuating components measured using TRPIV are higher. Nonetheless, the low-amplitude instabilities in the flow are fairly well resolved using TR- PIV. Proper orthogonal decomposition is used to study the development of the traveling cross flow and Tollmien-Schlichting (TS) instabilities downstream of the step and to study how they interact to form the large velocity spikes that ultimately lead to transition. A secondary mode within the traveling cross flow frequency band develops with a wavelength close to that of the stationary cross flow instability, so that at a certain point in the phase, it causes an increase in the spanwise modulation initially caused by the stationary cross flow mode. This increased modulation leads to an increase in the amplitude of the TS mode, which, itself, is highly modulated through interactions with the stationary cross flow. When the traveling cross flow and TS modes align in time and space, the large velocity spikes occur. Thus, these three instabilities, which are individually of low amplitude when the spikes start to occur (U'rms/Ue <0.03), interact and combine to cause a large flow disturbance that eventually leads to transition.

  18. The Yeast Environmental Stress Response Regulates Mutagenesis Induced by Proteotoxic Stress

    PubMed Central

    Shor, Erika; Fox, Catherine A.; Broach, James R.

    2013-01-01

    Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors. PMID:23935537

  19. The effect of gravity modulation on thermosolutal convection

    NASA Technical Reports Server (NTRS)

    Saunders, Bonita V.; Murray, Bruce T.; Mcfadden, G. B.; Coriell, S. R.; Wheeler, A. A.

    1992-01-01

    In a gravitational field, the opposing effects of components of different diffusivities, for example, temperature and solute, in the density profile in a fluid may produce convective instabilities that exhibit a broad range of dynamical behavior. The effect of time periodic vertical gravity modulation on the onset of these instabilities in an infinite horizontal layer with stress free boundaries is examined. This work is viewed as a first step in expanding previous results in solidification to the full problem of characterizing the effects of gravity modulation in thermosolutal convection during the directional solidification of binary alloys. Calculations carried out both with and without steady background acceleration are presented, the latter results being relevant to microgravity conditions.

  20. Modulational instability of helicon waves in a magnetoactive semiconductor n-InSb

    NASA Astrophysics Data System (ADS)

    Salimullah, M.; Ferdous, T.

    1984-03-01

    In this paper the modulational instabilithy of a beam of high amplitude helicon wave in a magnetoactive piezoelectric semiconductor is studied. The nonlinear response of electrons in the semiconductor plasma has been found by following the fluid model of homogeneous plasmas. The low frequency nonlinearity has been taken through the ponderomotive force on electrons, whereas the nonlinearity in the scattered helicon waves arises through the nonlinear current densities of electrons. For typical plasma parameters in n-type indium antimonide and for a considerable power density (approximately 20 kW/sq cm) of the incident helicon beam, the growth rate of the modulational instability is quite high (approximately 10 to the 7th rad/s).

  1. Investigating the anticipatory postural adjustment phase of gait initiation in different directions in chronic ankle instability patients.

    PubMed

    Ebrahimabadi, Zahra; Naimi, Sedigheh Sadat; Rahimi, Abbas; Sadeghi, Heydar; Hosseini, Seyed Majid; Baghban, Alireza Akbarzadeh; Arslan, Syed Asadullah

    2018-01-01

    The main objective of the present study was to analyze how supra spinal motor control mechanisms are altered in different directions during anticipatory postural phase of gait initiation in chronic ankle instability patients. It seems that supra spinal pathways modulate anticipatory postural adjustment phase of gait initiation. Yet, there is a dearth of research on the effect of chronic ankle instability on the anticipatory postural adjustment phase of gait initiation in different directions. A total of 20 chronic ankle instability participants and 20 healthy individuals initiated gait on a force plate in forward, 30° lateral, and 30° medial directions. According to the results of the present study, the peak lateral center of pressure shift decreased in forward direction compared to that in other directions in both groups. Also, it was found that the peak lateral center of pressure shift and the vertical center of mass velocity decreased significantly in chronic ankle instability patients, as compared with those of the healthy individuals. According to the results of the present study, it seems that chronic ankle instability patients modulate the anticipatory postural adjustment phase of gait initiation, compared with healthy control group, in order to maintain postural stability. These changes were observed in different directions, too. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  3. Gain modulation of the middle latency cutaneous reflex in patients with chronic joint instability after ankle sprain.

    PubMed

    Futatsubashi, Genki; Sasada, Shusaku; Tazoe, Toshiki; Komiyama, Tomoyoshi

    2013-07-01

    To investigate the neural alteration of reflex pathways arising from cutaneous afferents in patients with chronic ankle instability. Cutaneous reflexes were elicited by applying non-noxious electrical stimulation to the sural nerve of subjects with chronic ankle instability (n=17) and control subjects (n=17) while sitting. Electromyographic (EMG) signals were recorded from each ankle and thigh muscle. The middle latency response (MLR; latency: 70-120 ms) component was analyzed. In the peroneus longus (PL) and vastus lateralis (VL) muscles, linear regression analyses between the magnitude of the inhibitory MLR and background EMG activity showed that, compared to the uninjured side and the control subjects, the gain of the suppressive MLR was increased in the injured side. This was also confirmed by the pooled data for both groups. The degree of MLR alteration was significantly correlated to that of chronic ankle instability in the PL. The excitability of middle latency cutaneous reflexes in the PL and VL is modulated in subjects with chronic ankle instability. Cutaneous reflexes may be potential tools to investigate the pathological state of the neural system that controls the lower limbs in subjects with chronic ankle instability. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.

    PubMed

    Gotoda, Hiroshi; Amano, Masahito; Miyano, Takaya; Ikawa, Takuya; Maki, Koshiro; Tachibana, Shigeru

    2012-12-01

    We characterize complexities in combustion instability in a lean premixed gas-turbine model combustor by nonlinear time series analysis to evaluate permutation entropy, fractal dimensions, and short-term predictability. The dynamic behavior in combustion instability near lean blowout exhibits a self-affine structure and is ascribed to fractional Brownian motion. It undergoes chaos by the onset of combustion oscillations with slow amplitude modulation. Our results indicate that nonlinear time series analysis is capable of characterizing complexities in combustion instability close to lean blowout.

  5. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    PubMed Central

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-01-01

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508

  6. Dust ion acoustic freak waves in a plasma with two temperature electrons featuring Tsallis distribution

    NASA Astrophysics Data System (ADS)

    Chahal, Balwinder Singh; Singh, Manpreet; Shalini; Saini, N. S.

    2018-02-01

    We present an investigation for the nonlinear dust ion acoustic wave modulation in a plasma composed of charged dust grains, two temperature (cold and hot) nonextensive electrons and ions. For this purpose, the multiscale reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave number, which indicates where the modulational instability sets in, has been determined precisely for various regimes. The influence of plasma background nonextensivity on the growth rate of modulational instability is discussed. The modulated wavepackets in the form of either bright or dark type envelope solitons may exist. Formation of rogue waves from bright envelope solitons is also discussed. The investigation indicates that the structural characteristics of these envelope excitations (width, amplitude) are significantly affected by nonextensivity, dust concentration, cold electron-ion density ratio and temperature ratio.

  7. Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines

    NASA Astrophysics Data System (ADS)

    Eric, Tala-Tebue; Aurelien, Kenfack-Jiotsa; Marius Hervé, Tatchou-Ntemfack; Timoléon Crépin, Kofané

    2013-07-01

    In this work, we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines. Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch. Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing. On one hand, the difference between the two lines induced the fission for only one mode of propagation. This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton, leading to a possible increasing of the bit rate. On the other hand, the dissymmetry of the two lines converts the network into a good amplifier for the ω_ mode which corresponds to the regime admitting low frequencies.

  8. Field experiences with rub induced instabilities in turbomachinery

    NASA Technical Reports Server (NTRS)

    Goggin, D. G.

    1982-01-01

    Rotordynamic instability problems are not uncommon in high speed industrial turbomachinery. One type of the many destabilizing forces that can occur is caused by a rub between the stationary and rotating parts. Descriptions are given of several cases of rub induced instabilities. Included in the descriptions are the conditions at onset, the whirl frequency and direction, and the steps taken to eliminate the problem.

  9. Observation and analysis of in vivo vocal fold tissue instabilities produced by nonlinear source-filter coupling: A case studya

    PubMed Central

    Zañartu, Matías; Mehta, Daryush D.; Ho, Julio C.; Wodicka, George R.; Hillman, Robert E.

    2011-01-01

    Different source-related factors can lead to vocal fold instabilities and bifurcations referred to as voice breaks. Nonlinear coupling in phonation suggests that changes in acoustic loading can also be responsible for this unstable behavior. However, no in vivo visualization of tissue motion during these acoustically induced instabilities has been reported. Simultaneous recordings of laryngeal high-speed videoendoscopy, acoustics, aerodynamics, electroglottography, and neck skin acceleration are obtained from a participant consistently exhibiting voice breaks during pitch glide maneuvers. Results suggest that acoustically induced and source-induced instabilities can be distinguished at the tissue level. Differences in vibratory patterns are described through kymography and phonovibrography; measures of glottal area, open∕speed quotient, and amplitude∕phase asymmetry; and empirical orthogonal function decomposition. Acoustically induced tissue instabilities appear abruptly and exhibit irregular vocal fold motion after the bifurcation point, whereas source-induced ones show a smoother transition. These observations are also reflected in the acoustic and acceleration signals. Added aperiodicity is observed after the acoustically induced break, and harmonic changes appear prior to the bifurcation for the source-induced break. Both types of breaks appear to be subcritical bifurcations due to the presence of hysteresis and amplitude changes after the frequency jumps. These results are consistent with previous studies and the nonlinear source-filter coupling theory. PMID:21303014

  10. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  11. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  12. Modulation instability initiated high power all-fiber supercontinuum lasers and their applications

    NASA Astrophysics Data System (ADS)

    Alexander, Vinay V.; Kulkarni, Ojas P.; Kumar, Malay; Xia, Chenan; Islam, Mohammed N.; Terry, Fred L.; Welsh, Michael J.; Ke, Kevin; Freeman, Michael J.; Neelakandan, Manickam; Chan, Allan

    2012-09-01

    High average power, all-fiber integrated, broadband supercontinuum (SC) sources are demonstrated. Architecture for SC generation using amplified picosecond/nanosecond laser diode (LD) pulses followed by modulation instability (MI) induced pulse breakup is presented and used to demonstrate SC sources from the mid-IR to the visible wavelengths. In addition to the simplicity in implementation, this architecture allows scaling up of the SC average power by increasing the pulse repetition rate and the corresponding pump power, while keeping the peak power, and, hence, the spectral extent approximately constant. Using this process, we demonstrate >10 W in a mid-IR SC extending from ˜0.8 to 4 μm, >5 W in a near IR SC extending from ˜0.8 to 2.8 μm, and >0.7 W in a visible SC extending from ˜0.45 to 1.2 μm. SC modulation capability is also demonstrated in a mid-IR SC laser with ˜3.9 W in an SC extending from ˜0.8 to 4.3 μm. The entire system and SC output in this case is modulated by a 500 Hz square wave at 50% duty cycle without any external chopping or modulation. We also explore the use of thulium doped fiber amplifier (TDFA) stages for mid-IR SC generation. In addition to the higher pump to signal conversion efficiency demonstrated in TDFAs compared to erbium/ytterbium doped fiber amplifier (EYFA), the shifting of the SC pump from ˜1.5 to ˜2 μm is pursued with an attempt to generate a longer extending SC into the mid-IR. We demonstrate ˜2.5 times higher optical conversion efficiency from pump to SC generation in wavelengths beyond 3.8 μm in the TDFA versus the EYFA based SC systems. The TDFA SC spectrum extends from ˜1.9 to 4.5 μm with ˜2.6 W at 50% modulation with a 250 Hz square wave. A variety of applications in defense, health care and metrology are also demonstrated using the SC laser systems presented in this paper.

  13. 280  GHz dark soliton fiber laser.

    PubMed

    Song, Y F; Guo, J; Zhao, L M; Shen, D Y; Tang, D Y

    2014-06-15

    We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as ∼280  GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.

  14. Coherent optical frequency transfer over 50-km physical distance using a 120-km-long installed telecom fiber network.

    PubMed

    Musha, Mitsuru; Hong, Feng-Lei; Nakagawa, Ken'ichi; Ueda, Ken-ichi

    2008-10-13

    Optical frequency at 1542 nm was coherently transferred over a 120-km-long installed telecom fiber network between two cities (Tsukuba and Tokyo) in Japan separated by more than 50 km. The phase noise induced by the fiber length fluctuations was actively reduced by using a fiber stretcher and an acousto-optic modulator. The fractional frequency instability of the one-way transmitted light was reduced down to less than 8.0 x 10(-16) at an averaging time of 1s, which is limited by the theoretical limit deduced from the length and the intrinsic noise of the fiber.

  15. A new method to calculate the beat-to-beat instability of QT duration in drug-induced long QT in anesthetized dogs.

    PubMed

    van der Linde, H; Van de Water, A; Loots, W; Van Deuren, B; Lu, H R; Van Ammel, K; Peeters, M; Gallacher, D J

    2005-01-01

    Instability of QT duration is a marker to predict Torsade de Pointes (TdP) associated with both congenital and drug-induced long QT syndrome. We describe a new method for the quantification of instability of repolarization. Female, adult beagle dogs anesthetized with a potent morphinomimetic were treated with either solvent (n=7) or dofetilide (n=7). Poincaré plots with QT(n) versus QT(n+1) were constructed to visualize the beat-to-beat variation in QT intervals from the lead II ECG. Short-term instability (STI), long-term instability (LTI) and total instability (TI) were quantified by calculating the distances of 30 consecutive data-points from the x and y-coordinate to the "centre of gravity" of the data cluster. Dofetilide at 0.0025 to 0.04 mg/kg i.v. (plasma concentrations of 4+/-0.6 to 41+/-2.7 ng/ml), dose-dependently prolonged QT and QTcV (at 0.04 mg/kg i.v.: QT: 280+/-ms versus 236+/-5 ms with solvent; p<0.05 and QTcV: 290+/-9 ms versus 252+/-4 ms with solvent; p<0.05). Concomitantly, the compound induced an increase in the instability parameters in a similar dose-dependent manner (at 0.04 mg/kg i.v.: TI: 6.8+/-0.9 ms versus 1.7+/-0.3 ms; p<0.05, LTI: 3.6+/-0.5 ms versus 1.0+/-0.2 ms; p<0.05 and STI: 4.2+/-0.6 ms versus 1.0+/-0.2 ms; p<0.05). The increases induced by dofetilide were associated with a high incidence of early afterdepolarizations (EADs) in the endocardial monophasic action potential (in 6 out of the 7 compound-treated animals versus 0 out of the 7 solvent animals; p<0.05). Quantification of beat-to-beat QT instability by our method clearly detects changes in short-term, long-term and total instability induced by dofetilide, already at pre-arrhythmic doses. Dofetilide administration to anesthetized dogs prolongs ventricular repolarization, concomitantly increases beat-to-beat QT instability and induces early after depolarizations (EADs). As such, the use of these parameters in this in vivo model shows clear potential for risk identification in cardiovascular safety assessment.

  16. Collective Beam Instabilities in the Taiwan Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex W.

    2002-08-12

    The storage ring at Taiwan Light Source has experienced a strong collective instability since 1994. Various cures have been attempted to suppress this instability, including the use of damping antenna, tunable rf plungers, different filling patterns, and rf gap voltage modulation. So far these cures have improved the beam intensity, but the operation remains to be limited by the instability. The dominant phenomenon is the longitudinal coupled bunch instability. The major source of longitudinal impedance is from rf cavities of Doris type. The high-order modes of the cavity were numerically analyzed using a 3-D code GdfidL. The correlation of themore » observed phenomenon in user operation with high-order modes of rf cavities will be presented. Results of various attempts to suppress beam instabilities will be summarized. Proposed cures for beam instabilities will be discussed.« less

  17. Nonlinear Stage of Modulation Instability for a Fifth-Order Nonlinear Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Jia, Hui-Xian; Shan, Dong-Ming

    2017-10-01

    In this article, a fifth-order nonlinear Schrödinger equation, which can be used to characterise the solitons in the optical fibre and inhomogeneous Heisenberg ferromagnetic spin system, has been investigated. Akhmediev breather, Kuzentsov soliton, and generalised soliton have all been attained via the Darbox transformation. Propagation and interaction for three-type breathers have been studied: the types of breather are determined by the module and complex angle of parameter ξ; interaction between Akhmediev breather and generalised soliton displays a phase shift, whereas the others do not. Modulation instability of the generalised solitons have been analysed: a small perturbation can develop into a rogue wave, which is consistent with the results of rogue wave solutions.

  18. Direct and indirect roles of RECQL4 in modulating base excision repair capacity

    PubMed Central

    Schurman, Shepherd H.; Hedayati, Mohammad; Wang, ZhengMing; Singh, Dharmendra K.; Speina, Elzbieta; Zhang, Yongqing; Becker, Kevin; Macris, Margaret; Sung, Patrick; Wilson, David M.; Croteau, Deborah L.; Bohr, Vilhelm A.

    2009-01-01

    RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund–Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show that primary RTS and RECQL4 siRNA knockdown human fibroblasts accumulate more H2O2-induced DNA strand breaks than control cells, suggesting that RECQL4 may stimulate repair of H2O2-induced DNA damage. RTS primary fibroblasts also accumulate more XRCC1 foci than control cells in response to endogenous or induced oxidative stress and have a high basal level of endogenous formamidopyrimidines. In cells treated with H2O2, RECQL4 co-localizes with APE1, and FEN1, key participants in base excision repair. Biochemical experiments indicate that RECQL4 specifically stimulates the apurinic endonuclease activity of APE1, the DNA strand displacement activity of DNA polymerase β, and incision of a 1- or 10-nucleotide flap DNA substrate by Flap Endonuclease I. Additionally, RTS cells display an upregulation of BER pathway genes and fail to respond like normal cells to oxidative stress. The data herein support a model in which RECQL4 regulates both directly and indirectly base excision repair capacity. PMID:19567405

  19. 2D instabilities of surface gravity waves on a linear shear current

    NASA Astrophysics Data System (ADS)

    Francius, Marc; Kharif, Christian

    2016-04-01

    Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437

  20. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  1. Machining of Two-Dimensional Sinusoidal Defects on Ignition-Type Capsules to Study Hydrodynamic Instability at the National Ignition Facility

    DOE PAGES

    Giraldez, E. M.; Hoppe Jr., M. L.; Hoover, D. E.; ...

    2016-07-07

    Hydrodynamic instability growth and its effects on capsule implosion performance are being studied at the National Ignition Facility (NIF). Experimental results have shown that low-mode instabilities are the primary culprit for yield degradation. Ignition type capsules with machined 2D sinusoidal defects were used to measure low-mode hydrodynamic instability growth in the acceleration phase of the capsule implosion. The capsules were imploded using ignition-relevant laser pulses and the ablation-front modulation growth was measured using x-ray radiography. The experimentally measured growth was in good agreement with simulations.

  2. Rogue wave modes for a derivative nonlinear Schrödinger model.

    PubMed

    Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin

    2014-03-01

    Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.

  3. Fluctuations and correlations in modulation instability

    NASA Astrophysics Data System (ADS)

    Solli, D. R.; Herink, G.; Jalali, B.; Ropers, C.

    2012-07-01

    Stochastically driven nonlinear processes are responsible for spontaneous pattern formation and instabilities in numerous natural and artificial systems, including well-known examples such as sand ripples, cloud formations, water waves, animal pigmentation and heart rhythms. Technologically, a type of such self-amplification drives free-electron lasers and optical supercontinuum sources whose radiation qualities, however, suffer from the stochastic origins. Through time-resolved observations, we identify intrinsic properties of these fluctuations that are hidden in ensemble measurements. We acquire single-shot spectra of modulation instability produced by laser pulses in glass fibre at megahertz real-time capture rates. The temporally confined nature of the gain physically limits the number of amplified modes, which form an antibunched arrangement as identified from a statistical analysis of the data. These dynamics provide an example of pattern competition and interaction in confined nonlinear systems.

  4. Fingering instabilities and pattern formation in a two-component dipolar Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Xi, Kui-Tian; Byrnes, Tim; Saito, Hiroki

    2018-02-01

    We study fingering instabilities and pattern formation at the interface of an oppositely polarized two-component Bose-Einstein condensate with strong dipole-dipole interactions in three dimensions. It is shown that the rotational symmetry is spontaneously broken by fingering instability when the dipole-dipole interactions are strengthened. Frog-shaped and mushroom-shaped patterns emerge during the dynamics due to the dipolar interactions. We also demonstrate the spontaneous density modulation and domain growth of a two-component dipolar BEC in the dynamics. Bogoliubov analyses in the two-dimensional approximation are performed, and the characteristic lengths of the domains are estimated analytically. Patterns resembling those in magnetic classical fluids are modulated when the number ratio of atoms, the trap ratio of the external potential, or tilted polarization with respect to the z direction is varied.

  5. Modulation instability and dissipative rogue waves in ion-beam plasma: Roles of ionization, recombination, and electron attachment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shimin, E-mail: gsm861@126.com; Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn

    The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numericallymore » investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed.« less

  6. Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability

    PubMed Central

    Reddy, Kaalak; Schmidt, Monika H.M.; Geist, Jaimie M.; Thakkar, Neha P.; Panigrahi, Gagan B.; Wang, Yuh-Hwa; Pearson, Christopher E.

    2014-01-01

    R-loops, transcriptionally-induced RNA:DNA hybrids, occurring at repeat tracts (CTG)n, (CAG)n, (CGG)n, (CCG)n and (GAA)n, are associated with diseases including myotonic dystrophy, Huntington's disease, fragile X and Friedreich's ataxia. Many of these repeats are bidirectionally transcribed, allowing for single- and double-R-loop configurations, where either or both DNA strands may be RNA-bound. R-loops can trigger repeat instability at (CTG)·(CAG) repeats, but the mechanism of this is unclear. We demonstrate R-loop-mediated instability through processing of R-loops by HeLa and human neuron-like cell extracts. Double-R-loops induced greater instability than single-R-loops. Pre-treatment with RNase H only partially suppressed instability, supporting a model in which R-loops directly generate instability by aberrant processing, or via slipped-DNA formation upon RNA removal and its subsequent aberrant processing. Slipped-DNAs were observed to form following removal of the RNA from R-loops. Since transcriptionally-induced R-loops can occur in the absence of DNA replication, R-loop processing may be a source of repeat instability in the brain. Double-R-loop formation and processing to instability was extended to the expanded C9orf72 (GGGGCC)·(GGCCCC) repeats, known to cause amyotrophic lateral sclerosis and frontotemporal dementia, providing the first suggestion through which these repeats may become unstable. These findings provide a mechanistic basis for R-loop-mediated instability at disease-associated repeats. PMID:25147206

  7. Radiation-induced chromosomal instability in BALB/c and C57BL/6 mice: the difference is as clear as black and white

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Cornforth, M. N.; Ullrich, R. L.

    1997-01-01

    Genomic instability has been proposed to be the earliest step in radiation-induced tumorigenesis. It follows from this hypothesis that individuals highly susceptible to induction of tumors by radiation should exhibit enhanced radiation-induced instability. BALB/c white mice are considerably more sensitive to radiation-induced mammary cancer than C57BL/6 black mice. In this study, primary mammary epithelial cell cultures from these two strains were examined for the "delayed" appearance of chromosomal aberrations after exposure to 137Cs gamma radiation, as a measure of radiation-induced genomic instability. As expected, actively dividing cultures from both strains showed a rapid decline of initial asymmetrical aberrations with time postirradiation. However, after 16 population doublings, cells from BALB/c mice exhibited a marked increase in the frequency of chromatid-type breaks and gaps which remained elevated throughout the time course of the experiment (28 doublings). No such effect was observed for the cells of C57BL/6 mice; after the rapid clearance of initial aberrations, the frequency of chromatid-type aberrations in the irradiated population remained at or near those of nonirradiated controls. These results demonstrate a correlation between the latent expression of chromosomal damage in vitro and susceptibility for mammary tumors, and provide further support for the central role of radiation-induced instability in the process of tumorigenesis.

  8. Evidence for Langmuir Envelope Solitons in Solar Type III Burst Source Regions

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; Goldstein, M. L.; MacDowall, R. J.; Papadopoulos, K.; Stone, R. G.

    1998-01-01

    We present observational evidence for the generation of Langmuir envelope solitons in the source regions of solar type III radio bursts. The solitons appear to be formed by electron beams which excite either the modulational instability or oscillating two-stream instability (OTSI). Millisecond data from the Ulysses Unified Radio and Plasma Wave Experiment (URAP) show that Langmuir waves associated with type III bursts occur as broad intense peaks with time scales ranging from 15 to 90 milliseconds (6 - 27 km). These broad field structures have the properties expected of Langmuir envelope solitons, viz.: the normalized peak energy densities, W(sub L)/n(sub e)T(sub e) approximately 10(exp -5), are well above the modulational instability threshold; the spatial scales, L, which range from 1 - 5 Langmuir wavelengths, show a high degree of inverse correlation with (W(sub L)/n(sub e)T(sub e))(sup 1/2); and the observed widths of these broad peaks agree well with the predicted widths of envelope solitons. We show that the orientation of the Langmuir field structures is random with respect to the ambient magnetic field, indicating that they are probably isotropic structures that have evolved from initially pancake-like solitons. These observations suggest that strong turbulence processes, such as the modulational instability or the OTSI, stabilize the electron beams that produce type III bursts.

  9. Active Suppression of Instabilities in Engine Combustors

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    A method of feedback control has been proposed as a means of suppressing thermo-acoustic instabilities in a liquid- fueled combustor of a type used in an aircraft engine. The basic principle of the method is one of (1) sensing combustor pressure oscillations associated with instabilities and (2) modulating the rate of flow of fuel to the combustor with a control phase that is chosen adaptively so that the pressure oscillations caused by the modulation oppose the sensed pressure oscillations. The need for this method arises because of the planned introduction of advanced, lean-burning aircraft gas turbine engines, which promise to operate with higher efficiencies and to emit smaller quantities of nitrogen oxides, relative to those of present aircraft engines. Unfortunately, the advanced engines are more susceptible to thermoacoustic instabilities. These instabilities are hard to control because they include large dead-time phase shifts, wide-band noise characterized by amplitudes that are large relative to those of the instabilities, exponential growth of the instabilities, random net phase walks, and amplitude fluctuations. In this method (see figure), the output of a combustion-pressure sensor would be wide-band-pass filtered and then further processed to generate a control signal that would be applied to a fast-actuation valve to modulate the flow of fuel. Initially, the controller would rapidly take large phase steps in order to home in, within a fraction of a second, to a favorable phase region within which the instability would be reduced. Then the controller would restrict itself to operate within this phase region and would further restrict itself to operate within a region of stability, as long as the power in the instability signal was decreasing. In the phase-shifting scheme of this method, the phase of the control vector would be made to continuously bounce back and forth from one boundary of an effective stability region to the other. Computationally, this scheme would be implemented by the adaptive sliding phaser averaged control (ASPAC) algorithm, which requires very little detailed knowledge of the combustor dynamics. In the ASPAC algorithm, the power of the instability signal would be calculated from the wide-bandpass- filtered combustion-pressure signal and averaged over a period of time (typically of the order of a few hundredths of a second) corresponding to the controller updating cycle [not to be confused with the controller sampling cycle, which would be much shorter (typically of the order of 10(exp -4) second)].

  10. Vector rogue waves and baseband modulation instability in the defocusing regime.

    PubMed

    Baronio, Fabio; Conforti, Matteo; Degasperis, Antonio; Lombardo, Sara; Onorato, Miguel; Wabnitz, Stefan

    2014-07-18

    We report and discuss analytical solutions of the vector nonlinear Schrödinger equation that describe rogue waves in the defocusing regime. This family of solutions includes bright-dark and dark-dark rogue waves. The link between modulational instability (MI) and rogue waves is displayed by showing that only a peculiar kind of MI, namely baseband MI, can sustain rogue-wave formation. The existence of vector rogue waves in the defocusing regime is expected to be a crucial progress in explaining extreme waves in a variety of physical scenarios described by multicomponent systems, from oceanography to optics and plasma physics.

  11. Nonlinear mechanism for the generation of electromagnetic fields in a magnetized plasma by the beatings of waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburjania, G. D.; Machabeli, G. Z.; Kharshiladze, O. A.

    2006-07-15

    The modulational instability in a plasma in a strong constant external magnetic field is considered. The plasmon condensate is modulated not by conventional low-frequency ion sound but by the beatings of two high-frequency transverse electromagnetic waves propagating along the magnetic field. The instability reduces the spatial scales of Langmuir turbulence along the external magnetic field and generates electromagnetic fields. It is shown that, for a pump wave with a sufficiently large amplitude, the effect described in the present paper can be a dominant nonlinear process.

  12. Modulation instability in silicon photonic nanowires

    NASA Astrophysics Data System (ADS)

    Panoiu, Nicolae C.; Chen, Xiaogang; Osgood, Richard M., Jr.

    2006-12-01

    We demonstrate that strong modulation instability (MI) of copropagating optical waves can be observed in Si photonic nanowires with a length of only a few millimeters. We consider two distinct cases, namely one in which one wave propagates in the normal group-velocity dispersion (GVD) region and the other one experiences anomalous GVD, and a second case in which both waves propagate in the anomalous GVD region. In both cases we show that, for comparable optical powers, the peak value of the MI gain spectrum is 2 to 3 orders of magnitude larger than that achieved in optical fibers.

  13. Unstable Behavior of Lasers and Other Optical Systems.

    DTIC Science & Technology

    1987-11-27

    Isaacs, R.S. Gioggia, S.P. Adams, L.M. Narducci, L.A. Lugiato, Optical Instabilities, R.W. Boyd, M.G. Raymer , L.M. Narducci, Eds. (Cambridge...Instabilities, R.W. Boyd, M.G. Raymer , L.M. Narducci, Eds. (Cambridge University" Press, Cambridge, 1986), p. 34. "The Effect of Modulation in a Bistable System...Books "* " "OPTICAL INSTABILITIES", edited by R.W. Boyd, M.G. Raymer , and L.M. Narducci, Cambridge University Press, Cambridge, 1986. S P.-• 58

  14. Systems Characterization of Combustor Instabilities With Controls Design Emphasis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2004-01-01

    This effort performed test data analysis in order to characterize the general behavior of combustor instabilities with emphasis on controls design. The analysis is performed on data obtained from two configurations of a laboratory combustor rig and from a developmental aero-engine combustor. The study has characterized several dynamic behaviors associated with combustor instabilities. These are: frequency and phase randomness, amplitude modulations, net random phase walks, random noise, exponential growth and intra-harmonic couplings. Finally, the very cause of combustor instabilities was explored and it could be attributed to a more general source-load type impedance interaction that includes the thermo-acoustic coupling. Performing these characterizations on different combustors allows for more accurate identification of the cause of these phenomena and their effect on instability.

  15. Modulation instability in high power laser amplifiers.

    PubMed

    Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P

    2010-01-18

    The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.

  16. Composite rogue waves and modulation instability for the three-coupled Hirota system in an optical fiber

    NASA Astrophysics Data System (ADS)

    Chai, Han-Peng; Tian, Bo; Chai, Jun; Du, Zhong

    2017-10-01

    We investigate the three-coupled Hirota system, which is applied to model the long distance communication and ultrafast signal routing systems governing the propagation of light pulses. With the aid of the Darboux dressing transformation, composite rogue wave solutions are derived. Spatial-temporal structures, including the four-petaled structure for the three-coupled Hirota system, are exhibited. We find that the four-petaled rogue waves occur in two of the three components, whereas the eye-shaped rogue wave occurs in the other one. The composite rogue waves can split up into two or three single rogue waves. The corresponding conditions for the occurrence of such phenomena are discussed and presented. We find that the relative position of every single rogue wave is influenced by the ratios of certain parameters. Besides, the linear instability analysis is performed, and our results agree with those from the baseband modulation instability theory.

  17. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability.

    PubMed

    Sansregret, Laurent; Patterson, James O; Dewhurst, Sally; López-García, Carlos; Koch, André; McGranahan, Nicholas; Chao, William Chong Hang; Barry, David J; Rowan, Andrew; Instrell, Rachael; Horswell, Stuart; Way, Michael; Howell, Michael; Singleton, Martin R; Medema, René H; Nurse, Paul; Petronczki, Mark; Swanton, Charles

    2017-02-01

    Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115. ©2017 American Association for Cancer Research.

  18. Modeling of two-phase flow instabilities during startup transients utilizing RAMONA-4B methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paniagua, J.; Rohatgi, U.S.; Prasad, V.

    1996-10-01

    RAMONA-4B code is currently under development for simulating thermal hydraulic instabilities that can occur in Boiling Water Reactors (BWRs) and the Simplified Boiling Water Reactor (SBWR). As one of the missions of RAMONA-4B is to simulate SBWR startup transients, where geysering or condensation-induced instability may be encountered, the code needs to be assessed for this application. This paper outlines the results of the assessments of the current version of RAMONA-4B and the modifications necessary for simulating the geysering or condensation-induced instability. The test selected for assessment are the geysering tests performed by Prof Aritomi (1993).

  19. Mitigation of radiation-pressure-induced angular instability of a Fabry-Perot cavity consisting of suspended mirrors

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.

  20. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I

    NASA Astrophysics Data System (ADS)

    Zhou, Ye

    2017-12-01

    Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. The objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin-Helmholtz (KH) instabilities. Historical efforts to study these instabilities are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion. Early experimental efforts are described, and analytical attempts to model the linear, and nonlinear regimes of these mixing layers are examined. These analytical efforts include models for both single-mode and multi-mode initial conditions, as well as multi-scale models to describe the evolution. Comparisons of these models and theories to experimental and simulation studies are then presented. Next, attention is paid to the issue of the influence of stabilizing mechanisms (e.g., viscosity, surface tension, and diffuse interface) on the evolution of these instabilities, as well as the limitations and successes of numerical methods. Efforts to study these instabilities and mixing layers using group-theoretic ideas, as well as more formal notions of turbulence cascade processes during the later stages of the induced mixing layers, are inspected. A key element of the review is the discussion of the late-time self-similar scaling for the RT and RM growth factors, α and θ. These parameters are influenced by the initial conditions and much of the observed variation can be explained by this. In some cases, these instabilities induced flows can transition to turbulence. Both the spatial and temporal criteria to achieve the transition to turbulence have been examined. Finally, a description of the energy-containing scales in the mixing layers, including energy "injection" and cascade processes are presented in greater detail. Part II of this review is designed to provide a much broader and in-depth understanding of this critical area of research (Zhou, 2017. Physics Reports, 723-725, 1-160).

  1. Modeling Unsteady Cavitation and Dynamic Loads in Turbopumps

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald; Dash, Sanford M.

    2009-01-01

    A computational fluid dynamics (CFD) model that includes representations of effects of unsteady cavitation and associated dynamic loads has been developed to increase the accuracy of simulations of the performances of turbopumps. Although the model was originally intended to serve as a means of analyzing preliminary designs of turbopumps that supply cryogenic propellant liquids to rocket engines, the model could also be applied to turbopumping of other liquids: this can be considered to have been already demonstrated, in that the validation of the model was performed by comparing results of simulations performed by use of the model with results of sub-scale experiments in water. The need for this or a similar model arises as follows: Cavitation instabilities in a turbopump are generated as inlet pressure drops and vapor cavities grow on inducer blades, eventually becoming unsteady. The unsteady vapor cavities lead to rotation cavitation, in which the cavities detach from the blades and become part of a fluid mass that rotates relative to the inducer, thereby generating a fluctuating load. Other instabilities (e.g., surge instabilities) can couple with cavitation instabilities, thereby compounding the deleterious effects of unsteadiness on other components of the fluid-handling system of which the turbopump is a part and thereby, further, adversely affecting the mechanical integrity and safety of the system. Therefore, an ability to predict cavitation- instability-induced dynamic pressure loads on the blades, the shaft, and other pump parts would be valuable in helping to quantify safe margins of inducer operation and in contributing to understanding of design compromises. Prior CFD models do not afford this ability. Heretofore, the primary parameter used in quantifying cavitation performance of a turbopump inducer has been the critical suction specific speed at which head breakdown occurs. This parameter is a mean quantity calculated on the basis of assumed steady-state operation of the inducer; it does not account for dynamic pressure loads associated with unsteady flow caused by instabilities. Because cavitation instabilities occur well before mean breakdown in inducers, engineers have, until now, found it necessary to use conservative factors of safety when analyzing the results of numerical simulations of flows in turbopumps.

  2. Opposite Roles for p38MAPK-Driven Responses and Reactive Oxygen Species in the Persistence and Resolution of Radiation-Induced Genomic Instability

    PubMed Central

    Werner, Erica; Wang, Huichen; Doetsch, Paul W.

    2014-01-01

    We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419

  3. Genomic instability--an evolving hallmark of cancer.

    PubMed

    Negrini, Simona; Gorgoulis, Vassilis G; Halazonetis, Thanos D

    2010-03-01

    Genomic instability is a characteristic of most cancers. In hereditary cancers, genomic instability results from mutations in DNA repair genes and drives cancer development, as predicted by the mutator hypothesis. In sporadic (non-hereditary) cancers the molecular basis of genomic instability remains unclear, but recent high-throughput sequencing studies suggest that mutations in DNA repair genes are infrequent before therapy, arguing against the mutator hypothesis for these cancers. Instead, the mutation patterns of the tumour suppressor TP53 (which encodes p53), ataxia telangiectasia mutated (ATM) and cyclin-dependent kinase inhibitor 2A (CDKN2A; which encodes p16INK4A and p14ARF) support the oncogene-induced DNA replication stress model, which attributes genomic instability and TP53 and ATM mutations to oncogene-induced DNA damage.

  4. Latent instabilities in metallic LaNiO₃ films by strain control of Fermi-surface topology

    DOE PAGES

    Yoo, Hyang Keun; Hyun, Seung Ill; Moreschini, Luca; ...

    2015-03-04

    Strain control is one of the most promising avenues to search for new emergent phenomena in transition metal-oxide films. Here, we investigate the strain-induced changes of electronic structures in strongly correlated LaNiO₃ (LNO) films, using angle-resolved photoemission spectroscopy and the dynamical mean-field theory. The strongly renormalized e g-orbital bands are systematically rearranged by misfit strain to change its fermiology. As tensile strain increases, the hole pocket centered at the A point elongates along the k z-axis and seems to become open, thus changing Fermi-surface (FS) topology from three- to quasi-two-dimensional. Concomitantly, the FS shape becomes flattened to enhance FS nesting.more » A FS superstructure withQ₁ = (1/2,1/2,1/2) appears in all LNO films, while a tensile-strained LNO film has an additional Q₂ = (1/4,1/4,1/4) modulation, indicating that some instabilities are present in metallic LNO films. Charge disproportionation and spin-density-wave fluctuations observed in other nickelates might be their most probable origins« less

  5. Numerical 3D Hydrodynamics Study of Gravitational Instabilities in a Circumbinary Disk

    NASA Astrophysics Data System (ADS)

    Desai, Karna Mahadev; Steiman-Cameron, Thomas Y.; Michael, Scott; Cai, Kai; Durisen, Richard H.

    2016-01-01

    We present a 3D hydrodynamical study of gravitational instabilities (GIs) in a circumbinary protoplanetary disk around a Solar mass star and a brown dwarf companion (0.02 M⊙). GIs can play an important, and at times dominant, role in driving the structural evolution of protoplanetary disks. The reported simulations were performed employing CHYMERA, a radiative 3D hydrodynamics code developed by the Indiana University Hydrodynamics Group. The simulations include disk self-gravity and radiative cooling governed by realistic dust opacities. We examine the role of GIs in modulating the thermodynamic state of the disks, and determine the strengths of GI-induced density waves, non-axisymmetric density structures, radial mass transport, and gravitational torques. The principal goal of this study is to determine how the presence of the companion affects the nature and strength of GIs. Results are compared with a parallel simulation of a protoplanetary disk without the presence of the brown dwarf binary companion. We detect no fragmentation in either disk. A persistent vortex forms in the inner region of both disks. The vortex seems to be stabilized by the presence of the binary companion.

  6. The effect of spin induced magnetization on Jeans instability of viscous and resistive quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.

    2014-03-15

    The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In themore » case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed.« less

  7. Modulation of the Fibularis Longus Hoffmann Reflex and Postural Instability Associated With Chronic Ankle Instability

    PubMed Central

    Kim, Kyung-Min; Hart, Joseph M.; Saliba, Susan A.; Hertel, Jay

    2016-01-01

    Context: Individuals with chronic ankle instability (CAI) present with decreased modulation of the Hoffmann reflex (H-reflex) from a simple to a more challenging task. The neural alteration is associated with impaired postural control, but the relationship has not been investigated in individuals with CAI. Objective: To determine differences in H-reflex modulation and postural control between individuals with or without CAI and to identify if they are correlated in individuals with CAI. Design: Descriptive laboratory study. Setting: Laboratory. Patients or Other Participants: A total of 15 volunteers with CAI (9 males, 6 females; age = 22.6 ± 5.8 years, height = 174.7 ± 8.1 cm, mass = 74.9 ± 12.8 kg) and 15 healthy sex-matched volunteers serving as controls (9 males, 6 females; age = 23.8 ± 5.8 years, height = 171.9 ± 9.9 cm, mass = 68.9 ± 15.5 kg) participated. Intervention(s): Maximum H-reflex (Hmax) and motor wave (Mmax) from the soleus and fibularis longus were recorded while participants lay prone and then stood in unipedal stance. We assessed postural tasks of unipedal stance with participants' eyes closed for 10 seconds using a forceplate. Main Outcome Measure(s): We normalized Hmax to Mmax to obtain Hmax : Mmax ratios for the 2 positions. For each muscle, H-reflex modulation was quantified using the percentage change scores in Hmax : Mmax ratios calculated from prone position to unipedal stance. Center-of-pressure data were used to compute 4 time-to-boundary variables. Separate independent-samples t tests were performed to determine group differences. Pearson product moment correlation coefficients were calculated between the modulation and balance measures in the CAI group. Results: The CAI group presented less H-reflex modulation in the soleus (t26 = −3.77, P = .001) and fibularis longus (t25 = −2.59, P = .02). The mean of the time-to-boundary minima in the anteroposterior direction was lower in the CAI group (t28 = −2.06, P = .048). We observed a correlation (r = 0.578, P = .049) between the fibular longus modulation and mean of time-to-boundary minima in the anteroposterior direction. Conclusions: The strong relationship indicated that, as H-reflex amplitude in unipedal stance was less down modulated, unipedal postural control was more impaired. Given the deficits in H-reflex modulation and postural control in the CAI group, the relationship may provide insights into the neurophysiologic mechanism of postural instability. PMID:27583692

  8. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  9. Instability of a rotating liquid ring

    NASA Astrophysics Data System (ADS)

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  10. Instability of a rotating liquid ring.

    PubMed

    Zhao, Sicheng; Tao, Jianjun

    2013-09-01

    It is shown numerically that a rotating inviscid liquid ring has a temporally oscillating state, where the radius of the ring varies periodically because of the competition between the centrifugal force and the centripetal force caused by the surface tension. Stability analysis reveals that an enlarging or shrinking ring is unstable to a varicose-type mode, which is affected by both the radial velocity and the radius ratio between the cross section and the ring. Furthermore, uniform rotation of a ring leads to a traveling unstable mode, whose frequency is determined by a simple sinuous mode, while the surface shape is modulated by the varicose mode and twisted by the rotation-induced Coriolis force.

  11. Self-Induced Faraday Instability Laser

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Smirnov, S. V.; Staliunas, K.; Churkin, D. V.; Wabnitz, S.

    2018-05-01

    We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.

  12. Self-Induced Faraday Instability Laser.

    PubMed

    Perego, A M; Smirnov, S V; Staliunas, K; Churkin, D V; Wabnitz, S

    2018-05-25

    We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.

  13. Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Isa Aliyu, Aliyu; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the nonlinear Schrödinger equation (NLSE) with group velocity dispersion coefficient and second-order spatio-temporal dispersion coefficient, which arises in photonics and waveguide optics and in optical fibers. The integration algorithm is the sine-Gordon equation method (SGEM). Furthermore, the explicit solutions of the equation are derived by considering the power series solutions (PSS) theory and the convergence of the solutions is guaranteed. Lastly, the modulation instability analysis (MI) is studied based on the standard linear-stability analysis and the MI gain spectrum is obtained.

  14. Improper ferroelectricity: A theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Hardy, J. R.; Ullman, F. G.

    1984-02-01

    A combined theoretical and experimental study has been made of the origins and properties of the improper ferroelectricity associated with structural modulations of non-zero wavelengths. Two classes of materials have been studied: rare earth molybdates (specifically, gadolinium molybdate: GMO), and potassium selenate and its isomorphs. In the former, the modulation is produced by a zone boundary phonon instability, and in the latter by the instability of a phonon of wave vector approximately two-thirds of the way to the zone-boundary. In the second case the initial result is a modulated structure whose repeat distance is not a rational multiple of the basic lattice repeat distance. This result is a modulated polarization which, when the basic modulation locks in to a rational multiple of the lattice spacing, becomes uniform, and improper ferroelectricity results. The origins of these effects have been elucidated by theoretical studies, initially semi-empirical, but subsequently from first-principles. These complemented the experimental work, which primarily used inelastic light scattering, uniaxial stress, and hydrostatic pressure, to probe the balance between the interionic forces through the effects on the phonons and dielectric properties.

  15. Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.

    PubMed

    Gonzalez-Vasconcellos, Iria; Anastasov, Natasa; Sanli-Bonazzi, Bahar; Klymenko, Olena; Atkinson, Michael J; Rosemann, Michael

    2013-07-15

    Germline mutations of the retinoblastoma gene (RB1) predispose to both sporadic and radiation-induced osteosarcoma, tumors characterized by high levels of genomic instability, and activation of alternative lengthening of telomeres. Mice with haploinsufficiency of the Rb1 gene in the osteoblastic lineage reiterate the radiation susceptibility to osteosarcoma seen in patients with germline RB1 mutations. We show that the susceptibility is accompanied by an increase in genomic instability, resulting from Rb1-dependent telomere erosion. Radiation exposure did not accelerate the rate of telomere loss but amplified the genomic instability resulting from the dysfunctional telomeres. These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may potentiate DNA damage-induced carcinogenesis by promoting formation of chromosomal aberrations, rather than simply by affecting cell-cycle control. ©2013 AACR.

  16. Appearance of ionization instability in a low-voltage arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobelevskii, A.V.; Nastoyashchii, A.F.

    1986-09-01

    The conditions for the appearance of the ionization instability in a low-voltage arc are examined. On the basis of the model of a Knudsen arc a criterion is obtained for the appearance of the instability and the possible types of dispersion relations are analyzed. The possibility of ionization instability in a short arc in cesium vapor is discussed. The results of a numerical investigation of the appearance of ionization instability, including the nonlinear stage, in a two-dimensional formulation of the problem are presented. When the fluctuations in the elec tron temperature are in antiphase with the density fluctuations, stable (long-lived)more » two-dimensional structures, which are characterized by a high degree of modulation of the degree of ionization of the gas, can form.« less

  17. How pattern is selected in drift wave turbulence: Role of parallel flow shear

    NASA Astrophysics Data System (ADS)

    Kosuga, Y.

    2017-12-01

    The role of parallel shear flow in the pattern selection problem in drift wave turbulence is discussed. Patterns of interest here are E × B convective cells, which include poloidally symmetric zonal flows and radially elongated streamers. The competition between zonal flow formation and streamer formation is analyzed in the context of modulational instability analysis, with the parallel flow shear as a parameter. For drift wave turbulence with k⊥ρs ≲ O (1 ) and without parallel flow coupling, zonal flows are preferred structures. While increasing the magnitude of parallel flow shear, streamer growth overcomes zonal flow growth. This is because the self-focusing effect of the modulational instability becomes more effective for streamers through density and parallel velocity modulation. As a consequence, the bursty release of free energy may result as the parallel flow shear increases.

  18. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The induction of bystander effects and instabilities may reflect interrelated aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures.

  19. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  20. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  1. Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.

    2013-04-01

    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning.

  2. Constraints on Nonlinear and Stochastic Growth Theories for Type 3 Solar Radio Bursts from the Corona to 1 AU

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1998-01-01

    Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for modulational instability or parametric decay to proceed in type III sources at any heliocentric distance: theories for type III bursts based on modulational instability or parametric decay are therefore not viable in general. In contrast, the constraint on SGT can be satisfied and random phase ES decay can proceed at all heliocentric distances under almost all circumstances. (The contrary circumstances involve unusually slow, broad beams moving through unusually hot regions of the Corona.) The analyses presented here strongly justify extending the existing SGT-based model for interplanetary type III bursts (which includes SGT physics, random phase ES decay, and specific electromagnetic emission mechanisms) into a general theory for type III bursts from the corona to beyond 1 AU. This extended theory enjoys strong theoretical support, explains the characteristics of specific interplanetary type III bursts very well, and can account for the detailed dynamic spectra of type III bursts from the lower corona and solar wind.

  3. Spatio-temporal instabilities for counterpropagating waves in periodic media.

    PubMed

    Haus, Joseph; Soon, Boon Yi; Scalora, Michael; Bloemer, Mark; Bowden, Charles; Sibilia, Concita; Zheltikov, Alexei

    2002-01-28

    Nonlinear evolution of coupled forward and backward fields in a multi-layered film is numerically investigated. We examine the role of longitudinal and transverse modulation instabilities in media of finite length with a homogeneous nonlinear susceptibility c((3)). The numerical solution of the nonlinear equations by a beam-propagation method that handles backward waves is described.

  4. Elliptical Instability of Rotating Von Karman Street

    NASA Astrophysics Data System (ADS)

    Stegner, A.; Pichon, T.; Beunier, M.

    Clouds often reveal a meso-scale vortex shedding in the wake of mountainous islands. Unlike the classical bi-dimensional Von-Karman street, these observed vortex street are affected by the earth rot ation and vertical stratification. Theses effects could induce a selective destabilization of anticyclonic vortices. It is well known that inertial instability (also called centrifugal instability) induce a three- dimensional destabilization of anticyclonic structures when the absolute vorticity is larger than the local Coriolis parameter. However, we have shown, by the mean of laboratory experiments, that it is a different type of instability which is mainly responsible for asymmetric rotating Von-Karman street. A serie of experiments were performed to study the wake of a cylinder in a rotating fluid, at medium Reynolds number and order one Rossby number. We have shown that the vertical structure of unstable anticyclonic vortices is characteristic of an elliptical instability. Besides, unlike the inertial instability, the vertical unstable wavelength depends on the Rossby number.

  5. Second neighbors inducing common frequencies for bright and dark solitons

    NASA Astrophysics Data System (ADS)

    Tala-Tebue, E.; Djoufack, Z. I.; Kenfack-Jiotsa, A.; Kapche-Tagne, F.; Kofané, T. C.

    2017-06-01

    In this work, the dynamics of modulated waves in a modified Noguchi nonlinear electrical transmission line is studied with the contribution of second neighbors. It comes from this analysis that the line is governed by a dissipative nonlinear Schrödinger equation. One observes that the second neighbors counterbalance the effect of the linear capacitor CS in the frequency domains. The second neighbors well influence the line by increasing its bandwidth, its group velocity and the magnitude of the wave during its propagation. In the dispersion curve, we show that there exits a new region for the modulational instability/stability compared to the work of Pelap et al. (Phys. Rev. E 91, 022925 (2015)). The exactness of the analytical studies is accredited by numerical calculations. The most important feature of the new region, i.e. the second neighbors, is that the same frequency allows the use of either a bright soliton or a dark soliton depending on the choice of an appropriated wavelength.

  6. Transition scenario and transition control of the flow over a semi-infinite square leading-edge plate

    NASA Astrophysics Data System (ADS)

    Huang, Yadong; Zhou, Benmou; Tang, Zhaolie; Zhang, Fei

    2017-07-01

    In recent investigations of the flow over a square leading-edge flat plate, elliptic instability and transient growth of perturbations are proposed to explain the turbulent transition mechanism of the separating and reattaching flow reported in early experimental visualizations. An original transition scenario as well as a transition control method is presented by a detailed numerical study in this paper. The transient growth of perturbations in the separation bubble induces the primary instability that causes the 2D unsteady flow consisting of Kelvin-Helmholtz (KH) vortices. The pairing instability of the KH vortices induces the subharmonic secondary instability, and then resonance transition occurs. The streamwise Lorentz force as the control input is applied in the recirculation region where the separation bubble generates. The maximum energy amplification magnitude of perturbations takes a linear attenuation with the interaction number; thus, the primary instability is reduced under control. The interaction number represents the strength of the streamwise Lorentz force relative to the inertial force of the fluid. The reduced primary instability is not strong enough to induce the secondary instability, so the flow is globally stable under control. Three-dimensional direct numerical simulation confirms the results of the linear stability analysis. Although the growth rate of the convectively unstable secondary instability is limited by the flow field scale, the feedback loop of the energy transfer promotes the resonance transition. However, as the separation bubble scale is reduced and the feedback loop is broken by the streamwise Lorentz force, the three-dimensional transition is suppressed and a skin-friction drag reduction is achieved.

  7. Evaluation of Chromosomal Instability in Diabetic Rats Treated with Naringin

    PubMed Central

    A. Bakheet, Saleh; M. Attia, Sabry

    2011-01-01

    We used the bone marrow DNA strand breaks, micronucleus formations, spermatocyte chromosomal aberrations, and sperm characteristic assays to investigate the chromosomal instability in somatic and germinal cells of diabetic rats treated with multiple doses of naringin. The obtained results revealed that naringin was neither cytotoxic nor genotoxic for the rats at all tested doses. Moreover, naringin significantly reduced the diabetes-induced chromosomal instability in somatic and germinal cells in a dose-dependent manner. In addition, diabetes induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation, accumulation of oxidized glutathione, reduction in reduced glutathione, and accumulation of intracellular reactive oxygen species. Treatment with naringin ameliorated these biochemical markers dose-dependently. In conclusion, naringin confers an appealing protective effect against diabetes-induced chromosomal instability towards rat somatic and germinal cells which might be explained partially via diminishing the de novo free radical generation induced by hyperglycemia. Thus, naringin might be a good candidate to reduce genotoxic risk associated with hyperglycemia and may provide decreases in the development of secondary malignancy and abnormal reproductive outcomes risks, which seems especially important for diabetic patients. PMID:21941606

  8. Genomic instability and bystander effects: a paradigm shift in radiation biology?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2002-01-01

    A basic paradigm in radiobiology is that, following exposure to ionizing radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the principal target, are responsible for the radiation's deleterious biological effects. Findings in two rapidly expanding fields of research--radiation-induced genomic instability and bystander effects--have caused us to reevaluate these central tenets. In this article, the potential influence of induced genomic instability and bystander effects on cellular injury after exposure to low-level radiation will be reviewed.

  9. The instability of the spiral wave induced by the deformation of elastic excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong

    2008-09-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites which are selected symmetrically in different cases, such as the condition that the spiral wave coexists with the spiral turbulence, spiral wave without evident deformation, complete instability of the spiral wave (turbulence) and weak deformation of the spiral wave. It is found that more new peaks appear in the power spectrum and the distribution of frequency becomes sparser when the spiral wave encounters instability.

  10. Electrostatic and magnetic instabilities in the transition layer of a collisionless weakly relativistic pair shock

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Bret, A.

    2018-01-01

    Energetic electromagnetic emissions by astrophysical jets like those that are launched during the collapse of a massive star and trigger gamma-ray bursts are partially attributed to relativistic internal shocks. The shocks are mediated in the collisionless plasma of such jets by the filamentation instability of counterstreaming particle beams. The filamentation instability grows fastest only if the beams move at a relativistic relative speed. We model here with a particle-in-cell simulation, the collision of two cold pair clouds at the speed c/2 (c: speed of light). We demonstrate that the two-stream instability outgrows the filamentation instability for this speed and is thus responsible for the shock formation. The incomplete thermalization of the upstream plasma by its quasi-electrostatic waves allows other instabilities to grow. A shock transition layer forms, in which a filamentation instability modulates the plasma far upstream of the shock. The inflowing upstream plasma is progressively heated by a two-stream instability closer to the shock and compressed to the expected downstream density by the Weibel instability. The strong magnetic field due to the latter is confined to a layer 10 electron skin depths wide.

  11. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  12. Enhancement of particle-induced viscous fingering in bidisperse suspensions

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Lee, Sungyon

    2017-11-01

    The novel particle-induced fingering instability is observed when bidisperse particle suspensions displace air in a Hele-Shaw cell. Leading to the instability, we observe that larger particles consistently enrich the fluid-fluid interface at a faster rate than the small particles. This size-dependent enrichment of the interface leads to an earlier onset of the fingering instability for bidisperse suspensions, compared to their monodisperse counterpart. Careful experiments are carried out by either systematically varying the ratio of large to small particles at fixed total concentrations, or by changing the total concentrations while the large particle concentrations are held constant. Experimental results show that the presence of large particle causes the instability to occur at concentrations as much as 5% lower than the pure small particle case. We also discuss the physical mechanism that drives the enrichment and the subsequent instability based on the modified suspension balance model.

  13. Anisotropic emission of neutrino and gravitational-wave signals from rapidly rotating core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Takiwaki, Tomoya; Kotake, Kei

    2018-03-01

    We present analysis on neutrino and GW signals based on three-dimensional (3D) core-collapse supernova simulations of a rapidly rotating 27 M⊙ star. We find a new neutrino signature that is produced by a lighthouse effect where the spinning of strong neutrino emission regions around the rotational axis leads to quasi-periodic modulation in the neutrino signal. Depending on the observer's viewing angle, the time modulation will be clearly detectable in IceCube and the future Hyper-Kamiokande. The GW emission is also anisotropic where the GW signal is emitted, as previously identified, most strongly towards the equator at rotating core-collapse and bounce, and the non-axisymmetric instabilities in the postbounce phase lead to stronger GW emission towards the spin axis. We show that these GW signals can be a target of LIGO-class detectors for a Galactic event. The origin of the postbounce GW emission naturally explains why the peak GW frequency is about twice of the neutrino modulation frequency. We point out that the simultaneous detection of the rotation-induced neutrino and GW signatures could provide a smoking-gun signature of a rapidly rotating proto-neutron star at the birth.

  14. On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.

    PubMed

    Obabko, Aleksandr V; Cassel, Kevin W

    2005-05-15

    Numerical solutions of the flow induced by a thick-core vortex have been obtained using the unsteady, two-dimensional Navier-Stokes equations. The presence of the vortex causes an adverse pressure gradient along the surface, which leads to unsteady separation. The calculations by Brinckman and Walker for a similar flow identify a possible instability, purported to be an inviscid Rayleigh instability, in the region where ejection of near-wall vorticity occurs during the unsteady separation process. In results for a range of Reynolds numbers in the present investigation, the oscillations are also found to occur. However, they can be eliminated with increased grid resolution. Despite this behaviour, the instability may be physical but requires a sufficient amplitude of disturbances to be realized.

  15. Generation of dark and bright spin wave envelope soliton trains through self-modulational instability in magnetic films.

    PubMed

    Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E

    2004-10-08

    The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.

  16. Coherent transition radiation from a self-modulated charged particle beam

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yu, P.; An, W.; Lu, W.; Mori, W. B.

    2012-12-01

    Plasma wakefield accelerator utilizing a TeV proton beam is a promising method to generate a TeV electron beam. However the length of the existing proton beam is too long compared with the proper plasma skin depth. As a result selfmodulation instability takes place after such a long pulse enters into the plasma. The transverse spot size of the long beam changes periodically in the longitudinal direction. Therefor measurement of the coherent transition radiation when the selfmodulated beam leaves the plasma is a possible method to demonstrate the self-modulation instability. In this paper, we analyze the angular spectrum of this coherent transition radiation when the beam comes from plasma to vacuum.

  17. Relativistic laser-plasma interactions in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-04-01

    We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.

  18. Cavity Self-Stabilization and Enhancement of Laser Gyroscopes by (Coupled) Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2006-01-01

    We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the modulation to determine the conditions for cavity self-stabilization and enhanced gyroscopic sensitivity. Hence, we model cavity rotation or instability by an arbitrary AM/FM modulation, and the dispersive element as a phase and amplitude filter. We find that anomalous dispersion may be used to self-stabilize a laser cavity, provided the magnitude of the group index of refraction is smaller than the phase index of refraction in the cavity. The optimal stabilization is found to occur when the group index is zero. Group indices with magnitudes larger than the phase index (both normal and anomalous dispersion) are found to enhance the sensitivity of a laser gyroscope to rotation. Furthermore, our results indicate that atomic media, even coherent superpositions in multilevel atoms, are not useful for these applications, because the amplitude and phase filters work against one another, i.e., decreasing the modulation frequency increases its amplitude and vice versa, with one exception: negative group indices whose magnitudes are larger than the phase index result in negative, but enhanced, beat frequencies. On the other hand, for optical resonators the dispersion reversal associated with critical coupling enables the amplitude and phase filters to work together under a greater variety of circumstances than for atomic media. We find that for single over-coupled resonators, or in the case of under-coupled coupled-resonator-induced absorption, the absorption and normal dispersion on-resonance increase the contrast and frequency of the beat-note, respectively, resulting in a substantial enhancement of the gyroscopic response. Moreover, for cavity self-stabilization, we propose the use of a variety of coupled-resonator induced transparency that is accompanied by anomalous dispersion.

  19. Non-ultraviolet-based patterning of polymer structures by optically induced electrohydrodynamic instability

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Yu, Haibo; Liu, Na; Mai, John D.; Liu, Lianqing; Lee, Gwo-Bin; Jung Li, Wen

    2013-11-01

    We report here an approach to rapidly construct organized formations of micron-scale pillars from a thin polydimethylsiloxane (PDMS) film by optically induced electrohydrodynamic instability (OEHI). In OEHI, a heterogeneous electric field is induced across two thin fluidic layers by stimulating a photoconductive thin film in a parallel-plate capacitor configuration with visible light. We demonstrated that this OEHI method could control nucleation sites of pillars formed by electrohydrodynamic instability. To investigate this phenomenon, a tangential electric force component is assumed to have arisen from the surface polarization charge and is introduced into the traditional perfect dielectric model for PDMS films. Numerical simulation results showed that this tangential electric force played an important role in OEHI.

  20. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  1. Casimir force-induced instability in freestanding nanotweezers and nanoactuators made of cylindrical nanowires

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Abadian, Naeimeh; Kanjouri, Faramarz; Abadyan, Mohamadreza

    2014-05-01

    The quantum vacuum fluctuation i.e., Casimir attraction can induce mechanical instability in ultra-small devices. Previous researchers have focused on investigating the instability in structures with planar or rectangular cross-section. However, to the best knowledge of the authors, no attention has been paid for modeling this phenomenon in the structures made of nanowires with cylindrical geometry. In this regard, present work is dedicated to simulate the Casimir force-induced instability of freestanding nanoactuator and nanotweezers made of conductive nanowires with circular cross-section. To compute the quantum vacuum fluctuations, two approaches i.e., the proximity force approximation (for small separations) and scattering theory approximation (for large separations), are considered. The Euler-beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive governing equations of the nanostructures. The governing nonlinear equations are solved via three different approaches, i.e., using lumped parameter model, modified variation iteration method (MVIM) and numerical solution. The deflection of the nanowire from zero to the final stable position is simulated as the Casimir force is increased from zero to its critical value. The detachment length and minimum gap, which prevent the instability, are computed for both nanosystems.

  2. The influence of a local wall deformation on the development of natural instabilities in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Burnel, S.; Gougat, P.; Martin, F.

    1981-01-01

    The natural instabilities which propagate in the laminar boundary layer of a flat plate composed of intermittent wave trains are described. A spectral analysis determines the frequency range and gives a frequency and the harmonic 2 only if there is a wall deformation. This analysis provides the amplitude modulation spectrum of the instabilities. Plots of the evolution of power spectral density are compared with the numerical results obtained from the resolve of the Orr-Sommerfeld equation, while the harmonic is related to a micro-recirculating flow near the wall deformation.

  3. Simulation of fundamental atomization mechanisms in fuel sprays

    NASA Technical Reports Server (NTRS)

    Childs, Robert, E.; Mansour, Nagi N.

    1988-01-01

    Growth of instabilities on the liquid/gas interface in the initial region of fuel sprays is studied by means of numerical simulations. The simulations are based on solutions of the variable-density incompressible Navier-Stokes equations, which are obtained with a new numerical algorithm. The simulations give good agreement with analytical results for the instabilities on a liquid cylinder induced by surface tension and wind-induced instabilities. The effects of boundary layers on the wind-induced instabilities are investigated. It is found that a boundary layer reduces the growth rate for a single interface, and a comparison with inviscid theory suggests that boundary layer effects may be significantly more important than surface tension effects. The results yield a better estimate than inviscid theory for the drop sizes as reported for diesel sprays. Results for the planar jet show that boundary layer effects hasten the growth of Squire's 'symmetric' mode, which is responsible for jet disintegration. This result helps explain the rapid atomization which occurs in swirl and air-blast atomizers.

  4. [Induced germ line genomic instability at mini- and micro-satellites in animals].

    PubMed

    Bezlepkin, V G; Gaziev, A I

    2001-01-01

    The recent data on the phenomenon of the induced germline genomic instability at mini- and microsatellites in animals were considered. Natural hypervariability of the minisatellites and microsatellites and their abundance in eukaryotic genome provide it's utility as the useful genetic markers for evaluation of the germline mutation frequency induced by treatment with different type of genotoxic factors at the low doses. High sensitivity of assays and possibility for direct determinations of the mutations, without the necessity to use extrapolation, are ensured. Some discussion is presented on the role of non-targeted mechanisms for the radiation-prone DNA lesions in the induction of germline genomic instability and also on the involving in this process the recombination events upon meiosis or during the early development stages of embryos. It is proposed that quantitative determination of germline genomic instability rate may be used as an acceptable variant for the genetic risk assessment and as indicator of increased probability for cancer and other pathologies at the offspring born to irradiated parents.

  5. A dielectric elastomer actuator coupled with water: snap-through instability and giant deformation

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2015-04-01

    A dielectric elastomer actuator is one class of soft actuators which can deform in response to voltage. Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we conduct experiments to investigate the performance of a dielectric elastomer actuator which is coupled with water. The membrane is subject to a constant water pressure, which is found to significantly affect the electromechanical behaviour of the membrane. When the pressure is small, the membrane suffers electrical breakdown before snap-through instability, and achieves a small voltage-induced deformation. When the pressure is higher to make the membrane near the verge of the instability, the membrane can achieve a giant voltage-induced deformation, with an area strain of 1165%. When the pressure is large, the membrane suffers pressure-induced snap-through instability and may collapse due to a large amount of liquid enclosed by the membrane. Theoretical analyses are conducted to interpret these experimental observations.

  6. Dynamics of mode-coupling-induced microresonator frequency combs in normal dispersion

    NASA Astrophysics Data System (ADS)

    Jang, Jae K.; Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2016-12-01

    We experimentally and theoretically investigate the dynamics of microresonator-based frequency comb generation assisted by mode coupling in the normal group-velocity dispersion (GVD) regime. We show that mode coupling can initiate intracavity modulation instability (MI) by directly perturbing the pump-resonance mode. We also observe the formation of a low-noise comb as the pump frequency is tuned further into resonance from the MI point. We determine the phase-matching conditions that accurately predict all the essential features of the MI and comb spectra, and extend the existing analogy between mode coupling and high-order dispersion to the normal GVD regime. We discuss the applicability of our analysis to the possibility of broadband comb generation in the normal GVD regime.

  7. CSM docked DAP/orbital assembly bending interaction-axial case

    NASA Technical Reports Server (NTRS)

    Turnbull, J. F.; Jones, J. E.

    1972-01-01

    A digital autopilot which can provide attitude control for the entire Skylab orbital assembly using the service module reaction control jets is described. An important consideration is the potential interaction of the control system with the bending modes of the orbital assembly. Two aspects of this potential interaction were considered. The first was the possibility that bending induced rotations feeding back through the attitude sensor into the control system could produce an instability or self-sustained oscillation. The second was whether the jet activity commanded by the control system could produce excessive loads at any of the critical load points of the orbital assembly. Both aspects were studied by using analytic techniques and by running simulations on the all-digital simulator.

  8. Testing the gravitational instability hypothesis?

    NASA Technical Reports Server (NTRS)

    Babul, Arif; Weinberg, David H.; Dekel, Avishai; Ostriker, Jeremiah P.

    1994-01-01

    We challenge a widely accepted assumption of observational cosmology: that successful reconstruction of observed galaxy density fields from measured galaxy velocity fields (or vice versa), using the methods of gravitational instability theory, implies that the observed large-scale structures and large-scale flows were produced by the action of gravity. This assumption is false, in that there exist nongravitational theories that pass the reconstruction tests and gravitational theories with certain forms of biased galaxy formation that fail them. Gravitational instability theory predicts specific correlations between large-scale velocity and mass density fields, but the same correlations arise in any model where (a) structures in the galaxy distribution grow from homogeneous initial conditions in a way that satisfies the continuity equation, and (b) the present-day velocity field is irrotational and proportional to the time-averaged velocity field. We demonstrate these assertions using analytical arguments and N-body simulations. If large-scale structure is formed by gravitational instability, then the ratio of the galaxy density contrast to the divergence of the velocity field yields an estimate of the density parameter Omega (or, more generally, an estimate of beta identically equal to Omega(exp 0.6)/b, where b is an assumed constant of proportionality between galaxy and mass density fluctuations. In nongravitational scenarios, the values of Omega or beta estimated in this way may fail to represent the true cosmological values. However, even if nongravitational forces initiate and shape the growth of structure, gravitationally induced accelerations can dominate the velocity field at late times, long after the action of any nongravitational impulses. The estimated beta approaches the true value in such cases, and in our numerical simulations the estimated beta values are reasonably accurate for both gravitational and nongravitational models. Reconstruction tests that show correlations between galaxy density and velocity fields can rule out some physically interesting models of large-scale structure. In particular, successful reconstructions constrain the nature of any bias between the galaxy and mass distributions, since processes that modulate the efficiency of galaxy formation on large scales in a way that violates the continuity equation also produce a mismatch between the observed galaxy density and the density inferred from the peculiar velocity field. We obtain successful reconstructions for a gravitational model with peaks biasing, but we also show examples of gravitational and nongravitational models that fail reconstruction tests because of more complicated modulations of galaxy formation.

  9. Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with “low-foot” and “high-foot” drives at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Weber, C. R.; Robey, H. F.

    Hydrodynamic instability growth has been studied using three-dimensional (3-D) broadband modulations by comparing “high-foot” and “low-foot” spherical plastic (CH) capsule implosions at the National Ignition Facility (NIF). The initial perturbations included capsule outer-surface roughness and capsule-mounting membranes (“tents”) that were similar to those used in a majority of implosions on NIF. The tents with thicknesses of 31-nm, 46-nm, and 109-nm were used in the experiments. The outer-surface roughness in the “low-foot” experiment was similar to the standard specification, while it was increased by ~4 times in the “high-foot” experiment to compensate for the reduced growth. The ablation-front instability growth wasmore » measured using a Hydrodynamic Growth Radiography platform at a convergence ratio of 3. The dominant capsule perturbations, generated by the tent mountings, had measured perturbation amplitudes comparable to the capsule thickness with the “low-foot” drive. These tent perturbations were reduced by ~3 to 10 times in implosions with the “high-foot” drive. Unexpectedly, the measured perturbations with initially thinner tents were either larger or similar to the measured perturbations with thicker tents for both “high-foot” and “low-foot” drives. While the measured instability growth of 3-D broadband perturbations was also significantly reduced by ~5 to 10 times with the “high-foot” drive, compared to the “low-foot” drive, the growth mitigation was stronger than expected based on previous “growth-factor” results measured with two-dimensional modulations. Lastly, one of the hypotheses to explain the results is based on the 3-D modulations of the oxygen content in the bulk of the capsule having a stronger effect on the overall growth of capsule perturbations than the outer-surface capsule roughness.« less

  10. Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with “low-foot” and “high-foot” drives at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Weber, C. R.; Robey, H. F.; ...

    2017-04-11

    Hydrodynamic instability growth has been studied using three-dimensional (3-D) broadband modulations by comparing “high-foot” and “low-foot” spherical plastic (CH) capsule implosions at the National Ignition Facility (NIF). The initial perturbations included capsule outer-surface roughness and capsule-mounting membranes (“tents”) that were similar to those used in a majority of implosions on NIF. The tents with thicknesses of 31-nm, 46-nm, and 109-nm were used in the experiments. The outer-surface roughness in the “low-foot” experiment was similar to the standard specification, while it was increased by ~4 times in the “high-foot” experiment to compensate for the reduced growth. The ablation-front instability growth wasmore » measured using a Hydrodynamic Growth Radiography platform at a convergence ratio of 3. The dominant capsule perturbations, generated by the tent mountings, had measured perturbation amplitudes comparable to the capsule thickness with the “low-foot” drive. These tent perturbations were reduced by ~3 to 10 times in implosions with the “high-foot” drive. Unexpectedly, the measured perturbations with initially thinner tents were either larger or similar to the measured perturbations with thicker tents for both “high-foot” and “low-foot” drives. While the measured instability growth of 3-D broadband perturbations was also significantly reduced by ~5 to 10 times with the “high-foot” drive, compared to the “low-foot” drive, the growth mitigation was stronger than expected based on previous “growth-factor” results measured with two-dimensional modulations. Lastly, one of the hypotheses to explain the results is based on the 3-D modulations of the oxygen content in the bulk of the capsule having a stronger effect on the overall growth of capsule perturbations than the outer-surface capsule roughness.« less

  11. Fast Transverse Instability and Electron Cloud Measurements in Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldred, Jeffery; Adamson, Philip; Capista, David

    2015-03-01

    A new transverse instability is observed that may limit the proton intensity in the Fermilab Recycler. The instability is fast, leading to a beam-abort loss within two hundred turns. The instability primarily affects the first high-intensity batch from the Fermilab Booster in each Recycler cycle. This paper analyzes the dynamical features of the destabilized beam. The instability excites a horizontal betatron oscillation which couples into the vertical motion and also causes transverse emittance growth. This paper describes the feasibility of electron cloud as the mechanism for this instability and presents the first measurements of the electron cloud in the Fermilabmore » Recycler. Direct measurements of the electron cloud are made using a retarding field analyzer (RFA) newly installed in the Fermilab Recycler. Indirect measurements of the electron cloud are made by propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. The maximum betatron amplitude growth and the maximum electron cloud signal occur during minimums of the bunch length oscillation.« less

  12. Quasiperiodic instability and chaos in the bad-cavity laser with modulated inversion: Numerical analysis of a Toda oscillator system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, T.

    The exact equivalence between a bad-cavity laser with modulated inversion and a nonlinear oscillator in a Toda potential driven by an external modulation is presented. The dynamical properties of the laser system are investigated in detail by analyzing a Toda oscillator system. The temporal characteristics of the bad-cavity laser under strong modulation are analyzed extensively by numerically investigating the simpler Toda system as a function of two control parameters: the dc component of the population inversion and the modulation amplitude. The system exhibits two kinds of optical chaos: One is the quasiperiodic chaos in the region of the intermediate modulationmore » amplitude and the other is the intermittent kicked chaos in the region of strong modulation and large dc component of the pumping. The former is well described by a one-dimensional discrete map with a singular invariant probability measure. There are two types of onset of the chaos: quasiperiodic instability (continuous path to chaos) and catastrophic crisis (discontinuous path). The period-doubling cascade of bifurcation is also observed. The simple discrete model of the Toda system is presented to obtain analytically the one-dimensional map function and to understand the effect of the asymmetric potential curvature on yielding chaos.« less

  13. Critical considerations for the qualitative and quantitative determination of process-induced disorder in crystalline solids.

    PubMed

    Newman, Ann; Zografi, George

    2014-09-01

    Solid-state instabilities in crystalline solids arise during processing primarily because a certain level of structural disorder has been introduced into the crystal. Many physical instabilities appear to be associated with the recrystallization of molecules from these disordered regions, while chemical instabilities arise from sufficient molecular mobility to allow solid-state chemical reactivity. In this Commentary we discuss the various forms of structural disorder, processing which can produce disorder, the quantitative analysis of process-induced order, and strategies to limit disorder and its effects. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Simulations of Instabilities in Complex Valve and Feed Systems

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter A.

    2006-01-01

    CFD analyses are playing an increasingly important role in identifying and characterizing flow induced instabilities in rocket engine test facilities and flight systems. In this paper, we analyze instability mechanisms that range from turbulent pressure fluctuations due to vortex shedding in structurally complex valve systems to flow resonance in plug cavities to large scale pressure fluctuations due to collapse of cavitation induced vapor clouds. Furthermore, we discuss simulations of transient behavior related to valve motion that can serve as guidelines for valve scheduling. Such predictions of valve response to varying flow conditions is of crucial importance to engine operation and testing.

  15. High Frequency Adaptive Instability Suppression Controls in a Liquid-Fueled Combustor

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2003-01-01

    This effort extends into high frequency (>500 Hz), an earlier developed adaptive control algorithm for the suppression of thermo-acoustic instabilities in a liquidfueled combustor. The earlier work covered the development of a controls algorithm for the suppression of a low frequency (280 Hz) combustion instability based on simulations, with no hardware testing involved. The work described here includes changes to the simulation and controller design necessary to control the high frequency instability, augmentations to the control algorithm to improve its performance, and finally hardware testing and results with an experimental combustor rig developed for the high frequency case. The Adaptive Sliding Phasor Averaged Control (ASPAC) algorithm modulates the fuel flow in the combustor with a control phase that continuously slides back and forth within the phase region that reduces the amplitude of the instability. The results demonstrate the power of the method - that it can identify and suppress the instability even when the instability amplitude is buried in the noise of the combustor pressure. The successful testing of the ASPAC approach helped complete an important NASA milestone to demonstrate advanced technologies for low-emission combustors.

  16. Dynamics Evolution Investigation of Mack Mode Instability in a Hypersonic Boundary Layer by Bicoherence Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Han, Jian; Jiang, Nan

    2012-07-01

    The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth.

  17. Numerical results on noise-induced dynamics in the subthreshold regime for thermoacoustic systems

    NASA Astrophysics Data System (ADS)

    Gupta, Vikrant; Saurabh, Aditya; Paschereit, Christian Oliver; Kabiraj, Lipika

    2017-03-01

    Thermoacoustic instability is a serious issue in practical combustion systems. Such systems are inherently noisy, and hence the influence of noise on the dynamics of thermoacoustic instability is an aspect of practical importance. The present work is motivated by a recent report on the experimental observation of coherence resonance, or noise-induced coherence with a resonance-like dependence on the noise intensity as the system approaches the stability margin, for a prototypical premixed laminar flame combustor (Kabiraj et al., Phys. Rev. E, 4 (2015)). We numerically investigate representative thermoacoustic models for such noise-induced dynamics. Similar to the experiments, we study variation in system dynamics in response to variations in the noise intensity and in a critical control parameter as the systems approach their stability margins. The qualitative match identified between experimental results and observations in the representative models investigated here confirms that coherence resonance is a feature of thermoacoustic systems. We also extend the experimental results, which were limited to the case of subcritical Hopf bifurcation, to the case of supercritical Hopf bifurcation. We identify that the phenomenon has qualitative differences for the systems undergoing transition via subcritical and supercritical Hopf bifurcations. Two important practical implications are associated with the findings. Firstly, the increase in noise-induced coherence as the system approaches the onset of thermoacoustic instability can be considered as a precursor to the instability. Secondly, the dependence of noise-induced dynamics on the bifurcation type can be utilised to distinguish between subcritical and supercritical bifurcation prior to the onset of the instability.

  18. Secondary instability of high-speed flows and the influence of wall cooling and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1992-01-01

    The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two dimensional first mode or second mode wave makes the resulting base flow susceptible to a broadband spanwise-periodic three dimensional type of instability. The principal parametric resonance of this instability (subharmonic) was analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical nature of the subharmonic secondary instability are assessed for both a first mode and a second mode primary wave. Results indicate that the secondary subharmonic instability of the insulated wall boundary layer is weakened as Mach number increases. Cooling of the wall destabilizes the secondary subharmonic of a second mode primary wave, but stabilizes it when the primary wave is a first mode. Suction stabilizes the secondary subharmonic at all Mach numbers.

  19. [SOS response of DNA repair and genetic cell instability under hypoxic conditions].

    PubMed

    Vasil'eva, S V; Strel'tsova, D A

    2011-01-01

    The SOS DNA repair pathway is induced in E. coli as a multifunctional cell response to a wide variety of signals: UV, X or gamma-irradiation, mitomycin C or nalidixic acid treatment, thymine starvation, etc. Triggering of the system can be used as a general and early sign of DNA damage. Additionally, the SOS-response is known to be an "error-prone" DNA repair pathway and one of the sources of genetic instability. Hypoxic conditions are established to be the major factor of genetic instability as well. In this paper we for the first time studied the SOS DNA repair response under hypoxic conditions induced by the well known aerobic SOS-inducers. The SOS DNA repair response was examined as a reaction of E. coli PQ37 [sfiA::lacZ] cells to UVC, NO-donating agents and 4NQO. Here we provide evidence that those agents were able to induce the SOS DNA repair response in E. coli at anaerobic growth conditions. The process does not depend on the transcriptional activity of the universal protein of E. col anaerobic growth Fnr [4Fe-4S]2+ or can not be referred to as an indicator of genetic instability in hypoxic conditions.

  20. Cortisol and testosterone increase financial risk taking and may destabilize markets.

    PubMed

    Cueva, Carlos; Roberts, R Edward; Spencer, Tom; Rani, Nisha; Tempest, Michelle; Tobler, Philippe N; Herbert, Joe; Rustichini, Aldo

    2015-07-02

    It is widely known that financial markets can become dangerously unstable, yet it is unclear why. Recent research has highlighted the possibility that endogenous hormones, in particular testosterone and cortisol, may critically influence traders' financial decision making. Here we show that cortisol, a hormone that modulates the response to physical or psychological stress, predicts instability in financial markets. Specifically, we recorded salivary levels of cortisol and testosterone in people participating in an experimental asset market (N = 142) and found that individual and aggregate levels of endogenous cortisol predict subsequent risk-taking and price instability. We then administered either cortisol (single oral dose of 100 mg hydrocortisone, N = 34) or testosterone (three doses of 10 g transdermal 1% testosterone gel over 48 hours, N = 41) to young males before they played an asset trading game. We found that both cortisol and testosterone shifted investment towards riskier assets. Cortisol appears to affect risk preferences directly, whereas testosterone operates by inducing increased optimism about future price changes. Our results suggest that changes in both cortisol and testosterone could play a destabilizing role in financial markets through increased risk taking behaviour, acting via different behavioural pathways.

  1. Cortisol and testosterone increase financial risk taking and may destabilize markets

    PubMed Central

    Cueva, Carlos; Roberts, R. Edward; Spencer, Tom; Rani, Nisha; Tempest, Michelle; Tobler, Philippe N.; Herbert, Joe; Rustichini, Aldo

    2015-01-01

    It is widely known that financial markets can become dangerously unstable, yet it is unclear why. Recent research has highlighted the possibility that endogenous hormones, in particular testosterone and cortisol, may critically influence traders’ financial decision making. Here we show that cortisol, a hormone that modulates the response to physical or psychological stress, predicts instability in financial markets. Specifically, we recorded salivary levels of cortisol and testosterone in people participating in an experimental asset market (N = 142) and found that individual and aggregate levels of endogenous cortisol predict subsequent risk-taking and price instability. We then administered either cortisol (single oral dose of 100 mg hydrocortisone, N = 34) or testosterone (three doses of 10 g transdermal 1% testosterone gel over 48 hours, N = 41) to young males before they played an asset trading game. We found that both cortisol and testosterone shifted investment towards riskier assets. Cortisol appears to affect risk preferences directly, whereas testosterone operates by inducing increased optimism about future price changes. Our results suggest that changes in both cortisol and testosterone could play a destabilizing role in financial markets through increased risk taking behaviour, acting via different behavioural pathways. PMID:26135946

  2. Optical solitons and modulation instability analysis of an integrable model of (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the nonlinear Schrödinger type equation (NLSE) in (2+1)-dimensions which describes the nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) with anisotropic and bilinear interactions in the semiclassical limit. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the generalized tanh methods. Dark, dark-bright or combined optical and singular soliton solutions of the equation are derived. Furthermore, the modulational instability (MI) is studied based on the standard linear-stability analysis and the MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  3. Development of a novel HAC-based "gain of signal" quantitative assay for measuring chromosome instability (CIN) in cancer cells.

    PubMed

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C O; Goncharov, Nikolay V; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C; Kouprina, Natalay; Larionov, Vladimir

    2016-03-22

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene ("loss of signal" assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this "loss of signal" assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this "gain of signal" assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The "gain of signal" assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level.

  4. Development of a novel HAC-based “gain of signal” quantitative assay for measuring chromosome instability (CIN) in cancer cells

    PubMed Central

    Kim, Jung-Hyun; Lee, Hee-Sheung; Lee, Nicholas C. O.; Goncharov, Nikolay V.; Kumeiko, Vadim; Masumoto, Hiroshi; Earnshaw, William C.; Kouprina, Natalay; Larionov, Vladimir

    2016-01-01

    Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene (“loss of signal” assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this “loss of signal” assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this “gain of signal” assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The “gain of signal” assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level. PMID:26943579

  5. Rotordynamic Instability Problems in High-Performance Turbomachinery

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Diagnostic and remedial methods concerning rotordynamic instability problems in high performance turbomachinery are discussed. Instabilities due to seal forces and work-fluid forces are identified along with those induced by rotor bearing systems. Several methods of rotordynamic control are described including active feedback methods, the use of elastometric elements, and the use of hydrodynamic journal bearings and supports.

  6. Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation.

    PubMed

    Zheng, Yiyan; Sethi, Ritika; Mangala, Lingegowda S; Taylor, Charlotte; Goldsmith, Juliet; Wang, Ming; Masuda, Kenta; Karaminejadranjbar, Mohammad; Mannion, David; Miranda, Fabrizio; Herrero-Gonzalez, Sandra; Hellner, Karin; Chen, Fiona; Alsaadi, Abdulkhaliq; Albukhari, Ashwag; Fotso, Donatien Chedom; Yau, Christopher; Jiang, Dahai; Pradeep, Sunila; Rodriguez-Aguayo, Cristian; Lopez-Berestein, Gabriel; Knapp, Stefan; Gray, Nathanael S; Campo, Leticia; Myers, Kevin A; Dhar, Sunanda; Ferguson, David; Bast, Robert C; Sood, Anil K; von Delft, Frank; Ahmed, Ahmed Ashour

    2018-02-02

    Though used widely in cancer therapy, paclitaxel only elicits a response in a fraction of patients. A strong determinant of paclitaxel tumor response is the state of microtubule dynamic instability. However, whether the manipulation of this physiological process can be controlled to enhance paclitaxel response has not been tested. Here, we show a previously unrecognized role of the microtubule-associated protein CRMP2 in inducing microtubule bundling through its carboxy terminus. This activity is significantly decreased when the FER tyrosine kinase phosphorylates CRMP2 at Y479 and Y499. The crystal structures of wild-type CRMP2 and CRMP2-Y479E reveal how mimicking phosphorylation prevents tetramerization of CRMP2. Depletion of FER or reducing its catalytic activity using sub-therapeutic doses of inhibitors increases paclitaxel-induced microtubule stability and cytotoxicity in ovarian cancer cells and in vivo. This work provides a rationale for inhibiting FER-mediated CRMP2 phosphorylation to enhance paclitaxel on-target activity for cancer therapy.

  7. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  8. Universal model of bias-stress-induced instability in inkjet-printed carbon nanotube networks field-effect transistors

    NASA Astrophysics Data System (ADS)

    Jung, Haesun; Choi, Sungju; Jang, Jun Tae; Yoon, Jinsu; Lee, Juhee; Lee, Yongwoo; Rhee, Jihyun; Ahn, Geumho; Yu, Hye Ri; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan

    2018-02-01

    We propose a universal model for bias-stress (BS)-induced instability in the inkjet-printed carbon nanotube (CNT) networks used in field-effect transistors (FETs). By combining two experimental methods, i.e., a comparison between air and vacuum BS tests and interface trap extraction, BS instability is explained regardless of either the BS polarity or ambient condition, using a single platform constituted by four key factors: OH- adsorption/desorption followed by a change in carrier concentration, electron concentration in CNT channel corroborated with H2O/O2 molecules in ambient, charge trapping/detrapping, and interface trap generation. Under negative BS (NBS), the negative threshold voltage shift (ΔVT) is dominated by OH- desorption, which is followed by hole trapping in the interface and/or gate insulator. Under positive BS (PBS), the positive ΔVT is dominated by OH- adsorption, which is followed by electron trapping in the interface and/or gate insulator. This instability is compensated by interface trap extraction; PBS instability is slightly more complicated than NBS instability. Furthermore, our model is verified using device simulation, which gives insights on how much each mechanism contributes to BS instability. Our result is potentially useful for the design of highly stable CNT-based flexible circuits in the Internet of Things wearable healthcare era.

  9. On the stability of a rod adhering to a rigid surface: Shear-induced stable adhesion and the instability of peeling

    NASA Astrophysics Data System (ADS)

    Majidi, Carmel; O'Reilly, Oliver M.; Williams, John A.

    2012-05-01

    Using variational methods, we establish conditions for the nonlinear stability of adhesive states between an elastica and a rigid halfspace. The treatment produces coupled criteria for adhesion and buckling instabilities by exploiting classical techniques from Legendre and Jacobi. Three examples that arise in a broad range of engineered systems, from microelectronics to biologically inspired fiber array adhesion, are used to illuminate the stability criteria. The first example illustrates buckling instabilities in adhered rods, while the second shows the instability of a peeling process and the third illustrates the stability of a shear-induced adhesion. The latter examples can also be used to explain how microfiber array adhesives can be activated by shearing and deactivated by peeling. The nonlinear stability criteria developed in this paper are also compared to other treatments.

  10. Mass-induced instability of SAdS black hole in Einstein-Ricci cubic gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo

    2018-05-01

    We perform the stability analysis of Schwarzschild-AdS (SAdS) black hole in the Einstein-Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small black holes. We call this the mass-induced instability of SAdS black hole because the instability of small black holes arises from the massiveness in the linearized Einstein-Ricci cubic gravity, but not a feature of higher-order derivative theory giving ghost states. Also, we point out that the correlated stability conjecture holds for the SAdS black hole by computing the Wald entropy of SAdS black hole in Einstein-Ricci cubic gravity.

  11. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  12. Relationships between self-reported ankle function and modulation of Hoffmann reflex in patients with chronic ankle instability.

    PubMed

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2016-01-01

    To examine relationships between self-reported ankle function and Hoffmann (H) reflex modulation during changes in body positions in patients with chronic ankle instability (CAI). Observational. Laboratory. Thirty-one young adults with CAI (19 males, 12 females) participated. There were two subscales of Foot and Ankle Ability Measure (FAAM) to quantify self-reported ankle function during activities of daily living (ADL) and sports activities. Maximum H-reflexes (H-max) and motor waves (M-max) from soleus and fibularis longus were recorded while participants lied prone and stood in bipedal and unipedal stances. For each muscle, percent change scores in Hmax:Mmax ratios were calculated between each pair of positions: prone-to-bipedal, bipedal-to-unipedal, and prone-to-unipedal, and used as a measure of H-reflex modulation. Pearson correlation coefficients were calculated between FAAM and H-reflex modulation measures. There were significant correlations between: (1) FAAM-ADL and soleus prone-to-unipedal modulation (r = 0.384, p = 0.04), (2) FAAM-Sport and soleus prone-to-unipedal modulation (r = 0.505, p = 0.005), (3) FAAM-Sport and fibular bipedal-to-unipedal modulation (r = 0.377, p = 0.05), and (4) FAAM-Sport and fibular prone-to-unipedal modulation (r = 0.396, p = 0.04). CAI patients presented moderate, positive relationships between self-reported ankle function and H-reflex modulation during changes in body positions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Methyltransferases mediate cell memory of a genotoxic insult.

    PubMed

    Rugo, R E; Mutamba, J T; Mohan, K N; Yee, T; Chaillet, J R; Greenberger, J S; Engelward, B P

    2011-02-10

    Characterization of the direct effects of DNA-damaging agents shows how DNA lesions lead to specific mutations. Yet, serum from Hiroshima survivors, Chernobyl liquidators and radiotherapy patients can induce a clastogenic effect on naive cells, showing indirect induction of genomic instability that persists years after exposure. Such indirect effects are not restricted to ionizing radiation, as chemical genotoxins also induce heritable and transmissible genomic instability phenotypes. Although such indirect induction of genomic instability is well described, the underlying mechanism has remained enigmatic. Here, we show that mouse embryonic stem cells exposed to γ-radiation bear the effects of the insult for weeks. Specifically, conditioned media from the progeny of exposed cells can induce DNA damage and homologous recombination in naive cells. Notably, cells exposed to conditioned media also elicit a genome-destabilizing effect on their neighbouring cells, thus demonstrating transmission of genomic instability. Moreover, we show that the underlying basis for the memory of an insult is completely dependent on two of the major DNA cytosine methyltransferases, Dnmt1 and Dnmt3a. Targeted disruption of these genes in exposed cells completely eliminates transmission of genomic instability. Furthermore, transient inactivation of Dnmt1, using a tet-suppressible allele, clears the memory of the insult, thus protecting neighbouring cells from indirect induction of genomic instability. We have thus demonstrated that a single exposure can lead to long-term, genome-destabilizing effects that spread from cell to cell, and we provide a specific molecular mechanism for these persistent bystander effects. Collectively, our results impact the current understanding of risks from toxin exposures and suggest modes of intervention for suppressing genomic instability in people exposed to carcinogenic genotoxins.

  14. Implementation of STUD Pulses at the Trident Laser and Initial Results

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Shimada, T.; Montgomery, D. S.; Afeyan, B.; Hüller, S.

    2012-10-01

    Controlling and mitigating laser-plasma instabilities such as stimulated Brillouin scattering, stimulated Raman scattering, and crossed-beam energy transfer is important to achieve high-gain inertial fusion using laser drivers. Recent theory and simulations show that these instabilities can be largely controlled using laser pulses consisting of spike trains of uneven duration and delay (STUD) by modulating the laser on a picosecond time scale [1,2]. We have designed and implemented a STUD pulse generator at the LANL Trident Laser Facility using Fourier synthesis to produce a 0.5-ns envelope of psec-duration STUD pulses using a spatial light modulator. Initial results from laser propagation tests and measurements as well as initial laser-plasma characterization experiments will be presented.[4pt] [1] B. Afeyan and S. H"uller, ``Optimal Control of Laser Plasma Instabilities using STUD pulses,'' IFSA 2011, P.Mo.1, to appear in Euro. Phys. J. Web of Conf. (2012).[2] S. H"uller and B. Afeyan, ``Simulations of drastically reduced SBS with STUD pulses,'' IFSA 2011, O.Tu8-1, to appear in Euro. Phys. J. Web of Conf. (2012).

  15. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  16. Saw-tooth instability in storage rings: simulations and dynamical model

    NASA Astrophysics Data System (ADS)

    Migliorati, M.; Palumbo, L.; Dattoli, G.; Mezi, L.

    1999-11-01

    The saw-tooth instability in storage rings is studied by means of a time-domain simulation code which takes into account the self-induced wake fields. The results are compared with those from a dynamical heuristic model exploiting two coupled non-linear differential equations, accounting for the time behavior of the instability growth rate and for the anomalous growth of the energy spread. This model is shown to reproduce the characteristic features of the instability in a fairly satisfactory way.

  17. A methodology to study the possible occurrence of chugging in liquid rocket engines during transient start-up

    NASA Astrophysics Data System (ADS)

    Leonardi, Marco; Nasuti, Francesco; Di Matteo, Francesco; Steelant, Johan

    2017-10-01

    An investigation on the low frequency combustion instabilities due to the interaction of combustion chamber and feed line dynamics in a liquid rocket engine is carried out implementing a specific module in the system analysis software EcosimPro. The properties of the selected double time lag model are identified according to the two classical assumptions of constant and variable time lag. Module capabilities are evaluated on a literature experimental set up consisting of a combustion chamber decoupled from the upstream feed lines. The computed stability map results to be in good agreement with both experimental data and analytical models. Moreover, the first characteristic frequency of the engine is correctly predicted, giving confidence on the use of the module for the analysis of chugging instabilities. As an example of application, a study is carried out on the influence of the feed lines on the system stability, correctly capturing that the lines extend the stable regime of the combustion chamber and that the propellant domes play a key role in coupling the dynamics of combustion chamber and feed lines. A further example is presented to discuss on the role of pressure growth rate and of the combustion chamber properties on the possible occurrence of chug instability during engine start-up and on the conditions that lead to its damping or growth.

  18. North Europe power transmission system vulnerability during extreme space weather

    NASA Astrophysics Data System (ADS)

    Piccinelli, Roberta; Krausmann, Elisabeth

    2018-01-01

    Space weather driven by solar activity can induce geomagnetic disturbances at the Earth's surface that can affect power transmission systems. Variations in the geomagnetic field result in geomagnetically induced currents that can enter the system through its grounding connections, saturate transformers and lead to system instability and possibly collapse. This study analyzes the impact of extreme space weather on the northern part of the European power transmission grid for different transformer designs to understand its vulnerability in case of an extreme event. The behavior of the system was analyzed in its operational mode during a severe geomagnetic storm, and mitigation measures, like line compensation, were also considered. These measures change the topology of the system, thus varying the path of geomagnetically induced currents and inducing a local imbalance in the voltage stability superimposed on the grid operational flow. Our analysis shows that the North European power transmission system is fairly robust against extreme space weather events. When considering transformers more vulnerable to geomagnetic storms, only few episodes of instability were found in correspondence with an existing voltage instability due to the underlying system load. The presence of mitigation measures limited the areas of the network in which bus voltage instabilities arise with respect to the system in which mitigation measures are absent.

  19. On the nonlinear stability of a high-speed, axisymmetric boundary layer

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Ng, Lian L.; Erlebacher, Gordon

    1991-01-01

    The stability of a high-speed, axisymmetric boundary layer is investigated using secondary instability theory and direct numerical simulation. Parametric studies based on the temporal secondary instability theory identify subharmonic secondary instability as a likely path to transition on a cylinder at Mach 4.5. The theoretical predictions are validated by direct numerical simulation at temporally-evolving primary and secondary disturbances in an axisymmetric boundary-layer flow. At small amplitudes of the secondary disturbance, predicted growth rates agree to several significant digits with values obtained from the spectrally-accurate solution of the compressible Navier-Stokes equations. Qualitative agreement persists to large amplitudes of the secondary disturbance. Moderate transverse curvature is shown to significantly affect the growth rate of axisymmetric second mode disturbances, the likely candidates of primary instability. The influence of curvature on secondary instability is largely indirect but most probably significant, through modulation of the primary disturbance amplitude. Subharmonic secondary instability is shown to be predominantly inviscid in nature, and to account for spikes in the Reynolds stress components at or near the critical layer.

  20. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A number of nontargeted and delayed effects associated with radiation exposure have now been described. These include radiation-induced genomic instability, death-inducing and bystander effects, clastogenic factors and transgenerational effects. It is unlikely that these nontargeted effects are directly induced by cellular irradiation. Instead, it is proposed that some as yet to be identified secreted factor can be produced by irradiated cells that can stimulate effects in nonirradiated cells (death-inducing and bystander effects, clastogenic factors) and perpetuate genomic instability in the clonally expanded progeny of an irradiated cell. The proposed factor must be soluble and capable of being transported between cells by cell-to-cell gap junction communication channels. Furthermore, it must have the potential to stimulate cellular cytokines and/or reactive oxygen species. While it is difficult to imagine a role for such a secreted factor in contributing to transgenerational effects, the other nontargeted effects of radiation may all share a common mechanism.

  1. Analysis of shot noise suppression for electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, Daniel; Huang, Zhirong; Stupakov, Gennady

    2011-06-24

    Shot noise can affect the performance of free-electron lasers (FELs) by driving instabilities (e.g., the microbunching instability) or by competing with seeded density modulations. Recent papers have proposed suppressing shot noise to enhance FEL performance. In this paper we use a onedimensional (1D) model to calculate the noise amplification from an energy modulation (e.g., electron interactions from space charge or undulator radiation) followed by a dispersive section. We show that, for a broad class of interactions, selecting the correct dispersive strength suppresses shot noise across a wide range of frequencies. The final noise level depends on the beam’s energy spreadmore » and the properties of the interaction potential. As a result, we confirm and illustrate our analytical results with 1D simulations.« less

  2. Analysis of Shot Noise Suppression for Electron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratner, Daniel; /Stanford U., Appl. Phys. Dept.; Huang, Zhirong

    2012-05-07

    Shot noise can affect the performance of free-electron lasers (FELs) by driving instabilities (e.g., the microbunching instability) or by competing with seeded density modulations. Recent papers have proposed suppressing shot noise to enhance FEL performance. In this paper we use a one-dimensional (1D) model to calculate the noise amplification from an energy modulation (e.g., electron interactions from space charge or undulator radiation) followed by a dispersive section. We show that, for a broad class of interactions, selecting the correct dispersive strength suppresses shot noise across a wide range of frequencies. The final noise level depends on the beam's energy spreadmore » and the properties of the interaction potential. We confirm and illustrate our analytical results with 1D simulations.« less

  3. Optical solitons and modulation instability analysis with (3 + 1)-dimensional nonlinear Shrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the (3 + 1)-dimensional nonlinear Shrödinger equation (NLSE) that serves as the model to study the propagation of optical solitons through nonlinear optical fibers. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the solitary wave ansatz with Jaccobi elliptic function methods, we present the exact dark, bright and dark-bright or combined optical solitons to the model. The intensity as well as the nonlinear phase shift of the solitons are reported. The modulation instability aspects are discussed using the concept of linear stability analysis. The MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  4. Low power lasers on genomic stability.

    PubMed

    Trajano, Larissa Alexsandra da Silva Neto; Sergio, Luiz Philippe da Silva; Stumbo, Ana Carolina; Mencalha, Andre Luiz; Fonseca, Adenilson de Souza da

    2018-03-01

    Exposure of cells to genotoxic agents causes modifications in DNA, resulting to alterations in the genome. To reduce genomic instability, cells have DNA damage responses in which DNA repair proteins remove these lesions. Excessive free radicals cause DNA damages, repaired by base excision repair and nucleotide excision repair pathways. When non-oxidative lesions occur, genomic stability is maintained through checkpoints in which the cell cycle stops and DNA repair occurs. Telomere shortening is related to the development of various diseases, such as cancer. Low power lasers are used for treatment of a number of diseases, but they are also suggested to cause DNA damages at sub-lethal levels and alter transcript levels from DNA repair genes. This review focuses on genomic and telomere stabilization modulation as possible targets to improve therapeutic protocols based on low power lasers. Several studies have been carried out to evaluate the laser-induced effects on genome and telomere stabilization suggesting that exposure to these lasers modulates DNA repair mechanisms, telomere maintenance and genomic stabilization. Although the mechanisms are not well understood yet, low power lasers could be effective against DNA harmful agents by induction of DNA repair mechanisms and modulation of telomere maintenance and genomic stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. HPV16 E6 and E7 proteins induce a chronic oxidative stress response via NOX2 that causes genomic instability and increased susceptibility to DNA damage in head and neck cancer cells

    PubMed Central

    Marullo, Rossella; Werner, Erica; Zhang, Hongzheng; Chen, Georgia Z.; Shin, Dong M.; Doetsch, Paul W.

    2015-01-01

    Human papillomavirus (HPV) is the causative agent of a subgroup of head and neck cancer characterized by an intrinsic radiosensitivity. HPV initiates cellular transformation through the activity of E6 and E7 proteins. E6 and E7 expression is necessary but not sufficient to transform the host cell, as genomic instability is required to acquire the malignant phenotype in HPV-initiated cells. This study reveals a key role played by oxidative stress in promoting genomic instability and radiosensitivity in HPV-positive head and neck cancer. By employing an isogenic human cell model, we observed that expression of E6 and E7 is sufficient to induce reactive oxygen species (ROS) generation in head and neck cancer cells. E6/E7-induced oxidative stress is mediated by nicotinamide adenine dinucleotide phosphate oxidases (NOXs) and causes DNA damage and chromosomal aberrations. This mechanism for genomic instability distinguishes HPV-positive from HPV-negative tumors, as we observed NOX-induced oxidative stress in HPV-positive but not HPV-negative head and neck cancer cells. We identified NOX2 as the source of HPV-induced oxidative stress as NOX2 silencing significantly reduced ROS generation, DNA damage and chromosomal aberrations in HPV-positive cells. Due to their state of chronic oxidative stress, HPV-positive cells are more susceptible to DNA damage induced by ROS and ionizing radiation (IR). Furthermore, exposure to IR results in the formation of complex lesions in HPV-positive cells as indicated by the higher amount of chromosomal breakage observed in this group of cells. These results reveal a novel mechanism for sustaining genomic instability in HPV-positive head and neck tumors and elucidate its contribution to their intrinsic radiosensitivity. PMID:26354779

  6. Rossby Wave Instability in Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Lovelace, Richard; Li, Hui

    2014-10-01

    A brief review is given of the Rossby wave instability in astrophysical disks. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disk surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (proportional to Exp[im ϕ], m = 1,2,...) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in protoplanetary disks. The Rossby vortices in the disks around stars and black holes may cause the observed quasi-periodic modulations of the disk's thermal emission. Stirling Colgate's long standing interest in all types of vortices - particularly tornados - had an important part in stimulating the research on the Rossby wave instability.

  7. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  8. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  9. Fragmentation mechanisms of confined co-flowing capillary threads revealed by active flow focusing

    NASA Astrophysics Data System (ADS)

    Robert de Saint Vincent, Matthieu; Delville, Jean-Pierre

    2016-08-01

    The control over stationary liquid thread fragmentation in confined co-flows is a key issue for the processing and transport of fluids in (micro-)ducts. Confinement indeed strongly enhances the stability of capillary threads, and also induces steric and hydrodynamic feedback effects on diphasic flows. We investigate the thread-to-droplet transition within the confined environment of a microchannel by using optocapillarity, i.e., interface stresses driven by light, as a wall-free constriction to locally flow focus stable threads in a tunable way, pinch them, and force their fragmentation. Above some flow-dependent onset in optical forcing, we observe a dynamic transition alternating between continuous (thread) and fragmented (droplets) states and show a surprisingly gradual thread-to-droplet transition when increasing the amplitude of the thread constriction. This transition is interpreted as an evolution from a convective to an absolute instability. Depending on the forcing amplitude, we then identify and characterize several stable fragmented regimes of single and multiple droplet periodicity (up to period-8). These droplet regimes build a robust flow-independent bifurcation diagram that eventually closes up, due to the flow confinement, to a monodisperse droplet size, independent of the forcing and close to the most unstable mode expected from the Rayleigh-Plateau instability. This fixed monodispersity can be circumvented by temporally modulating the optocapillary coupling, as we show that fragmentation can then occur either by triggering again the Rayleigh-Plateau instability when the largest excitable wavelength is larger than that of the most unstable mode, or as a pure consequence of a sufficiently strong optocapillary pinching. When properly adjusted, this modulation allows us to avoid the transient reforming and multidisperse regimes, and thereby to reversibly produce stable monodisperse droplet trains of controlled size. By actuating local flow focusing in time and amplitude, optocapillarity thus proves to be an efficient way to characterize and understand the thread-to-droplet transition in microchannels and to advance channel constriction strategies for the production of tunable monodisperse droplets when the overall confinement is important.

  10. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains

    PubMed Central

    Czemeres, Josh; Buse, Kurt

    2017-01-01

    A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding. PMID:29267381

  11. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells

    PubMed Central

    Browning, Cynthia L.; Qin, Qin; Kelly, Deborah F.; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria

    2016-01-01

    Abstract Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. PMID:27449664

  12. Suppression of the Transit -Time Instability in Large-Area Electron Beam Diodes

    NASA Astrophysics Data System (ADS)

    Myers, Matthew C.; Friedman, Moshe; Swanekamp, Stephen B.; Chan, Lop-Yung; Ludeking, Larry; Sethian, John D.

    2002-12-01

    Experiment, theory, and simulation have shown that large-area electron-beam diodes are susceptible to the transit-time instability. The instability modulates the electron beam spatially and temporally, producing a wide spread in electron energy and momentum distributions. The result is gross inefficiency in beam generation and propagation. Simulations indicate that a periodic, slotted cathode structure that is loaded with resistive elements may be used to eliminate the instability. Such a cathode has been fielded on one of the two opposing 60 cm × 200 cm diodes on the NIKE KrF laser at the Naval Research Laboratory. These diodes typically deliver 600 kV, 500 kA, 250 ns electron beams to the laser cell in an external magnetic field of 0.2 T. We conclude that the slotted cathode suppressed the transit-time instability such that the RF power was reduced by a factor of 9 and that electron transmission efficiency into the laser gas was improved by more than 50%.

  13. Theoretical studies of the solar atmosphere and interstellar pickup ions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.

  14. Ablative Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Accelerated Colliding Foils

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Weaver, J.; Obenschain, S. P.; Oh, J.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Harding, E. C.

    2008-11-01

    In our experiments done on the Nike KrF laser, we study instability growth at shock-decelerated interfaces in planar colliding-foil experiments. We use streaked monochromatic (1.86 keV) x-ray face-on imaging diagnostics to measure the areal mass modulation growth caused by the instability. Higher x-ray energies up to 5.25 keV are used to follow the shock propagation as well as the 1D dynamics of the collision. While a laser-driven foil is accelerated towards the stationary low-density foam layer, an ablative RT instability develops. Having reached a high velocity, the foil hits the foam layer. The impact generates strong shocks in the plastic and in the foam. The reflected shock wave re-shocks the ablation front, its acceleration stops, and so does the observed RT growth. This is followed by areal mass oscillations due to the ablative RM instability and feedout mechanisms, of which the latter dominates.

  15. Robust dynamic mitigation of instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, themore » instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.« less

  16. Thermal-Performance Instability in Piezoresistive Sensors: Inducement and Improvement

    PubMed Central

    Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Fang, Xuan

    2016-01-01

    The field of piezoresistive sensors has been undergoing a significant revolution in terms of design methodology, material technology and micromachining process. However, the temperature dependence of sensor characteristics remains a hurdle to cross. This review focuses on the issues in thermal-performance instability of piezoresistive sensors. Based on the operation fundamental, inducements to the instability are investigated in detail and correspondingly available ameliorative methods are presented. Pros and cons of each improvement approach are also summarized. Though several schemes have been proposed and put into reality with favorable achievements, the schemes featuring simple implementation and excellent compatibility with existing techniques are still emergently demanded to construct a piezoresistive sensor with excellent comprehensive performance. PMID:27886125

  17. Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation.

    PubMed

    Wen, Xiao-Yong; Yan, Zhenya

    2015-12-01

    We study higher-order rogue wave (RW) solutions of the coupled integrable dispersive AB system (also called Pedlosky system), which describes the evolution of wave-packets in a marginally stable or unstable baroclinic shear flow in geophysical fluids. We propose its continuous-wave (CW) solutions and existent conditions for their modulation instability to form the rogue waves. A new generalized N-fold Darboux transformation (DT) is proposed in terms of the Taylor series expansion for the spectral parameter in the Darboux matrix and its limit procedure and applied to the CW solutions to generate multi-rogue wave solutions of the coupled AB system, which satisfy the general compatibility condition. The dynamical behaviors of these higher-order rogue wave solutions demonstrate both strong and weak interactions by modulating parameters, in which some weak interactions can generate the abundant triangle, pentagon structures, etc. Particularly, the trajectories of motion of peaks and depressions of profiles of the first-order RWs are explicitly analyzed. The generalized DT method used in this paper can be extended to other nonlinear integrable systems. These results may be useful for understanding the corresponding rogue-wave phenomena in fluid mechanics and related fields.

  18. Magnetothermal instability in cooling flows

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    1990-01-01

    The effect of magnetic fields on thermal instability in cooling flows is investigated using linear, Eulerian perturbation analysis. As contrasted with the zero magnetic-field case, hydromagnetic stresses support perturbations against acceleration caused by buoyancy - comoving evolution results and global growth rates are straightforward to obtain for a given cooling flow entropy distribution. In addition, background and induced magnetic fields ensure that conductive damping of thermal instability is greatly reduced.

  19. Structural instability of shell-like assemblies of a keplerate-type polyoxometalate induced by ionic strength.

    PubMed

    Veen, Sandra J; Kegel, Willem K

    2009-11-19

    We demonstrate a new structural instability of shell-like assemblies of polyoxometalates. Besides the colloidal instability, that is, the formation of aggregates that consist of many single layered POM-shells, these systems also display an instability on a structural scale within the shell-like assemblies. This instability occurs at significantly lower ionic strength than the colloidal stability limit and only becomes evident after a relatively long time. For the polyoxometalate, abbreviated as {Mo(72)Fe(30)}, it is shown that the structural stability limit of POM-shells lies between a NaCl concentration of 1.00 and 5.00 mM in aqueous solution.

  20. An enstrophy-based linear and nonlinear receptivity theory

    NASA Astrophysics Data System (ADS)

    Sengupta, Aditi; Suman, V. K.; Sengupta, Tapan K.; Bhaumik, Swagata

    2018-05-01

    In the present research, a new theory of instability based on enstrophy is presented for incompressible flows. Explaining instability through enstrophy is counter-intuitive, as it has been usually associated with dissipation for the Navier-Stokes equation (NSE). This developed theory is valid for both linear and nonlinear stages of disturbance growth. A previously developed nonlinear theory of incompressible flow instability based on total mechanical energy described in the work of Sengupta et al. ["Vortex-induced instability of an incompressible wall-bounded shear layer," J. Fluid Mech. 493, 277-286 (2003)] is used to compare with the present enstrophy based theory. The developed equations for disturbance enstrophy and disturbance mechanical energy are derived from NSE without any simplifying assumptions, as compared to other classical linear/nonlinear theories. The theory is tested for bypass transition caused by free stream convecting vortex over a zero pressure gradient boundary layer. We explain the creation of smaller scales in the flow by a cascade of enstrophy, which creates rotationality, in general inhomogeneous flows. Linear and nonlinear versions of the theory help explain the vortex-induced instability problem under consideration.

  1. Stabilization of a finite slice in miscible displacement in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Pramanik, Satyajit; Mishra, Manoranjan

    2016-11-01

    We numerically studied the miscible displacement of a finite slice of variable viscosity and density. The stability of the finite slice depends on different flow parameters, such as displacement velocity U, mobility ratio R , and the density contrast. Series of numerical simulations corresponding to different ordered pair (R, U) in the parameter space, and a given density contrast reveal six different instability regions. We have shown that independent of the width of the slice, there always exists a region of stable displacement, and below a critical value of the slice width, this stable region increases with decreasing slice width. Further we observe that the viscous fingering (buoyancy-induced instability) at the upper interface induces buoyancy-induced instability (viscous fingering) at the lower interface. Besides the fundamental fluid dynamics understanding, our results can be helpful to model CO2 sequestration and chromatographic separation.

  2. Investigating the Pressure-Induced Amorphization of Zeolitic Imidazolate Framework ZIF-8: Mechanical Instability Due to Shear Mode Softening.

    PubMed

    Ortiz, Aurélie U; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier

    2013-06-06

    We provide the first molecular dynamics study of the mechanical instability that is the cause of pressure-induced amorphization of zeolitic imidazolate framework ZIF-8. By measuring the elastic constants of ZIF-8 up to the amorphization pressure, we show that the crystal-to-amorphous transition is triggered by the mechanical instability of ZIF-8 under compression, due to shear mode softening of the material. No similar softening was observed under temperature increase, explaining the absence of temperature-induced amorphization in ZIF-8. We also demonstrate the large impact of the presence of adsorbate in the pores on the mechanical stability and compressibility of the framework, increasing its shear stability. This first molecular dynamics study of ZIF mechanical properties under variations of pressure, temperature, and pore filling opens the way to a more comprehensive understanding of their mechanical stability, structural transitions, and amorphization.

  3. Caspase 3 promotes genetic instability and carcinogenesis

    PubMed Central

    Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan

    2015-01-01

    Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249

  4. Rossby wave instability in astrophysical discs

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-08-01

    A brief review is given of the Rossby wave instability in astrophysical discs. In non-self-gravitating discs, around for example a newly forming stars, the instability can be triggered by an axisymmetric bump at some radius r0 in the disc surface mass-density. It gives rise to exponentially growing non-axisymmetric perturbation (\\propto \\exp \\,({ { i}}m\\phi ) , m = 1,2,…) in the vicinity of r0 consisting of anticyclonic vortices. These vortices are regions of high pressure and consequently act to trap dust particles which in turn can facilitate planetesimal growth in proto-planetary discs. The Rossby vortices in the discs around stars and black holes may cause the observed quasi-periodic modulations of the disc's thermal emission.

  5. Control of secondary instability of the crossflow and Görtler-like vortices (Success and problems)

    NASA Astrophysics Data System (ADS)

    Kozlov, Viktor V.; Grek, Genrich R.

    The secondary instability on a group of crossflow vortices developing in a swept wing boundary layer is described. It is shown that, for travelling waves, there is a region of linear development, and the growth rate of disturbances appreciably depends on the separation between the vortices. Methods of controlling the secondary instability of the vortices by a controlled wave and local suction are proposed and substantiated. The stability of a flat plate boundary layer modulated by G&ou ml;rtler-like stationary vortices is described. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z) direction. Transition is not caused directly by these structures, but by the growth of small amplitude travelling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are gener ated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited "naturally" by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, , and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequency well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulation showed that TS-type waves may a lso develop. Study of the transition control in that flow by means of riblets shows that the effect of the riblets is to suppress longitudinal vortex structures in a boundary layer. The boundary layer becomes stable with respect to high-frequency travelling waves, which cause the transition in the absence of the riblets.

  6. Global instability in a laminar boundary layer perturbed by an isolated roughness element

    NASA Astrophysics Data System (ADS)

    Puckert, Dominik K.; Rist, Ulrich

    2018-03-01

    Roughness-induced boundary-layer instabilities are investigated by means of hot-film anemometry in a water channel to provide experimental evidence of a global instability. It is shown that the roughness wake dynamics depends on extrinsic disturbances (amplifier) at subcritical Reynolds numbers, whereas intrinsic, self-sustained oscillations (wavemaker) are suspected at supercritical Reynolds numbers. The critical Reynolds number, therefore, separates between two different instability mechanisms. Furthermore, the critical Reynolds number from recent theoretical results is successfully confirmed in this experiment, supporting the physical relevance of 3-d global stability theory.

  7. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  8. Active Control of Combustor Instability Shown to Help Lower Emissions

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would not be effective for control. Testing in the combustor rig showed that open-loop pulsing of the fuel was, in fact, able to effectively modulate the combustor pressure. To suppress the combustor pressure oscillations due to thermoacoustic instabilities, it is desirable to time the injection of the fuel so that it interferes with the instability. A closed-loop control scheme was developed that uses combustion pressure feedback and a phase-shifting controller to time the fuel-injection pulses. Some suppression of the pressure oscillations at the 280-Hz instability frequency was demonstrated (see the next figure). However, the overall peak-to- peak pressure oscillations in the combustor were only mildly reduced. Improvements to control hardware and control methods are being continued to gain improved closed-loop reduction of the pressure oscillations.pulse the fuel at

  9. Pool boiling characteristics and critical heat flux mechanisms of microporous surfaces and enhancement through structural modification

    NASA Astrophysics Data System (ADS)

    Ha, Minseok; Graham, Samuel

    2017-08-01

    Experimental studies have shown that microporous surfaces induce one of the highest enhancements in critical heat flux (CHF) during pool boiling. However, microporous surfaces may also induce a very large surface superheat (>100 °C) which is not desirable for applications such as microelectronics cooling. While the understanding of the CHF mechanism is the key to enhancing boiling heat transfer, a comprehensive understanding is not yet available. So far, three different theories for the CHF of microporous surfaces have been suggested: viscous-capillary model, hydrodynamic instability model, and dryout of the porous coatings. In general, all three theories account for some aspects of boiling phenomena. In this study, the theories are examined through their correlations with experimental data on microporous surfaces during pool boiling using deionized (DI) water. It was found that the modulation of the vapor-jet through the pore network enables a higher CHF than that of a flat surface based on the hydrodynamic instability theory. In addition, it was found that as the heat flux increases, a vapor layer grows in the porous coatings described by a simple thermal resistance model which is responsible for the large surface superheat. Once the vapor layer grows to fill the microporous structure, transition to film boiling occurs and CHF is reached. By disrupting the formation of this vapor layer through the fabrication of channels to allow vapor escape, an enhancement in the CHF and heat transfer coefficient was observed, allowing CHF greater than 3500 kW/m2 at a superheat less than 50 °C.

  10. Clonal evolution and progression of 20-methylcholanthrene-induced squamous cell carcinoma of mouse epidermis as revealed by DNA instability and other malignancy markers.

    PubMed

    Hirai, K; Kumakiri, M; Ueda, K; Imamura, Y; Noriki, S; Nishi, Y; Kato, H; Fukuda, M

    2001-01-01

    We examined the clonal evolution of skin malignant lesions by repeated topical applications of 20-methylcholanthrene (20-MC) to the skin, which induces hyperplastic epidermis, papillomatous lesion and invasive carcinoma in mice. The lesions were examined histologically and immunohistochemically with anti-single-stranded DNA after acid hydrolysis (DNA-instability test), p53, VEGF, DFF45, PCNA and AgNORs parameters analyses. Multiple clones with increased DNA instability comparable to that of invasive carcinoma were noted in early-stage (2-6 weeks) hyperplastic epidermis, and their number increased in middle (7-11 weeks), and late-stages (12-25 weeks) of hyperplastic epidermis, indicating that they belong to the malignancy category. All papillomatous lesions and invasive carcinomas showed a positive DNA-instability test. Positive immunostaining for various biomarkers and AgNORs parameters appeared in clones with a positive DNA-instability test in early-or middle-stage hyperplastic epidermis, and markedly increased in late-stage hyperplastic epidermis, papillomatous lesions and invasive carcinomas. The percentage of PCNA-positive vascular endothelial cells was significantly higher in VEGF-positive lesions with a positive DNA-instability test and became higher toward the late-stage of progression. Cut-woundings were made to papillomatous and invasive carcinoma lesions, and the regeneration activity of vascular endothelial cells was determined by using flash labeling with tritiated thymidine (3H-TdR). In small papillomatous lesions, vascular endothelial cells showed regenerative response, but the response was weak in large lesions. No such response was noted in invasive carcinomas; rather, cut-wounding induced collapse of blood vessels, which in turn induced massive coagulative necrosis of cancer cells. These responses can be interpreted to reflect exhausted vascular growth activity due to excessive stimulation by VEGF-overexpression, which was persistently seen from hyperplastic epidermis to invasive carcinoma.

  11. Delay-induced wave instabilities in single-species reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  12. Combustion Instability Analysis and the Effects of Drop Size on Acoustic Driving Rocket Flow

    NASA Technical Reports Server (NTRS)

    Harper, Brent (Technical Monitor); Ellison, L. Renea; Moser, Marlow D.

    2004-01-01

    High frequency combustion instability, the most destructive kind, is generally solved on a per engine basis. The instability often is the result of compounding acoustic oscillations, usually from the propellant combustion itself. To counteract the instability the chamber geometry can be changed and/or the method of propellant injection can be altered. This experiment will alter the chamber dimensions slightly; using a cylindrical shape of constant diameter and the length will be varied from six to twelve inches in three-inch increments. The main flowfield will be the products of a high OF hydrogen/oxygen flow. The liquid fuel will be injected into this flowfield using a modulated injector. It will allow for varied droplet size, feed rate, spray pattern, and location for the mixture within the chamber. The response will be deduced from the chamber pressure oscillations.

  13. The Time-Dependent Structure of the Electron Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji; Kuznetsova, Masha; Klimas, Alex

    2009-01-01

    Collisionless magnetic reconnection is often associated with time-dependent behavior. Specifically, current layers in the diffusion region can become unstable to tearing-type instabilities on one hand, or to instabilities with current-aligned wave vectors on the other. In the former case, the growth of tearing instabilities typically leads to the production of magnetic islands, which potentially provide feedback on the reconnection process itself, as well as on the rate of reconnection. The second class of instabilities tend to modulate the current layer along the direction of the current flow, for instance generating kink-type perturbations, or smaller-scale turbulence with the potential to broaden the current layer. All of these processes contribute to rendering magnetic reconnection time-dependent. In this presentation, we will provide a summary of these effects, and a discussion of how much they contribute to the overall magnetic reconnection rate.

  14. Harmonic plasma waves excitation and structure evolution of intense ion beams in background plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhang-Hu, E-mail: zhanghu@dlut.edu.cn; Wang, You-Nian

    2016-08-15

    The long-term dynamic evolutions of intense ion beams in plasmas have been investigated with two-dimensional electromagnetic particle simulations, taking into account the effect of the two-stream instability between beam ions and plasma electrons. Depending on the initial beam radial density profile and velocity distribution, ring structures may be formed in the beam edge regions. At the later stage of beam-plasma interactions, the ion beams are strongly modulated by the two-stream instability and multiple density spikes are formed in the longitudinal direction. The formation of these density spikes is shown to result from the excitation of harmonic plasma waves when themore » instability gets saturated. Comparisons between the beam cases with initial flat-top and Gaussian radial density profiles are made, and a higher instability growth rate is observed for the flat-top profile case.« less

  15. SPOP mutation leads to genomic instability in prostate cancer

    PubMed Central

    Boysen, Gunther; Barbieri, Christopher E; Prandi, Davide; Blattner, Mirjam; Chae, Sung-Suk; Dahija, Arun; Nataraj, Srilakshmi; Huang, Dennis; Marotz, Clarisse; Xu, Limei; Huang, Julie; Lecca, Paola; Chhangawala, Sagar; Liu, Deli; Zhou, Pengbo; Sboner, Andrea; de Bono, Johann S

    2015-01-01

    Genomic instability is a fundamental feature of human cancer often resulting from impaired genome maintenance. In prostate cancer, structural genomic rearrangements are a common mechanism driving tumorigenesis. However, somatic alterations predisposing to chromosomal rearrangements in prostate cancer remain largely undefined. Here, we show that SPOP, the most commonly mutated gene in primary prostate cancer modulates DNA double strand break (DSB) repair, and that SPOP mutation is associated with genomic instability. In vivo, SPOP mutation results in a transcriptional response consistent with BRCA1 inactivation resulting in impaired homology-directed repair (HDR) of DSB. Furthermore, we found that SPOP mutation sensitizes to DNA damaging therapeutic agents such as PARP inhibitors. These results implicate SPOP as a novel participant in DSB repair, suggest that SPOP mutation drives prostate tumorigenesis in part through genomic instability, and indicate that mutant SPOP may increase response to DNA-damaging therapeutics. DOI: http://dx.doi.org/10.7554/eLife.09207.001 PMID:26374986

  16. Dynamics of Mesoscale Magnetic Field in Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Diamond, P. H.; Malkov, M. A.

    2007-01-01

    We present a theory for the generation of mesoscale (krg<<1, where rg is the cosmic-ray gyroradius) magnetic fields during diffusive shock acceleration. The decay or modulational instability of resonantly excited Alfvén waves scattering off ambient density perturbations in the shock environment naturally generates larger scale fields. For a broad spectrum of perturbations, the physical mechanism of energy transfer is random refraction, represented by the diffusion of Alfvén wave packets in k-space. The scattering field can be produced directly by the decay instability or by the Drury instability, a hydrodynamic instability driven by the cosmic-ray pressure gradient. This process is of interest to acceleration since it generates waves of longer wavelength, and so enables the confinement and acceleration of higher energy particles. This process also limits the intensity of resonantly generated turbulent magnetic fields on rg scales.

  17. Spatiotemporal chaos in the dynamics of buoyantly and diffusively unstable chemical fronts

    NASA Astrophysics Data System (ADS)

    Baroni, M. P. M. A.; Guéron, E.; De Wit, A.

    2012-03-01

    Nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven Rayleigh-Taylor (RT) instabilities of autocatalytic traveling fronts are analyzed numerically for various values of the relevant parameters. These are the Rayleigh numbers of the reactant A and autocatalytic product B solutions as well as the ratio D =DB/DA between the diffusion coefficients of the two key chemical species. The interplay between the coarsening dynamics characteristic of the RT instability and the constant short wavelength modulation of the diffusive instability can lead in some regimes to complex dynamics dominated by irregular succession of birth and death of fingers. By using spectral entropy measurements, we characterize the transition between order and spatial disorder in this system. The analysis of the power spectrum and autocorrelation function, moreover, identifies similarities between the various spatial patterns. The contribution of the diffusive instability to the complex dynamics is discussed.

  18. Beam measurement of the high frequency impedance sources with long bunches in the CERN Super Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Lasheen, A.; Argyropoulos, T.; Bohl, T.; Esteban Müller, J. F.; Timko, H.; Shaposhnikova, E.

    2018-03-01

    Microwave instability in the Super Proton Synchrotron (SPS) at CERN is one of the main limitations to reach the requirements for the High Luminosity-LHC project (increased beam intensity by a factor 2). To identify the impedance source responsible of the instability, beam measurements were carried out to probe the SPS impedance. The method presented in this paper relies on measurements of the unstable spectra of single bunches, injected in the SPS with the rf voltage switched off. The modulation of the bunch profile gives information about the main impedance sources driving microwave instability, and is compared to particle simulations using the SPS impedance model to identify the most important contributions. This allowed us to identify the vacuum flanges as the main impedance source for microwave instability in the SPS, and to evaluate possible missing impedance sources.

  19. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    2001-01-01

    Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

  20. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.

    Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF). In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform wasmore » developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ~2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ~3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. In conclusion, the effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.« less

  1. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; ...

    2017-10-20

    Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF). In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform wasmore » developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ~2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ~3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. In conclusion, the effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.« less

  2. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; Milovich, J.; Casey, D. T.; Weber, C. R.; Robey, H. F.; Chen, K.-C.; Clark, D. S.; Crippen, J.; Farrell, M.; Felker, S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Stadermann, M.; Hsing, W. W.; Kroll, J. J.; Landen, O. L.; Nikroo, A.; Pickworth, L.; Rice, N.

    2017-10-01

    Hydrodynamic instability growth of the capsule support membranes (or "tents") and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF) [Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new "sub-scale" version of the existing x-ray radiography platform was developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ˜2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ˜3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. The effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.

  3. Discrete breathers dynamic in a model for DNA chain with a finite stacking enthalpy

    NASA Astrophysics Data System (ADS)

    Gninzanlong, Carlos Lawrence; Ndjomatchoua, Frank Thomas; Tchawoua, Clément

    2018-04-01

    The nonlinear dynamics of a homogeneous DNA chain based on site-dependent finite stacking and pairing enthalpies is studied. A new variant of extended discrete nonlinear Schrödinger equation describing the dynamics of modulated wave is derived. The regions of discrete modulational instability of plane carrier waves are studied, and it appears that these zones depend strongly on the phonon frequency of Fourier's mode. The staggered/unstaggered discrete breather (SDB/USDB) is obtained straightforwardly without the staggering transformation, and it is demonstrated that SDBs are less unstable than USDB. The instability of discrete multi-humped SDB/USDB solution does not depend on the number of peaks of the discrete breather (DB). By using the concept of Peierls-Nabarro energy barrier, it appears that the low-frequency DBs are more mobile.

  4. Experimental study of the reversible behavior of modulational instability in optical fibers

    NASA Astrophysics Data System (ADS)

    van Simaeys, Gaetan; Emplit, Philippe; Haelterman, Marc

    2002-03-01

    We report what is to our knowledge the first clear-cut experimental evidence of the reversibility of modulational instability in dispersive Kerr media. It was possible to perform this experiment with standard telecommunication fiber because we used a specially designed 550-ps square-pulse laser source based on the two-wavelength configuration of a nonlinear optical loop mirror. Our observations demonstrate that reversibility is due to well-balanced and synchronous energy transfer among a significant number of spectral wave components. These results provide what we believe is the first evidence, in the field of nonlinear optics, of the universal Fermi-Pasta-Ulam recurrence phenomenon that has been predicted for a large number of conservative nonlinear systems, including those described by a nonlinear Schrödinger equation that is relevant to the context of the present study.

  5. On the Claim of Modulations in 36Cl Beta Decay and Their Association with Solar Rotation

    NASA Astrophysics Data System (ADS)

    Pommé, S.; Kossert, K.; Nähle, O.

    2017-11-01

    Recently, claims were made by Sturrock et al. ( Astropart. Phys. 42, 62, 2013), Sturrock, Fischbach, and Scargle ( Solar Phys. 291, 3467, 2016; arXiv http://arxiv.org/abs/arXiv:1705.03010, 2017) that beta decay can be induced by interaction of the nucleus with solar neutrinos and that cyclic modulations in decay rates are indicative of the dynamics of the solar interior. Transient modulations in residuals from a purely exponential decay curve were observed at frequencies near 11 a^{-1} and 12.7 a^{-1} in repeated activity measurements of a 36Cl source by Alburger, Harbottle, and Norton ( Earth Planet Sci. Lett. 78, 168, 1986) at Brookhaven National Laboratory in a period from 1984 to 1985. Sturrock et al. have speculatively associated them with rotational influence on the solar neutrino flux. In this work, more accurate 36Cl decay-rate measurements - performed at the Physikalisch-Technische Bundesanstalt Braunschweig in the period 2010 - 2013 by means of the triple-to-double coincidence ratio measurement technique - are scrutinised. The residuals from an exponential decay curve were analysed by a weighted Lomb-Scargle periodogram. The existence of modulations in the frequency range between 0.2 a^{-1} and 20 a^{-1} could be excluded down to an amplitude of about 0.0016%. The invariability of the 36Cl decay constant contradicts the speculations made about the deep solar interior on the basis of instabilities in former activity measurements.

  6. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  7. Laser-Plasma Instabilities by Avoiding the Strong Ion Landau Damping Limit: The Central Role of Statistical, Ultrafast, Nonlinear Optical Laser Techniques (SUNOL)

    NASA Astrophysics Data System (ADS)

    Afeyan, Bedros; Hüller, Stefan; Montgomery, David; Moody, John; Froula, Dustin; Hammer, James; Jones, Oggie; Amendt, Peter

    2014-10-01

    In mid-Z and high-Z plasmas, it is possible to control crossed bean energy transfer (CBET) and subsequently occurring single or multiple beam instabilities such as Stimulated Raman Scattering (SRS) by novel means. These new techniques are inoperative when the ion acoustic waves are in their strong damping limit, such as occurs in low Z plasmas with comparable electron and ion temperatures. For mid-Z plasmas, such as Z = 10, and near the Mach 1 surface, the strong coupling regime (SCR) can be exploited for LPI mitigation. While at higher Z values, it is thermal filamentation in conjunction with nonlocal heat transport that are useful to exploit. In both these settings, the strategy is to induce laser hot spot intensity dependent, and thus spatially dependent, frequency shifts to the ion acoustic waves in the transient response of wave-wave interactions. The latter is achieved by the on-off nature of spike trains of uneven duration and delay, STUD pulses. The least taxing use of STUD pulses is to modulate the beams at the 10 ps time scale and to choose which crossing beams are overlapping in time and which are not. Work supported by a grant from the DOE NNSA-OFES joint program on HEDP

  8. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis.

    PubMed

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M

    2017-10-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    PubMed

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Transition to chaos of natural convection between two infinite differentially heated vertical plates

    NASA Astrophysics Data System (ADS)

    Gao, Zhenlan; Sergent, Anne; Podvin, Berengere; Xin, Shihe; Le Quéré, Patrick; Tuckerman, Laurette S.

    2013-08-01

    Natural convection of air between two infinite vertical differentially heated plates is studied analytically in two dimensions (2D) and numerically in two and three dimensions (3D) for Rayleigh numbers Ra up to 3 times the critical value Rac=5708. The first instability is a supercritical circle pitchfork bifurcation leading to steady 2D corotating rolls. A Ginzburg-Landau equation is derived analytically for the flow around this first bifurcation and compared with results from direct numerical simulation (DNS). In two dimensions, DNS shows that the rolls become unstable via a Hopf bifurcation. As Ra is further increased, the flow becomes quasiperiodic, and then temporally chaotic for a limited range of Rayleigh numbers, beyond which the flow returns to a steady state through a spatial modulation instability. In three dimensions, the rolls instead undergo another pitchfork bifurcation to 3D structures, which consist of transverse rolls connected by counter-rotating vorticity braids. The flow then becomes time dependent through a Hopf bifurcation, as exchanges of energy occur between the rolls and the braids. Chaotic behavior subsequently occurs through two competing mechanisms: a sequence of period-doubling bifurcations leading to intermittency or a spatial pattern modulation reminiscent of the Eckhaus instability.

  11. Modulational instability and dynamics of implicit higher-order rogue wave solutions for the Kundu equation

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yong; Zhang, Guoqiang

    2018-01-01

    Under investigation in this paper is the Kundu equation, which may be used to describe the propagation process of ultrashort optical pulses in nonlinear optics. The modulational instability of the plane-wave for the possible reason of the formation of the rogue wave (RW) is studied for the system. Based on our proposed generalized perturbation (n,N - n)-fold Darboux transformation (DT), some new higher-order implicit RW solutions in terms of determinants are obtained by means of the generalized perturbation (1,N - 1)-fold DT, when choosing different special parameters, these results will reduce to the RW solutions of the Kaup-Newell (KN) equation, Chen-Lee-Liu (CLL) equation and Gerjikov-Ivanov (GI) equation, respectively. The relevant wave structures are shown graphically, which display abundant interesting wave structures. The dynamical behaviors and propagation stability of the first-order and second-order RW solutions are discussed by using numerical simulations, the higher-order nonlinear terms for the Kundu equation have an impact on the propagation instability of the RW. The method can also be extended to find the higher-order RW or rational solutions of other integrable nonlinear equations.

  12. Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module

    NASA Technical Reports Server (NTRS)

    Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian

    2003-01-01

    The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.

  13. Morphomechanics of bacterial biofilms undergoing anisotropic differential growth

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Bo; Huang, Xiao; Ni, Yong; Feng, Xi-Qiao

    2016-10-01

    Growing bacterial biofilms exhibit a number of surface morphologies, e.g., concentric wrinkles, radial ridges, and labyrinthine networks, depending on their physiological status and nutrient access. We explore the mechanisms underlying the emergence of these greatly different morphologies. Ginzburg-Landau kinetic method and Fourier spectral method are integrated to simulate the morphological evolution of bacterial biofilms. It is shown that the morphological instability of biofilms is triggered by the stresses induced by anisotropic and heterogeneous bacterial expansion, and involves the competition between membrane energy and bending energy. Local interfacial delamination further enriches the morphologies of biofilms. Phase diagrams are established to reveal how the anisotropy and spatial heterogeneity of growth modulate the surface patterns. The mechanics of three-dimensional microbial morphogenesis may also underpin self-organization in other development systems and provide a potential strategy for engineering microscopic structures from bacterial aggregates.

  14. Process control strategy for ITER central solenoid operation

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Takami, S.; Iwamoto, A.; Chang, H.-S.; Forgeas, A.; Chalifour, M.

    2016-12-01

    ITER Central Solenoid (CS) pulse operation induces significant flow disturbance in the forced-flow Supercritical Helium (SHe) cooling circuit, which could impact primarily on the operation of cold circulator (SHe centrifugal pump) in Auxiliary Cold Box (ACB). Numerical studies using Venecia®, SUPERMAGNET and 4C have identified reverse flow at the CS module inlet due to the substantial thermal energy deposition at the inner-most winding. To assess the reliable operation of ACB-CS (dedicated ACB for CS), the process analyses have been conducted with a dynamic process simulation model developed by Cryogenic Process REal-time SimulaTor (C-PREST). As implementing process control of hydrodynamic instability, several strategies have been applied to evaluate their feasibility. The paper discusses control strategy to protect the centrifugal type cold circulator/compressor operations and its impact on the CS cooling.

  15. Perspectives of drug-based neuroprotection targeting mitochondria.

    PubMed

    Procaccio, V; Bris, C; Chao de la Barca, J M; Oca, F; Chevrollier, A; Amati-Bonneau, P; Bonneau, D; Reynier, P

    2014-05-01

    Mitochondrial dysfunction has been reported in most neurodegenerative diseases. These anomalies include bioenergetic defect, respiratory chain-induced oxidative stress, defects of mitochondrial dynamics, increase sensitivity to apoptosis, and accumulation of damaged mitochondria with instable mitochondrial DNA. Significant progress has been made in our understanding of the pathophysiology of inherited mitochondrial disorders but most have no effective therapies. The development of new metabolic treatments will be useful not only for rare mitochondrial disorders but also for the wide spectrum of common age-related neurodegenerative diseases shown to be associated with mitochondrial dysfunction. A better understanding of the mitochondrial regulating pathways raised several promising perspectives of neuroprotection. This review focuses on the pharmacological approaches to modulate mitochondrial biogenesis, the removal of damaged mitochondria through mitophagy, scavenging free radicals and also dietary measures such as ketogenic diet. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Nonlinear structures and anomalous transport in partially magnetized E×B plasmas

    DOE PAGES

    Janhunen, Salomon; Smolyakov, Andrei; Chapurin, Oleksandr; ...

    2017-12-29

    Nonlinear dynamics of the electron-cyclotron instability driven by the electron E x B current in a crossed electric and magnetic field is studied. In the nonlinear regime, the instability proceeds by developing a large amplitude coherent wave driven by the energy input from the fundamental cyclotron resonance. Further evolution shows the formation of the long wavelength envelope akin to the modulational instability. Simultaneously, the ion density shows the development of a high-k content responsible for wave focusing and sharp peaks on the periodic cnoidal wave structure. Here, it is shown that the anomalous electron transport (along the direction of themore » applied electric field) is dominated by the long wavelength part of the turbulent spectrum.« less

  17. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  18. Deformation of interface in a partially miscible system during favorable displacement

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryuta; Nagatsu, Yuichiro; Mishra, Manoranjan; Ban, Takahiko

    2017-11-01

    The Saffman-Taylor instability triggers a well-known viscous fingering (VF, called unfavorable displacement), occurring when a less viscous fluid displaces a more viscous one in porous media or in a Hele-Shaw cell because the boundary of the two fluids becomes hydrodynamically unstable. In the reverse situation (called favorable displacement) in which a more viscous fluid displaces a less viscous one, no instabilities occur due to hydrodynamically stable system. It has been reported that the favorable displacements become unstable by several physicochemical effects. So far, studies of both displacements have focused on fluids that are either fully miscible or immiscible. However, little attention has been paid to displacements in partially miscible system. Here, we have discovered that a partial miscibility triggers fingering instability in a favorable displacement without any chemical reactions. The occurrence of this new instability is induced by not hydrodynamic effects but a thermodynamic effect that is so-called Korteweg effect in which convection is induced during phase separation process in a partially miscible system.

  19. Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects.

    PubMed

    Lamm, Noa; Ben-David, Uri; Golan-Lev, Tamar; Storchová, Zuzana; Benvenisty, Nissim; Kerem, Batsheva

    2016-02-04

    Human pluripotent stem cells (hPSCs) frequently acquire chromosomal aberrations such as aneuploidy in culture. These aberrations progressively increase over time and may compromise the properties and clinical utility of the cells. The underlying mechanisms that drive initial genomic instability and its continued progression are largely unknown. Here, we show that aneuploid hPSCs undergo DNA replication stress, resulting in defective chromosome condensation and segregation. Aneuploid hPSCs show altered levels of actin cytoskeletal genes controlled by the transcription factor SRF, and overexpression of SRF rescues impaired chromosome condensation and segregation defects in aneuploid hPSCs. Furthermore, SRF downregulation in diploid hPSCs induces replication stress and perturbed condensation similar to that seen in aneuploid cells. Together, these results suggest that decreased SRF expression induces replicative stress and chromosomal condensation defects that underlie the ongoing chromosomal instability seen in aneuploid hPSCs. A similar mechanism may also operate during initiation of instability in diploid cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, D.F.; Rose, H.A.; Russell, D.

    1995-12-01

    Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where themore » weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.« less

  1. GFP-based fluorescence assay for CAG repeat instability in cultured human cells.

    PubMed

    Santillan, Beatriz A; Moye, Christopher; Mittelman, David; Wilson, John H

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries.

  2. GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells

    PubMed Central

    Santillan, Beatriz A.; Moye, Christopher; Mittelman, David; Wilson, John H.

    2014-01-01

    Trinucleotide repeats can be highly unstable, mutating far more frequently than point mutations. Repeats typically mutate by addition or loss of units of the repeat. CAG repeat expansions in humans trigger neurological diseases that include myotonic dystrophy, Huntington disease, and several spinocerebellar ataxias. In human cells, diverse mechanisms promote CAG repeat instability, and in mice, the mechanisms of instability are varied and tissue-dependent. Dissection of mechanistic complexity and discovery of potential therapeutics necessitates quantitative and scalable screens for repeat mutation. We describe a GFP-based assay for screening modifiers of CAG repeat instability in human cells. The assay exploits an engineered intronic CAG repeat tract that interferes with expression of an inducible GFP minigene. Like the phenotypes of many trinucleotide repeat disorders, we find that GFP function is impaired by repeat expansion, in a length-dependent manner. The intensity of fluorescence varies inversely with repeat length, allowing estimates of repeat tract changes in live cells. We validate the assay using transcription through the repeat and engineered CAG-specific nucleases, which have previously been reported to induce CAG repeat instability. The assay is relatively fast and should be adaptable to large-scale screens of chemical and shRNA libraries. PMID:25423602

  3. ITEL Experiment Module and its Flight on MASER9

    NASA Astrophysics Data System (ADS)

    Löth, K.; Schneider, H.; Larsson, B.; Jansson, O.; Houltz, Y.

    2002-01-01

    The ITEL (Interfacial Turbulence in Evaporating Liquid) module is built under contract from the European Space Agency (ESA) and is scheduled to fly onboard a Sounding Rocket (MASER 9) in March 2002. The project is conducted by Swedish Space Corporation (SSC) with Lambda-X as a subcontractor responsible for the optical system. The Principle Investigator is Pierre Colinet from Université Libre de Bruxelles (ULB). The experiment in ITEL on Maser 9 is part of a research program, which will make use of the International Space Station. The purpose of the flight on Maser 9 is to observe the cellular convection (Marangoni-Bénard instability) which arise when the surface tension varies with temperature yielding thermocapillary instabilities. During the 6 minutes of microgravity of the ITEL experiment, a highly volatile liquid layer (ethyl alcohol) will be evaporated, and the convection phenomena generated by the evaporation process will be visualized. Due to the cooling by latent heat consumption at the level of the evaporating free surface, a temperature gradient is induced perpendicularly to it. The flight experiment module contains one experiment cell, including a gas system for regulation of nitrogen flow over the evaporating surface and an injection unit that is used for injection of liquid into the cell both initially and during surface regulation. The experiment cell is equipped with pressure and flow sensors as well as thermocouples both inside the liquid and at different positions in the cell. Two optical diagnostic systems have been developed around the experiment cell. An interferometric optical tomograph measures the 3-dimensional distribution of temperature in the evaporating liquid and a Schlieren system visualizes the temperature gradients inside the liquid together with the liquid surface deformation. A PC/104 based electronic system is used for management and control of the experiment. The electronic system handles measurements, housekeeping, image capture system, surface and pressure regulation as well as storage of data. The images are stored onboard on three DV tape recorders. At flight, video images as well as data is sent to ground and the experiment can be controlled via telecommands. In this presentation we will focus on the technical parts of the experiment, the overall module and the preliminary technical results obtained from the flight, including reconstructions of 3-dimensional temperature distributions.

  4. Power requirements reducing of FBG based all-optical switching

    NASA Astrophysics Data System (ADS)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  5. Influence of mode-beating pulse on laser-induced plasma

    NASA Astrophysics Data System (ADS)

    Nishihara, M.; Freund, J. B.; Glumac, N. G.; Elliott, G. S.

    2018-04-01

    This paper addresses the influence of mode-beating pulse on laser-induced plasma. The second harmonic of a Nd:YAG laser, operated either with the single mode or multimode, was used for non-resonant optical breakdown, and subsequent plasma development was visualized using a streak imaging system. The single mode lasing leads to a stable breakdown location and smooth envelopment of the plasma boundary, while the multimode lasing, with the dominant mode-beating frequency of 500-800 MHz, leads to fluctuations in the breakdown location, a globally modulated plasma surface, and growth of local microstructures at the plasma boundary. The distribution of the local inhomogeneity was measured from the elastic scattering signals on the streak image. The distance between the local structures agreed with the expected wavelength of hydrodynamic instability development due to the interference between the surface excited wave and transmitted wave. A numerical simulation, however, indicates that the local microstructure could also be directly generated at the peaks of the higher harmonic components if the multimode pulse contains up to the eighth harmonic of the fundamental cavity mode.

  6. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas.

    PubMed

    Nakamura, T K M; Hasegawa, H; Daughton, W; Eriksson, S; Li, W Y; Nakamura, R

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.

  7. The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-08-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.

  8. Multiparticle instability in a spin-imbalanced Fermi gas

    NASA Astrophysics Data System (ADS)

    Whitehead, T. M.; Conduit, G. J.

    2018-01-01

    Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.

  9. Shock-Induced Disappearance and Subsequent Recovery of Plasmaspheric Hiss: Coordinated Observations of RBSP, THEMIS, and POES Satellite

    DOE PAGES

    Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; ...

    2017-10-04

    Here, plasmaspheric hiss is an extremely low frequency whistler–mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here on the basis of the analysis of an event of shock–induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS, and POES missions, we attempt to identify its dominant generation mechanism. In the preshock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainlymore » originated from the dayside chorus waves. On arrival of the shock, the removal of preexisting dayside chorus and the insignificant variation of low–frequency wave instability caused the prompt disappearance of hiss waves. In the next few hours, the local instability in the plasmasphere was greatly enhanced due to the substorm injection of hot electrons. The enhancement of local instability likely played a dominant role in the temporary recovery of hiss with unidirectional Poynting fluxes. These temporarily recovered hiss waves were generated near the equator and then propagated toward higher latitudes. In contrast, both the enhancement of local instability and the recurrence of prenoon chorus contributed to the substantial recovery of hiss with bidirectional Poynting fluxes.« less

  10. Shock-Induced Disappearance and Subsequent Recovery of Plasmaspheric Hiss: Coordinated Observations of RBSP, THEMIS, and POES Satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei

    Here, plasmaspheric hiss is an extremely low frequency whistler–mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here on the basis of the analysis of an event of shock–induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS, and POES missions, we attempt to identify its dominant generation mechanism. In the preshock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainlymore » originated from the dayside chorus waves. On arrival of the shock, the removal of preexisting dayside chorus and the insignificant variation of low–frequency wave instability caused the prompt disappearance of hiss waves. In the next few hours, the local instability in the plasmasphere was greatly enhanced due to the substorm injection of hot electrons. The enhancement of local instability likely played a dominant role in the temporary recovery of hiss with unidirectional Poynting fluxes. These temporarily recovered hiss waves were generated near the equator and then propagated toward higher latitudes. In contrast, both the enhancement of local instability and the recurrence of prenoon chorus contributed to the substantial recovery of hiss with bidirectional Poynting fluxes.« less

  11. Causes of genome instability: the effect of low dose chemical exposures in modern society

    PubMed Central

    Langie, Sabine A.S.; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H.; Brown, Dustin; Brunborg, Gunnar; Charles, Amelia K.; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A.; Knudsen, Lisbeth E.; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth; Ostrosky-Wegman, Patricia; Salem, Hosni K.; Scovassi, Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J.; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R.

    2015-01-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome’s integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. PMID:26106144

  12. Constant-intensity waves and their modulation instability in non-Hermitian potentials

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Musslimani, Z. H.; Christodoulides, D. N.; Rotter, S.

    2015-07-01

    In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.

  13. Mirror instability and origin of morningside auroral structure

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Schulz, M.; Fennell, J. F.; Kishi, A. M.

    1983-01-01

    Auroral optical imagery shows marked differences between auroral features of the evening and morning sectors: the separation between diffuse and discrete auroras in the evening sector is not distinct in the morning sector, which is dominated by auroral patches and multiple banded structures aligned along some direction. Plasma distribution function signatures also show marked differences: downward electron beams and inverted-V signatures prefer the evening sector, while the electron spectra on the morning sector are similar to the diffuse aurora. A theory of morningside auroras consistent with these features was constructed. The theory is based on modulation of the growth rates of electron cyclotron waves by the mirror instability, which is in turn driven by inward-convected ions that have become anisotropic. This modulation produces alternating bands of enhanced and reduced electron precipitation which approximate the observed multiple auroral bands and patches of the morning sector.

  14. Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

    NASA Astrophysics Data System (ADS)

    EL-Kalaawy, O. H.

    2018-02-01

    We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

  15. Modulation instability, Fermi-Pasta-Ulam recurrence, rogue waves, nonlinear phase shift, and exact solutions of the Ablowitz-Ladik equation.

    PubMed

    Akhmediev, Nail; Ankiewicz, Adrian

    2011-04-01

    We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L) equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the original constant background solution after the process of nonlinear evolution has passed. These solutions can be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.

  16. Full load testing in the platform module prior to tow-out: A case history of subsynchronous instability

    NASA Technical Reports Server (NTRS)

    Fulton, J. W.

    1984-01-01

    An electric motor driven centrifugal compressor to supply gas for further compression and reinjection on a petroleum production platform in the North Sea was examined. The compressor design, raised concerns about susceptibility to subsynchronous instability. Log decrement, aerodynamic features, and the experience of other compressors with similar ratios of operating to critical speed ratio versus gas density led to the decision to full load test. Mixed hydrocarbon gas was chosen for the test to meet discharge temperature restrictions. The module was used as the test site. Subsynchronous vibrations made the compressor inoperable above approximately one-half the rated discharge pressure of 14500 kPa. Modifications, which includes shortening the bearing span, change of leakage inlet flow direction on the back to back labyrinth, and removal of the vaned diffusers on all stages were made simultaneously. The compressor is operating with satisfactory vibration levels.

  17. Investigation of flow-induced numerical instability in a mixed semi-implicit, implicit leapfrog time discretization

    NASA Astrophysics Data System (ADS)

    King, Jacob; Kruger, Scott

    2017-10-01

    Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).

  18. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua

    2016-10-01

    Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.

  19. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O] H2O PET study.

    PubMed

    Ballanger, Benedicte; Lozano, Andres M; Moro, Elena; van Eimeren, Thilo; Hamani, Clement; Chen, Robert; Cilia, Roberto; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E; Strafella, Antonio P

    2009-12-01

    Patients with advanced Parkinson's disease (PD) develop disabling axial symptoms, including gait disturbances, freezing and postural instability poorly responsive to levodopa replacement therapy. The pedunculopontine nucleus (PPN) is involved in locomotion, control of posture, and behavioral states [i.e. wakefulness, rapid eye movement sleep]. Recent reports suggested that PPN modulation with deep brain stimulation (DBS) may be beneficial in the treatment of axial symptoms. However, the mechanisms underlying these effects are still unknown. We used [(15)O] H(2)O PET to investigate regional cerebral blood flow in three patients with advanced PD who underwent a new experimental surgical procedure with implantation of unilateral PPN-DBS. Patients were studied Off-medication with stimulator Off and On, both at rest and during a self-paced alternating motor task of the lower limbs. We used SPM2 for imaging data analysis, threshold P < 0.05 corrected at the cluster level. Stimulation induced significant regional cerebral blood flow increment in subcortical regions such as the thalamus (P < 0.006), cerebellum (P < 0.001), and midbrain region (P < 0.001) as well as different cortical areas involving medial sensorimotor cortex extending into caudal supplementary motor area (BA 4/6; P < 0.001). PPN-DBS in advanced PD resulted in blood flow and presumably neuronal activity changes in subcortical and cortical areas involved in balance and motor control, including the mesencephalic locomotor region (e.g. PPN) and closely interconnected structures within the cerebello-(rubro)-thalamo-cortical circuit. Whether these findings are associated with the DBS-PPN clinical effect remains to be proven. However, they suggest that PPN modulation may induce functional changes in neural networks associated with the control of lower limb movements. 2009 Wiley-Liss, Inc.

  20. Loss of single immunoglobulin interlukin-1 receptor-related molecule leads to enhanced colonic polyposis in Apcmin mice

    PubMed Central

    Xiao, Hui; Yin, Weiguo; Khan, Mohammed A.; Gulen, Muhammet F.; Zhou, Hang; Sham, Ho Pan; Jacobson, Kevan; Vallance, Bruce A.; Li, Xiaoxia

    2011-01-01

    Background & Aims Commensal bacteria can activate signaling by the toll-like and interleukin-1 receptors (TLR and IL-1R) to mediate pathogenesis of inflammatory bowel diseases and colitis-associated cancer. We investigated the role of the single immunoglobulin IL-1 receptor-related (SIGIRR) molecule, a negative regulator of TLR and IL-1R signaling, as a tumor suppressor to determine whether SIGIRR controls cell cycle progression, genetic instability, and colon tumor initiation by modulating commensal TLR signaling in the gastrointestinal tract. Methods We analyzed Apcmin/+/Sigirr-/- mice for polyps, microadenomas, and anaphase bridge index. Commensal bacteria were depleted from mice with antibiotics. Akt, mTOR and β-catenin pathways were examined by immunoblotting and immunohistochemistry. Loss of heterozygosity (LOH) of Apc and expression of cytokines and proinflammatory mediators were measured by non-quantitative or quantitative PCR. Results Apcmin/+/Sigirr-/- mice had increased LOH of Apc and microadenoma formation, resulting in spontaneous colonic polyposis, compared with Apc min/+/Sigirr+/+ mice. The increased colonic tumorigenesis that occurred in the Apcmin/+/Sigirr-/- mice depended on the presence of commensal bacteria in the gastrointestinal tract. Cell proliferation and chromosomal instability increased in colon crypt cells of the Apcmin/+/Sigirr-/- mice. Akt, mTOR and their substrates were hyper-activated in colon epithelium of Apcmin/+/Sigirr-/- mice in response to TLR or IL-1R ligands. Inhibition of the mTOR pathway by rapamycin reduced formation of microadenomas and polyps in the Apcmin/+/Sigirr-/- mice. Conclusions SIGIRR acts as a tumor suppressor in the colon by inhibiting TLR-induced, mTOR-mediated cell cycle progression and genetic instability. PMID:20416302

  1. Loss of single immunoglobulin interlukin-1 receptor-related molecule leads to enhanced colonic polyposis in Apc(min) mice.

    PubMed

    Xiao, Hui; Yin, Weiguo; Khan, Mohammed A; Gulen, Muhammet F; Zhou, Hang; Sham, Ho Pan; Jacobson, Kevan; Vallance, Bruce A; Li, Xiaoxia

    2010-08-01

    Commensal bacteria can activate signaling by the Toll-like and interleukin-1 receptors (TLR and IL-1R) to mediate pathogenesis of inflammatory bowel diseases and colitis-associated cancer. We investigated the role of the single immunoglobulin IL-1 receptor-related (SIGIRR) molecule, a negative regulator of TLR and IL-1R signaling, as a tumor suppressor to determine whether SIGIRR controls cell-cycle progression, genetic instability, and colon tumor initiation by modulating commensal TLR signaling in the gastrointestinal tract. We analyzed adenomatous polyposis coli (Apc)min/+/Sigirr-/- mice for polyps, microadenomas, and anaphase bridge index. Commensal bacteria were depleted from mice with antibiotics. Akt, mammalian target of rapamycin (mTOR), and beta-catenin pathways were examined by immunoblotting and immunohistochemistry. Loss of heterozygosity of Apc and expression of cytokines and proinflammatory mediators were measured by nonquantitative or quantitative polymerase chain reaction. Apcmin/+/Sigirr-/- mice had increased loss of heterozygosity of Apc and microadenoma formation, resulting in spontaneous colonic polyposis, compared with Apcmin/+/Sigirr+/+ mice. The increased colonic tumorigenesis that occurred in the Apcmin/+/Sigirr-/- mice depended on the presence of commensal bacteria in the gastrointestinal tract. Cell proliferation and chromosomal instability increased in colon crypt cells of the Apcmin/+/Sigirr-/- mice. Akt, mTOR, and their substrates were hyperactivated in colon epithelium of Apcmin/+/Sigirr-/- mice in response to TLR or IL-1R ligands. Inhibition of the mTOR pathway by rapamycin reduced formation of microadenomas and polyps in the Apcmin/+/Sigirr-/- mice. SIGIRR acts as a tumor suppressor in the colon by inhibiting TLR-induced, mTOR-mediated cell-cycle progression and genetic instability. Copyright (c) 2010 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Insights into the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin

    2017-10-01

    The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.

  3. The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans.

    PubMed

    Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori

    2013-01-01

    In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.

  4. DNA-damage response during mitosis induces whole-chromosome missegregation.

    PubMed

    Bakhoum, Samuel F; Kabeche, Lilian; Murnane, John P; Zaki, Bassem I; Compton, Duane A

    2014-11-01

    Many cancers display both structural (s-CIN) and numerical (w-CIN) chromosomal instabilities. Defective chromosome segregation during mitosis has been shown to cause DNA damage that induces structural rearrangements of chromosomes (s-CIN). In contrast, whether DNA damage can disrupt mitotic processes to generate whole chromosomal instability (w-CIN) is unknown. Here, we show that activation of the DNA-damage response (DDR) during mitosis selectively stabilizes kinetochore-microtubule (k-MT) attachments to chromosomes through Aurora-A and PLK1 kinases, thereby increasing the frequency of lagging chromosomes during anaphase. Inhibition of DDR proteins, ATM or CHK2, abolishes the effect of DNA damage on k-MTs and chromosome segregation, whereas activation of the DDR in the absence of DNA damage is sufficient to induce chromosome segregation errors. Finally, inhibiting the DDR during mitosis in cancer cells with persistent DNA damage suppresses inherent chromosome segregation defects. Thus, the DDR during mitosis inappropriately stabilizes k-MTs, creating a link between s-CIN and w-CIN. The genome-protective role of the DDR depends on its ability to delay cell division until damaged DNA can be fully repaired. Here, we show that when DNA damage is induced during mitosis, the DDR unexpectedly induces errors in the segregation of entire chromosomes, thus linking structural and numerical chromosomal instabilities. ©2014 American Association for Cancer Research.

  5. Cytokinesis Failure Leading to Chromosome Instability in v-Src-Induced Oncogenesis.

    PubMed

    Nakayama, Yuji; Soeda, Shuhei; Ikeuchi, Masayoshi; Kakae, Keiko; Yamaguchi, Naoto

    2017-04-12

    v-Src, an oncogene found in Rous sarcoma virus, is a constitutively active variant of c-Src. Activation of Src is observed frequently in colorectal and breast cancers, and is critical in tumor progression through multiple processes. However, in some experimental conditions, v-Src causes growth suppression and apoptosis. In this review, we highlight recent progress in our understanding of cytokinesis failure and the attenuation of the tetraploidy checkpoint in v-Src-expressing cells. v-Src induces cell cycle changes-such as the accumulation of the 4N cell population-and increases the number of binucleated cells, which is accompanied by an excess number of centrosomes. Time-lapse analysis of v-Src-expressing cells showed that cytokinesis failure is caused by cleavage furrow regression. Microscopic analysis revealed that v-Src induces delocalization of cytokinesis regulators including Aurora B and Mklp1. Tetraploid cell formation is one of the causes of chromosome instability; however, tetraploid cells can be eliminated at the tetraploidy checkpoint. Interestingly, v-Src weakens the tetraploidy checkpoint by inhibiting the nuclear exclusion of the transcription coactivator YAP, which is downstream of the Hippo pathway and its nuclear exclusion is critical in the tetraploidy checkpoint. We also discuss the relationship between v-Src-induced chromosome instability and growth suppression in v-Src-induced oncogenesis.

  6. Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions

    NASA Astrophysics Data System (ADS)

    Paxton, Bill; Schwab, Josiah; Bauer, Evan B.; Bildsten, Lars; Blinnikov, Sergei; Duffell, Paul; Farmer, R.; Goldberg, Jared A.; Marchant, Pablo; Sorokina, Elena; Thoul, Anne; Townsend, Richard H. D.; Timmes, F. X.

    2018-02-01

    We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with M< 8 M⊙ become white dwarfs and cool to the point where the electrons are degenerate and the ions are strongly coupled, a realm now available to study with MESA due to improved treatments of element diffusion, latent heat release, and blending of equations of state. Studies of the final fates of massive stars are extended in MESA by our addition of an approximate Riemann solver that captures shocks and conserves energy to high accuracy during dynamic epochs. We also introduce a 1D capability for modeling the effects of Rayleigh-Taylor instabilities that, in combination with the coupling to a public version of the STELLA radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools - MESA-Web, MESA-Docker, pyMESA, and mesastar.org - to enhance MESA's education and research impact.

  7. Instability of meridional axial system in f( R) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Yousaf, Z.

    2015-05-01

    We analyze the dynamical instability of a non-static reflection axial stellar structure by taking into account the generalized Euler equation in metric f( R) gravity. Such an equation is obtained by contracting the Bianchi identities of the usual anisotropic and effective stress-energy tensors, which after using a radial perturbation technique gives a modified collapse equation. In the realm of the gravity model, we investigate instability constraints at Newtonian and post-Newtonian approximations. We find that the instability of a meridional axial self-gravitating system depends upon the static profile of the structure coefficients, while f( R) extra curvature terms induce the stability of the evolving celestial body.

  8. Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening.

    PubMed

    Amirhosseini, Mehdi; Andersson, Göran; Aspenberg, Per; Fahlgren, Anna

    2017-12-01

    Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a rat model for aseptic loosening, induced by either mechanical instability or titanium particles. Rats were exposed to mechanical instability or titanium particles. After 15 min, 3, 48 or 120 h from start of the stimulation, gene expression changes in periprosthetic bone tissue was determined by microarray analysis. Microarray data were analyzed by PANTHER Gene List Analysis tool and Ingenuity Pathway Analysis (IPA). Both types of osteolytic stimulation led to gene regulation in comparison to unstimulated controls after 3, 48 or 120 h. However, when mechanical instability was compared to titanium particles, no gene showed a statistically significant difference (fold change ≥ ± 1.5 and adjusted p-value ≤ 0.05) at any time point. There was a remarkable similarity in numbers and functional classification of regulated genes. Pathway analysis showed several inflammatory pathways activated by both stimuli, including Acute Phase Response signaling, IL-6 signaling and Oncostatin M signaling. Quantitative PCR confirmed the changes in expression of key genes involved in osteolysis observed by global transcriptomics. Inflammatory mediators including interleukin (IL)-6, IL-1β, chemokine (C-C motif) ligand (CCL)2, prostaglandin-endoperoxide synthase (Ptgs)2 and leukemia inhibitory factor (LIF) showed strong upregulation, as assessed by both microarray and qPCR. By investigating genome-wide expression changes we show that, despite the different nature of mechanical implant instability and titanium particles, osteolysis seems to be induced through similar biological and signaling pathways in this rat model for aseptic loosening. Pathways associated to the innate inflammatory response appear to be a major driver for osteolysis. Our findings implicate early restriction of inflammation to be critical to prevent or mitigate osteolysis and aseptic loosening of orthopedic implants.

  9. Water-waves frequency upshift of the spectral mean due to wind forcing

    NASA Astrophysics Data System (ADS)

    Eeltink, Debbie; Chabchoub, Amin; Brunetti, Maura; Kasparian, Jerome; Kimmoun, Olivier; Branger, Hubert

    2017-04-01

    The effect of wind forcing on monochromatic modulated water waves was investigated both numerically and experimentally in the context of the Modified Non-Linear Schrödinger (MNLS) equation framework. While wind is usually associated with a frequency downshift of the dominant spectral peak, we show that it may induce an upshift of the spectral mean due to an asymmetric amplification of the spectrum. Here the weighted average spectral mean is equal to the ratio of the momentum of the envelope to its norm and it detects any asymmetries in the spectrum (Segur et al. 2005). Wind can however indirectly induce frequency downshifts, by promoting dissipative effects like wave breaking. We highlight that the definition of the up- and downshift in terms of peak frequency or average frequency is critical for a relevant discussion. In our model, the wind input consists of a leading order forcing term that amplifies all frequencies equally and induces a broadening of the spectrum, and a higher order asymmetric term (Brunetti et al. 2014; Brunetti & Kasparian 2014) that amplifies higher frequencies more than lower ones and induces a permanent upshift of the spectral mean. The effect of MNLS + wind is exactly opposite to MNLS + viscosity, where the lower order viscosity terms damp the whole spectrum, while the higher order viscosity terms damp higher frequencies more than lower ones and thus causes a permanent downshift, as evidenced by Carter & Govan (2016). We corroborated the model with wave tank experiments conducted in the IRPHE/Pytheas large wind-wave facility located in Marseille, France. Wave data analysis show the temporary downshift in the spectral peak sense caused by the wind, and the temporary upshift in the spectral mean sense characteristic of the MNLS. As the tank-length was limited, we used long-range simulations to obtain upshift in the spectral mean sense caused by the wind. The limit of the model is reached when breaking events occur. We acknowledge financial support from the Swiss National Science Foundation (project 200021-155970), the Labex MEC (French ANR-10-LABX-0092) and the A*MIDEX project (ANR-11-IDEX-0001-02). • Brunetti, M. and Kasparian, J. 2014 "Modulational instability in wind-forced waves". Physics Letters A, 378: 48, 3626-3630. • Brunetti, M., Marchiando, N., Berti, N. and Kasparian, J. 2014 "Nonlinear fast growth of water waves under wind forcing". Physics Letters A 378: 1415, 1025-1030. • Carter, J. D. and Govan, A. 2016 "Frequency downshift in a viscous fluid." Eur. Journ. Mech. - B/Fluids 59: 177-185. • Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C.-M., Pheiff, D. and Socha, K. 2005 "Stabilizing the Benjamin-Feir instability". Journ. Fluid Mechanics, 539: 229-271.

  10. Transverse instability of periodic and generalized solitary waves for a fifth-order KP model

    NASA Astrophysics Data System (ADS)

    Haragus, Mariana; Wahlén, Erik

    2017-02-01

    We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.

  11. Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids

    NASA Astrophysics Data System (ADS)

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-01

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  12. Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids.

    PubMed

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-16

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  13. Modulational Instability of Dipolar Bose-Einstein Condensates in Optical Lattices with Three-Body Interactions

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Li, Zi-Hao; Liang, Zhao-Xin

    2018-01-01

    Not Available Supported by the National Natural Science Foundation of China under Grant No 11647017, and the Science Research Fund of Shaanxi University of Science and Technology under Grant No BJ16-03.

  14. Auditory sensitivity may require dynamically unstable spike generators: evidence from a model of electrical stimulation.

    PubMed

    O'Gorman, David E; Colburn, H Steven; Shera, Christopher A

    2010-11-01

    The response of the auditory nerve to electrical stimulation is highly sensitive to small modulations (<0.5%). This report demonstrates that dynamical instability (i.e., a positive Lyapunov exponent) can account for this sensitivity in a modified FitzHugh-Nagumo model of spike generation, so long as the input noise is not too large. This finding suggests both that spike generator instability is necessary to account for auditory nerve sensitivity and that the amplitude of physiological noise, such as that produced by the random behavior of voltage-gated sodium channels, is small. Based on these results with direct electrical stimulation, it is hypothesized that spike generator instability may be the mechanism that reconciles high sensitivity with the cross-fiber independence observed under acoustic stimulation.

  15. Transverse instabilities of stripe domains in magnetic thin films with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Ruth, Max E.; Iacocca, Ezio; Kevrekidis, Panayotis G.; Hoefer, Mark A.

    2018-03-01

    Stripe domains are narrow, elongated, reversed regions that exist in magnetic materials with perpendicular magnetic anisotropy. They appear as a pair of domain walls that can exhibit topology with a nonzero chirality. Recent experimental and numerical investigations identify an instability of stripe domains along the long direction as a means of nucleating isolated magnetic skyrmions. Here, the onset and nonlinear evolution of transverse instabilities for a dynamic stripe domain known as the bion stripe are investigated. Both nontopological and topological variants of the bion stripe are shown to exhibit a long-wavelength transverse instability with different characteristic features. In the former, small transverse variations in the stripe's width lead to a neck instability that eventually pinches the nontopological stripe into a chain of two-dimensional breathers composed of droplet soliton pairs. In the latter case, small variations in the stripe's center result in a snake instability whose topological structure leads to the nucleation of dynamic magnetic skyrmions and antiskyrmions as well as perimeter-modulated droplets. Quantitative, analytical predictions for both the early, linear evolution and the long-time, nonlinear evolution are achieved using an averaged Lagrangian approach that incorporates both exchange (dispersion) and anisotropy (nonlinearity). The method of analysis is general and can be applied to other filamentary structures.

  16. Darrieus-Landau instability of premixed flames enhanced by fuel droplets

    NASA Astrophysics Data System (ADS)

    Nicoli, Colette; Haldenwang, Pierre; Denet, Bruno

    2017-07-01

    Recent experiments on spray flames propagating in a Wilson cloud chamber have established that spray flames are much more sensitive to wrinkles or corrugations than single-phase flames. To propose certain elements of explanation, we numerically study the Darrieus-Landau (or hydrodynamic) instability (DL-instability) developing in premixtures that contain an array of fuel droplets. Two approaches are compared: numerical simulation starting from the general conservation laws in reactive media, and the numerical computation of Sivashinsky-type model equations for DL-instability. Both approaches provide us with results in deep agreement. It is first shown that the presence of droplets in fuel-air premixtures induces initial perturbations which are large enough to trigger the DL-instability. Second, the droplets are responsible for additional wrinkles when the DL-instability is developed. The latter wrinkles are of length scales shorter than those of the DL-instability, in such a way that the DL-unstable spray flames have a larger front surface and therefore propagate faster than the single-phase ones when subjected to the same instability.

  17. Mustard Gas Surrogate, 2-Chloroethyl Ethylsulfide (2-CEES), Induces Centrosome Amplification and Aneuploidy in Human and Mouse Cells

    DTIC Science & Technology

    2014-03-01

    studies , we show that subtoxic levels of 2-chloroethyl ethylsulfide (2-CEES), a mustard gas analog, also induce centrosome amplification and chromosome...instability in cells, which may hasten the mutation rate necessary for tumorigenesis. These studies offer an explanation why those exposed to mustard...unequally, resulting in chromosome  instability,  a common  phenotype of cancer cells.  In our  studies , we show that subtoxic levels of 2

  18. Variability in Estrogen-Metabolizing Genes and Their Association with Genomic Instability in Untreated Breast Cancer Patients and Healthy Women

    PubMed Central

    Alves dos Santos, Raquel; Teixeira, Ana Cláudia; Mayorano, Mônica Beatriz; Carrara, Hélio Humberto Angotti; Moreira de Andrade, Jurandyr; Takahashi, Catarina Satie

    2011-01-01

    In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups. PMID:21716904

  19. Weakly Nonlinear Analysis of Vortex Formation in a Dissipative Variant of the Gross--Pitaevskii Equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzou, J. C.; Kevrekidis, P. G.; Kolokolnikov, T.

    2016-05-10

    For a dissipative variant of the two-dimensional Gross--Pitaevskii equation with a parabolic trap under rotation, we study a symmetry breaking process that leads to the formation of vortices. The first symmetry breaking leads to the formation of many small vortices distributed uniformly near the Thomas$-$Fermi radius. The instability occurs as a result of a linear instability of a vortex-free steady state as the rotation is increased above a critical threshold. We focus on the second subsequent symmetry breaking, which occurs in the weakly nonlinear regime. At slightly above threshold, we derive a one-dimensional amplitude equation that describes the slow evolutionmore » of the envelope of the initial instability. Here, we show that the mechanism responsible for initiating vortex formation is a modulational instability of the amplitude equation. We also illustrate the role of dissipation in the symmetry breaking process. All analyses are confirmed by detailed numerical computations« less

  20. Hydrodynamic Model for Density Gradients Instability in Hall Plasmas Thrusters

    NASA Astrophysics Data System (ADS)

    Singh, Sukhmander

    2017-10-01

    There is an increasing interest for a correct understanding of purely growing electromagnetic and electrostatic instabilities driven by a plasma gradient in a Hall thruster devices. In Hall thrusters, which are typically operated with xenon, the thrust is provided by the acceleration of ions in the plasma generated in a discharge chamber. The goal of this paper is to study the instabilities due to gradients of plasma density and conditions for the growth rate and real part of the frequency for Hall thruster plasmas. Inhomogeneous plasmas prone a wide class of eigen modes induced by inhomogeneities of plasma density and called drift waves and instabilities. The growth rate of the instability has a dependences on the magnetic field, plasma density, ion temperature and wave numbers and initial drift velocities of the plasma species.

  1. Characteristics of chromosome instability in the human lymphoblast cell line WTK1

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Evans, H. H.

    2001-01-01

    The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.

  2. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced that leads to splitting (fluid separation). We investigate the interaction of these prominent interfacial instabilities in the absence of gravity, concentrating on harmonically vibrated rectangular containers of fluid. We compare vibroequilibria theory with direct numerical simulations and consider the effect of surfaces waves, which can excite sloshing motion of the vibroequilibria. We systematically investigate the saddle-node bifurcation experienced by a symmetric singly connected vibroequilibria solution, for sufficiently deep containers, as forcing is increased. Beyond this instability, the fluid rapidly separates into (at least) two distinct masses. Pronounced hysteresis is associated with this transition, even in the presence of gravity. The interaction of vibroequilibria and frozen waves is investigated in two-fluid systems. Preparations for a parabolic flight experiment on fluids vibrated at high frequencies are discussed.

  3. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  4. Analysis of beam loss induced abort kicker instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang W.; Sandberg, J.; Ahrens, L.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems andmore » improved stability of the RHIC operation.« less

  5. Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator

    NASA Technical Reports Server (NTRS)

    Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.

    2015-01-01

    A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.

  6. Particle-induced viscous fingering

    NASA Astrophysics Data System (ADS)

    Lee, Sungyon

    2017-11-01

    An inclusion of non-colloidal particles in a Newtonian liquid can fundamentally change the interfacial dynamics and even cause interfacial instabilities. In this talk, we report a particle-induced fingering instability when a mixture of particles and viscous oil is injected radially into a Hele-Shaw cell. Our experimental results show that the onset and characteristics of fingering are most directly affected by the particle volume fraction but also depend on the ratio of the particle diameter to gap size. In particular, the formation of a particle band is observed on the interface only when the particle diameter is comparable to the channel gap thickness. This work demonstrates the complex coupling between suspensions and fluid-fluid interfaces and has broad relevance in suspension processing, particle self-assembly, and oil recovery processes. The physical mechanism behind the instability and a quantitative model are also discussed.

  7. Study of mechanism of stress-induced threshold voltage shift and recovery in top-gate amorphous-InGaZnO4 thin-film transistors with source- and drain-offsets

    NASA Astrophysics Data System (ADS)

    Mativenga, Mallory; Kang, Dong Han; Lee, Ung Gi; Jang, Jin

    2012-09-01

    Bias instability of top-gate amorphous-indium-gallium-zinc-oxide thin-film transistors with source- and drain-offsets is reported. Positive and negative gate bias-stress (VG_STRESS) respectively induce reversible negative threshold-voltage shift (ΔVTH) and reduction in on-current. Migration of positive charges towards the offsets lowers the local resistance of the offsets, resulting in the abnormal negative ΔVTH under positive VG_STRESS. The reduction in on-current under negative VG_STRESS is due to increase in resistance of the offsets when positive charges migrate away from the offsets. Appropriate drain and source bias-stresses applied simultaneously with VG_STRESS either suppress or enhance the instability, verifying lateral ion migration to be the instability mechanism.

  8. Modal interaction in linear dynamic systems near degenerate modes

    NASA Technical Reports Server (NTRS)

    Afolabi, D.

    1991-01-01

    In various problems in structural dynamics, the eigenvalues of a linear system depend on a characteristic parameter of the system. Under certain conditions, two eigenvalues of the system approach each other as the characteristic parameter is varied, leading to modal interaction. In a system with conservative coupling, the two eigenvalues eventually repel each other, leading to the curve veering effect. In a system with nonconservative coupling, the eigenvalues continue to attract each other, eventually colliding, leading to eigenvalue degeneracy. Modal interaction is studied in linear systems with conservative and nonconservative coupling using singularity theory, sometimes known as catastrophe theory. The main result is this: eigenvalue degeneracy is a cause of instability; in systems with conservative coupling, it induces only geometric instability, whereas in systems with nonconservative coupling, eigenvalue degeneracy induces both geometric and elastic instability. Illustrative examples of mechanical systems are given.

  9. The initial instability and finite-amplitude stability of alternate bars in straight channels

    USGS Publications Warehouse

    Nelson, J.M.

    1990-01-01

    The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.

  10. Anomalous electron heating effects on the E region ionosphere in TIEGCM

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Wenbin; Oppenheim, Meers; Dimant, Yakov; Wiltberger, Michael; Merkin, Slava

    2016-03-01

    We have recently implemented a new module that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.

  11. Instability growth seeded by ablator material inhomogeneity in indirect drive implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Haan, Steven; Ali, S. J.; Baxamusa, S. H.; Celliers, P. M.; Clark, D. S.; Kritcher, A. L.; Nikroo, A.; Stadermann, M.; Biener, J.; Wallace, R.; Smalyuk, V.; Robey, H.; Weber, C. R.; Huang, H.; Reynolds, H.; Carlson, L.; Rice, N.; Kline, J. L.; Simakov, A. N.; Yi, S. A.

    2017-10-01

    NIF indirect drive ablators (CH, Be, and high density carbon HDC) show hydrodynamic irregularity beyond that expected from surface features. Characterizing these seeds and estimating their growth is important in projecting performance. The resulting modulations can be measured in x-ray backlit implosions on NIF called Hydro Growth Radiography, and on Omega with 2D velocimetry. This presentation summarizes the experiments for the three ablators, along with simulations thereof and projections of the significance for NIF. For CH, dominant seeds are photo-induced oxidation, which might be mitigated with alumina coating. For Be, perturbations result from Ar and O contamination. For HDC, perturbations are seeded by shock propagation around melt, depend on shock strength, and may constrain the adiabat of future HDC implosions. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  12. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    DOE PAGES

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%,more » which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.« less

  13. Modulation of Core Turbulent Density Fluctuations by Large-Scale Neoclassical Tearing Mode Islands in the DIII-D Tokamak

    DOE PAGES

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; ...

    2016-05-26

    We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.

  14. Stall induced instability of a teetered rotor

    NASA Astrophysics Data System (ADS)

    Glasgow, J. C.; Corrigan, R. D.

    Recent tests on the 38m Mod-0 horizontal experimental wind turbine yielded quantitative information on stall induced instability of a teetered rotor. Tests were conducted on rotor blades with NACA 230 series and NACA 643-618 airfoils at low rotor speeds to produce high angles of attack at relatively low wind speeds and power levels. The behavior of the rotor shows good agreement with predicted rotor response based on blade angle of attack calculations and airfoil section properties. The untwisted blades with the 64 series airfoil sections had a slower rate of onset of rotor instability when compared with the twisted 230 series blades, but high teeter angles and teeter stop impacts were experienced with both rotors as wind speeds increased to produce high angles of attack on the outboard portion of the blade. The relative importance of blade twist and airfoil section stall characteristics on the rate of onset of rotor unstability with increasing wind speed was not established however. Blade pitch was shown to be effective in eliminating rotor instability at the expense of some loss in rotor performance near rated wind speed.

  15. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    NASA Astrophysics Data System (ADS)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  16. Convective stability in the Rayleigh-Benard and directional solidification problems - High-frequency gravity modulation

    NASA Technical Reports Server (NTRS)

    Wheeler, A. A.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.

    1991-01-01

    The effect of vertical, sinusoidal, time-dependent gravitational acceleration on the onset of solutal convection during directional solidification is analyzed in the limit of large modulation frequency. When the unmodulated state is unstable, the modulation amplitude required to stabilize the system is determined by the method of averaging. When the unmodulated state is stable, resonant modes of instability occur at large modulation amplitude. These are analyzed using matched asymptotic expansions to elucidate the boundary-layer structure for both the Rayleigh-Benard and directional solidification configurations. Based on these analyses, a thorough examination of the dependence of the stability criteria on the unmodulated Rayleigh number, Schmidt number, and distribution coefficient, is carried out.

  17. Agitation, Mixing, and Transfers Induced by Bubbles

    NASA Astrophysics Data System (ADS)

    Risso, Frédéric

    2018-01-01

    Bubbly flows involve bubbles randomly distributed within a liquid. At large Reynolds number, they experience an agitation that can combine shear-induced turbulence (SIT), large-scale buoyancy-driven flows, and bubble-induced agitation (BIA). The properties of BIA strongly differ from those of SIT. They have been determined from studies of homogeneous swarms of rising bubbles. Regarding the bubbles, agitation is mainly caused by the wake-induced path instability. Regarding the liquid, two contributions must be distinguished. The first one corresponds to the anisotropic flow disturbances generated near the bubbles, principally in the vertical direction. The second one is the almost isotropic turbulence induced by the flow instability through a population of bubbles, which turns out to be the main cause of horizontal fluctuations. Both contributions generate a k-3 spectral subrange and exponential probability density functions. The subsequent issue will be to understand how BIA interacts with SIT.

  18. Upstream and Downstream Influence in STBLI Instability

    NASA Astrophysics Data System (ADS)

    Martin, Pino; Priebe, Stephan; Helm, Clara

    2016-11-01

    Priebe and Martín (JFM, 2012) show that the low-frequency unsteadiness in shockwave and turbulent boundary layer interactions (STBLI) is governed by an inviscid instability. Priebe, Tu, Martín and Rowley (JFM, 2016) show that the instability is an inviscid centrifugal one, i.e Görtlerlike vortices. Previous works had given differing conclusions as to whether the low-frequency unsteadiness in STBLI is caused by an upstream or downstream mechanism. In this paper, we reconcile these opposite views and show that upstream and downstream correlations co-exist in the context of the nature of Görtler vortices. We find that the instability is similar to that in separated subsonic and laminar flows. Since the turbulence is modulated but passive to the global mode, the turbulent separated flows are amenable to linear global analysis. As such, the characteristic length and time scales, and the receptivity of the global mode might be determined, and low-order models that represent the low-frequency dynamics in STBLI might be developed. The centrifugal instability persists even under hypersonic conditions. This work is funded by the AFOSR Grant Number AF9550-15-1-0284 with Dr. Ivett Leyva.

  19. Wrinkling instabilities in soft bilayered systems

    PubMed Central

    Budday, Silvia; Andres, Sebastian; Walter, Bastian

    2017-01-01

    Wrinkling phenomena control the surface morphology of many technical and biological systems. While primary wrinkling has been extensively studied, experimentally, analytically and computationally, higher-order instabilities remain insufficiently understood, especially in systems with stiffness contrasts well below 100. Here, we use the model system of an elastomeric bilayer to experimentally characterize primary and secondary wrinkling at moderate stiffness contrasts. We systematically vary the film thickness and substrate prestretch to explore which parameters modulate the emergence of secondary instabilities, including period-doubling, period-tripling and wrinkle-to-fold transitions. Our experiments suggest that period-doubling is the favourable secondary instability mode and that period-tripling can emerge under disturbed boundary conditions. High substrate prestretch can suppress period-doubling and primary wrinkles immediately transform into folds. We combine analytical models with computational simulations to predict the onset of primary wrinkling, the post-buckling behaviour, secondary bifurcations and the wrinkle-to-fold transition. Understanding the mechanisms of pattern selection and identifying the critical control parameters of wrinkling will allow us to fabricate smart surfaces with tunable properties and to control undesired surface patterns like in the asthmatic airway. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373385

  20. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    PubMed

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Study of Baroclinic Instability Induced Convergence Near the Bottom Using Water Age Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxia; Hetland, Robert D.

    2018-03-01

    Baroclinic instability of lateral density gradients gives way to lateral buoyancy transport, which often results in convergence of buoyancy transport. Along a sloping bottom, the induced convergence can force upward extension of bottom water. Eddy transport induced convergence at the bottom and the consequent suspended layers of bottom properties are investigated using a three-dimensional idealized model. Motivated by the distinct characteristics of intrusions over the Texas-Louisiana shelf, a series of configurations are performed with the purpose of identifying parameter impacts on the intensity of eddy transport. This study uses the "horizontal slope Burger number" as the predominant parameter; the parameter is functioned with SH=SRi-1/2=δ/Ri to identify formation of baroclinic instability, where S is the slope Burger number, δ is the slope parameter, and Ri is the Richardson number, previously shown to be the parameter that predicts the intensity of baroclinic instability on the shelf. Intrusion spreads into the interior abutting a layer that is characterized by degraded vertical stratification; a thickening in the bottom boundary layer colocates with the intrusion, which usually thins at either edge of the intrusion because of a density barrier in association with concentrated isopycnals. The intensity of convergence degrades and bottom tracer fluxes reduce linearly with increased SH on logarithmic scales, and the characteristics of bottom boundary layer behavior and the reversal in alongshore current tend to vanish.

  2. Disorder induced gap states as a cause of threshold voltage instabilities in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors

    NASA Astrophysics Data System (ADS)

    Matys, M.; Kaneki, S.; Nishiguchi, K.; Adamowicz, B.; Hashizume, T.

    2017-12-01

    We proposed that the disorder induced gap states (DIGS) can be responsible for the threshold voltage (Vth) instability in Al2O3/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors. In order to verify this hypothesis, we performed the theoretical calculations of the capacitance voltage (C-V) curves for the Al2O3/AlGaN/GaN structures using the DIGS model and compared them with measured ones. We found that the experimental C-V curves with a complex hysteresis behavior varied with the maximum forward bias and the sweeping rate can be well reproduced theoretically by assuming a particular distribution in energy and space of the DIGS continuum near the Al2O3/AlGaN interface, i.e., a U-shaped energy density distribution and exponential depth decay from the interface into Al2O3 layer (up to 4 nm), as well as suitable DIGS capture cross sections (the order of magnitude of 10-15 cm2). Finally, we showed that the DIGS model can also explain the negative bias induced threshold voltage instability. We believe that these results should be critical for the successful development of the passivation techniques, which allows to minimize the Vth instability related effects.

  3. Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae.

    PubMed

    Lindstrom, Derek L; Leverich, Christina K; Henderson, Kiersten A; Gottschling, Daniel E

    2011-03-01

    Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.

  4. The growth and decay of equatorial backscatter plumes

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  5. Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos

    PubMed Central

    D’Souza, Fiona; Pudakalakatti, Shivanand M.; Uppangala, Shubhashree; Honguntikar, Sachin; Salian, Sujith Raj; Kalthur, Guruprasad; Pasricha, Renu; Appajigowda, Divya; Atreya, Hanudatta S.; Adiga, Satish Kumar

    2016-01-01

    Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs. PMID:27853269

  6. Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Kjeer, Peter; Clarke, David R.

    2018-03-01

    When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.

  7. Novel Active Combustion Control Valve

    NASA Technical Reports Server (NTRS)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  8. Origin of Vibrational Instabilities in Molecular Wires with Separated Electronic States.

    PubMed

    Foti, Giuseppe; Vázquez, Héctor

    2018-06-07

    Current-induced heating in molecular junctions stems from the interaction between tunneling electrons and localized molecular vibrations. If the electronic excitation of a given vibrational mode exceeds heat dissipation, a situation known as vibrational instability is established, which can seriously compromise the integrity of the junction. Using out of equilibrium first-principles calculations, we demonstrate that vibrational instabilities can take place in the general case of molecular wires with separated unoccupied electronic states. From the ab initio results, we derive a model to characterize unstable vibrational modes and construct a diagram that maps mode stability. These results generalize previous theoretical work and predict vibrational instabilities in a new regime.

  9. Observation of instability-induced current redistribution in a spherical-torus plasma.

    PubMed

    Menard, J E; Bell, R E; Gates, D A; Kaye, S M; LeBlanc, B P; Levinton, F M; Medley, S S; Sabbagh, S A; Stutman, D; Tritz, K; Yuh, H

    2006-09-01

    A motional Stark effect diagnostic has been utilized to reconstruct the parallel current density profile in a spherical-torus plasma for the first time. The measured current profile compares favorably with neoclassical theory when no large-scale magnetohydrodynamic instabilities are present in the plasma. However, a current profile anomaly is observed during saturated interchange-type instability activity. This apparent anomaly can be explained by redistribution of neutral beam injection current drive and represents the first observation of interchange-type instabilities causing such redistribution. The associated current profile modifications contribute to sustaining the central safety factor above unity for over five resistive diffusion times, and similar processes may contribute to improved operational scenarios proposed for ITER.

  10. Elimination of a Photovoltaic Induced Fast Instability in Photorefractive Iron-doped Lithium Niobate Crystals

    NASA Astrophysics Data System (ADS)

    Evans, D. R.; Saleh, M. A.; Allen, A. S.; Pottenger, T. P.; Bunning, T. J.; Guha, S.; Basun, S. A.; Cook, G.

    2002-03-01

    An instability on the order of 10 ns is observed while writing volume gratings in bulk crystals of iron-doped lithium niobate using contra-directional two-beam coupling along the c-axis. This instability is attributed to the quasi-breakdown of the uniform component of the photovoltaic field [1], which affects the uniform electric field formed inside the crystal causing a change in the refractive index through the electro-optic effect. A method to eliminate this instability by coating the z-surfaces of the crystal with a transparent conductive coating will be presented. [1] A. Krumins, Z. Chen, and T. Shiosaki, Opt. Comm. 117 (1995) 147-150.

  11. SHEET PLASMA DEVICE

    DOEpatents

    Henderson, O.A.

    1962-07-17

    An ion-electron plasma heating apparatus of the pinch tube class was developed wherein a plasma is formed by an intense arc discharge through a gas and is radially constricted by the magnetic field of the discharge. To avoid kink and interchange instabilities which can disrupt a conventional arc shortiy after it is formed, the apparatus is a pinch tube with a flat configuration for forming a sheet of plasma between two conductive plates disposed parallel and adjacent to the plasma sheet. Kink instabilities are suppressed by image currents induced in the conductive plates while the interchange instabilities are neutrally stable because of the flat plasma configuration wherein such instabilities may occur but do not dynamically increase in amplitude. (AEC)

  12. Multi-azimuthal-angle instability for different supernova neutrino fluxes

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sovan; Mirizzi, Alessandro

    2014-08-01

    It has been recently discovered that removing the axial symmetry in the "multiangle effects" associated with the neutrino-neutrino interactions for supernova (SN) neutrinos, a new multi-azimuthal-angle (MAA) instability will trigger flavor conversions in addition to the ones caused by the bimodal and multi-zenith-angle (MZA) instabilities. We investigate the dependence of the MAA instability on the original SN neutrino fluxes, performing a stability analysis of the linearized neutrino equations of motion. We compare these results with the numerical evolution of the SN neutrino nonlinear equations, looking at a local solution along a specific line of sight, under the assumption that the transverse variations of the global solution are small. We also assume that self-induced conversions are not suppressed by large matter effects. We show that the pattern of the spectral crossings (energies where Fνe=Fνx and Fν¯e=Fν¯x) is crucial in determining the impact of MAA effects on the flavor evolution. For neutrino spectra with a strong excess of νe over ν¯e, presenting only a single crossing, MAA instabilities will trigger new flavor conversions in normal mass hierarchy. In our simplified flavor evolution scheme, these will lead to spectral swaps and splits analogous to what is produced in inverted hierarchy by the bimodal instability. Conversely, in the presence of spectra with a moderate flavor hierarchy, having multiple crossing energies, MZA effects will produce a sizable delay in the onset of the flavor conversions, inhibiting the growth of the MAA instability. In this case, the splitting features for the oscillated spectra in both the mass hierarchies are the ones induced by the only bimodal and MZA effects.

  13. Status of Plasma Electron Hose Instability Studies in FACET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adli, Erik; /U. Oslo; England, Robert Joel

    In the FACET plasma-wakefield acceleration experiment a dense 23 GeV electron beam will interact with lithium and cesium plasmas, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons may lead to a fast growing electron hose instability. By using optics dispersion knobs to induce a controlled z-x tilt along the beam entering the plasma, we investigate the transverse behavior of the beam in the plasma as function of the tilt. We seek to quantify limits on the instability in order to further explore potential limitations on future plasma wakefield accelerators due to the electronmore » hose instability. The FACET plasma-wakefield experiment at SLAC will study beam driven plasma wakefield acceleration. A dense 23 GeV electron beam will interact with lithium or cesium plasma, leading to plasma ion-channel formation. The interaction between the electron beam and the plasma sheath-electrons drives the electron hose instability, as first studied by Whittum. While Ref. [2] indicates the possibility of a large instability growth rate for typical beam and plasma parameters, other studies including have shown that several physical effects may mitigate the hosing growth rate substantially. So far there has been no quantitative benchmarking of experimentally observed hosing in previous experiments. At FACET we aim to perform such benchmarking by for example inducing a controlled z-x tilt along the beamentering the plasma, and observing the transverse behavior of the beam in the plasma as function. The long-term objective of these studies is to quantify potential limitations on future plasma wakefield accelerators due to the electron hose instability.« less

  14. Applications of Analytical Self-Similar Solutions of Reynolds-Averaged Models for Instability-Induced Turbulent Mixing

    NASA Astrophysics Data System (ADS)

    Hartland, Tucker; Schilling, Oleg

    2017-11-01

    Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    NASA Astrophysics Data System (ADS)

    Ha, Tae-Jun

    2014-10-01

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (Vth). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  16. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE PAGES

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott; ...

    2017-11-17

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  17. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Hasegawa, H.; Daughton, William Scott

    Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth’s magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin–Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin–Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed bymore » the Magnetospheric Multiscale (MMS) spacecraft. Here in this paper, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin–Helmholtz instability.« less

  18. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    NASA Astrophysics Data System (ADS)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  19. When linear stability does not exclude nonlinear instability

    DOE PAGES

    Kevrekidis, P. G.; Pelinovsky, D. E.; Saxena, A.

    2015-05-29

    We describe a mechanism that results in the nonlinear instability of stationary states even in the case where the stationary states are linearly stable. In this study, this instability is due to the nonlinearity-induced coupling of the linearization’s internal modes of negative energy with the continuous spectrum. In a broad class of nonlinear Schrödinger equations considered, the presence of such internal modes guarantees the nonlinear instability of the stationary states in the evolution dynamics. To corroborate this idea, we explore three prototypical case examples: (a) an antisymmetric soliton in a double-well potential, (b) a twisted localized mode in a one-dimensionalmore » lattice with cubic nonlinearity, and (c) a discrete vortex in a two-dimensional saturable lattice. In all cases, we observe a weak nonlinear instability, despite the linear stability of the respective states.« less

  20. Nonlinear excitation of long-wavelength modes in Hall plasmas

    NASA Astrophysics Data System (ADS)

    Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.

    2016-10-01

    Hall plasmas with magnetized electrons and unmagnetized ions exhibit a wide range of small scale fluctuations in the lower-hybrid frequency range as well as low-frequency large scale modes. Modulational instability of lower-hybrid frequency modes is investigated in this work for typical conditions in Hall plasma devices such as magnetrons and Hall thrusters. In these conditions, the dispersion of the waves in the lower-hybrid frequency range propagating perpendicular to the external magnetic field is due to the gradients of the magnetic field and the plasma density. It is shown that such lower-hybrid modes are unstable with respect to the secondary instability of the large scale quasimode perturbations. It is suggested that the large scale slow coherent modes observed in a number of Hall plasma devices may be explained as a result of such secondary instabilities.

  1. Dynamic stability of electrodynamic maglev systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Chen, S.S.; Mulcahy, T.M.

    1997-01-01

    Because dynamic instabilities are not acceptable in any commercial maglev system, it is important to consider dynamic instability in the development of all maglev systems. This study considers the stability of maglev systems based on mathematical models and experimental data. Divergence and flutter are obtained for coupled vibration of a three-degree-of-freedom maglev vehicle on a guideway consisting of double L-shaped aluminum segments. The theory and analysis for motion-dependent magnetic-force-induced instability developed in this study provides basic stability characteristics and identifies future research needs for maglev systems.

  2. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro.

    PubMed

    Padula, Gisel; Ponzinibbio, María Virginia; Seoane, Analia I

    2016-08-01

    Ionizing radiation (IR) induces DNA damage through production of single and double-strand breaks and reactive oxygen species (ROS). Folic acid (FA) prevents radiation-induced DNA damage by modification of DNA synthesis and/or repair and as a radical scavenger. We hypothesized that in vitro supplementation with FA will decrease the sensitivity of cells to genetic damage induced by low dose of ionizing radiation. Annexin V, comet and micronucleus assays were performed in cultured CHO cells. After 7 days of pre-treatment with 0, 100, 200 or 300 nM FA, cultures were exposed to radiation (100 mSv). Two un-irradiated controls were executed (0 and 100 nM FA). Data were statistically analyzed with X2-test and linear regression analysis (P 0.05). We observed a significantly decreased frequency of apoptotic cells with the increasing FA concentration (P <0.05). The same trend was observed when analyzing DNA damage and chromosomal instability (P <0.05 for 300 nM). Only micronuclei frequencies showed significant differences for linear regression analysis (R2=94.04; P <0.01). Our results have demonstrated the radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro; folate status should be taken into account when studying the effect of low dose radiation in environmental or occupational exposure.

  3. Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Squire, J.; Quataert, E.; Kunz, M. W.

    2017-12-01

    In collisionless and weakly collisional plasmas, such as hot accretion flows onto compact objects, the magnetorotational instability (MRI) can differ significantly from the standard (collisional) MRI. In particular, pressure anisotropy with respect to the local magnetic-field direction can both change the linear MRI dispersion relation and cause nonlinear modifications to the mode structure and growth rate, even when the field and flow perturbations are very small. This work studies these pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta regime, before the MRI saturates into strong turbulence. Our goal is to better understand how the saturation of the MRI in a low-collisionality plasma might differ from that in the collisional regime. We focus on two key effects: (i) the direct impact of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode, and (ii) the influence of pressure anisotropy on the `parasitic instabilities' that are suspected to cause the mode to break up into turbulence. Our main conclusions are: (i) The mirror instability regulates the pressure anisotropy in such a way that the linear MRI in a collisionless plasma is an approximate nonlinear solution once the mode amplitude becomes larger than the background field (just as in magnetohyrodynamics). This implies that differences between the collisionless and collisional MRI become unimportant at large amplitudes. (ii) The break up of large-amplitude MRI modes into turbulence via parasitic instabilities is similar in collisionless and collisional plasmas. Together, these conclusions suggest that the route to magnetorotational turbulence in a collisionless plasma may well be similar to that in a collisional plasma, as suggested by recent kinetic simulations. As a supplement to these findings, we offer guidance for the design of future kinetic simulations of magnetorotational turbulence.

  4. Periodic equivalence ratio modulation method and apparatus for controlling combustion instability

    DOEpatents

    Richards, George A.; Janus, Michael C.; Griffith, Richard A.

    2000-01-01

    The periodic equivalence ratio modulation (PERM) method and apparatus significantly reduces and/or eliminates unstable conditions within a combustion chamber. The method involves modulating the equivalence ratio for the combustion device, such that the combustion device periodically operates outside of an identified unstable oscillation region. The equivalence ratio is modulated between preselected reference points, according to the shape of the oscillation region and operating parameters of the system. Preferably, the equivalence ratio is modulated from a first stable condition to a second stable condition, and, alternatively, the equivalence ratio is modulated from a stable condition to an unstable condition. The method is further applicable to multi-nozzle combustor designs, whereby individual nozzles are alternately modulated from stable to unstable conditions. Periodic equivalence ratio modulation (PERM) is accomplished by active control involving periodic, low frequency fuel modulation, whereby low frequency fuel pulses are injected into the main fuel delivery. Importantly, the fuel pulses are injected at a rate so as not to affect the desired time-average equivalence ratio for the combustion device.

  5. Transcription and replication: breaking the rules of the road causes genomic instability.

    PubMed

    Poveda, Ana Maria; Le Clech, Mikael; Pasero, Philippe

    2010-01-01

    Replication and transcription machineries progress at high speed on the same DNA template, which inevitably causes traffic accidents. Problems are not only caused by frontal collisions between polymerases, but also by cotranscriptional R-loops. These RNA-DNA hybrids induce genomic instability by blocking fork progression and could be implicated in the development of cancer.

  6. DNA replication stress as a hallmark of cancer.

    PubMed

    Macheret, Morgane; Halazonetis, Thanos D

    2015-01-01

    Human cancers share properties referred to as hallmarks, among which sustained proliferation, escape from apoptosis, and genomic instability are the most pervasive. The sustained proliferation hallmark can be explained by mutations in oncogenes and tumor suppressors that regulate cell growth, whereas the escape from apoptosis hallmark can be explained by mutations in the TP53, ATM, or MDM2 genes. A model to explain the presence of the three hallmarks listed above, as well as the patterns of genomic instability observed in human cancers, proposes that the genes driving cell proliferation induce DNA replication stress, which, in turn, generates genomic instability and selects for escape from apoptosis. Here, we review the data that support this model, as well as the mechanisms by which oncogenes induce replication stress. Further, we argue that DNA replication stress should be considered as a hallmark of cancer because it likely drives cancer development and is very prevalent.

  7. Patterns induced by super cross-diffusion in a predator-prey system with Michaelis-Menten type harvesting.

    PubMed

    Liu, Biao; Wu, Ranchao; Chen, Liping

    2018-04-01

    Turing instability and pattern formation in a super cross-diffusion predator-prey system with Michaelis-Menten type predator harvesting are investigated. Stability of equilibrium points is first explored with or without super cross-diffusion. It is found that cross-diffusion could induce instability of equilibria. To further derive the conditions of Turing instability, the linear stability analysis is carried out. From theoretical analysis, note that cross-diffusion is the key mechanism for the formation of spatial patterns. By taking cross-diffusion rate as bifurcation parameter, we derive amplitude equations near the Turing bifurcation point for the excited modes by means of weakly nonlinear theory. Dynamical analysis of the amplitude equations interprets the structural transitions and stability of various forms of Turing patterns. Furthermore, the theoretical results are illustrated via numerical simulations. Copyright © 2018. Published by Elsevier Inc.

  8. Ion flux oscillations and ULF waves observed by ARASE satellite and their origin

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Masahito, N.; Kasahara, S.; Yokota, S.; Keika, K.; Matsuoka, A.; Teramoto, M.; Nomura, R.; Fujimoto, A.; Tanaka, Y.; Shinohara, M.; Shinohara, I.; Yoshizumi, M.

    2017-12-01

    The ARASE satellite, which was launched on December 20, 2016, is now observing thenightside inner magnetosphere. The inclination of the orbit is larger than those of otherrecent spacecraft flying in the inner magnetosphere such as THMEIS and Van Allen Probes.This unique orbit provides us new information on ULF waves since ULF waves havelatitudinal structure and the antinode of magnetic fluctuations of fundamental mode is athigh magnetic latitudes.Although Pc pulsations are predominantly observed on the dayside, ARASE satellitesometimes observes Pc4-5 pulsations on the nightside. Some of these waves are accompaniedwith energetic particle flux modulations. We found 6 events of the particle flux modulationsaccompanying Pc pulsations on the dawnside and nightside. Theoretical studies suggest thatULF waves detected at afternoon are generated by plasma instabilities like drift-mirror instability [Hasegawa, 1969] and drift-bounce resonance [Southwood et al, 1969].These instabilities cause plasma pressure disturbances or flux modulation of ions. Nonresonant ion clouds injected on the duskside are also considered to be one of the candidates ofULF wave driver [Zolotukhina, 1974]. We therefore discuss whether the ULF waves observedby ARASE satellite are generated internally or externally, and the flux modulations arecreated by plasma instabilities or the other non-resonant effects.On March 31, 2017, Medium-Energy Particle Experiments - Ion Mass Analyzer (MEPi)onboard ARASE detected ion flux oscillations at 12-70 keV with a period of 120 seconds inthe normal (NML) mode observation. NML mode observation provides details of the directionof particle movements. The pitch angle distribution of proton flux showed isotropic fluxoscillations. At the same time, Pc4 pulsations with the same oscillation period were observed.These flux and field perturbations were seen on the dawnside (4.3-5.9 MLT).ARASE found oscillations of ion count with a period of 130 seconds in the time-of-flight(TOF) mode observation at midnight on May 29, 2017. Therefore, we used the list data, that is createdfor onboard calibrations, to make a pitch angle distribution of ion counts. The pitch angledistribution did not have clear fluctuations, so that the oscillations may beattributed to angyrotropic particle distributions.

  9. Interfacial fluid instabilities and Kapitsa pendula.

    PubMed

    Krieger, Madison S

    2017-07-01

    The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.

  10. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohydrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regime where microinstabilities could potentially be significant.

  11. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohdrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regine where microinstabilities could potentially be significant.

  12. Causes of Combustion Instabilities with Passive and Active Methods of Control for practical application to Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Cornwell, Michael D.

    Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward stagnation point, limiting dissipation of heat and reactive species significantly improving stability. Combustion hardware is developed and tested to demonstrate the stability principles developed as part of this research. In order to more completely understand combustion instability a very unique method of combustion was researched where there are no discrete points of combustion initiation such as the forward stagnation point typical in many combustion systems including swirl and jet wake stabilized combustion. This class of combustion which has empirical evidence of great stability and efficient combustion with low CO, NOx and UHC emissions is described as high oxidization temperature distributed combustion. This mechanism of combustion is shown to be stable largely because there are no stagnations points susceptible to fluid mechanic perturbations. The final topic of research is active combustion control by fuel modulation. This may be the only practical method of controlling most instabilities with a single technique. As there are many papers reporting active combustion control algorithms this research focused on the complexities of the physics of fuel modulation at frequencies up to 1000 Hz with proportionally controlled flow amplitude. This research into the physics of high speed fluid movement, oscillation mechanical mechanisms and electromagnetics are demonstrated by development and testing of a High Speed Latching Oscillator Valve.

  13. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells.

    PubMed

    Chatterjee, Jit; Nairy, Rajesha K; Langhnoja, Jaldeep; Tripathi, Ashutosh; Patil, Rajashekhar K; Pillai, Prakash P; Mustak, Mohammed S

    2018-06-01

    Ionizing radiation induces various pathophysiological conditions by altering central nervous system (CNS) homeostasis, leading to neurodegenerative diseases. However, the potential effect of ionizing radiation response on cellular physiology in glial cells is unclear. In the present study, micronucleus test, comet assay, and RT-PCR were performed to investigate the potential effect of gamma radiation in cultured oligodendrocytes and astrocytes with respect to genomic instability, Endoplasmic Reticulum (ER) stress, and inflammation. Further, we studied the effect of alteration in ER stress specific gene expression in cortex post whole body radiation in mice. Results showed that exposure of gamma radiation of 2Gy in-vitro cultured astrocytes and oligodendrocytes and 7Gy in-vivo induced ER stress and Inflammation along with profuse DNA damage and Chromosomal abnormality. Additionally, we observed downregulation of myelin basic protein levels in cultured oligodendrocytes exposed to radiation. The present data suggests that ER stress and pro inflammatory cytokines serve as the major players in inducing glial cell dysfunction post gamma irradiation along with induction of genomic instability. Taken together, these results indicate that ER stress, DNA damage, and inflammatory pathways may be critical events leading to glial cell dysfunction and subsequent cell death following exposure to ionizing radiation.

  14. Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers.

    PubMed

    Sun, Wen-Rong; Liu, De-Yin; Xie, Xi-Yang

    2017-04-01

    We report the existence and properties of vector breather and semirational rogue-wave solutions for the coupled higher-order nonlinear Schrödinger equations, which describe the propagation of ultrashort optical pulses in birefringent optical fibers. Analytic vector breather and semirational rogue-wave solutions are obtained with Darboux dressing transformation. We observe that the superposition of the dark and bright contributions in each of the two wave components can give rise to complicated breather and semirational rogue-wave dynamics. We show that the bright-dark type vector solitons (or breather-like vector solitons) with nonconstant speed interplay with Akhmediev breathers, Kuznetsov-Ma solitons, and rogue waves. By adjusting parameters, we note that the rogue wave and bright-dark soliton merge, generating the boomeron-type bright-dark solitons. We prove that the rogue wave can be excited in the baseband modulation instability regime. These results may provide evidence of the collision between the mixed ultrashort soliton and rogue wave.

  15. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2017-07-01

    The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.

  16. The modulational instability in the extended Hasegawa-Mima equation with a finite Larmor radius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, S.; Hnat, B.; Rowlands, G.

    2012-12-15

    The effects of the finite Larmor radius on the generation of zonal flows by the four-wave modulational instability are investigated using an extended form of the Hasegawa-Mima equation. Growth rates of the zonal mode are quantified using analytical predictions from a four-mode truncated model, as well as from direct numerical simulation of the nonlinear extended Hasegawa-Mima equation. We not only consider purely zonal flows but also examine the generic oblique case and show that, for small Larmor radii, off-axis modes may become dominant. We find a key parameter M{sub {rho}} which characterises the behaviour of the system due to changesmore » in the Larmor radius. We find that, similarly to previous results obtained by changing the driving wave amplitude, two separate dynamical regimes can be accessed. These correspond to oscillatory energy transfer between zonal flows and a driving wave and the fully saturated zonal flow.« less

  17. Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uzawa, K.; Li Jiquan; Kishimoto, Y.

    2009-04-15

    The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determinedmore » not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.« less

  18. Laser plasma coupling with moderate Z, long scalelength underdense plasma

    NASA Astrophysics Data System (ADS)

    Kruer, William; Berger, Richard; Meezan, Nathaniel; Suter, Larry; Moody, John; Glenzer, Siegfried; Stevenson, R. M.; Oades, K.

    2004-11-01

    Recent experiments1,2 have focussed new attention on the coupling of laser light with moderate Z, long scalelength underdense plasmas. We discuss some intriguing features of these experiments, including a significant reduction of stimulated Raman and Brillouin scattering in higher Z plasmas, such as Krypton and Xenon. Threshold conditions for various instabilities are discussed, and potential consequences of thermal filamentation and self-focussing are explored. The presence of significant temperature modulations in the plasma can lead to a number of interesting effects not usually taken into account, such as ion wave refraction out of hot spots and instability reduction by the long wavelength modulations. We also consider the extrapolation of these results to the higher temperature regimes more relevant to ignition-scale hohlraums. 1. R. M. Stevenson, et. al, Phys. Plasmas 11, 2709 (2004) 2. J. Moody (to be published) Work performed under the auspices of the U.S. DOE by the Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.

    We report the first observation of localized modulation of turbulent density uctuations en (via Beam Emission Spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islands associated with NTMs significantly modify the profiles and turbulence drives. In this experiment n was found to be modulated by 14% across the island. Gyrokinetic simulations suggest that en could be dominantly driven by the ion temperature gradient (ITG) instability.

  20. An Experimental Study of Roughness-Induced Instabilities in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; King, Rudolph A.; Choudhari, Meelan; Li, Fei; Norris, Andrew

    2014-01-01

    Progress on an experimental study of laminar-to-turbulent transition induced by an isolated roughness element in a supersonic laminar boundary layer is reported in this paper. Here, the primary focus is on the effects of roughness planform shape on the instability and transition characteristics. Four different roughness planform shapes were considered (a diamond, a circle, a right triangle, and a 45 degree fence) and the height and width of each one was held fixed so that a consistent frontal area was presented to the oncoming boundary layer. The nominal roughness Reynolds number was 462 and the ratio of the roughness height to the boundary layer thickness was 0.48. Detailed flow- field surveys in the wake of each geometry were performed via hot-wire anemometry. High- and low-speed streaks were observed in the wake of each roughness geometry, and the modified mean flow associated with these streak structures was found to support a single dominant convective instability mode. For the symmetric planform shapes - the diamond and circular planforms - the instability characteristics (mode shapes, growth rates, and frequencies) were found to be similar. For the asymmetric planform shapes - the right-triangle and 45 degree fence planforms - the mode shapes were asymmetrically distributed about the roughness-wake centerline. The instability growth rates for the asymmetric planforms were lower than those for the symmetric planforms and therefore, transition onset was delayed relative to the symmetric planforms.

  1. Paclitaxel stimulates chromosomal fusion and instability in cells with dysfunctional telomeres: Implication in multinucleation and chemosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705

    Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less

  2. Along - Strike Analysis of Contemporary Ocean Temperature Change on the Cascadia Margin and Implications to Upper Slope Hydrate Instability

    NASA Astrophysics Data System (ADS)

    Phrampus, B.; Harris, R. N.; Trehu, A. M.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Gas hydrates are found globally on continental margins and due to the large amount of sequestered carbon in hydrate reservoirs, whether these deposits are dynamic or stable has significant implications for slope stability, ocean/atmosphere carbon budget, and deep-water energy exploration. Recent studies indicate that upper slope hydrate degradation may be relatively widespread on passive margins due to recent ocean temperature warming between 0.012 and 0.033 °C/yr (e.g. Svalbard, North Alaska, and US Atlantic margin). However, the potential and breadth of warming induced hydrate instability remains contentious based on multiple observations including: 1) seep locations not consistent with locations of hydrate dissociation, 2) a lack of hydrate in regions of warming, and 3) evidence for long-lived seepage in regions associated with contemporary warming-induced hydrate dissociation. At the Cascadia margin, a recent study suggests that contemporary warming of intermediate water intersects the hydrate stability zone leading to hydrate dissociation that feeds upper slope seeps. Here, we provide a systematic analysis of along-strike variations in hydrate distribution along the Cascadia margin combined with a multivariable regression of ocean temperatures to characterize the potential of upper slope hydrate instability. Preliminary seep locations reveal upper slope seeps and observed regions of hydrate are correlated spatially between 42.5 and 48.0 °N, outside this region there is a dearth of identified upper slope hydrate and seeps. Between 44.5 and 48.0 °N a contemporary warming trend is as large as 0.006 °C/yr and is collocated with upper slope hydrate and gas seepage. This warming rate is relatively small, 2-5x smaller than warming trends identified in the Arctic where temperature induced hydrate instability remains uncertain. Additionally, we identify a region between 42.5 and 44.5 °N with collocated upper slope seepage and hydrate but no evidence of ocean warming, suggesting upper slope seepage is not driven by temperature induced hydrate instability, but maybe driven by tectonic uplift. These results highlight the absence of temperature driven seepage and slope instability on the Cascadia margin and deemphasize the impact of lower latitude warming on global hydrate dynamics and carbon budget.

  3. Instabilities and pattern formation on the pore scale

    NASA Astrophysics Data System (ADS)

    Juel, Anne

    What links a baby's first breath to adhesive debonding, enhanced oil recovery, or even drop-on-demand devices? All these processes involve moving or expanding bubbles displacing fluid in a confined space, bounded by either rigid or elastic walls. In this talk, we show how spatial confinement may either induce or suppress interfacial instabilities and pattern formation in such flows. We demonstrate that a simple change in the bounding geometry can radically alter the behaviour of a fluid-displacing air finger both in rigid and elastic vessels. A rich array of propagation modes, including steady and oscillatory fingers, is uncovered when air displaces oil from axially uniform tubes that have local variations in flow resistance within their cross-sections. Moreover, we show that the experimentally observed states can all be captured by a two-dimensional depth-averaged model for bubble propagation through wide channels. Viscous fingering in Hele-Shaw cells is a classical and widely studied fluid-mechanical instability: when air is injected into the narrow, liquid-filled gap between parallel rigid plates, the axisymmetrically expanding air-liquid interface tends to be unstable to non-axisymmetric disturbances. We show how the introduction of wall elasticity (via the replacement of the upper bounding plate by an elastic membrane) can weaken or even suppress the fingering instability by allowing changes in cell confinement through the flow-induced deflection of the boundary. The presence of a deformable boundary also makes the system prone to additional solid-mechanical instabilities, and these wrinkling instabilities can in turn enhance viscous fingering. The financial support of EPSRC and the Leverhulme Trust is gratefully acknowledged.

  4. Causes of genome instability: the effect of low dose chemical exposures in modern society.

    PubMed

    Langie, Sabine A S; Koppen, Gudrun; Desaulniers, Daniel; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Azqueta, Amaya; Bisson, William H; Brown, Dustin G; Brunborg, Gunnar; Charles, Amelia K; Chen, Tao; Colacci, Annamaria; Darroudi, Firouz; Forte, Stefano; Gonzalez, Laetitia; Hamid, Roslida A; Knudsen, Lisbeth E; Leyns, Luc; Lopez de Cerain Salsamendi, Adela; Memeo, Lorenzo; Mondello, Chiara; Mothersill, Carmel; Olsen, Ann-Karin; Pavanello, Sofia; Raju, Jayadev; Rojas, Emilio; Roy, Rabindra; Ryan, Elizabeth P; Ostrosky-Wegman, Patricia; Salem, Hosni K; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Van Schooten, Frederik J; Valverde, Mahara; Woodrick, Jordan; Zhang, Luoping; van Larebeke, Nik; Kirsch-Volders, Micheline; Collins, Andrew R

    2015-06-01

    Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon

    2007-05-11

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC inmore » the presence of TNF-{alpha}. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-{alpha}-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-{alpha}-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-{alpha}. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-{kappa}B and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.« less

  6. LSWS linked with the low-latitude Es and its implications for the growth of the R-T instability

    NASA Astrophysics Data System (ADS)

    Joshi, L. M.

    2016-07-01

    A comprehensive investigation of spread F irregularities over the Indian sector has been carried out using VHF radar and ionosonde observations. Two different categories of spread F observations, one where the onset of the range spread F (RSF) was concurrent with the peak h'F (category 1) and another where the RSF onset happened ~90 min after the peak h'F time (category 2), are presented. RSF in category 2 was preceded by the presence of oblique echoes in ionograms, indicating the irregularity genesis westward of Sriharikota. The average peak h'F in category 1 was ~30 km higher than that in category 2 indicating the presence of standing large-scale wave structure (LSWS). Occurrence of the blanketing Es during 19:30 to 20:30 Indian Standard Time in category 1 (category 2) was 0% (>50%). Model computation is also carried out to further substantiate the observational results. Model computation indicates that zonal variation of low-latitude Es can generate zonal modulation in the F layer height rise. It is found that the modulation of the F layer height, linked with the low-latitude Es, assists the equatorial spread F onset by modifying both the growth rate of the collisional Rayleigh-Taylor (R-T) instability and also its efficiency. A predominant presence of low-latitude Es has been observed, but the increase in the F layer height and the R-T instability growth in the evening hours will maximize with complete absence of low-latitude Es. A new mechanism for the generation of LSWS and its implications on R-T instability is discussed.

  7. Microscale electrokinetic transport and stability

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hua

    Electrokinetics is a leading mechanism for transport and separation of biochemical samples in microdevices due to its favorable scaling at small scales. However, electrokinetic systems can become highly unstable, and this instability adversely affects key processes such as sample stacking and electrophoretic separation. This dissertation deals with two major topics: a novel planar micropump exploiting the favorable scaling of electroosmosis at the microscale, and a fundamental study of electrokinetic flow instabilities induced by electrical conductivity gradients. Electroosmotic micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps was developed to guide the geometrical design and working fluid selection. Standard microlithography and wet etching techniques were used to fabricate a pump 1 mm long along the flow direction and 0.9 mum by 38 mm in cross section. The pump produced a maximum pressure of 0.33 atm and a maximum flow rate of 15 mul/min at 1 kV applied potential with deionized water as working fluid. The pump performance agreed well with the theoretical model. Electrokinetic flow instabilities occur under high electric field in the presence of electrical conductivity gradients. In a microfluidic T-junction 11 mum by 155 mum in cross section, aqueous electrolytes of 10:1 conductivity ratio were electrokinetically driven into a common mixing channel. Convectively unstable waves were observed at 0.5 kV/cm, and upstream propagating waves at 1.5 kV/cm. A physical model for this instability has been developed. A linear stability analysis of the governing equations in the thin-layer limit predicts both qualitative trends and quantitative features that agree well with experimental data. Briggs-Bers criteria were applied to select physically unstable modes and determine the nature of instability. Conductivity gradients and bulk charge accumulation are a crucial factor in the instability. The role of electroosmotic flow is mainly as a convecting medium. The instability is governed by two key controlling parameters: the ratio of dynamic to dissipative forces which determines the onset of instability, and the ratio of electroviscous to electroosmotic velocities which governs the convective versus absolute nature of instability.

  8. Cross-field transport by instabilities and blobs in a magnetized toroidal plasma.

    PubMed

    Podestà, M; Fasoli, A; Labit, B; Furno, I; Ricci, P; Poli, F M; Diallo, A; Müller, S H; Theiler, C

    2008-07-25

    The mechanisms for anomalous transport across the magnetic field are investigated in a toroidal magnetized plasma. The role of plasma instabilities and macroscopic density structures (blobs) is discussed. Examples from a scenario with open magnetic field lines are shown. A transition from a main plasma region into a loss region is reproduced. In the main plasma, which includes particle and heat source locations, the transport is dominated by the fluctuation-induced particle and heat flux associated with a plasma instability. On the low-field side, the cross-field transport is ascribed to the intermittent ejection of macroscopic blobs propagating toward the outer wall. It is shown that instabilities and blobs represent fundamentally different mechanisms for cross-field transport.

  9. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively controlled with even smaller superficial air velocity than the optimal value provided by a single air stone. Finally, the testing results with both inorganic and organic feeds showed that the solid particle composition and particle size distribution all contribute to the cake formation in a membrane filtration system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard L. Liber; Jeffrey L. Schwartz

    2005-10-31

    There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cellsmore » has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.« less

  11. Highly elastic polymer solutions under shear: Polymer migration, viscoelastic instabilities, and anomalous rheology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M.J.; Muller, S.J.

    1996-12-31

    The use of highly elastic polymer solutions has been remarkably successful in elucidating the behavior of polymeric materials under flowing conditions. Here, we present the results of an extensive experimental study into the shear behavior of an athermal, dilute, binary polymer solution that is believed to be free of many of these effects. Under extended shearing, we observe the migration of polymer species: after shearing for several hundred hours, concentrations that are more than double the initial uniform value can be achieved. Although the solutions are well-described by dumbbell models in shear flows on short-time scales, theoretical predictions substantially underestimatemore » the rate of migration. Flow visualization and rheometric experiments suggest that the origin of this discrepancy could be the anomalous long-time rheology of these solutions. While these fluids display the well-known elastic instability in cone and plate flow above a critical Deborah number, extended shearing reveals that the toroidal secondary flow is eventually replaced by a purely azimuthal shearing flow. In addition, when sheared below the critical condition for the instability, the solutions exhibit a slow but reversible decay in normal stresses. The shear-induced migration of polymer species has been predicted by numerous theoretical studies. However, observations on the highly elastic polymer solutions that are most likely to show polymer migration, are complicated by a number of different physical processes that occur as a result of shearing. These phenomena, which include shear-induced phase separation, elastically-induced hydrodynamic instabilities, mixed solvent effects, shear-induced aggregation, and anomalous transient shear and normal stress behavior are often observed at times earlier than and at shear rates less than those where migration is predicted to occur; hence, the experimental detection of polymer migration has been thwarted by these other physical processes.« less

  12. Intrinsically Disordered Energy Landscapes

    PubMed Central

    Chebaro, Yassmine; Ballard, Andrew J.; Chakraborty, Debayan; Wales, David J.

    2015-01-01

    Analysis of an intrinsically disordered protein (IDP) reveals an underlying multifunnel structure for the energy landscape. We suggest that such ‘intrinsically disordered’ landscapes, with a number of very different competing low-energy structures, are likely to characterise IDPs, and provide a useful way to address their properties. In particular, IDPs are present in many cellular protein interaction networks, and several questions arise regarding how they bind to partners. Are conformations resembling the bound structure selected for binding, or does further folding occur on binding the partner in a induced-fit fashion? We focus on the p53 upregulated modulator of apoptosis (PUMA) protein, which adopts an -helical conformation when bound to its partner, and is involved in the activation of apoptosis. Recent experimental evidence shows that folding is not necessary for binding, and supports an induced-fit mechanism. Using a variety of computational approaches we deduce the molecular mechanism behind the instability of the PUMA peptide as a helix in isolation. We find significant barriers between partially folded states and the helix. Our results show that the favoured conformations are molten-globule like, stabilised by charged and hydrophobic contacts, with structures resembling the bound state relatively unpopulated in equilibrium. PMID:25999294

  13. Parametric study of shock-induced combustion in a hydrogen air system

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, Surendra N.

    1994-01-01

    A numerical parametric study is conducted to simulate shock-induced combustion under various free-stream conditions and varying blunt body diameter. A steady combustion front is established if the free-stream Mach number is above the Chapman-Jouguet speed of the mixture, whereas an unsteady reaction front is established if the free-stream Mach number is below or at the Chapman-Jouguet speed of the mixture. The above two cases have been simulated for Mach 5.11 and Mach 6.46 with a projectile diameter of 15 mm. Mach 5.11, which is an underdriven case, shows an unsteady reaction front, whereas Mach 6.46, which is an overdriven case, shows a steady reaction front. Next for Mach 5. 11 reducing the diameter to 2.5 mm causes the instabilities to disappear, whereas, for Mach 6.46 increasing the diameter of the projectile to 225 mm causes the instabilities to reappear, indicating that Chapman-Jouguet speed is not the only deciding factor for these instabilities to trigger. The other key parameters are the projectile diameter, induction time, activation energy and the heat release. The appearance and disappearance of the instabilities have been explained by the one-dimensional wave interaction model.

  14. Most-Critical Transient Disturbances in an Incompressible Flat-Plate Boundary Layer

    NASA Astrophysics Data System (ADS)

    Monschke, Jason; White, Edward

    2015-11-01

    Transient growth is a linear disturbance growth mechanism that plays a key role in roughness-induced boundary-layer transition. It occurs when superposed stable, non-orthogonal continuous spectrum modes experience algebraic disturbance growth followed by exponential decay. Algebraic disturbance growth can modify the basic state making it susceptible to secondary instabilities rapidly leading to transition. Optimal disturbance theory was developed to model the most-dangerous disturbances. However, evidence suggests roughness-induced transient growth is sub-optimal yet leads to transition earlier than optimal theory suggests. This research computes initial disturbances most unstable to secondary instabilities to further develop the applicability of transient growth theory to surface roughness. The main approach is using nonlinear adjoint optimization with solutions of the parabolized Navier-Stokes and BiGlobal stability equations. Two objective functions were considered: disturbance kinetic energy growth and sinuous instability growth rate. The first objective function was used as validation of the optimization method. Counter-rotating streamwise vortices located low in the boundary layer maximize the sinuous instability growth rate. The authors would like to acknowledge NASA and the AFOSR for funding this work through AFOSR Grant FA9550-09-1-0341.

  15. An Experimental and Numerical Study of Roughness-Induced Instabilities in a Mach 3.5 Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; King, Rudolph A.; Owens, Lewis R.; Choudhari, Meelan M.; Norris, Andrew T.; Li, Fei; Chang, Chau-Layn

    2012-01-01

    Progress on a joint experimental and numerical study of laminar-to-turbulent transition induced by an isolated roughness element in a high-speed laminar boundary layer is reported in this paper. The numerical analysis suggests that transition is driven by the instability of high- and low-speed streaks embedded in the wake of the isolated roughness element. In addition, spatial stability analysis revealed that the wake flow supports multiple modes (even and odd) of convective instabilities that experience strong enough growth to cause transition. The experimental measurements, which included hot-wire and pitot-probe surveys, confirmed the existence of embedded high- and low-speed streaks in the roughness wake. Furthermore, the measurements indicate the presence of both even and odd modes of instability, although their relative magnitude depends on the specifics of the roughness geometry and flow conditions (e.g., the value of Re(sub kk) or k/delta. For the two test cases considered in the measurements (Re(sub kk) values of 462 and 319), the even mode and the odd mode were respectively dominant and appear to play a primary role in the transition process.

  16. Genomic Instability Associated with p53 Knockdown in the Generation of Huntington’s Disease Human Induced Pluripotent Stem Cells

    PubMed Central

    Tidball, Andrew M.; Neely, M. Diana; Chamberlin, Reed; Aboud, Asad A.; Kumar, Kevin K.; Han, Bingying; Bryan, Miles R.; Aschner, Michael; Ess, Kevin C.; Bowman, Aaron B.

    2016-01-01

    Alterations in DNA damage response and repair have been observed in Huntington’s disease (HD). We generated induced pluripotent stem cells (iPSC) from primary dermal fibroblasts of 5 patients with HD and 5 control subjects. A significant fraction of the HD iPSC lines had genomic abnormalities as assessed by karyotype analysis, while none of our control lines had detectable genomic abnormalities. We demonstrate a statistically significant increase in genomic instability in HD cells during reprogramming. We also report a significant association with repeat length and severity of this instability. Our karyotypically normal HD iPSCs also have elevated ATM-p53 signaling as shown by elevated levels of phosphorylated p53 and H2AX, indicating either elevated DNA damage or hypersensitive DNA damage signaling in HD iPSCs. Thus, increased DNA damage responses in the HD genotype is coincidental with the observed chromosomal aberrations. We conclude that the disease causing mutation in HD increases the propensity of chromosomal instability relative to control fibroblasts specifically during reprogramming to a pluripotent state by a commonly used episomal-based method that includes p53 knockdown. PMID:26982737

  17. Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer.

    PubMed

    Zhu, Quan; Hoong, Nien; Aslanian, Aaron; Hara, Toshiro; Benner, Christopher; Heinz, Sven; Miga, Karen H; Ke, Eugene; Verma, Sachin; Soroczynski, Jan; Yates, John R; Hunter, Tony; Verma, Inder M

    2018-06-07

    Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

    PubMed Central

    Jaafar, Miriam; Cuenca, Mariano; Melcher, John; Raman, Arvind

    2012-01-01

    Summary We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode. PMID:22563531

  19. Model-Based Self-Tuning Multiscale Method for Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2006-01-01

    A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.

  20. Understanding force-generating microtubule systems through in vitro reconstitution

    PubMed Central

    Kok, Maurits; Dogterom, Marileen

    2016-01-01

    ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396

  1. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less

  2. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  3. Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive

    DOE PAGES

    MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...

    2015-08-01

    Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less

  4. Thermally induced secondary atomization of droplet in an acoustic field

    NASA Astrophysics Data System (ADS)

    Basu, Saptarshi; Saha, Abhishek; Kumar, Ranganathan

    2012-01-01

    We study the thermal effects that lead to instability and break up in acoustically levitated vaporizing fuel droplets. For selective liquids, atomization occurs at the droplet equator under external heating. Short wavelength [Kelvin-Helmholtz (KH)] instability for diesel and bio-diesel droplets triggers this secondary atomization. Vapor pressure, latent heat, and specific heat govern the vaporization rate and temperature history, which affect the surface tension gradient and gas phase density, ultimately dictating the onset of KH instability. We develop a criterion based on Weber number to define a condition for the inception of secondary atomization.

  5. Radiation-induced transgenerational instability.

    PubMed

    Dubrova, Yuri E

    2003-10-13

    To date, the analysis of mutation induction has provided an irrefutable evidence for an elevated germline mutation rate in the parents directly exposed to ionizing radiation and a number of chemical mutagens. However, the results of numerous publications suggest that radiation may also have an indirect effect on genome stability, which is transmitted through the germ line of irradiated parents to their offspring. This review describes the phenomenon of transgenerational instability and focuses on the data showing increased cancer incidence and elevated mutation rates in the germ line and somatic tissues of the offspring of irradiated parents. The possible mechanisms of transgenerational instability are also discussed.

  6. A Particle Module for the PLUTO Code. I. An Implementation of the MHD–PIC Equations

    NASA Astrophysics Data System (ADS)

    Mignone, A.; Bodo, G.; Vaidya, B.; Mattia, G.

    2018-05-01

    We describe an implementation of a particle physics module available for the PLUTO code appropriate for the dynamical evolution of a plasma consisting of a thermal fluid and a nonthermal component represented by relativistic charged particles or cosmic rays (CRs). While the fluid is approached using standard numerical schemes for magnetohydrodynamics, CR particles are treated kinetically using conventional Particle-In-Cell (PIC) techniques. The module can be used either to describe test-particle motion in the fluid electromagnetic field or to solve the fully coupled magnetohydrodynamics (MHD)–PIC system of equations with particle backreaction on the fluid as originally introduced by Bai et al. Particle backreaction on the fluid is included in the form of momentum–energy feedback and by introducing the CR-induced Hall term in Ohm’s law. The hybrid MHD–PIC module can be employed to study CR kinetic effects on scales larger than the (ion) skin depth provided that the Larmor gyration scale is properly resolved. When applicable, this formulation avoids resolving microscopic scales, offering substantial computational savings with respect to PIC simulations. We present a fully conservative formulation that is second-order accurate in time and space, and extends to either the Runge–Kutta (RK) or the corner transport upwind time-stepping schemes (for the fluid), while a standard Boris integrator is employed for the particles. For highly energetic relativistic CRs and in order to overcome the time-step restriction, a novel subcycling strategy that retains second-order accuracy in time is presented. Numerical benchmarks and applications including Bell instability, diffusive shock acceleration, and test-particle acceleration in reconnecting layers are discussed.

  7. Multimaterial Control of Instability in Soft Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Janbaz, Shahram; McGuinness, Molly; Zadpoor, Amir A.

    2018-06-01

    Soft mechanical metamaterials working on the basis of instability have numerous potential applications in the context of "machine materials." Controlling the onset of instability is usually required when rationally designing such metamaterials. We study the isolated and modulated effects of geometrical design and material distribution on the onset of instability in multimaterial cellular metamaterials. We use multimaterial additive manufacturing to fabricate cellular specimens whose unit cells are divided into void space, a square element, and an intermediate ligament. The ratio of the elastic modulus of the ligament to that of the square element [(EL)/(ES)] is changed by using different material types. Computational models are also developed, validated against experimental observations, and used to study a wide range of possible designs. The critical stress can be adjusted independently from the critical strain by changing the material type while keeping [(EL)/(ES)] constant. The critical strain shows a power-law relationship with [(EL)/(ES)] within the range [(EL)/(ES)]=0.1 - 10 . The void shape design alters the critical strain by up to threefold, while the combined effects of the void shape and material distribution cause up to a ninefold change in the critical strain. Our findings highlight the strong influence of material distribution on the onset of the instability and buckling mode.

  8. Harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fiber.

    PubMed

    Zhao, Saili; Yang, Hua; Zhao, Chujun; Xiao, Yuzhe

    2017-04-03

    Based on induced modulation instability, we present a numerical study on harnessing rogue wave for supercontinuum generation in cascaded photonic crystal fibers. By selecting optimum modulation frequency, we achieve supercontinuum with a great improvement on spectrum stability when long-pulse is used as the pump. In this case, rogue wave can be obtained in the first segmented photonic crystal fiber with one zero dispersion wavelength in a controllable manner. Numerical simulations show that spectral range and flatness can be regulated in an extensive range by cascading a photonic crystal fiber with two zero dispersion wavelengths. Some novel phenomena are observed in the second segmented photonic crystal fiber. When the second zero dispersion wavelength is close to the first one, rogue wave is directly translated into dispersion waves, which is conducive to the generation of smoother supercontinuum. When the second zero dispersion wavelength is far away from the first one, rogue wave is translated into the form of fundamental soliton steadily propagating in the vicinity of the second zero dispersion wavelength. Meanwhile, the corresponding red-shifted dispersion wave is generated when the phase matching condition is met, which is beneficial to the generation of wider supercontinuum. The results presented in this work provide a better application of optical rogue wave to generate flat and broadband supercontinuum in cascaded photonic crystal fibers.

  9. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    NASA Astrophysics Data System (ADS)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  10. Porosity localizing instability in a compacting porous layer in a pure shear flow and the evolution of porosity band wavelength

    NASA Astrophysics Data System (ADS)

    Butler, S. L.

    2010-09-01

    A porosity localizing instability occurs in compacting porous media that are subjected to shear if the viscosity of the solid matrix decreases with porosity ( Stevenson, 1989). This instability may have significant consequences for melt transport in regions of partial melt in the mantle and may significantly modify the effective viscosity of the asthenosphere ( Kohlstedt and Holtzman, 2009). Most analyses of this instability have been carried out assuming an imposed simple shear flow (e.g., Spiegelman, 2003; Katz et al., 2006; Butler, 2009). Pure shear can be realized in laboratory experiments and studying the instability in a pure shear flow allows us to test the generality of some of the results derived for simple shear and the flow pattern for pure shear more easily separates the effects of deformation from rotation. Pure shear flows may approximate flows near the tops of mantle plumes near earth's surface and in magma chambers. In this study, we present linear theory and nonlinear numerical model results for a porosity and strain-rate weakening compacting porous layer subjected to pure shear and we investigate the effects of buoyancy-induced oscillations. The linear theory and numerical model will be shown to be in excellent agreement. We will show that melt bands grow at the same angles to the direction of maximum compression as in simple shear and that buoyancy-induced oscillations do not significantly inhibit the porosity localizing instability. In a pure shear flow, bands parallel to the direction of maximum compression increase exponentially in wavelength with time. However, buoyancy-induced oscillations are shown to inhibit this increase in wavelength. In a simple shear flow, bands increase in wavelength when they are in the orientation for growth of the porosity localizing instability. Because the amplitude spectrum is always dominated by bands in this orientation, band wavelengths increase with time throughout simple shear simulations until the wavelength becomes similar to one compaction length. Once the wavelength becomes similar to one compaction length, the growth of the amplitude of the band slows and shorter wavelength bands that are increasing in amplitude at a greater rate take over. This may provide a mechanism to explain the experimental observation that band spacing is controlled by the compaction length ( Kohlstedt and Holtzman, 2009).

  11. Mitochondria regulate DNA damage and genomic instability induced by high LET radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Davidson, Mercy M.; Hei, Tom K.

    2014-04-01

    High linear energy transfer (LET) radiation including α particles and heavy ions is the major type of radiation found in space and is considered a potential health risk for astronauts. Even though the chance that these high LET particles traversing through the cytoplasm of cells is higher than that through the nuclei, the contribution of targeted cytoplasmic irradiation to the induction of genomic instability and other chromosomal damages induced by high LET radiation is not known. In the present study, we investigated whether mitochondria are the potential cytoplasmic target of high LET radiation in mediating cellular damage using a mitochondrial DNA (mtDNA) depleted (ρ0) human small airway epithelial (SAE) cell model and a precision charged particle microbeam with a beam width of merely one micron. Targeted cytoplasmic irradiation by high LET α particles induced DNA oxidative damage and double strand breaks in wild type ρ+ SAE cells. Furthermore, there was a significant increase in autophagy and micronuclei, which is an indication of genomic instability, together with the activation of nuclear factor kappa-B (NF-κB) and mitochondrial inducible nitric oxide synthase (iNOS) signaling pathways in ρ+ SAE cells. In contrast, ρ0 SAE cells exhibited a significantly lower response to these same endpoints examined after cytoplasmic irradiation with high LET α particles. The results indicate that mitochondria are essential in mediating cytoplasmic radiation induced genotoxic damage in mammalian cells. Furthermore, the findings may shed some light in the design of countermeasures for space radiation.

  12. Zakharov equations for viscous flow and their use in the blood clot formation

    NASA Astrophysics Data System (ADS)

    Zhou, Ai-Ping; Li, Xiao-Qing

    2017-12-01

    For theoretical study, blood can be regarded as a viscous electrically conducting fluid of negative ions and protons. Zakharov equations including viscosity are relevant for describing the behaviour of blood plasma. The dispersion formula is derived from the perturbation method and is solved numerically. It turns out that the imaginary part of one root of the perturbation frequency is greater than zero, and modulation instability occurs. This would lead to the formation of blood clot. The viscous force can suppress the occurrence of instability and prevent thrombosis. One can find that the chaotic state of blood signals human health.

  13. CUSP-PINCH DEVICE

    DOEpatents

    Baker, W.R.; Watteau, J.P.H.

    1962-06-01

    An ion-electron plasma heating device of the pinch tube class is designed with novel means for counteracting the instabilities of an ordinary linear pinch discharge. A plasma-forming discharge is created between two spacedapart coaxial electiodes through a gas such as deuterium. A pair of spaced coaxial magnetic field coils encircle the discharge and carry opposing currents so that a magnetic field having a cuspate configuration is created around the plasma, the field being formed after the plasma has been established but before significant instability arises. Thus, containment time is increased and intensified heating is obtained. In addition to the pinch compression heating additional heating is obtained by high-frequency magnetic field modulation. (AEC)

  14. Excitation of terahertz radiation by an electron beam in a dielectric lined waveguide with rippled dielectric surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Deepak; Uma, R.; Tripathi, V. K.

    A relativistic electron beam propagating through a dielectric lined waveguide, with ripple on the dielectric surface, excites a free electron laser type instability where ripple acts as a wiggler. The spatial modulation of permittivity in the ripple region couples a terahertz radiation mode to a driven mode of lower phase velocity, where the beam is in Cerenkov resonance with the slow mode. Both the modes grow at the expanse of beam energy. The terahertz frequency increases as the beam velocity increases. The growth rate of the instability goes as one third power of beam density.

  15. Chaos of radiative heat-loss-induced flame front instability.

    PubMed

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.

  16. Strain Induced Elastomer Buckling Instability for Mechanical Measurements (SIEBIMM)

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher; Stafford, Christopher M.; Amis, Eric J.; Karim, Alamgir

    2003-03-01

    We introduce a new technique (SIEBIMM) for high-throughput measurements of the mechanical properties of thin polymeric films. This technique relies upon a highly periodic strain-induced buckling instability that arises from a mismatch of the moduli of a relatively stiff polymer coating on a soft silicone sheet. The modulus-dependent buckling wavelength, typically 1-10 microns for 100 nm thick glassy films, is rapidly measured by conventional light scattering. The SIEBIMM-measured modulus is shown to agree with that measured by conventional Instron-like techniques. We directly show that the buckling instability is highly sinusoidal at low strain thereby insuring the suitability of simple mechanical analysis. Utilizing our expertise in preparing thickness gradients via flow coating, we demonstrate that the flexural rigidities of thin films having a wide range of thicknesses can be measured in minutes. By measuring the temporal decay of strain-induced diffraction peaks for plasticized coatings we show that this technique can evaluate viscoelastic properties, such as creep. We demonstrate SIEBIMM's capability with several academic and industrially-relevant polymeric systems, including polystyrene loaded with a wide range of plasticizer, a blend of block copolymers with polystyrene and polyisoprene blocks (Vector 4215 and 4411), and a thiolene-based ultraviolet curing adhesive.

  17. Chromosome instability on children with asthma.

    PubMed

    Lialiaris, Theodore; Polyzou, Aggeliki; Mpountoukas, Panagiotis; Tsiggene, Anthi; Kouskoukis, Alexandros; Pouliliou, Stamatia; Paraskakis, Emmanouil; Tentes, Ioannis; Trypsianis, Grigorios; Chatzimichail, Athanasios

    2009-10-01

    Asthma is a complex disease with multiple interactions between genetic and environmental factors. The aim of our study was to investigate the possible genetic instability in asthmatic patients (AP) with asthma in human cultured peripheral blood lymphocytes. Furthermore, the presence of either cytostaticity or cytotoxicity was demonstrated. Human peripheral blood lymphocytes were cultured from 18 admitted children to the Pediatric Clinic of the University Hospital of Alexandroupolis (average age 7.2 years), and 9 healthy blood donors were used as control subjects (average age 6.5 years), none of whom was receiving drugs for medical or other reasons. A significant (p < 0.05) increase in spontaneous sister chromatid exchanges (SCEs) frequency in asthmatic patients compared with control subjects was observed. No statistically significant modification in the spontaneous proliferation rate index (PRI) in AP compared with the controls was demonstrated. Finally, MMC induced a statistically significant increase in SCEs frequency both to controls and to AP, with the MMC-induced SCEs rates in AP being statistically (p < 0.01) higher compared to the MMC-induced SCEs in controls. We try to improve a new diagnostic process of possible genetic instability by a combination of genotoxic, cytostatic and cytotoxic effects of asthma on human peripheral lymphocytes.

  18. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice

    PubMed Central

    Barber, Ruth; Plumb, Mark A.; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E.

    2002-01-01

    Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans. PMID:11997464

  19. Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment

    PubMed Central

    McHale, Cliona M.; Zhang, Luoping; Smith, Martyn T.

    2012-01-01

    Benzene causes acute myeloid leukemia and probably other hematological malignancies. As benzene also causes hematotoxicity even in workers exposed to levels below the US permissible occupational exposure limit of 1 part per million, further assessment of the health risks associated with its exposure, particularly at low levels, is needed. Here, we describe the probable mechanism by which benzene induces leukemia involving the targeting of critical genes and pathways through the induction of genetic, chromosomal or epigenetic abnormalities and genomic instability, in a hematopoietic stem cell (HSC); stromal cell dysregulation; apoptosis of HSCs and stromal cells and altered proliferation and differentiation of HSCs. These effects modulated by benzene-induced oxidative stress, aryl hydrocarbon receptor dysregulation and reduced immunosurveillance, lead to the generation of leukemic stem cells and subsequent clonal evolution to leukemia. A mode of action (MOA) approach to the risk assessment of benzene was recently proposed. This approach is limited, however, by the challenges of defining a simple stochastic MOA of benzene-induced leukemogenesis and of identifying relevant and quantifiable parameters associated with potential key events. An alternative risk assessment approach is the application of toxicogenomics and systems biology in human populations, animals and in vitro models of the HSC stem cell niche, exposed to a range of levels of benzene. These approaches will inform our understanding of the mechanisms of benzene toxicity and identify additional biomarkers of exposure, early effect and susceptibility useful for risk assessment. PMID:22166497

  20. Smectic layer instabilities in liquid crystals.

    PubMed

    Dierking, Ingo; Mitov, Michel; Osipov, Mikhail A

    2015-02-07

    Scientists aspire to understand the underlying physics behind the formation of instabilities in soft matter and how to manipulate them for diverse investigations, while engineers aim to design materials that inhibit or impede the nucleation and growth of these instabilities in critical applications. The present paper reviews the field-induced rotational instabilities which may occur in chiral smectic liquid-crystalline layers when subjected to an asymmetric electric field. Such instabilities destroy the so-named bookshelf geometry (in which the smectic layers are normal to the cell surfaces) and have a detrimental effect on all applications of ferroelectric liquid crystals as optical materials. The transformation of the bookshelf geometry into horizontal chevron structures (in which each layer is in a V-shaped structure), and the reorientation dynamics of these chevrons, are discussed in details with respect to the electric field conditions, the material properties and the boundary conditions. Particular attention is given to the polymer-stabilisation of smectic phases as a way to forbid the occurrence of instabilities and the decline of related electro-optical performances. It is also shown which benefit may be gained from layer instabilities to enhance the alignment of the liquid-crystalline geometry in practical devices, such as optical recording by ferroelectric liquid crystals. Finally, the theoretical background of layer instabilities is given and discussed in relation to the experimental data.

  1. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition

    PubMed Central

    Ferguson, Lynnette R.; Chen, Helen; Collins, Andrew R.; Connell, Marisa; Damia, Giovanna; Dasgupta, Santanu; Malhotra, Meenakshi; Meeker, Alan K.; Amedei, Amedeo; Amin, Amr; Ashraf, S. Salman; Aquilano, Katia; Azmi, Asfar S.; Bhakta, Dipita; Bilsland, Alan; Boosani, Chandra S.; Chen, Sophie; Ciriolo, Maria Rosa; Fujii, Hiromasa; Guha, Gunjan; Halicka, Dorota; Helferich, William G.; Keith, W. Nicol; Mohammed, Sulma I.; Niccolai, Elena; Yang, Xujuan; Honoki, Kanya; Parslow, Virginia R.; Prakash, Satya; Rezazadeh, Sarallah; Shackelford, Rodney E.; Sidransky, David; Tran, Phuoc T.; Yang, Eddy S.; Maxwell, Christopher A.

    2015-01-01

    Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology. PMID:25869442

  2. The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Chu, Fulei

    2012-12-01

    It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.

  3. Active suppression of vortex-driven combustion instability using controlled liquid-fuel injection

    NASA Astrophysics Data System (ADS)

    Pang, Bin

    Combustion instabilities remain one of the most challenging problems encountered in developing propulsion and power systems. Large amplitude pressure oscillations, driven by unsteady heat release, can produce numerous detrimental effects. Most previous active control studies utilized gaseous fuels to suppress combustion instabilities. However, using liquid fuel to suppress combustion instabilities is more realistic for propulsion applications. Active instability suppression in vortex-driven combustors using a direct liquid fuel injection strategy was theoretically established and experimentally demonstrated in this dissertation work. Droplet size measurements revealed that with pulsed fuel injection management, fuel droplet size could be modulated periodically. Consequently, desired heat release fluctuation could be created. If this oscillatory heat release is coupled with the natural pressure oscillation in an out of phase manner, combustion instabilities can be suppressed. To identify proper locations of supplying additional liquid fuel for the purpose of achieving control, the natural heat release pattern in a vortex-driven combustor was characterized in this study. It was found that at high Damkohler number oscillatory heat release pattern closely followed the evolving vortex front. However, when Damkohler number became close to unity, heat release fluctuation wave no longer coincided with the coherent structures. A heat release deficit area was found near the dump plane when combustor was operated in lean premixed conditions. Active combustion instability suppression experiments were performed in a dump combustor using a controlled liquid fuel injection strategy. High-speed Schlieren results illustrated that vortex shedding plays an important role in maintaining self-sustained combustion instabilities. Complete combustion instability control requires total suppression of these large-scale coherent structures. The sound pressure level at the excited dominant frequency was reduced by more than 20 dB with controlled liquid fuel injection method. Scaling issues were also investigated in this dump combustor to test the effectiveness of using pulsed liquid fuel injection strategies to suppress instabilities at higher power output conditions. With the liquid fuel injection control method, it was possible to suppress strong instabilities with initial amplitude of +/-5 psi down to the background noise level. The stable combustor operating range was also expanded from equivalence ratio of 0.75 to beyond 0.9.

  4. Convective instability and boundary driven oscillations in a reaction-diffusion-advection model

    NASA Astrophysics Data System (ADS)

    Vidal-Henriquez, Estefania; Zykov, Vladimir; Bodenschatz, Eberhard; Gholami, Azam

    2017-10-01

    In a reaction-diffusion-advection system, with a convectively unstable regime, a perturbation creates a wave train that is advected downstream and eventually leaves the system. We show that the convective instability coexists with a local absolute instability when a fixed boundary condition upstream is imposed. This boundary induced instability acts as a continuous wave source, creating a local periodic excitation near the boundary, which initiates waves travelling both up and downstream. To confirm this, we performed analytical analysis and numerical simulations of a modified Martiel-Goldbeter reaction-diffusion model with the addition of an advection term. We provide a quantitative description of the wave packet appearing in the convectively unstable regime, which we found to be in excellent agreement with the numerical simulations. We characterize this new instability and show that in the limit of high advection speed, it is suppressed. This type of instability can be expected for reaction-diffusion systems that present both a convective instability and an excitable regime. In particular, it can be relevant to understand the signaling mechanism of the social amoeba Dictyostelium discoideum that may experience fluid flows in its natural habitat.

  5. Collective Effects in a Diffraction Limited Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaoka, Ryutaro; Bane, Karl L.F.

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a seriesmore » of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.« less

  6. Collective Effects in a Diffraction Limited Storage Ring

    DOE PAGES

    Nagaoka, Ryutaro; Bane, Karl L.F.

    2015-10-20

    Our paper gives an overview of collective effects that are likely to appear and possibly limit the performance in a diffraction-limited storage ring (DLSR) that stores a high-intensity ultra-low-emittance beam. Beam instabilities and other intensity-dependent effects that may significantly impact the machine performance are covered. The latter include beam-induced machine heating, Touschek scattering, intra-beam scattering, as well as incoherent tune shifts. The general trend that the efforts to achieve ultra-low emittance result in increasing the machine coupling impedance and the beam sensitivity to instability is reviewed. The nature of coupling impedance in a DLSR is described, followed by a seriesmore » of potentially dangerous beam instabilities driven by the former, such as resistive-wall, TMCI (transverse mode coupling instability), head-tail and microwave instabilities. Additionally, beam-ion and CSR (coherent synchrotron radiation) instabilities are also treated. Means to fight against collective effects such as lengthening of the bunch with passive harmonic cavities and bunch-by-bunch transverse feedback are introduced. Numerical codes developed and used to evaluate the machine coupling impedance, as well as to simulate beam instability using the former as inputs are described.« less

  7. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  8. Beneficial and paradoxical roles of selenium at nutritional levels of intake in healthspan and longevity

    USDA-ARS?s Scientific Manuscript database

    Accumulation of damage to the genome and macromolecules is a hallmark of aging, age-associated degeneration, and genome instability syndromes. Although the processes of aging are irreversible, they can be modulated by genome maintenance pathways and environmental factors such as diet. Selenium (Se) ...

  9. Charge-Induced Saffman-Taylor Instabilities in Toroidal Droplets

    NASA Astrophysics Data System (ADS)

    Fragkopoulos, A. A.; Aizenman, A.; Fernández-Nieves, A.

    2017-06-01

    We show that charged toroidal droplets can develop fingerlike structures as they expand due to Saffman-Taylor instabilities. While these are commonly observed in quasi-two-dimensional geometries when a fluid displaces another fluid of higher viscosity, we show that the toroidal confinement breaks the symmetry of the problem, effectively making it quasi-two-dimensional and enabling the instability to develop in this three-dimensional situation. We control the expansion speed of the torus with the imposed electric stress and show that fingers are observed provided the characteristic time scale associated with this instability is smaller than the characteristic time scale associated with Rayleigh-Plateau break-up. We confirm our interpretation of the results by showing that the number of fingers is consistent with expectations from linear stability analysis in radial Hele-Shaw cells.

  10. Volume nanograting formation in laser-silica interaction as a result of the 1D plasma-resonance ionization instability

    NASA Astrophysics Data System (ADS)

    Gildenburg, V. B.; Pavlichenko, I. A.

    2016-08-01

    The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as the geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability, this period occurs to be approximately equal to the laser half-wavelength in the silica, close to the one experimentally observed.

  11. Ion dynamics during the parametric instabilities of a left-hand polarized Alfvén wave in a proton-electron-alpha plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xinliang; Lu, Quanming; Hao, Yufei

    2014-01-01

    The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less

  12. Vertical Transport of Sediment from Muddy Buoyant River Plumes in the Presence of Different Modes of Interfacial Instabilities

    NASA Astrophysics Data System (ADS)

    Strom, K.; Rouhnia, M.

    2016-12-01

    Previous studies have suggested that sedimentation from buoyant, muddy plumes lofting over clear saltwater can take place at rates higher than that expected from individual particle settling (i.e., CWs). Two potential drivers of enhanced sedimentation are flocculation and interfacial instabilities. We experimentally measured the sediment fluxes from each of these processes using two sets of laboratory experiments that investigate two different modes of instability, one driven by sediment settling and one driven by fluid shear. The settling-driven and shear-driven instability experiments were carried out in a stagnant stratification tank and a stratification flume respectively. In both sets, continuous interface monitoring and concentration measurements were made to observe developments of instabilities and their effects on the removal of sediment. Floc size was measured during the experiments using a floc camera and image analysis routines. This presentation will provide an overview of the stagnant tank experiments, but will focus on results from the stratified flume experiments and an analysis that attempts to synthesizes the results from the entirety of the study. The results from the stratified flume experiments show that under shear instabilities, the effective settling velocity is greater than the floc settling velocity, and that the rate increases with plume velocity and interface mixing. The difference between effective and floc settling velocity was denoted as the shear-induced settling velocity. This rate was found to be a strong function of the Richardson number, and was attributed to mixing processes at the interface. Conceptual and empirical analysis shows that the shear-induced settling velocity is proportional to URi-2. The resulting effective settling velocity models developed from these experiments are then used to examine the rates and potential locations of operations of these mechanism over the length of a river mouth plume.

  13. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    NASA Astrophysics Data System (ADS)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  14. The formation mechanism and evolution of ps-laser-induced high-spatial-frequency periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Pan, A. F.; Wang, W. J.; Mei, X. S.; Yang, H. Z.; Sun, X. F.

    2017-01-01

    We report the formation and evolution mechanisms of HSFLs (high-spatial-frequency laser-induced periodic surface structures) on the commercial pure titanium under 10-ps 532-nm-wavelength laser irradiation. At a lower peak laser fluence, HSFLs in the rough zone are first formed along the surface texture. Subsequently, HSFLs in the flat zone are formed with an orientation parallel to the laser polarization direction. The formation of HSFLs can be attributed to the parallel orientation of the initial periodic modulation of the electron plasma concentration to the laser polarization direction. In particular, the formation of HSFLs along the surface texture occurs because the absorbed laser energy density is along the surface texture. At a higher peak laser fluence, two types of HSFLs appear together with LSFLs. The first type involves HSFLs that initially cover the concave part of the LSFL (low-spatial-frequency laser-induced periodic surface structures) and penetrate inward as the number of spot overlaps increases. This formation mechanism can be attributed to cavitation instability. The second type involves HSFLs that are initially in the convex part of the LSFL, and they are transformed into oxidized nanodots as the number of spot overlaps increases. The oxidized nanodots increase the absorption of laser energy in titanium, which leads to the ablation and removal of the oxidized material. Therefore, the surface of the LSFL becomes smooth.

  15. Droplet formation at the non-equilibrium water/water (w/w) interface

    NASA Astrophysics Data System (ADS)

    Chao, Youchuang; Mak, Sze Yi; Kong, Tiantian; Ding, Zijing; Shum, Ho Cheung

    2017-11-01

    The interfacial instability at liquid-liquid interfaces has been intensively studied in recent years due to their important role in nature and technology. Among them, two classic instabilities are Rayleigh-Taylor (RT) and double diffusive (DD) instabilities, which are practically relevant to many industrial processes, such as geologic CO2 sequestration. Most experimental and theoretical works have focused on RT or DD instability in binary systems. However, the study of such instability in complex systems, such as non-equilibrium ternary systems that involves mass-transfer-induced phase separation, has received less attention. Here, by using a ternary system known as the aqueous two-phase system (ATPS), we investigate experimentally the behavior of non-equilibrium water/water (w/w) interfaces in a vertically orientated Hele-Shaw cell. We observe that an array of fingers emerge at the w/w interface, and then break into droplets. We explore the instability using different concentrations of two aqueous phases. Our experimental findings are expected to inspire the mass production of all-aqueous emulsions in a simple setup.

  16. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  17. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    DOE PAGES

    Liu, Tao; Qin, Weilun; Wang, Dong; ...

    2017-08-02

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability.more » This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. In conclusion, theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.« less

  18. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    NASA Astrophysics Data System (ADS)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the mechanism by which the fluidic oscillators were able to suppress the combustion instability. Results for steady jet secondary injection, showed a strong coupling between the jet injection and the combustion instability pressure pulse. The computational results were able to closely match the experimental results and previous CFD data. The model with the oscillating fluidic oscillator injection was unable to match the stable combustion seen in the experimental data. Further investigation is needed to determine the role higher order chemistry kinetics play in the process and the role of manifolds on the un-choked fuel and fluidic oscillator inlets. This research demonstrates the ability to modulate propellant injection and suppress combustion instabilities using fluidic devices that require no electrical power or moving parts. The advent of advanced manufacturing technologies such as direct metal laser sintering will allow for integration of fluidic devices into combustors to provide open loop active control with a high degree of reliability. Additionally, 2-D CFD analysis is demonstrated to be a valid tool for predicting the feedback free fluidic oscillator oscillation mechanism.

  19. Adaptive control reduces trip-induced forward gait instability among young adults.

    PubMed

    Wang, Ting-Yun; Bhatt, Tanvi; Yang, Feng; Pai, Yi-Chung

    2012-04-30

    A vital functional plasticity of humans is their ability to adapt to threats to posture stability. The purpose of this study was to investigate adaptation to repeated trips in walking. Sixteen young adults were recruited and exposed to the sudden (electronic-mechanical) release of an obstacle, 11-cm in height, in the path of over ground walking during the mid-to-late left swing phase. Although none of the subjects fell on the first of eight unannounced, consecutive trips, all of them had to rely on compensatory step with a step length significantly longer than their regular to reduce their instability. In the subsequent trials, they were able to rapidly make adaptive adjustments in the control of their center-of-mass (COM) stability both proactively and reactively (i.e., before and after hitting or crossing the obstacle), such that the need for taking compensatory step was substantially diminished. The proactive adaptations included a reduced forward COM velocity that lessened forward instability in mid-to-late stance and an elevated toe clearance that reduced the likelihood of obstacle contact. The reactive adjustments were characterized by improved trunk control (by reducing its forward rotation) and limb support (by increasing hip height), and reduced forward instability (by both the posterior COM shift and the reduction in its forward velocity). These findings suggest that young adults can adapt appropriately to repeated trip perturbations and to reduce trip-induced excessive instability in both proactive and reactive manners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. On the secondary instability of the most dangerous Goertler vortex

    NASA Technical Reports Server (NTRS)

    Otto, S. R.; Denier, James P.

    1993-01-01

    Recent studies have demonstrated the most unstable Goertler vortex mode is found in flows, both two and three-dimensional, with regions of (moderately) large body curvature and these modes reside within a thin layer situated at the base of the conventional boundary layer. Further work concerning the nonlinear development of the most dangerous mode demonstrates that the flow results in a self induced flow reversal. However, prior to the point at which flow reversal is encountered, the total streamwise velocity profile is found to be highly inflectional in nature. Previous work then suggests that the nonlinear vortex state will become unstable to secondary, inviscid, Rayleigh wave instabilities prior to the point of flow reversal. Our concern is with the secondary instability of the nonlinear vortex states, which result from the streamwise evolution of the most unstable Goertler vortex mode, with the aim of determining whether such modes can induce a transition to a fully turbulent state before separation is encountered.

Top