Science.gov

Sample records for induced spinal cord

  1. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Tethered Spinal Cord Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Tethered Spinal Cord Syndrome? Tethered spinal cord syndrome is a neurological ...

  2. Spinal Cord Infarction

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Spinal Cord Infarction Information Page Table of Contents (click to ... Organizations Related NINDS Publications and Information What is Spinal Cord Infarction? Spinal cord infarction is a stroke either ...

  3. Spinal Cord Injury-Induced Osteoporosis: Pathogenesis and Emerging Therapies

    PubMed Central

    Battaglino, Ricardo A.; Lazzari, Antonio A.; Garshick, Eric; Morse, Leslie R.

    2012-01-01

    Spinal cord injury causes rapid, severe osteoporosis with increased fracture risk. Mechanical unloading after paralysis results in increased osteocyte expression of sclerostin, suppressed bone formation, and indirect stimulation of bone resorption. At this time there are no clinical guidelines to prevent bone loss after SCI and fractures are common. More research is required to define the pathophysiology and epidemiology of SCI-induced osteoporosis. This review summarizes emerging therapeutics including anti-sclerostin antibodies, mechanical loading of the lower extremity with electrical stimulation, and mechanical stimulation via vibration therapy. PMID:22983921

  4. Cadmium induces alterations in the human spinal cord morphogenesis.

    PubMed

    Sarchielli, Erica; Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Marini, Mirca; Vannelli, Gabriella B; Gulisano, Massimo

    2012-02-01

    The effects of cadmium on the central nervous system are still relatively poorly understood and its role in neurodegenerative diseases has been debated. In our research, cultured explants from 25 human foetal spinal cords (10-11 weeks gestational age) were incubated with 10 and 100 μM cadmium chloride (CdCl(2)) for 24 h. After treatment, an immunohistochemical study [for Sglial fibrillary acidic protein (GFAP) and choline acetyltransferase (ChAT)], a Western blot analysis (for GFAP, β-Tubulin III, nerve growth factor receptor, Caspase 8 and poly (ADP-ribose) polymerase), and a terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) assay (for detection of apoptotic bodies) were performed. The treatment with CdCl(2) induced a significant and dose-dependent change in the ratio motor neurons/glial cells in the ventral horns of human foetal spinal cord. The decrease of the choline acetyltransferase-positive cells (motor neurons) and the reduction of β Tubulin III indicate that CdCl(2) specifically affects motor neurons of the ventral horns. While the number of motor neurons decreased for the activation of apoptotic pathways (as shown by the increased expression of Caspase 8, nerve growth factor receptor, and poly (ADP-ribose) polymerase), glial cells, both in the subependymal zone and in the gray matter of the ventral horns, increased (as shown by the increase of GFAP expression). These results provide the evidence that during human spinal cord development, CdCl(2) may affect the fate of neural and glial cells thus, being potentially involved in the etiopathogenesis of neurodegenerative diseases.

  5. Brefeldin A-induced neurotoxicity in cultured spinal cord neurons.

    PubMed

    Kikuchi, Seiji; Shinpo, Kazuyoshi; Tsuji, Sachiko; Yabe, Ichiro; Niino, Masaaki; Tashiro, Kunio

    2003-02-15

    Brefeldin A (BFA) is a fungus metabolite that is known to cause the disassembly of the Golgi complex and apoptosis in exposed cells, both of which have been suggested as playing roles in the pathogenesis of neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS). This study showed that BFA caused neurotoxicity and apoptotic nuclear changes in cultured spinal neurons of rat spinal cord in a dose- and time-dependent manner. The spinal motor neurons were more vulnerable to this neurotoxicity. The cultured spinal neurons showed irreversible disassembly of the Golgi apparatus as early as 1 hr after exposure to BFA. BFA induced the expression and activation of caspase-12 beginning 8 hr after exposure. The level of the cleaved form of caspase-3 had increased 12 hr after the addition of BFA. Free radical generation and loss of mitochondrial membrane potential were observed in the later stages of neurotoxicity caused by BFA. Collectively, our data suggests that BFA is an excellent agent for reproducing the pathophysiological features of ALS. This in vitro model may be useful in attempts to study the mechanisms of this neurodegenerative disease and to examine therapeutic potentials. PMID:12548716

  6. Spinal Cord Injury Map

    MedlinePlus

    ... on the severity of the injury. Tap this spinal column to see how the level of injury affects loss of function and control. Learn more about spinal cord injuries. A spinal cord injury affects the ...

  7. Modeling blast induced neurotrauma in isolated spinal cord white matter.

    PubMed

    Connell, Sean; Ouyang, Hui; Shi, Riyi

    2011-10-01

    Blast-induced neurotrauma (BINT) is a common injury associated with the present military conflicts. Exposure to the shock-wave produced from exploding ordnances leads to significant neurological deficits throughout the brain and spinal cord. Prevention and treatment of this injury requires an appropriate understanding of the mechanisms governing the neurological response. Here, we present a novel ex-vivo BINT model where an isolated section of guinea pig spinal cord white matter is exposed to the shock-wave produced from a small scale explosive event. Additionally, we define the relationship between shock-wave impact, tissue deformation and resulting anatomical and functional deficits associated with BINT. Our findings suggest an inverse relationship between the magnitude of the shock-wave overpressure and the degree of functional deficits using a double sucrose gap recording chamber. Similar correlations are drawn between overpressure and degree of anatomical damage of neuronal processes using a dye-exclusion assay. The following approach is expected to significantly contribute to the detection, mitigation and eventual treatment of BINT. PMID:20703730

  8. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    PubMed Central

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  9. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury.

    PubMed

    Doulames, Vanessa M; Plant, Giles W

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient's own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI-even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  10. Photochemically induced spinal ischaemia: a model of spinal cord trauma in the rat

    NASA Astrophysics Data System (ADS)

    Olby, Natasha J.; Blakemore, W. F.

    1995-05-01

    Focal thrombosis was induced in the dorsal funiculus of the rat spinal cord by exposing the cord to light following intravenous injection of the photoactive dye, rose bengal. The light source was a 599 standing wave dye laser, pumped by an Innova 70 - 4 argon ion laser (Coherent Ltd, Cambridge, UK) and the light was delivered to the operative site via an optical fiber. The histological characteristics of the development and resolution of the lesion have been studied. Forty rats were examined with light and electron microscopy at various time points between 30 minutes and one month after irradiation and the lesion length was measured. Platelet aggregation, increased extracellular space in the white matter and vacuolation of the neurones and glia of the grey matter were present 30 minutes after injury. Progressive necrosis of the white and grey matter developed over the subsequent 24 hours to produce a fusiform lesion that occupied the dorsal funiculus and dorsal horns of the spinal cord at its center and tapered cranially and caudally along the dorsal columns for a total distance of seven millimeters. By one month after injury the area of necrosis had become a cyst lined by astrocytes ventrolaterally and meningeal cells dorsally. Measurements of lesion length showed a variability of 26%. This model of spinal cord trauma produces a lesion that is sufficiently reproducible to be suitable for performing studies aimed at tissue preservation and repair.

  11. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    PubMed Central

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  12. Spinal Cord Injuries

    MedlinePlus

    ... your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... bone disks that make up your spine. Most injuries don't cut through your spinal cord. Instead, ...

  13. Cervical spinal cord injury exacerbates ventilator-induced diaphragm dysfunction.

    PubMed

    Smuder, Ashley J; Gonzalez-Rothi, Elisa J; Kwon, Oh Sung; Morton, Aaron B; Sollanek, Kurt J; Powers, Scott K; Fuller, David D

    2016-01-15

    Cervical spinal cord injury (SCI) can dramatically impair diaphragm muscle function and often necessitates mechanical ventilation (MV) to maintain adequate pulmonary gas exchange. MV is a life-saving intervention. However, prolonged MV results in atrophy and impaired function of the diaphragm. Since cervical SCI can also trigger diaphragm atrophy, it may create preconditions that exacerbate ventilator-induced diaphragm dysfunction (VIDD). Currently, no drug therapy or clinical standard of care exists to prevent or minimize diaphragm dysfunction following SCI. Therefore, we first tested the hypothesis that initiating MV acutely after cervical SCI will exacerbate VIDD and enhance proteolytic activation in the diaphragm to a greater extent than either condition alone. Rats underwent controlled MV for 12 h following acute (∼24 h) cervical spinal hemisection injury at C2 (SCI). Diaphragm tissue was then harvested for comprehensive functional and molecular analyses. Second, we determined if antioxidant therapy could mitigate MV-induced diaphragm dysfunction after cervical SCI. In these experiments, SCI rats received antioxidant (Trolox, a vitamin E analog) or saline treatment prior to initiating MV. Our results demonstrate that compared with either condition alone, the combination of SCI and MV resulted in increased diaphragm atrophy, contractile dysfunction, and expression of atrophy-related genes, including MuRF1. Importantly, administration of the antioxidant Trolox attenuated proteolytic activation, fiber atrophy, and contractile dysfunction in the diaphragms of SCI + MV animals. These findings provide evidence that cervical SCI greatly exacerbates VIDD, but antioxidant therapy with Trolox can preserve diaphragm contractile function following acute SCI. PMID:26472866

  14. Spinal cord contusion models.

    PubMed

    Young, Wise

    2002-01-01

    Most human spinal cord injuries involve contusions of the spinal cord. Many investigators have long used weight-drop contusion animal models to study the pathophysiology and genetic responses of spinal cord injury. All spinal cord injury therapies tested to date in clinical trial were validated in such models. In recent years, the trend has been towards use of rats for spinal cord injury studies. The MASCIS Impactor is a well-standardized rat spinal cord contusion model that produces very consistent graded spinal cord damage that linearly predicts 24-h lesion volumes, 6-week white matter sparing, and locomotor recovery in rats. All aspects of the model, including anesthesia for male and female rats, age rather than body weight criteria, and arterial blood gases were empirically selected to enhance the consistency of injury. PMID:12440371

  15. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    PubMed

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P < 0.001) independently from mechanical ventilation and preserved sensory function by multiple regression analysis. We present evidence that spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner.

  16. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain

    PubMed Central

    Bráz, JM; Sharif-Naeini, R; Vogt, D; Kriegstein, A; Alvarez-Buylla, A; Rubenstein, JL; Basbaum, AI

    2012-01-01

    Neuropathic pain is a chronic debilitating disease characterized by mechanical allodynia and spontaneous pain. Because symptoms are often unresponsive to conventional methods of pain treatment, new therapeutic approaches are essential. Here, we describe a strategy that not only ameliorates symptoms of neuropathic pain, but is also potentially disease modifying. We show that transplantation of immature telencephalic GABAergic interneurons from the mouse medial ganglionic eminence (MGE) into the adult mouse spinal cord completely reverses the mechanical hypersensitivity produced by peripheral nerve injury. Underlying this improvement is a remarkable integration of the MGE transplants into the host spinal cord circuitry, in which the transplanted cells make functional connections with both primary afferent and spinal cord neurons. By contrast, MGE transplants were not effective against inflammatory pain. Our findings suggest that MGE-derived GABAergic interneurons overcome the spinal cord hyperexcitability that is a hallmark of nerve-injury induced neuropathic pain. PMID:22632725

  17. Spinal Cord Diseases

    MedlinePlus

    ... damages the vertebrae or other parts of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal ...

  18. Spinal cord trauma

    MedlinePlus

    ... if the bones or disks have been weakened Fragments of bone (such as from broken vertebrae, which are the ... presses on the spinal cord (decompression laminectomy ) Remove bone fragments, disk fragments, or foreign objects Fuse broken spinal ...

  19. Spinal cord injury-induced pain: mechanisms and treatments.

    PubMed

    Siddall, Philip J; Middleton, James W

    2015-01-01

    Pain is a common consequence of a spinal cord injury (SCI) and has a major impact on quality of life through its impact on physical function, mood and participation in work, recreational and social activities. Several types of pain typically present following SCI with central neuropathic pain being a frequent and difficult to manage occurrence. Despite advances in our understanding of the mechanisms contributing to this type of pain and an increasing number of trials examining treatment efficacy, our ability to relieve neuropathic SCI pain is still very limited. Optimal management relies upon an integrated approach that uses a combination of pharmacological and nonpharmacological options. PMID:26402151

  20. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injury.

    PubMed

    Li, Zhi; Zhao, Wei; Liu, Wei; Zhou, Ye; Jia, Jingqiao; Yang, Lifeng

    2014-12-15

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the field of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the restoration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  1. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure. PMID:25687701

  2. Not just the brain: methamphetamine disrupts blood-spinal cord barrier and induces acute glial activation and structural damage of spinal cord cells.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari S

    2015-01-01

    Acute methamphetamine (METH) intoxication induces metabolic brain activation as well as multiple physiological and behavioral responses that could result in life-threatening health complications. Previously, we showed that METH (9 mg/kg) used in freely moving rats induces robust leakage of blood-brain barrier, acute glial activation, vasogenic edema, and structural abnormalities of brain cells. These changes were tightly correlated with drug-induced brain hyperthermia and were greatly potentiated when METH was used at warm ambient temperatures (29°C), inducing more robust and prolonged hyperthermia. Extending this line of research, here we show that METH also strongly increases the permeability of the blood-spinal cord barrier as evidenced by entry of Evans blue and albumin immunoreactivity in T9-12 segments of the spinal cord. Similar to the blood-brain barrier, leakage of bloodspinal cord barrier was associated with acute glial activation, alterations of ionic homeostasis, water tissue accumulation (edema), and structural abnormalities of spinal cord cells. Similar to that in the brain, all neurochemical alterations correlated tightly with drug-induced elevations in brain temperature and they were enhanced when the drug was used at 29°C and brain hyperthermia reached pathological levels (>40°C). We discuss common features and differences in neural responses between the brain and spinal cord, two inseparable parts of the central nervous system affected by METH exposure.

  3. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    PubMed Central

    Kallakuri, Srinivasu; Purkait, Heena S.; Dalavayi, Satya; VandeVord, Pamela; Cavanaugh, John M.

    2015-01-01

    Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s) of blast overpressure (OP) induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM) tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L) chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury. PMID:26752889

  4. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats

    PubMed Central

    Díaz Galindo, Carmen; Gómez-González, Beatriz; Salinas, Eva; Calderón-Vallejo, Denisse; Hernández-Jasso, Irma; Bautista, Eduardo; Quintanar, J Luis

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) and its synthetic analog leuprolide acetate, a GnRH agonist, have neurotrophic properties. This study was designed to determine whether administration of leuprolide acetate can improve locomotor behavior, gait, micturition reflex, spinal cord morphology and the amount of microglia in the lesion epicenter after spinal cord injury in rats. Rats with spinal cord compression injury were administered leuprolide acetate or saline solution for 5 weeks. At the 5th week, leuprolide acetate-treated rats showed locomotor activity recovery by 38%, had improvement in kinematic gait and exhibited voiding reflex recovery by 60%, as compared with the 1st week. By contrast, saline solution-treated rats showed locomotor activity recovery only by 7%, but voiding reflex did not recover. More importantly, leuprolide acetate treatment reduced microglial immunological reaction and induced a trend towards greater area of white and gray matter in the spinal cord. Therefore, leuprolide acetate has great potential to repair spinal cord injury. PMID:26807118

  5. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats.

    PubMed

    Díaz Galindo, Carmen; Gómez-González, Beatriz; Salinas, Eva; Calderón-Vallejo, Denisse; Hernández-Jasso, Irma; Bautista, Eduardo; Quintanar, J Luis

    2015-11-01

    Gonadotropin-releasing hormone (GnRH) and its synthetic analog leuprolide acetate, a GnRH agonist, have neurotrophic properties. This study was designed to determine whether administration of leuprolide acetate can improve locomotor behavior, gait, micturition reflex, spinal cord morphology and the amount of microglia in the lesion epicenter after spinal cord injury in rats. Rats with spinal cord compression injury were administered leuprolide acetate or saline solution for 5 weeks. At the 5(th) week, leuprolide acetate-treated rats showed locomotor activity recovery by 38%, had improvement in kinematic gait and exhibited voiding reflex recovery by 60%, as compared with the 1(st) week. By contrast, saline solution-treated rats showed locomotor activity recovery only by 7%, but voiding reflex did not recover. More importantly, leuprolide acetate treatment reduced microglial immunological reaction and induced a trend towards greater area of white and gray matter in the spinal cord. Therefore, leuprolide acetate has great potential to repair spinal cord injury.

  6. Arachidonic acid-induced oxidative injury to cultured spinal cord neurons.

    PubMed

    Toborek, M; Malecki, A; Garrido, R; Mattson, M P; Hennig, B; Young, B

    1999-08-01

    Spinal cord trauma can cause a marked release of free fatty acids, in particular, arachidonic acid (AA), from cell membranes. Free fatty acids, and AA by itself, may lead to secondary damage to spinal cord neurons. To study this hypothesis, cultured spinal cord neurons were exposed to increasing concentrations of AA (0.01-10 microM). AA-induced injury to spinal cord neurons was assessed by measurements of cellular oxidative stress, intracellular calcium levels, activation of nuclear factor-KB (NF-kappaB), and cell viability. AA treatment increased intracellular calcium concentrations and decreased cell viability. Oxidative stress increased significantly in neurons exposed to 1 and 10 microM AA. In addition, AA treatment activated NF-kappaB and decreased levels of the inhibitory subunit, IKB. It is interesting that manganese superoxide dismutase protein levels and levels of intracellular total glutathione increased in neurons exposed to this fatty acid for 24 h, consistent with a compensatory response to increased oxidative stress. These results strongly support the hypothesis that free fatty acids contribute to the tissue injury observed following spinal cord trauma. PMID:10428065

  7. Photothrombosis-induced Focal Ischemia as a Model of Spinal Cord Injury in Mice

    PubMed Central

    Zhang, Nannan; Ding, Shinghua

    2015-01-01

    Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca2+ signaling using two-photon microscopy. PMID:26274772

  8. Neuropathic pain induced by spinal cord injury: Role of endothelin ETA and ETB receptors.

    PubMed

    Forner, S; Martini, A C; de Andrade, E L; Rae, G A

    2016-03-23

    Spinal cord injury (SCI) is a devastating neurologic disorder that often inflicts neuropathic pain, which further impacts negatively on the patient's quality of life. Endothelin peptides, which exert their effects via endothelin A (ETAR) and endothelin B (ETBR) receptors, can contribute to sensory changes associated with inflammatory and neuropathic pain, but their role in nociception following SCI is unknown. At different time points after subjecting male Wistar rats to surgery for compression-induced T10 level SCI, the spinal cord levels of ETAR and ETBR were assessed by Western blot and immunohistochemistry, and the corresponding mRNAs by real-time PCR, alongside recordings of behavioural responses to mechanical stimulation of the hind paws with von Frey hairs. SCI was associated with development of hind paw mechanical allodynia from day 14 onwards, and up-regulation of ETAR and ETBR mRNA in the spinal cord and dorsal root ganglia, and of ETAR protein in the spinal cord. SCI increased ETAR protein expression in spinal grey matter. Treatment on day 21 after surgery with the ETAR selective antagonist BQ-123 (40 and 90 pmol, intrathecally) or the dual ETAR/ETBR antagonist bosentan (30 and 100mg/kg, orally) transiently reduced SCI-induced mechanical allodynia, but the ETBR antagonist BQ-788 was ineffective. Altogether, these data show that SCI upregulates ETAR expression in the spinal cord, which appears to contribute to the hind paw mechanical allodynia associated with this condition. Therapies directed towards blockade of spinal ETAR may hold potential to limit SCI-induced neuropathic pain.

  9. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  10. Peripheral nerve injury induces aquaporin-4 expression and astrocytic enlargement in spinal cord.

    PubMed

    Oklinski, M K; Choi, H-J; Kwon, T-H

    2015-12-17

    Aquaporin-4 (AQP4), a water channel protein, is expressed mainly in the perivascular end-feet of astrocytes in the brain and spinal cord. Dysregulation of AQP4 is critically associated with abnormal water transport in the astrocytes. We aimed to examine whether peripheral nerve injury (PNI) could induce the changes of AQP4 expression and astrocytic morphology in the spinal cord. Two different PNI models [partial sciatic nerve transection (PST) and chronic constriction injury (CCI)] were established on the left sciatic nerve in Sprague-Dawley rats, which decreased the pain withdrawal threshold in the ipsilateral hind paws. Both PNI models were associated with a persistent up-regulation of AQP4 in the ipsilateral dorsal horn at the lower lumbar region over 3 weeks, despite an absence of direct injury to the spinal cord. Three-dimensional reconstruction of astrocytes was made and morphometric analysis was done. Up-regulation of AQP4 was accompanied by a significant increase in the length and volume of astrocytic processes and the number of branch points. The most prominent changes were present in the distal processes of the astrocytes and the changes were maintained throughout the whole experimental period. Extravasation of systemically administered tracers Evans Blue and sodium fluorescein was not seen in both models. Taken together, PNI was associated with a long-lasting AQP4 up-regulation and enlargement of astrocytic processes in the spinal cord in rats, both of which were not related to the disruption of blood-spinal cord barrier. The findings could provide novel insights on the understanding of pathophysiology of spinal cords after PNI.

  11. Spinal Cord Injury 101

    MedlinePlus

    ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we expect ...

  12. Spinal Cord Injury

    MedlinePlus

    ... Dramatically Improves Function After Spinal Cord Injury in Rats May 2004 press release on an experimental treatment ... NINDS). Signaling Molecule Improves Nerve Cell Regeneration in Rats August 2002 news summary on a signaling molecule ...

  13. Spinal cord abscess

    MedlinePlus

    ... irritation (inflammation) and the collection of infected material (pus) in or around the spinal cord. ... occurs as a complication of an epidural abscess . Pus forms as a collection of: Destroyed tissue cells ...

  14. Exercise-induced gene expression changes in the rat spinal cord.

    PubMed

    Perreau, Victoria M; Adlard, Paul A; Anderson, Aileen J; Cotman, Carl W

    2005-01-01

    There is growing evidence that exercise benefits recovery of neuromuscular function from spinal cord injury (SCI). However, the effect of exercise on gene expression in the spinal cord is poorly understood. We used oligonucleotide microarrays to compare thoracic and lumbar regions of spinal cord of either exercising (voluntary wheel running for 21 days) or sedentary rats. The expression data were filtered using statistical tests for significance, and K-means clustering was then used to segregate lists of significantly changed genes into sets based upon expression patterns across all experimental groups. Levels of brain-derived neurotrophic factor (BDNF) protein were also measured after voluntary exercise, across different regions of the spinal cord. BDNF mRNA increased with voluntary exercise, as has been previously shown for other forms of exercise, contributed to by increases in both exon I and exon III. The exercise-induced gene expression changes identified by microarray analysis are consistent with increases in pathways promoting neuronal health, signaling, remodeling, cellular transport, and development of oligodendrocytes. Taken together these data suggest cellular pathways through which exercise may promote recovery in the SCI population.

  15. [Spinal cord infarction].

    PubMed

    Naumann, N; Shariat, K; Ulmer, S; Stippich, C; Ahlhelm, F J

    2012-05-01

    Infarction of the spinal cord can cause a variety of symptoms and neurological deficits because of the complex vascular supply of the myelon. The most common leading symptom is distal paresis ranging from paraparesis to tetraplegia caused by arterial ischemia or infarction of the myelon. Venous infarction, however, cannot always be distinguished from arterial infarction based on the symptoms alone.Modern imaging techniques, such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) assist in preoperative planning of aortic operations to reliably identify not only the most important vascular structure supplying the spinal cord, the artery of Adamkiewicz, but also other pathologies such as tumors or infectious disorders. In contrast to CT, MRI can reliably depict infarction of the spinal cord.

  16. Electrically induced locomotion in the in vitro brainstem-spinal cord preparation.

    PubMed

    Atsuta, Y; Garcia-Rill, E; Skinner, R D

    1988-08-01

    Electrical stimulation of the brainstem was used to induce locomotion in the in vitro brainstem-spinal cord preparation. Recordings of electromyograms in 'limb-attached' preparations revealed an apparently adult-like step cycle. The lowest threshold sites were localized in the posterior midbrain (reticular formation in the peribrachial area and in the ventral reticular formation) and in the medioventral medulla (dorsolateral to the pyramids).

  17. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  18. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury.

    PubMed

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.

  19. Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord

    PubMed Central

    Kaufmann, Nathalie; Zeka, Bleranda; Schanda, Kathrin; Fujihara, Kazuo; Illes, Zsolt; Dahle, Charlotte; Reindl, Markus; Lassmann, Hans; Bradl, Monika

    2016-01-01

    Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN. PMID:26990978

  20. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    PubMed

    Ling, Ze-Min; Tang, Ying; Li, Ying-Qin; Luo, Hao-Xuan; Liu, Lin-Lin; Tu, Qing-Qiang; Zhou, Li-Hua

    2015-01-01

    Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA. PMID:26010770

  1. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT

    PubMed Central

    Li, Ying-Qin; Luo, Hao-Xuan; Liu, Lin-Lin; Tu, Qing-Qiang; Zhou, Li-Hua

    2015-01-01

    Brachial plexus root avulsion (BPRA) leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av) treated with normal saline), Av+GM1 (treated with monosialoganglioside), and control. At time points of 3 day (d), 1 week (w), 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA. PMID:26010770

  2. Spinal Cord Injury

    MedlinePlus

    ... How much do you know about taking good care of yourself? Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Illness & disability Types of ... Spinal cord injury Read advice from Dr. Jeffrey Rabin , a pediatric rehabilitation specialist at the Children’s National Medical Center. ...

  3. Sensory Stimulation Prior to Spinal Cord Injury Induces Post-Injury Dysesthesia in Mice

    PubMed Central

    Hoschouer, Emily L.; Finseth, Taylor; Flinn, Sharon; Basso, D. Michele

    2010-01-01

    Abstract Chronic pain and dysesthesias are debilitating conditions that can arise following spinal cord injury (SCI). Research studies frequently employ rodent models of SCI to better understand the underlying mechanisms and develop better treatments for these phenomena. While evoked withdrawal tests can assess hypersensitivity in these SCI models, there is little consensus over how to evaluate spontaneous sensory abnormalities that are seen in clinical SCI subjects. Overgrooming (OG) and biting after peripheral nerve injury or spinal cord excitotoxic lesions are thought to be one behavioral demonstration of spontaneous neuropathic pain or dysesthesia. However, reports of OG after contusion SCI are largely anecdotal and conditions causing this response are poorly understood. The present study investigated whether repeated application of sensory stimuli to the trunk prior to mid-thoracic contusion SCI would induce OG after SCI in mice. One week prior to SCI or laminectomy, mice were subjected either to nociceptive and mechanical stimulation, mechanical stimulation only, the testing situation without stimulation, or no treatment. They were then examined for 14 days after surgery and the sizes and locations of OG sites were recorded on anatomical maps. Mice subjected to either stimulus paradigm showed increased OG compared with unstimulated or uninjured mice. Histological analysis showed no difference in spinal cord lesion size due to sensory stimulation, or between mice that overgroomed or did not overgroom. The relationship between prior stimulation and contusion injury in mice that display OG indicates a critical interaction that may underlie one facet of spontaneous neuropathic symptoms after SCI. PMID:20121420

  4. Analgesia Induced by Isolated Bovine Chromaffin Cells Implanted in Rat Spinal Cord

    NASA Astrophysics Data System (ADS)

    Sagen, Jacqueline; Pappas, George D.; Pollard, Harvey B.

    1986-10-01

    Chromaffin cells synthesize and secrete several neuroactive substances, including catecholamines and opioid peptides, that, when injected into the spinal cord, induce analgesia. Moreover, the release of these substances from the cells can be stimulated by nicotine. Since chromaffin cells from one species have been shown to survive when transplanted to the central nervous system of another species, these cells are ideal candidates for transplantation to alter pain sensitivity. Bovine chromaffin cells were implanted into the subarachnoid space of the lumbar spinal region in adult rats. Pain sensitivity and response to nicotine stimulation was determined at various intervals following cell implantation. Low doses of nicotine were able to induce potent analgesia in implanted animals as early as one day following their introduction into the host spinal cord. This response could be elicited at least through the 4 months the animals were tested. The induction of analgesia by nicotine in implanted animals was dose related. This analgesia was blocked by the opiate antagonist naloxone and partially attenuated by the adrenergic antagonist phentolamine. These results suggest that the analgesia is due to the stimulated release of opioid peptides and catecholamines from the implanted bovine chromaffin cells and may provide a new therapeutic approach for the relief of pain.

  5. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    PubMed

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-11-25

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular

  6. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.

    PubMed

    Okada, Starlyn L M; Stivers, Nicole S; Stys, Peter K; Stirling, David P

    2014-01-01

    Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular

  7. FAQs about Spinal Cord Injury (SCI)

    MedlinePlus

    ... Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting to ... a “complete” and “incomplete” spinal cord injury? What recovery is expected following spinal cord injury? Where is ...

  8. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    PubMed

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine.

  9. Orexin induces excitation of respiratory neuronal network in isolated brainstem spinal cord of neonatal rat.

    PubMed

    Sugita, Takeo; Sakuraba, Shigeki; Kaku, Yuki; Yoshida, Kazu-ichi; Arisaka, Hirofumi; Kuwana, Shun-ichi

    2014-08-15

    Endogenous neuropeptides known as orexins (hypocretins) play important roles in the regulation of feeding, drinking, endocrine function, and sleep/wakefulness. Orexin neuron projection sites include the rostral ventrolateral medulla of brainstem, which is related to the control of breathing. Previous studies suggest that orexins modulate the central CO2 ventilatory response during wakefulness in rodent. In the present study, we examined the effects of the orexinergic system on central respiratory control by adding orexin into a superfusion medium in the isolated brainstem-spinal cord of neonatal rat. Exposure to orexin B resulted in dose-dependent increases in C4 burst rate via brainstem, but not spinal cord. These increases in C4 burst rate induced concomitant increases in the depolarizing cycle rate of pre-inspiratory (Pre-I) and inspiratory (Insp) neurons. Tonic discharge was induced on C4 recording, although the rhythmic bursts of Pre-I and Insp neurons were maintained. Expiratory (Exp) neurons were also depolarized on administration of orexin B. Our findings indicate that orexin B activates central respiratory activity, mainly through depolarization and decreases in membrane resistance in Pre-I and Insp neurons, and possibly through early initiation of the expiratory phase induced by depolarization of Exp neurons.

  10. Behavioral recovery induced by applied electric fields after spinal cord hemisection in guinea pig

    SciTech Connect

    Borgens, R.B.; Blight, A.R.; McGinnis, M.E.

    1987-10-16

    Applied electric fields were used to promote axonal regeneration in spinal cords of adult guinea pigs. A propriospinal intersegmental reflex (the cutaneous trunci muscle reflex) was used to test lateral tract function after hemisection of the thoracic spinal cord. An electrical field (200 microvolts per millimeter, cathode rostral) applied across the lesion led to functional recovery of the cutaneous trunci muscle reflex in 25 percent of experimental animals, whereas the functional deficit remained in control animals, which were implanted with inactive stimulators.

  11. Spinal Activation of the cAMP-PKA Pathway Induces Respiratory Motor Recovery Following High Cervical Spinal Cord Injury

    PubMed Central

    Kajana, S.; Goshgarian, H.G.

    2008-01-01

    The present study investigated the involvement of the adenosine 3’5’-cyclic monophosphate-dependent protein kinase A (cAMP-PKA) pathway in the activation of the crossed phrenic pathways after left C2 spinal cord hemisection. Experiments were conducted on left C2 spinal cord hemisected, anesthetized, vagotomized, pancuronium paralyzed, and artificially ventilated male Sprague-Dawley rats. One week post-injury, the ipsilateral phrenic nerve exhibited no respiratory-related activity indicating a functionally complete hemisection. Intrathecal spinal cord administration of the cAMP analog, 8-Br-cAMP at the level of the phrenic nucleus resulted in an enhancement of contralateral phrenic nerve output and a restoration of respiratory-related activity in the phrenic nerve ipsilateral to the hemisection. Furthermore, pretreatment with Rp-8-Br-cAMP, a PKA inhibitor, abolished the effects of 8-Br-cAMP. These results suggest that PKA activation is necessary for the cAMP-mediated respiratory recovery following high cervical spinal cord injury and that activation of intracellular signaling cascades may represent an important strategy for improving respiratory function after spinal cord injury. PMID:18656458

  12. Adjustment to Spinal Cord Injury

    MedlinePlus

    ... of injury are alive and easily get educational information on the Internet. Web happy. sites such as the National Spinal Cord Injury Association (www.spinalcord.org) and SPINAL CORD Injury ♦ “Because of my injury, it is now impossible for me Information Network (www.spinalcord.uab.edu) have to ever ...

  13. Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model.

    PubMed

    Kim, Jeong Beom; Lee, Hyunah; Araúzo-Bravo, Marcos J; Hwang, Kyujin; Nam, Donggyu; Park, Myung Rae; Zaehres, Holm; Park, Kook In; Lee, Seok-Jin

    2015-12-01

    The generation of patient-specific oligodendrocyte progenitor cells (OPCs) holds great potential as an expandable cell source for cell replacement therapy as well as drug screening in spinal cord injury or demyelinating diseases. Here, we demonstrate that induced OPCs (iOPCs) can be directly derived from adult mouse fibroblasts by Oct4-mediated direct reprogramming, using anchorage-independent growth to ensure high purity. Homogeneous iOPCs exhibit typical small-bipolar morphology, maintain their self-renewal capacity and OPC marker expression for more than 31 passages, share high similarity in the global gene expression profile to wild-type OPCs, and give rise to mature oligodendrocytes and astrocytes in vitro and in vivo. Notably, transplanted iOPCs contribute to functional recovery in a spinal cord injury (SCI) model without tumor formation. This study provides a simple strategy to generate functional self-renewing iOPCs and yields insights for the in-depth study of demyelination and regenerative medicine.

  14. Photochemically induced cystic lesion in the rat spinal cord. I. Behavioral and morphological analysis

    SciTech Connect

    Cameron, T.; Prado, R.; Watson, B.D.; Gonzalez-Carvajal, M.; Holets, V.R. )

    1990-08-01

    The present study describes the production of a spinal cord lesion which is initiated by vascular occlusion resulting from the interaction between the photosensitizing dye erythrosin B and an argon laser beam. The lesion has characteristics similar to those of the central cavity thought to lead to the production of post-traumatic syringomyelia (PTS) in humans. The present study examines the behavioral and morphological characteristics of this injury over a 28-day period. Histological analysis revealed a cavity extending from the dorsal horns to lamina VIII, with some lateral and ventral pathways being spared. The cavity volume reached a maximum 7 days after lesion induction. Behavioral changes were assessed using six different tests of motor and reflex function (motor function, climbing, waterbath, inclined plane, withdrawal to pain, and withdrawal to extension). Lesioned animals exhibited flaccid paralysis for 3-5 days, which resolved afterward. The photochemically induced cavity should provide a reproducible model for examining the effects of cystic spinal cord injury on locomotor and reflex function.

  15. Therapeutic Potential of Induced Neural Stem Cells for Spinal Cord Injury*

    PubMed Central

    Hong, Jin Young; Lee, Sung Ho; Lee, Seung Chan; Kim, Jong-Wan; Kim, Kee-Pyo; Kim, Sung Min; Tapia, Natalia; Lim, Kyung Tae; Kim, Jonghun; Ahn, Hong-Sun; Ko, Kinarm; Shin, Chan Young; Lee, Hoon Taek; Schöler, Hans R.; Hyun, Jung Keun; Han, Dong Wook

    2014-01-01

    The spinal cord does not spontaneously regenerate, and treatment that ensures functional recovery after spinal cord injury (SCI) is still not available. Recently, fibroblasts have been directly converted into induced neural stem cells (iNSCs) by the forced expression defined transcription factors. Although directly converted iNSCs have been considered to be a cell source for clinical applications, their therapeutic potential has not yet been investigated. Here we show that iNSCs directly converted from mouse fibroblasts enhance the functional recovery of SCI animals. Engrafted iNSCs could differentiate into all neuronal lineages, including different subtypes of mature neurons. Furthermore, iNSC-derived neurons could form synapses with host neurons, thus enhancing the locomotor function recovery. A time course analysis of iNSC-treated SCI animals revealed that engrafted iNSCs effectively reduced the inflammatory response and apoptosis in the injured area. iNSC transplantation also promoted the active regeneration of the endogenous recipient environment in the absence of tumor formation. Therefore, our data suggest that directly converted iNSCs hold therapeutic potential for treatment of SCI and may thus represent a promising cell source for transplantation therapy in patients with SCI. PMID:25294882

  16. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  17. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  18. Electron microscopic study of demyelination in an experimentally induced lesion in adult cat spinal cord.

    PubMed

    BUNGE, R P; BUNGE, M B; RISH

    1960-07-01

    Plaques of subpial demyelination were induced in adult cat spinal cords by repeated withdrawal and reinjection of cerebrospinal fluid. Peripheral cord was fixed by replacing cerebrospinal fluid available at cisternal puncture with 3 per cent buffered OsO(4). Following extirpation, surface tissue was further fixed in 2 per cent buffered OsO(4), dehydrated in ethanol, and embedded in araldite. Normal subpial cord consists mainly of myelinated axons and two types of macroglia, fibrous astrocytes and oligodendrocytes. Twenty-nine hours after lesion induction most myelin sheaths are deteriorating and typical macroglia are no longer visible. Phagocytosis of myelin debris has begun. In 3-day lesions, axons are intact and their mitochondria and neurofibrils appear normal despite continued myelin breakdown. All axons are completely demyelinated by 6 days. They lack investments only briefly, however, for at 10 and 14 days, macroglial processes appear and embrace them. These macroglia do not resemble either one of the normally occurring glia; their dense cytoplasm contains fibrils in addition to the usual organelles. It is proposed that these macroglia, which later accomplish remyelination, are the hypertrophic or swollen astrocytes of classical neuropathology. The suggestion that these astrocytes possess the potential to remyelinate axons in addition to their known ability to form cicatrix raises the possibility of pharmacological control of their expression.

  19. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  20. Proteomic and bioinformatic analyses of spinal cord injury-induced skeletal muscle atrophy in rats

    PubMed Central

    WEI, ZHI-JIAN; ZHOU, XIAN-HU; FAN, BAO-YOU; LIN, WEI; REN, YI-MING; FENG, SHI-QING

    2016-01-01

    Spinal cord injury (SCI) may result in skeletal muscle atrophy. Identifying diagnostic biomarkers and effective targets for treatment is an important challenge in clinical work. The aim of the present study is to elucidate potential biomarkers and therapeutic targets for SCI-induced muscle atrophy (SIMA) using proteomic and bioinformatic analyses. The protein samples from rat soleus muscle were collected at different time points following SCI injury and separated by two-dimensional gel electrophoresis and compared with the sham group. The identities of these protein spots were analyzed by mass spectrometry (MS). MS demonstrated that 20 proteins associated with muscle atrophy were differentially expressed. Bioinformatic analyses indicated that SIMA changed the expression of proteins associated with cellular, developmental, immune system and metabolic processes, biological adhesion and localization. The results of the present study may be beneficial in understanding the molecular mechanisms of SIMA and elucidating potential biomarkers and targets for the treatment of muscle atrophy. PMID:27177391

  1. Implication of Hypothalamus in Alleviating Spinal Cord Injury-Induced Neuropathic Pain

    PubMed Central

    Crowell, Andrew D.; King, Kevin; Deitermann, Annika; Miranpuri, Gurwattan S.; Resnick, Daniel K.

    2016-01-01

    Neuropathic pain (NP) is common among spinal cord injury (SCI) patients, and there remain clinical difficulties in treating NP due to the lack of understanding of underlying mechanisms. Extracellular proteins, such as matrix metalloproteinase and β-catenin, have been shown to be activated in the spinal cord regions following an injury, and may play a key role in contributing to NP states. While these extracellular proteins have been used as therapeutic targets in the spinal cord, there has also been evidence of up-regulation in the hypothalamus following a SCI. We hypothesize that the hypothalamus is involved in regulating NP following a SCI, and hence should be researched further to determine if it is a viable target for future therapeutic treatments. PMID:27721586

  2. Overview of Spinal Cord Disorders

    MedlinePlus

    ... temperature from the body to the spinal cord. Did You Know... Doctors can often tell where the ... on symptoms and results of a physical examination. Did You Know... Nerves from the lowest parts of ...

  3. What Is Spinal Cord Injury?

    MedlinePlus

    ... lowest point on the spinal cord below which sensory feeling and motor movement diminish or disappear. The ... injury is so severe that almost all feeling (sensory function) and all ability to control movement (motor ...

  4. Early Intervention for Spinal Cord Injury with Human Induced Pluripotent Stem Cells Oligodendrocyte Progenitors

    PubMed Central

    All, Angelo H.; Gharibani, Payam; Gupta, Siddharth; Bazley, Faith A.; Pashai, Nikta; Chou, Bin-Kuan; Shah, Sandeep; Resar, Linda M.; Cheng, Linzhao; Gearhart, John D.; Kerr, Candace L.

    2015-01-01

    Induced pluripotent stem (iPS) cells are at the forefront of research in regenerative medicine and are envisaged as a source for personalized tissue repair and cell replacement therapy. Here, we demonstrate for the first time that oligodendrocyte progenitors (OPs) can be derived from iPS cells generated using either an episomal, non-integrating plasmid approach or standard integrating retroviruses that survive and differentiate into mature oligodendrocytes after early transplantation into the injured spinal cord. The efficiency of OP differentiation in all 3 lines tested ranged from 40% to 60% of total cells, comparable to those derived from human embryonic stem cells. iPS cell lines derived using episomal vectors or retroviruses generated a similar number of early neural progenitors and glial progenitors while the episomal plasmid-derived iPS line generated more OPs expressing late markers O1 and RIP. Moreover, we discovered that iPS-derived OPs (iPS-OPs) engrafted 24 hours following a moderate contusive spinal cord injury (SCI) in rats survived for approximately two months and that more than 70% of the transplanted cells differentiated into mature oligodendrocytes that expressed myelin associated proteins. Transplanted OPs resulted in a significant increase in the number of myelinated axons in animals that received a transplantation 24 h after injury. In addition, nearly a 5-fold reduction in cavity size and reduced glial scarring was seen in iPS-treated groups compared to the control group, which was injected with heat-killed iPS-OPs. Although further investigation is needed to understand the mechanisms involved, these results provide evidence that patient-specific, iPS-derived OPs can survive for three months and improve behavioral assessment (BBB) after acute transplantation into SCI. This is significant as determining the time in which stem cells are injected after SCI may influence their survival and differentiation capacity. PMID:25635918

  5. IL-6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis

    PubMed Central

    Kaplin, Adam I.; Deshpande, Deepa M.; Scott, Erick; Krishnan, Chitra; Carmen, Jessica S.; Shats, Irina; Martinez, Tara; Drummond, Jennifer; Dike, Sonny; Pletnikov, Mikhail; Keswani, Sanjay C.; Moran, Timothy H.; Pardo, Carlos A.; Calabresi, Peter A.; Kerr, Douglas A.

    2005-01-01

    Transverse myelitis (TM) is an immune-mediated spinal cord disorder associated with inflammation, demyelination, and axonal damage. We investigated the soluble immune derangements present in TM patients and found that IL-6 levels were selectively and dramatically elevated in the cerebrospinal fluid and directly correlated with markers of tissue injury and sustained clinical disability. IL-6 was necessary and sufficient to mediate cellular injury in spinal cord organotypic tissue culture sections through activation of the JAK/STAT pathway, resulting in increased activity of iNOS and poly(ADP-ribose) polymerase (PARP). Rats intrathecally infused with IL-6 developed progressive weakness and spinal cord inflammation, demyelination, and axonal damage, which were blocked by PARP inhibition. Addition of IL-6 to brain organotypic cultures or into the cerebral ventricles of adult rats did not activate the JAK/STAT pathway, which is potentially due to increased expression of soluble IL-6 receptor in the brain relative to the spinal cord that may antagonize IL-6 signaling in this context. The spatially distinct responses to IL-6 may underlie regional vulnerability of different parts of the CNS to inflammatory injury. The elucidation of this pathway identifies specific therapeutic targets in the management of CNS autoimmune conditions. PMID:16184194

  6. Effects of spinal cord stimulation on peripheral blood circulation in rats with streptozotocin-induced diabetes.

    PubMed

    Wu, Mingyuan; Thorkilsen, Marielouise Muus; Qin, Chao; Farber, Jay P; Linderoth, Bengt; Foreman, Robert D

    2007-07-01

    Objective.  The aim of this study was to investigate the effects of spinal cord stimulation (SCS) on peripheral circulation in rats with streptozotocin (STZ)-induced diabetes. Materials and Methods.  Four weeks after streptozotocin or vehicle was injected (i.p.) in male Sprague-Dawley rats, SCS-induced vasodilation was examined. Results.  Plasma glucose concentration was significantly higher in diabetic rats than in the control animals. Motor threshold (MT) was significantly higher in diabetic rats than in control rats. SCS-induced vasodilation was attenuated at 90% of the MT, but not at 30% and 60% of MT in diabetic rats when compared to control rats (p < 0.001, N = 13). Furthermore, increasing SCS from 30% to 90% of MT typically produced a progressive increase in blood flow in control rats but not in diabetic rats (p < 0.01, N = 13). Conclusion.  This study suggested that SCS-induced vasodilation improves peripheral blood flow, although the pathways were partially impaired in the diabetic condition.

  7. Radiation-induced changes in the profile of spinal cord serotonin, prostaglandin synthesis, and vascular permeability

    SciTech Connect

    Siegal, T.; Pfeffer, M.R.

    1995-01-01

    To investigate the profile of biochemical and physiological changes induced in the rat spinal cord by radiation, over a period of 8 months. The thoraco-lumbar spinal cords of Fisher rats were irradiated to a dose of 15 Gy. The rats were then followed and killed at various times afterward. Serotonin (5-HT) and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were assayed as well as prostaglandin synthesis. Microvessel permeability was assessed by quantitative evaluation of Evans blue dye extravasation. None of the rats developed neurologic dysfunction, and histologic examination revealed only occasional gliosis in the ventral white matter at 240 days after irradiation. Serotonin levels were unchanged at 2, 14, and 56 days after radiation but increased at 120 and 240 days in the irradiated cord segments when compared to both the nonirradiated thoracic and cervical segments (p < 0.01) and age-matched controls (p < 0.03). The calculated utilization ratio of serotonin (5-HIAA/5-HT) remained unchanged. Immediately after radiation (at 3 and 24 h) an abrupt but brief increase in the synthesis of prostaglandin-E{sub 2} (PGE{sub 2}), thromboxane (TXB{sub 2}), and prostacyclin [6 keto-PGF1{alpha} (6KPGF)] was noted, which returned to normal at 3 days. This was followed after 7 and 14 days by a significant fall off in synthesis of all three prostaglandins. Thereafter, at 28, 56, 120, and 240 days, escalated production of thromboxane followed, white prostacyclin synthesis remained markedly reduced (-88% of control level at 240 days). Up to 7 days after radiation the calculated TXB{sub 2}/6KPGF ratio remained balanced, regardless of the observed abrupt early fluctuations in their rate of synthesis. Later, between 7 and 240 days after radiation, a significant imbalance was present which became more pronounced over time. In the first 24 h after radiation, a 104% increase in microvessel permeability was observed which returned to normal by 3 days. 57 refs., 3 figs.

  8. Characteristics of electrically induced locomotion in rat in vitro brain stem-spinal cord preparation.

    PubMed

    Atsuta, Y; Garcia-Rill, E; Skinner, R D

    1990-09-01

    1. Electrical stimulation of two brain stem regions in the decerebrate neonatal rat brain--the mesencephalic locomotor region (MLR) and the medioventral medulla (MED)--were found to elicit rhythmic limb movements in the hind-limb-attached, in vitro, brain stem-spinal cord preparation. 2. Electromyographic (EMG) analysis revealed locomotion similar to that observed during stepping in the adult rat. The step-cycle frequency could be increased by application of higher-amplitude currents; but, unlike the adult, alternation could not be driven to a gallop. 3. Threshold currents for inducing locomotion were significantly lower for stimulation of the MED compared with the MLR. Brain stem transections carried out at midpontine levels demonstrated that the presence of the MLR was not required for the expression of MED-stimulation-induced effects. 4. Substitution of the standard artificial cerebrospinal fluid (aCSF) by magnesium-free aCSF did not affect interlimb relationships and resulted in a significant decrease of the threshold currents for inducing locomotion. 5. Fixation of the limbs during electrical stimulation of brain stem sites altered the amplitude and duration of the EMG patterns, but the basic rhythm and timing of each muscle contraction during the step cycle was not affected. 6. These studies suggest that, although peripheral afferent modulation is evident in the neonatal locomotor control system, descending projections from brain stem-locomotor regions appear capable of modulating the activity of spinal pattern generators as early as the day of birth. However, there may be ceiling to the maximal frequency of stepping possible at this early age, perhaps suggesting a later-developing mechanism for galloping.

  9. Motor Alterations Induced by Chronic 4-Aminopyridine Infusion in the Spinal Cord In vivo: Role of Glutamate and GABA Receptors

    PubMed Central

    Lazo-Gómez, Rafael; Tapia, Ricardo

    2016-01-01

    Motor neuron (MN) degeneration is the pathological hallmark of MN diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure, and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP) in the rat hippocampus induces seizures and neurodegeneration, and that AMPA infusion in the spinal cord produces paralysis and MN death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on MN survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2–3 h after the implant, which ameliorated spontaneously within 6–7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate MN degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces MN death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of MN excitability in the spinal cord. PMID:27242406

  10. Rapid corticosterone-induced impairment of amplectic clasping occurs in the spinal cord of roughskin newts (taricha granulosa).

    PubMed

    Lewis, Christine M; Rose, James D

    2003-01-01

    Courtship clasping, a reproductive behavior in male roughskin newts (Taricha granulosa), is rapidly blocked by an action of corticosterone (CORT) at a specific neuronal membrane receptor. The CORT-induced impairment of clasping in behaving newts appears to be mediated partly by an elimination of clasping-related activity in medullary reticulospinal neurons. Previous studies of rapid CORT actions in Taricha have focused on the brain, so existence of CORT action in the spinal cord or peripheral nervous system has not been assessed. The present study used newts with a high cervical spinal transection to examine potential spinal or peripheral CORT effects on clasping by the hindlimbs in response to pressure on the cloaca. Spinal transection causes clasps elicited by cloacal stimulation to be very sustained beyond the termination of the eliciting stimulus. In spinally transected newts, CORT caused a dose-dependent depression in the duration as well as quality of the clasp that appeared within 10 min of injection. CORT selectively impaired the usual sustained maintenance of a clasp after termination of cloacal stimulation, but not clasp elicitation during stimulation. These effects were not produced by dexamethasone, a synthetic glucocorticoid that binds poorly to the CORT membrane receptor. The CORT effect on clasp maintenance but not clasp elicitation implies selective action on an intraspinal generator for clasping but not on sensory or efferent neuromuscular aspects of the response. These results indicate the presence in the newt spinal cord of the CORT membrane receptor that exerts functional effects distinctly different from those on the brainstem.

  11. Spinal autofluorescent flavoprotein imaging in a rat model of nerve injury-induced pain and the effect of spinal cord stimulation.

    PubMed

    Jongen, Joost L M; Smits, Helwin; Pederzani, Tiziana; Bechakra, Malik; Hossaini, Mehdi; Koekkoek, Sebastiaan K; Huygen, Frank J P M; De Zeeuw, Chris I; Holstege, Jan C; Joosten, Elbert A J

    2014-01-01

    Nerve injury may cause neuropathic pain, which involves hyperexcitability of spinal dorsal horn neurons. The mechanisms of action of spinal cord stimulation (SCS), an established treatment for intractable neuropathic pain, are only partially understood. We used Autofluorescent Flavoprotein Imaging (AFI) to study changes in spinal dorsal horn metabolic activity. In the Seltzer model of nerve-injury induced pain, hypersensitivity was confirmed using the von Frey and hotplate test. 14 Days after nerve-injury, rats were anesthetized, a bipolar electrode was placed around the affected sciatic nerve and the spinal cord was exposed by a laminectomy at T13. AFI recordings were obtained in neuropathic rats and a control group of naïve rats following 10 seconds of electrical stimulation of the sciatic nerve at C-fiber strength, or following non-noxious palpation. Neuropathic rats were then treated with 30 minutes of SCS or sham stimulation and AFI recordings were obtained for up to 60 minutes after cessation of SCS/sham. Although AFI responses to noxious electrical stimulation were similar in neuropathic and naïve rats, only neuropathic rats demonstrated an AFI-response to palpation. Secondly, an immediate, short-lasting, but strong reduction in AFI intensity and area of excitation occurred following SCS, but not following sham stimulation. Our data confirm that AFI can be used to directly visualize changes in spinal metabolic activity following nerve injury and they imply that SCS acts through rapid modulation of nociceptive processing at the spinal level. PMID:25279562

  12. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  13. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain.

    PubMed

    Miranpuri, Gurwattan S; Schomberg, Dominic T; Alrfaei, Bahauddeen; King, Kevin C; Rynearson, Bryan; Wesley, Vishwas S; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V; Resnick, Daniel K

    2016-03-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  14. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain

    PubMed Central

    Miranpuri, Gurwattan S.; Schomberg, Dominic T.; Alrfaei, Bahauddeen; King, Kevin C.; Rynearson, Bryan; Wesley, Vishwas S.; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V.; Resnick, Daniel K.

    2016-01-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  15. Neurocontrol of Movement in Humans With Spinal Cord Injury.

    PubMed

    Dimitrijevic, Milan R; Danner, Simon M; Mayr, Winfried

    2015-10-01

    In this review of neurocontrol of movement after spinal cord injury, we discuss neurophysiological evidences of conducting and processing mechanisms of the spinal cord. We illustrate that external afferent inputs to the spinal cord below the level of the lesion can modify, initiate, and maintain execution of movement in absence or partial presence of brain motor control after chronic spinal cord injury. We review significant differences between spinal reflex activity elicited by single and repetitive stimulation. The spinal cord can respond with sensitization, habituation, and dis-habituation to regular repetitive stimulation. Therefore, repetitive spinal cord reflex activity can contribute to the functional configuration of the spinal network. Moreover, testing spinal reflex activity in individuals with motor complete spinal cord injury provided evidences for subclinical residual brain influence, suggesting the existence of axons traversing the injury site and influencing the activities below the level of lesion. Thus, there are two motor control models of chronic spinal cord injury in humans: "discomplete" and "reduced and altered volitional motor control." We outline accomplishments in modification and initiation of altered neurocontrol in chronic spinal cord injury people with epidural and functional electrical stimulation. By nonpatterned electrical stimulation of lumbar posterior roots, it is possible to evoke bilateral extension as well as rhythmic motor outputs. Epidural stimulation during treadmill stepping shows increased and/or modified motor activity. Finally, volitional efforts can alter epidurally induced rhythmic activities in incomplete spinal cord injury. Overall, we highlight that upper motor neuron paralysis does not entail complete absence of connectivity between cortex, brain stem, and spinal motor cells, but there can be altered anatomy and corresponding neurophysiological characteristics. With specific input to the spinal cord below the level

  16. Radiation tolerance of the cervical spinal cord

    SciTech Connect

    McCunniff, A.J.; Liang, M.J.

    1989-03-01

    The incidence of permanent injury to the spinal cord as a complication of radiation therapy generally correlates positively with total radiation dosage. However, several reports in the literature have indicated that fraction size is also an important factor in the development or nondevelopment of late injuries in normal tissue. To determine the effect of fraction size on the incidence of radiation-induced spinal cord injuries, we reviewed 144 cases of head and neck cancer treated at our institution between 1971 and 1980 with radiation greater than 5600 cGy to a portion of the cervical spinal cord. Most of these patients received greater than or equal to 6000 cGy, with fraction sizes ranging from 133 cGy to 200 cGy. Fifty-three of the 144 patients have been followed up for 2 years or more. Nearly half of these (26 patients) received greater than 6000 cGy with fraction sizes of 133 cGy to 180 cGy. Only 1 of the 53 (1.9%) has sustained permanent spinal cord injury; 20 months after completion of radiation treatments he developed Brown-Sequard syndrome. Our experience suggests that radiation injuries to the spinal cord correlate not only with total radiation dosage, but also with fraction size; low fraction sizes appear to decrease the incidence of such injuries.

  17. The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat

    SciTech Connect

    Hao, J.X.; Xu, X.J.; Aldskogius, H.; Seiger, A.; Wiesenfeld-Hallin, Z. )

    1991-08-01

    Protection by the NMDA receptor antagonist MK-801 against transient spinal cord ischemia-induced hypersensitivity was studied in rats. The spinal ischemia was initiated by vascular occlusion resulting from the interaction between the photosensitizing dye Erythrosin B and an argon laser beam. The hypersensitivity, termed allodynia, where the animals reacted by vocalization to nonnoxious mechanical stimuli in the flank area, was consistently observed during several days after induction of the ischemia. Pretreatment with MK-801 (0.1-0.5 mg/kg, iv) 10 min before laser irradiation dose dependently prevented the occurrence of allodynia. The neuroprotective effect of MK-801 was not reduced by maintaining normal body temperature during and after irradiation. There was a significant negative correlation between the delay in the administration of MK-801 after irradiation and the protective effect of the drug. Histological examination revealed slight morphological damage in the spinal cord in 38% of control rats after 1 min of laser irradiation without pretreatment with MK-801. No morphological abnormalities were observed in rats after pretreatment with MK-801 (0.5 mg/kg). The present results provide further evidence for the involvement of excitatory amino acids, through activation of the NMDA receptor, in the development of dysfunction following ischemic trauma to the spinal cord.

  18. Erythropoietin promotes oligodendrogenesis and myelin repair following lysolecithin-induced injury in spinal cord slice culture

    SciTech Connect

    Cho, Yun Kyung; Kim, Gunha; Park, Serah; Sim, Ju Hee; Won, You Jin; Hwang, Chang Ho; Yoo, Jong Yoon; Hong, Hea Nam

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Lysolecithin-induced demyelination elevated EpoR expression in OPCs. Black-Right-Pointing-Pointer In association with elevated EpoR, EPO increased OPCs proliferation. Black-Right-Pointing-Pointer EPO enhanced the oligodendrogenesis via activation of JAK2 pathway. Black-Right-Pointing-Pointer EPO promoted myelin repair following lysolecithin-induced demyelination. -- Abstract: Here, we sought to delineate the effect of EPO on the remyelination processes using an in vitro model of demyelination. We report that lysolecithin-induced demyelination elevated EPO receptor (EpoR) expression in oligodendrocyte progenitor cells (OPCs), facilitating the beneficial effect of EPO on the formation of oligodendrocytes (oligodendrogenesis). In the absence of EPO, the resultant remyelination was insufficient, possibly due to a limiting number of oligodendrocytes rather than their progenitors, which proliferate in response to lysolecithin-induced injury. By EPO treatment, lysolecithin-induced proliferation of OPCs was accelerated and the number of myelinating oligodendrocytes and myelin recovery was increased. EPO also enhanced the differentiation of neural progenitor cells expressing EpoR at high level toward the oligodendrocyte-lineage cells through activation of cyclin E and Janus kinase 2 pathways. Induction of myelin-forming oligodendrocytes by high dose of EPO implies that EPO might be the key factor influencing the final differentiation of OPCs. Taken together, our data suggest that EPO treatment could be an effective way to enhance remyelination by promoting oligodendrogenesis in association with elevated EpoR expression in spinal cord slice culture after lysolecithin-induced demyelination.

  19. Optical Monitoring and Detection of Spinal Cord Ischemia

    PubMed Central

    Mesquita, Rickson C.; D’Souza, Angela; Bilfinger, Thomas V.; Galler, Robert M.; Emanuel, Asher; Schenkel, Steven S.; Yodh, Arjun G.; Floyd, Thomas F.

    2013-01-01

    Spinal cord ischemia can lead to paralysis or paraparesis, but if detected early it may be amenable to treatment. Current methods use evoked potentials for detection of spinal cord ischemia, a decades old technology whose warning signs are indirect and significantly delayed from the onset of ischemia. Here we introduce and demonstrate a prototype fiber optic device that directly measures spinal cord blood flow and oxygenation. This technical advance in neurological monitoring promises a new standard of care for detection of spinal cord ischemia and the opportunity for early intervention. We demonstrate the probe in an adult Dorset sheep model. Both open and percutaneous approaches were evaluated during pharmacologic, physiological, and mechanical interventions designed to induce variations in spinal cord blood flow and oxygenation. The induced variations were rapidly and reproducibly detected, demonstrating direct measurement of spinal cord ischemia in real-time. In the future, this form of hemodynamic spinal cord diagnosis could significantly improve monitoring and management in a broad range of patients, including those undergoing thoracic and abdominal aortic revascularization, spine stabilization procedures for scoliosis and trauma, spinal cord tumor resection, and those requiring management of spinal cord injury in intensive care settings. PMID:24358279

  20. An IL-1 receptor antagonist blocks a morphine-induced attenuation of locomotor recovery after spinal cord injury.

    PubMed

    Hook, Michelle A; Washburn, Stephanie N; Moreno, Georgina; Woller, Sarah A; Puga, Denise; Lee, Kuan H; Grau, James W

    2011-02-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 h later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 μg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 h after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 μg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 μg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  1. Neuroprotective Effect of Simvastatin via Inducing the Autophagy on Spinal Cord Injury in the Rat Model.

    PubMed

    Gao, Kai; Wang, Guannan; Wang, Yansong; Han, Donghe; Bi, Jing; Yuan, Yajiang; Yao, Tianchen; Wan, Zhanghui; Li, Haihong; Mei, Xifan

    2015-01-01

    Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is invariably used to treat cardiovascular diseases. Simvastatin has been recently demonstrated to have a neuroprotective effect in nervous system diseases. The present study aimed to further verify the neuroprotection and molecular mechanism of simvastatin on rats after spinal cord injury (SCI). The expression of Beclin-1 and LC3-B was evidently enhanced at postoperation days 3 and 5, respectively. However, the reduction of the mTOR protein and ribosomal protein S6 kinase p70 subtype (p70S6K) phosphorylation level occurred at the same time after SCI. Simvastatin significantly increased the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Meanwhile, immunofluorescence results indicated that the expression of chondroitin sulfate proteoglycan (CSPG) and caspase-3 protein was obviously reduced by simvastatin. Furthermore, Nissl staining and Basso, Beattie, and Bresnahan (BBB) scores showed that the quantity and function of motor neurons were visibly preserved by simvastatin after SCI. The findings of this study showed that simvastatin induced autophagy by inhibiting the mTOR signaling pathway and contributed to neuroprotection after SCI. PMID:26539474

  2. Neuroprotective Effect of Simvastatin via Inducing the Autophagy on Spinal Cord Injury in the Rat Model

    PubMed Central

    Gao, Kai; Wang, Guannan; Wang, Yansong; Han, Donghe; Bi, Jing; Yuan, Yajiang; Yao, Tianchen; Wan, Zhanghui; Li, Haihong; Mei, Xifan

    2015-01-01

    Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, is invariably used to treat cardiovascular diseases. Simvastatin has been recently demonstrated to have a neuroprotective effect in nervous system diseases. The present study aimed to further verify the neuroprotection and molecular mechanism of simvastatin on rats after spinal cord injury (SCI). The expression of Beclin-1 and LC3-B was evidently enhanced at postoperation days 3 and 5, respectively. However, the reduction of the mTOR protein and ribosomal protein S6 kinase p70 subtype (p70S6K) phosphorylation level occurred at the same time after SCI. Simvastatin significantly increased the expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Meanwhile, immunofluorescence results indicated that the expression of chondroitin sulfate proteoglycan (CSPG) and caspase-3 protein was obviously reduced by simvastatin. Furthermore, Nissl staining and Basso, Beattie, and Bresnahan (BBB) scores showed that the quantity and function of motor neurons were visibly preserved by simvastatin after SCI. The findings of this study showed that simvastatin induced autophagy by inhibiting the mTOR signaling pathway and contributed to neuroprotection after SCI. PMID:26539474

  3. Nitric oxide in microgravity-induced orthostatic intolerance: relevance to spinal cord injury

    NASA Technical Reports Server (NTRS)

    Vaziri, N. D.; Purdy, R. E. (Principal Investigator)

    2003-01-01

    Prolonged exposure to microgravity results in cardiovascular deconditioning which is marked by orthostatic intolerance in the returning astronauts and recovering bed-ridden patients. Recent studies conducted in our laboratories at University of California, Irvine have revealed marked elevation of nitric oxide (NO) production in the kidney, heart, brain, and systemic arteries coupled with significant reduction of NO production in the cerebral arteries of microgravity-adapted animals. We have further demonstrated that the observed alteration of NO metabolism is primarily responsible for the associated cardiovascular deconditioning. Recovery from acute spinal cord injury (SCI) is frequently complicated by orthostatic intolerance that is due to the combined effects of the disruption of efferent sympathetic pathway and cardiovascular deconditioning occasioned by prolonged confinement to bed. In this presentation, I will review the nature of altered NO metabolism and its role in the pathogenesis of microgravity-induced cardiovascular deconditioning. The possible relevance of the new findings to orthostatic intolerance in patients with acute SCI and its potential therapeutic implications will be discussed.

  4. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  5. Chrysin Suppressed Inflammatory Responses and the Inducible Nitric Oxide Synthase Pathway after Spinal Cord Injury in Rats

    PubMed Central

    Jiang, Yong; Gong, Fu-Liang; Zhao, Guang-Ben; Li, Jie

    2014-01-01

    Chrysin (CH), a natural plant flavonoid, has shown a variety of beneficial effects. Our present study was conducted to evaluate the therapeutic potential of CH three days after spinal cord injury (SCI) in rats and to probe the underlying neuroprotective mechanisms. SCI was induced using the modified weight-drop method in Wistar rats. Then, they were treated with saline or CH by doses of 30 and 100 mg/kg for 26 days. Neuronal function was assessed with the Basso Beattle Bresnahan locomotor rating scale (BBB). The water content of spinal cord was determined after traumatic SCI. The NF-κB p65 unit, TNF-α, IL-1β and IL-6 in serums, as well as the apoptotic marker, caspase-3, of spinal cord tissues were measured using commercial kits. The protein level and activity of inducible nitric oxide synthase (iNOS) were detected by western blot and a commercial kit, respectively. NO (nitric oxide) production was evaluated by the determination of nitrite concentration. The rats with SCI showed marked reductions in BBB scores, coupled with increases in the water content of spinal cord, the NF-κB p65 unit, TNF-α, IL-1β, IL-6, iNOS, NO production and caspase-3. However, a CH supplement dramatically promoted the recovery of neuronal function and suppressed the inflammatory factors, as well as the iNOS pathway in rats with SCI. Our findings disclose that CH improved neural function after SCI in rats, which might be linked with suppressing inflammation and the iNOS pathway. PMID:25014398

  6. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors

    PubMed Central

    Mrozkova, Petra; Spicarova, Diana; Palecek, Jiri

    2016-01-01

    Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG) neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs) were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%), increase of sEPSC frequency (127.0 ± 5.9%) and eEPSC amplitude (126.9 ± 12.0%) in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception. PMID:27755539

  7. Management of Chronic Spinal Cord Dysfunction

    PubMed Central

    Abrams, Gary M.; Ganguly, Karunesh

    2015-01-01

    Purpose of Review: Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Recent Findings: Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. Summary: The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life. PMID:25651225

  8. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    PubMed

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  9. SPINAL CORD MECHANISMS MEDIATING BEHAVIORAL HYPERALGESIA INDUCED BY NEUROKININ-1 TACHYKININ RECEPTOR ACTIVATION IN THE ROSTRAL VENTROMEDIAL MEDULLA

    PubMed Central

    Lagraize, S. C.; Guo, W.; Yang, K.; Wei, F.; Ren, K.; Dubner, R.

    2010-01-01

    Hyperalgesia in animal injury models is linked to activation of descending raphespinal modulatory circuits originating in the rostral ventromedial medulla (RVM). A neurokinin-1 (NK-1) receptor antagonist microinjected into the RVM before or after inflammation produced by complete Freund’s adjuvant (CFA) resulted in an attenuation of thermal hyperalgesia. A transient (acute) or a continuous infusion of Substance P (SP) microinjected into the RVM of non-inflamed animals led to similar pain hypersensitivity. Intrathecal pretreatment or post-treatment of a 5-HT3 receptor antagonist (Y-25130 or ondansetron) blocked the SP-induced hyperalgesia. The SP-induced hyperalgesia was both GABAA and NMDA receptor-dependent after pre- and post-treatment with selective antagonists at the spinal level. A microinjection of SP into the RVM also led to increased NMDA NR1 receptor subunit phosphorylation in spinal cord tissue. The GABAA receptor-mediated hyperalgesia involved a shift in the anionic gradient in dorsal horn nociceptive neurons and an increase in phosphorylated NKCC1 protein (isoform of the Na-K-Cl cotransporter). Following a low dose of SP infused into the RVM, intrathecal muscimol (GABAA agonist) increased SP-induced thermal hyperalgesia, phosphorylated NKCC1 protein expression, and NMDA NR1 subunit phosphorylation in the spinal cord. The thermal hyperalgesia was blocked by intrathecal gabazine, the GABAA receptor antagonist, and MK-801, the NMDA receptor channel blocker. These findings indicate that NK-1 receptors in the RVM are involved in SP-induced thermal hyperalgesia, this hyperalgesia is 5-HT3-receptor dependent at the spinal level, and involves the functional interaction of spinal GABAA and NMDA receptors. PMID:20888891

  10. Excitotoxic cell death induces delayed proliferation of endogenous neuroprogenitor cells in organotypic slice cultures of the rat spinal cord.

    PubMed

    Mazzone, G L; Mladinic, M; Nistri, A

    2013-10-31

    The aim of the present report was to investigate whether, in the mammalian spinal cord, cell death induced by transient excitotoxic stress could trigger activation and proliferation of endogenous neuroprogenitor cells as a potential source of a lesion repair process and the underlying time course. Because it is difficult to address these issues in vivo, we used a validated model of spinal injury based on rat organotypic slice cultures that retain the fundamental tissue cytoarchitecture and replicate the main characteristics of experimental damage to the whole spinal cord. Excitotoxicity evoked by 1 h kainate application produced delayed neuronal death (40%) peaking after 1 day without further losses or destruction of white matter cells for up to 2 weeks. After 10 days, cultures released a significantly larger concentration of endogenous glutamate, suggesting functional network plasticity. Indeed, after 1 week the total number of cells had returned to untreated control level, indicating substantial cell proliferation. Activation of progenitor cells started early as they spread outside the central area, and persisted for 2 weeks. Although expression of the neuronal progenitor phenotype was observed at day 3, peaked at 1 week and tapered off at 2 weeks, very few cells matured to neurons. Astroglia precursors started proliferating later and matured at 2 weeks. These data show insult-related proliferation of endogenous spinal neuroprogenitors over a relatively brief time course, and delineate a narrow temporal window for future experimental attempts to drive neuronal maturation and for identifying the factors regulating this process.

  11. West Nile virus-induced acute flaccid paralysis is prevented by monoclonal antibody treatment when administered after infection of spinal cord neurons.

    PubMed

    Morrey, John D; Siddharthan, Venkatraman; Wang, Hong; Hall, Jeffery O; Skirpstunas, Ramona T; Olsen, Aaron L; Nordstrom, Jeffrey L; Koenig, Scott; Johnson, Syd; Diamond, Michael S

    2008-04-01

    Acute flaccid polio-like paralysis occurs during natural West Nile virus (WNV) infection in a subset of cases in animals and humans. To evaluate the pathology and the possibility for therapeutic intervention, the authors developed a model of acute flaccid paralysis by injecting WNV directly into the sciatic nerve or spinal cord of hamsters. By directly injecting selected sites of the nervous system with WNV, the authors mapped the lesions responsible for hind limb paralysis to the lumbar spinal cord. Immunohistochemical analysis of spinal cord sections from paralyzed hamsters revealed that WNV-infected neurons localized primarily to the ventral motor horn of the gray matter, consistent with the polio-like clinical presentation. Neuronal apoptosis and diminished cell function were identified by TUNEL (terminal deoxynucleotidyl transferase-mediated BrdUTP nick end labeling) and choline acetyltransferase staining, respectively. Administration of hE16, a potently neutralizing humanized anti-WNV monoclonal antibody, 2 to 3 days after direct WNV infection of the spinal cord, significantly reduced paralysis and mortality. Additionally, a single injection of hE16 as late as 5 days after WNV inoculation of the sciatic nerve also prevented paralysis. Overall, these experiments establish that WNV-induced acute flaccid paralysis in hamsters is due to neuronal infection and injury in the lumbar spinal cord and that treatment with a therapeutic antibody prevents paralysis when administered after WNV infection of spinal cord neurons. PMID:18444087

  12. Psychological Aspects of Spinal Cord Injury

    ERIC Educational Resources Information Center

    Cook, Daniel W.

    1976-01-01

    Reviewing literature on the psychological impact of spinal cord injury suggests: (a) depression may not be a precondition for injury adjustment; (b) many persons sustaining cord injury may have experienced psychological disruption prior to injury; and (c) indexes of rehabilitation success need to be developed for the spinal cord injured. (Author)

  13. Curcumin protects against ischemic spinal cord injury: The pathway effect

    PubMed Central

    Zhang, Jinhua; Wei, Hao; Lin, Meimei; Chen, Chunmei; Wang, Chunhua; Liu, Maobai

    2013-01-01

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression. PMID:25206661

  14. Pharmacological approaches to induce neuroregeneration in spinal cord injury: an overview.

    PubMed

    Ibarra, Antonio; Martiñón, Susana

    2009-06-01

    Spinal cord (SC) injury causes serious neurological alterations that importantly disturb the physical, emotional and economical stability of affected individuals. Damage to the neural tissue is primarily caused by the lesion itself and secondarily by a multitude of destructive mechanisms that develop afterwards. Unfortunately, the restoring capacity of the central nervous system is very limited because of reduced intrinsic growth capacity and non-permissive environment for axonal elongation. The regenerative processes are blocked by diverse factors such as growth inhibitory proteins and the glial scar formed in the site of lesion. In spite of these problems, central neurons regenerate if a permissive environment is provided. In line with this thought, some pharmacological compounds have been tested to achieve neuroregeneration. The main objective of this manuscript is to provide the state-of-art of chemotherapeutic treatments for spinal cord regeneration after injury in the field. The efficacy and usefulness of different therapeutic strategies will be reviewed, including Rho-ROCK inhibitors, cyclic AMP-enhancers, glial scar inhibitors and immunophilin ligands. Aside from this, the use of hydrogels alone or in combination with drugs, growth factors or stem cells will also be revised.

  15. Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM).

    PubMed

    Schwab, Jan M; Conrad, Sabine; Monnier, Philippe P; Julien, Sylvie; Mueller, Bernhard K; Schluesener, Hermann J

    2005-03-01

    The repulsive guidance molecule (RGM) is involved in the formation of the central nervous system (CNS) during development by modulating guidance of growing axons. However, a role of RGM in CNS injury remains to be established. We studied the expression of RGM in the spinal cord of rats with spinal cord injury (SCI). After SCI, RGM+ cells accumulated in lesions and peri-lesional areas. During the first days after SCI, RGM expression was confined to neurons, ballooned neurite fibers/retraction bulbs, smooth muscle/endothelial cells, and to leucocytes infiltrating the lesion. Lesional RGM expression was frequently confined to hypertrophic beta-APP+ and RhoA+ neurites/retraction bulbs. With maturation of the lesion, we observed RGM expression by components of the developing scar tissue (cicatrix), such as fibroblastoid cells, reactive astrocytes and in addition a pronounced extracellular RGM deposition resembling neo-laminae. Frequent RGM+, RhoA+ coexpression by lesional retraction bulbs represent first preliminary evidence of RGM to exert growth inhibitory effects by the second messenger system RhoA. To date, RGM is one of the most potent axonal growth inhibitors identified and present in axonal growth impediments (i) oligodendrocytes; (ii) the plexus choroideus and (iii) components of the developing scar.

  16. Ischemic Preconditioning Protects against Spinal Cord Ischemia-Reperfusion Injury in Rabbits by Attenuating Blood Spinal Cord Barrier Disruption

    PubMed Central

    Fang, Bo; Li, Xiao-Man; Sun, Xi-Jia; Bao, Na-Ren; Ren, Xiao-Yan; Lv, Huang-Wei; Ma, Hong

    2013-01-01

    Ischemic preconditioning has been reported to protect against spinal cord ischemia-reperfusion (I-R) injury, but the underlying mechanisms are not fully understood. To investigate this, Japanese white rabbits underwent I-R (30 min aortic occlusion followed by reperfusion), ischemic preconditioning (three cycles of 5 min aortic occlusion plus 5 min reperfusion) followed by I-R, or sham surgery. At 4 and 24 h following reperfusion, neurological function was assessed using Tarlov scores, blood spinal cord barrier permeability was measured by Evan’s Blue extravasation, spinal cord edema was evaluated using the wet-dry method, and spinal cord expression of zonula occluden-1 (ZO-1), matrix metalloproteinase-9 (MMP-9), and tumor necrosis factor-α (TNF-α) were measured by Western blot and a real-time polymerase chain reaction. ZO-1 was also assessed using immunofluorescence. Spinal cord I-R injury reduced neurologic scores, and ischemic preconditioning treatment ameliorated this effect. Ischemic preconditioning inhibited I-R-induced increases in blood spinal cord barrier permeability and water content, increased ZO-1 mRNA and protein expression, and reduced MMP-9 and TNF-α mRNA and protein expression. These findings suggest that ischemic preconditioning attenuates the increase in blood spinal cord barrier permeability due to spinal cord I-R injury by preservation of tight junction protein ZO-1 and reducing MMP-9 and TNF-α expression. PMID:23685868

  17. Therapeutic approaches for spinal cord injury

    PubMed Central

    Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Marcon, Raphael Martus; Letaif, Olavo Biraghi; da Rocha, Ivan Dias

    2012-01-01

    This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a “disease that should not be treated.” Over the last two decades, several studies have been performed to obtain more effective treatments for spinal cord injury. Most of these studies approach a patient with acute spinal cord injury in one of four manners: corrective surgery or a physical, biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life. PMID:23070351

  18. Treadmill step training promotes spinal cord neural plasticity after incomplete spinal cord injury

    PubMed Central

    Sun, Tiansheng; Ye, Chaoqun; Wu, Jun; Zhang, Zhicheng; Cai, Yanhua; Yue, Feng

    2013-01-01

    A large body of evidence shows that spinal circuits are significantly affected by training, and that intrinsic circuits that drive locomotor tasks are located in lumbosacral spinal segments in rats with complete spinal cord transection. However, after incomplete lesions, the effect of treadmill training has been debated, which is likely because of the difficulty of separating spontaneous stepping from specific training-induced effects. In this study, rats with moderate spinal cord contusion were jected to either step training on a treadmill or used in the model (control) group. The treadmill training began at day 7 post-injury and lasted 20 ± 10 minutes per day, 5 days per week for 10 weeks. The speed of the treadmill was set to 3 m/min and was increased on a daily basis according to the tolerance of each rat. After 3 weeks of step training, the step training group exhibited a sig-nificantly greater improvement in the Basso, Beattie and Bresnahan score than the model group. The expression of growth-associated protein-43 in the spinal cord lesion site and the number of tyrosine hydroxylase-positive ventral neurons in the second lumbar spinal segment were greater in the step training group than in the model group at 11 weeks post-injury, while the levels of brain-derived neurotrophic factor protein in the spinal cord lesion site showed no difference between the two groups. These results suggest that treadmill training significantly improves functional re-covery and neural plasticity after incomplete spinal cord injury. PMID:25206564

  19. Effect of exercise on the expression of nerve growth factor in the spinal cord of rats with induced osteoarthritis.

    PubMed

    Park, Soo-Jin; Yong, Min-Sik; Na, Sang-Su

    2015-08-01

    [Purpose] We examined the impact of exercise on the expression pattern of nerve growth factor in the spinal cord of rats with induced osteoarthritis of the knee joint. [Subjects and Methods] To produce monosodium iodoacetate-induced arthritis, rats were administered 3 mg/50 µL monosodium iodoacetate through the interarticular space of the right knee. The animals were randomly divided into four groups: rats sacrificed 3 weeks after 0.9% saline solution injection (shame group, n = 10), rats sacrificed 3 weeks after monosodium iodoacetate injection (control group, n = 10), rats with 4 weeks rest from 3 weeks after monosodium iodoacetate injection (no exercise group, n = 10), and rats with 4 weeks treadmill training from 3 weeks after monosodium iodoacetate injection (exercise group, n = 10). Serial coronal sections of the lumbar spine were cut and processed for immunohistochemistry. [Results] The expression of nerve growth factor was significantly increased in the EG compared with the SG, CG, and NEG. [Conclusion] Increased nerve growth factor expression in the spinal cord due to exercise-induced stimulation can be effective in treating chronic pain. Such treatment will contribute not only to improving the joint function of patients with chronic pain but also their quality of life. PMID:26357438

  20. Ganglioglioma of the Spinal Cord

    PubMed Central

    Oppenheimer, Daniel C; Johnson, Mahlon D; Judkins, Alexander R

    2015-01-01

    Ganglioglioma is a rare tumor consisting of neoplastic glial and neuronal elements. It accounts for only 0.5% of all primary central nervous system (CNS) neoplasms. We report an unusual case of extensive intramedullary thoracic spinal cord ganglioglioma in a 14-month-old girl who underwent subtotal resection followed by adjuvant chemotherapy. The epidemiology, histopathologic features, imaging findings, treatment, and prognosis are subsequently reviewed. PMID:26605127

  1. Epidemiology of spinal cord injury.

    PubMed

    Kurtzke, J F

    1977-01-01

    Accidents are the cause of some 50 deaths per 100 000 population each year in the US; some 3% of these are from traumatic spinal cord injury alone. Traumatic spinal cord injury in socioeconomically advanced countries, has a probably annual incidence rate of 3 per 100 000 population. Males are affected five times as often as females, and in the US, Negroes have twice the rates of whites. Half the cases are due to motor vehicle accidents, 1/4 to falls, and 1/10 to sports injuries. Maximal ages at risk are 15 to 34; only for cord damage due to falls do this risk differ, and here elderly are the more prone. Associated injuries are common in traumatic cord injury, and head injury and pulmonary dysfunction are frequent causes of the acute deaths in traumatic SCI which is why complete quadriplegia has a high early case-fatality ratio. Late deaths in SCI are principally the direct or indirect result of the neurogenic bladder. With treatment in comprehensive spinal cord injury centers, more than 4 of 5 traumatic SCI patients will survive ten years with an average of almost 18 years. Median survival may be almost 14 years for complete quadriplegia, 17 for complete paraplegia, 19 for incomplete quadriplegia, 20 for incomplete paraplegia and 28 for cauda equina lesions. Prevalence is likely to be some 50 per 100 000 population with about 20 per 100 000 completely paralyzed (3 quadriplegic and 19 paraplegic). Some 4 out of 5 survivors of traumatic SCI should be able to live at home and perform gainful work after such treatment. PMID:616527

  2. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    MedlinePlus

    ... spinal cord tumors in children staged? How are brain and spinal cord tumors diagnosed in children? Brain ... resonance angiography (MRA) or computerized tomographic angiography (CTA). Brain or spinal cord tumor biopsy Imaging tests such ...

  3. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2016-07-07

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  4. Treadmill exercise reduces spinal cord injury-induced apoptosis by activating the PI3K/Akt pathway in rats.

    PubMed

    Jung, Sun-Young; Kim, Dae-Young; Yune, Tae Young; Shin, Dong-Hoon; Baek, Sang-Bin; Kim, Chang-Ju

    2014-03-01

    Apoptosis occurring secondary to spinal cord injury (SCI) causes further neural damage and functional loss. In this study, a rat model was used to investigate the effect of treadmill exercise on SCI-induced apoptosis and expression of neurotrophic factors. To produce SCI, a contusion injury (10 g × 25 mm) was applied subsequent to laminectomy at the T9-T10 level. Following SCI, treadmill exercise was performed for six weeks. Hindlimb motor function was evaluated with a grid-walking test. The expression of neurotrophic factors and the level of apoptosis at the site of SCI were determined by western blotting. SCI reduced hindlimb motor function and suppressed expression of neurotrophin (NT)-3 and insulin-like growth factor (IGF)-1. Expression of phosphatidylinositol 3-kinase (PI3K), the ratio of phosphorylated Akt to Akt (pAkt/Akt) and the ratio of B-cell lymphoma 2 (Bcl-2) to Bax (Bcl-2/Bax) were decreased, and cleaved caspase-3 expression was increased by SCI. Treadmill exercise enhanced hindlimb motor function and increased expression of nerve growth factor (NGF), NT-3 and IGF-1 in the SCI rats. Treadmill exercise increased PI3K expression, the pAkt/Akt and the Bcl-2/Bax ratios, and suppressed cleaved caspase-3 expression in the injured spinal cord. This study demonstrated that treadmill exercise promotes the recovery of motor function by suppressing apoptosis in the injured spinal cord. The beneficial effect of exercise may be attributed to the increase in expression of neurotrophic factors via activation of the PI3K/Akt pathway.

  5. Spinal cord compression due to ethmoid adenocarcinoma.

    PubMed

    Johns, D R; Sweriduk, S T

    1987-10-15

    Adenocarcinoma of the ethmoid sinus is a rare tumor which has been epidemiologically linked to woodworking in the furniture industry. It has a low propensity to metastasize and has not been previously reported to cause spinal cord compression. A symptomatic epidural spinal cord compression was confirmed on magnetic resonance imaging (MRI) scan in a former furniture worker with widely disseminated metastases. The clinical features of ethmoid sinus adenocarcinoma and neoplastic spinal cord compression, and the comparative value of MRI scanning in the neuroradiologic diagnosis of spinal cord compression are reviewed.

  6. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization

    PubMed Central

    Chen, Wenling; Marvizón, Juan Carlos G.

    2009-01-01

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using μ-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hindpaw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hindpaw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected Complete Freund's Adjuvant (CFA) in the hindpaw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hindpaw. These results show that acute inflammation, but not chronic inflammation, induce segmental opioid release in the spinal cord that involves supraspinal signals. PMID:19298846

  7. Immobilization-induced hypersensitivity associated with spinal cord sensitization during cast immobilization and after cast removal in rats.

    PubMed

    Hamaue, Yohei; Nakano, Jiro; Sekino, Yuki; Chuganji, Sayaka; Sakamoto, Jyunya; Yoshimura, Toshiro; Origuchi, Tomoki; Okita, Minoru

    2013-11-01

    This study examined mechanical and thermal hypersensitivity in the rat hind paw during cast immobilization of the hind limbs for 4 or 8 weeks and following cast removal. Blood flow, skin temperature, and volume of the rat hind paw were assessed in order to determine peripheral circulation of the hind limbs. Sensitization was analyzed by measuring the expression of the calcitonin gene-related peptide (CGRP) in the spinal dorsal horn following cast immobilization. Two weeks post immobilization, mechanical and thermal sensitivities increased significantly in all rats; however, peripheral circulation was not affected by immobilization. Cast immobilization for 8 weeks induced more serious hypersensitivity compared to cast immobilization for 4 weeks. Moreover, CGRP expression in the deeper lamina layer of the spinal dorsal horn increased in the rats immobilized for 8 weeks but not in those immobilized for 4 weeks. These findings suggest that immobilization-induced hypersensitivity develops during the immobilization period without affecting peripheral circulation. Our results also highlight the possibility that prolonged immobilization induces central sensitization in the spinal cord.

  8. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.

    PubMed

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-12-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury.

  9. Inducing Chronic Excitotoxicity in the Mouse Spinal Cord to Investigate Lower Motor Neuron Degeneration

    PubMed Central

    Blizzard, Catherine A.; Lee, K. M.; Dickson, Tracey C.

    2016-01-01

    We report the methodology for the chronic delivery of an excitotoxin to the mouse spinal cord via surgically implanted osmotic mini-pumps. Previous studies have investigated the effect of chronic application of excitotoxins in the rat, however there has been little translation of this model to the mouse. Using mice that express yellow fluorescent protein (YFP), motor neuron and neuromuscular junction alterations can be investigate following targeted, long-term (28 days) exposure to the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor excitotoxin, kainic acid. By targeting the L3-4 region of the lumbar spinal cord, with insertion of an intrathecal catheter into the subarachnoid space at L5, chronic application of the kainic acid results in slow excitotoxic death in the anterior ventral horn, with a significant (P < 0.05) reduction in the number of SMI-32 immunopositive neurons present after 28 days infusion. Use of the Thy1-YFP mice provides unrivaled visualization of the neuromuscular junction and enables the resultant distal degeneration in skeletal muscle to be observed. Both neuromuscular junction retraction at the gastrocnemius muscle and axonal fragmentation in the sciatic nerve were observed after chronic infusion of kainic acid for 28 days. Lower motor neuron, and distal neuromuscular junction, degeneration are pathological hallmarks of the devastating neurodegenerative disease Amyotrophic Lateral Sclerosis (ALS). This mouse model will be advantageous for increasing our understanding of how the pathophysiological phenomena associated with this disease can lead to lower motor neuron loss and distal pathology, as well as providing a robust in vivo platform to test therapeutic interventions directed at excitotoxic mechanisms. PMID:26973454

  10. Interlimb Reflexes Induced by Electrical Stimulation of Cutaneous Nerves after Spinal Cord Injury

    PubMed Central

    Butler, Jane E.; Godfrey, Sharlene; Thomas, Christine K.

    2016-01-01

    Whether interlimb reflexes emerge only after a severe insult to the human spinal cord is controversial. Here the aim was to examine interlimb reflexes at rest in participants with chronic (>1 year) spinal cord injury (SCI, n = 17) and able-bodied control participants (n = 5). Cutaneous reflexes were evoked by delivering up to 30 trains of stimuli to either the superficial peroneal nerve on the dorsum of the foot or the radial nerve at the wrist (5 pulses, 300 Hz, approximately every 30 s). Participants were instructed to relax the test muscles prior to the delivery of the stimuli. Electromyographic activity was recorded bilaterally in proximal and distal arm and leg muscles. Superficial peroneal nerve stimulation evoked interlimb reflexes in ipsilateral and contralateral arm and contralateral leg muscles of SCI and control participants. Radial nerve stimulation evoked interlimb reflexes in the ipsilateral leg and contralateral arm muscles of control and SCI participants but only contralateral leg muscles of control participants. Interlimb reflexes evoked by superficial peroneal nerve stimulation were longer in latency and duration, and larger in magnitude in SCI participants. Interlimb reflex properties were similar for both SCI and control groups for radial nerve stimulation. Ascending interlimb reflexes tended to occur with a higher incidence in participants with SCI, while descending interlimb reflexes occurred with a higher incidence in able-bodied participants. However, the overall incidence of interlimb reflexes in SCI and neurologically intact participants was similar which suggests that the neural circuitry underlying these reflexes does not necessarily develop after central nervous system injury. PMID:27049521

  11. Biological Basis of Exercise-based Treatments: Spinal Cord Injury

    PubMed Central

    Basso, D. Michele; Hansen, Christopher N.

    2016-01-01

    Despite intensive neurorehabilitation, extensive functional recovery after spinal cord injury is unattainable for most individuals. Optimal recovery will likely depend on activity-based, task-specific training that personalizes the timing of intervention with the severity of injury. Exercise paradigms elicit both beneficial and deleterious biophysical effects after spinal cord injury. Modulating the type, intensity, complexity, and timing of training may minimize risk and induce greater recovery. This review discusses the following: (a) the biological underpinning of training paradigms that promote motor relearning and recovery, and (b) how exercise interacts with cellular cascades after spinal cord injury. Clinical implications are discussed throughout. PMID:21703584

  12. Allicin protects spinal cord neurons from glutamate-induced oxidative stress through regulating the heat shock protein 70/inducible nitric oxide synthase pathway.

    PubMed

    Liu, Shu-Guang; Ren, Peng-Yu; Wang, Guo-Yu; Yao, Shu-Xin; He, Xi-Jing

    2015-01-01

    Allicin, the main biologically active compound derived from garlic, exerts a broad spectrum of pharmacological activities and is considered to have therapeutic potential in many neurological disorders. Using an in vitro spinal cord injury model induced by glutamate treatment, we sought to investigate the neuroprotective effects of allicin in primary cultured spinal cord neurons. We found that allicin treatment significantly attenuated glutamate-induced lactate dehydrogenase (LDH) release, loss of cell viability and apoptotic neuronal death. This protection was associated with reduced oxidative stress, as evidenced by decreased reactive oxygen species (ROS) generation, reduced lipid peroxidation and preservation of antioxidant enzyme activities. The results of western blot analysis showed that allicin decreased the expression of inducible nitric oxide synthase (iNOS), but had no effects on the expression of neuronal NOS (nNOS) following glutamate exposure. Moreover, allicin treatment significantly increased the expression of heat shock protein 70 (HSP70) at both mRNA and protein levels. Knockdown of HSP70 by specific targeted small interfere RNA (siRNA) not only mitigated allicin-induced protective activity, but also partially nullified its effects on the regulation of iNOS. Collectively, these data demonstrate that allicin treatment may be an effective therapeutic strategy for spinal cord injury, and that the potential underlying mechanism involves HSP70/iNOS pathway-mediated inhibition of oxidative stress. PMID:25473931

  13. Transplant-mediated enhancement of spinal cord GABAergic inhibition reverses paclitaxel-induced mechanical and heat hypersensitivity.

    PubMed

    Bráz, João M; Wang, Xidao; Guan, Zhonghui; Rubenstein, John L; Basbaum, Allan I

    2015-06-01

    Decreased spinal cord GABAergic inhibition is a major contributor to the persistent neuropathic pain that can follow peripheral nerve injury. Recently, we reported that restoring spinal cord GABAergic signaling by intraspinal transplantation of cortical precursors of GABAergic interneurons from the embryonic medial ganglionic eminence (MGE) can reverse the mechanical hypersensitivity (allodynia) that characterizes a neuropathic pain model in the mouse. We show that MGE cell transplants are also effective against both the mechanical allodynia and the heat hyperalgesia produced in a paclitaxel-induced chemotherapy model of neuropathic pain. To test the necessity of GABA release by the transplants, we also studied the utility of transplanting MGE cells from mice with a deletion of VGAT, the vesicular GABA transporter. Transplants from these mice, in which GABA is synthesized but cannot be stored or released, had no effect on mechanical hypersensitivity or heat hyperalgesia in the paclitaxel model. Taken together, these results demonstrate the therapeutic potential of GABAergic precursor cell transplantation in diverse neuropathic pain models and support our contention that restoration of inhibitory controls through release of GABA from the transplants is their mode of action. PMID:25760475

  14. Nutrition of People with Spinal Cord Injuries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This conference proceeding summarizes current knowledge about the nutritional status and needs of the spinal cord injured patient. Topics covered include the aspects of spinal cord injury that influence nutrient intakes and status, and the nutrients most likely to be problematic in this diverse gro...

  15. Sphingolipids in spinal cord injury

    PubMed Central

    Jones, Zachary B; Ren, Yi

    2016-01-01

    Spinal cord injury (SCI) is a debilitating condition that affects millions of individuals worldwide. Despite progress over the last few decades, the molecular mechanisms of secondary SCI that continue to occur days and weeks after the original trauma remain poorly understood. As a result, current therapies for SCI are only marginally effective. Sphingolipids, a diverse class of bioactive lipids, have been shown to regulate SCI repair and key secondary injury processes such as apoptosis, ischemia and inflammation. This review will discuss the numerous roles of sphingolipids and highlight the potential of sphingolipid-targeted therapies for SCI. PMID:27570580

  16. Ambulation and spinal cord injury.

    PubMed

    Hardin, Elizabeth C; Kobetic, Rudi; Triolo, Ronald J

    2013-05-01

    Walking is possible for many patients with a spinal cord injury. Avenues enabling walking include braces, robotics and FES. Among the benefits are improved musculoskeletal and mental health, however unrealistic expectations may lead to negative changes in quality of life. Use rigorous assessment standards to gauge the improvement of walking during the rehabilitation process, but also yearly. Continued walking after discharge may be limited by challenges, such as lack of accessibility in and outside the home, and complications, such as shoulder pain or injuries from falls. It is critical to determine the risks and benefits of walking for each patient.

  17. Sphingolipids in spinal cord injury.

    PubMed

    Jones, Zachary B; Ren, Yi

    2016-01-01

    Spinal cord injury (SCI) is a debilitating condition that affects millions of individuals worldwide. Despite progress over the last few decades, the molecular mechanisms of secondary SCI that continue to occur days and weeks after the original trauma remain poorly understood. As a result, current therapies for SCI are only marginally effective. Sphingolipids, a diverse class of bioactive lipids, have been shown to regulate SCI repair and key secondary injury processes such as apoptosis, ischemia and inflammation. This review will discuss the numerous roles of sphingolipids and highlight the potential of sphingolipid-targeted therapies for SCI. PMID:27570580

  18. Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning

    PubMed Central

    Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-01-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6–C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain–spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations. PMID:26125597

  19. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    PubMed

    Vahdat, Shahabeddin; Lungu, Ovidiu; Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-06-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  20. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds.

    PubMed

    Liu, Chang; Huang, Yong; Pang, Mao; Yang, Yang; Li, Shangfu; Liu, Linshan; Shu, Tao; Zhou, Wei; Wang, Xuan; Rong, Limin; Liu, Bin

    2015-01-01

    Tissue engineering has brought new possibilities for the treatment of spinal cord injury. Two important components for tissue engineering of the spinal cord include a suitable cell source and scaffold. In our study, we investigated induced mouse embryonic fibroblasts (MEFs) directly reprogrammed into neural stem cells (iNSCs), as a cell source. Three-dimensional (3D) electrospun poly (lactide-co-glycolide)/polyethylene glycol (PLGA-PEG) nanofiber scaffolds were used for iNSCs adhesion and growth. Cell growth, survival and proliferation on the scaffolds were investigated. Scanning electron microscopy (SEM) and nuclei staining were used to assess cell growth on the scaffolds. Scaffolds with iNSCs were then transplanted into transected rat spinal cords. Two or 8 weeks following transplantation, immunofluorescence was performed to determine iNSC survival and differentiation within the scaffolds. Functional recovery was assessed using the Basso, Beattie, Bresnahan (BBB) Scale. Results indicated that iNSCs showed similar morphological features with wild-type neural stem cells (wt-NSCs), and expressed a variety of neural stem cell marker genes. Furthermore, iNSCs were shown to survive, with the ability to self-renew and undergo neural differentiation into neurons and glial cells within the 3D scaffolds in vivo. The iNSC-seeded scaffolds restored the continuity of the spinal cord and reduced cavity formation. Additionally, iNSC-seeded scaffolds contributed to functional recovery of the spinal cord. Therefore, PLGA-PEG scaffolds seeded with iNSCs may serve as promising supporting transplants for repairing spinal cord injury (SCI). PMID:25803031

  1. A Minimal Dose of Electrically Induced Muscle Activity Regulates Distinct Gene Signaling Pathways in Humans with Spinal Cord Injury

    PubMed Central

    Petrie, Michael A.; Suneja, Manish; Faidley, Elizabeth; Shields, Richard K.

    2014-01-01

    Paralysis after a spinal cord injury (SCI) induces physiological adaptations that compromise the musculoskeletal and metabolic systems. Unlike non-SCI individuals, people with spinal cord injury experience minimal muscle activity which compromises optimal glucose utilization and metabolic control. Acute or chronic muscle activity, induced through electrical stimulation, may regulate key genes that enhance oxidative metabolism in paralyzed muscle. We investigated the short and long term effects of electrically induced exercise on mRNA expression of human paralyzed muscle. We developed an exercise dose that activated the muscle for only 0.6% of the day. The short term effects were assessed 3 hours after a single dose of exercise, while the long term effects were assessed after training 5 days per week for at least one year (adherence 81%). We found a single dose of exercise regulated 117 biological pathways as compared to 35 pathways after one year of training. A single dose of electrical stimulation increased the mRNA expression of transcriptional, translational, and enzyme regulators of metabolism important to shift muscle toward an oxidative phenotype (PGC-1α, NR4A3, IFRD1, ABRA, PDK4). However, chronic training increased the mRNA expression of specific metabolic pathway genes (BRP44, BRP44L, SDHB, ACADVL), mitochondrial fission and fusion genes (MFF, MFN1, MFN2), and slow muscle fiber genes (MYH6, MYH7, MYL3, MYL2). These findings support that a dose of electrical stimulation (∼10 minutes/day) regulates metabolic gene signaling pathways in human paralyzed muscle. Regulating these pathways early after SCI may contribute to reducing diabetes in people with longstanding paralysis from SCI. PMID:25531450

  2. Regenerative treatment in spinal cord injury.

    PubMed

    Ozdemir, Mevci; Attar, Ayhan; Kuzu, Isinsu

    2012-09-01

    Spinal cord injury is a devastating, traumatic event, and experienced mainly among young people. Until the modern era, spinal cord injury was so rapidly fatal that no seriously injured persons would survive long enough for regeneration to occur. Treatment of spinal cord injury can be summarized as follows: prevent further cord injury, maintain blood flow, relieve spinal cord compression, and provide secure vertebral stabilization so as to allow mobilization and rehabilitation, none of which achieves functional recovery. Previous studies have focused on analyzing the pathogenesis of secondary injury that extends from the injury epicenter to the periphery, as well as the tissue damage and neural cell death associated with secondary injury. Now, there are hundreds of current experimental and clinical regenerative treatment studies. One of the most popular treatment method is cell transplantation in injured spinal cord. For this purpose bone marrow stromal cells, mononuclear stem cells, mesenchymal stem cells, embryonic stem cells, neural stem cells, and olfactory ensheathing cells can be used. As a result, cell transplantation has become a promising therapeutic option for spinal cord injury patients. In this paper we discuss the effectiveness of stem cell therapy in spinal cord injury.

  3. Therapeutic approaches for spinal cord injury.

    PubMed

    Cristante, Alexandre Fogaça; Barros Filho, Tarcísio Eloy Pessoa de; Marcon, Raphael Martus; Letaif, Olavo Biraghi; Rocha, Ivan Dias da

    2012-10-01

    This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a "disease that should not be treated." Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life. PMID:23070351

  4. Rehabilitation of spinal cord injuries

    PubMed Central

    Nas, Kemal; Yazmalar, Levent; Şah, Volkan; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord injury (SCI) is the injury of the spinal cord from the foramen magnum to the cauda equina which occurs as a result of compulsion, incision or contusion. The most common causes of SCI in the world are traffic accidents, gunshot injuries, knife injuries, falls and sports injuries. There is a strong relationship between functional status and whether the injury is complete or not complete, as well as the level of the injury. The results of SCI bring not only damage to independence and physical function, but also include many complications from the injury. Neurogenic bladder and bowel, urinary tract infections, pressure ulcers, orthostatic hypotension, fractures, deep vein thrombosis, spasticity, autonomic dysreflexia, pulmonary and cardiovascular problems, and depressive disorders are frequent complications after SCI. SCI leads to serious disability in the patient resulting in the loss of work, which brings psychosocial and economic problems. The treatment and rehabilitation period is long, expensive and exhausting in SCI. Whether complete or incomplete, SCI rehabilitation is a long process that requires patience and motivation of the patient and relatives. Early rehabilitation is important to prevent joint contractures and the loss of muscle strength, conservation of bone density, and to ensure normal functioning of the respiratory and digestive system. An interdisciplinary approach is essential in rehabilitation in SCI, as in the other types of rehabilitation. The team is led by a physiatrist and consists of the patients’ family, physiotherapist, occupational therapist, dietician, psychologist, speech therapist, social worker and other consultant specialists as necessary. PMID:25621206

  5. Segmentation of the human spinal cord.

    PubMed

    De Leener, Benjamin; Taso, Manuel; Cohen-Adad, Julien; Callot, Virginie

    2016-04-01

    Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion

  6. Decorin blocks scarring and cystic cavitation in acute and induces scar dissolution in chronic spinal cord wounds.

    PubMed

    Ahmed, Zubair; Bansal, Daljeet; Tizzard, Katie; Surey, Sarina; Esmaeili, Maryam; Gonzalez, Ana Maria; Berry, Martin; Logan, Ann

    2014-04-01

    In the injured central nervous system (CNS), transforming growth factor (TGF)-β1/2-induced scarring and wound cavitation impede axon regeneration implying that a combination of both scar suppression and axogenic treatments is required to achieve functional recovery. After treating acute and chronic dorsal funicular spinal cord lesions (DFL) in adult rats with the pan-TGF-β1/2 antagonist Decorin, we report that in: (1), acute DFL, the development of all injury parameters was significantly retarded e.g., wound cavity area by 68%, encapsulation of the wound by a glia limitans accessoria (GLA) by 65%, GLA basal lamina thickness by 94%, fibronectin, NG2 and Sema-3A deposition by 87%, 48% and 48%, respectively, and both macrophage and reactive microglia accumulations by 60%; and (2), chronic DFL, all the above parameters were attenuated to a lesser extent e.g., wound cavity area by 11%, GLA encapsulation by 25%, GLA basal lamina thickness by 31%, extracellular fibronectin, NG2 and Sema-3A deposition by 58%, 22% and 29%, respectively, and macrophage and reactive microglia accumulations by 44%. Moreover, in acute and chronic DFL, levels of tissue plasminogen activator (tPA) were raised (by 236% and 482%, respectively), as were active-MMP-2 (by 64% and 91%, respectively) and active-MMP-9 (by 122% and 18%, respectively), while plasminogen activator inhibitor-1 (PAI-1) was suppressed (by 56% and 23%, respectively) and active-TIMP-1 and active TIMP-2 were both lower but only significantly suppressed in acute DFL (by 56 and 21%, respectively). These findings demonstrate that both scar tissue mass and cavitation are attenuated in acute and chronic spinal cord wounds by Decorin treatment and suggest that the dominant effect of Decorin during acute scarring is anti-fibrogenic through suppression of inflammatory fibrosis by neutralisation of TGF-β1/2 whereas, in chronic lesions, Decorin-induction of tPA and MMP (concomitant with reduced complimentary levels of TIMP and PAI-1

  7. Unusual aetiology of malignant spinal cord compression.

    PubMed

    Boland, Jason; Rennick, Adrienne

    2013-06-01

    Malignant spinal cord compression (MSCC) is an oncological emergency requiring rapid diagnosis and treatment to prevent irreversible spinal cord injury and disability. A case is described in a 45-year-old male with renal cell carcinoma in which the presentation of the MSCC was atypical with principally proximal left leg weakness with no evidence of bone metastasis. This was due to an unusual aetiology of the MSCC as the renal carcinoma had metastasised to his left psoas muscle causing a lumbosacral plexopathy and infiltrated through the intervertebral disc spaces, initially causing left lateral cauda equina and upper lumbar cord compression, before complete spinal cord compression. This case illustrates the varied aetiology of MSCC and reinforces the importance of maintaining a high index of suspicion of the possibility of spinal cord compression. PMID:24644568

  8. General Information about Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Cord Tumors Treatment Overview (PDQ®)–Patient Version General Information About Childhood Brain and Spinal Cord Tumors Go ... types of brain and spinal cord tumors. The information from tests and procedures done to detect (find) ...

  9. Advance in spinal cord ischemia reperfusion injury: Blood-spinal cord barrier and remote ischemic preconditioning.

    PubMed

    Yu, Qijing; Huang, Jinxiu; Hu, Ji; Zhu, Hongfei

    2016-06-01

    The blood-spinal cord barrier (BSCB) is the physiological and metabolic substance diffusion barrier between blood circulation and spinal cord tissues. This barrier plays a vital role in maintaining the microenvironment stability of the spinal cord. When the spinal cord is subjected to ischemia/reperfusion (I/R) injury, the structure and function of the BSCB is disrupted, further destroying the spinal cord homeostasis and ultimately leading to neurological deficit. Remote ischemic preconditioning (RIPC) is an approach in which interspersed cycles of preconditioning ischemia is followed by reperfusion to tissues/organs to protect the distant target tissues/organs against subsequent lethal ischemic injuries. RIPC is an innovation of the treatment strategies that protect the organ from I/R injury. In this study, we review the morphological structure and function of the BSCB, the injury mechanism of BSCB resulting from spinal cord I/R, and the effect of RIPC on it.

  10. Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat.

    PubMed

    Lu, Yan; Zheng, Jihong; Xiong, Lize; Zimmermann, Manfred; Yang, Jing

    2008-12-01

    Most spinal cord injury (SCI) patients suffer from chronic pain. Effective therapy for this pain is lacking, and the underlying mechanisms are poorly understood. The spinal superficial dorsal horn (SDH) contains neuronal circuits capable of modulating primary afferent information involved in pain processing. KCC2 is an isoform of the K(+)-Cl(-) cotransporter that contributes to the regulation of transmembrane anion gradient which plays a key role in shaping GABA(A) receptor-mediated signalling in the CNS. We tested the hypothesis that SCI causes down-regulation of KCC2 distal to the injury and contributes to the neuronal hyperresponsiveness and pain-related behaviours. SCI was a hemisection at T(13) level of adult Sprague-Dawley rats. Spinal sagittal slices with attached dorsal roots (DR) were prepared from L(4) to L(6) level. The reversal potentials of GABA responses (E(GABA)) and DR-evoked IPSPs and EPSPs of L(4-6) SDH neurones in sham-operated and SCI rats were compared using gramicidin-perforated patch-clamp recordings. Here we report that thoracic SCI-induced down-regulation of KCC2 in the lumbar SDH parallels the development of allodynia. The subsequent changes of E(GABA) in SDH neurones attenuate the GABA(A) receptor-mediated inhibitory synaptic transmission. These changes cause certain normally subthreshold primary A and C fibre inputs to evoke action potential output in SDH neurones. We conclude that SCI induces KCC2 down-regulation and subsequent changes of E(GABA) in the SDH below the injury site. The resulting disinhibition unmasks normally ineffective SDH neuronal circuits and may contribute to the below-level central pain-related behaviours after incomplete SCI. PMID:18845615

  11. Nanomedicine for Treating Spinal Cord Injury

    PubMed Central

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2015-01-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds. PMID:23945984

  12. Nanomedicine for treating spinal cord injury

    NASA Astrophysics Data System (ADS)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  13. Microsurgical resection of intramedullary spinal cord hemangioblastoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Spinal cord hemangioblastomas account for about 10% of spinal cord tumors. They usually arise from the dorsolateral pia mater and are characterized by their significant vascularity. The principles and techniques of safe resection are different than those employed for the more commonly occurring intramedullary glial tumors (e.g. ependymoma, astrocytoma) and consist of circumferential detachment of the tumor margin from the surrounding normal pia. This video demonstrates the microsurgical techniques of resection of a thoracic spinal cord hemangioblastoma. The video can be found here: http://youtu.be/yT5KLi4VyAo. PMID:25175571

  14. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

    PubMed Central

    Wang, Kun; Kong, Xiangang

    2016-01-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K+ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  15. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury.

    PubMed

    Wang, Kun; Kong, Xiangang

    2016-09-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K⁺ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  16. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair.

    PubMed

    Romanyuk, Nataliya; Amemori, Takashi; Turnovcova, Karolina; Prochazka, Pavel; Onteniente, Brigitte; Sykova, Eva; Jendelova, Pavla

    2015-01-01

    Despite advances in our understanding and research of induced pluripotent stem cells (iPSCs), their use in clinical practice is still limited due to lack of preclinical experiments. Neural precursors (NPs) derived from a clone of human iPSCs (IMR90) were used to treat a rat spinal cord lesion 1 week after induction. Functional recovery was evaluated using the BBB, beam walking, rotarod, and plantar tests. Lesion morphology, endogenous axonal sprouting, graft survival, and iPSC-NP differentiation were analyzed immunohistochemically. Quantitative polymerase chain reaction (qPCR) was used to evaluate the effect of transplanted iPSC-NPs on endogenous regenerative processes and also to monitor their behavior after transplantation. Human iPSC-NPs robustly survived in the lesion, migrated, and partially filled the lesion cavity during the entire period of observation. Transplanted animals displayed significant motor improvement already from the second week after the transplantation of iPSC-NPs. qPCR revealed the increased expression of human neurotrophins 8 weeks after transplantation. Simultaneously, the white and gray matter were spared in the host tissue. The grafted cells were immunohistochemically positive for doublecortin, MAP2, βIII-tubulin, GFAP, and CNPase 8 weeks after transplantation. Human iPSC-NPs further matured, and 17 weeks after transplantation differentiated toward interneurons, dopaminergic neurons, serotoninergic neurons, and ChAT-positive motoneurons. Human iPSC-NPs possess neurotrophic properties that are associated with significant early functional improvement and the sparing of spinal cord tissue. Their ability to differentiate into tissue-specific neurons leads to the long-term restoration of the lesioned tissue, making the cells a promising candidate for future cell-based therapy of SCI. PMID:25259685

  17. Malignancies of the spinal cord.

    PubMed

    Waters, J Dawn; Peran, Encarnacion Maria Navarro; Ciacci, Joseph

    2012-01-01

    The management of intramedullary spinal cord tumors (IMSCT) is primarily concerned with the preservation of existing neurologic function. To this end, clinical scientists are continually seeking tools and techniques to improve the safety and efficacy of tumor resection and control. Further advances in safety and efficacy can be proposed at each phase of management, from pre-operative screening to post-treatment monitoring. Innovations within the areas of molecular biology and genetics, intraoperative imaging and stereotactic radiosurgery offer exciting new options to explore in the management of IMSCT. This section will review the pathophysiology and epidemiology of IMSCT and the state-of-the-art management before delving into the promising new tools and techniques for each phase of management. PMID:23281516

  18. Spinal cord injury in youth.

    PubMed

    Apple, D F; Anson, C A; Hunter, J D; Bell, R B

    1995-02-01

    To identify special characteristics of the pediatric spinal cord-injured (SCI) population, we analyzed a database of 1,770 traumatic SCI patients; 88 (5%) fell into the two pediatric subgroups: 0-12 years (n = 26) and 13-15 years (n = 62) at time of injury. Differences between age groups were identified with regard to demographics, neurologic characteristics, associated injuries and complications, and management. Mode level of bony injury was C2 in preteens, C4 in teens, and C4-C5 in adults. Scoliosis developed far more frequently in children, particularly preteens (23%), than in adults (5%). Violent etiologies, predominantly gunshots, accounted for a disproportionate share of injuries to preteens (19%) and African-Americans (28%), as compared with adults (12%) and Caucasians (7%). This last finding underscores the urgent need to mount a response to the nationwide proliferation of gunshot-related SCI in children and minorities.

  19. Spinal cord injury in youth.

    PubMed

    Apple, D F; Anson, C A; Hunter, J D; Bell, R B

    1995-02-01

    To identify special characteristics of the pediatric spinal cord-injured (SCI) population, we analyzed a database of 1,770 traumatic SCI patients; 88 (5%) fell into the two pediatric subgroups: 0-12 years (n = 26) and 13-15 years (n = 62) at time of injury. Differences between age groups were identified with regard to demographics, neurologic characteristics, associated injuries and complications, and management. Mode level of bony injury was C2 in preteens, C4 in teens, and C4-C5 in adults. Scoliosis developed far more frequently in children, particularly preteens (23%), than in adults (5%). Violent etiologies, predominantly gunshots, accounted for a disproportionate share of injuries to preteens (19%) and African-Americans (28%), as compared with adults (12%) and Caucasians (7%). This last finding underscores the urgent need to mount a response to the nationwide proliferation of gunshot-related SCI in children and minorities. PMID:7729113

  20. Spinal cord lesions - The rehabilitation perspective.

    PubMed

    Faria, Filipa

    2006-02-01

    The present study provides an overview of the spinal cord injury focusing mainly on aspects related to rehabilitation. Spinal cord injury affects young people in an active phase of life, determining severe handicaps. Most of the lesions are traumatic, caused by car accidents. Until fifty years ago, the survival of individuals with spinal cord injury was very reduced and the leading cause of death was renal failure. Due to developments in medical knowledge and technical advances, the survival rates have significantly improved. The causes of death have also changed being respiratory complications, particularly pneumonia, the leading causes. Immediately after a spinal cord lesion there is a phase of spinal shock which is characterized by flaccid paralysis and bladder and bowel retention. Progressively there is a return of the spinal cord automatism with the beginning of some reflex activities. Based on neurological evaluation it is pos-sible to predict motor and functional recovery and establish the rehabilitation program. We can consider three phases on the rehabilitation program: the first while the patient is still in bed, directed to prevent or treat complications due to immobility and begin sphincters reeducation; the second phase is intended to achieve wheelchair autonomy; the last phase is training in ortostatism. The rehabilitation program also comprises sports and recreational activities, psychological and social support in order to achieve an integral of the individual with a spinal cord injury.

  1. Spinal cord protection in aortic endovascular surgery.

    PubMed

    Scott, D A; Denton, M J

    2016-09-01

    A persistent neurological deficit, such as paraplegia or paraparesis, secondary to spinal cord injury remains one of the most feared complications of surgery on the descending thoracic or abdominal aorta. This is despite sophisticated advances in imaging and the use of less invasive endovascular procedures. Extensive fenestrated endovascular aortic graft prostheses still carry a risk of spinal cord injury of up to 10%; thus, this risk should be identified and strategies implemented to protect the spinal cord and maintain perfusion. The patients at highest risk are those undergoing extensive thoracic aortic stenting including thoracic, abdominal, and pelvic vessels. Although many techniques are available, lumbar cerebrospinal fluid drainage remains the most frequent intervention, along with maintenance of perfusion pressure and possibly staged procedures to allow collateral vessel stabilization. Many questions remain regarding other technical aspects, spinal cord monitoring and cooling, pharmacological protection, and the optimal duration of interventions into the postoperative period. PMID:27566805

  2. Spinal Cord Injury: Hope through Research

    MedlinePlus

    ... chronic pain in people with spinal cord injury. Robotic-assisted therapy Most recovery following SCI takes place ... the safety and efficacy of a type of robotic therapy device known as the AMES device. The ...

  3. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  4. Spinal Cord Injury Model System Information Network

    MedlinePlus

    ... the UAB-SCIMS More The UAB-SCIMS Information Network The University of Alabama at Birmingham Spinal Cord Injury Model System (UAB-SCIMS) maintains this Information Network as a resource to promote knowledge in the ...

  5. Staging Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  6. Mediastinal paraganglioma causing spinal cord compression.

    PubMed Central

    Reyes, M G; Fresco, R; Bruetman, M E

    1977-01-01

    An invasive paraganglioma of the posterior mediastinum caused spinal cord compression in a 31 year old women. Electron microscopic examination of the paraganglioma invading the epidural space revealed numerous dense-cored granules in the cytoplasm of the tumour cells. We are reporting this case to present the ultrastructure of mediastinal paraganglioma, and to call attention to an unusual cause of spinal cord compression. Images PMID:886352

  7. Intrathecal Urocortin I in the spinal cord as a murine model of stress hormone-induced musculoskeletal and tactile hyperalgesia

    PubMed Central

    Larson, Alice A.; Nunez, Myra G.; Kissel, Casey L.; Kovács, Katalin J.

    2015-01-01

    Stress is antinociceptive in some models of pain but enhances musculoskeletal nociceptive responses in mice and muscle pain in patients with fibromyalgia syndrome. To test the hypothesis that urocortins are stress hormones that are sufficient to enhance tactile and musculoskeletal hyperalgesia, we measured von Frey fiber sensitivity and grip force after injection of corticotrophin releasing factor (CRF), urocortin I and urocortin II in mice. Urocortin I (a CRF1 and CRF2 receptor ligand) produced hyperalgesia in both assays when injected intrathecally (i.t.) but not intracerebroventricularly (i.c.v.), and only at a large dose when injected peripherally, suggesting a spinal action. Morphine inhibited urocortin I-induced changes in nociceptive responses in a dose-related fashion, confirming that changes in behavior reflect hyperalgesia rather than weakness. No tolerance developed to the effect of urocortin I (i.t.) when injected repeatedly, consistent with a potential to enhance pain chronically. Tactile hyperalgesia was inhibited by NBI-35965, a CRF1 receptor antagonist, but not astressin 2B, a CRF2 receptor antagonist. However, while urocortin I-induced decreases in grip force were not observed when coadministered i.t. with either NBI-35965 or astressin 2B, they were even more sensitive to inhibition by astressin, a nonselective CRF receptor antagonist. Together these data indicate that urocortin I acts at CRF receptors in the mouse spinal cord to elicit a reproducible and persistent tactile (von Frey) and musculoskeletal (grip force) hyperalgesia. Urocortin I-induced hyperalgesia may serve as a screen for drugs that alleviate painful conditions that are exacerbated by stress. PMID:26332847

  8. Differential pattern of neuroprotection in lumbar, cervical and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity.

    PubMed

    Gerardo-Nava, Jose; Mayorenko, Ivanna I; Grehl, Torsten; Steinbusch, Harry W M; Weis, Joachim; Brook, Gary A

    2013-11-01

    Glutamate-induced excitotoxicity is a major contributor to motor neuron (MN) degeneration in disorders such as amyotrophic lateral sclerosis (ALS), stroke and spinal cord injury. Numerous in vitro and in vivo models have been developed to evaluate the efficacy and mode of action of neuroprotective agents. However, the dominance of glutamate receptor-subtype in the different regions of the spinal cord in these models has generally been overlooked. This study first compared the neuroprotective effect of administering glutamate receptor antagonists, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), into a serum-free excitotoxic organotypic in vitro system, on the survival of MNs located in the lumbar area of spinal cord. The poor neuroprotection provided by MK-801 (NMDA (N-methyl-D-aspartate) antagonist) in comparison to CNQX (AMPA/KA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate) antagonist), raised the hypothesis that the extent of engagement by glutamate receptor sub-types in the mechanism of excitotoxicity may differ within different populations of MNs. The consequent examination of MN susceptibility to glutamate-induced excitotoxicity in relation to the rostro-caudal level from which MN originated revealed a differential glutamate receptor sub-type dominance at different spinal cord regions (i.e. cervical, thoracic and lumbar). In the cervical and lumbar regions, the AMPA receptor was the main contributor to MN excitotoxicity, whereas in thoracic regions, the NMDA receptor was the main contributor. This study provides a new way of looking at mechanisms leading to glutamate-induced excitotoxicity in MN and may therefore be important for the development of treatment strategies in protection of spinal MNs in neurodegenerative disease and traumatic injury.

  9. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.

  10. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  11. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats.

    PubMed

    Roh, Dae-Hyun; Seo, Min-Soo; Choi, Hoon-Seong; Park, Sang-Bum; Han, Ho-Jae; Beitz, Alvin J; Kang, Kyung-Sun; Lee, Jang-Hern

    2013-01-01

    Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been grafted into humans suffering from spinal cord trauma or into animal models of spinal injury. Although several studies have reported functional motor improvement after transplantation of stem cells into injured spinal cord, the benefit of these cells for treating SCI-induced neuropathic pain is not clear. In this study, we investigated the therapeutic effect of transplanting human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) or amniotic epithelial stem cells (hAESCs) on SCI-induced mechanical allodynia (MA) and thermal hyperalgesia (TH) in T13 spinal cord hemisected rats. Two weeks after SCI, hUCB-MSCs or hAESCs were transplanted around the spinal cord lesion site, and behavioral tests were performed to evaluate changes in SCI-induced MA and TH. Immunohistochemical and Western blot analyses were also performed to evaluate possible therapeutic effects on SCI-induced inflammation and the nociceptive-related phosphorylation of the NMDA NR1 receptor subunit. While transplantation of hUCB-MSCs showed a tendency to reduce MA, transplantation of hAESCs significantly reduced MA. Neither hUCB-MSC nor hAESC transplantation had any effect on SCI-induced TH. Transplantation of hAESCs also significantly reduced the SCI-induced increase in NMDA receptor NR1 subunit phosphorylation (pNR1) expression in the spinal cord. Both hUCB-MSCs and hAESCs reduced the SCI-induced increase in spinal cord expression of the microglial marker, F4/80, but not the increased expression of GFAP or iNOS. Taken together, these findings demonstrate that the transplantation of hAESCs into the injured spinal cord can suppress mechanical allodynia, and this effect seems to be closely associated with the modulation of spinal cord microglia activity and NR1 phosphorylation.

  12. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    PubMed Central

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  13. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice.

    PubMed

    Borghi, Sergio M; Pinho-Ribeiro, Felipe A; Fattori, Victor; Bussmann, Allan J C; Vignoli, Josiane A; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  14. Microsurgical resection of intramedullary spinal cord ependymoma.

    PubMed

    McCormick, Paul C

    2014-09-01

    Ependymomas are the most commonly occurring intramedullary spinal cord tumor in adults. With few exceptions these tumors are histologically benign, although they exhibit some biologic variability with respect to growth rate. While unencapsulated, spinal ependymomas are non-infiltrative and present a clear margin of demarcation from the surrounding spinal cord that serves as an effective dissection plane. This video demonstrates the technique of microsurgical resection of an intramedullary ependymoma through a posterior midline myelotomy. The video can be found here: http://youtu.be/lcHhymSvSqU. PMID:25175587

  15. Effects of lysergic acid diethylamide (LSD) and adjuvant-induced inflammation on desensitization to and metabolism of substance P in the mouse spinal cord.

    PubMed

    Larson, A A; Igwe, O J; Seybold, V S

    1989-06-01

    We have previously shown that the caudally directed biting and scratching response to repeated intrathecal (i.t.) injections of substance P (SP) is decreased by the third injection of SP and that this apparent desensitization to SP is less pronounced in mice pretreated with Freund's adjuvant. This study was designed to study the mechanism of this desensitization to SP and to examine the effect of lysergic acid diethylamide tartrate (LSD) on desensitization. Our results indicate that while 25 micrograms of LSD/kg body weight i.p. in naive mice had no effect on the response to a single injection of SP, LSD decreased the development of desensitization to SP-induced behaviors. In contrast, identical injections of LSD in adjuvant-pretreated mice not only failed to prevent desensitization but enhanced the degree of apparent desensitization to SP. Tolerance developed to the effects of LSD on desensitization to SP-induced behaviors in both adjuvant- and saline-pretreated mice. When injected i.t. with SP, LSD failed to alter the degree of desensitization to SP-induced behaviors, suggesting that the effect of LSD is not produced at the spinal cord level. Separation and quantification of SP and its metabolites in the spinal cord using high performance liquid chromatography (HPLC) techniques indicated that either a single injection of LSD or pretreatment with Freund's adjuvant produced similar patterns of changes in the concentrations of SP-related peptides in mouse spinal cord.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Adiposity and spinal cord injury

    PubMed Central

    Gorgey, Ashraf S; Wells, Kathryn M; Austin, Timothy L

    2015-01-01

    The drastic changes in body composition following spinal cord injury (SCI) have been shown to play a significant role in cardiovascular and metabolic health. The pattern of storage and distribution of different types of adipose tissue may impact metabolic health variables similar to carbohydrate, lipid and bone metabolism. The use of magnetic resonance imaging provides insights on the interplay among different regional adipose tissue compartments and their role in developing chronic diseases. Regional adipose tissue can be either distributed centrally or peripherally into subcutaneous and ectopic sites. The primary ectopic adipose tissue sites are visceral, intramuscular and bone marrow. Dysfunction in the central nervous system following SCI impacts the pattern of distribution of adiposity especially between tetraplegia and paraplegia. The current editorial is focused primarily on introducing different types of adipose tissue and establishing scientific basis to develop appropriate dietary, rehabilitation or pharmaceutical interventions to manage the negative consequences of increasing adiposity after SCI. We have also summarized the clinical implications and future recommendations relevant to study adiposity after SCI. PMID:26396933

  17. Involvement of the histaminergic system in the nociceptin-induced pain-related behaviors in the mouse spinal cord.

    PubMed

    Sakurada, Shinobu; Watanabe, Hiroyuki; Mizoguchi, Hirokazu; Yonezawa, Akihiko; Orito, Tohru; Katsuyama, Sou; Kuramasu, Atsuo; Sakurada, Chikai; Yanai, Kazuhiko; Sakurada, Tsukasa

    2004-11-01

    Intrathecal (i.t.) injection of nociceptin elicited a behavioral response mainly consisting of biting and licking, which were eliminated by the i.t. co-administration of opioid receptor-like-1 (ORL-1) receptor antagonists. The behavioral response induced by nociceptin was characteristically similar to that by i.t.-administered histamine, and was attenuated by i.t. co-administration of the H1 receptor antagonists, but not by the H2 receptor antagonists, whereas the H3 receptor antagonist promoted the nociceptin-induced behavior. H1 receptor knockout (H1R-KO) mice did not show the nociceptin-induced nociceptive behavior, which was observed in wild-type mice. Pretreatment with a histamine antiserum or a histidine decarboxylase inhibitor resulted in a significant reduction of the response to nociceptin. The previous studies showed that NK1 receptor antagonists and a novel substance P (SP)-specific antagonist given i.t. could reduce the behavioral response to nociceptin and histamine. On the other hand, the nociceptive response induced by nociceptin, but not histamine, was completely attenuated by the i.t. co-administration of agonists for GABAA and GABAB receptors. In contrast, the antagonists for GABAA and GABAB receptors injected i.t. showed same nociceptive response with nociceptin and histamine, and their nociceptive responses were significantly blocked by the i.t. co-administration of the H1 receptor antagonists, but not H2 receptor antagonists or ORL-1 receptor antagonists. The present results suggest that the activation of the ORL-1 receptor by nociceptin may induce the disinhibition of histaminergic neuron and enhance the release of histamine, which subsequently acts on the H1 receptor located on the SP-containing neurons to produce the spinal cord-mediated nociceptive response.

  18. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only

    PubMed Central

    Alluin, Olivier; Delivet-Mongrain, Hugo

    2015-01-01

    Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical stimulation of the cord while a robot sustains the animals in an upright posture. In the present study we daily trained a group of adult spinal (T7) rats to walk with the hindlimbs for 10 wk (10 min/day for 5 days/wk), using only perineal stimulation. Kinematic analysis and terminal electromyographic recordings revealed a strong effect of training on the reexpression of hindlimb locomotion. Indeed, trained animals gradually improved their locomotion while untrained animals worsened throughout the post-SCI period. Kinematic parameters such as averaged and instant swing phase velocity, step cycle variability, foot drag duration, off period duration, and relationship between the swing features returned to normal values only in trained animals. The present results clearly demonstrate that treadmill training alone, in a normal horizontal posture, elicited by noninvasive perineal stimulation is sufficient to induce a persistent hindlimb locomotor recovery without the need for more complex strategies. This provides a baseline level that should be clearly surpassed if additional locomotor-enabling procedures are added. Moreover, it has a clinical value since intrinsic spinal reorganization induced by training should contribute to improve locomotor recovery together with afferent feedback and supraspinal modifications in patients with incomplete SCI. PMID:26203108

  19. Aquaporin 1 – a novel player in spinal cord injury

    PubMed Central

    Nesic, O.; Lee, J.; Unabia, G. C.; Johnson, K.; Ye, Z.; Vergara, L.; Hulsebosch, C. E.; Perez-Polo, J. R.

    2008-01-01

    The role of water channel aquaporin 1 (AQP-1) in uninjured or injured spinal cords is unknown. AQP-1 is weakly expressed in neurons and gray matter astrocytes, and more so in white matter astrocytes in uninjured spinal cords, a novel finding. As reported before, AQP-1 is also present in ependymal cells, but most abundantly in small diameter sensory fibers of the dorsal horn. Rat contusion spinal cord injury (SCI) induced persistent and significant four- to eightfold increases in AQP-1 levels at the site of injury (T10) persisting up to 11 months post-contusion, a novel finding. Delayed AQP-1 increases were also found in cervical and lumbar segments, suggesting the spreading of AQP-1 changes over time after SCI. Given that the antioxidant melatonin significantly decreased SCI-induced AQP-1 increases and that hypoxia inducible factor-1α was increased in acutely and chronically injured spinal cords, we propose that chronic hypoxia contributes to persistent AQP-1 increases after SCI. Interestingly; AQP-1 levels were not affected by long-lasting hypertonicity that significantly increased astrocytic AQP-4, suggesting that the primary role of AQP-1 is not regulating isotonicity in spinal cords. Based on our results we propose possible novel roles for AQP-1 in the injured spinal cords: (i) in neuronal and astrocytic swelling, as AQP-1 was increased in all surviving neurons and reactive astrocytes after SCI and (ii) in the development of the neuropathic pain after SCI. We have shown that decreased AQP-1 in melatonin-treated SCI rats correlated with decreased AQP-1 immunolabeling in the dorsal horns sensory afferents, and with significantly decreased mechanical allodynia, suggesting a possible link between AQP-1 and chronic neuropathic pain after SCI. PMID:18248364

  20. Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: attenuation by a metalloporphyrin.

    PubMed

    Liu, D; Bao, F

    2015-01-29

    We previously demonstrated that hydrogen peroxide concentration ([H2O2]) significantly increases after spinal cord injury (SCI). The present study explored (1) whether SCI-elevated [H2O2] is sufficient to induce oxidation and cell death, (2) if apoptosis is a pathway of H2O2-induced cell death, and (3) whether H2O2-induced oxidation and cell death could be reversed by treatment with the catalytic antioxidant Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). H2O2 was perfused through a microcannula into the uninjured rat spinal cord to mimic the conditions induced by SCI. Protein and DNA oxidation, membrane phospholipids peroxidation (MLP), cell death and apoptosis were characterized by histochemical and immunohistochemical staining with antibodies against markers of oxidation and apoptosis. Stained cells were quantified in sections of H2O2-, or artificial cerebrospinal fluid (ACSF)-exposed with vehicle-, or MnTBAP-treated groups. Compared with ACSF-exposed animals, SCI-elevated [H2O2] significantly increased intracellular protein and DNA oxidation by threefold and MLP by eightfold in neurons, respectively. H2O2-elevated extracellular malondialdehyde was measured by microdialysis sampling. We demonstrated that SCI-elevated [H2O2] significantly increased extracellular malondialdehyde above pre-injury levels. H2O2 also significantly increased cell loss and the numbers of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate-(dUTP)-biotin nick end labeling (TUNEL)-positive and active caspase-3-positive neurons by 2.3-, 2.8-, and 5.6-fold compared to ACSF controls, respectively. Our results directly and unequivocally demonstrate that SCI-elevated [H2O2] contributes to post-SCI MLP, protein, and DNA oxidation to induce cell death. Therefore, we conclude that (1) the role of H2O2 in secondary SCI is pro-oxidation and pro-cell death, (2) apoptosis is a pathway for SCI-elevated [H2O2] to induce cell death, (3) caspase activation is a mechanism

  1. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy.

  2. Imaging of Spinal Cord Injury: Acute Cervical Spinal Cord Injury, Cervical Spondylotic Myelopathy, and Cord Herniation.

    PubMed

    Talekar, Kiran; Poplawski, Michael; Hegde, Rahul; Cox, Mougnyan; Flanders, Adam

    2016-10-01

    We review the pathophysiology and imaging findings of acute traumatic spinal cord injury (SCI), cervical spondylotic myelopathy, and briefly review the much less common cord herniation as a unique cause of myelopathy. Acute traumatic SCI is devastating to the patient and the costs to society are staggering. There are currently no "cures" for SCI and the only accepted pharmacologic treatment regimen for traumatic SCI is currently being questioned. Evaluation and prognostication of SCI is a demanding area with significant deficiencies, including lack of biomarkers. Accurate classification of SCI is heavily dependent on a good clinical examination, the results of which can vary substantially based upon the patient׳s condition or comorbidities and the skills of the examiner. Moreover, the full extent of a patients׳ neurologic injury may not become apparent for days after injury; by then, therapeutic response may be limited. Although magnetic resonance imaging (MRI) is the best imaging modality for the evaluation of spinal cord parenchyma, conventional MR techniques do not appear to differentiate edema from axonal injury. Recently, it is proposed that in addition to characterizing the anatomic extent of injury, metrics derived from conventional MRI and diffusion tensor imaging, in conjunction with the neurological examination, can serve as a reliable objective biomarker for determination of the extent of neurologic injury and early identification of patients who would benefit from treatment. Cervical spondylosis is a common disorder affecting predominantly the elderly with a potential to narrow the spinal canal and thereby impinge or compress upon the neural elements leading to cervical spondylotic myelopathy and radiculopathy. It is the commonest nontraumatic cause of spinal cord disorder in adults. Imaging plays an important role in grading the severity of spondylosis and detecting cord abnormalities suggesting myelopathy. PMID:27616315

  3. Prevention of deep tissue injury through muscle contractions induced by intermittent electrical stimulation after spinal cord injury in pigs

    PubMed Central

    Solis, Leandro R.; Twist, Elizabeth; Seres, Peter; Thompson, Richard B.

    2013-01-01

    Deep tissue injury (DTI) is a severe medical complication that commonly affects those with spinal cord injury. It is caused by prolonged external loading of the muscles, entrapping them between a bony prominence and the support surface. The entrapment causes excessive mechanical deformation and increases in interstitial pressure, leading to muscle breakdown deep around the bony prominences. We proposed the use of intermittent electrical stimulation (IES) as a novel prophylactic method for the prevention of DTI. In this study, we assessed the long-term effectiveness of this technique in pigs that had received a partial spinal cord injury that paralyzed one hindlimb. The pigs recovered for 2 wk postsurgery, and subsequently, their paralyzed limbs were loaded to 25% of their body weights 4 h/day for 4 consecutive days each week for 1 mo. One group of pigs (n = 3) received IES during the loading, whereas another group (n = 3) did not. DTI was quantified using magnetic resonance imaging (MRI) and postmortem histology. In the group that did not receive IES, MRI assessments revealed signs of tissue damage in 48% of the volume of the loaded muscle. In the group that did receive IES, only 8% of the loaded muscle volume showed signs of tissue damage. Similar findings were found through postmortem histology. This study demonstrates, for the first time, that IES may be an effective technique for preventing the formation of DTI in loaded muscles after spinal cord injury. PMID:23172030

  4. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice.

    PubMed

    Yao, Anhui; Liu, Fangfang; Chen, Kun; Tang, Liang; Liu, Ling; Zhang, Kun; Yu, Caiyong; Bian, Ganlan; Guo, Hongmin; Zheng, Jingjing; Cheng, Peng; Ju, Gong; Wang, Jian

    2014-07-01

    The inflammatory response following spinal cord injury (SCI) involves the activation of resident microglia and the infiltration of macrophages. Macrophages and microglia can be polarized into the classically activated proinflammatory M1 phenotype or the alternatively activated anti-inflammatory M2 phenotype. Programmed cell death 1 (PD-1) is a critical immune inhibitory receptor involved in innate and adaptive immune responses. However, whether PD-1 is involved in the modulation of macrophage/microglial polarization is unknown. In this study, the mRNA levels of pd1 gradually increased after SCI, and PD-1 protein was found in macrophages/microglia in injured spinal cord sections. PD-1 knockout (KO) mice showed poor locomotor recovery after spinal cord crushing compared with wild-type mice. M1-type macrophages/microglia accumulated in greater numbers in the injured spinal cord of PD-1-KO mice. Under polarized stimulation, induced expression of PD-1 occurred in cultured macrophages and microglia. PD-1 suppressed M1 polarization by reducing the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and promoted M2 polarization by increasing STAT6 phosphorylation. In PD-1-KO mice, the M1 response was enhanced via the activation of STAT1 and nuclear factor-kappa B. Furthermore, PD-1 played various roles in phagocytosis in macrophages and microglia. Therefore, our results suggest that PD-1 signaling plays an important role in the regulation of macrophage/microglial polarization. Thus, deregulated PD-1 signaling may induce the polarization of macrophages/microglia toward the M1 phenotype. Overall, our results provide new insights into the modulatory mechanisms of macrophage/microglial polarization, thereby possibly facilitating the development of new therapies for SCI via the regulation of macrophage/microglial polarization through PD-1 signaling.

  5. Stem cell-based therapies for spinal cord injury.

    PubMed

    Nandoe Tewarie, Rishi S; Hurtado, Andres; Bartels, Ronald H; Grotenhuis, Andre; Oudega, Martin

    2009-01-01

    Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.

  6. Spinal cord response to laser treatment of injured peripheral nerve

    SciTech Connect

    Rochkind, S.; Vogler, I.; Barr-Nea, L. )

    1990-01-01

    The authors describe the changes occurring in the spinal cord of rats subjected to crush injury of the sciatic nerve followed by low-power laser irradiation of the injured nerve. Such laser treatment of the crushed peripheral nerve has been found to mitigate the degenerative changes in the corresponding neurons of the spinal cord and induce proliferation of neuroglia both in astrocytes and oligodendrocytes. This suggests a higher metabolism in neurons and a better ability for myelin production under the influence of laser treatment.

  7. What Are the Treatments for Spinal Cord Injury (SCI)?

    MedlinePlus

    ... Resources and Publications What are the treatments for spinal cord injury (SCI)? Skip sharing on social media links ... no known ways to reverse damage to the spinal cord. However, researchers are continually working on new treatments, ...

  8. Vocational Rehabilitation of Persons with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Poor, Charles R.

    1975-01-01

    Reviews historical development of organized vocational rehabilitation programming for the spinal cord injured in the United States. Significant factors that affect vocational rehabilitation outcomes with spinal cord injured persons are listed and discussed. (Author)

  9. Characteristics and rehabilitation for patients with spinal cord stab injury.

    PubMed

    Wang, Fangyong; Zhang, Junwei; Tang, Hehu; Li, Xiang; Jiang, Shudong; Lv, Zhen; Liu, Shujia; Chen, Shizheng; Liu, Jiesheng; Hong, Yi

    2015-12-01

    [Purpose] The objective of the study was to compare the incidence, diagnosis, treatment, and prognosis of patients with spinal cord stab injury to those with the more common spinal cord contusion injury. [Subjects] Of patients hospitalized in China Rehabilitation Research Center from 1994 to 2014, 40 of those having a spinal cord stab injury and 50 with spinal cord contusion were selected. [Methods] The data of all patients were analyzed retrospectively. The cases were evaluated by collecting admission and discharge ASIA (American Spinal Injury Association) and ADL (activity of daily living) scores. [Results] After a comprehensive rehabilitation program, ASIA and ADL scores of patients having both spinal cord stab injury and spinal cord contusion significantly increase. However, the increases were noted to be higher in patients having a spinal cord stab injury than those having spinal cord contusion. [Conclusion] Comprehensive rehabilitation is effective both for patients having spinal cord stab injury and those with spinal cord contusion injury. However, the prognosis of patients having spinal cord stab injury is better than that of patients with spinal cord contusion.

  10. Surgical resection of subependymoma of the cervical spinal cord.

    PubMed

    Tan, Lee A; Kasliwal, Manish K; Mhanna, Nakhle; Fontes, Ricardo B V; Traynelis, Vincent C

    2014-09-01

    Subependymomas can rarely occur in the spinal cord, and account for about 2% of symptomatic spinal cord tumors. It most often occurs in the cervical spinal cord, followed by cervicothoracic junction, thoracic cord and conus medullaris. It often has an eccentric location in the spinal cord and lacks gadolinium enhancement on magnetic resonance imaging. We present a rare case of symptomatic subependymoma of the cervical spinal cord, which underwent successful gross total resection. Surgical pearls and nuances are discussed to help surgeons to avoid potential complications. The video can be found here: http://youtu.be/Rsm9KxZX7Yo. PMID:25175581

  11. Spinal cord infarction: a rare cause of paraplegia

    PubMed Central

    Patel, Sonali; Naidoo, Khimara; Thomas, Peter

    2014-01-01

    Spinal cord infarction is rare and represents a diagnostic challenge for many physicians. There are few reported cases worldwide with a prevalence of 1.2% of all strokes. Circulation to the spinal cord is supplied by a rich anastomosis. The anterior spinal artery supplies the anterior two thirds of the spinal cord and infarction to this area is marked by paralysis, spinothalamic sensory deficit and loss of sphincter control depending on where the lesion is. Treatment of spinal cord infarction focuses on rehabilitation with diverse outcomes. This report presents a case of acute spinal cord infarction with acquisition of MRI to aid diagnosis. PMID:24966260

  12. Spinal cord infarction: a rare cause of paraplegia.

    PubMed

    Patel, Sonali; Naidoo, Khimara; Thomas, Peter

    2014-06-25

    Spinal cord infarction is rare and represents a diagnostic challenge for many physicians. There are few reported cases worldwide with a prevalence of 1.2% of all strokes. Circulation to the spinal cord is supplied by a rich anastomosis. The anterior spinal artery supplies the anterior two thirds of the spinal cord and infarction to this area is marked by paralysis, spinothalamic sensory deficit and loss of sphincter control depending on where the lesion is. Treatment of spinal cord infarction focuses on rehabilitation with diverse outcomes. This report presents a case of acute spinal cord infarction with acquisition of MRI to aid diagnosis.

  13. Causes of Spinal Cord Injury

    PubMed Central

    2013-01-01

    Background: Knowledge of the causes of spinal cord injury (SCI) and associated factors is critical in the development of successful prevention programs. Objective: This study analyzed data from the National SCI Database (NSCID) and National Shriners SCI Database (NSSCID) in the United States to examine specific etiologies of SCI by age, sex, race, ethnicity, day and month of injury, and neurologic outcomes. Methods: NSCID and NSSCID participants who had a traumatic SCI from 2005 to 2011 with known etiology were included in the analyses (N=7,834). Thirty-seven causes of injury documented in the databases were stratified by personal characteristics using descriptive analysis. Results: The most common causes of SCI were automobile crashes (31.5%) and falls (25.3%), followed by gunshot wounds (10.4%), motorcycle crashes (6.8%), diving incidents (4.7%), and medical/surgical complications (4.3%), which collectively accounted for 83.1% of total SCIs since 2005. Automobile crashes were the leading cause of SCI until age 45 years, whereas falls were the leading cause after age 45 years. Gunshot wounds, motorcycle crashes, and diving caused more SCIs in males than females. The major difference among race/ethnicity was in the proportion of gunshot wounds. More SCIs occurred during the weekends and warmer months, which seemed to parallel the increase of motorcycle- and diving-related SCIs. Level and completeness of injury are also associated with etiology of injury. Conclusions: The present findings suggest that prevention strategies should be tailored to the targeted population and major causes to have a meaningful impact on reducing the incidence of SCI. PMID:23678280

  14. Primary Multifocal Gliosarcoma of the Spinal Cord

    PubMed Central

    Kumar, Ramesh M.; Finn, Michael

    2016-01-01

    Gliosarcoma (GS) is a rare and exceedingly malignant neoplasm of the central nervous system. It displays clinical features similar to glioblastoma, yet is histologically unique as it harbors both gliomatous and sarcomatous cellular components. Involvement of the neuro-axis is predominantly limited to the cerebral parenchyma and meninges. Primary GS of the spinal cord is rarely encountered. We report a case of a 54 year old male who presented with 2 months of progressive, bilateral lower extremity sensory deficits. Magnetic resonance imaging of the neuro-axis revealed multiple intradural lesions involving the cervical and thoracic spinal cord without evidence of intracranial involvement. Surgical resection of a dural based, extramedullary cervical lesion and two exophytic, intramedullary thoracic lesions revealed gliosarcoma, WHO grade IV. The patient died approximately 11 months after presentation. This report confirms that GS is not limited to supratentorial involvement and can primarily affect the spinal cord. PMID:27134708

  15. Intractable Pruritus After Traumatic Spinal Cord Injury

    PubMed Central

    Crane, Deborah A; Jaffee, Kenneth M; Kundu, Anjana

    2009-01-01

    Background: This report describes a young woman with incomplete traumatic cervical spinal cord injury and intractable pruritus involving her dorsal forearm. Method: Case report. Findings: Anatomic distribution of the pruritus corresponded to the dermatomal distribution of her level of spinal cord injury and vertebral fusion. Symptoms were attributed to the spinal cord injury and possible cervical root injury. Pruritus was refractory to all treatments, including topical lidocaine, gabapentin, transcutaneous electrical nerve stimulation, intravenous Bier block, stellate ganglion block, and acupuncture. Conclusions: Further understanding of neuropathic pruritus is needed. Diagnostic workup of intractable pruritus should include advanced imaging to detect ongoing nerve root compression. If diagnostic studies suggest radiculopathy, epidural steroid injection should be considered. Because the autonomic nervous system may be involved in complex chronic pain or pruritic syndromes, sympatholysis via such techniques as stellate ganglion block might be effective. PMID:19777867

  16. Applier tool for intradural spinal cord implants.

    PubMed

    Oya, H; Reddy, C G; Dahdaleh, N S; Wilson, S; Howard, M A; Jeffery, N D; Utz, M; Gillies, G T

    2012-04-01

    We have designed, built and tested a novel device for placing intradural neurmodulator implants directly on the pial surface of the spinal cord. This applier tool is designed for ergonomic handling of delicate electro-mechanical devices such as the Iowa-Patch™ spinal cord stimulator implant, which is aimed at overcoming certain shortcomings in the performance of standard epidural stimulator devices. The applier is approximately 14 cm long, 6 mm in diameter, made of stainless steel components, and has simple and reliable mechanisms for the attachment and release of the implant from it. We describe the design of the device, details of its construction, and its performance during in vivo testing of somatosensory evoked potentials in an ovine model of intradural spinal cord stimulation. PMID:22339111

  17. Temporal distribution of Hig-1 (hypoxia-induced gene 1) mRNA and protein in rat spinal cord: changes during postnatal life.

    PubMed

    Bedó, Gabriela; Lagos, Patricia; Agrati, Daniella

    2012-07-01

    Several cellular and molecular events responsible for the development of the central nervous system (CNS), particularly those related to the development of ordered neural connections, occur during the first days of postnatal life, being days 1 through 10 a critical period to reach maturity and establish innervations. We have previously characterized hypoxia-induced gene 1 (Hig-1) and described an increase in its expression from day 1 to 15 of postnatal life in the spinal cord. Hig-1 mRNA has an open reading frame for a 93 amino acid protein, but its function has not been completely elucidated. Recently, several analyses in many cell types have related Hig-1 expression with differentiation or cell death/survival balance. With the aim of further characterizing the presence of Hig-1 in the CNS, we analyzed the cellular distribution of HIG-1 protein in rat's spinal cord at postnatal days 1, 8, 15, and 90 (P1-P90). We found an interesting change in the protein expression pattern, shifting from neurons at P1 to glial cells at P90, which points towards a functional role for this protein in the spinal cord throughout development. We also compared the protein distribution with the cellular distribution of the mRNA and of an antisense RNA.

  18. Hypocretinergic control of spinal cord motoneurons.

    PubMed

    Yamuy, Jack; Fung, Simon J; Xi, Mingchu; Chase, Michael H

    2004-06-01

    Hypocretinergic (orexinergic) neurons in the lateral hypothalamus project to motor columns in the lumbar spinal cord. Consequently, we sought to determine whether the hypocretinergic system modulates the electrical activity of motoneurons. Using in vivo intracellular recording techniques, we examined the response of spinal motoneurons in the cat to electrical stimulation of the lateral hypothalamus. In addition, we examined the membrane potential response to orthodromic stimulation and intracellular current injection before and after both hypothalamic stimulation and the juxtacellular application of hypocretin-1. It was found that (1) hypothalamic stimulation produced a complex sequence of depolarizing- hyperpolarizing potentials in spinal motoneurons; (2) the depolarizing potentials decreased in amplitude after the application of SB-334867, a hypocretin type 1 receptor antagonist; (3) the EPSP induced by dorsal root stimulation was not affected by the application of SB-334867; (4) subthreshold stimulation of dorsal roots and intracellular depolarizing current steps produced spike potentials when applied in concert to stimulation of the hypothalamus or after the local application of hypocretin-1; (5) the juxtacellular application of hypocretin-1 induced motoneuron depolarization and, frequently, high-frequency discharge; (6) hypocretin-1 produced a significant decrease in rheobase (36%), membrane time constant (16.4%), and the equalizing time constant (23.3%); (7) in a small number of motoneurons, hypocretin-1 produced an increase in the synaptic noise; and (8) the input resistance was not affected after hypocretin-1. The juxtacellular application of vehicle (saline) and denatured hypocretin-1 did not produce changes in the preceding electrophysiological properties. We conclude that hypothalamic hypocretinergic neurons are capable of modulating the activity of lumbar motoneurons through presynaptic and postsynaptic mechanisms. The lack of hypocretin-induced

  19. Turkish Adaptation of Spinal Cord Independence Measure--Version III

    ERIC Educational Resources Information Center

    Kesiktas, Nur; Paker, Nurdan; Bugdayci, Derya; Sencan, Sureyya; Karan, Ayse; Muslumanoglu, Lutfiye

    2012-01-01

    Various rating scales have been used to assess ability in individuals with spinal cord injury. There is no specific functional assessment scale for Turkish patients with spinal cord injury. The Spinal Cord Independence Measure (SCIM) is a specific test, which has become popular in the last decade. A study was conducted to validate and evaluate the…

  20. Sexuality Counseling with Clients Who Have Spinal Cord Injuries.

    ERIC Educational Resources Information Center

    Farrow, Jeff

    1990-01-01

    Examines effects of spinal cord injury on sexuality. Discusses areas of sexual concern. Provides suggestions for treating clients with spinal cord injuries experiencing sexual difficulties. Concludes that major goal in working with clients with spinal cord injuries who have sexual difficulties should be the facilitation of a creative and…

  1. Radiotherapy-induced tumors of the spine, peripheral nerve, and spinal cord: Case report and literature review

    PubMed Central

    Falavigna, Asdrubal; da Silva, Pedro Guarise; Teixeira, William

    2016-01-01

    Background: The development of a secondary malignancy in the field of radiation is a rare but well-recognized hazard of cancer treatment. The radiotherapy-induced (RT-I) tumors are even more aggressive and potentially lethal than the primary tumor. To goal of this article is to report a case of RT-I neural tumor located in the peripheral nerve and spinal cord and to perform a literature review of the subject. Case Reports: Thirty-year male with symptoms of hypoesthesia and dysesthesia of the L5 nerve root distribution and previous treatment of a testicular seminoma 20 years previously. The lumbar magnetic resonance imaging showed the growth of a nerve root tumor. Surgery was performed, and a fusiform tumor was resected with clear margins. The anatomopathological and immunohistochemical studies were compatible with a malignant peripheral nerve sheath tumor. A total of 30 cases were included in the review. The mean age of the patients at diagnosis of the induced tumor was 39.36 (±16.74) years. Most were male (63.3%). The main type of primary disease was neural tumors (30%). The most common type of histology was fibrosarcoma (20.0%). No difference was found in age, gender, and time of diagnosis between neural and nonneural tumors. The mean survival after the diagnosis of the secondary tumor was 10.7 months (±13.27), and neural tumors had a longer survival period (P = 0.031). Conclusion: The current gold standard therapy is complete resection with clear margins, since most tumors do not respond to chemotherapy and RT. The neural type of RT-I tumor presented a longer survival period. PMID:26958426

  2. Chronic prenatal stress epigenetically modifies spinal cord BDNF expression to induce sex specific visceral hypersensitivity in offspring

    PubMed Central

    Winston, John H.; Li, Qingjie; Sarna, Sushil K.

    2014-01-01

    Background Irritable bowel syndrome (IBS) is a heterogeneous disorder with abdomen pain as one of the primary symptoms. The etiology of IBS remains unknown. Epidemiological studies found that a subset of these patients have a history of adverse early-life events. We tested the hypothesis that chronic prenatal stress (CPS) epigenetically enhances brain-derived neurotrophic factor (BDNF) in spinal cord to aggravate colon sensitivity to colorectal distension (CRD) differentially in male and female offspring. Methods We used heterotypic intermittent chronic stress (HeICS) protocols in pregnant dams from E11 until delivery. Results CPS induced significant visceral hypersensitivity (VHS) to CRD in male and female offspring. A second exposure to HeICS in adult offspring exacerbated VHS greater in female offspring that persisted longer than in male offspring. CPS upregulated BDNF expression in the lumbar-sacral dorsal horn that correlated with the exacerbation of VHS in female, but not in male offspring. The upregulation of BDNF was due to a significant increase in RNA Pol II binding, histone H3 acetylation and significant decrease in histone deacetylase 1 association with the core promoter of BDNF in female offspring. Other chronic prenatal and neonatal stress protocols were less effective than HeICS. Conclusion & Inferences The development of visceral hypersensitivity, which contributes to the symptom of intermittent abdominal pain, is a two-step process, chronic in utero stress followed by chronic stress in adult-life. This two-step process induces aggravated and persistent colon hypersensitivity in female than in male offspring. Our preclinical model explains several clinical features in IBS patients. PMID:24588943

  3. Proprioceptive pathways of the spinal cord.

    PubMed Central

    Schneider, R J; Kulics, A T; Ducker, T B

    1977-01-01

    In the Macaque, surgical lesions were made in the dorsal funiculus, in the dorsolateral funiculus, and through half of the spinal cord. The somatosensory and motor capacity of the animal were examined neurologically and electrophysiologically. The exact lesion was then confirmed pathologically in detail. The results of these experiments indicate that limb position information from the distal limb and proximal limb are relayed to the brain in two different fashions. Distal limb position information, especially the cortical representation of the limbs' volar surface as it moves in space, is drastically impaired by dorsal funiculus or posterior white column lesions. Proximal limb position may or may not be impaired by similar lesions, for this information while initially in the dorsal or posterior white columns is sorted out (as it ascends in the spinal cord) to the dorsolateral funiculus or white columns. For example, in the lower thoracic spinal cord, both distal and proximal hind limb sensation are impaired by posterior white column damage; in the cervical cord, only distal sensation is impaired by the same lesion, and proximal information is spared. We refer to this neuroanatomic rearranging as "fibre sorting", and we believe that it is clinically significant in spinal cord disease. Images PMID:408463

  4. Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury.

    PubMed

    Petrie, Michael A; Suneja, Manish; Faidley, Elizabeth; Shields, Richard K

    2014-02-01

    Spinal cord injury (SCI) is associated with muscle atrophy, transformation of muscle fibers to a fast fatigable phenotype, metabolic inflexibility (diabetes), and neurogenic osteoporosis. Electrical stimulation of paralyzed muscle may mitigate muscle metabolic abnormalities after SCI, but there is a risk for a fracture to the osteoporotic skeletal system. The goal of this study was to determine if low force stimulation (3 Hz) causes fatigue of chronically paralyzed muscle consistent with selected muscle gene expression profiles. We tested 29 subjects, nine with a SCI and 20 without and SCI, during low force fatigue protocol. Three SCI and three non-SCI subjects were muscle biopsied for gene and protein expression analysis. The fatigue index (FI) was 0.21 ± 0.27 and 0.91 ± 0.01 for the SCI and non-SCI groups, respectively, supporting that the low force protocol physiologically fatigued the chronically paralyzed muscle. The post fatigue potentiation index (PI) for the SCI group was increased to 1.60 ± 0.06 (P <0.001), while the non-SCI group was 1.26 ± 0.02 supporting that calcium handling was compromised with the low force stimulation. The mRNA expression from genes that regulate atrophy and fast properties (MSTN, ANKRD1, MYH8, and MYCBP2) was up regulated, while genes that regulate oxidative and slow muscle properties (MYL3, SDHB, PDK2, and RyR1) were repressed in the chronic SCI muscle. MSTN, ANKRD1, MYH8, MYCBP2 gene expression was also repressed 3 h after the low force stimulation protocol. Taken together, these findings support that a low force single twitch activation protocol induces paralyzed muscle fatigue and subsequent gene regulation. These findings suggest that training with a low force protocol may elicit skeletal muscle adaptations in people with SCI. PMID:24744911

  5. Flurbiprofen inhibits capsaicin induced calcitonin gene related peptide release from rat spinal cord via an endocannabinoid dependent mechanism.

    PubMed

    Seidel, Kay; Hamza, May; Ates, Mehmet; Gühring, Hans

    2003-02-27

    Calcitonin gene related peptide (CGRP) is involved in nociceptive transmission and modulation at the spinal level. In the spinal superperfusion model, Delta(9) tetrahydrocannabinol inhibited capsaicin induced CGRP release in a concentration dependent manner. Similarly, flurbiprofen (3 microM) inhibited spinal CGRP release. This inhibition was reversed by the CB(1) antagonist AM-251 (1 microM), but not by co-administration of prostaglandin E(2) (PGE(2); 285 nM). AM-251 had no modulatory effect on flurbiprofen-induced cyclooxygenase (COX) inhibiting capacity as shown by PGE(2) levels. Furthermore, the phospholipase A(2) inhibitor palmityl trifluromethyl ketone (15 microM) reversed flurbiprofen's inhibitory effect. In conclusion the present work provides evidence on the shift of arachidonic acid metabolism towards endocannabinoids formation in response to COX inhibition as a mechanism for flurbiprofen inhibitory effect on spinal CGRP release.

  6. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.

  7. Vinpocetine Reduces Carrageenan-Induced Inflammatory Hyperalgesia in Mice by Inhibiting Oxidative Stress, Cytokine Production and NF-κB Activation in the Paw and Spinal Cord

    PubMed Central

    Ruiz-Miyazawa, Kenji W.; Zarpelon, Ana C.; Pinho-Ribeiro, Felipe A.; Pavão-de-Souza, Gabriela F.; Casagrande, Rubia; Verri, Waldiceu A.

    2015-01-01

    Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels. PMID:25822523

  8. Accommodating Workers with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Dowler, Denetta; Batiste, Linda; Whidden, Eddie

    1998-01-01

    Examination of over 1,000 calls to the Job Accommodation Network involving workers with spinal cord injury identified the nature of the industry, job, career progression, and accessibility solutions. The number of calls increased dramatically after passage of the Americans with Disabilities Act. (SK)

  9. Employment Outcomes Following Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Engel, S.; Murphy, G. S.; Athanasou, J. A.; Hickey, L.

    1998-01-01

    A study of 83 Australian adults with spinal cord injuries found that at least 56% had worked at some time post-injury and those who were working when surveyed had done so for an average of close to 10 years. Clerical, office, and administrative occupations proved to be the most suitable. (Author/CR)

  10. Simplified spinal cord phantom for evaluation of SQUID magnetospinography

    NASA Astrophysics Data System (ADS)

    Adachi, Y.; Oyama, D.; Somchai, N.; Kawabata, S.; Uehara, G.

    2014-05-01

    Spinal cord functional imaging by magnetospinography (MSG) is a noninvasive diagnostic method for spinal cord diseases. However, the accuracy and spatial resolution of lesion localization by MSG have barely been evaluated in detail so far. We developed a simplified spinal cord phantom for MSG evaluation. The spinal cord phantom is composed of a cylindrical vessel filled with saline water, which acts as a model of a neck. A set of modeled vertebrae is arranged in the cylindrical vessel, which has a neural current model made from catheter electrodes. The neural current model emulates the current distribution around the activated site along the axon of the spinal cord nerve. Our MSG system was used to observe the magnetic field from the phantom; a quadrupole-like pattern of the magnetic field distribution, which is a typical distribution pattern for spinal cord magnetic fields, was successfully reproduced by the phantom. Hence, the developed spinal cord phantom can be used to evaluate MSG source analysis methods.

  11. A Neonatal Mouse Spinal Cord Compression Injury Model.

    PubMed

    Züchner, Mark; Glover, Joel C; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life(1), this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques(1). Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections(1). PMID:27078037

  12. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  13. Transcutaneous electrical spinal-cord stimulation in humans

    PubMed Central

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Edgerton, V. Reggie

    2016-01-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a “stepping” movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI. PMID:26205686

  14. Phenylbutyrate prevents disruption of blood-spinal cord barrier by inhibiting endoplasmic reticulum stress after spinal cord injury

    PubMed Central

    Zhou, Yulong; Ye, Libing; Zheng, Binbin; Zhu, Sipin; Shi, Hongxue; Zhang, Hongyu; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Li, Xiaokun; Xu, Huazi; Xiao, Jian

    2016-01-01

    This study aims to investigate the role of endocytoplasmic reticulum (ER) stress induced by spinal cord injury (SCI) in blood-spinal cord barrier (BSCB) disruption and the effect of phenylbutyrate (PBA) on BSCB disruption after SCI. After a moderate contusion injury at the T9 level of spinal cord with a vascular clip, PBA was immediately administered into injured rat via intraperitoneal injection (100 mg/kg) and then further treated once a day for 2 weeks for behavior test. Spinal cord was collected at 1 day post-injury for evaluation of the effects of ER stress and PBA on BSCB disruption after SCI. PBA significantly attenuated BSCB permeability and degradation of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 at 1 day after injury and improved functional recovery in the rat model of trauma. The BSCB protective effect of PBA is related to the inhibition of ER stress induced by SCI. In addition, PBA significantly inhibited the increase of ER stress markers and prevents loss of tight junction and adherens junction proteins in TG-treated human brain microvascular endothelial cells (HBMEC). Taken together, our data demonstrate that therapeutic strategies targeting ER stress may be suitable for the therapy of preserving BSCB integrity after SCI. PBA may be a new candidate as a therapeutic agent for protecting SCI by a compromised BSCB. PMID:27186310

  15. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.

    PubMed

    Stirling, David P; Cummins, Karen; Mishra, Manoj; Teo, Wulin; Yong, V Wee; Stys, Peter

    2014-03-01

    Improving neurological outcome after spinal cord injury is a major clinical challenge because axons, once severed, do not regenerate but 'dieback' from the lesion site. Although microglia, the immunocompetent cells of the brain and spinal cord respond rapidly to spinal cord injury, their role in subsequent injury or repair remains unclear. To assess the role of microglia in spinal cord white matter injury we used time-lapse two-photon and spectral confocal imaging of green fluorescent protein-labelled microglia, yellow fluorescent protein-labelled axons, and Nile Red-labelled myelin of living murine spinal cord and revealed dynamic changes in white matter elements after laser-induced spinal cord injury in real time. Importantly, our model of acute axonal injury closely mimics the axonopathy described in well-characterized clinically relevant models of spinal cord injury including contusive-, compressive- and transection-based models. Time-lapse recordings revealed that microglia were associated with some acute pathophysiological changes in axons and myelin acutely after laser-induced spinal cord injury. These pathophysiological changes included myelin and axonal spheroid formation, spectral shifts in Nile Red emission spectra in axonal endbulbs detected with spectral microscopy, and 'bystander' degeneration of axons that survived the initial injury, but then succumbed to secondary degeneration. Surprisingly, modulation of microglial-mediated release of neurotoxic molecules failed to protect axons and myelin. In contrast, sterile stimulation of microglia with the specific toll-like receptor 2 agonist Pam2CSK4 robustly increased the microglial response to ablation, reduced secondary degeneration of central myelinated fibres, and induced an alternative (mixed M1:M2) microglial activation profile. Conversely, Tlr2 knock out: Thy1 yellow fluorescent protein double transgenic mice experienced greater axonal dieback than littermate controls. Thus, promoting an alternative

  16. Radiation Dose-Volume Effects in the Spinal Cord

    SciTech Connect

    Kirkpatrick, John P.; Kogel, Albert J. van der; Schultheiss, Timothy E.

    2010-03-01

    Dose-volume data for myelopathy in humans treated with radiotherapy (RT) to the spine is reviewed, along with pertinent preclinical data. Using conventional fractionation of 1.8-2 Gy/fraction to the full-thickness cord, the estimated risk of myelopathy is <1% and <10% at 54 Gy and 61 Gy, respectively, with a calculated strong dependence on dose/fraction (alpha/beta = 0.87 Gy.) Reirradiation data in animals and humans suggest partial repair of RT-induced subclinical damage becoming evident about 6 months post-RT and increasing over the next 2 years. Reports of myelopathy from stereotactic radiosurgery to spinal lesions appear rare (<1%) when the maximum spinal cord dose is limited to the equivalent of 13 Gy in a single fraction or 20 Gy in three fractions. However, long-term data are insufficient to calculate a dose-volume relationship for myelopathy when the partial cord is treated with a hypofractionated regimen.

  17. Orexin-B antagonized respiratory depression induced by sevoflurane, propofol, and remifentanil in isolated brainstem-spinal cords of neonatal rats.

    PubMed

    Umezawa, Nobuo; Arisaka, Hirofumi; Sakuraba, Shigeki; Sugita, Takeo; Matsumoto, Akiko; Kaku, Yuki; Yoshida, Kazu-ichi; Kuwana, Shun-ichi

    2015-01-01

    Orexins (hypocretins) play a crucial role in arousal, feeding, and endocrine function. We previously reported that orexin-B activated respiratory neurons in the isolated brainstem-spinal cords of neonatal rats. We herein determined whether orexin-B antagonized respiratory depression induced by sevoflurane, propofol, or remifentanil. We recorded C4 nerve bursts as an index of inspiratory activity in a brainstem-spinal cord preparation. The preparation was superfused with a solution equilibrated with 3% sevoflurane alone for 10 min and the superfusate was then switched to a solution containing sevoflurane plus orexin-B. Sevoflurane decreased the C4 burst rate and the integrated C4 amplitude. The C4 burst rate and amplitude were reversed by 0.5 μM orexin-B, but not by 0.1 μM orexin-B. The decrease induced in the C4 burst rate by 10 μM propofol or 0.01 μM remifentanil was significantly antagonized by 0.1 μM orexin-B. Respiratory depression induced by a higher concentration (0.1 μM) of remifentanil was not restored by 0.1 μM orexin-B. These results demonstrated that orexin-B antagonized respiratory depression induced by sevoflurane, propofol, or remifentanil.

  18. Learning from the spinal cord: How the study of spinal cord plasticity informs our view of learning

    PubMed Central

    Grau, James W.

    2013-01-01

    The paper reviews research examining whether and how training can induce a lasting change in spinal cord function. A framework for the study of learning, and some essential issues in experimental design, are discussed. A core element involves delayed assessment under common conditions. Research has shown that brain systems can induce a lasting (memory-like) alteration in spinal function. Neurons within the lower (lumbosacral) spinal cord can also adapt when isolated from the brain by means of a thoracic transection. Using traditional learning paradigms, evidence suggests that spinal neurons support habituation and sensitization as well as Pavlovian and instrumental conditioning. At a neurobiological level, spinal systems support phenomena (e.g., long-term potentiation), and involve mechanisms (e.g., NMDA mediated plasticity, protein synthesis) implicated in brain-dependent learning and memory. Spinal learning also induces modulatory effects that alter the capacity for learning. Uncontrollable/unpredictable stimulation disables the capacity for instrumental learning and this effect has been linked to the cytokine tumor necrosis factor (TNF). Predictable/controllable stimulation enables learning and counters the adverse effects of uncontrollable simulation through a process that depends upon brain-derived neurotrophic factor (BDNF). Finally, uncontrollable, but not controllable, nociceptive stimulation impairs recovery after a contusion injury. A process-oriented approach (neurofunctionalism) is outlined that encourages a broader view of learning phenomena. PMID:23973905

  19. Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury

    PubMed Central

    Hou, Shaoping; Carson, David M.; Wu, Di; Klaw, Michelle C.; Houlé, John D.; Tom, Veronica J.

    2016-01-01

    Dopamine (DA) neurons in the mammalian central nervous system are thought to be restricted to the brain. DA-mediated regulation of urinary activity is considered to occur through an interaction between midbrain DA neurons and the pontine micturition center. Here we show that DA is produced in the rat spinal cord and modulates the bladder reflex. We observed numerous tyrosine hydroxylase (TH)+ neurons in the autonomic nuclei and superficial dorsal horn in L6–S3 spinal segments. These neurons are dopamine-β-hydroxylase (DBH)− and some contain detectable dopamine decarboxylase (DDC), suggesting their capacity to produce DA. Interestingly, following a complete thoracic spinal cord injury (SCI) to interrupt supraspinal projections, more TH+ neurons emerged in the lumbosacral spinal cord, coincident with a sustained, low level of DA expression there and a partially recovered micturition reflex. Non-selective blockade of spinal DA receptors reduced bladder activity whereas activation of spinal D2-like receptors increased bladder activity and facilitated voiding. Additionally, depletion of lumbosacral TH+ neurons with 6-hydroxydopamine (6-OHDA) decreased bladder non-voiding contractions and voiding efficiency. Furthermore, injecting the transsynaptic neuronal tracer pseudorabies virus (PRV) into the bladder detrusor labeled TH+ cells in the lumbosacral cord, confirming their involvement in spinal micturition reflex circuits. These results illustrate that DA is synthesized in the rat spinal cord; plasticity of lumbosacral TH+ neurons following SCI may contribute to DA expression and modulate the spinal bladder reflex. Thus, spinally-derived DA and receptors could be a novel therapeutic target to improve micturition recovery after SCI. PMID:26655672

  20. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    PubMed Central

    Zhang, Chao; Wang, Chendan; Ren, Jianbo; Guo, Xiangjie; Yun, Keming

    2016-01-01

    Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress. PMID:27783050

  1. Multiple sclerosis of the spinal cord: Magnetic resonance appearance

    SciTech Connect

    Thielen, K.R.; Miller, G.M.

    1996-05-01

    To determine the MR appearance of spinal cord multiple sclerosis (MS) plaques in patients presenting with myclopathy by using a high-field (1.5 T) imager. We studied 119 patients who underwent high-field (1.5 T) MR studies of the spinal cord for evaluation of myelopathy. All 119 patients were thought to have possible findings of spinal cord MS at the time of the MRI interpretation. Sixty-four plaques were studied in 47 patients with clinically definite MS and adequate quality MRI. Of these patients 68% had a single spinal cord plaque, 19% had two plaques, and 13% had three or more plaques. Sixty-two percent of the plaques occurred in the cervical spinal cord and most frequently involved the posterior (41%) and lateral (25%) aspects of the spinal cord. None of the 64 lesions involved the entire thickness of the spinal cord. The lesion length varied from 2 to 60 mm, with 84% of the lesions <15 mm in length. The spinal cord diameter was unchanged in 84% of plaques, enlarged at the level of the lesion in 14%, and atrophic in 2%. Just over half (55%) of the plaques enhanced with intravenously administered gadolinium. Of the patients who received synchronous head and spinal cord examinations on the same day, 24% had normal findings on the MR study of the head. Follow-up spinal cord studies were available in nine patients. New lesions developed in two patients, while previously described lesions resolved. In three patients only new lesions developed. In four patients no change occurred in the existing number of cord plaques. Spinal cord demyelinating plaques present as well-circumscribed foci of increased T2 signal that asymmetrically involve the spinal cord parenchyma. Knowledge of their usual appearance may prevent unnecessary biopsy. An MR examination of the head may confirm the imaging suggestion of spinal cord demyelinating disease, because up to 76% of patients have abnormal intracranial findings. 15 refs., 7 figs.

  2. Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model.

    PubMed

    Choi, Bo Young; Kim, In Yeol; Kim, Jin Hee; Kho, A Ra; Lee, Song Hee; Lee, Bo Eun; Sohn, Min; Koh, Jae-Young; Suh, Sang Won

    2016-10-01

    The present study aimed to evaluate the role of zinc transporter 3 (ZnT3) on multiple sclerosis (MS) pathogenesis. Experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis, was induced by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) in female mice. Three weeks after the initial immunization, demyelination, immune cell infiltration and blood brain barrier (BBB) disruption in the spinal cord were analyzed. Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. ZnT3 gene deletion profoundly reduced the daily clinical score of EAE. The ZnT3 gene deletion-mediated inhibition of the clinical course of EAE was accompanied by suppression of inflammation and demyelination in the spinal cord. The motor deficit accompanying neuropathological changes associated with EAE were mild in ZnT3 gene deletion mice. This reduction in motor deficit was accompanied by coincident reductions in demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, CD20+ B cells and F4/80+ microglia in the spinal cord. These results demonstrate that ZnT3 gene deletion inhibits the clinical features and neuropathological changes associated with EAE. ZnT3 gene deletion also remarkably inhibited formation of EAE-associated aberrant synaptic zinc patches, matrix metalloproteinases-9 (MMP-9) activation and BBB disruption. Therefore, amelioration of EAE-induced clinical and neuropathological changes by ZnT3 gene deletion suggests that vesicular zinc may be involved in several steps of MS pathogenesis.

  3. G-CSF promotes autophagy and reduces neural tissue damage after spinal cord injury in mice.

    PubMed

    Guo, Yuji; Liu, Shangming; Zhang, Xianghong; Wang, Liyan; Gao, Jiangang; Han, Aiqing; Hao, Aijun

    2015-12-01

    Granulocyte colony-stimulating factor (G-CSF) was investigated for its capacity to induce autophagy and related neuroprotective mechanisms in an acute spinal cord injury model. To accomplish this goal, we established a mouse spinal cord hemisection model to test the effects of recombinant human G-CSF. The results showed that autophagy was activated after spinal cord injury and G-CSF appears to induce a more rapid activation of autophagy within injured spinal cords as compared with that of non-treated animals. Apoptosis as induced in mechanically injured neurons with G-CSF treatment was enhanced after inhibiting autophagy by 3-methyladenine (3-MA), which partially blocked the neuroprotective effect of autophagy as induced by G-CSF. In addition, G-CSF inhibited the activity of the NF-κB signal pathway in neurons after mechanical injury. We conclude that G-CSF promotes autophagy by inhibiting the NF-κB signal pathway and protects neuronal structure after spinal cord injury. We therefore suggest that G-CSF, which rapidly induces autophagy after spinal cord injury to inhibit neuronal apoptosis, may thus provide an effective auxiliary therapeutic intervention for spinal cord injury.

  4. Protocols for Ectopic Hair Growth from Transplanted Whisker Follicles on the Spinal Cord of Mice.

    PubMed

    Cao, Wenluo; Liu, Fang; Amoh, Yasuyuki; Hoffman, Robert M

    2016-01-01

    Isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice, containing hair-associated pluripotent (HAP) stem cells, were histocultured in three dimensions on Gelfoam(®) for 3 weeks for subsequent transplantation to the spinal cord in order to heal an induced injury with the HAP stem cells. The hair shafts were removed from Gelfoam(®)-histocultured whisker follicles, and the remaining parts of the whisker follicles, containing GFP-nestin-expressing (HAP) stem cells, were transplanted into the injured spinal cord of nude mice, along with the Gelfoam(®). After 90 days, the mice were sacrificed and the spinal cord injuries were observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the HAP stem cells were involved in healing the spinal cord. The transplanted whisker follicles produced remarkably long hair shafts in the spinal cord over 90 days and curved and enclosed the spinal cord. This result changes our concept of hair growth, demonstrating it is not limited to the skin and that hair growth appears related to HAP stem cells as both increased in tandem on the spinal cord.

  5. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  6. Spinal cord injury following an attempted thoracic epidural.

    PubMed

    Mayall, M F; Calder, I

    1999-10-01

    Unsuccessful attempts were made to insert a thoracic epidural in an anaesthetised patient. Signs of spinal cord damage were observed the following day. Magnetic resonance imaging demonstrated a haematoma anterior to the spinal cord. Surgical exploration revealed an intradural haematoma and a needle puncture of the cord. The patient suffered a permanent paraparesis.

  7. Acute central cervical spinal cord syndrome.

    PubMed

    Morse, S D

    1982-08-01

    Two cases of the acute central cervical spinal cord syndrome are presented. A 63-year-old diabetic hypertensive man manifested the syndrome as a result of atraumatic ischemia of the cord. A 32-year-old health man developed it after sustaining a hyperextension injury in a baseball game. The pathogenesis and pathophysiology of this entity are reviewed. Knowledge of this entity is of major importance in the analysis and management of head and neck trauma, as well as in the recognition and management of atraumatic neurologic dysfunction due to ischemia, hemorrhage, or thrombosis.

  8. Autocrine fibronectin from differentiating mesenchymal stem cells induces the neurite elongation in vitro and promotes nerve fiber regeneration in transected spinal cord injury.

    PubMed

    Zeng, Xiang; Ma, Yuan-Huan; Chen, Yuan-Feng; Qiu, Xue-Cheng; Wu, Jin-Lang; Ling, Eng-Ang; Zeng, Yuan-Shan

    2016-08-01

    Extracellular matrix (ECM) expression is temporally and spatially regulated during the development of stem cells. We reported previously that fibronectin (FN) secreted by bone marrow mesenchymal stem cells (MSCs) was deposited on the surface of gelatin sponge (GS) soon after culture. In this study, we aimed to assess the function of accumulated FN on neuronal differentiating MSCs as induced by Schwann cells (SCs) in three dimensional transwell co-culture system. The expression pattern and amount of FN of differentiating MSCs was examined by immunofluorescence, Western blot and immunoelectron microscopy. The results showed that FN accumulated inside GS scaffold, although its mRNA expression in MSCs was progressively decreased during neural induction. MSC-derived neuron-like cells showed spindle-shaped cell body and long extending processes on FN-decorated scaffold surface. However, after blocking of FN function by application of monoclonal antibodies, neuron-like cells showed flattened cell body with short and thick neurites, together with decreased expression of integrin β1. In vivo transplantation study revealed that autocrine FN significantly facilitated endogenous nerve fiber regeneration in spinal cord transection model. Taken together, the present results showed that FN secreted by MSCs in the early stage accumulated on the GS scaffold and promoted the neurite elongation of neuronal differentiating MSCs as well as nerve fiber regeneration after spinal cord injury. This suggests that autocrine FN has a dynamic influence on MSCs in a three dimensional culture system and its potential application for treatment of traumatic spinal cord injury. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1902-1911, 2016. PMID:26991461

  9. Chronic prostatitis in spinal cord injury patients.

    PubMed

    Wyndaele, J J

    1985-06-01

    Six spinal cord injury patients with chronic prostatitis were reviewed, all of whom had been treated with an indwelling Foley catheter during the phase of spinal shock. The 3 glass urine specimen test, the bladder wash-out test, a study of antibody coated bacteria and urethrography had limited diagnostic value. A specific diagnostic 5 glass specimen test proved to be useful and reliable. Longterm antibiotic treatment was successful in only one patient. Injection of antibiotics into the prostate gland was ineffective in the five patients in whom it was carried out. During a follow up from 1 to 5 years urological complications were rare in all five patients who remained infected.

  10. Spinal Cord Tolerance for Stereotactic Body Radiotherapy

    SciTech Connect

    Sahgal, Arjun; Ma Lijun; Gibbs, Iris; Gerszten, Peter C.; Ryu, Sam; Soltys, Scott; Weinberg, Vivian; Wong Shun; Chang, Eric; Fowler, Jack; Larson, David A.

    2010-06-01

    Purpose: Dosimetric data are reported for five cases of radiation-induced myelopathy after stereotactic body radiotherapy (SBRT) to spinal tumors. Analysis per the biologically effective dose (BED) model was performed. Methods and Materials: Five patients with radiation myelopathy were compared to a subset of 19 patients with no radiation myelopathy post-SBRT. In all patients, the thecal sac was contoured to represent the spinal cord, and doses to the maximum point, 0.1-, 1-, 2-, and 5-cc volumes, were analyzed. The mean normalized 2-Gy-equivalent BEDs (nBEDs), calculated using an alpha/beta value of 2 for late toxicity with units Gy 2/2, were compared using the t test and analysis of variance test. Results: Radiation myelopathy was observed at the maximum point with doses of 25.6 Gy in two fractions, 30.9 Gy in three fractions, and 14.8, 13.1, and 10.6 Gy in one fraction. Overall, there was a significant interaction between patient subsets and volume based on the nBED (p = 0.0003). Given individual volumes, a significant difference was observed for the mean maximum point nBED (p = 0.01). Conclusions: The maximum point dose should be respected for spine SBRT. For single-fraction SBRT 10 Gy to a maximum point is safe, and up to five fractions an nBED of 30 to 35 Gy 2/2 to the thecal sac also poses a low risk of radiation myelopathy.

  11. Antagonist-induced micro-opioid receptor up-regulation decreases G-protein receptor kinase-2 and dynamin-2 abundance in mouse spinal cord.

    PubMed

    Patel, Minesh; Gomes, Benedict; Patel, Chintan; Yoburn, Byron C

    2002-06-20

    Chronic treatment with opioid receptor antagonists has been shown to increase the density of micro-, delta- and kappa-opioid receptors in cell culture and in the intact animal. Although opioid receptor antagonist-induced up-regulation is a robust phenomenon, the mechanisms responsible for the increase in receptor density remain unclear. In the present study, changes in a kinase and a GTPase that have been implicated in G-protein-coupled receptor regulation were examined following opioid receptor antagonist treatment. Mice were implanted s.c. with a naltrexone pellet or placebo pellet. On the eighth day following implantation, spinal cord was removed and G-protein receptor kinase-2 (GRK-2) and dynamin-2 abundance were determined using a quantitative immunoblot approach. Changes in micro-opioid receptor density were also determined. Naltrexone treatment produced a significant (145%) increase in micro-opioid receptor density. Naltrexone treatment was associated with a significant 36% decrease in GRK-2 and 30% decrease in dynamin-2 abundance in spinal cord. These data raise the possibility that opioid receptor antagonist-induced micro-opioid receptor up-regulation in the intact animal may be due to a reduction in constitutive internalization of opioid receptors.

  12. Technique of spinal cord compression induced by inflation of epidural balloon catheter in rabbits (Oryctologus cuniculus): efficient and easy to use model.

    PubMed

    Fonseca, Antonio F B DA; Scheffer, Jussara P; Coelho, Barbara P; Aiello, Graciane; Guimarães, Arthur G; Gama, Carlos R B; Vescovini, Victor; Cabral, Paula G A; Oliveira, André L A

    2016-09-01

    The most common cause of spinal cord injury are high impact trauma, which often result in some motor impairment, sensory or autonomic a greater or lesser extent in the distal areas the level of trauma. In terms of survival and complications due to sequelae, veterinary patients have a poor prognosis unfavorable. Therefore justified the study of experimental models of spinal cord injury production that could provide more support to research potential treatments for spinal cord injuries in medicine and veterinary medicine. Preclinical studies of acute spinal cord injury require an experimental animal model easily reproducible. The most common experimental animal model is the rat, and several techniques for producing a spinal cord injury. The objective of this study was to describe and evaluate the effectiveness of acute spinal cord injury production technique through inflation of Fogarty(r) catheter using rabbits as an experimental model because it is a species that has fewer conclusive publications and contemplating. The main requirements of a model as low cost, handling convenience, reproducibility and uniformity. The technique was adequate for performing preclinical studies in neuro-traumatology area, effectively leading to degeneration and necrosis of the nervous tissue fostering the emergence of acute paraplegia.

  13. Thoracic spinal cord compression by a tophus.

    PubMed

    Ntsiba, Honoré; Makosso, Edouard; Moyikoua, Armand

    2010-03-01

    We report a case of thoracic (T10) spinal cord compression by a tophus in a patient with known chronic gout. Spastic paraplegia developed gradually over 6 months in this 43-year-old man with hypertension, alcohol abuse, and chronic gouty arthritis with tophi. Magnetic resonance imaging and computed tomography visualized an intradural nodule measuring 1.5cm in diameter at the level of T10, as well as geodes in the left T10 lamina and left T9-T10 articular processes. The nodule was removed surgically and shown by histological examination to be a tophus. The neurological impairments resolved rapidly and completely. We found about 60 similar cases in the literature. Spinal cord compression in a patient with chronic gout can be caused by a tophus.

  14. Growing up with a spinal cord injury.

    PubMed

    Johnson, K M; Berry, E T; Goldeen, R A; Wicker, E

    1991-04-01

    Much of what we need to know to be independent adults is learned in the first five years of life. In the toddler, instead of reteaching learned skills, as we do with older spinal cord injury persons, we are teaching skills for the first time. It is therefore imperative to have a creative therapeutic team who can teach skills which were never acquired and encourage the child's cognitive growth as well as growth towards independence. This paper will include a case report of a 2 year-old C3-4 quadriplegic child rehabilitated through an interdisciplinary family-centered model of care. We will share some of the issues our team has encountered when "rehabilitating" very young children with spinal cord injuries based on the observations of the team members as well as the scant literature available. This will also include a parent's reflections of modification needed in family structure and roles. PMID:2011723

  15. Comprehensive assessment of walking function after human spinal cord injury.

    PubMed

    Awai, Lea; Curt, Armin

    2015-01-01

    Regaining any locomotor function after spinal cord injury is not only of immediate importance for affected patients but also for clinical research as it allows to investigate mechanisms underlying motor impairment and locomotor recovery. Clinical scores inform on functional outcomes that are clinically meaningful to value effects of therapy while they all lack the ability to explain underlying mechanisms of recovery. For this purpose, more elaborate recordings of walking kinematics combined with assessments of spinal cord conductivity and muscle activation patterns are required. A comprehensive assessment framework comprising of multiple complementary modalities is necessary. This will not only allow for capturing even subtle changes induced by interventions that are likely missed by standard clinical outcome measures. It will be fundamental to attribute observed changes to naturally occurring spontaneous recovery in contrast to specific changes induced by novel therapeutic interventions beyond the improvements achieved by conventional therapy.

  16. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy.

    PubMed

    Zhang, Jinlong; Lu, Xiaohui; Feng, Guijuan; Gu, Zhifeng; Sun, Yuyu; Bao, Guofeng; Xu, Guanhua; Lu, Yuanzhou; Chen, Jiajia; Xu, Lingfeng; Feng, Xingmei; Cui, Zhiming

    2016-10-01

    Cell-based transplantation strategies hold great potential for spinal cord injury (SCI) repair. Chitosan scaffolds have therapeutic benefits for spinal cord regeneration. Human dental pulp stem cells (DPSCs) are abundant available stem cells with low immunological incompatibility and can be considered for cell replacement therapy. The purpose of this study is to investigate the role of chitosan scaffolds in the neural differentiation of DPSCs in vitro and to assess the supportive effects of chitosan scaffolds in an animal model of SCI. DPSCs were incubated with chitosan scaffolds. Cell viability and the secretion of neurotrophic factors were analyzed. DPSCs incubated with chitosan scaffolds were treated with neural differentiation medium for 14 days and then neural genes and protein markers were analyzed by Western blot and reverse transcription plus the polymerase chain reaction. Our study revealed a higher cell viability and neural differentiation in the DPSC/chitosan-scaffold group. Compared with the control group, the levels of BDNF, GDNF, b-NGF, and NT-3 were significantly increased in the DPSC/chitosan-scaffold group. The Wnt/β-catenin signaling pathway played a key role in the neural differentiation of DPSCs combined with chitosan scaffolds. Transplantation of DPSCs together with chitosan scaffolds into an SCI rat model resulted in the marked recovery of hind limb locomotor functions. Thus, chitosan scaffolds were non-cytotoxic and provided a conducive and favorable microenvironment for the survival and neural differentiation of DPSCs. Transplantation of DPSCs might therefore be a suitable candidate for treating SCI and other neuronal degenerative diseases. PMID:27147262

  17. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury.

    PubMed

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-12-25

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.

  18. Rat hair follicle stem cells differentiate and promote recovery following spinal cord injury

    PubMed Central

    Najafzadeh, Nowruz; Nobakht, Maliheh; Pourheydar, Bagher; Golmohammadi, Mohammad Ghasem

    2013-01-01

    Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2′-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury. PMID:25206658

  19. Reducing cardiometabolic disease in spinal cord injury.

    PubMed

    Kressler, Jochen; Cowan, Rachel E; Bigford, Gregory E; Nash, Mark S

    2014-08-01

    Accelerated cardiometabolic disease is a serious health hazard after spinal cord injuries (SCI). Lifestyle intervention with diet and exercise remains the cornerstone of effective cardiometabolic syndrome treatment. Behavioral approaches enhance compliance and benefits derived from both diet and exercise interventions and are necessary to assure that persons with SCI profit from intervention. Multitherapy strategies will likely be needed to control challenging component risks, such as gain in body mass, which has far reaching implications for maintenance of daily function as well as health.

  20. Anorgasmia in anterior spinal cord syndrome.

    PubMed Central

    Berić, A; Light, J K

    1993-01-01

    Three male and two female patients with anorgasmia and dissociated sensory loss due to an anterior spinal cord syndrome are described. Clinical, neurophysiological and quantitative sensory evaluation revealed preservation of the large fibre dorsal column functions from the lumbosacral segments with concomitant severe dysfunction or absence of the small fibre neospinothalamic mediated functions. These findings indicate a role for the spinothalamic system in orgasm. PMID:8505649

  1. Spinal cord evolution in early Homo.

    PubMed

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. PMID:26553817

  2. Swim Training Initiated Acutely after Spinal Cord Injury Is Ineffective and Induces Extravasation In and Around the Epicenter

    PubMed Central

    Smith, Rebecca R.; Brown, Edward H.; Shum-Siu, Alice; Whelan, Ashley; Burke, Darlene A.; Benton, Richard L.

    2009-01-01

    Abstract Activity-based rehabilitation is a promising strategy for improving functional recovery following spinal cord injury (SCI). While results from both clinical and animal studies have shown that a variety of approaches can be effective, debate still exists regarding the optimal post-injury period to apply rehabilitation. We recently demonstrated that rats with moderately severe thoracic contusive SCI can be re-trained to swim when training is initiated 2 weeks after injury and that swim training had no effect on the recovery of overground locomotion. We concluded that swim training is a task-specific model of post-SCI activity-based rehabilitation. In the present study, we ask if re-training initiated acutely is more or less effective than when initiated at 2 weeks post-injury. Using the Louisville Swim Scale, an 18-point swimming assessment, supplemented by kinematic assessment of hindlimb movement during swimming, we report that acute re-training is less effective than training initiated at 2 weeks. Using the bioluminescent protein luciferase as a blood-borne macromolecular marker, we also show a significant increase in extravasation in and around the site of SCI following only 8 min of swimming at 3 days post-injury. Taken together, these results suggest that acute re-training in a rat model of SCI may compromise rehabilitation efforts via mechanisms that may involve one or more secondary injury cascades, including acute spinal microvascular dysfunction. PMID:19331515

  3. Experimental study and model validation of selective spinal cord and brain hypothermia induced by a simple torso-cooling pad.

    PubMed

    Smith, K D

    2011-06-01

    In vivo experiments have been performed to test the effectiveness of a torso-cooling pad to reduce the temperature in the spinal cord and brain in rats. Coolant was circulated through the cooling pad to provide either mild or moderate cooling. Temperatures in the brain tissue, on the head surface, and on the spine and back surfaces were measured. During mild cooling, the temperature on the back surface was 22.82 +/- 2.43 degrees C compared to 29.34 +/- 1.94 degrees C on the spine surface. The temperature on the back surface during moderate cooling was 13.66 +/- 1.28 degrees C compared to 24.12 +/- 5.7 degrees C on the spine surface. Although the temperature in the brain tissue did not drastically deviate from its baseline value during cooling, there was a difference between the rectal and brain temperatures during cooling, which suggests mild hypothermia in the brain tissue. Using experimental data, theoretical models of the rat head and torso were developed to predict the regional temperatures and to validate the rat models. There was good agreement between the theoretical and experimental temperatures in the torso region. Differences between the predicted and measured temperatures in the brain are likely to be the result of imperfect mixing between the cold spinal fluid and the warm cerebrospinal fluid that surrounds the brain. PMID:22034738

  4. Symptomatic spinal cord metastasis from cerebral oligodendroglioma.

    PubMed

    Elefante, A; Peca, C; Del Basso De Caro, M L; Russo, C; Formicola, F; Mariniello, G; Brunetti, A; Maiuri, F

    2012-06-01

    Spinal subarachnoid spread is not uncommon in brain oligodendrogliomas; on the other hand, symptomatic involvement of the spinal cord and cauda is very rare, with only 16 reported cases. We report the case of a 41-year-old man who underwent resection of a low-grade frontal oligodendroglioma 4 years previously. He was again observed because of bilateral sciatic pain followed by left leg paresis. A spine MRI showed an intramedullary T12-L1 tumor with root enhancement. At operation, an intramedullary anaplastic oligodendroglioma with left exophytic component was found and partially resected. Two weeks later, a large left frontoparietal anaplastic oligodendroglioma was diagnosed and completely resected. The patient was neurologically stable for 8 months and died 1 year after the spinal surgery because of diffuse brain and spinal leptomeningeal spread. The review of the reported cases shows that spinal symptomatic metastases can occur in both low-grade and anaplastic oligodendrogliomas, even many years after surgery of the primary tumor; however, they exceptionally occur as first clinical manifestation or as anaplastic progression. The spinal seeding represents a negative event leading to a short survival.

  5. Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is mediated by the 5-HT1 receptor class.

    PubMed Central

    Beato, M; Nistri, A

    1998-01-01

    The neurotransmitter serotonin (5-HT) induces rhythmic motor patterns (fictive locomotion) of the neonatal rat spinal cord in vitro; this is a useful experimental model to study the generation of a motor programme at exclusively spinal level. Nevertheless, 5-HT slows down the fictive locomotion typically elicited by activation of NMDA glutamate receptors, suggesting a complex action of this monoamine. By means of electrophysiological recordings from multiple ventral roots we demonstrated that the decrease caused by 5-HT in NMDA-induced periodicity was dose-dependent, enhanced after pharmacological blocking of 5-HT2 excitatory receptors, and imitated by pharmacological agonists of the 5-HT1 receptor family. Selective blockers of the 5-HT1A or 5-HT1B/D receptor classes, either alone or in combination, largely (but not completely) attenuated this inhibitory action of 5-HT. It is concluded that the principal inhibitory action of 5-HT on the spinal locomotor network was mediated by certain subtypes of the 5-HT1 receptor class, which tends to oppose the 5-HT2 receptor-mediated excitation of the same network. PMID:9842733

  6. Toll-like receptor 4-mediated nuclear factor-κB activation in spinal cord contributes to chronic morphine-induced analgesic tolerance and hyperalgesia in rats.

    PubMed

    Bai, Liying; Zhai, Caihong; Han, Kun; Li, Zhisong; Qian, Junliang; Jing, Ying; Zhang, Wei; Xu, Ji-Tian

    2014-12-01

    Nuclear factor kappa B (NF-κB) in the spinal cord is involved in pro-inflammatory cytokine-mediated pain facilitation. However, the role of NF-κB activation in chronic morphine-induced analgesic tolerance and the underlying mechanisms remain unclear. In the present study, we found that the level of phosphorylated NF-κB p65 (p-p65) was increased in the dorsal horn of the lumbar 4-6 segments after intrathecal administration of morphine for 7 consecutive days, and the p-p65 was co-localized with neurons and astrocytes. The expression of TNF-α and IL-1β was also increased in the same area. In addition, pretreatment with pyrrolidinedithiocarbamate (PDTC) or SN50, inhibitors of NF-κB, prevented the development of morphine analgesic tolerance and alleviated morphine withdrawal-induced allodynia and hyperalgesia. The increase in TNF-α and IL-1β expression induced by chronic morphine exposure was also partially blocked by PDTC pretreatment. In another experiment, rats receiving PDTC or SN50 beginning on day 7 of morphine injection showed partial recovery of the anti-nociceptive effects of morphine and attenuation of the withdrawal-induced abnormal pain. Meanwhile, intrathecal pretreatment with lipopolysaccharide from Rhodobacter sphaeroides, an antagonist of toll-like receptor 4 (TLR4), blocked the activation of NF-κB, and prevented the development of morphine tolerance and withdrawal-induced abnormal pain. These data indicated that TLR4-mediated NF-κB activation in the spinal cord is involved in the development and maintenance of morphine analgesic tolerance and withdrawal-induced pain hypersensitivity.

  7. Toll-like receptor 4-mediated nuclear factor-κB activation in spinal cord contributes to chronic morphine-induced analgesic tolerance and hyperalgesia in rats.

    PubMed

    Bai, Liying; Zhai, Caihong; Han, Kun; Li, Zhisong; Qian, Junliang; Jing, Ying; Zhang, Wei; Xu, Ji-Tian

    2014-12-01

    Nuclear factor kappa B (NF-κB) in the spinal cord is involved in pro-inflammatory cytokine-mediated pain facilitation. However, the role of NF-κB activation in chronic morphine-induced analgesic tolerance and the underlying mechanisms remain unclear. In the present study, we found that the level of phosphorylated NF-κB p65 (p-p65) was increased in the dorsal horn of the lumbar 4-6 segments after intrathecal administration of morphine for 7 consecutive days, and the p-p65 was co-localized with neurons and astrocytes. The expression of TNF-α and IL-1β was also increased in the same area. In addition, pretreatment with pyrrolidinedithiocarbamate (PDTC) or SN50, inhibitors of NF-κB, prevented the development of morphine analgesic tolerance and alleviated morphine withdrawal-induced allodynia and hyperalgesia. The increase in TNF-α and IL-1β expression induced by chronic morphine exposure was also partially blocked by PDTC pretreatment. In another experiment, rats receiving PDTC or SN50 beginning on day 7 of morphine injection showed partial recovery of the anti-nociceptive effects of morphine and attenuation of the withdrawal-induced abnormal pain. Meanwhile, intrathecal pretreatment with lipopolysaccharide from Rhodobacter sphaeroides, an antagonist of toll-like receptor 4 (TLR4), blocked the activation of NF-κB, and prevented the development of morphine tolerance and withdrawal-induced abnormal pain. These data indicated that TLR4-mediated NF-κB activation in the spinal cord is involved in the development and maintenance of morphine analgesic tolerance and withdrawal-induced pain hypersensitivity. PMID:25446875

  8. Ozone (O3) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca(2+) release and activating the CaMKII/MAPK signaling pathway.

    PubMed

    Li, Yun; Lin, Xiaowen; Zhao, XueJun; Xie, Juntian; JunNan, Wang; Sun, Tao; Fu, Zhijian

    2014-11-01

    Ozone (O3) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O3. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O3 exposure was related to endoplasmic reticulum (ER) calcium (Ca(2+)) release. Intracellular Ca(2+) chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca(2+) mobilization and inhibit cell death following 40 μg/ml O3 exposure. In addition, ER Ca(2+) release due to O3 exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca(2+) release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca(2+) and stabilizing neuronal Ca(2+) homeostasis could effectively ameliorate the neurotoxicity of O3.

  9. Clinical radiology of the spine and spinal cord

    SciTech Connect

    Banna, M.

    1985-01-01

    This book is a source of information about aspects of radiology of the spine and spinal column. It presents coverage of both normal and abnormal conditions. Contents: Spinal fractures and dislocations. Degenerative diseases of the spine. Gross anatomy of the spinal cord and meninges. Intraspinal mass lesions. Spinal dysraphism. Congenital anomalies. Tumors of the vertebral column, and more.

  10. In-vivo spinal cord deformation in flexion

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Dougherty, Lawrence; Margulies, Susan S.

    1997-05-01

    Traumatic mechanical loading of the head-neck complex results cervical spinal cord injury when the distortion of the cord is sufficient to produce functional or structural failure of the cord's neural and/or vascular components. Characterizing cervical spinal cord deformation during physiological loading conditions is an important step to defining a comprehensive injury threshold associated with acute spinal cord injury. In this study, in vivo quasi- static deformation of the cervical spinal cord during flexion of the neck in human volunteers was measured using magnetic resonance (MR) imaging of motion with spatial modulation of magnetization (SPAMM). A custom-designed device was built to guide the motion of the neck and enhance more reproducibility. the SPAMM pulse sequence labeled the tissue with a series of parallel tagging lines. A single- shot gradient-recalled-echo sequence was used to acquire the mid-sagittal image of the cervical spine. A comparison of the tagged line pattern in each MR reference and deformed image pair revealed the distortion of the spinal cord. The results showed the cervical spinal cord elongates during head flexion. The elongation experienced by the spinal cord varies linearly with head flexion, with the posterior surface of the cord stretching more than the anterior surface. The maximal elongation of the cord is about 12 percent of its original length.

  11. Regional spinal cord blood flow during local cooling

    SciTech Connect

    Sakamoto, T.; Monafo, W.W. )

    1990-06-01

    We used the tissue distribution of ({sup 14}C)butanol to quantitate regional blood flow in the spinal cord (RSCBF) of pentobarbital-anesthetized, normothermic rats in which segmental local cooling pentobarbital-anesthetized, normothermic rats in which segmental local cooling of the spinal cord (to 25-28{degrees}C) at vertebral levels C4-C6 (n = 6) or T13-L1 (n = 6) was induced. Thirty minutes later, blood flow measurements were made at seven levels of the spinal cord and in the sciatic nerve trunks and biceps femoris muscles. Sham-cooled rats served as controls (n = 12). In control rats, RSCBF varied between 41.5 +/- 2.4 and 65.1 +/- 3.2 ml.min-1.100 g-1. Local cooling of the C4-C6 cord segment reduced RSCBF by 32%, from 65.1 +/- 3.2 to 44.4 +/- 3.5 ml.min-1.100 g-1 (P less than 0.01). Tissue vascular resistance (R) in the cooled C4-C6 segment was elevated versus control. There were no other changes in RSCBF at the other cord levels or in the cauda equina. Similarly, local cooling of the T13-L1 segment resulted in a 40% fall in RSCBF in that segment, from 57.1 +/- 2.4 to 34.1 +/- 4.3 ml.min-1.100 g-1 (P less than 0.001). R in the cooled T13-L1 segment was elevated versus control. RSCBF was reduced by 30% in the adjacent proximal T12 segment (P less than 0.001) and by 21% in the adjacent distal L2-L3 segment (P less than 0.05). R was increased in both of these adjacent segments. RSCBF was not altered elsewhere in the cord.

  12. Spinal cord mensuration--a comparative study on the spinal cord segments and spinal nerves in Zambian goats.

    PubMed

    Ramkrishna, V; Lovelace, C E; Sakala, L

    1991-06-01

    It has been known that the relative length of spinal cord and its segmental volume in domestic animals has established that the dynamics of spinal cord is directly related with the functions of the limbs and in particular to their feeding habits. Bilateral rostrocaudal measurements of spinal nerves involving their root attachment length, root emergence length, interroot length, segment length and cross sectional area were recorded on the dorsal and ventral surfaces of each segment of the spinal cords of five local healthy Zambian goats. We identified that the brachial and lumbar enlargements have involved identical number of spinal cord segments. Brachial and lumbar enlargements extended from C6 to T1 and L4 to L7. The average length of spinal cord was 59.9 cm and it extended up to caudal end of 5th sacral vertebrae. The root emergence length appeared to decrease gradually from C2 segment, which remained less variable in thoracic and lumbar segments and then receded sharply through sacral segments. The dorsal nerves entered spinal cord over a greater area than ventral because of more spinal rootlets. The greatest segment length lied in mid cervical region and then from lumbar segment it decreased sharply up to the end of sacral segments. It is concluded that these goats have a feeding habit similar to that of cattle rather than resting their forelimbs on the shrubs while nibbling the leaves as recorded in Asian goats. It also confirmed that the shrubs were more drooping along with grasses in the Gwembe Valley of Zambia.

  13. Percutaneous Technique for Sclerotherapy of Vertebral Hemangioma Compressing Spinal Cord

    SciTech Connect

    Gabal, Abdelwahab M.

    2002-12-15

    Purpose: In this study we report a percutaneous technique to achieve sclerosis of vertebral hemangioma and decompression of the spinal cord and nerve roots. Methods: Under CT guidance the affected vertebral body is punctured by a biopsy needle and sclerosant is injected directly into the tumor. In the case of large paravertebral extension, additional injection is given in the paravertebral soft tissue component to induce shrinkage of the whole tumor mass and release of the compressed spinal cord. Results: Using this technique we treated five patients in whom vertebral hemangioma gave rise to neurologic symptoms.In three patients, sclerotherapy was the only treatment given. In the other two patients, sclerotherapy was preceded by transcatheter embolization. Neither decompressive surgery, radiation therapy nor stabilization was required with this technique. Conclusion: Our experience with CT-guided intraosseous sclerotherapy has proved highly satisfactory.

  14. Shedding Light on Restoring Respiratory Function After Spinal Cord Injury

    PubMed Central

    Alilain, Warren J.; Silver, Jerry

    2009-01-01

    Loss of respiratory function is one of the leading causes of death following spinal cord injury. Because of this, much work has been done in studying ways to restore respiratory function following spinal cord injury (SCI) – including pharmacological and regeneration strategies. With the emergence of new and powerful tools from molecular neuroscience, new therapeutically relevant alternatives to these approaches have become available, including expression of light sensitive proteins called channelrhodopsins. In this article we briefly review the history of various attempts to restore breathing after C2 hemisection, and focus on our recent work using the activation of light sensitive channels to restore respiratory function after experimental SCI. We also discuss how such light-induced activity can help shed light on the inner workings of the central nervous system respiratory circuitry that controls diaphragmatic function. PMID:19893756

  15. RhoA/Rho kinase in spinal cord injury

    PubMed Central

    Wu, Xiangbing; Xu, Xiao-ming

    2016-01-01

    A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration. PMID:26981071

  16. RhoA/Rho kinase in spinal cord injury.

    PubMed

    Wu, Xiangbing; Xu, Xiao-Ming

    2016-01-01

    A spinal cord injury refers to an injury to the spinal cord that is caused by a trauma instead of diseases. Spinal cord injury includes a primary mechanical injury and a much more complex secondary injury process involving inflammation, oxidation, excitotoxicity, and cell death. During the secondary injury, many signal pathways are activated and play important roles in mediating the pathogenesis of spinal cord injury. Among them, the RhoA/Rho kinase pathway plays a particular role in mediating spinal degeneration and regeneration. In this review, we will discuss the role and mechanism of RhoA/Rho kinase-mediated spinal cord pathogenesis, as well as the potential of targeting RhoA/Rho kinase as a strategy for promoting both neuroprotection and axonal regeneration.

  17. Association of morphine-induced analgesic tolerance with changes in gene expression of GluN1 and MOR1 in rat spinal cord and midbrain

    PubMed Central

    Ahmadi, Shamseddin; Miraki, Fatemeh; Rostamzadeh, Jalal

    2016-01-01

    Objective(s): We aimed to examine association of gene expression of MOR1 and GluN1 at mRNA level in the lumbosacral cord and midbrain with morphine tolerance in male Wistar rats. Materials and Methods: Analgesic effects of morphine administrated intraperitoneally at doses of 0.1, 1, 5 and 10 mg/kg were examined using a hot plate test in rats with and without a history of 15 days morphine (10 mg/kg) treatment. Morphine-induced analgesic tolerance was also assessed on days 1, 5, 10 and 15 of chronic morphine injections. Two groups with history of 15 days injections of saline or morphine (10 mg/kg) were decapitated on day 15 and their lumbosacral cord and midbrain were dissected for evaluating MOR1 and GluN1 gene expression. Results: The results of the hot plate test showed that morphine (5 and 10 mg/kg) induced significant analgesia in naïve rats but its analgesic effects in rats receiving 15 days injections of morphine (10 mg/kg) was decreased, indicating tolerance to morphine analgesia. The results also showed that the GluN1 gene expression in tolerant rats was decreased by 71% in the lumbosacral cord but increased by 110 % in the midbrain compared to the control group. However, no significant change was observed for the MOR1 gene expression in both areas. Conclusion: It can be concluded that tolerance following administration of morphine (10 mg/kg) for 15 days is associated with site specific changes in the GluN1 gene expression in the spinal cord and midbrain but the MOR1 gene expression is not affected. PMID:27803778

  18. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats

    PubMed Central

    2013-01-01

    spinal cord levels and by specific stimulation parameters, i.e., stimulation frequency and intensity, and cathode/anode orientation. The array also was used to assess functional connectivity between the cord dorsum to interneuronal circuits and specific motor pools via evoked potentials induced at 1 Hz stimulation in the absence of any anesthesia. Conclusions Therefore the high density electrode array allows high spatial resolution and the ability to selectively activate different neural pathways within the lumbosacral region of the spinal cord to facilitate standing and stepping in adult spinal rats and provides the capability to evoke motor potentials and thus a means for assessing connectivity between sensory circuits and specific motor pools and muscles. PMID:23336733

  19. Acute Molecular Perturbation of Inducible Nitric Oxide Synthase with an Antisense Approach Enhances Neuronal Preservation and Functional Recovery after Contusive Spinal Cord Injury

    PubMed Central

    Maggio, Dominic M.; Chatzipanteli, Katina; Masters, Neil; Patel, Samik P.; Dietrich, W. Dalton

    2012-01-01

    Abstract Inducible nitric oxide synthase (iNOS) is a key mediator of inflammation and oxidative stress produced during pathological conditions, including neurodegenerative diseases and central nervous system (CNS) injury. iNOS is responsible for the formation of high levels of nitric oxide (NO). The production of highly reactive and cytotoxic NO species, such as peroxynitrite, plays an important role in secondary tissue damage. We have previously demonstrated that acute administration of iNOS antisense oligonucleotides (ASOs) 3 h after moderate contusive spinal cord injury (SCI) potently inhibits iNOS-mediated increases in NO levels, leading to reduced blood–spinal cord barrier permeability, decreased neutrophil accumulation, and less neuronal cell death. In the current study we investigated if iNOS ASOs could also provide long-term (10-week) histological and behavioral improvements after moderate thoracic T8 contusive SCI. Adult rats were randomly assigned to three groups (n=10/group): SCI alone, SCI and mixed base control oligonucleotides (MBOs), or SCI and iNOS ASOs (200 nM). Oligonucleotides were administered by spinal superfusion 3 h after injury. Behavioral analysis (Basso-Beattie-Bresnahan [BBB] score and subscore) was employed weekly for 10 weeks post-SCI. Although animals treated with iNOS ASOs demonstrated no significant differences in BBB scores compared to controls, subscore analysis revealed a significant improvement in foot positioning, trunk stability, and tail clearance. Histologically, while no gross improvement in preserved white and gray matter was observed, greater numbers of surviving neurons were present adjacent to the lesion site in iNOS ASO-treated animals than controls. These results support the effectiveness of targeting iNOS acutely as a therapeutic approach after SCI. PMID:22708918

  20. Mechanisms underlying spinal cord damage in decompression sickness.

    PubMed

    Hallenbeck, J M; Bove, A A; Elliott, D H

    1975-04-01

    Decompression sickness, which damaged the spinal cord, was produced in anesthetized dogs using a compression chamber. Cerebrospinal fluid pressure and several intravascular and intracardiac pressures were monitored during the course of the simulated dives. Manometric responses to forcible lung inflation and abdominal compression were measured both predive and postdive after signs of spinal cord damage were evident. Cinevenography of the epidural vertebral venous system was performed both predive and postdive. Histopathologic studies of the brains and cords of both predive and postdive. Histopathologic studies of the brains and cords of paretic animals were carried out. The results indicate that the epidural vertebral venous system becomes obstructed during spinal cord damaging decompression sickness and strongly suggests that spinal cord infarction in decompression sickness is caused by obstruction of cord venous drainage at the level of the epidural vertebral venous system. PMID:1168317

  1. Monoaminergic modulation of spinal viscero-sympathetic function in the neonatal mouse thoracic spinal cord.

    PubMed

    Zimmerman, Amanda L; Sawchuk, Michael; Hochman, Shawn

    2012-01-01

    Descending serotonergic, noradrenergic, and dopaminergic systems project diffusely to sensory, motor and autonomic spinal cord regions. Using neonatal mice, this study examined monoaminergic modulation of visceral sensory input and sympathetic preganglionic output. Whole-cell recordings from sympathetic preganglionic neurons (SPNs) in spinal cord slice demonstrated that serotonin, noradrenaline, and dopamine modulated SPN excitability. Serotonin depolarized all, while noradrenaline and dopamine depolarized most SPNs. Serotonin and noradrenaline also increased SPN current-evoked firing frequency, while both increases and decreases were seen with dopamine. In an in vitro thoracolumbar spinal cord/sympathetic chain preparation, stimulation of splanchnic nerve visceral afferents evoked reflexes and subthreshold population synaptic potentials in thoracic ventral roots that were dose-dependently depressed by the monoamines. Visceral afferent stimulation also evoked bicuculline-sensitive dorsal root potentials thought to reflect presynaptic inhibition via primary afferent depolarization. These dorsal root potentials were likewise dose-dependently depressed by the monoamines. Concomitant monoaminergic depression of population afferent synaptic transmission recorded as dorsal horn field potentials was also seen. Collectively, serotonin, norepinephrine and dopamine were shown to exert broad and comparable modulatory regulation of viscero-sympathetic function. The general facilitation of SPN efferent excitability with simultaneous depression of visceral afferent-evoked motor output suggests that descending monoaminergic systems reconfigure spinal cord autonomic function away from visceral sensory influence. Coincident monoaminergic reductions in dorsal horn responses support a multifaceted modulatory shift in the encoding of spinal visceral afferent activity. Similar monoamine-induced changes have been observed for somatic sensorimotor function, suggesting an integrative

  2. Peripheral Nerve Transplantation Combined with Acidic Fibroblast Growth Factor and Chondroitinase Induces Regeneration and Improves Urinary Function in Complete Spinal Cord Transected Adult Mice

    PubMed Central

    DePaul, Marc A.; Lin, Ching-Yi; Silver, Jerry; Lee, Yu-Shang

    2015-01-01

    The loss of lower urinary tract (LUT) control is a ubiquitous consequence of a complete spinal cord injury, attributed to a lack of regeneration of supraspinal pathways controlling the bladder. Previous work in our lab has utilized a combinatorial therapy of peripheral nerve autografts (PNG), acidic fibroblast growth factor (aFGF), and chondroitinase ABC (ChABC) to treat a complete T8 spinal cord transection in the adult rat, resulting in supraspinal control of bladder function. In the present study we extended these findings by examining the use of the combinatorial PNG+aFGF+ChABC treatment in a T8 transected mouse model, which more closely models human urinary deficits following spinal cord injury. Cystometry analysis and external urethral sphincter electromyograms reveal that treatment with PNG+aFGF+ChABC reduced bladder weight, improved bladder and external urethral sphincter histology, and significantly enhanced LUT function, resulting in more efficient voiding. Treated mice’s injured spinal cord also showed a reduction in collagen scaring, and regeneration of serotonergic and tyrosine hydroxylase-positive axons across the lesion and into the distal spinal cord. Regeneration of serotonin axons correlated with LUT recovery. These results suggest that our mouse model of LUT dysfunction recapitulates the results found in the rat model and may be used to further investigate genetic contributions to regeneration failure. PMID:26426529

  3. Down-Regulation of CXCL12/CXCR4 Expression Alleviates Ischemia-Reperfusion-Induced Inflammatory Pain via Inhibiting Glial TLR4 Activation in the Spinal Cord

    PubMed Central

    Li, Xiao-Qian; Zhang, Zai-Li; Tan, Wen-Fei; Sun, Xi-Jia; Ma, Hong

    2016-01-01

    Toll-like receptor 4 (TLR4) is important for the pathogenesis of inflammatory reactions and the promotion of pain processing after ischemia/reperfusion (IR) in spinal cord. Recently, C-X-C chemokine ligand 12 (CXCL12) and its receptor, C-X-C chemokine receptor 4 (CXCR4), were demonstrated to be simultaneously critical for inflammatory reactions, thereby facilitating glial activation. However, whether CXCL12/CXCR4 expression can contribute to IR-induced inflammatory pain via spinal TLR4 remained unclear. A rat model was established by 8 min of aortic arch occlusion. The effects of CXCL12/CXCR4 expression and TLR4 activation on inflammatory hyperalgesia were investigated by pretreatments with CXCL12-neutralizing antibody, CXCR4 antagonist (AMD3100) and TLR4 antagonist (TAK-242) for 5 consecutive days before surgery. The results indicated that IR induced significant and sustained inflammatory pain, observed as decreases in paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), throughout the post-injury period. The increased levels of TLR4 and proinflammatory chemokine CXCL12, as well as its receptor, CXCR4, were closely correlated with the PWT and PWL trends. Double immunostaining further suggested that TLR4, which is mainly expressed on astrocytes and microglia, was closely co-localized with CXCL12 and CXCR4 in spinal dorsal horn. As expected, intrathecal pretreatment with the TLR4 antagonist, TAK-242 markedly ameliorated pain by inhibiting astrocytic and microglial activation, as shown by decreases in TLR4 immunoreactivity and the percentage of double-labeled cells. These protective effects were likely due in part to the reduced production of the downstream cytokines IL-1β and TNF-α, as well as for the recruitment of CXCL12 and CXCR4. Additionally, intrathecal pretreatment with CXCL12-neutralizing antibody and AMD3100 resulted in similar analgesic and anti-inflammatory effects as those receiving TAK-242 pretreatment. These results suggest that

  4. Effects of modified constraint-induced movement therapy and functional bimanual training on upper extremity function and daily activities in a patient with incomplete spinal cord injury: a case study.

    PubMed

    Kim, Yeon-Ju; Kim, Jin-Kyung; Park, So-Yeon

    2015-12-01

    [Purpose] In this study, we examined effects of modified constraint-induced movement therapy (m-CIMT) and functional bimanual training, when applied to a patient with incomplete spinal cord injury, on upper extremity function and daily activities. [Subject and Methods] One patient, diagnosed with C4 incomplete spinal cord injury, underwent physical therapy with constraint-induced movement therapy for 3 hours and task-oriented bimanual training for 1 hour, per day. This combined 4-hour session was performed five times a week, for 3 weeks, totaling 15 sessions. Upper extremity function was measured using the Manual Function Test (MFT) and Box & Block Test (BBT). Additionally, Spinal Cord Independence Measure Version III (SCIM-III) and Short Form 36 Health Survey (SF-36) were used to assess functional outcomes. [Results] Mobility of the hand and overall function of upper extremities were enhanced following intervention. Moreover, the subject's quality of life and ability to carry out daily activities also improved. [Conclusion] Modified constraint-induced movement therapy and bimanual training was effective in enhancing upper extremity function and performance of daily routines in a patient with incomplete spinal cord injury. Further studies, recruiting multiple subjects, should focus on m-CIMT using diverse methods, performed during the course of daily activities. PMID:26834387

  5. Effects of modified constraint-induced movement therapy and functional bimanual training on upper extremity function and daily activities in a patient with incomplete spinal cord injury: a case study.

    PubMed

    Kim, Yeon-Ju; Kim, Jin-Kyung; Park, So-Yeon

    2015-12-01

    [Purpose] In this study, we examined effects of modified constraint-induced movement therapy (m-CIMT) and functional bimanual training, when applied to a patient with incomplete spinal cord injury, on upper extremity function and daily activities. [Subject and Methods] One patient, diagnosed with C4 incomplete spinal cord injury, underwent physical therapy with constraint-induced movement therapy for 3 hours and task-oriented bimanual training for 1 hour, per day. This combined 4-hour session was performed five times a week, for 3 weeks, totaling 15 sessions. Upper extremity function was measured using the Manual Function Test (MFT) and Box & Block Test (BBT). Additionally, Spinal Cord Independence Measure Version III (SCIM-III) and Short Form 36 Health Survey (SF-36) were used to assess functional outcomes. [Results] Mobility of the hand and overall function of upper extremities were enhanced following intervention. Moreover, the subject's quality of life and ability to carry out daily activities also improved. [Conclusion] Modified constraint-induced movement therapy and bimanual training was effective in enhancing upper extremity function and performance of daily routines in a patient with incomplete spinal cord injury. Further studies, recruiting multiple subjects, should focus on m-CIMT using diverse methods, performed during the course of daily activities.

  6. Effects of modified constraint-induced movement therapy and functional bimanual training on upper extremity function and daily activities in a patient with incomplete spinal cord injury: a case study

    PubMed Central

    Kim, Yeon-Ju; Kim, Jin-Kyung; Park, So-Yeon

    2015-01-01

    [Purpose] In this study, we examined effects of modified constraint-induced movement therapy (m-CIMT) and functional bimanual training, when applied to a patient with incomplete spinal cord injury, on upper extremity function and daily activities. [Subject and Methods] One patient, diagnosed with C4 incomplete spinal cord injury, underwent physical therapy with constraint-induced movement therapy for 3 hours and task-oriented bimanual training for 1 hour, per day. This combined 4-hour session was performed five times a week, for 3 weeks, totaling 15 sessions. Upper extremity function was measured using the Manual Function Test (MFT) and Box & Block Test (BBT). Additionally, Spinal Cord Independence Measure Version III (SCIM-III) and Short Form 36 Health Survey (SF-36) were used to assess functional outcomes. [Results] Mobility of the hand and overall function of upper extremities were enhanced following intervention. Moreover, the subject’s quality of life and ability to carry out daily activities also improved. [Conclusion] Modified constraint-induced movement therapy and bimanual training was effective in enhancing upper extremity function and performance of daily routines in a patient with incomplete spinal cord injury. Further studies, recruiting multiple subjects, should focus on m-CIMT using diverse methods, performed during the course of daily activities. PMID:26834387

  7. Remote-controlled eradication of astrogliosis in spinal cord injury via electromagnetically-induced dexamethasone release from "smart" nanowires.

    PubMed

    Gao, Wen; Borgens, Richard Ben

    2015-08-10

    We describe a system to deliver drugs to selected tissues continuously, if required, for weeks. Drugs can be released remotely inside the small animals using pre-implanted, novel vertically aligned electromagnetically-sensitive polypyrrole nanowires (PpyNWs). Approximately 1-2mm(2) dexamethasone (DEX) doped PpyNWs was lifted on a single drop of sterile water by surface tension, and deposited onto a spinal cord lesion in glial fibrillary acidic protein-luc transgenic mice (GFAP-luc mice). Overexpression of GFAP is an indicator of astrogliosis/neuroinflammation in CNS injury. The corticosteroid DEX, a powerful ameliorator of inflammation, was released from the polymer by external application of an electromagnetic field for 2h/day for a week. The GFAP signal, revealed by bioluminescent imaging in the living animal, was significantly reduced in treated animals. At 1week, GFAP was at the edge of detection, and in some experimental animals, completely eradicated. We conclude that the administration of drugs can be controlled locally and non-invasively, opening the door to many other known therapies, such as the cases that dexamethasone cannot be safely applied systemically in large concentrations. PMID:25979326

  8. Volume effects in Rhesus monkey spinal cord

    SciTech Connect

    Schultheiss, T.E. ); Stephens, L.C.; Price, R.E.; Ang, K.K.; Peters, L.J. )

    1994-04-30

    An experiment was conducted to test for the existence of a volume effect in radiation myelopathy using Rhesus monkeys treated with clinically relevant field sizes and fractionation schedules. Five groups of Rhesus monkeys were irradiated using 2.2 Gy per fraction to their spinal cords. Three groups were irradiated with 8 cm fields to total doses of 70.4, 77, and 83.6 Gy. Two additional groups were irradiated to 70.4 Gy using 4 and 16 cm fields. The incidence of paresis expressed within 2 years following the completion of treatment was determined for each group. Maximum likelihood estimation was used to determine parameters of a logistic dose response function. The volume effect was modeled using the probability model in which the probability of producing a lesion in an irradiated volume is governed by the probability of the occurrence of independent events. This is a two parameter model requiring only the estimates of the parameters of the dose-response function for the reference volume, but not needing any additional parameters for describing the volume effect. The probability model using a logistic dose-response function fits the data well with the D[sub 50] = 75.8 Gy for the 8-cm field. No evidence was seen for a difference in sensitivities for different anatomical levels of the spinal cord. Most lesions were type 3, combined white matter parenchymal and vascular lesions. Latent periods did not differ significantly from those of type 3 lesions in humans. The spinal cord exhibits a volume effect that is well described by the probability model. Because the dose response function for radiation myelopathy is steep, the volume effect is modest. The Rhesus monkey remains the animal model most similar to humans in dose response, histopathology, and latency for radiation myelopathy. 22 refs., 3 figs., 1 tab.

  9. Pediatric spinal cord injury: a review by organ system.

    PubMed

    Powell, Aaron; Davidson, Loren

    2015-02-01

    In this article, an overview is provided of pediatric spinal cord injury, organized by effects of this injury on various organ systems. Specific management differences between children and adults with spinal cord injury are highlighted. A detailed management approach is offered for particularly complex topics, such as spasticity and upper extremity reconstruction. PMID:25479784

  10. Cardiovascular health and fitness in persons with spinal cord injury.

    PubMed

    Lavis, Timothy D; Scelza, William M; Bockenek, William L

    2007-05-01

    There are many issues after spinal cord injury that have an impact on cardiovascular health and fitness. This article discusses many of the secondary conditions and changes that occur and how they are affected by maintenance of an active lifestyle. It also discusses many of the benefits and difficulties individuals face in maintaining a regular exercise program after spinal cord injury.

  11. Personal Adjustment Training for the Spinal Cord Injured

    ERIC Educational Resources Information Center

    Roessler, Richard; And Others

    1976-01-01

    This article describes experiences with Personal Achievement Skills (PAS), a group counseling process in a spinal cord injury project, emphasizing training in communication and goal setting in the context of group process. Issues in conducting such training and providing comprehensive service to the spinal cord injured are discussed in detail.…

  12. Shriners Hospital Spinal Cord Injury Self Care Manual.

    ERIC Educational Resources Information Center

    Fox, Carol

    This manual is intended for young people with spinal cord injuries who are receiving rehabilitation services within the Spinal Cord Injury Unit at Shriners Hospital (San Francisco, California). An introduction describes the rehabilitation program, which includes family conferences, an individualized program, an independent living program,…

  13. Spinal Cord Anatomy and Clinical Syndromes.

    PubMed

    Diaz, Eric; Morales, Humberto

    2016-10-01

    We review the anatomy of the spinal cord, providing correlation with key functional and clinically relevant neural pathways, as well as magnetic resonance imaging. Peripherally, the main descending (corticospinal tract) and ascending (gracilis or cuneatus fasciculi and spinothalamic tracts) pathways compose the white matter. Centrally, the gray matter can be divided into multiple laminae. Laminae 1-5 carry sensitive neuron information in the posterior horn, and lamina 9 carries most lower motor neuron information in the anterior horn. Damage to the unilateral corticospinal tract (upper motor neuron information) or gracillis-cuneatus fasciculi (touch and vibration) correlates with ipsilateral clinical findings, whereas damage to unilateral spinothalamic tract (pain-temperature) correlates with contralateral clinical findings. Damage to commissural fibers correlates with a suspended bilateral "girdle" sensory level. Autonomic dysfunction is expected when there is bilateral cord involvement. PMID:27616310

  14. A simple field method for spinal cord removal demonstrated in the cheetah (Acinonyx jubatus).

    PubMed

    Walzer, Christian; Kübber-Heiss, Anna; Robert, Nadia

    2002-01-01

    Removal of the spinal cord is considered time consuming and difficult. A delay in the necropsy procedure, especially in the central nervous system, can result in significant tissue autolysis and subsequent diagnostic difficulties. In the field, where many necropsies are performed, suitable electric saws are mostly unavailable. A technically simple and rapid method for spinal cord removal, requiring only a straightforward tool, has been devised. No necropsy-induced structural damage has been noted on histopathologic examination.

  15. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    PubMed

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-01

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans. PMID:27357536

  16. Early elective colostomy following spinal cord injury.

    PubMed

    Boucher, Michelle

    Elective colostomy is an accepted method of bowel management for patients who have had a spinal cord injury (SCI). Approximately 2.4% of patients with SCI have a colostomy, and traditionally it is performed as a last resort several years after injury, and only if bowel complications persist when all other methods have failed. This is despite evidence that patients find a colostomy easier to manage and frequently report wishing it had been performed earlier. It was noticed in the author's spinal unit that increasing numbers of patients were requesting colostomy formation during inpatient rehabilitation following SCI. No supporting literature was found for this; it appears to be an emerging and untested practice. This article explores colostomy formation as a method of bowel management in patients with SCI, considers the optimal time for colostomy formation after injury and examines issues for health professionals. PMID:26973012

  17. Natural Polyphenols and Spinal Cord Injury

    PubMed Central

    Khalatbary, Ali Reza

    2014-01-01

    Polyphenols have been shown to have some of the neuroprotective effects against neurodegenerative diseases. These effects are attributed to a variety of biological activities, including free radical scavenging/antioxidant and anti-inflammatory and anti-apoptotic activities. In this regard, many efforts have been made to study the effects of various well-known dietary polyphenols on spinal cord injury (SCI) and to explore the mechanisms behind the neuroprotective effects. The aim of this paper is to present the mechanisms of neuroprotection of natural polyphenols used in animal models of SCI. PMID:24842137

  18. Functional electrical stimulation and spinal cord injury.

    PubMed

    Ho, Chester H; Triolo, Ronald J; Elias, Anastasia L; Kilgore, Kevin L; DiMarco, Anthony F; Bogie, Kath; Vette, Albert H; Audu, Musa L; Kobetic, Rudi; Chang, Sarah R; Chan, K Ming; Dukelow, Sean; Bourbeau, Dennis J; Brose, Steven W; Gustafson, Kenneth J; Kiss, Zelma H T; Mushahwar, Vivian K

    2014-08-01

    Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI.

  19. Immunotherapy strategies for spinal cord injury.

    PubMed

    Wang, Yong-Tang; Lu, Xiu-Min; Chen, Kai-Ting; Shu, Ya-Hai; Qiu, Chun-Hong

    2015-01-01

    Regeneration in the central nervous system (CNS) of adult mammalian after traumatic injury is limited, which often causes permanent functional motor and sensory loss. After spinal cord injury (SCI), the lack of regeneration is mainly attributed to the presence of a hostile microenvironment, glial scarring, and cavitation. Besides, inflammation has also been proved to play a crucial role in secondary degeneration following SCI. The more prominent treatment strategies in experimental models focus mainly on drugs and cell therapies, however, only a few strategies applied in clinical studies and therapies still have only limited effects on the repair of SCI. Recently, the interests in immunotherapy strategies for CNS are increasing in number and breadth. Immunotherapy strategies have made good progresses in treating many CNS degenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), stroke, and multiple sclerosis (MS). However, the strategies begin to be considered to the treatment of SCI and other neurological disorders in recent years. Besides anti-inflamatory therapy, immunization with protein vaccines and DNA vaccines has emerged as a novel therapy strategy because of the simplicity of preparation and application. An inflammatory response followed by spinal cord injury, and is controled by specific signaling molecules, such as some cytokines playing a crucial role. As a result, appropriate immunoregulation, the expression of pro-inflammatory cytokines and anti-inflammatory cytokines may be an effective therapy strategy for earlier injury of spinal cord. In addition, myelinassociated inhibitors (MAIs) in the injured spinal cord, such as Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte- myelin glycoprotein (OMgp) are known to prevent axonal regeneration through their co-receptors, and to trigger demyelinating autoimmunity through T cell-mediated harmful autoimmune response. The antagonism of the MAIs through vaccinating with

  20. Functional electrical stimulation and spinal cord injury.

    PubMed

    Ho, Chester H; Triolo, Ronald J; Elias, Anastasia L; Kilgore, Kevin L; DiMarco, Anthony F; Bogie, Kath; Vette, Albert H; Audu, Musa L; Kobetic, Rudi; Chang, Sarah R; Chan, K Ming; Dukelow, Sean; Bourbeau, Dennis J; Brose, Steven W; Gustafson, Kenneth J; Kiss, Zelma H T; Mushahwar, Vivian K

    2014-08-01

    Spinal cord injuries (SCI) can disrupt communications between the brain and the body, resulting in loss of control over otherwise intact neuromuscular systems. Functional electrical stimulation (FES) of the central and peripheral nervous system can use these intact neuromuscular systems to provide therapeutic exercise options to allow functional restoration and to manage medical complications following SCI. The use of FES for the restoration of muscular and organ functions may significantly decrease the morbidity and mortality following SCI. Many FES devices are commercially available and should be considered as part of the lifelong rehabilitation care plan for all eligible persons with SCI. PMID:25064792

  1. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats

    PubMed Central

    Alam, Monzurul; Garcia-Alias, Guillermo; Shah, Prithvi K.; Gerasimenko, Yury; Zhong, Hui; Roy, Roland R.; Edgerton, V. Reggie

    2015-01-01

    Background Epidural spinal cord stimulation is a promising technique for modulating the level of excitability and reactivation of dormant spinal neuronal circuits after spinal cord injury (SCI). We examined the ability of chronically implanted epidural stimulation electrodes within the cervical spinal cord to (1) directly elicit spinal motor evoked potentials (sMEPs) in forelimb muscles and (2) determine whether these sMEPs can serve as a biomarker of forelimb motor function after SCI. New method We implanted EMG electrodes in forelimb muscles and epidural stimulation electrodes at C6 and C8 in adult rats. After recovering from a dorsal funiculi crush (C4), rats were tested with different stimulation configurations and current intensities to elicit sMEPs and determined forelimb grip strength. Results: sMEPs were evoked in all muscles tested and their characteristics were dependent on electrode configurations and current intensities. C6(−) stimulation elicited more robust sMEPs than stimulation at C8(−). Stimulating C6 and C8 simultaneously produced better muscle recruitment and higher grip strengths than stimulation at one site. Comparison with existing method(s) Classical method to select the most optimal stimulation configuration is to empirically test each combination individually for every subject and relate to functional improvements. This approach is impractical, requiring extensively long experimental time to determine the more effective stimulation parameters. Our proposed method is fast and physiologically sound. Conclusions Results suggest that sMEPs from forelimb muscles can be useful biomarkers for identifying optimal parameters for epidural stimulation of the cervical spinal cord after SCI. PMID:25791014

  2. Spinal cord injury following operative shoulder intervention: A case report

    PubMed Central

    Cleveland, Christine; Walker, Heather

    2015-01-01

    Context Cervical myelopathy is a spinal cord dysfunction that results from extrinsic compression of the spinal cord, its blood supply, or both. It is the most common cause of spinal cord dysfunction in patients greater than 55 years of age. Findings: A 57-year-old male with right shoulder septic arthritis underwent surgical debridement of his right shoulder and sustained a spinal cord injury intraoperatively. The most likely etiology is damage to the cervical spinal cord during difficult intubation requiring multiple attempts in this patient with underlying asymptomatic severe cervical stenosis. Conclusion Although it is not feasible to perform imaging studies on all patients undergoing intubation for surgery, this patient's outcome would suggest consideration of inclusion of additional pre-surgical screening examination techniques, such as testing for a positive Hoffman's reflex, is appropriate to detect asymptomatic patients who may have underlying cervical stenosis. PMID:24679185

  3. Vector-induced NT-3 expression in rats promotes collateral growth of injured corticospinal tract axons far rostral to a spinal cord injury.

    PubMed

    Weishaupt, N; Mason, A L O; Hurd, C; May, Z; Zmyslowski, D C; Galleguillos, D; Sipione, S; Fouad, K

    2014-07-11

    Rewiring the injured corticospinal tract (CST) by promoting connections between CST axons and spared neurons is a strategy being explored experimentally to achieve improved recovery of motor function after spinal cord injury (SCI). Reliable interventions to promote and direct growth of collaterals from injured CST axons are in high demand to promote functionally relevant detour pathways. A promising tool is neurotrophin-3 (NT-3), which has shown growth-stimulating and chemo-attractive effects for spared CST axons caudal to a CST lesion. Yet, efforts to promote growth of injured CST axons rostral to a SCI with NT-3 have been less successful to date. Evidence indicates that immune activation in the local growth environment, either intrinsic or induced by the endotoxin lipopolysaccharide (LPS), can play a decisive role in the CST's responsiveness to NT-3. Here, we test the potential of NT-3 as a tool to enhance and direct collateral growth from the injured CST rostral to a SCI (1) using long-term expression of NT-3 by adeno-associated viral vectors, (2) with and without stimulating the immune system with LPS. Our results indicate that inducing a growth response from injured CST axons into a region of vector-mediated NT-3 expression is possible in the environment of the spinal cord rostral to a SCI, but seems dependent on the distance between the responding axon and the source of NT-3. Our findings also suggest that injured CST axons do not increase their growth response to NT-3 after immune activation with LPS in this environment. In conclusion, this is to our knowledge the first demonstration that NT-3 can be effective at promoting growth of injured CST collaterals far rostral to a SCI. Making NT-3 available in close proximity to CST target axons may be the key to success when using NT-3 to rewire the injured CST in future investigations.

  4. Lizard tail spinal cord: a new experimental model of spinal cord injury without limb paralysis.

    PubMed

    Szarek, Dariusz; Marycz, Krzysztof; Lis, Anna; Zawada, Zbigniew; Tabakow, Paweł; Laska, Jadwiga; Jarmundowicz, Włodzimierz

    2016-04-01

    Spinal cord injury (SCI) is a well-known devastating lesion that sadly is very resistant to all treatment attempts. This fact has stimulated the exploration of multiple regenerative strategies that are examined at both the basic and clinical level. For laboratory research, differentin vivomodels are used, but each has many important limitations. The main limitation of these models is the high level of animal suffering related to the inflicted neurologic injury. It has caused a growing tendency to limit the injury, but this, in turn, produces incomplete SCI models and uncertainties in the neuroregeneration interpretation. To overcome such limitations, a new experimental SCI model is proposed. Geckos have been extensively examined as a potential animal model of SCI. Their spinal cord extends into the tail and can be transected without causing the typical neurologic consequences observed in rat models. In this study, we compared the gecko tail SCI model with the rat model of thoracic SCI. Anatomic and histologic analyses showed comparability between the gecko and rat in diameter of spinal canal and spinal cord, as well as applicability of multiple staining techniques (hematoxylin and eosin, immunostaining, and scanning and transmission electron microscopy). We tested the suitability ofin vivostudy with 3 prototype implants for the reconstruction of SCI: a multichannel sponge, a multilaminar tube, and a gel cylinder. These were compared with a spinal cord excision (control). A 20-wk observation revealed no adverse effects of SCI on the animals' well-being. The animals were easily housed and observed. Histologic analysis showed growth of nervous tissue elements on implant surface and implant cellular colonization. The study showed that the gecko SCI model can be used as a primary model for the assessment of SCI treatment methods. It provides a platform for testing multiple solutions with limited animal suffering before performing tests on mammals. Detailed results of

  5. Lizard tail spinal cord: a new experimental model of spinal cord injury without limb paralysis.

    PubMed

    Szarek, Dariusz; Marycz, Krzysztof; Lis, Anna; Zawada, Zbigniew; Tabakow, Paweł; Laska, Jadwiga; Jarmundowicz, Włodzimierz

    2016-04-01

    Spinal cord injury (SCI) is a well-known devastating lesion that sadly is very resistant to all treatment attempts. This fact has stimulated the exploration of multiple regenerative strategies that are examined at both the basic and clinical level. For laboratory research, differentin vivomodels are used, but each has many important limitations. The main limitation of these models is the high level of animal suffering related to the inflicted neurologic injury. It has caused a growing tendency to limit the injury, but this, in turn, produces incomplete SCI models and uncertainties in the neuroregeneration interpretation. To overcome such limitations, a new experimental SCI model is proposed. Geckos have been extensively examined as a potential animal model of SCI. Their spinal cord extends into the tail and can be transected without causing the typical neurologic consequences observed in rat models. In this study, we compared the gecko tail SCI model with the rat model of thoracic SCI. Anatomic and histologic analyses showed comparability between the gecko and rat in diameter of spinal canal and spinal cord, as well as applicability of multiple staining techniques (hematoxylin and eosin, immunostaining, and scanning and transmission electron microscopy). We tested the suitability ofin vivostudy with 3 prototype implants for the reconstruction of SCI: a multichannel sponge, a multilaminar tube, and a gel cylinder. These were compared with a spinal cord excision (control). A 20-wk observation revealed no adverse effects of SCI on the animals' well-being. The animals were easily housed and observed. Histologic analysis showed growth of nervous tissue elements on implant surface and implant cellular colonization. The study showed that the gecko SCI model can be used as a primary model for the assessment of SCI treatment methods. It provides a platform for testing multiple solutions with limited animal suffering before performing tests on mammals. Detailed results of

  6. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injury

    PubMed Central

    Aloe, Luigi; Bianchi, Patrizia; De Bellis, Alberto; Soligo, Marzia; Rocco, Maria Luisa

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an increased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deficits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells. PMID:25206755

  7. Identification of Spinal Cord MicroRNA and Gene Signatures in a Model of Chronic Stress-Induced Visceral Hyperalgesia in Rat

    PubMed Central

    Bradesi, Sylvie; Karagiannides, Iordanes; Bakirtzi, Kyriaki; Joshi, Swapna Mahurkar; Koukos, Georgios; Iliopoulos, Dimitrios; Pothoulakis, Charalabos; Mayer, Emeran A.

    2015-01-01

    Introduction Animal studies have shown that stress could induce epigenetic and transcriptomic alterations essential in determining the balance between adaptive or maladaptive responses to stress. We tested the hypothesis that chronic stress in rats deregulates coding and non-coding gene expression in the spinal cord, which may underline neuroinflammation and nociceptive changes previously observed in this model. Methods Male Wistar rats were exposed to daily stress or handled, for 10 days. At day 11, lumbar spinal segments were collected and processed for mRNA/miRNA isolation followed by expression profiling using Agilent SurePrint Rat Exon and Rat miRNA Microarray platforms. Differentially expressed gene lists were generated using the dChip program. Microarrays were analyzed using the Ingenuity Pathways Analysis (IPA) tool from Ingenuity Systems. Multiple methods were used for the analysis of miRNA-mRNA functional modules. Quantitative real time RT-PCR for Interleukin 6 signal transducer (gp130), the Signal Transducer And Activator Of Transcription 3 (STAT3), glial fibrillary acidic protein and mir-17-5p were performed to confirm levels of expression. Results Gene network analysis revealed that stress deregulated different inflammatory (IL-6, JAK/STAT, TNF) and metabolic (PI3K/AKT) signaling pathways. MicroRNA array analysis revealed a signature of 39 deregulated microRNAs in stressed rats. MicroRNA-gene network analysis showed that microRNAs are regulators of two gene networks relevant to inflammatory processes. Specifically, our analysis of miRNA-mRNA functional modules identified miR-17-5p as an important regulator in our model. We verified miR-17-5p increased expression in stress using qPCR and in situ hybridization. In addition, we observed changes in the expression of gp130 and STAT3 (involved in intracellular signaling cascades in response to gp130 activation), both predicted targets for miR-17-5p. A modulatory role of spinal mir17-5p in the modulation of

  8. Targeting the blood-spinal cord barrier: A therapeutic approach to spinal cord protection against ischemia-reperfusion injury.

    PubMed

    Hu, Ji; Yu, Qijing; Xie, Lijie; Zhu, Hongfei

    2016-08-01

    One of the principal functions of physical barriers between the blood and central nervous system protects system (i.e., blood brain barrier and blood-spinal cord barrier) is the protection from toxic and pathogenic agents in the blood. Disruption of blood-spinal cord barrier (BSCB) plays a key role in spinal cord ischemia-reperfusion injury (SCIRI). Following SCIRI, the permeability of the BSCB increases. Maintaining the integrity of the BSCB alleviates the spinal cord injury after spinal cord ischemia. This review summarizes current knowledge of the structure and function of the BSCB and its changes following SCIRI, as well as the prevention and cure of SCIRI and the role of the BSCB.

  9. Mineral metabolism in spinal cord injury.

    PubMed

    Naftchi, N E; Viau, A T; Sell, G H; Lowman, E W

    1980-03-01

    In 10 paraplegic and 10 quadroplegic subjects, bone resorption was investigated by determining urinary excretion of hydroxyproline, calcium, and phosphorus. Measurements were performed weekly from the onset to 4 months after injury. During the first 7 weeks following injury, urinary excretion of calcium in paraplegic and quadriplegic subjects reached the highest level (380 +/- 180 mg/24hr). From 7 to 16 weeks after injury average urinary excretion of calcium (245 +/- 72 mg/24hr) remained significantly greater than that in controls (100 +/- 25 mg/24hr; p less than 0.05). Urinary hydroxyproline was elevated in paraplegic subjects (80 +/- 18 mg/24hr) for 8 weeks and in quadriplegic subjects (102 +/- 37 mg/24hr) for the entire 16 weeks following injury compared with that in controls (48 +/- 12 mg/24hr; p less than 0.05). Both paraplegic and quadriplegic subjects excreted more phosphorus (1.6 +/- 0.4 gm/24hr) than controls (0.85 +/- 0.2 gm/24hr; p less than 0.05) only during the first 2 weeks following spinal cord injury. During the acute phase of the injury (0-3 months), urinary excretion of calcium and magnesium was significantly higher (p less than 0.05) in subjects with complete compared with incomplete spinal cord lesions. PMID:7369852

  10. Neurogenic bladder in spinal cord injury patients

    PubMed Central

    Taweel, Waleed Al; Seyam, Raouf

    2015-01-01

    Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury. PMID:26090342

  11. Spinal cord effects of antipyretic analgesics.

    PubMed

    Brune, K

    1994-01-01

    Tissue damage results in the release of inflammatory mediators, including prostaglandins, which sensitive fine nerve endings in the periphery to mechanical and thermal changes. Sensitisation of these nerve endings, or nociceptors, contributes to the phenomenon of hyperalgesia, which routinely accompanies tissue damage. It has been shown that the acidic antipyretic analgesics reduce or down-regulate the enhanced nociceptor sensitivity in damaged tissue, an effect probably attributable to inhibition of prostaglandin synthesis. Recent studies suggest that these drugs may have an additional mechanism of action in the spinal cord or higher centres. When enantiomers of flurbiprofen were used in the rat, it was shown that S- and R-flurbiprofen exert differential antinociceptive effects. The R-enantiomer, which is practically devoid of peripheral cyclo-oxygenase inhibitory activity in vitro, showed comparable analgesic potency to the S-enantiomer, which does inhibit cyclo-oxygenase activity, in experimental models of nociception. It is possible that the antinociceptive action of the R-enantiomer is related to a reduction in prostaglandin synthesis in the CNS rather than at the site of tissue damage, although other mechanisms may also contribute to its antinociceptive action. In contrast to earlier indications, it would appear that a significant part of the antinociceptive action of the antipyretic analgesics is exerted in the spinal cord. The observed accumulation of acidic antipyretic analgesics in inflamed tissue may account for the superior anti-inflammatory activity of these latter compounds.

  12. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury.

    PubMed

    Wang, Hongxing; Liu, Nai-Kui; Zhang, Yi Ping; Deng, Lingxiao; Lu, Qing-Bo; Shields, Christopher B; Walker, Melissa J; Li, Jianan; Xu, Xiao-Ming

    2015-09-01

    Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the

  13. Treadmill training induced lumbar motoneuron dendritic plasticity and behavior recovery in adult rats after a thoracic contusive spinal cord injury.

    PubMed

    Wang, Hongxing; Liu, Nai-Kui; Zhang, Yi Ping; Deng, Lingxiao; Lu, Qing-Bo; Shields, Christopher B; Walker, Melissa J; Li, Jianan; Xu, Xiao-Ming

    2015-09-01

    Spinal cord injury (SCI) is devastating, causing sensorimotor impairments and paralysis. Persisting functional limitations on physical activity negatively affect overall health in individuals with SCI. Physical training may improve motor function by affecting cellular and molecular responses of motor pathways in the central nervous system (CNS) after SCI. Although motoneurons form the final common path for motor output from the CNS, little is known concerning the effect of exercise training on spared motoneurons below the level of injury. Here we examined the effect of treadmill training on morphological, trophic, and synaptic changes in the lumbar motoneuron pool and on behavior recovery after a moderate contusive SCI inflicted at the 9th thoracic vertebral level (T9) using an Infinite Horizon (IH, 200 kDyne) impactor. We found that treadmill training significantly improved locomotor function, assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, and reduced foot drops, assessed by grid walking performance, as compared with non-training. Additionally, treadmill training significantly increased the total neurite length per lumbar motoneuron innervating the soleus and tibialis anterior muscles of the hindlimbs as compared to non-training. Moreover, treadmill training significantly increased the expression of a neurotrophin brain-derived neurotrophic factor (BDNF) in the lumbar motoneurons as compared to non-training. Finally, treadmill training significantly increased synaptic density, identified by synaptophysin immunoreactivity, in the lumbar motoneuron pool as compared to non-training. However, the density of serotonergic terminals in the same regions did not show a significant difference between treadmill training and non-training. Thus, our study provides a biological basis for exercise training as an effective medical practice to improve recovery after SCI. Such an effect may be mediated by synaptic plasticity, and neurotrophic modification in the

  14. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model.

    PubMed

    Hillen, Brian K; Jindrich, Devin L; Abbas, James J; Yamaguchi, Gary T; Jung, Ranu

    2015-04-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI.

  15. Dynamic pain phenotypes are associated with spinal cord stimulation-induced reduction in pain: A repeated measures observational pilot study

    PubMed Central

    Campbell, Claudia M.; Buenaver, Luis F.; Raja, Srinivasa N.; Kiley, Kasey B.; Swedberg, Lauren; Wacnik, Paul W.; Cohen, Steven P.; Erdek, Michael A.; Williams, Kayode A.; Christo, Paul J.

    2015-01-01

    Objective Spinal Cord Stimulation (SCS) has become a widely used treatment option for a variety of pain conditions. Substantial variability exists in the degree of benefit obtained from SCS and patient selection is a topic of expanding interest and importance. However, few studies have examined the potential benefits of dynamic Quantitative Sensory Testing (QST) to develop objective measures of SCS outcomes or as a predictive tool to help patient selection. Psychological characteristics have been shown to play an important role in shaping individual differences in the pain experience and may aid in predicting responses to SCS. Static laboratory pain-induction measures have also been examined in their capacity for predicting SCS outcomes. Methods The current study evaluated clinical, psychological and laboratory pain measures at baseline, during trial SCS lead placement, as well as one month and three months following permanent SCS implantation in chronic pain patients who received SCS treatment. Several QST measures were conducted, with specific focus on examination of dynamic models (central sensitization and conditioned pain modulation [CPM]) and their association with pain outcomes three months post SCS implantation. Results Results suggest few changes in QST over time. However, central sensitization and CPM at baseline were significantly associated with clinical pain at three months following SCS implantation, controlling for psycho/behavioral factors and pain at baseline. Specifically, enhanced central sensitization and reduced CPM were associated with less self-reported pain three months following SCS implantation. Conclusions These findings suggest a potentially important role for dynamic pain assessment in individuals undergoing SCS, and hint at potential mechanisms through which SCS may impart its benefit. PMID:25800088

  16. Patterns of Phrenic Nerve Discharge after Complete High Cervical Spinal Cord Injury in the Decerebrate Rat.

    PubMed

    Ghali, Michael George Zaki; Marchenko, Vitaliy

    2016-06-15

    Studies conducted since the second half of the 19th century have revealed spontaneous as well as pharmacologically induced phasic/rhythmic discharge in spinal respiratory motor outputs of cats, dogs, rabbits, and neonatal rats following high cervical transection (Tx). The extent to which these various studies validate the existence of a true spinal respiratory rhythm generator remains debated. In this set of studies, we seek to characterize patterns of spontaneous phasic/rhythmic, asphyxia-induced, and pharmacologically induced activity occurring in phrenic nerve (PhN) discharge after complete high cervical (C1-C2) spinal cord transection. Experiments were performed on 20 unanesthetized decerebrate Sprague-Dawley adult male rats. Patterns of spontaneous activity after spinalization included tonic, phasic, slow oscillatory, and long-lasting tonic discharges. Topical application of antagonists of GABAA and glycine receptors to C1- and C2- spinal segments induced left-right synchronized phasic decrementing activity in PhN discharge that was abolished by an additional C2Tx. Asphyxia elicited increases in tonic activity and left-right synchronized gasp-like bursts in PhN discharge, demonstrating the presence of spinal circuits that may underlie a spinal gasping-like mechanism. We conclude that intrinsic slow oscillators and a phasic burst/rhythm generator exist in the spinal cord of the adult rat. If present in humans, this mechanism may be exploited to recover respiratory function in patients sustaining severe spinal cord injury. PMID:26239508

  17. Peripheral neuritis and increased spinal cord neurochemicals are induced in a model of repetitive motion injury with low force and repetition exposure.

    PubMed

    Elliott, Melanie B; Barr, Ann E; Kietrys, David M; Al-Shatti, Talal; Amin, Mamta; Barbe, Mary F

    2008-07-01

    Performance of high repetition tasks with or without force is associated with peripheral tissue inflammation, decreased nerve function and motor dysfunction. Here, we examined whether a low repetition task with negligible force (LRNF) produces fewer tissue and behavioral pathologies than previously observed with high repetition tasks using our rat model of repetitive motion injury (RMI). Thirty-seven rats were randomized into control or LRNF groups, the latter reaching and grasping a 45 mg food pellet at a rate of 3 reaches/min. This task was performed in 4, 0.5 5 h sessions with 1.5 5 h rest periods for 3 days/week for up to 12 weeks. Examination of distal median nerve, forelimb flexor tendons and bones for ED1-positive cells (macrophages and osteoclasts) revealed increases in nerve and bone in week 12. The nerve also contained increased TNF-alpha expressing cells in week 12. Examination of spinal cord dorsal horns revealed increased immunoexpression of Substance P in week 8 and neurokinin-1 in weeks 8 and 12 in the superficial lamina. Motor behavioral analyses showed no changes in reach rate across weeks, slightly reduced task duration (a measurement of voluntary task participation) in week 12, but significantly increased extra arm movement reversals during reaching in week 8. These extra movement reversals were corrections for missed food pellets during a reach. Thus, performance of even a low repetition, negligible force upper extremity task for 3 months can induce mild peripheral tissue inflammation, neurochemical increases in spinal cord dorsal horns, and declines in fine motor control.

  18. Functional Regeneration Following Spinal Transection Demonstrated in the Isolated Spinal Cord of the Larval Sea Lamprey

    NASA Astrophysics Data System (ADS)

    Cohen, A. H.; Mackler, S. A.; Selzer, M. E.

    1986-04-01

    Axons in the larval sea lamprey can regenerate across the site of a spinal cord transection and form functioning synapses with some of their normal target neurons. The animals recover normal-appearing locomotion, but whether the regenerating axons and their synaptic connections are capable of playing a functional role during this behavior is unknown. To test this, ``fictive'' swimming was induced in the isolated spinal cord by the addition of D-glutamate to the bathing solution. Ventral root discharges of segments above and below a healed transection showed a high degree of phase-locking. This strongly suggests that the behavioral recovery is mediated by regenerated functional synaptic connections subserving intersegmental coordination of the central pattern generator for locomotion.

  19. Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: injured spinal cord pressure evaluation study.

    PubMed

    Phang, Isaac; Werndle, Melissa C; Saadoun, Samira; Varsos, Georgios; Czosnyka, Marek; Zoumprouli, Argyro; Papadopoulos, Marios C

    2015-06-15

    We recently showed that, after traumatic spinal cord injury (TSCI), laminectomy does not improve intraspinal pressure (ISP), spinal cord perfusion pressure (SCPP), or the vascular pressure reactivity index (sPRx) at the injury site sufficiently because of dural compression. This is an open label, prospective trial comparing combined bony and dural decompression versus laminectomy. Twenty-one patients with acute severe TSCI had re-alignment of the fracture and surgical fixation; 11 had laminectomy alone (laminectomy group) and 10 had laminectomy and duroplasty (laminectomy+duroplasty group). Primary outcomes were magnetic resonance imaging evidence of spinal cord decompression (increase in intradural space, cerebrospinal fluid around the injured cord) and spinal cord physiology (ISP, SCPP, sPRx). The laminectomy and laminectomy+duroplasty groups were well matched. Compared with the laminectomy group, the laminectomy+duroplasty group had greater increase in intradural space at the injury site and more effective decompression of the injured cord. In the laminectomy+duroplasty group, ISP was lower, SCPP higher, and sPRx lower, (i.e., improved vascular pressure reactivity), compared with the laminectomy group. Laminectomy+duroplasty caused cerebrospinal fluid leak that settled with lumbar drain in one patient and pseudomeningocele that resolved completely in five patients. We conclude that, after TSCI, laminectomy+duroplasty improves spinal cord radiological and physiological parameters more effectively than laminectomy alone.

  20. Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.

    PubMed

    Kwiatkoski, Marcelo; Guimarães, Francisco Silveira; Del-Bel, Elaine

    2012-04-01

    Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.

  1. Hyperbaric oxygen preconditioning attenuates early apoptosis after spinal cord ischemia in rats.

    PubMed

    Wang, Liping; Li, Wenxian; Kang, Zhimin; Liu, Yun; Deng, Xiaoming; Tao, Hengyi; Xu, Weigang; Li, Runping; Sun, Xuejun; Zhang, John H

    2009-01-01

    This study tested the hypothesis that spinal cord ischemic tolerance induced by hyperbaric oxygen preconditioning (HBO-PC) is mediated by inhibition of early apoptosis. Male Sprague-Dawley rats were preconditioned with consecutive 4 cycles of 1-h HBO exposures (2.5 atmospheres absolute [ATA], 100% O(2)) at a 12-h interval. At 24 h after the last HBO pretreatment, rats underwent 9 min of spinal cord ischemia induced by occlusion of the descending thoracic aorta in combination with systemic hypotension (40 mmHg). Spinal cord ischemia produced marked neuronal death and neurological dysfunction in animals. HBO-PC enhanced activities of Mn-superoxide dismutase (Mn-SOD) and catalase, as well as the expression of Bcl-2 in the mitochondria in the normal spinal cord at 24 h after the last pretreatment (before spinal cord ischemia), and retained higher levels throughout the early reperfusion in the ischemic spinal cord. In parallel, superoxide and hydrogen peroxide levels in mitochondria were decreased, cytochrome c release into the cytosol was reduced at 1 h after reperfusion, and activation of caspase-3 and -9 was subsequently attenuated. HBO-PC improved neurobehavioral scores and reduced neuronal apoptosis in the anterior, intermediate, and dorsal gray matter of lumbar segment at 24 h after spinal cord ischemia. HBO-PC increased nitric oxide (NO) production. L-nitroarginine-methyl-ester (L-NAME; 10 mg/kg), a nonselective NO synthase (NOS) inhibitor, applied before each HBO-PC protocol abolished these beneficial effects of HBO-PC. We conclude that HBO-PC reduced spinal cord ischemia-reperfusion injury by increasing Mn-SOD, catalase, and Bcl-2, and by suppressing mitochondrial apoptosis pathway. NO may be involved in this neuroprotection. PMID:19196076

  2. Activity-dependent plasticity of spinal circuits in the developing and mature spinal cord.

    PubMed

    Tahayori, Behdad; Koceja, David M

    2012-01-01

    Part of the development and maturation of the central nervous system (CNS) occurs through interactions with the environment. Through physical activities and interactions with the world, an animal receives considerable sensory information from various sources. These sources can be internally (proprioceptive) or externally (such as touch and pressure) generated senses. Ample evidence exists to demonstrate that the sensory information originating from large diameter afferents (Ia fibers) have an important role in inducing essential functional and morphological changes for the maturation of both the brain and the spinal cord. The Ia fibers transmit sensory information generated by muscle activity and movement. Such use or activity-dependent plastic changes occur throughout life and are one reason for the ability to acquire new skills and learn new movements. However, the extent and particularly the mechanisms of activity-dependent changes are markedly different between a developing nervous system and a mature nervous system. Understanding these mechanisms is an important step to develop strategies for regaining motor function after different injuries to the CNS. Plastic changes induced by activity occur both in the brain and spinal cord. This paper reviews the activity-dependent changes in the spinal cord neural circuits during both the developmental stages of the CNS and in adulthood. PMID:22900208

  3. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  4. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  5. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  6. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  7. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  8. The thoracic anterior spinal cord adhesion syndrome

    PubMed Central

    Taylor, T R; Dineen, R; White, B; Jaspan, T

    2012-01-01

    Objectives This study included a series of middle-aged male and female patients who presented with chronic anterior hemicord dysfunction progressing to paraplegia. Imaging of anterior thoracic cord displacement by either a dural adhesion or a dural defect with associated cord herniation is presented. Methods This is a retrospective review of cases referred to a tertiary neuroscience centre over a 19-year period. Imaging series were classified by two experienced neuroradiologists against several criteria and correlated with clinical examination and/or findings at surgery. Results 16 cases were available for full review. Nine were considered to represent adhesions (four confirmed surgically) and four to represent true herniation (three confirmed surgically). In the three remaining cases the diagnosis was radiologically uncertain. Conclusion The authors propose “thoracic anterior spinal cord adhesion syndrome” as a novel term to describe this patient cohort and suggest appropriate clinicoradiological features for diagnosis. Several possible aetiologies are also suggested, with disc rupture and inflammation followed by disc resorption and dural pocket formation being a possible mechanism predisposing to herniation at the extreme end of a clinicopathological spectrum. PMID:22665931

  9. Revisiting the segmental organization of the human spinal cord.

    PubMed

    Leijnse, J N; D'Herde, K

    2016-09-01

    In classic anatomic atlases, the spinal cord is standardly represented in its anatomical form with symmetrically emerging anterior and posterior roots, which at the level of the intervertebral foramen combine into the spinal nerves. The parts of the cord delimited by the boundaries of the roots are called segments or myelomeres. Associated with their regular repetitive appearance is the notion that the cord is segmentally organized. This segmental view is reinforced by clinical practice. Spinal cord roots innervate specific body parts. The level of cord trauma is diagnosed by the de-innervation symptoms of these parts. However, systemically, the case for a segmentally organized cord is not so clear. To date, developmental and genetic research points to a regionally rather than a segmentally organized cord. In the present study, to what degree the fila radicularia are segmentally implanted along the cord was investigated. The research hypothesis was that if the fila radicularia were non-segmentally implanted at the cord surface, it would be unlikely that the internal neuron stratum would be segmented. The visual segmented aspect of the myelomeres would then be the consequence of the necessary bundling of axons towards the vertebral foramen as the only exits of the vertebral canal, rather than of an underlying segment organization of the cord itself. To investigate the research hypothesis, the fila radicularia in the cervical-upper thoracic part of five spinal cords were detached from their spinal nerves and dissected in detail. The principal research question was if the fila radicularia are separated from their spinal nerves and dissected from their connective tissues up to the cord, would it be possible to reconstruct the original spinal segments from the morphology and interspaces of the fila? The dissections revealed that the anterior fila radicularia emerge from the cord at regular regionally modulated interspaces without systematic segmental delineations. The

  10. Spinal Cord Stimulation and Augmentative Control Strategies for Leg Movement after Spinal Paralysis in Humans.

    PubMed

    Minassian, Karen; Hofstoetter, Ursula S

    2016-04-01

    Severe spinal cord injury is a devastating condition, tearing apart long white matter tracts and causing paralysis and disability of body functions below the lesion. But caudal to most injuries, the majority of neurons forming the distributed propriospinal system, the localized gray matter spinal interneuronal circuitry, and spinal motoneuron populations are spared. Epidural spinal cord stimulation can gain access to this neural circuitry. This review focuses on the capability of the human lumbar spinal cord to generate stereotyped motor output underlying standing and stepping, as well as full weight-bearing standing and rhythmic muscle activation during assisted treadmill stepping in paralyzed individuals in response to spinal cord stimulation. By enhancing the excitability state of the spinal circuitry, the stimulation can have an enabling effect upon otherwise "silent" translesional volitional motor control. Strategies for achieving functional movement in patients with severe injuries based on minimal translesional intentional control, task-specific proprioceptive feedback, and next-generation spinal cord stimulation systems will be reviewed. The role of spinal cord stimulation can go well beyond the immediate generation of motor output. With recently developed training paradigms, it can become a major rehabilitation approach in spinal cord injury for augmenting and steering trans- and sublesional plasticity for lasting therapeutic benefits.

  11. Hyperbaric oxygen therapy improves local microenvironment after spinal cord injury.

    PubMed

    Wang, Yang; Zhang, Shuquan; Luo, Min; Li, Yajun

    2014-12-15

    Clinical studies have shown that hyperbaric oxygen therapy improves motor function in patients with spinal cord injury. In the present study, we explored the mechanisms associated with the recovery of neurological function after hyperbaric oxygen therapy in a rat model of spinal cord injury. We established an acute spinal cord injury model using a modification of the free-falling object method, and treated the animals with oxygen at 0.2 MPa for 45 minutes, 4 hours after injury. The treatment was administered four times per day, for 3 days. Compared with model rats that did not receive the treatment, rats exposed to hyperbaric oxygen had fewer apoptotic cells in spinal cord tissue, lower expression levels of aquaporin 4/9 mRNA and protein, and more NF-200 positive nerve fibers. Furthermore, they had smaller spinal cord cavities, rapid recovery of somatosensory and motor evoked potentials, and notably better recovery of hindlimb motor function than model rats. Our findings indicate that hyperbaric oxygen therapy reduces apoptosis, downregulates aquaporin 4/9 mRNA and protein expression in injured spinal cord tissue, improves the local microenvironment for nerve regeneration, and protects and repairs the spinal cord after injury.

  12. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    PubMed Central

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (p<0.05). Catalase and superoxide dismutase levels of the kefir group were significantly higher than ischemia group (p<0.05). In histopathological samples, the kefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (p<0.05). In immunohistochemical staining, hipoxia-inducible factor-1α and caspase 3 immunopositive neurons were significantly decreased in kefir group compared with ischemia group (p<0.05). The neurological deficit scores of kefir group were significantly higher than ischemia group at 24 h (p<0.05). Conclusion Our study revealed that kefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  13. [Pre-hospital care management of acute spinal cord injury].

    PubMed

    Hess, Thorsten; Hirschfeld, Sven; Thietje, Roland; Lönnecker, Stefan; Kerner, Thoralf; Stuhr, Markus

    2016-04-01

    Acute injury to the spine and spinal cord can occur both in isolation as also in the context of multiple injuries. Whereas a few decades ago, the cause of paraplegia was almost exclusively traumatic, the ratio of traumatic to non-traumatic causes in Germany is currently almost equivalent. In acute treatment of spinal cord injury, restoration and maintenance of vital functions, selective control of circulation parameters, and avoidance of positioning or transport-related additional damage are in the foreground. This article provides information on the guideline for emergency treatment of patients with acute injury of the spine and spinal cord in the preclinical phase. PMID:27070515

  14. Local cooling alters neural mechanisms producing changes in peripheral blood flow by spinal cord stimulation.

    PubMed

    Tanaka, Satoshi; Barron, Kirk W; Chandler, Margaret J; Linderoth, Bengt; Foreman, Robert D

    2003-03-28

    This study was performed to investigate the respective role of sensory afferent and sympathetic fibers in peripheral vasodilatation induced by spinal cord stimulation at different hindpaw skin temperatures. Cooling the skin was used as a strategy to enhance sympathetic activity [Am. J. Physiol.: Heart Circ. Physiol. 263 (1992) H1197]. Cutaneous blood flow in the footpad of anesthetized rats was recorded using laser Doppler flowmetry. Local cooling (<25 degrees C) or moderate local cooling (25-28 degrees C) of the hindpaw was produced with a cooling copper coil. Spinal cord stimulation delivered at clinically relevant parameters and with 30%, 60%, and 90% of motor threshold induced the early phase of vasodilatation in the cooled and the moderately cooled hindpaw. In addition, spinal cord stimulation at 90% of motor threshold produced the late phase of vasodilatation only in the cooled hindpaw, which was possible to block by the autonomic ganglion-blocking agent, hexamethonium. The early responses to spinal cord stimulation in the moderately cooled hindpaw were not affected by hexamethonium. In contrast, both the early and the late phase responses were eliminated by CGRP (8-37), an antagonist of the calcitonin gene-related peptide receptor. After dorsal rhizotomy, spinal cord stimulation at 90% of motor threshold elicited hexamethonium-sensitive vasodilatation in the cooled hindpaw (late phase). These results suggest that spinal cord stimulation-induced vasodilatation in the cooled hindpaw (<25 degrees C) is mediated via both the sensory afferent (early phase of vasodilatation) and via suppression of the sympathetic efferent activity (late phase) although the threshold for vasodilatation via the sympathetic efferent fibers is higher than that via sensory nerves. In contrast, vasodilatation via sensory afferent fibers may predominate with moderate temperatures (25-28 degrees C). Thus, two complementary mechanisms for spinal cord stimulation-induced vasodilatation may

  15. Inhibition of SNL-induced upregulation of CGRP and NPY in the spinal cord and dorsal root ganglia by the 5-HT(2A) receptor antagonist ketanserin in rats.

    PubMed

    Wang, Dongmei; Chen, Tingjun; Gao, Yun; Quirion, Rémi; Hong, Yanguo

    2012-05-01

    Our previous study has demonstrated that topical and systemic administration of the 5-HT(2A) receptor antagonist ketanserin attenuates neuropathic pain. To explore the mechanisms involved, we examined whether ketanserin reversed the plasticity changes associated with calcitonin gene-related peptides (CGRP) and neuropeptide Y (NPY) which may reflect distinct mechanisms: involvement and compensatory protection. Behavioral responses to thermal and tactile stimuli after spinal nerve ligation (SNL) at L5 demonstrated neuropathic pain and its attenuation in the vehicle- and ketanserin-treated groups, respectively. SNL surgery induced an increase in CGRP and NPY immunoreactivity (IR) in laminae I-II of the spinal cord. L5 SNL produced an expression of NPY-IR in large, medium and small diameter neurons in dorsal root ganglion (DRG) only at L5, but not adjacent L4 and L6. Daily injection of ketanserin (0.3 mg/kg, s.c.) for two weeks suppressed the increase in CGRP-IR and NPY-IR in the spinal cord or DRG. The present study demonstrated that: (1) the expression of CGRP was enhanced in the spinal dorsal horn and NPY was expressed in the DRG containing injured neurons, but not in the adjacent DRG containing intact neurons, following L5 SNL; (2) the maladaptive changes in CGRP and NPY expression in the spinal cord and DRG mediated the bioactivity of 5-HT/5-HT(2A) receptors in neuropathic pain and (3) the blockade of 5-HT(2A) receptors by ketanserin reversed the evoked upregulation of both CGRP and NPY in the spinal cord and DRG contributing to the inhibition of neuropathic pain.

  16. Spinal cord injury and outdoor experiences.

    PubMed

    Beringer, Almut

    2004-03-01

    Anecdotal evidence from spinal cord injury (SCI) rehabilitation clients suggests that nature experiences and outdoor pursuits are valued ingredients in a SCI rehabilitation program, in particular for those individuals who were outdoor enthusiasts pre-injury and/or who sustained their injury during outdoor pursuits. Model SCI centres in North America offer outdoor activities as components of SCI rehabilitation. A literature review on the effects and dynamics of nature experiences and outdoor pursuits in SCI rehabilitation and adjustment reveals a lacuna of empirical research in this area. Studies on leisure and recreation following SCI offer insights into how non-vocational rehabilitation activities assist functional independence, quality of life, and community re-integration. Systematic research is needed to ascertain the value and contribution of outdoor experiences in SCI rehabilitation; further, research is needed to document how contact with 'blue-green nature' may assist in the identity reconstruction process and in adjustment to life with a physical disability.

  17. Infertility in spinal-cord injured male.

    PubMed

    Ver Voort, S M

    1987-02-01

    Sterility in spinal-cord injured (SCI) men is believed to be caused by ejaculatory dysfunction, genital ductal blockage secondary to infection, and/or impaired spermatogenesis. Semen from SCI men demonstrates diminished numbers of motile, morphologically normal sperm. Testicular biopsies demonstrate impaired spermatogenesis. Leydig and Sertoli cells appear to be normal. Endocrine evaluations reveal normal testosterone levels with an adequate Leydig cell reserve. Luteinizing hormone (LD) and follicle-stimulating hormone (FSH) levels are normal or high with normal or exaggerated stimulation responses. Acute depressions in testosterone, FSH, and LH levels can be seen following SCI, most markedly in quadriplegics. A normal hypothalamic-pituitary-testicular axis is implied by these findings, indicating a primary hypogonadism. Causes of impaired spermatogenesis may include local testicular temperature elevations, nondrainage of the reproductive tract, antisperm antibodies, and recurrent genitourinary infections. Treatment of infertility involves removal of these offending factors, and research is needed to correlate the impaired spermatogenesis with these factors.

  18. Functional Electrical Stimulation and Spinal Cord Injury

    PubMed Central

    Ho, Chester H.; Triolo, Ronald J.; Elias, Anastasia L.; Kilgore, Kevin L.; DiMarco, Anthony F.; Bogie, Kath; Vette, Albert H.; Audu, Musa; Kobetic, Rudi; Chang, Sarah R.; Chan, K. Ming; Dukelow, Sean; Bourbeau, Dennis J.; Brose, Steven W.; Gustafson, Kenneth J.; Kiss, Zelma; Mushahwar, Vivian K.

    2015-01-01

    Synopsis Spinal cord injuries (SCI) can disrupt communications between the brain and the body, leading to a loss of control over otherwise intact neuromuscular systems. The use of electrical stimulation (ES) of the central and peripheral nervous system can take advantage of these intact neuromuscular systems to provide therapeutic exercise options, to allow functional restoration, and even to manage or prevent many medical complications following SCI. The use of ES for the restoration of upper extremity, lower extremity and truncal functions can make many activities of daily living a potential reality for individuals with SCI. Restoring bladder and respiratory functions and preventing pressure ulcers may significantly decrease the morbidity and mortality following SCI. Many of the ES devices are already commercially available and should be considered by all SCI clinicians routinely as part of the lifelong rehabilitation care plan for all eligible individuals with SCI. PMID:25064792

  19. Pain in patients with spinal cord injury.

    PubMed

    Finnerup, Nanna Brix

    2013-12-01

    Individuals with spinal cord injury (SCI) often have chronic pain, which may have a major impact on their quality of life. The purpose of this article is to present an update on the classification of SCI pain, recent advances in the understanding of underlying mechanisms, and current evidence-based treatment of SCI pain. The paper also discusses difficulties in assessing pain after SCI, both in the clinic and in preclinical research. While we continue to increase our understanding of underlying mechanisms, treatment is still unsatisfactory, and there is an unmet need to improve pain relief. We need to improve preclinical assessment of pain-like behavior in central pain models, and improve the clinical assessment of pain and our understanding of the interaction with cognitive, emotional, and social factors. In future studies on mechanisms and treatment, we need to acknowledge the different phenotypes of chronic SCI pain.

  20. Spinal cord injury, immunodepression, and antigenic challenge

    PubMed Central

    Held, Katherine S.; Lane, Thomas E.

    2016-01-01

    The inability to effectively control microbial infection is a leading cause of morbidity and mortality in individuals affected by spinal cord injury (SCI). Available evidence from clinical studies as well as animal models of SCI demonstrate that increased susceptibility to infection is derived from disruption of central nervous system (CNS) communication with the host immune system that ultimately leads to immunodepression. Understanding the molecular and cellular mechanisms governing muted cellular and humoral responses that occur post-injury resulting in impaired host defense following infection is critical for improving the overall quality of life of individuals with SCI. This review focuses on studies performed using preclinical animal models of SCI to evaluate how injury impacts T and B lymphocyte responses following either viral infection or antigenic challenge. PMID:24747011

  1. Spinal Cord Schistosomiasis: Two Different Outcomes

    PubMed Central

    Alsomaili, Mohammed; Abulaban, Ahmad A.

    2016-01-01

    Spinal cord schistosomiasis is difficult to diagnose in nonendemic areas. We report the clinical profile of 2 young Saudi males who presented with myelopathy. The first patient arrived at our hospital relatively late, i.e. 3 months following the presentation of initial symptoms, and had received both pulse steroid therapy and a plasma exchange. Praziquantel was administered late and the patient did not recover. The second case presented early, i.e. within around 8 weeks of initial symptoms. This patient received praziquantel without any kind of steroid and had a complete recovery. We concluded that prompt recognition and early treatment with praziquantel is crucial for a better outcome. The role of steroids in these cases still needs to be proven. PMID:27293404

  2. Spinal Cord Stimulation for Chronic Limb Ischemia

    PubMed Central

    Naoum, Joseph J.; Arbid, Elias J.

    2013-01-01

    The treatment of chronic limb ischemia involves the restoration of pulsatile blood flow to the distal extremity. Some patients cannot be treated with endovascular means or with open surgery; some may have medical comorbidities that render them unfit for surgery, while others may have persistent ischemia or pain even in the face of previous attempts at reperfusion. In spinal cord stimulation (SCS), a device with electrodes is implanted in the epidural space to stimulate sensory fibers. This activates cell-signaling molecules that in turn cause the release of vasodilatory molecules, a decrease in vascular resistance, and relaxation of smooth muscle cells. SCS also suppresses sympathetic vasoconstriction and pain transmission. When patient selection is based on microcirculatory parameters, SCS therapy can significantly improve pain relief, halt the progression of ulcers, and potentially achieve limb salvage. PMID:23805343

  3. 1H-MRS in spinal cord injury: acute and chronic metabolite alterations in rat brain and lumbar spinal cord

    PubMed Central

    Erschbamer, Matthias; Öberg, Johanna; Westman, Eric; Sitnikov, Rouslan; Olson, Lars; Spenger, Christian

    2011-01-01

    A variety of tests of sensorimotor function are used to characterize outcome after experimental spinal cord injury (SCI). These tests typically do not provide information about chemical and metabolic processes in the injured CNS. Here, we used 1H-magnetic resonance spectroscopy (MRS) to monitor long-term and short-term chemical changes in the CNS in vivo following SCI. The investigated areas were cortex, thalamus/striatum and the spinal cord distal to injury. In cortex, glutamate (Glu) decreased 1 day after SCI and slowly returned towards normal levels. The combined glutamine (Gln) and Glu signal was similarly decreased in cortex, but increased in the distal spinal cord, suggesting opposite changes of the Glu/Gln metabolites in cortex and distal spinal cord. In lumbar spinal cord, a marked increase of myo-inositol was found 3 days, 14 days and 4 months after SCI. Changes in metabolite concentrations in the spinal cord were also found for choline and N-acetylaspartate. No significant changes in metabolite concentrations were found in thalamus/striatum. Multivariate data analysis allowed separation between rats with SCI and controls for spectra acquired in cortex and spinal cord, but not in thalamus/striatum. Our findings suggest MRS could become a helpful tool to monitor spatial and temporal alterations of metabolic conditions in vivo in the brain and spinal cord after SCI. We provide evidence for dynamic temporal changes at both ends of the neuraxis, cortex cerebri and distal spinal cord, while deep brain areas appear less affected. PMID:21251091

  4. Ischemic spinal cord infarction in children without vertebral fracture

    PubMed Central

    Nance, Jessica R.; Golomb, Meredith R.

    2007-01-01

    Spinal cord infarction in children is a rare condition which is becoming more widely recognized. There are few reports in the pediatric literature characterizing etiology, diagnosis, treament and prognosis. The risk factors for pediatric ischemic spinal cord infarction include obstruction of blood flow associated with cardiovascular compromise or malformation, iatrogenic or traumatic vascular inujury, cerebellar herniation, thrombotic or embolic disease, infection, and vasculitis. In many children the cause of spinal cord ischemia in the absence of vertebral fracture is unknown. Imaging diagnosis of spinal cord ischemia is often difficult due to the small transverse area of the cord, cerebrospinal fluid artifact and inadequate resolution of MRI. Physical therapy is the most important treatment option. The prognosis is dependent on the level of spinal cord damage, early identification and reversal of ischemia, and follow-up with intensive physical therapy and medical support. In addition to summarizing the literature regarding spinal cord infarction in children without vertebral fracture, this review article adds two cases to the literature which highlight the difficulties and controversies in the management of this condition. PMID:17437902

  5. Injury alters intrinsic functional connectivity within the primate spinal cord.

    PubMed

    Chen, Li Min; Mishra, Arabinda; Yang, Pai-Feng; Wang, Feng; Gore, John C

    2015-05-12

    Recent demonstrations of correlated low-frequency MRI signal variations between subregions of the spinal cord at rest in humans, similar to those found in the brain, suggest that such resting-state functional connectivity constitutes a common feature of the intrinsic organization of the entire central nervous system. We report our detection of functional connectivity within the spinal cords of anesthetized squirrel monkeys at rest and show that the strength of connectivity within these networks is altered by the effects of injuries. By quantifying the low-frequency MRI signal correlations between different horns within spinal cord gray matter, we found distinct functional connectivity relationships between the different sensory and motor horns, a pattern that was similar to activation patterns evoked by nociceptive heat or tactile stimulation of digits. All horns within a single spinal segment were functionally connected, with the strongest connectivity occurring between ipsilateral dorsal and ventral horns. Each horn was strongly connected to the same horn on neighboring segments, but this connectivity reduced drastically along the spinal cord. Unilateral injury to the spinal cord significantly weakened the strength of the intrasegment horn-to-horn connectivity only on the injury side and in slices below the lesion. These findings suggest resting-state functional connectivity may be a useful biomarker of functional integrity in injured and recovering spinal cords. PMID:25902510

  6. Proprioceptive neuropathy affects normalization of the H-reflex by exercise after spinal cord injury

    PubMed Central

    Ollivier-Lanvin, Karen; Keeler, Benjamin E.; Siegfried, Rachel; Houlé, John D.; Lemay, Michel A.

    2009-01-01

    The H-reflex habituates at relatively low frequency (10 Hz) stimulation in the intact spinal cord, but loss of descending inhibition resulting from spinal cord transection reduces this habituation. There is a return towards a normal pattern of low-frequency habituation in the reflex activity with cycling exercise of the affected hind limbs. This implies that repetitive passive stretching of the muscles in spinalized animals and the accompanying stimulation of large (Group I and II) proprioceptive fibers has modulatory effects on spinal cord reflexes after injury. To test this hypothesis, we induced pyridoxine neurotoxicity that preferentially affects large dorsal root ganglia neurons in intact and spinalized rats. Pyridoxine or saline injections were given twice daily (IP) for 6 weeks and half of the spinalized animals were subjected to cycling exercise during that period. After 6 weeks, the tibial nerve was stimulated electrically and recordings of M and H waves were made from interosseous muscles of the hind paw. Results show that pyridoxine treatment completely eliminated the H-reflex in spinal intact animals. In contrast, transection paired with pyridoxine treatment resulted in a reduction of the frequency-dependent habituation of the H-reflex that was not affected by exercise. These results indicate that normal Group I and II afferent input is critical to achieve exercise-based reversal of hyper-reflexia of the H-reflex after spinal cord injury. PMID:19913536

  7. Fas and FasL expression in the spinal cord following cord hemisection in the monkey.

    PubMed

    Jia, Liu; Yu, Zou; Hui, Li; Yu-Guang, Guan; Xin-Fu, Zhou; Chao, You; Yanbin, Xiyang; Xi, Zhan; Jun, Wang; Xin-Hua, Heng; Xin-Hua, Hen; Ting-Hua, Wang

    2011-03-01

    The changes of endogenous Fas/FasL in injured spinal cord, mostly in primates, are not well known. In this study, we investigated the temporal changes in the expression of Fas and FasL and explored their possible roles in the ventral horn of the spinal cord and associated precentral gyrus following T(11) spinal cord hemisection in the adult rhesus monkey. A significant functional improvement was seen with the time going on in monkeys subjected to cord hemisection. Apoptotic cells were also seen in the ventral horn of injured spinal cord with TUNEL staining, and a marked increase presents at 7 days post operation (dpo). Simultaneously, the number of Fas and FasL immunoreactive neurons in the spinal cords caudal and rostral to injury site and their intracellular optical density (OD) in the ipsilateral side of injury site at 7 dpo increased significantly more than that of control group and contralateral sides. This was followed by a decrease and returned to normal level at 60 dpo. No positive neurons were observed in precentral gyrus. The present results may provide some insights to understand the role of Fas/FasL in the spinal cord but not motor cortex with neuronal apoptosis and neuroplasticity in monkeys subjected to hemisection spinal cord injury. PMID:21181266

  8. The beneficial effects of a thromboxane receptor antagonist on spinal cord perfusion following experimental cord injury.

    PubMed

    Tempel, G E; Martin, H F

    1992-06-01

    The eicosanoids thromboxane A2 and prostacyclin have opposing actions causing vasoconstriction and vasodilation respectively. The ratio of these two eicosanoids is thus an important determinant of circulatory homeostasis. An increase in this ratio occurs in certain inflammatory conditions with dramatic consequences in organ perfusion. In spinal cord trauma, in addition to direct physical perturbation of the spinal cord, it is likely that further structural and functional loss occurs as a result of decreased tissue perfusion precipitated by an increase in the thromboxane/prostacyclin ratio. This study evaluated hemodynamics and organ perfusion, 3 h following 24 g-cm spinal cord trauma in the rat. The role of thromboxane was investigated with an inhibitor of thromboxane synthesis (Dazoxiben) and with a receptor antagonist (13-APT). Cardiac output and blood pressure were unaffected by Dazoxiben, 13-APT, or spinal cord trauma. Injury effected approximately a 40% decrease in spinal cord perfusion from 0.41 to 0.25 ml/min/g which was not improved by the thromboxane synthase inhibitor, Dazoxiben. 13-ATP completely abrogated the decline in spinal cord blood flow flowing injury. Perfusion of other selected organs demonstrated little change as a result of the spinal trauma. Brain flow remained constant at 0.78 ml/min/g brain. Coronary blood flow, however, declined from 3.2 to 2.0 ml/min/g heart tissue. The data suggest consideration of the importance of thromboxane in therapeutic attempts to reduce secondary injury arising in spinal cord trauma. PMID:1386102

  9. Use of intraoperative ultrasonography in canine spinal cord lesions.

    PubMed

    Nanai, Beatrix; Lyman, Ronald; Bichsel, Pierre S

    2007-01-01

    The purpose of this retrospective study was to describe the intraoperative appearance of various spinal cord conditions, and to investigate how intraoperative ultrasonography assisted in modification of surgical and postoperative treatment plans. Intraoperative ultrasonography (B-mode, and power Doppler mode) was used in 25 dogs undergoing spinal surgery. The neurologic conditions included cervical spondylomyelopathy, intervertebral disc (IVD) protrusion, IVD extrusion, spinal tumors, nerve sheath mass, granulomatous myelitis, and discospondylitis. All of these diagnoses were supported by histopathologic and/or cytologic evaluation. It was possible to visualize the spinal cord and the abnormal spinal tissue in all of the patients. Power Doppler imaging allowed assessment of the spinal cord microcirculation, and assisted in judgment of the degree of decompression. Ultrasound imaging directly impacted the surgical and the medical treatment plans in four patients. Owing to the intraoperative imaging, two hemilaminectomies were extended cranially and caudally, and additional disc spaces were fenestrated, one hemilaminectomy site was extended dorsally to retrieve the disc material from the opposite side, and one intramedullary cervical spinal cord lesion was discovered, aspirated, and consequently diagnosed as granulomatous inflammation, which altered the long-term medication protocol in that dog. This study suggests that intraoperative sonographic spinal cord imaging is a useful and viable technique.

  10. An update on spinal cord injury research.

    PubMed

    Cao, He-Qi; Dong, Er-Dan

    2013-02-01

    Spinal cord injury (SCI) can have a range of debilitating effects and permanently alter the capabilities and quality of life of survivors. The first specialized centers of care for SCI were established in 1944 and since then an increasing amount of research has been carried out in this area. Despite this, the present treatment and care levels for SCI are not comparable to those in other areas of medicine. In the clinic, the aim of SCI treatment is primarily to limit secondary damage by reducing compression in trauma spots and stabilizing the spinal column. Currently, no effective strategy for functional recovery is offered. In this review, we focus on research progress on the molecular mechanisms underlying SCI, and assess the treatment outcomes of SCI in animal models, i.e., neurotrophins and stem cells are discussed as pre-clinical therapies in animal models. We also assess the resources available and national research projects carried out on SCI in China in recent years, as well as making recommendations for the future allocation of funds in this area.

  11. Long-Term Extensive Ectopic Hair Growth on the Spinal Cord of Mice from Transplanted Whisker Follicles.

    PubMed

    Cao, Wenluo; Li, Lingna; Mii, Sumiyuki; Amoh, Yasuyuki; Liu, Fang; Hoffman, Robert M

    2015-01-01

    We have previously demonstrated that hair follicles contain nestin-expressing pluripotent stem cells that can effect nerve and spinal cord repair upon transplantation. In the present study, isolated whisker follicles from nestin-driven green fluorescent protein (ND-GFP) mice were histocultured on Gelfoam for 3 weeks for the purpose of transplantation to the spinal cord to heal an induced injury. The hair shaft was cut off from Gelfoam-histocultured whisker follicles, and the remaining part of the whisker follicles containing GFP-nestin expressing pluripotent stem cells were transplanted into the injured spinal cord of nude mice, along with the Gelfoam. After 90 days, the mice were sacrificed and the spinal cord lesion was observed to have healed. ND-GFP expression was intense at the healed area of the spinal cord, as observed by fluorescence microscopy, demonstrating that the hair follicle stem cells were involved in healing the spinal cord. Unexpectedly, the transplanted whisker follicles sprouted out remarkably long hair shafts in the spinal cord during the 90 days after transplantation of Gelfoam whisker histocultures to the injured spine. The pigmented hair fibers, grown from the transplanted whisker histocultures, curved and enclosed the spinal cord. The unanticipated results demonstrate the great potential of hair growth after transplantation of Gelfoam hair follicle histocultures, even at an ectopic site.

  12. Transforming care for patients with spinal cord injury in Haiti.

    PubMed

    Stephenson, Fiona

    Patients with spinal cord injury in Haiti previously had a poor prognosis. This article features a case study showing how care was transformed after the earthquake in 2010 by providing simple bladder care.

  13. Toxoplasmosis of the spinal cord in an immunocompromised patient

    PubMed Central

    Martínez, Ernesto; Bolívar, Guillermo; Sánchez, Sandra; Carrascal, Edwin

    2013-01-01

    We, herein, describe an HIV-positive patient with toxoplasmosis of the spinal cord. We also carried out a comprehensive literature review of this topic, with emphasis on the diagnostic tools and therapeutic approach. PMID:24892240

  14. Dynamic loading characteristics of an intradural spinal cord stimulator

    NASA Astrophysics Data System (ADS)

    Oliynyk, M. S.; Gillies, G. T.; Oya, H.; Wilson, S.; Reddy, C. G.; Howard, M. A.

    2013-01-01

    We have measured the forces that act on the electrode-bearing surface of an intradural neuromodulator designed to be in direct contact with the pial surface of the spinal cord, as part of our effort to develop a new method for treating intractable pain. The goal was to investigate the pressures produced by this device on the spinal cord and compare them with normal intrathecal pressure. For this purpose, we employed a dual-sensor arrangement that allowed us to measure the response of a custom-designed silicone spinal cord surrogate to the forces applied by the device. We found that the device had a mean compliance of ≈63 μN μm-1, and that over a 3 mm range of compression, the mid-span pressure it exerted on the spinal cord was ≈1.88 × 103 Pa = 14.1 mm Hg, which lies within the range of normal intrathecal pressure in humans.

  15. Senegenin inhibits neuronal apoptosis after spinal cord contusion injury

    PubMed Central

    Zhang, Shu-quan; Wu, Min-fei; Gu, Rui; Liu, Jia-bei; Li, Ye; Zhu, Qing-san; Jiang, Jin-lan

    2016-01-01

    Senegenin has been shown to inhibit neuronal apoptosis, thereby exerting a neuroprotective effect. In the present study, we established a rat model of spinal cord contusion injury using the modified Allen's method. Three hours after injury, senegenin (30 mg/g) was injected into the tail vein for 3 consecutive days. Senegenin reduced the size of syringomyelic cavities, and it substantially reduced the number of apoptotic cells in the spinal cord. At the site of injury, Bax and Caspase-3 mRNA and protein levels were decreased by senegenin, while Bcl-2 mRNA and protein levels were increased. Nerve fiber density was increased in the spinal cord proximal to the brain, and hindlimb motor function and electrophysiological properties of rat hindlimb were improved. Taken together, our results suggest that senegenin exerts a neuroprotective effect by suppressing neuronal apoptosis at the site of spinal cord injury. PMID:27212931

  16. Molecular and cellular development of spinal cord locomotor circuitry

    PubMed Central

    Lu, Daniel C.; Niu, Tianyi; Alaynick, William A.

    2015-01-01

    The spinal cord of vertebrate animals is comprised of intrinsic circuits that are capable of sensing the environment and generating complex motor behaviors. There are two major perspectives for understanding the biology of this complicated structure. The first approaches the spinal cord from the point of view of function and is based on classic and ongoing research in electrophysiology, adult behavior, and spinal cord injury. The second view considers the spinal cord from a developmental perspective and is founded mostly on gene expression and gain-of-function and loss-of-function genetic experiments. Together these studies have uncovered functional classes of neurons and their lineage relationships. In this review, we summarize our knowledge of developmental classes, with an eye toward understanding the functional roles of each group. PMID:26136656

  17. Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries

    PubMed Central

    Straley, Karin S.; Po Foo, Cheryl Wong

    2010-01-01

    Abstract The highly debilitating nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials that can stimulate cellular regeneration and functional recovery. Many experts agree that the greatest hope for treatment of spinal cord injuries will involve a combinatorial approach that integrates biomaterial scaffolds, cell transplantation, and molecule delivery. This manuscript presents a comprehensive review of biomaterial-scaffold design strategies currently being applied to the development of nerve guidance channels and hydrogels that more effectively stimulate spinal cord tissue regeneration. To enhance the regenerative capacity of these two scaffold types, researchers are focusing on optimizing the mechanical properties, cell-adhesivity, biodegradability, electrical activity, and topography of synthetic and natural materials, and are developing mechanisms to use these scaffolds to deliver cells and biomolecules. Developing scaffolds that address several of these key design parameters will lead to more successful therapies for the regeneration of spinal cord tissue. PMID:19698073

  18. Childhood Brain and Spinal Cord Tumors Treatment Overview

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  19. Influence of Spinal Cord Integrity on Gait Control in Human Spinal Cord Injury.

    PubMed

    Awai, Lea; Bolliger, Marc; Ferguson, Adam R; Courtine, Grégoire; Curt, Armin

    2016-07-01

    Background Clinical trials in spinal cord injury (SCI) primarily rely on simplified outcome metrics (ie, speed, distance) to obtain a global surrogate for the complex alterations of gait control. However, these assessments lack sufficient sensitivity to identify specific patterns of underlying impairment and to target more specific treatment interventions. Objective To disentangle the differential control of gait patterns following SCI beyond measures of time and distance. Methods The gait of 22 individuals with motor-incomplete SCI and 21 healthy controls was assessed using a high-resolution 3-dimensional motion tracking system and complemented by clinical and electrophysiological evaluations applying unbiased multivariate analysis. Results Motor-incomplete SCI patients showed varying degrees of spinal cord integrity (spinal conductivity) with severe limitations in walking speed and altered gait patterns. Principal component (PC) analysis applied on all the collected data uncovered robust coherence between parameters related to walking speed, distortion of intralimb coordination, and spinal cord integrity, explaining 45% of outcome variance (PC 1). Distinct from the first PC, the modulation of gait-cycle variables (step length, gait-cycle phases, cadence; PC 2) remained normal with respect to regained walking speed, whereas hip and knee ranges of motion were distinctly altered with respect to walking speed (PC 3). Conclusions In motor-incomplete SCI, distinct clusters of discretely controlled gait parameters can be discerned that refine the evaluation of gait impairment beyond outcomes of walking speed and distance. These findings are specifically different from that in other neurological disorders (stroke, Parkinson) and are more discrete at targeting and disentangling the complex effects of interventions to improve walking outcome following motor-incomplete SCI.

  20. Assessing small-volume spinal cord dose for repeat spinal stereotactic body radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Kirby, Neil; Korol, Renee; Larson, David A.; Sahgal, Arjun

    2012-12-01

    Spinal cord biologically effective dose (BED) limits are critical to safe spine stereotactic body radiotherapy (SBRT) delivery. In particular, when repeating SBRT to the same site, the problem of adding non-uniform BED distributions within small volumes of spinal cord has yet to be solved. We report a probability-based generalized BED (gBED) model to guide repeat spine SBRT treatment planning. The gBED was formulated by considering the sequential damaging probabilities of repeat spine SBRT treatments. Parameters from the standard linear-quadratic model, such as α/β = 2 Gy for the spinal cord, were applied. We tested the model based on SBRT specific spinal cord tolerance using a simulated and ten clinical repeat SBRT cases. The gBED provides a consistent solution for superimposing non-uniform dose distributions from different fractionation schemes, analogous to the BED for uniform dose distributions. Based on ten clinical cases, the gBED was observed to eliminate discrepancies in the cumulative BED of approximately 5% to 20% within small volumes (e.g. 0.1-2.0 cc) of spinal cord, as compared to a conventional calculation method. When assessing spinal cord tolerance for repeat spinal SBRT treatments, caution should be exercised when applying conventional BED calculations for small volumes of spinal cord irradiated, and the gBED potentially provides more conservative and consistently derived dose surrogates to guide safe treatment planning and treatment outcome modeling.

  1. Spinal cord stress injury assessment (SCOSIA): clinical applications of mechanical modeling of the spinal cord and brainstem

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Choi, Jae; Wilson, William; Berry, Joel; Henderson, Fraser C., Sr.

    2009-02-01

    Abnormal stretch and strain is a major cause of injury to the spinal cord and brainstem. Such forces can develop from age-related degeneration, congenital malformations, occupational exposure, or trauma such as sporting accidents, whiplash and blast injury. While current imaging technologies provide excellent morphology and anatomy of the spinal cord, there is no validated diagnostic tool to assess mechanical stresses exerted upon the spinal cord and brainstem. Furthermore, there is no current means to correlate these stress patterns with known spinal cord injuries and other clinical metrics such as neurological impairment. We have therefore developed the spinal cord stress injury assessment (SCOSIA) system, which uses imaging and finite element analysis to predict stretch injury. This system was tested on a small cohort of neurosurgery patients. Initial results show that the calculated stress values decreased following surgery, and that this decrease was accompanied by a significant decrease in neurological symptoms. Regression analysis identified modest correlations between stress values and clinical metrics. The strongest correlations were seen with the Brainstem Disability Index (BDI) and the Karnofsky Performance Score (KPS), whereas the weakest correlations were seen with the American Spinal Injury Association (ASIA) scale. SCOSIA therefore shows encouraging initial results and may have wide applicability to trauma and degenerative disease involving the spinal cord and brainstem.

  2. Gelatin Nanostructured Lipid Carriers Incorporating Nerve Growth Factor Inhibit Endoplasmic Reticulum Stress-Induced Apoptosis and Improve Recovery in Spinal Cord Injury.

    PubMed

    Zhu, Si-Pin; Wang, Zhou-Guang; Zhao, Ying-Zheng; Wu, Jiang; Shi, Hong-Xue; Ye, Li-Bing; Wu, Fen-Zan; Cheng, Yi; Zhang, Hong-Yu; He, Songbin; Wei, Xiaojie; Fu, Xiao-Bing; Li, Xiao-Kun; Xu, Hua-Zi; Xiao, Jian

    2016-09-01

    Clinical translation of growth factor therapies faces multiple challenges; the most significant one is the short half-life of the naked protein. Gelatin nanostructured lipid carriers (GNLs) had previously been used to encapsulate the basic fibroblast growth factor to enhance the functional recovery in hemiparkinsonian rats. In this research, we comparatively study the enhanced therapy between nerve growth factor (NGF) loaded GNLs (NGF-GNLs) and NGF only in spinal cord injury (SCI). The effects of NGF-GNLs and NGF only were tested by the Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test, and footprint analysis. Western blot analysis and immunofluorescent staining were further performed to identify the expression of ER stress-related proteins, neuron-specific marker neuronal nuclei (NeuN), and growth-associated protein 43 (GAP43). Correlated downstream signals Akt/GSK-3β and ERK1/2 were also analyzed with or without inhibitors. Results showed that NGF-GNLs, compared to NGF only, enhanced the neuroprotection effect in SCI rats. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 inhibited by NGF-GNL treatment were more obvious. Meanwhile, NGF-GNLs in the recovery of SCI are related to the inhibition of ER stress-induced cell death via the activation of downstream signals PI3K/Akt/GSK-3β and ERK1/2. PMID:26232067

  3. Care of spinal cord injury in non-specialist settings.

    PubMed

    Rodger, Sian

    Patient with spinal cord injuries have individualised care routines to help prevent complications. Disruption to these routines following admission to non-specialist settings can have long-term consequences. This article focuses on the key long-term problems of pressure ulcers, bladder and bowel dysfunction, and autonomic dysreflexia. Nurses working on general wards need to consider how to manage these problems when caring for patients with spinal cord injury. PMID:27544957

  4. Myelin water fraction in human cervical spinal cord in vivo.

    PubMed

    Wu, Yijing; Alexander, Andrew L; Fleming, John O; Duncan, Ian D; Field, Aaron S

    2006-01-01

    The noninvasive discrimination of myelin disease from axonal loss and other pathologic confounds remains an unsolved problem in multiple sclerosis but may be possible through magnetic resonance quantitation of the intramyelinic water compartment. Technical challenges have limited the study of this approach in the spinal cord, a common site of involvement in multiple sclerosis. This technical note reports the test-retest reproducibility of a short T2-based estimate of myelin content in human spinal cord in vivo.

  5. Spontaneous resolution of idiopathic thoracic spinal cord herniation: case report.

    PubMed

    Samuel, Nardin; Goldstein, Christina L; Santaguida, Carlo; Fehlings, Michael G

    2015-09-01

    Spinal cord herniation is a relatively rare but increasingly recognized clinical entity, with fewer than 200 cases reported in the literature to date. The etiology of this condition remains unknown, and surgery is used as the primary treatment to correct the herniation and consequent spinal cord compromise. Some patients without clinical progression have been treated with nonoperative measures, including careful follow-up and symptomatic physical therapy. To date, however, there has been no published report on the resolution of spinal cord herniation without surgical intervention. The patient in the featured case is a 58-year-old man who presented with mild thoracic myelopathy and imaging findings consistent with idiopathic spinal cord herniation. Surprisingly, updated MRI studies, obtained to better delineate the pathology, showed spontaneous resolution of the herniation. Subsequent MRI 6 months later revealed continued resolution of the previous spinal cord herniation. This is the first report of spontaneous resolution of a spinal cord herniation in the literature. At present, the treatment of this disorder is individualized, with microsurgical correction used in patients with progressive neurological impairment. The featured case highlights the potential variability in the natural history of this condition and supports considering an initial trial of nonoperative management for patients with mild, nonprogressive neurological deficits. PMID:26023901

  6. Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury

    PubMed Central

    Yoo, Myungsik; Khaled, Muntasir; Gibbs, Kurt M.; Kim, Jonghun; Kowalewski, Björn; Dierks, Thomas; Schachner, Melitta

    2013-01-01

    Bacterial chondroitinase ABC (ChaseABC) has been used to remove the inhibitory chondroitin sulfate chains from chondroitin sulfate proteoglycans to improve regeneration after rodent spinal cord injury. We hypothesized that the mammalian enzyme arylsulfatase B (ARSB) would also enhance recovery after mouse spinal cord injury. Application of the mammalian enzyme would be an attractive alternative to ChaseABC because of its more robust chemical stability and reduced immunogenicity. A one-time injection of human ARSB into injured mouse spinal cord eliminated immunoreactivity for chondroitin sulfates within five days, and up to 9 weeks after injury. After a moderate spinal cord injury, we observed improvements of locomotor recovery assessed by the Basso Mouse Scale (BMS) in ARSB treated mice, compared to the buffer-treated control group, at 6 weeks after injection. After a severe spinal cord injury, mice injected with equivalent units of ARSB or ChaseABC improved similarly and both groups achieved significantly more locomotor recovery than the buffer-treated control mice. Serotonin and tyrosine hydroxylase immunoreactive axons were more extensively present in mouse spinal cords treated with ARSB and ChaseABC, and the immunoreactive axons penetrated further beyond the injury site in ARSB or ChaseABC treated mice than in control mice. These results indicate that mammalian ARSB improves functional recovery after CNS injury. The structural/molecular mechanisms underlying the observed functional improvement remain to be elucidated. PMID:23520469

  7. Spontaneous resolution of idiopathic thoracic spinal cord herniation: case report.

    PubMed

    Samuel, Nardin; Goldstein, Christina L; Santaguida, Carlo; Fehlings, Michael G

    2015-09-01

    Spinal cord herniation is a relatively rare but increasingly recognized clinical entity, with fewer than 200 cases reported in the literature to date. The etiology of this condition remains unknown, and surgery is used as the primary treatment to correct the herniation and consequent spinal cord compromise. Some patients without clinical progression have been treated with nonoperative measures, including careful follow-up and symptomatic physical therapy. To date, however, there has been no published report on the resolution of spinal cord herniation without surgical intervention. The patient in the featured case is a 58-year-old man who presented with mild thoracic myelopathy and imaging findings consistent with idiopathic spinal cord herniation. Surprisingly, updated MRI studies, obtained to better delineate the pathology, showed spontaneous resolution of the herniation. Subsequent MRI 6 months later revealed continued resolution of the previous spinal cord herniation. This is the first report of spontaneous resolution of a spinal cord herniation in the literature. At present, the treatment of this disorder is individualized, with microsurgical correction used in patients with progressive neurological impairment. The featured case highlights the potential variability in the natural history of this condition and supports considering an initial trial of nonoperative management for patients with mild, nonprogressive neurological deficits.

  8. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    PubMed Central

    Filli, Linard; Schwab, Martin E.

    2015-01-01

    Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation). This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury. PMID:26170799

  9. Prodynorphine opioid peptides and aspartate aminotransferase studied in spinal cord and sensory neurons

    SciTech Connect

    Sweetnam, P.M.

    1985-01-01

    An objective of this research was to obtain evidence for the synthesis and release of newly discovered opioid peptides, such as dynorphin, in spinal cord and sensory neurons. Several specific antisera were used to visualize dynorphin and related peptides in spinal cord and dorsal root ganglion neurons in dissociated cell culture. Antisera specific for the midportion of the dynorphin molecule revealed a subpopulation of spinal cord neurons with dense immunoreactive dynorphin in cell perikarya, but none in their associated neurites. Antisera specific for either the amino or carboxy terminal sequences of the molecule produced intense immunoreactivity in both cell perikarya and neurites of spinal neurons. These data suggest the cleavage products of dynorphin and not the complete molecule are possible neurotransmitters in the spinal cord. Additional evidence in support of this hypothesis was derived from radioimmunoassays of these cells and their culture medium following depolarization induced by elevated extracellular potassium. Antisera against aspartate aminotransferase revealed no differentially elevated immunoreactive aspartate aminotransferase in tissue sections of spinal cord or dorsal root ganglia.

  10. Spinal Cord Injured College Students: Counseling and Guidance Approaches.

    ERIC Educational Resources Information Center

    Dailey, Anne Louise

    1979-01-01

    Physical, psychological, academic, and career problems of spinal cord injured college students plus counselor knowledge, attitudes, and skills that help in solving these problems are cited. Community and commercial resources are identified. Programs that enhance faculty and employer sensitivity and cord injured student development are described.…

  11. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  12. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  13. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  14. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  15. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  16. Extramedullary haematopoiesis in thalassaemia major causing spinal cord compression.

    PubMed

    Chiam, Q L L; Lau, K K

    2007-04-01

    A 33-year-old, homozygous beta-thalassaemic, Jehovah witness man presented with subacute spinal cord compression secondary to extramedullary haematopoiesis within the thoracic spinal canal. In this case, MRI showed characteristic features of extramedullary haematopoiesis, leading to an early diagnosis. PMID:17419864

  17. An Imaging-Based Approach to Spinal Cord Infection.

    PubMed

    Talbott, Jason F; Narvid, Jared; Chazen, J Levi; Chin, Cynthia T; Shah, Vinil

    2016-10-01

    Infections of the spinal cord, nerve roots, and surrounding meninges are uncommon, but highly significant given their potential for severe morbidity and even mortality. Prompt diagnosis can be lifesaving, as many spinal infections are treatable. Advances in imaging technology have now firmly established magnetic resonance imaging (MRI) as the gold standard for spinal cord imaging evaluation, enabling the depiction of infectious myelopathies with exquisite detail and contrast. In this article, we aim to provide an overview of MRI findings for spinal cord infections with special focus on imaging patterns of infection that are primarily confined to the spinal cord, spinal meninges, and spinal nerve roots. In this context, we describe and organize this review around 5 distinct patterns of transverse spinal abnormality that may be detected with MRI as follows: (1) extramedullary, (2) centromedullary, (3) eccentric, (4) frontal horn, and (5) irregular. We seek to classify the most common presentations for a wide variety of infectious agents within this image-based framework while realizing that significant overlap and variation exists, including some infections that remain occult with conventional imaging techniques. PMID:27616314

  18. Combinatorial effects of miR-20a and miR-29b on neuronal apoptosis induced by spinal cord injury

    PubMed Central

    Liu, Xue-Jun; Zheng, Xue-Ping; Zhang, Rui; Guo, Yun-Liang; Wang, Jian-Hong

    2015-01-01

    Neuronal apoptosis is one of the prominent features involved in spinal cord injury (SCI). MicroRNAs (miRNAs) are small non-coding RNAs that functions in a variety of cellular processes including apoptosis. MiRNAs have been implicated as effectors of SCI. However, role of miRNAs in SCI-associated neuronal apoptosis remains to be investigated. A number of bioinformatics approaches have suggested Mcl-1 and BH3-only family genes as potential downstream targets regulated by miR-20a and miR-29b, respectively. To determine whether miR-20a and miR-29b play a role in neuronal apoptosis of SCI by regulating those genes, we transfected Neuro-2A neuroblastoma cells with mimic and inhibitor for the two miRNAs. The miR-20a mimic decreased Mcl-1 expression and the miR-29b mimic reduced the expression of Bad, Bim, Noxa and Puma. The repressor role of miR-20a and miR-29b is confirmed by the transfection of Neuro-2A cells with their inhibitor. Moreover, miR-20a mimic or miR-29b inhibitor attenuated Neuro-2A cell viability and co-transfection of both further diminished the viability of these cells. The in vitro effects of miR-20a and miR-29b on neuronal apoptosis were corroborated by the in vivo studies. Injection of miR-20a mimic or miR-29b inhibitor into the lesion of the injured spinal cord rescued the neuronal death and co-injection of both completely abolished SCI-induced apoptosis. In conclusion, altered expression of miR-20a and miR-29b may cooperatively contribute to the neuronal cell death of SCI through down-regulating anti-apoptotic myeloid cell leukemia sequence-1 (Mcl-1) and up-regulating pro-apoptotic BH3-only proteins. PMID:26097563

  19. Neuronal RARβ Signaling Modulates PTEN Activity Directly in Neurons and via Exosome Transfer in Astrocytes to Prevent Glial Scar Formation and Induce Spinal Cord Regeneration

    PubMed Central

    Goncalves, Maria B.; Malmqvist, Tony; Clarke, Earl; Hubens, Chantal J.; Grist, John; Hobbs, Carl; Trigo, Diogo; Risling, Mårten; Angeria, Maria; Damberg, Peter; Carlstedt, Thomas P.

    2015-01-01

    Failure of axonal regeneration in the central nervous system (CNS) is mainly attributed to a lack of intrinsic neuronal growth programs and an inhibitory environment from a glial scar. Phosphatase and tensin homolog (PTEN) is a major negative regulator of neuronal regeneration and, as such, inhibiting its activity has been considered a therapeutic target for spinal cord (SC) injuries (SCIs). Using a novel model of rat cervical avulsion, we show that treatment with a retinoic acid receptor β (RARβ) agonist results in locomotor and sensory recovery. Axonal regeneration from the severed roots into the SC could be seen by biotinylated dextran amine labeling. Light micrographs of the dorsal root entry zone show the peripheral nervous system (PNS)–CNS transition of regrown axons. RARβ agonist treatment also resulted in the absence of scar formation. Mechanism studies revealed that, in RARβ-agonist-treated neurons, PTEN activity is decreased by cytoplasmic phosphorylation and increased secretion in exosomes. These are taken up by astrocytes, resulting in hampered proliferation and causing them to arrange in a normal-appearing scaffold around the regenerating axons. Attribution of the glial modulation to neuronal PTEN in exosomes was demonstrated by the use of an exosome inhibitor in vivo and PTEN siRNA in vitro assays. The dual effect of RARβ signaling, both neuronal and neuronal–glial, results in axonal regeneration into the SC after dorsal root neurotmesis. Targeting this pathway may open new avenues for the treatment of SCIs. SIGNIFICANCE STATEMENT Spinal cord injuries (SCIs) often result in permanent damage in the adult due to the very limited capacity of axonal regeneration. Intrinsic neuronal programs and the formation of a glial scar are the main obstacles. Here, we identify a single target, neuronal retinoic acid receptor β (RARβ), which modulates these two aspects of the postinjury physiological response. Activation of RARβ in the neuron inactivates

  20. Surgical Outcomes of High-Grade Spinal Cord Gliomas

    PubMed Central

    Hida, Kazutoshi; Yano, Syunsuke; Aoyama, Takeshi; Koyanagi, Izumi; Houkin, Kiyohiro

    2015-01-01

    Study Design A retrospective study. Purpose The purpose of this study was to obtain useful information for establishing the guidelines for treating high-grade spinal cord gliomas. Overview of Literature The optimal management of high-grade spinal cord gliomas remains controversial. We report the outcomes of the surgical management of 14 high-grade spinal glioma. Methods We analyzed the outcomes of 14 patients with high-grade spinal cord gliomas who were surgically treated between 1989 and 2012. Survival was charted with the Kaplan-Meier plots and comparisons were made with the log-rank test. Results None of the patients with high-grade spinal cord gliomas underwent total resection. Subtotal resection was performed in two patients, partial resection was performed in nine patients, and open biopsy was performed in three patients. All patients underwent postoperative radiotherapy and six patients further underwent radiation cordotomy. The median survival time for patients with high-grade spinal cord gliomas was 15 months, with a 5-year survival rate of 22.2%. The median survival time for patients with World Health Organization grade III tumors was 25.5 months, whereas the median survival time for patients with glioblastoma multiforme was 12.5 months. Both univariate and multivariate Cox proportional hazards models demonstrated a significant effect only in the group that did not include cervical cord lesion as a factor associated with survival (p=0.04 and 0.03). Conclusions The surgical outcome of patients diagnosed with high-grade spinal cord gliomas remains poor. Notably, only the model which excluded cervical cord lesions as a factor significantly predicted survival. PMID:26713128

  1. Quantifying the internal deformation of the rodent spinal cord during acute spinal cord injury - the validation of a method.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter; Kozlowski, Piotr; Tetzlaff, Wolfram; Oxland, Thomas

    2016-01-01

    Visualization and analysis of the rodent spinal cord subject to experimental spinal cord injury (SCI) has almost completely been limited to naked-eye observations, and a single measure of gross spinal cord motion due to injury. This study introduces a novel method which utilizes MRI to quantify the deformation of the rodent spinal cord due to imposed, clinically-relevant injuries - specifically, cervical contusion and dislocation mechanisms. The image registration methods were developed using the Advanced Normalization Tools package, which incorporate rigid, affine and deformable registration steps. The proposed method is validated against a fiducial-based, 'gold-standard' measure of spinal cord tissue motion. The validation analysis yielded accuracy (and precision) values of 62 μm (49 μm), 73 μm (79 μm) and 112 μm (110 μm), for the medio-lateral, dorso-ventral and cranio-caudal directions, respectively. The internal morphological change of the spinal cord has never before been quantified, experimentally. This study demonstrates the capability of this method and its potential for future application to in vivo rodent models of SCI.

  2. In Vivo Measurement of Cervical Spinal Cord Deformation During Traumatic Spinal Cord Injury in a Rodent Model.

    PubMed

    Bhatnagar, Tim; Liu, Jie; Yung, Andrew; Cripton, Peter A; Kozlowski, Piotr; Oxland, Thomas

    2016-04-01

    The spinal cord undergoes physical deformation during traumatic spinal cord injury (TSCI), which results in biological damage. This study demonstrates a novel approach, using magnetic resonance imaging and image registration techniques, to quantify the three-dimensional deformation of the cervical spinal cord in an in vivo rat model. Twenty-four male rats were subjected to one of two clinically relevant mechanisms of TSCI (i.e. contusion and dislocation) inside of a MR scanner using a novel apparatus, enabling imaging of the deformed spinal cords. The displacement fields demonstrated qualitative differences between injury mechanisms. Three-dimensional Lagrangian strain fields were calculated, and the results from the contusion injury mechanism were deemed most reliable. Strain field error was assessed using a Monte Carlo approach, which showed that simulated normal strain error experienced a bias, whereas shear strain error did not. In contusion injury, a large region of dorso-ventral compressive strain was observed under the impactor which extended into the ventral region of the spinal cord. High tensile lateral strains under the impactor and compressive lateral strains in the lateral white matter were also observed in contusion. The ability to directly observe and quantify in vivo spinal cord deformation informs our knowledge of the mechanics of TSCI.

  3. Human Mesenchymal Stem Cells Modulate Inflammatory Cytokines after Spinal Cord Injury in Rat

    PubMed Central

    Machová Urdzíková, Lucia; Růžička, Jiří; LaBagnara, Michael; Kárová, Kristýna; Kubinová, Šárka; Jiráková, Klára; Murali, Raj; Syková, Eva; Jhanwar-Uniyal, Meena; Jendelová, Pavla

    2014-01-01

    Transplantation of mesenchymal stem cells (MSC) improves functional recovery in experimental models of spinal cord injury (SCI); however, the mechanisms underlying this effect are not completely understood. We investigated the effect of intrathecal implantation of human MSC on functional recovery, astrogliosis and levels of inflammatory cytokines in rats using balloon-induced spinal cord compression lesions. Transplanted cells did not survive at the lesion site of the spinal cord; however, functional recovery was enhanced in the MSC-treated group as was confirmed by the Basso, Beattie, and Bresnahan (BBB) and the flat beam test. Morphometric analysis showed a significantly higher amount of remaining white matter in the cranial part of the lesioned spinal cords. Immunohistochemical analysis of the lesions indicated the rearrangement of the glial scar in MSC-treated animals. Real-time PCR analysis revealed an increased expression of Irf5, Mrc1, Fgf2, Gap43 and Gfap. Transplantation of MSCs into a lesioned spinal cord reduced TNFα, IL-4, IL-1β, IL-2, IL-6 and IL-12 and increased the levels of MIP-1α and RANTES when compared to saline-treated controls. Intrathecal implantation of MSCs reduces the inflammatory reaction and apoptosis, improves functional recovery and modulates glial scar formation after SCI, regardless of cell survival. Therefore, repeated applications may prolong the beneficial effects induced by MSC application. PMID:24968269

  4. Contribution of bone marrow-derived endothelial progenitor cells to neovascularization and astrogliosis following spinal cord injury.

    PubMed

    Kamei, Naosuke; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Ii, Masaaki; Ishikawa, Masakazu; Ochi, Mitsuo; Asahara, Takayuki

    2012-12-01

    Spinal cord injury causes initial mechanical damage, followed by ischemia-induced, secondary degeneration, worsening the tissue damage. Although endothelial progenitor cells (EPCs) have been reported to play an important role for pathophysiological neovascularization in various ischemic tissues, the EPC kinetics following spinal cord injury have never been elucidated. In this study, we therefore assessed the in vivo kinetics of bone marrow-derived EPCs by EPC colony-forming assay and bone marrow transplantation from Tie2/lacZ transgenic mice into wild-type mice with spinal cord injury. The number of circulating mononuclear cells and EPC colonies formed by the mononuclear cells peaked at day 3 postspinal cord injury. Bone marrow transplantation study revealed that bone marrow-derived EPCs recruited into the injured spinal cord markedly increased at day 7, when neovascularization and astrogliosis drastically occurred in parallel with axon growth in the damaged tissue. To elucidate further the contribution of EPCs to recovery after spinal cord injury, exogenous EPCs were systemically infused immediately after the injury. The administered EPCs were incorporated into the injured spinal cord and accelerated neovascularization and astrogliosis. These findings suggest that bone marrow-derived EPCs may contribute to the tissue repair by augmenting neovascularization and astrogliosis following spinal cord injury.

  5. Sponge-mediated Lentivirus Delivery to Acute and Chronic Spinal Cord Injuries

    PubMed Central

    Thomas, Aline M.; Palma, Jaime L.; Shea, Lonnie D.

    2015-01-01

    The environment within the spinal cord after injury, which changes in the progression from the acute to chronic stages, limits the extent of regeneration. The delivery of inductive factors to promote regeneration following spinal cord injury has been promising, yet, few strategies are have are versatile to allow delivery during acute or chronic injury that would facilitate screening of candidate therapies. This report investigates the intrathecal delivery of lentiviruses for long-term expression of regenerative factors. Lentivirus-filled sponges were inserted into the intrathecal space surrounding the spinal cord, with transgene expression observed within multiple cell types that persists for 12 weeks for both intact and injured spinal cord, without any apparent damage to the spinal cord tissue. Sponges loaded with lentivirus encoding for Sonic hedgehog (Shh) were investigated for acute (delivered at 0 weeks) and chronic (at 4 weeks) injuries, and for multiple locations relative to the injury. In an acute model, sponges placed directly above the injury increased oligodendrocyte and decreased astrocyte presence. Sponges placed caudal to the injury had reduced impact on oligodendrocytes and astrocytes in the injury. In a chronic model, sponges increased oligodendrocyte and decreased astrocyte presence. Furthermore, the effect of Shh was shown to be mediated in part by reduction of Bmp signaling, monitored with an Msx2-sensitive reporter vector. The implantation of lentivirus-loaded biomaterials intrathecally provides the opportunity to induce the expression of a factor at a specified time without entering the spinal cord, and has the potential to promote gene delivery within the spinal cord, which can influence the extent of regeneration. PMID:25724274

  6. Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function

    PubMed Central

    Vaishnav, Radhika A.; Singh, Indrapal N.; Miller, Darren M.

    2010-01-01

    Abstract Mitochondrial bioenergetic dysfunction in traumatic spinal cord and brain injury is associated with post-traumatic free radical–mediated oxidative damage to proteins and lipids. Lipid peroxidation by-products, such as 4-hydroxy-2-nonenal and acrolein, can form adducts with proteins and exacerbate the effects of direct free radical–induced protein oxidation. The aim of the present investigation was to determine and compare the direct contribution of 4-hydroxy-2-nonenal and acrolein to spinal cord and brain mitochondrial dysfunction. Ficoll gradient–isolated mitochondria from normal rat spinal cords and brains were treated with carefully selected doses of 4-hydroxy-2-nonenal or acrolein, followed by measurement of complex I– and complex II–driven respiratory rates. Both compounds were potent inhibitors of mitochondrial respiration in a dose-dependent manner. 4-Hydroxy-2-nonenal significantly compromised spinal cord mitochondrial respiration at a 0.1-μM concentration, whereas 10-fold greater concentrations produced a similar effect in brain. Acrolein was more potent than 4-hydroxy-2-nonenal, significantly decreasing spinal cord and brain mitochondrial respiration at 0.01 μM and 0.1 μM concentrations, respectively. The results of this study show that 4-hydroxy-2-nonenal and acrolein can directly and differentially impair spinal cord and brain mitochondrial function, and that the targets for the toxic effects of aldehydes appear to include pyruvate dehydrogenase and complex I–associated proteins. Furthermore, they suggest that protein modification by these lipid peroxidation products may directly contribute to post-traumatic mitochondrial damage, with spinal cord mitochondria showing a greater sensitivity than those in brain. PMID:20392143

  7. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries.

    PubMed

    Thomas, Aline M; Palma, Jaime L; Shea, Lonnie D

    2015-04-28

    The environment within the spinal cord after injury, which changes in the progression from the acute to chronic stages, limits the extent of regeneration. The delivery of inductive factors to promote regeneration following spinal cord injury has been promising, yet, few strategies are versatile to allow delivery during acute or chronic injury that would facilitate screening of candidate therapies. This report investigates the intrathecal delivery of lentiviruses for long-term expression of regenerative factors. Lentivirus-filled sponges were inserted into the intrathecal space surrounding the spinal cord, with transgene expression observed within multiple cell types that persists for 12 weeks for both intact and injured spinal cord, without any apparent damage to the spinal cord tissue. Sponges loaded with lentivirus encoding for Sonic hedgehog (Shh) were investigated for acute (delivered at 0 weeks) and chronic (at 4 weeks) injuries, and for multiple locations relative to the injury. In an acute model, sponges placed directly above the injury increased oligodendrocyte and decreased astrocyte presence. Sponges placed caudal to the injury had reduced impact on oligodendrocytes and astrocytes in the injury. In a chronic model, sponges increased oligodendrocyte and decreased astrocyte presence. Furthermore, the effect of Shh was shown to be mediated in part by reduction of Bmp signaling, monitored with an Msx2-sensitive reporter vector. The implantation of lentivirus-loaded biomaterials intrathecally provides the opportunity to induce the expression of a factor at a specified time without entering the spinal cord, and has the potential to promote gene delivery within the spinal cord, which can influence the extent of regeneration.

  8. Complete sciatic nerve transection induces increase of neuropeptide Y-like immunoreactivity in primary sensory neurons and spinal cord of frogs.

    PubMed

    Guedes, Renata P; Marchi, Melina I; Achaval, Matilde; Partata, Wania A

    2004-12-01

    Neuropeptide Y (NPY) was immunohistochemically investigated in the frog spinal cord and dorsal root ganglia after axotomy. In normal ganglia, moderate NPY-like immunoreactivity (NPY-IR) prevailed in large and medium cells. In the spinal cord, the NPY-IR was densest in the dorsal part of the lateral funiculus. Other fibers and neurons NPY-IR were observed in the dorsal and ventral terminal fields and mediolateral band. NPY-IR fibers were also found in the ventral horn and in the ventral and lateral funiculi. The sciatic nerve transection increased the NPY-IR in large and medium neurons of the ipsilateral and contralateral dorsal root ganglia at 3 and 7 days, but no clear change was found at 15 days. In the spinal cord, there was a bilateral increase in the NPY-IR of the dorsal part of the lateral funiculus. In the ipsilateral side, the NPY-IR was increased at 3 and 7 days but was decreased at 15 days. In the contralateral side, a significant reduction at 15 days occurred. These findings seem to favor the role of NPY in the modulation of pain-related information in frogs, suggesting that this role of NPY may have appeared early in vertebrate evolution.

  9. Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection

    PubMed Central

    Pal, Ajay; Singh, Anand; Nag, Tapas C; Chattopadhyay, Parthaprasad; Mathur, Rashmi; Jain, Suman

    2013-01-01

    Background Iron oxide nanoparticles (IONPs) can attenuate oxidative stress in a neutral pH environment in vitro. In combination with an external electromagnetic field, they can also facilitate axon regeneration. The present study demonstrates the in vivo potential of IONPs to recover functional deficits in rats with complete spinal cord injury. Methods The spinal cord was completely transected at the T11 vertebra in male albino Wistar rats. Iron oxide nanoparticle solution (25 μg/mL) embedded in 3% agarose gel was implanted at the site of transection, which was subsequently exposed to an electromagnetic field (50 Hz, 17.96 μT for two hours daily for five weeks). Results Locomotor and sensorimotor assessment as well as histological analysis demonstrated significant functional recovery and a reduction in lesion volume in rats with IONP implantation and exposure to an electromagnetic field. No collagenous scar was observed and IONPs were localized intracellularly in the immediate vicinity of the lesion. Further, in vitro experiments to explore the cytotoxic effects of IONPs showed no effect on cell survival. However, a significant decrease in H2O2-mediated oxidative stress was evident in the medium containing IONPs, indicating their free radical scavenging properties. Conclusion These novel findings indicate a therapeutic role for IONPs in spinal cord injury and other neurodegenerative disorders mediated by reactive oxygen species. PMID:23818782

  10. Inflammogenesis of Secondary Spinal Cord Injury

    PubMed Central

    Anwar, M. Akhtar; Al Shehabi, Tuqa S.; Eid, Ali H.

    2016-01-01

    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine. PMID:27147970

  11. Dantrolene can reduce secondary damage after spinal cord injury

    PubMed Central

    Cemek, Mustafa; Buyukokuroglu, Mehmet Emin; Altunbas, Korhan; Bas, Orhan; Yurumez, Yusuf; Cosar, Murat

    2009-01-01

    The aim of this experimental study was to investigate the possible protective effects of dantrolene on traumatic spinal cord injury (SCI). Twenty-four New Zealand rabbits were divided into three groups: Sham (no drug or operation, n = 8), Control (SCI + 1 mL saline intraperitoneally (i.p.), n = 8), and DNT (SCI + 10 mg/kg dantrolene in 1 mL, i.p., n = 8). Laminectomy was performed at T10 and balloon catheter was applied extradurally. Four and 24 h after surgery, rabbits were evaluated according to the Tarlov scoring system. Blood, cerebrospinal fluid and tissue sample from spinal cord were taken for measurements of antioxidant status or detection of apoptosis. After 4 h SCI, all animals in control or DNT-treated groups became paraparesic. Significant improvement was observed in DNT-treated group, 24 h after SCI, with respect to control. Traumatic SCI led to an increase in the lipid peroxidation and a decrease in enzymic or non-enzymic endogenous antioxidative defense systems, and increase in apoptotic cell numbers. DNT treatment prevented lipid peroxidation and augmented endogenous enzymic or non-enzymic antioxidative defense systems. Again, DNT treatment significantly decreased the apoptotic cell number induced by SCI. In conclusion, experimental results observed in this study suggest that treatment with dantrolene possess potential benefits for traumatic SCI. PMID:19468761

  12. Exercise preconditioning protects against spinal cord injury in rats by upregulating neuronal and astroglial heat shock protein 72.

    PubMed

    Chang, Cheng-Kuei; Chou, Willy; Lin, Hung-Jung; Huang, Yi-Ching; Tang, Ling-Yu; Lin, Mao-Tsun; Chang, Ching-Ping

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI. PMID:25334068

  13. Exercise preconditioning protects against spinal cord injury in rats by upregulating neuronal and astroglial heat shock protein 72.

    PubMed

    Chang, Cheng-Kuei; Chou, Willy; Lin, Hung-Jung; Huang, Yi-Ching; Tang, Ling-Yu; Lin, Mao-Tsun; Chang, Ching-Ping

    2014-01-01

    The heat shock protein 72 (HSP 72) is a universal marker of stress protein whose expression can be induced by physical exercise. Here we report that, in a localized model of spinal cord injury (SCI), exercised rats (given pre-SCI exercise) had significantly higher levels of neuronal and astroglial HSP 72, a lower functional deficit, fewer spinal cord contusions, and fewer apoptotic cells than did non-exercised rats. pSUPER plasmid expressing HSP 72 small interfering RNA (SiRNA-HSP 72) was injected into the injured spinal cords. In addition to reducing neuronal and astroglial HSP 72, the (SiRNA-HSP 72) significantly attenuated the beneficial effects of exercise preconditioning in reducing functional deficits as well as spinal cord contusion and apoptosis. Because exercise preconditioning induces increased neuronal and astroglial levels of HSP 72 in the gray matter of normal spinal cord tissue, exercise preconditioning promoted functional recovery in rats after SCI by upregulating neuronal and astroglial HSP 72 in the gray matter of the injured spinal cord. We reveal an important function of neuronal and astroglial HSP 72 in protecting neuronal and astroglial apoptosis in the injured spinal cord. We conclude that HSP 72-mediated exercise preconditioning is a promising strategy for facilitating functional recovery from SCI.

  14. Management of severe spinal cord injury following hyperbaric exposure.

    PubMed

    Mathew, Bruce; Laden, Gerard

    2015-09-01

    There is an increasing body of evidence that drainage of lumbar cerebrospinal fluid (CSF) improves functional neurological outcome after reperfusion injury to the spinal cord that occasionally follows aortic reconstructive surgery. This beneficial effect is considered owing to lowering of the CSF pressure thereby normalising spinal cord blood flow and reducing the 'secondary' cord injury caused by vascular congestion and cord swelling in the relatively confined spinal canal. Whilst lacking definitive proof, there are convincing randomised controlled trials (RCTs), cohort data and systematic reviews supporting this intervention. The therapeutic window for lumbar CSF drainage requires further elucidation; however, it appears to be days rather than hours post insult. We contend that the same benefit is likely to be achieved following other primary spinal cord injuries that cause cord swelling and elicit the 'secondary' injury. Traditionally the concept of CSF drainage has been considered more applicable to the brain as contained in a 'closed box' by lowering intracranial pressure (ICP) to improve cerebral perfusion pressure (CPP). The control of CPP is intended to limit 'secondary' brain injury and is a key concept of brain injury management. Using microdialysis in the spinal cords of trauma patients, it has been shown that intraspinal pressure (ISP) needs to be kept below 20 mmHg and spinal cord perfusion pressure (SCPP) above 70 mmHg to avoid biochemical evidence of secondary cord damage. Vasopressor have also been used in spinal cord injury to improve perfusion, however complications are common, typically cardiac in nature, and require very careful monitoring; the evidence supporting this approach is notably less convincing. Decompression illness (DCI) of the spinal cord is treated with recompression, hyperbaric oxygen, various medications designed to reduce the inflammatory response and fluid administration to normalise blood pressure and haematocrit. These

  15. Non-painful sensory phenomena after spinal cord injury

    PubMed Central

    Siddall, P.; McClelland, J.

    1999-01-01

    OBJECTIVES—Non-painful sensory phenomena or "phantom" sensations are common after spinal cord injury. However, the physiological mechanisms responsible for these sensations are poorly understood. The aim of this study, therefore, was to document in a prospective fashion the time course, prevalence, and features of non-painful sensory phenomena after spinal cord injury, and to determine whether there was a relation between the presence of these sensations and completeness, level of injury, and type of spinal cord injury.
METHODS—Patients admitted to an acute spinal injuries unit were interviewed after admission and at several time points over a 2 year period to determine the presence and characteristics of non-painful sensations. Sensations were divided into simple and complex, with complex referring to sensations that incorporated a sensation of volume, length, posture, or movement.
RESULTS—The present study showed that the large majority (90%) of patients experience either type of sensation and most complex sensations (60%) are first experienced within 24 hours after the injury. Complex sensations were more common in those patients who had complete spinal cord injuries. The presence of either type of sensation did not seem to be related to the level of injury or the type of injury (cord syndrome). A relatively small proportion (22%) of patients reported that the postural sensations were related to their position at the time of injury and sensations were more commonly related to a familiar, comfortable, or often used position before the spinal cord injury.
CONCLUSION—Complex sensations such as postural illusions seem to be due to functional changes in the CNS that may occur almost immediately after spinal cord injury. These sensations may be related to a strong sensory memory "imprint" that has been established before injury.

 PMID:10209173

  16. Effect of nimodipine on rat spinal cord injury.

    PubMed

    Jia, Y-F; Gao, H-L; Ma, L-J; Li, J

    2015-02-13

    We evaluated the potentially protective effect of nimodipine on rat spinal cord injury. Sprague-Dawley rats received spinal cord injury, and were separated into nimodipine (N = 12) and saline groups (N = 12). Within 1 h of the injury, rats were treated intraperitoneally with nimodipine (1.0 mg/kg) or an equal amount of saline. Treatment was performed 3 times a day for 1 week. Operation BBB score and track experiment were used to measure the physical function of the hind legs 1 and 2 weeks after injury. Two weeks after the injury, malondialdehyde (MDA) content and spinal cord myeloperoxidase (MPO) activity of the injured part were determined, and the glial scar and dead room were studied using the immune tissue chemical test. ED1 was used to observe active gitter cell and macrophages. The physical function of the nimodipine group improved significantly (P < 0.01). Two weeks after injury, spinal cord MDA content in the spinal cord in the nimodipine group (nmol/g, 25.6 ± 9.7 vs 68.5 ± 16.7) and MPO activity (U/g, 252.2 ± 63.9 vs 382.8 ± 108.2) decreased significantly (P < 0.01); nimodipine whole dead space (mm2, 4.45 ± 1.28 vs 6.16 ± 2.65) and ED1 antibody immunity colored positive room (mm2, 1.87 ± 0.42 vs 2.86 ± 1.01) reduced significantly (P < 0.01). Nimodipine treatment could reduce oxidative injury after spinal cord injury, reduce the whole dead space and inflammation, and repair spinal cord injury.

  17. Exocytosis regulates trafficking of GABA and glycine heterotransporters in spinal cord glutamatergic synapses: a mechanism for the excessive heterotransporter-induced release of glutamate in experimental amyotrophic lateral sclerosis.

    PubMed

    Milanese, Marco; Bonifacino, Tiziana; Fedele, Ernesto; Rebosio, Claudia; Cattaneo, Luca; Benfenati, Fabio; Usai, Cesare; Bonanno, Giambattista

    2015-02-01

    The impact of synaptic vesicle endo-exocytosis on the trafficking of nerve terminal heterotransporters was studied by monitoring membrane expression and function of the GABA transporter-1 (GAT-1) and of type-1/2 glycine (Gly) transporters (GlyT-1/2) at spinal cord glutamatergic synaptic boutons. Experiments were performed by inducing exocytosis in wild-type (WT) mice, in amphiphysin-I knockout (Amph-I KO) mice, which show impaired endocytosis, or in mice expressing high copy number of mutant human SOD1 with a Gly93Ala substitution (SOD1(G93A)), a model of human amyotrophic lateral sclerosis showing constitutively excessive Glu exocytosis. Exposure of spinal cord synaptosomes from WT mice to a 35mM KCl pulse increased the expression of GAT-1 at glutamatergic synaptosomal membranes and enhanced the GAT-1 heterotransporter-induced [(3)H]d-aspartate ([(3)H]d-Asp) release. Similar results were obtained in the case of GlyT-1/2 heterotransporters. Preventing depolarization-induced exocytosis normalized the excessive GAT-1 and GlyT-1/2 heterotransporter-induced [(3)H]d-Asp release in WT mice. Impaired endocytosis in Amph-I KO mice increased GAT-1 membrane expression and [(3)H]GABA uptake in spinal cord synaptosomes. Also the GAT-1 heterotransporter-evoked release of [(3)H]d-Asp was augmented in Amph-I KO mice. The constitutively excessive Glu exocytosis in SOD1(G93A) mice resulted in augmented GAT-1 expression at glutamatergic synaptosomal membranes and GAT-1 or GlyT-1/2 heterotransporter-mediated [(3)H]d-Asp release. Thus, endo-exocytosis regulates the trafficking of GAT-1 and GlyT-1/2 heterotransporters sited at spinal cord glutamatergic nerve terminals. As a consequence, it can be hypothesized that the excessive GAT-1 and GlyT-1/2 heterotransporter-mediated Glu release, in the spinal cord of SOD1(G93A) mice, is due to the heterotransporter over-expression at the nerve terminal membrane, promoted by the excessive Glu exocytosis.

  18. Cardiovascular dysfunction following spinal cord injury

    PubMed Central

    Partida, Elizabeth; Mironets, Eugene; Hou, Shaoping; Tom, Veronica J.

    2016-01-01

    Both sensorimotor and autonomic dysfunctions often occur after spinal cord injury (SCI). Particularly, a high thoracic or cervical SCI interrupts supraspinal vasomotor pathways and results in disordered hemodynamics due to deregulated sympathetic outflow. As a result of the reduced sympathetic activity, patients with SCI may experience hypotension, cardiac dysrhythmias, and hypothermia post-injury. In the chronic phase, changes within the CNS and blood vessels lead to orthostatic hypotension and life-threatening autonomic dysreflexia (AD). AD is characterized by an episodic, massive sympathetic discharge that causes severe hypertension associated with bradycardia. The syndrome is often triggered by unpleasant visceral or sensory stimuli below the injury level. Currently the only treatments are palliative – once a stimulus elicits AD, pharmacological vasodilators are administered to help reduce the spike in arterial blood pressure. However, a more effective means would be to mitigate AD development by attenuating contributing mechanisms, such as the reorganization of intraspinal circuits below the level of injury. A better understanding of the neuropathophysiology underlying cardiovascular dysfunction after SCI is essential to better develop novel therapeutic approaches to restore hemodynamic performance. PMID:27073353

  19. Acute complications of spinal cord injuries

    PubMed Central

    Hagen, Ellen Merete

    2015-01-01

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  20. Osteoporosis in individuals with spinal cord injury.

    PubMed

    Bauman, William A; Cardozo, Christopher P

    2015-02-01

    The pathophysiology, clinical considerations, and relevant experimental findings with regard to osteoporosis in individuals with spinal cord injury (SCI) will be discussed. The bone loss that occurs acutely after more neurologically motor complete SCI is unique for its sublesional skeletal distribution and rate, at certain skeletal sites approaching 1% of bone mineral density per week, and its resistance to currently available treatments. The areas of high bone loss include the distal femur, proximal tibia, and more distal boney sites. Evidence from a study performed in monozygotic twins discordant for SCI indicates that sublesional bone loss in the twin with SCI increases for several decades, strongly suggesting that the heightened net bone loss after SCI may persist for an extended period of time. The increased frequency of fragility fracture after paralysis will be discussed, and a few risk factors for such fractures after SCI will be examined. Because vitamin D deficiency, regardless of disability, is a relevant consideration for bone health, as well as an easily reversible condition, the increased prevalence of and treatment target values for vitamin D in this deficiency state in the SCI population will be reviewed. Pharmacological and mechanical approaches to preserving bone integrity in persons with acute and chronic SCI will be reviewed, with emphasis placed on efficacy and practicality. Emerging osteoanabolic agents that improve functioning of WNT/β-catenin signaling after paralysis will be introduced as therapeutic interventions that may hold promise.

  1. Chronic complications of spinal cord injury

    PubMed Central

    Sezer, Nebahat; Akkuş, Selami; Uğurlu, Fatma Gülçin

    2015-01-01

    Spinal cord injury (SCI) is a serious medical condition that causes functional, psychological and socioeconomic disorder. Therefore, patients with SCI experience significant impairments in various aspects of their life. The goals of rehabilitation and other treatment approaches in SCI are to improve functional level, decrease secondary morbidity and enhance health-related quality of life. Acute and long-term secondary medical complications are common in patients with SCI. However, chronic complications especially further negatively impact on patients’ functional independence and quality of life. Therefore, prevention, early diagnosis and treatment of chronic secondary complications in patients with SCI is critical for limiting these complications, improving survival, community participation and health-related quality of life. The management of secondary chronic complications of SCI is also important for SCI specialists, families and caregivers as well as patients. In this paper, we review data about common secondary long-term complications after SCI, including respiratory complications, cardiovascular complications, urinary and bowel complications, spasticity, pain syndromes, pressure ulcers, osteoporosis and bone fractures. The purpose of this review is to provide an overview of risk factors, signs, symptoms, prevention and treatment approaches for secondary long-term complications in patients with SCI. PMID:25621208

  2. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs.

  3. Spinal cord compression in two related Ursus arctos horribilis.

    PubMed

    Thomovsky, Stephanie A; Chen, Annie V; Roberts, Greg R; Schmidt, Carrie E; Layton, Arthur W

    2012-09-01

    Two 15-yr-old grizzly bear littermates were evaluated within 9 mo of each other with the symptom of acute onset of progressive paraparesis and proprioceptive ataxia. The most significant clinical examination finding was pelvic limb paresis in both bears. Magnetic resonance examinations of both bears showed cranial thoracic spinal cord compression. The first bear had left-sided extradural, dorsolateral spinal cord compression at T3-T4. Vertebral canal stenosis was also observed at T2-T3. Images of the second bear showed lateral spinal cord compression from T2-T3 to T4-T5. Intervertebral disk disease and associated spinal cord compression was also observed at T2-T3 and T3-T4. One grizzly bear continued to deteriorate despite reduced exercise, steroid, and antibiotic therapy. The bear was euthanized, and a necropsy was performed. The postmortem showed a spinal ganglion cyst that caused spinal cord compression at the level of T3-T4. Wallerian-like degeneration was observed from C3-T6. The second bear was prescribed treatment that consisted of a combination of reduced exercise and steroid therapy. He continued to deteriorate with these medical therapies and was euthanized 4 mo after diagnosis. A necropsy showed hypertrophy and protrusion of the dorsal longitudinal ligament at T2-T3 and T3-T4, with resulting spinal cord compression in this region. Wallerian-like degeneration was observed from C2-L1. This is one of few case reports that describes paresis in bears. It is the only case report, to the authors' knowledge, that describes spinal magnetic resonance imaging findings in a grizzly bear and also the only report that describes a cranial thoracic myelopathy in two related grizzly bears with neurologic signs. PMID:23082524

  4. Spinal Cord Tolerance in the Age of Spinal Radiosurgery: Lessons From Preclinical Studies

    SciTech Connect

    Medin, Paul M.; Boike, Thomas P.

    2011-04-01

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat has demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.

  5. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats.

    PubMed

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-08-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9-T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI.

  6. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats

    PubMed Central

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-01-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9–T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI. PMID:27656624

  7. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats

    PubMed Central

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-01-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9–T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI.

  8. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats.

    PubMed

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-08-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9-T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI. PMID:27656624

  9. Functional Organization of Locomotor Interneurons in the Ventral Lumbar Spinal Cord of the Newborn Rat

    PubMed Central

    Antri, Myriam; Mellen, Nicholas; Cazalets, Jean-René

    2011-01-01

    Although the mammalian locomotor CPG has been localized to the lumbar spinal cord, the functional-anatomical organization of flexor and extensor interneurons has not been characterized. Here, we tested the hypothesis that flexor and extensor interneuronal networks for walking are physically segregated in the lumbar spinal cord. For this purpose, we performed optical recordings and lesion experiments from a horizontally sectioned lumbar spinal cord isolated from neonate rats. This ventral hemi spinal cord preparation produces well-organized fictive locomotion when superfused with 5-HT/NMDA. The dorsal surface of the preparation was visualized using the Ca2+ indicator fluo-4 AM, while simultaneously monitoring motor output at ventral roots L2 and L5. Using calcium imaging, we provided a general mapping view of the interneurons that maintained a stable phase relationship with motor output. We showed that the dorsal surface of L1 segment contains a higher density of locomotor rhythmic cells than the other segments. Moreover, L1 segment lesioning induced the most important changes in the locomotor activity in comparison with lesions at the T13 or L2 segments. However, no lesions led to selective disruption of either flexor or extensor output. In addition, this study found no evidence of functional parcellation of locomotor interneurons into flexor and extensor pools at the dorsal-ventral midline of the lumbar spinal cord of the rat. PMID:21698092

  10. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord.

    PubMed

    Hamann, Kristin; Nehrt, Genevieve; Ouyang, Hui; Duerstock, Brad; Shi, Riyi

    2008-02-01

    We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo, and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, where lipid peroxidation is known to be involved. The current study demonstrates that the acrolein scavenger hydralazine protects against not only acrolein-mediated injury, but also compression in guinea pig spinal cord ex vivo. Specifically, hydralazine (500 mumol/L to 1 mmol/L) can significantly alleviate acrolein (100-500 mumol/L)-induced superoxide production, glutathione depletion, mitochondrial dysfunction, loss of membrane integrity, and reduced compound action potential conduction. Additionally, 500 mumol/L hydralazine significantly attenuated compression-mediated membrane disruptions at 2 and 3 h following injury. This was consistent with our findings that acrolein-lys adducts were increased following compression injury ex vivo, an effect that was prevented by hydralazine treatment. These findings provide further evidence for the role of acrolein in spinal cord injury, and suggest that acrolein-scavenging drugs such as hydralazine may represent a novel therapy to effectively reduce oxidative stress in disorders such as spinal cord injury and neurodegenerative diseases, where oxidative stress is known to play a role.

  11. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions

    PubMed Central

    Liu, Chien-Cheng; Gao, Yong-Jing; Luo, Hao; Berta, Temugin; Xu, Zhen-Zhong; Ji, Ru-Rong; Tan, Ping-Heng

    2016-01-01

    It is well known that interferons (IFNs), such as type-I IFN (IFN-α) and type-II IFN (IFN-γ) are produced by immune cells to elicit antiviral effects. IFNs are also produced by glial cells in the CNS to regulate brain functions. As a proinflammatory cytokine, IFN-γ drives neuropathic pain by inducing microglial activation in the spinal cord. However, little is known about the role of IFN-α in regulating pain sensitivity and synaptic transmission. Strikingly, we found that IFN-α/β receptor (type-I IFN receptor) was expressed by primary afferent terminals in the superficial dorsal horn that co-expressed the neuropeptide CGRP. In the spinal cord IFN-α was primarily expressed by astrocytes. Perfusion of spinal cord slices with IFN-α suppressed excitatory synaptic transmission by reducing the frequency of spontaneous excitatory postsynaptic current (sEPSCs). IFN-α also inhibited nociceptive transmission by reducing capsaicin-induced internalization of NK-1 and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial dorsal horn neurons. Finally, spinal (intrathecal) administration of IFN-α reduced inflammatory pain and increased pain threshold in naïve rats, whereas removal of endogenous IFN-α by a neutralizing antibody induced hyperalgesia. Our findings suggest a new form of neuronal-glial interaction by which IFN-α, produced by astrocytes, inhibits nociceptive transmission in the spinal cord. PMID:27670299

  12. Improved rat spinal cord injury model using spinal cord compression by percutaneous method

    PubMed Central

    Chung, Wook-Hun; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Lee, A-Jin; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Chung, Hyo Jin; Suh, Hyun Jung; Hwang, Soo-Han; Han, Hoon; Do, Sun Hee

    2013-01-01

    Here, percutaneous spinal cord injury (SCI) methods using a balloon catheter in adult rats are described. A balloon catheter was inserted into the epidural space through the lumbosacral junction and then inflated between T9-T10 for 10min under fluoroscopic guidance. Animals were divided into three groups with respect to inflation volume: 20 µL (n = 18), 50 µL (n = 18) and control (Fogarty catheter inserted but not inflated; n = 10). Neurological assessments were then made based on BBB score, magnetic resonance imaging and histopathology. Both inflation volumes produced complete paralysis. Gradual recovery of motor function occurred when 20 µL was used, but not after 50 µL was applied. In the 50 µL group, all gray and white matter was lost from the center of the lesion. In addition, supramaximal damage was noted, which likely prevented spontaneous recovery. This percutaneous spinal cord compression injury model is simple, rapid with high reproducibility and the potential to serve as a useful tool for investigation of pathophysiology and possible protective treatments of SCI in vivo. PMID:23820159

  13. Characterization of vascular disruption and blood-spinal cord barrier permeability following traumatic spinal cord injury.

    PubMed

    Figley, Sarah A; Khosravi, Ramak; Legasto, Jean M; Tseng, Yun-Fan; Fehlings, Michael G

    2014-03-15

    Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with vascular tracing dyes (2% Evans Blue (EB) or fluorescein isothiocyanate/Lycopersicon esculentum agglutinin [FITC-LEA]) to assess blood-spinal cord barrier (BSCB) integrity or vascular architecture, respectively. Spectrophotometry of EB tissue showed maximal BSCB disruption at 24 h postinjury, with significant disruption observed until 5 days postinjury (p<0.01). FITC-LEA-identified functional vasculature was dramatically reduced by 24 h. Similarly, RECA-1 immunohistochemistry showed a significant decrease in the number of vessels at 24 h postinjury, compared to uninjured animals (p<0.01), with slight increases in endogenous revascularization by 10 days postinjury. White versus gray matter (GM) quantification showed that GM vessels are more susceptible to SCI. Finally, we observed an endogenous angiogenic response between 3 and 7 days postinjury: maximal endothelial cell proliferation was observed at day 5. These data indicate that BSCB disruption and endogenous revascularization occur at specific time points after injury, which may be important for developing effective therapeutic interventions for SCI. PMID:24237182

  14. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.

    PubMed

    Özdemir, Ümit Sinan; Nazıroğlu, Mustafa; Şenol, Nilgün; Ghazizadeh, Vahid

    2016-08-01

    Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through

  15. Traumatic spinal cord injury in mice with human immune systems

    PubMed Central

    Carpenter, Randall S.; Kigerl, Kristina A.; Marbourg, Jessica M.; Gaudet, Andrew D.; Huey, Devra; Niewiesk, Stefan; Popovich, Phillip G.

    2015-01-01

    Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rgnull (NSG) mice engrafted with human CD34+ hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI should

  16. Traumatic spinal cord injury in mice with human immune systems.

    PubMed

    Carpenter, Randall S; Kigerl, Kristina A; Marbourg, Jessica M; Gaudet, Andrew D; Huey, Devra; Niewiesk, Stefan; Popovich, Phillip G

    2015-09-01

    Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rg(null) (NSG) mice engrafted with human CD34(+) hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in the blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI

  17. Traumatic spinal cord injury in mice with human immune systems.

    PubMed

    Carpenter, Randall S; Kigerl, Kristina A; Marbourg, Jessica M; Gaudet, Andrew D; Huey, Devra; Niewiesk, Stefan; Popovich, Phillip G

    2015-09-01

    Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rg(null) (NSG) mice engrafted with human CD34(+) hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in the blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI

  18. Effects of tetramethylpyrazine on microglia activation in spinal cord compression injury of mice.

    PubMed

    Shin, Jung-Won; Moon, Ja-Young; Seong, Ju-Won; Song, Sang-Hoon; Cheong, Young-Jin; Kang, Chulhun; Sohn, Nak-Won

    2013-01-01

    Secondary mechanisms, including inflammation and microglia activation, serve as targets for the development and application of pharmacological strategies in the management of spinal cord injury (SCI). Tetramethylpyrazine (TMP), an active ingredient of Ligusticum wallichii (chuanxiong), has shown anti-inflammatory and neuroprotective effects against SCI. However, it remains uncertain whether the inflammation-suppressive effects of TMP play a modulatory role over microglia activation in SCI. The present study investigated the effects of TMP on microglia activation and pro-inflammatory cytokines in spinal cord compression injury in mice. For a real-time PCR measurement of pro-inflammatory cytokines, SCI was induced in mice by the clip compression method (30 g force, 1 min) and TMP (15 or 30 mg/kg, i.p.) was administered once, 30 minutes before the SCI induction. For immunohistochemistry, TMP (30 mg/kg, i.p.) treatment was given three times during the first 48 hours after the SCI. 30 mg/kg of TMP treatment reduced the up-regulation of TNF-α, IL-1β and COX-2 mRNA in the spinal tissue at four hours after the SCI induction. TMP also significantly attenuated microglia activation and neutrophil infiltration at 48 hours after the SCI induction. In addition, iNOS expression in the spinal tissue was attenuated with TMP treatment. These results suggest that TMP plays a modulatory role in microglia activation and may protect the spinal cord from or potentially delay secondary spinal cord injury. PMID:24228606

  19. Local Wavelet-Based Filtering of Electromyographic Signals to Eliminate the Electrocardiographic-Induced Artifacts in Patients with Spinal Cord Injury

    PubMed Central

    Nitzken, Matthew; Bajaj, Nihit; Aslan, Sevda; Gimel’farb, Georgy; Ovechkin, Alexander

    2013-01-01

    Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals. Elimination of these artifacts plays a critical role in the precise measure of the respiratory muscle electrical activity. This study was undertaken to find an optimal approach to eliminate the ECG artifacts from EMG recordings. Conventional global filtering can be used to decrease the ECG-induced artifact. However, this method can alter the EMG signal and changes physiologically relevant information. We hypothesize that, unlike global filtering, localized removal of ECG artifacts will not change the original EMG signals. We develop an approach to remove the ECG artifacts without altering the amplitude and frequency components of the EMG signal by using an externally recorded ECG signal as a mask to locate areas of the ECG spikes within EMG data. These segments containing ECG spikes were decomposed into 128 sub-wavelets by a custom-scaled Morlet Wavelet Transform. The ECG-related sub-wavelets at the ECG spike location were removed and a de-noised EMG signal was reconstructed. Validity of the proposed method was proven using mathematical simulated synthetic signals and EMG obtained from SCI patients. We compare the Root-mean Square Error and the Relative Change in Variance between this method, global, notch and adaptive filters. The results show that the localized wavelet-based filtering has the benefit of not introducing error in the native EMG signal and accurately removing ECG artifacts from EMG signals

  20. [Guinea pig brain and spinal cord glycolipids in tricresyl phosphate poisoning].

    PubMed

    Taranova, N P

    1978-01-01

    Experimental neuroparalytic form of chronic intoxication with tricresylphosphate (TCP was induced in adult guinea pigs by means of single intracutaneous administration of TCP (industrial mixture containing 37% of ortho-isomer) at a dose of 2.0-2.2 ml/kg of body weight. Moderate and severe forms of the impairment, accompanied by paresis and paralysis of hind extremities was developed in 66.1% of the treated animals. Content of galactolipids (cerebrosides + sulphatides) and gangliosides was determined in brain stem, lumbar and sacral parts of spinal cord of intact and impaired animals. Content of galactolipids was distinctly decreased in spinal cord (by 22.9%) and in brain stem (9.0%). Total gangliosides were decreased by 19.1% in spinal cord, but its content was altered in brain stem. These alterations appear to reflect destructive processes not only in myelin membranes but also in structure of neurones.

  1. Qualification of the Most Statistically "Sensitive" Diffusion Tensor Imaging Parameters for Detection of Spinal Cord Injury

    NASA Astrophysics Data System (ADS)

    Krzyżak, A. T.; Jasiński, A.; Adamek, D.

    2006-07-01

    Qualification of the most statistically "sensitive" diffusion parameters using Magnetic Resonance (MR) Diffusion Tensor Imaging (DTI) of the control and injured spinal cord of a rat in vivo and in vitro after the trauma is reported. Injury was induced in TH12/TH13 level by a controlled "weight-drop". In vitro experiments were performed in a home-built MR microscope, with a 6.4 T magnet, in vivo samples were measured in a 9.4 T/21 horizontal magnet The aim of this work was to find the most effective diffusion parameters which are useful in the statistically significant detection of spinal cord tissue damage. Apparent diffusion tensor (ADT) weighted data measured in vivo and in vitro on control and injured rat spinal cord (RSC) in the transverse planes and analysis of the diffusion anisotropy as a function of many parameters, which allows statisticall expose of the existence of the damage are reported.

  2. Frequency Mapping of Rat Spinal Cord at 7T

    NASA Astrophysics Data System (ADS)

    Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew

    2012-10-01

    The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.

  3. Stem cell therapy in spinal cord injuries: current concepts.

    PubMed

    Chhabra, H S

    2012-05-01

    The list of experimental therapies that have been developed in animal models to improve functional outcomes after spinal cord injury is extensive. Though preclinical trials have shown a good potential for cellular therapies in spinal cord injury, there is no documentary proof as of now that any form of cellular therapy definitely improves outcome in management of human spinal cord injury. The adverse effects of many such therapies are well-documented. There is a need to conduct proper clinical trials. Some early-stage spinal cord injury clinical trials have recently been done and some have been started. However, some experimental therapies have been introduced into clinical practice without a clinical trial being completed. Undue hype by the media and claims by professionals have a profound psychological effect on the spinal cord injured and interferes in their rehabilitation. While we know that the future holds a good promise, this should not prevent patients from aggressively pursuing rehabilitation since we are not sure when a clinical breakthrough will be achieved. PMID:23155794

  4. Ubiquity of motor networks in the spinal cord of vertebrates.

    PubMed

    Cazalets, J R; Bertrand, S

    2000-11-15

    In a recent paper, we found that it is possible to record motor activity in sacral segments in the in vitro neonatal rat spinal cord preparation. This motor activity recorded in segments that are not innervating hindlimbs is driven by the lumbar locomotor network. Indeed, compartimentalizations of the cord with Vaseline walls or section experiments, reveals that the sacral segments possess their own rhythmogenic capabilities but that in an intact spinal cord they are driven by the lumbar locomotor network. In this review, these recent findings are placed in the context of spinal motor network interactions. As previously suspected, the motor networks do not operate in isolation but interact with each other according to behavioural needs. These interactions provide some insight into the discrepancies observed in several studies dealing with the localization of the lumbar locomotor network in the neonatal rat spinal cord. In conclusion, the spinal cord of quadrupeds appears as an heterogeneous structure where it is possible to identify neuronal networks that are crucial for the genesis of locomotor-related activities. PMID:11165798

  5. Coping and adaptation in adults living with spinal cord injury.

    PubMed

    Barone, Stacey Hoffman; Waters, Katherine

    2012-10-01

    Biopsychosocial adaptation remains a multifaceted challenge for individuals with spinal cord injury, their families, and healthcare providers alike. The development of frequent medical complications necessitating healthcare interventions is an ongoing, debilitating, and costly problem for those living with spinal cord injuries. Although several demographic variables have been correlated with positive adaptation in individuals with spinal cord injury, the research outcome data present limitations in understanding and facilitating which coping techniques work best to augment biopsychosocial adaptation in this population. Coping facilitates adaptation and adjustment to stress and can help to increase quality of life in people living with spinal cord injury and reduce common complications. The purpose of this study was to determine the extent to which sociodemographic characteristics and hardiness explain coping in 243 adults living with a spinal cord injury. In addition, this study examined which predictors of coping explain biopsychosocial adaptation. A descriptive explanatory design was utilized. Standardized instruments were administered nationally to assess hardiness, coping, and physiological and psychosocial adaptation. Canonical correlation and multiple regression analyses indicated that less educated, less hardy, and recently injured participants were more likely to use escape-avoidance coping and less likely to use social support, problem solving, and positive reappraisal coping behaviors (p < .05). Individuals with paraplegia had a higher level of functional ability, spent less time in rehabilitation, had a greater sense of control, and experienced less frequent complications. The control dimension of hardiness was the only dimension that significantly related to biopsychosocial adaptation within this sample.

  6. Fully automated grey and white matter spinal cord segmentation

    PubMed Central

    Prados, Ferran; Cardoso, M. Jorge; Yiannakas, Marios C.; Hoy, Luke R.; Tebaldi, Elisa; Kearney, Hugh; Liechti, Martina D.; Miller, David H.; Ciccarelli, Olga; Wheeler-Kingshott, Claudia A. M. Gandini; Ourselin, Sebastien

    2016-01-01

    Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at C2/C3 level was close to inter-rater variability, reaching an accuracy (DSC) of 0.826 for healthy subjects and 0.835 people with clinically isolated syndrome MS. PMID:27786306

  7. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography.

    PubMed

    Giardini, Mario E; Zippo, Antonio G; Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E M

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  8. Electrophysiological and Anatomical Correlates of Spinal Cord Optical Coherence Tomography

    PubMed Central

    Valente, Maurizio; Krstajic, Nikola; Biella, Gabriele E. M.

    2016-01-01

    Despite the continuous improvement in medical imaging technology, visualizing the spinal cord poses severe problems due to structural or incidental causes, such as small access space and motion artifacts. In addition, positional guidance on the spinal cord is not commonly available during surgery, with the exception of neuronavigation techniques based on static pre-surgical data and of radiation-based methods, such as fluoroscopy. A fast, bedside, intraoperative real-time imaging, particularly necessary during the positioning of endoscopic probes or tools, is an unsolved issue. The objective of our work, performed on experimental rats, is to demonstrate potential intraoperative spinal cord imaging and probe guidance by optical coherence tomography (OCT). Concurrently, we aimed to demonstrate that the electromagnetic OCT irradiation exerted no particular effect at the neuronal and synaptic levels. OCT is a user-friendly, low-cost and endoscopy-compatible photonics-based imaging technique. In particular, by using a Fourier-domain OCT imager, operating at 850 nm wavelength and scanning transversally with respect to the spinal cord, we have been able to: 1) accurately image tissue structures in an animal model (muscle, spine bone, cerebro-spinal fluid, dura mater and spinal cord), and 2) identify the position of a recording microelectrode approaching and inserting into the cord tissue 3) check that the infrared radiation has no actual effect on the electrophysiological activity of spinal neurons. The technique, potentially extendable to full three-dimensional image reconstruction, shows prospective further application not only in endoscopic intraoperative analyses and for probe insertion guidance, but also in emergency and adverse situations (e.g. after trauma) for damage recognition, diagnosis and fast image-guided intervention. PMID:27050096

  9. Automated identification of spinal cord and vertebras on sagittal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Dong, Qian; He, Bo; Wei, Jun; Hadjiiski, Lubomir M.; Couriel, Daniel

    2014-03-01

    We are developing an automated method for the identification of the spinal cord and the vertebras on spinal MR images, which is an essential step for computerized analysis of bone marrow diseases. The spinal cord segment was first enhanced by a newly developed hierarchical multiscale tubular (HMT) filter that utilizes the complementary hyper- and hypo- intensities in the T1-weighted (T1W) and STIR MRI sequences. An Expectation-Maximization (EM) analysis method was then applied to the enhanced tubular structures to extract candidates of the spinal cord. The spinal cord was finally identified by a maximum-likelihood registration method by analysis of the features extracted from the candidate objects in the two MRI sequences. Using the identified spinal cord as a reference, the vertebras were localized based on the intervertebral disc locations extracted by another HMT filter applied to the T1W images. In this study, 5 and 30 MRI scans from 35 patients who were diagnosed with multiple myeloma disease were collected retrospectively with IRB approval as training and test set, respectively. The vertebras manually outlined by a radiologist were used as reference standard. A total of 422 vertebras were marked in the 30 test cases. For the 30 test cases, 100% (30/30) of the spinal cords were correctly segmented with 4 false positives (FPs) mistakenly identified on the back muscles in 4 scans. A sensitivity of 95.0% (401/422) was achieved for the identification of vertebras, and 5 FPs were marked in 4 scans with an average FP rate of 0.17 FPs/scan.

  10. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  11. Anterior spinal cord infarction caused by fibrocartilaginous embolism.

    PubMed

    Piao, Yue-Shan; Lu, De-Hong; Su, Ying-Ying; Yang, Xiao-Ping

    2009-04-01

    Fibrocartilaginous embolism is a rare cause of anterior spinal cord infarction. We report a case of anterior spinal cord infarction caused by a fibrocartilaginous embolism of 3 months duration in a 23-year-old man. Ten days after a trivial strike to the neck and back, he had sudden back pain, weakness of the upper and lower extremities, developed dyspnea and became unconscious. Cervical MRI showed an enlargement of the lower medulla and cervical cord with abnormal signals in the ventral portion. The follow-up MRI performed 2 months later showed atrophy of the above lesion. On histopathological examination, there was a recent, extensive infarct in the cervical cord and lower medulla. The lesion was symmetrical, and predominantly involved the anterior part of the spinal cord. Moreover, many basophilic, alcian blue-positive emboli in the arteries and veins of the lesion were detected. This is the first autopsy case of anterior spinal cord infarction caused by a fibrocartilaginous embolism that has been confirmed in China. The clinicopathological features of this case are reviewed in this paper.

  12. [Non-invasive transcutaneous spinal cord stimulation facilitates locomotor activity in decerebrated and spinal cats].

    PubMed

    Musienko, P E; Bogacheva, I N; Savochin, A A; Kilimnik, V A; Gorskiĭ, O V; Nikitin, O A; Gerasimenko, Ia P

    2013-08-01

    It is known that spinal neuronal networks activated by epidural electrical stimulation (EES) can produce the stepping EMG pattern and control the locomotor behavior. At present study we showed that non-invasive transcutaneous electrical spinal cord stimulation (tESCS) applied to the lumbar-sacral enlargement can facilitate the locomotor activity in decerebrated and spinal animals. The comparison of the motor responses evoked by EES vs tESCS showed that both methods produce the locomotor patterns with close properties and similar reflex mechanisms. The data obtained suggest that tESCS is an efficient approach for investigation of the locomotor control in acute and chronic experiments as well as facilitates of the locomotor abilities after spinal cord injury. Taking to account the non-invasivity and easement of tESCS, this approach could be further implemented in clinical practice for rehabilitation of the patient with spinal cord injury.

  13. 76 FR 56504 - Proposed Information Collection (Spinal Cord Injury Patient Care Survey) Activity: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... AFFAIRS Proposed Information Collection (Spinal Cord Injury Patient Care Survey) Activity: Comment Request... spinal cord patients' satisfaction with VA rehabilitation and health care system. Affected Public... of automated collection techniques or the use of other forms of information technology. Title:...

  14. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection

    PubMed Central

    He, Qin-Qin; Xiong, Liu-Lin; Liu, Fei; He, Xiang; Feng, Guo-Ying; Shang, Fei-Fei; Xia, Qing-Jie; Wang, You-Cui; Qiu, De-Lu; Luo, Chao-Zhi; Liu, Jia; Wang, Ting-Hua

    2016-01-01

    Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials. PMID:27748416

  15. Implanting glass spinal cord windows in adult mice with experimental autoimmune encephalomyelitis.

    PubMed

    Fenrich, Keith K; Weber, Pascal; Rougon, Genevieve; Debarbieux, Franck

    2013-12-21

    Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.

  16. An analysis of plasticity in the rat respiratory system following cervical spinal cord injury and the application of nanotechnology to induce or enhance recovery of diaphragm function

    NASA Astrophysics Data System (ADS)

    Walker, Janelle

    Second cervical segment spinal cord hemisection (C2Hx) results in ipsilateral hemidiaphragm paralysis. However, the intact latent crossed phrenic pathway can restore function spontaneously over time or immediately following drug administration. WGA bound fluorochromes were administered to identify nuclei associated with diaphragm function in both the acute and chronic C2Hx models. WGA is unique in that it undergoes receptor mediated endocytosis and is transsynaptically transported across select physiologically active synapses. Comparison of labeling in the acutely injured to the chronically injured rat provided an anatomical map of spinal and supraspinal injury induced synaptic plasticity. The plasticity occurs over time in the chronic C2Hx model in an effort to adapt to the loss of hemidiaphragm function. Utilizing the selectivity of WGA, a nanoconjugate was developed to target drug delivery to nuclei involved in diaphragm function post C2Hx in an effort to restore lost function. Theophylline was selected due to its established history as a respiratory stimulant. Theophylline was attached to gold nanoparticles by a transient bond designed to degrade intracellularly. The gold nanoparticles were then permanently attached to WGA-HRP. Following intradiaphragmatic injection, the WGA portion was identified in the ipsilateral phrenic nuclei and bilaterally in the rVRGs. The location of WGA should reflect the location of the AuNP since the peptide bond between them is permanent. The effectiveness of the nanoconjugate was verified with EMG analysis of the diaphragm and recordings from the phrenic nerves. All doses administered in the acute C2Hx model resulted in resorted hemidiaphragm and phrenic nerve activity. A dose of 0.14mg/kg had a significantly higher percent recovery on day 3, whereas 0.03mg/kg was significantly higher on day 14. The change in most effective dose over time is likely due to the availability or concentration of the drug and location of drug release

  17. Somatotopic arrangement of thermal sensory regions in the healthy human spinal cord determined by means of spinal cord functional MRI.

    PubMed

    Stroman, Patrick W; Bosma, Rachael L; Tsyben, Anastasia

    2012-09-01

    Previous functional MRI studies of normal sensory function in the human spinal cord, including right-to-left symmetry of activity, have been influenced by order effects between repeated studies. In this study, we apply thermal sensory stimulation to four dermatomes within each functional MRI time-series acquisition. Each of the four dermatomes receives a unique stimulation paradigm, such that the four paradigms form a linearly independent set, enabling detection of each individual stimulus response. Functional MRI data are shown spanning the cervical spinal cord and brainstem in 10 healthy volunteers. Results of general linear model analysis demonstrate consistent patterns of activity within the spinal cord segments corresponding to each dermatome, and a high degree of symmetry between right-side and left-side stimulation. Connectivity analyses also demonstrate consistent areas of activity and connectivity between spinal cord and brainstem regions corresponding to known anatomy. However, right-side and left-side responses are not at precisely the same rostral-caudal positions, but are offset by several millimeters, with left-side responses consistently more caudal than right-side responses. The results confirm that distinct responses to multiple interleaved sensory stimuli can be distinguished, enabling studies of sensory responses within the spinal cord without the confounding effects of comparing sequential studies.

  18. Respiration following Spinal Cord Injury: Evidence for Human Neuroplasticity

    PubMed Central

    Hoh, Daniel J.; Mercier, Lynne M.; Hussey, Shaunn P.; Lane, Michael A.

    2013-01-01

    Respiratory dysfunction is one of the most devastating consequences of cervical spinal cord injury (SCI) with impaired breathing being a leading cause of morbidity and mortality in this population. However, there is mounting experimental and clinical evidence for moderate spontaneous respiratory recovery, or “plasticity”, after some spinal cord injuries. Pre-clinical models of respiratory dysfunction following SCI have demonstrated plasticity at neural and behavioral levels that result in progressive recovery of function. Temporal changes in respiration after human SCI have revealed some functional improvements suggesting plasticity paralleling that seen in experimental models – a concept that has been previously under-appreciated. While the extent of spontaneous recovery remains limited, it is possible that enhancing or facilitating neuroplastic mechanisms may have significant therapeutic potential. The next generation of treatment strategies for SCI and related respiratory dysfunction should aim to optimize these recovery processes of the injured spinal cord for lasting functional restoration. PMID:23891679

  19. Solitary fibrous tumor of the thoracic spinal cord.

    PubMed

    Ogawa, Tomoyuki; Moriyama, Eiji; Beck, Hiroichi; Sonobe, Hiroshi

    2005-07-01

    A 63-year-old woman presented with a rare case of primary solitary fibrous tumor (SFT) occurring in the extramedullary thoracic spinal cord. T1-weighted magnetic resonance (MR) imaging showed the tumor as a mildly hypointense area with homogeneous enhancement by gadolinium. T2-weighted MR imaging showed a hypointense mass with peritumoral edema. The tumor arose from one of the posterior spinal roots, with no attachment to the dura. The tumor was clearly circumscribed from the surrounding cord tissue and easily removed. Histological examination showed the tumor predominantly consisted of spindle cells separated by abundant collagen matrix fibers. Tumor cells were strongly positive for vimentin and CD34, but negative for glial fibrillary acidic protein, S-100 protein, epithelial membrane antigen, myelin basic protein, and keratin. SFT should be considered in the differential diagnosis of spindle cell central nervous system neoplasms, although SFT is extremely rare in the spinal cord.

  20. Modified Cytoplasmic Ca2+ Sequestration Contributes to Spinal Cord Injury-Induced Augmentation of Nerve-Evoked Contractions in the Rat Tail Artery

    PubMed Central

    Al Dera, Hussain; Callaghan, Brid P.; Brock, James A.

    2014-01-01

    In rat tail artery (RTA), spinal cord injury (SCI) increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist) mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR) limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control) and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker) in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism. PMID:25350563

  1. Effects of gabapentin on thermal sensitivity following spinal nerve ligation or spinal cord compression.

    PubMed

    Yezierski, Robert P; Green, Megan; Murphy, Karen; Vierck, Charles J

    2013-10-01

    Neuropathic pain challenges healthcare professionals and researchers to develop new strategies of treatment and experimental models to better understand the pathophysiology of this condition. In the present study, the efficacy of gabapentin on thermal sensitivity following spinal nerve ligation and spinal cord compression was evaluated. The method of behavioral assessment was a well-validated cortically dependent operant escape task. Spinal nerve ligation produced peripheral neuropathic pain whereas spinal cord compression, achieved with an expanding polymer placed extradurally, produced a condition of central neuropathic pain. Changes in thermal sensitivity were also observed in animals undergoing nerve ligation surgery without nerve injury. Gabapentin (50 and 100 mg/kg) significantly reduced thermal sensitivity to 10 and 44.5 °C in surgically naive animals as well as those undergoing spinal nerve ligation and spinal cord compression. In conclusion, an operant method of behavioral assessment was used to show that spinal nerve ligation and spinal cord compression produced increases in sensitivity to noxious cold and heat stimuli. A decrease in thermal sensitivity was observed following administration of gabapentin. The results achieved with these methods are consistent with the clinical profile of gabapentin in treating conditions of neuropathic pain.

  2. Neuroprotective effects of human spinal cord-derived neural precursor cells after transplantation to the injured spinal cord.

    PubMed

    Emgård, Mia; Piao, Jinghua; Aineskog, Helena; Liu, Jia; Calzarossa, Cinzia; Odeberg, Jenny; Holmberg, Lena; Samuelsson, Eva-Britt; Bezubik, Bartosz; Vincent, Per Henrik; Falci, Scott P; Seiger, Åke; Åkesson, Elisabet; Sundström, Erik

    2014-03-01

    To validate human neural precursor cells (NPCs) as potential donor cells for transplantation therapy after spinal cord injury (SCI), we investigated the effect of NPCs, transplanted as neurospheres, in two different rat SCI models. Human spinal cord-derived NPCs (SC-NPCs) transplanted 9 days after spinal contusion injury enhanced hindlimb recovery, assessed by the BBB locomotor test. In spinal compression injuries, SC-NPCs transplanted immediately or after 1 week, but not 7 weeks after injury, significantly improved hindlimb recovery compared to controls. We could not detect signs of mechanical allodynia in transplanted rats. Four months after transplantation, we found more human cells in the host spinal cord than were transplanted, irrespective of the time of transplantation. There was no focal tumor growth. In all groups the vast majority of NPCs differentiated into astrocytes. Importantly, the number of surviving rat spinal cord neurons was highest in groups transplanted acutely and subacutely, which also showed the best hindlimb function. This suggests that transplanted SC-NPCs improve the functional outcome by a neuroprotective effect. We conclude that SC-NPCs reliably enhance the functional outcome after SCI if transplanted acutely or subacutely, without causing allodynia. This therapeutic effect is mainly the consequence of a neuroprotective effect of the SC-NPCs.

  3. Intramedullary spinal cord and leptomeningeal metastases from intracranial low-grade oligodendroglioma.

    PubMed

    Verma, Nipun; Nolan, Craig; Hirano, Miki; Young, Robert J

    2014-01-01

    We present an unusual case of a patient with an intracranial low-grade oligodendroglioma who developed recurrence with an intramedullary spinal cord metastasis and multiple spinal leptomeningeal metastases. The intramedullary spinal cord metastasis showed mild enhancement similar to the original intracranial primary, while the multiple spinal leptomeningeal metastases revealed no enhancement. This is the seventh reported case of symptomatic intramedullary spinal cord metastasis from a low-grade oligodendroglioma.

  4. The effects induced by the sulphonylurea glibenclamide on the neonatal rat spinal cord indicate a novel mechanism to control neuronal excitability and inhibitory neurotransmission

    PubMed Central

    Ostroumov, K; Grandolfo, M; Nistri, A

    2006-01-01

    Background and purpose: Using the neonatal rat spinal cord in vitro, we investigated the action of glibenclamide, a drug possessing dual pharmacological effects, namely block of KATP channels and of the cystic fibrosis transmembrane conductance regulator (CFTR). Experimental approach: Intra- and extracellular recordings were performed on motoneurons and interneurons. RT-PCR and western immunoblotting were used to determine gene and protein expression. Key results: Glibenclamide (50 μM) facilitated mono- and polysynaptic reflexes, hyperpolarized motoneuron resting potential, increased action potential amplitude, decreased Renshaw cell-mediated recurrent inhibition, and increased network excitability by depressing GABA- and glycine-mediated transmission. The action of glibenclamide was mimicked by tolbutamide (500 μM) or the CFTR blocker diphenylamine-2,2-dicarboxylic acid (500 μM). The action of glibenclamide was independent from pharmacological inhibition of the Na+–K+ pump with strophanthidin (4 μM) and was associated with a negative shift in the extrapolated reversal potential for CI- dependent synaptic inhibition. On interneurons, intracellularly-applied 8-bromo-cAMP elicited an inward current and resistance decrease; effects antagonized by the selective CFTR antagonist, CFTRinh-172 (5 μM). RT-PCR and western immunoblotting indicated strong expression of the CFTR in neonatal rat spinal cord. Conclusions and implications: These data suggest the CFTR expressed in motoneurons and interneurons of the neonatal spinal cord is involved in the control of Cl- homeostasis and neuronal excitability. CFTR appeared to contribute to the relatively depolarized equilibrium potential for synaptic inhibition, an important process to control hyperexcitability and seizure-predisposition in neonates. PMID:17128288

  5. 76 FR 71623 - Agency Information Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... AFFAIRS Agency Information Collection (Spinal Cord Injury Patient Care Survey) Under OMB Review AGENCY.... 2900-New (VA Form 10-0515).'' SUPPLEMENTARY INFORMATION: Title: Spinal Cord Injury Patient Care Survey... Collection. Abstract: Information collected on VA Form 10-0515 will be used to determine spinal cord...

  6. Potential associations between chronic whiplash and incomplete spinal cord injury

    PubMed Central

    Smith, Andrew C.; Parrish, Todd B.; Hoggarth, Mark A.; McPherson, Jacob G.; Tysseling, Vicki M.; Wasielewski, Marie; Kim, Hyosub E.; Hornby, T. George; Elliott, James M.

    2016-01-01

    Study Design This research utilized a cross-sectional design with control group inclusion. Objectives Preliminary evidence suggests that a portion of the patient population with chronic whiplash may have sustained spinal cord damage. Our hypothesis is that in some cases of chronic whiplash-associated disorders (WAD), observed muscle weakness in the legs will be associated with local signs of a partial spinal cord injury of the cervical spine. Setting University based laboratory in Chicago, IL, USA. Methods Five participants with chronic WAD were compared with five gender/age/height/weight/body mass index (BMI) control participants. For a secondary investigation, the chronic WAD group was compared with five unmatched participants with motor incomplete spinal cord injury (iSCI). Spinal cord motor tract integrity was assessed using magnetization transfer imaging. Muscle fat infiltration (MFI) was quantified using fat/water separation magnetic resonance imaging. Central volitional muscle activation of the plantarflexors was assessed using a burst superimposition technique. Results We found reduced spinal cord motor tract integrity, increased MFI of the neck and lower extremity muscles and significantly impaired voluntary plantarflexor muscle activation in five participants with chronic WAD. The lower extremity structural changes and volitional weakness in chronic WAD were comparable to participants with iSCI. Conclusion The results support the position that a subset of the chronic whiplash population may have sustained partial damage to the spinal cord. Sponsorship NIH R01HD079076-01A1, NIH T32 HD057845 and the Foundation for Physical Therapy Promotion of Doctoral Studies program.

  7. Potential associations between chronic whiplash and incomplete spinal cord injury

    PubMed Central

    Smith, Andrew C.; Parrish, Todd B.; Hoggarth, Mark A.; McPherson, Jacob G.; Tysseling, Vicki M.; Wasielewski, Marie; Kim, Hyosub E.; Hornby, T. George; Elliott, James M.

    2016-01-01

    Study Design This research utilized a cross-sectional design with control group inclusion. Objectives Preliminary evidence suggests that a portion of the patient population with chronic whiplash may have sustained spinal cord damage. Our hypothesis is that in some cases of chronic whiplash-associated disorders (WAD), observed muscle weakness in the legs will be associated with local signs of a partial spinal cord injury of the cervical spine. Setting University based laboratory in Chicago, IL, USA. Methods Five participants with chronic WAD were compared with five gender/age/height/weight/body mass index (BMI) control participants. For a secondary investigation, the chronic WAD group was compared with five unmatched participants with motor incomplete spinal cord injury (iSCI). Spinal cord motor tract integrity was assessed using magnetization transfer imaging. Muscle fat infiltration (MFI) was quantified using fat/water separation magnetic resonance imaging. Central volitional muscle activation of the plantarflexors was assessed using a burst superimposition technique. Results We found reduced spinal cord motor tract integrity, increased MFI of the neck and lower extremity muscles and significantly impaired voluntary plantarflexor muscle activation in five participants with chronic WAD. The lower extremity structural changes and volitional weakness in chronic WAD were comparable to participants with iSCI. Conclusion The results support the position that a subset of the chronic whiplash population may have sustained partial damage to the spinal cord. Sponsorship NIH R01HD079076-01A1, NIH T32 HD057845 and the Foundation for Physical Therapy Promotion of Doctoral Studies program. PMID:27630770

  8. Adenoviral-mediated glial cell line-derived neurotrophic factor gene transfer has a protective effect on sciatic nerve following constriction-induced spinal cord injury.

    PubMed

    Chou, An-Kuo; Yang, Ming-Chang; Tsai, Hung-Pei; Chai, Chee-Yin; Tai, Ming-Hong; Kwan, Aij-Li; Hong, Yi-Ren

    2014-01-01

    Neuropathic pain due to peripheral nerve injury may be associated with abnormal central nerve activity. Glial cell-line-derived neurotrophic factor (GDNF) can help attenuate neuropathic pain in different animal models of nerve injury. However, whether GDNF can ameliorate neuropathic pain in the spinal cord dorsal horn (SCDH) in constriction-induced peripheral nerve injury remains unknown. We investigated the therapeutic effects of adenoviral-mediated GDNF on neuropathic pain behaviors, microglial activation, pro-inflammatory cytokine expression and programmed cell death in a chronic constriction injury (CCI) nerve injury animal model. In this study, neuropathic pain was produced by CCI on the ipsilateral SCDH. Mechanical allodynia was examined with von Frey filaments and thermal sensitivity was tested using a plantar test apparatus post-operatively. Target proteins GDNF-1, GDNFRa-1, MMP2, MMP9, p38, phospho-p38, ED1, IL6, IL1β, AIF, caspase-9, cleaved caspase-9, caspase-3, cleaved caspase-3, PARP, cleaved PARP, SPECTRIN, cleaved SPECTRIN, Beclin-1, PKCσ, PKCγ, iNOS, eNOS and nNOS were detected. Microglial activity was measured by observing changes in immunoreactivity with OX-42. NeuN and TUNEL staining were used to reveal whether apoptosis was attenuated by GDNF. Results showed that administrating GDNF began to attenuate both allodynia and thermal hyperalgesia at day 7. CCI-rats were found to have lower GDNF and GDNFRa-1 expression compared to controls, and GDNF re-activated their expression. Also, GDNF significantly down-regulated CCI-induced protein expression except for MMP2, eNOS and nNOS, indicating that the protective action of GDNF might be associated with anti-inflammation and prohibition of microglia activation. Immunocytochemistry staining showed that GDNF reduced CCI-induced neuronal apoptosis. In sum, GDNF enhanced the neurotrophic effect by inhibiting microglia activation and cytokine production via p38 and PKC signaling. GDNF could be a good

  9. Cell therapy for spinal cord injury informed by electromagnetic waves.

    PubMed

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments.

  10. Rodent Models and Behavioral Outcomes of Cervical Spinal Cord Injury

    PubMed Central

    Geissler, Sydney A.; Schmidt, Christine E.; Schallert, Timothy

    2014-01-01

    Rodent spinal cord injury (SCI) models have been developed to examine functional and physiological deficits after spinal cord injury with the hope that these models will elucidate information about human SCI. Models are needed to examine possible treatments and to understand histopathology after SCI; however, they should be considered carefully and chosen based on the goals of the study being performed. Contusion, compression, transection, and other models exist and have the potential to reveal important information about SCI that may be related to human SCI and the outcomes of treatment and timing of intervention. PMID:25309824

  11. Exercise and sport for persons with spinal cord injury.

    PubMed

    Martin Ginis, Kathleen A; Jörgensen, Sophie; Stapleton, Jessica

    2012-11-01

    This review article provides an overview of the evidence that links exercise and sports participation to physical and psychological well-being among people with spinal cord injury. Two aspects of physical well-being are examined, including the prevention of chronic disease and the promotion of physical fitness. Multiple aspects of psychosocial well-being are discussed, including mental health, social participation, and life satisfaction. The review concludes with future research recommendations and a discussion of challenges and opportunities for using exercise and sports to promote health and well-being among people living with spinal cord injury.

  12. [Spinal cord stimulation for the management of chronic pain].

    PubMed

    Perruchoud, Christophe; Mariotti, Nicolas

    2016-06-22

    Neuromodulation techniques modify the activity of the central or peripheral nervous system. Spinal cord stimulation is a reversible and minimally invasive treatment whose efficacy and cost effectiveness are recognized for the treatment of chronic neuropathic pain or ischemic pain. Spinal cord stimulation is not the option of last resort and should be considered among other options before prescribing long-term opioids or considering reoperation. The selection and regular follow-up of patients are crucial to the success of the therapy. PMID:27506068

  13. Cell therapy for spinal cord injury informed by electromagnetic waves.

    PubMed

    Finnegan, Jack; Ye, Hui

    2016-10-01

    Spinal cord injury devastates the CNS, besetting patients with symptoms including but not limited to: paralysis, autonomic nervous dysfunction, pain disorders and depression. Despite the identification of several molecular and genetic factors, a reliable regenerative therapy has yet to be produced for this terminal disease. Perhaps the missing piece of this puzzle will be discovered within endogenous electrotactic cellular behaviors. Neurons and stem cells both show mediated responses (growth rate, migration, differentiation) to electromagnetic waves, including direct current electric fields. This review analyzes the pathophysiology of spinal cord injury, the rationale for regenerative cell therapy and the evidence for directing cell therapy via electromagnetic waves shown by in vitro experiments. PMID:27599240

  14. Expression of Lymphatic Markers in the Adult Rat Spinal Cord

    PubMed Central

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A.; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  15. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    PubMed

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  16. Spinal cord stimulation for neuropathic pain: current perspectives

    PubMed Central

    Wolter, Tilman

    2014-01-01

    Neuropathic pain constitutes a significant portion of chronic pain. Patients with neuropathic pain are usually more heavily burdened than patients with nociceptive pain. They suffer more often from insomnia, anxiety, and depression. Moreover, analgesic medication often has an insufficient effect on neuropathic pain. Spinal cord stimulation constitutes a therapy alternative that, to date, remains underused. In the last 10 to 15 years, it has undergone constant technical advancement. This review gives an overview of the present practice of spinal cord stimulation for chronic neuropathic pain and current developments such as high-frequency stimulation and peripheral nerve field stimulation. PMID:25429237

  17. Leukocyte infiltration into spinal cord of EAE mice is attenuated by removal of endothelial leptin signaling.

    PubMed

    Ouyang, Suidong; Hsuchou, Hung; Kastin, Abba J; Mishra, Pramod K; Wang, Yuping; Pan, Weihong

    2014-08-01

    Leptin, a pleiotropic adipokine, crosses the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) from the periphery and facilitates experimental autoimmune encephalomyelitis (EAE). EAE induces dynamic changes of leptin receptors in enriched brain and spinal cord microvessels, leading to further questions about the potential roles of endothelial leptin signaling in EAE progression. In endothelial leptin receptor specific knockout (ELKO) mice, there were lower EAE behavioral scores in the early phase of the disorder, better preserved BSCB function shown by reduced uptake of sodium fluorescein and leukocyte infiltration into the spinal cord. Flow cytometry showed that the ELKO mutation decreased the number of CD3 and CD45 cells in the spinal cord, although immune cell profiles in peripheral organs were unchanged. Not only were CD4(+) and CD8(+) T lymphocytes reduced, there were also lower numbers of CD11b(+)Gr1(+) granulocytes in the spinal cord of ELKO mice. In enriched microvessels from the spinal cord of the ELKO mice, the decreased expression of mRNAs for a few tight junction proteins was less pronounced in ELKO than WT mice, as was the elevation of mRNA for CCL5, CXCL9, IFN-γ, and TNF-α. Altogether, ELKO mice show reduced inflammation at the level of the BSCB, less leukocyte infiltration, and better preserved tight junction protein expression and BBB function than WT mice after EAE. Although leptin concentrations were high in ELKO mice and microvascular leptin receptors show an initial elevation before inhibition during the course of EAE, removal of leptin signaling helped to reduce disease burden. We conclude that endothelial leptin signaling exacerbates BBB dysfunction to worsen EAE.

  18. Comparative Analysis Between Thoracic Spinal Cord and Sacral Neuromodulation in a Rat Spinal Cord Injury Model: A Preliminary Report of a Rat Spinal Cord Stimulation Model

    PubMed Central

    Lee, Chang-Hyun; Kwon, Ji Woong; Yoon, Cheol-Yong; Lim, Jae-Young; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2013-01-01

    Objective The purpose of this study is to compare a neuroprotective effect of thoracic cord neuromodulation to that of sacral nerve neuromodulation in rat thoracic spinal cord injury (SCI) model. Methods Twenty female Sprague Dawley rats were randomly divided into 4 groups: the normal control group (n=5), SCI with sham stimulation group (SCI, n=5), SCI with electrical stimulation at thoracic spinal cord (SCI + TES, n=5), and SCI with electrical stimulation at sacral nerve (SCI + SES, n=5). Spinal cord was injured by an impactor which dropped from 25mm height. Electrical stimulation was performed by the following protocol: pulse duration, 0.1ms; frequency, 20 Hz; stimulation time, 30 minutes; and stimulation duration at thoracic epidural space and S2 or 3 neural foramina for 4 weeks. Locomotor function, urodynamic study, muscle weights, and fiber cross sectional area (CSA) were investigated. Results All rats of the SCI + TES group expired within 3 days after the injury. The locomotor function of all survived rats improved over time but there was no significant difference between the SCI and the SCI + SES group. All rats experienced urinary retention after the injury and recovered self-voiding after 3-9 days. Voiding contraction interval was 25.5±7.5 minutes in the SCI group, 16.5±5.3 minutes in the SCI+SES group, and 12.5±4.2 minutes in the control group. The recovery of voiding contraction interval was significant in the SCI + SES group comparing to the SCI group (p<0.05). Muscle weight and CSA were slightly greater in the SCI + SES than in the SCI group, but the difference was not significant. Conclusion We failed to establish a rat spinal cord stimulation model. However, sacral neuromodulation have a therapeutic potential to improve neurogenic bladder and muscle atrophy. PMID:24757451

  19. A role for bombesin in sensory processing in the spinal cord.

    PubMed

    O'Donohue, T L; Massari, V J; Pazoles, C J; Chronwall, B M; Shults, C W; Quirion, R; Chase, T N; Moody, T W

    1984-12-01

    Bombesin (BN)-containing neuronal processes were demonstrated in laminae I and II of the dorsal horn of the cat, rat, and mouse spinal cord by immunocytochemistry and radioimmunoassay. Dorsal rhizotomy in the cat resulted in a marked decrease in BN immunoreactivity in the dorsal horn indicating that BN is contained in primary sensory afferents. BN-binding sites were also localized in superficial laminae of the dorsal horn. The presence of both BN and BN-binding sites in the dorsal horn suggested that BN may be involved in sensory processing in the spinal cord. Consistent with this hypothesis, it was demonstrated that an injection of BN into the spinal cord caused a biting and scratching response indicative of sensory stimulation. The effect was similar to that observed after injection of substance P into the cord with the exception that the BN effect lasted about 100 times longer than that induced by substance P. Taken together, these data indicate that BN may be a neurotransmitter of primary sensory afferents to the spinal cord. PMID:6094746

  20. Effect of amiloride on endoplasmic reticulum stress response in the injured spinal cord of rats.

    PubMed

    Kuroiwa, Masahiro; Watanabe, Masahiko; Katoh, Hiroyuki; Suyama, Kaori; Matsuyama, Daisuke; Imai, Takeshi; Mochida, Joji

    2014-10-01

    After traumatic spinal cord injury (SCI), endoplasmic reticulum (ER) stress exacerbates secondary injury, leading to expansion of demyelination and reduced remyelination due to oligodendrocyte precursor cell (OPC) apoptosis. Although recent studies have revealed that amiloride controls ER stress and leads to improvement in several neurological disorders including SCI, its mechanism is not completely understood. Here, we used a rat SCI model to assess the effects of amiloride on functional recovery, secondary damage expansion, ER stress-induced cell death and OPC survival. Hindlimb function in rats with spinal cord contusion significantly improved after amiloride administration. Amiloride significantly decreased the expression of the pro-apoptotic transcription factor CHOP in the injured spinal cord and significantly increased the expression of the ER chaperone GRP78, which protects cells against ER stress. In addition, amiloride treatment led to a significant decrease in ER stress-induced apoptosis and a significant increase of NG2-positive OPCs in the injured spinal cord. Furthermore, in vitro experiments performed to investigate the direct effect of amiloride on OPCs revealed that amiloride reduced CHOP expression in OPCs cultured under ER stress. These results suggest that amiloride controls ER stress in SCI and inhibits cellular apoptosis, contributing to OPC survival. The present study suggests that amiloride may be an effective treatment to reduce ER stress-induced cell death in the acute phase of SCI.

  1. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.

    PubMed

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-01-01

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible. PMID:25860664

  2. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.

    PubMed

    Lukovic, Dunja; Moreno-Manzano, Victoria; Lopez-Mocholi, Eric; Rodriguez-Jiménez, Francisco Javier; Jendelova, Pavla; Sykova, Eva; Oria, Marc; Stojkovic, Miodrag; Erceg, Slaven

    2015-04-10

    Spinal cord injury (SCI) results in neural loss and consequently motor and sensory impairment below the injury. There are currently no effective therapies for the treatment of traumatic SCI in humans. Various animal models have been developed to mimic human SCI. Widely used animal models of SCI are complete or partial transection or experimental contusion and compression, with both bearing controversy as to which one more appropriately reproduces the human SCI functional consequences. Here we present in details the widely used procedure of complete spinal cord transection as a faithful animal model to investigate neural and functional repair of the damaged tissue by exogenous human transplanted cells. This injury model offers the advantage of complete damage to a spinal cord at a defined place and time, is relatively simple to standardize and is highly reproducible.

  3. Association of pain and CNS structural changes after spinal cord injury

    PubMed Central

    Jutzeler, Catherine R.; Huber, Eveline; Callaghan, Martina F.; Luechinger, Roger; Curt, Armin; Kramer, John L. K.; Freund, Patrick

    2016-01-01

    Traumatic spinal cord injury (SCI) has been shown to trigger structural atrophic changes within the spinal cord and brain. However, the relationship between structural changes and magnitude of neuropathic pain (NP) remains incompletely understood. Voxel-wise analysis of anatomical magnetic resonance imaging data provided information on cross-sectional cervical cord area and volumetric brain changes in 30 individuals with chronic traumatic SCI and 31 healthy controls. Participants were clinically assessed including neurological examination and pain questionnaire. Compared to controls, individuals with SCI exhibited decreased cord area, reduced grey matter (GM) volumes in anterior cingulate cortex (ACC), left insula, left secondary somatosensory cortex, bilateral thalamus, and decreased white matter volumes in pyramids and left internal capsule. The presence of NP was related with smaller cord area, increased GM in left ACC and right M1, and decreased GM in right primary somatosensory cortex and thalamus. Greater GM volume in M1 was associated with amount of NP. Below-level NP-associated structural changes in the spinal cord and brain can be discerned from trauma-induced consequences of SCI. The directionality of these relationships reveals specific changes across the neuroaxis (i.e., atrophic changes versus increases in volume) and may provide substrates of underlying neural mechanisms in the development of NP. PMID:26732942

  4. Difference in intraosseous blood vessel volume and number in osteoporotic model mice induced by spinal cord injury and sciatic nerve resection.

    PubMed

    Ding, Wen-Ge; Yan, Wei-hong; Wei, Zhao-Xiang; Liu, Jin-Bo

    2012-07-01

    In the present study, we examined intraosseous blood vessel parameters of the tibial metaphysis in mice using microcomputed tomography (µCT) to investigate the relationship between post-nerve-injury osteoporosis and local intraosseous blood vessel volume and number. Mice were randomly divided into groups receiving spinal cord injury (SCI), sciatic nerve resection group (NX), or intact controls (30 mice/group). Four weeks after surgery, mice were perfused with silicone and the distribution of intraosseous blood vessels analyzed by μCT. The bone density, μCT microstructure, biomechanical properties, and the immunohistochemical and biochemical indicators of angiogenesis were also measured. The SCI group showed significantly reduced tibial metaphysis bone density, μCT bone microstructure, tibial biomechanical properties, indicators of angiogenesis, and intraosseous blood vessel parameters compared to the NX group. Furthermore, the spinal cord-injured mice exhibited significantly decreased intraosseous blood vessel volume and number during the development of osteoporosis. In conclusion, these data suggest that decreased intraosseous blood vessel volume and number may play an important role in the development of post-nerve-injury osteoporosis.

  5. SCO-Spondin Derived Peptide NX210 Induces Neuroprotection In Vitro and Promotes Fiber Regrowth and Functional Recovery after Spinal Cord Injury

    PubMed Central

    Sakka, Laurent; Delétage, Nathalie; Lalloué, Fabrice; Duval, Amélie; Chazal, Jean; Lemaire, Jean-Jacques; Meiniel, Annie; Monnerie, Hubert; Gobron, Stéphane

    2014-01-01

    In mammals, the limited regenerating potential of the central nervous system (CNS) in adults contrasts with the plasticity of the embryonic and perinatal periods. SCO (subcommissural organ)-spondin is a protein secreted early by the developing central nervous system, potentially involved in the development of commissural fibers. SCO-spondin stimulates neuronal differentiation and neurite growth in vitro. NX210 oligopeptide was designed from SCO-spondin's specific thrombospondin type 1 repeat (TSR) sequences that support the main neurogenic properties of the molecule. The objective of this work was to assess the neuroprotective and neuroregenerative properties of NX210 in vitro and in vivo for the treatment of spinal cord injury (SCI). In vitro studies were carried out on the B104 neuroblastoma cell line demonstrating neuroprotection by the resistance to oxidative damage using hydrogen peroxide and the measure of cell viability by metabolic activity. In vivo studies were performed in two rat models of SCI: (1) a model of aspiration of dorsal funiculi followed by the insertion of a collagen tube in situ to limit collateral sprouting; white matter regeneration was assessed using neurofilament immunostaining; (2) a rat spinal cord contusion model to assess functional recovery using BBB scale and reflex testing. We demonstrate for the first time that NX210 (a) provides neuroprotection to oxidative stress in the B104 neuroblastoma cells, (b) stimulates axonal regrowth in longitudinally oriented neofibers in the aspiration model of SCI and (c) significantly improves functional recovery in the contusive model of SCI. PMID:24667843

  6. Spinal cord pathways involved in initiation of swimming in the stingray, Dasyatis sabina: spinal cord stimulation and lesions.

    PubMed

    Williams, B J; Livingston, C A; Leonard, R B

    1984-03-01

    In spinally transected stingrays, electrical stimulation of a site just ventral to the dorsal root entry zone or a site in the intermediate portions of the lateral funiculus produced rhythmic swimming like movements of the contralateral pectoral fin. Electromyographic (EMG) records collected during cord-stimulated rhythms had the same pattern of activity and sometimes the same intersegmental coordination as those collected during spontaneous swimming of the same animal. In paralyzed, high-spinal stingrays, the only stimulation sites that produced rhythmic activity (fictive swimming) in the pectoral fin motor nerves were in the intermediate portion of the lateral funiculus. The evoked rhythm occurred in the motor nerves that were contralateral to the stimulated side of the spinal cord. The effects of subtotal lesions of the rostral spinal cord on spontaneous swimming behavior were assessed by analysis of EMG records taken before and after the lesions were made. Severe deficits in swimming occurred after bilateral ablation of intermediate portions of the lateral funiculi. In agreement with previous results, the stimulation experiments indicate that the stingray spinal cord contains an inherent capacity to generate properly coordinated rhythmic swimming. The current experiments also suggest that the descending pathways(s) that normally functions to initiate swimming projects through the intermediate aspects of the lateral funiculi. PMID:6699678

  7. New products tissue-engineering in the treatment of spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bolshakov, I. N.; Sergienko, V. I.; Kiselev, S. L.; Lagarkova, M. A.; Remigaylo, A. A.; Mihaylov, A. A.; Prokopenko, S. V.

    2015-11-01

    In the treatment of patients with complicated spinal cord injury the Russian Health spends about one million rubles for each patient in the acute and the interim period after the injury. The number of complicated spinal cord injury is different in geographical areas Russian Federation from 30 to 50 people per 1 million that is affected by the year 5600. Applied to the present surgical and pharmacological techniques provide unsatisfactory results or minimally effective treatment. Transplantation of 100 thousand neuronal mouse predecessors (24 rats) or human neuronal predecessors (18 rats) in the anatomical gap rat spinal cord, followed by analysis of neurological deficit. The neuro-matrix implantation in the rat spinal cord containing 100 thousand neuronal precursors hESC, repeatable control neuro-matrix transplantation, non-cell mass, eliminating neurological deficit for 14 weeks after transplantation about 5-9 points on the scale of the BBB. The cultivation under conditions in vitro human induced pluripotent stem cells on collagen-chitosan matrix (hIPSC) showed that neurons differentiated from induced pluripotent stem cells grown on scaffolds as compact groups and has no neurites. Cells do not penetrate into the matrix during long-term cultivation and formed near the surface of the spherical structures resembling neurospheres. At least 90% of the cells were positive for the neuronal marker tubulin b3. Further studies should be performed to examine the compatibility of neuronal cultures and matrices.

  8. [Macrophages promote the migration of neural stem cells into mouse spinal cord injury site].

    PubMed

    Cheng, Zhijian; Zhu, Wen; Li, Haopeng; He, Xijing

    2016-09-01

    Objective To explore the role of macrophages in the migration of neural stem cells (NSCs) in vivo and in vitro . Methods NSCs with green fluorescent protein (GFP) were isolated from GFP transgenic mice and the immunofluorescence cytochemical staining of nestin was used to identify NSCs. After spinal cord injury was induced, the tissue level of macrophage chemotactic protein-1 (MCP-1) mRNA was detected using quantitative real time PCR. The migration of GFP-NSCs was investigated 1 week after GFP-NSCs were injected into both sides of the damaged area. The effect of macrophage on the migration of NSCs in vitro was tested by Transwell(TM) system and the content of MCP-1 was detected by ELISA. Results NSCs highly expressed nestin. Compared with the control group, the level of MCP-1 mRNA significantly increased in the spinal cord injury group. The NSCs which were injected into the spinal cord migrated into the center of the injured site where F4/80 was highly expressed. Macrophages significantly increased the number of migrating NSCs in vitro and the secretion of MCP-1. Conclusion Macrophages induce NSC migrating into the spinal cord injury site possibly through promoting the secretion of MCP-1. PMID:27609570

  9. The paradox of chronic neuroinflammation, systemic immune suppression, autoimmunity after traumatic chronic spinal cord injury.

    PubMed

    Schwab, Jan M; Zhang, Yi; Kopp, Marcel A; Brommer, Benedikt; Popovich, Phillip G

    2014-08-01

    During the transition from acute to chronic stages of recovery after spinal cord injury (SCI), there is an evolving state of immunologic dysfunction that exacerbates the problems associated with the more clinically obvious neurologic deficits. Since injury directly affects cells embedded within the "immune privileged/specialized" milieu of the spinal cord, maladaptive or inefficient responses are likely to occur. Collectively, these responses qualify as part of the continuum of "SCI disease" and are important therapeutic targets to improve neural repair and neurological outcome. Generic immune suppressive therapies have been largely unsuccessful, mostly because inflammation and immunity exert both beneficial (plasticity enhancing) and detrimental (e.g. glia- and neurodegenerative; secondary damage) effects and these functions change over time. Moreover, "compartimentalized" investigations, limited to only intraspinal inflammation and associated cellular or molecular changes in the spinal cord, neglect the reality that the structure and function of the CNS are influenced by systemic immune challenges and that the immune system is 'hardwired' into the nervous system. Here, we consider this interplay during the progression from acute to chronic SCI. Specifically, we survey impaired/non-resolving intraspinal inflammation and the paradox of systemic inflammatory responses in the context of ongoing chronic immune suppression and autoimmunity. The concepts of systemic inflammatory response syndrome (SIRS), compensatory anti-inflammatory response syndrome (CARS) and "neurogenic" spinal cord injury-induced immune depression syndrome (SCI-IDS) are discussed as determinants of impaired "host-defense" and trauma-induced autoimmunity. PMID:25017893

  10. Repetitive magnetic stimulation affects the microenvironment of nerve regeneration and evoked potentials after spinal cord injury

    PubMed Central

    Jiang, Jin-lan; Guo, Xu-dong; Zhang, Shu-quan; Wang, Xin-gang; Wu, Shi-feng

    2016-01-01

    Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord injury using the modified Allen's method. After 4 hours of injury, rat models received repetitive magnetic stimulation, with a stimulus intensity of 35% maximum output intensity, 5-Hz frequency, 5 seconds for each sequence, and an interval of 2 minutes. This was repeated for a total of 10 sequences, once a day, 5 days in a week, for 2 consecutive weeks. After repetitive magnetic stimulation, the number of apoptotic cells decreased, matrix metalloproteinase 9/2 gene and protein expression decreased, nestin expression increased, somatosensory and motor-evoked potentials recovered, and motor function recovered in the injured spinal cord. These findings confirm that repetitive magnetic stimulation of the spinal cord improved the microenvironment of neural regeneration, reduced neuronal apoptosis, and induced neuroprotective and repair effects on the injured spinal cord. PMID:27335567

  11. Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain

    SciTech Connect

    Hickey, R.; Albin, M.S.; Bunegin, L.; Gelineau, J.

    1986-11-01

    The autoregulatory capability of regional areas of the brain and spinal cord was demonstrated in 18 rats anesthetized with a continuous infusion of intravenous pentothal. Blood flow was measured by the injection of radioactive microspheres (Co57, Sn113, Ru103, Sc46). Blood flow measurements were made at varying levels of mean arterial pressure (MAP) which was altered by neosynephrine to raise MAP or trimethaphan to lower MAP. Autoregulation of the spinal cord mirrored that of the brain, with an autoregulatory range of 60 to 120 mm Hg for both tissues. Within this range, cerebral blood flow (CBF) was 59.2 +/- 3.2 ml/100 g/min (SEM) and spinal cord blood flow (SCBF) was 61.1 +/- 3.6. There was no significant difference in CBF and SCBF in the autoregulatory range. Autoregulation was also demonstrated regionally in the left cortex, right cortex, brainstem, thalamus, cerebellum, hippocampus and cervical, thoracic and lumbar cord. This data provides a coherent reference point in establishing autoregulatory curves under barbiturate anesthesia. Further investigation of the effects of other anesthetic agents on autoregulation of the spinal cord is needed. It is possible that intraspinal cord compliance, like intracranial compliance, might be adversely affected by the effects of anesthetics on autoregulation.

  12. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord.

    PubMed

    Fan, Xin Yan Susan; Mothe, Andrea J; Tator, Charles H

    2013-02-01

    Although transplantation of neural stem/progenitor cells (NSPC) encourages regeneration and repair after spinal cord injury (SCI), the survival of transplanted NSPC is limited. Ephrin-B3 has been shown to reduce the death of endogenous NSPC in the subventricular zone of the mouse brain without inducing uncontrolled proliferation. Due to similarities in the environment of the brain and spinal cord, we hypothesized that ephrin-B3 might reduce the death of both transplanted and endogenous spinal cord-derived NSPC. Both normal and injured (26 g clip compression) spinal cords were examined. Ephrin-B3-Fc was tested, and Fc fragments and phosphate-buffered saline (PBS) were used as controls. We found that EphA4 receptors were expressed by spinal cord-derived NSPC and expressed in the normal and injured rat spinal cord (higher expression in the latter). In vitro, ephrin-B3-Fc did not significantly reduce the survival of NSPC except at 1 μg/mL (P<0.05), but Fc fragments alone reduced NSPC survival at all doses in a dose-dependent fashion. In vivo, intrathecal infusion of ephrin-B3-Fc increased the proliferation of endogenous ependymal cells and the proportion of proliferating cells that expressed the glial fibrillary acidic protein astrocytic marker in the injured spinal cord compared with the infusion of PBS (P<0.05). However, in the injured spinal cord, the infusion of either ephrin-B3-Fc or Fc fragments alone caused a 20-fold reduction in the survival of transplanted NSPC (P<0.001). Thus, after SCI, ephrin-B3-Fc and Fc fragments are toxic to transplanted NSPC.

  13. Incidence of Secondary Complications in Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Anson, C. A.; Shepherd, C.

    1996-01-01

    Data from 348 patients (mean age 37) with postacute spinal cord injury revealed that 95% reported at least 1 secondary problem, and 58% reported 3 or more. The number and severity of complications varied with time since the injury. Obesity, pain, spasticity, urinary tract infections, pressure sores, and lack of social integration were common…

  14. Employment after Spinal Cord Injury: Transition and Life Adjustment.

    ERIC Educational Resources Information Center

    Krause, J. Stuart

    1996-01-01

    Tested two competing hypotheses regarding employment, adjustment, and spinal cord injury (SCI). Longitudinal data collected on 142 participants with SCI on two occasions separated by an 11-year interval showed a correlation between enhanced adjustment and a positive transition from unemployment to employment. Results support hypothesis that…

  15. The Relationship between Productivity and Adjustment Following Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Krause, James S.

    1990-01-01

    Examined adjustment and productivity of persons (N=344) with spinal cord injuries. Found 45 percent of subjects gainfully employed, 14 percent engaged in unpaid productive activities, 41 percent not engaged in any productive activities. Employed subjects had best overall adjustment. Injury level was not related to level of productive activity,…

  16. Self-Esteem Differences among Persons with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Marini, Irmo; And Others

    1995-01-01

    Surveyed 63 people with spinal cord injury (SCI) in either their first, second, or fifth year post-injury. Results indicated that perceived levels of self-esteem decreased following the SCI. Found that self-esteem was lowest in the second year of injury. Self-esteem may be connected to loss of employment. (RJM)

  17. Drinking Patterns, Drinking Expectancies, and Coping after Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Heinemann, Allen W.; And Others

    1994-01-01

    Drinking patterns, alcohol expectancies, and coping strategies were assessed for 121 persons with recent spinal cord injuries during hospitalization, 3 months after surgery, and 12 months after surgery. Although the rate of heavy drinking decreased, preinjury problem drinkers still had the lowest rate of positive reappraisal, problem solving, and…

  18. Vocational Interests of Persons with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Rohe, Daniel E.; Athelstan, Gary T.

    1982-01-01

    Studied vocational interests of persons with spinal cord injury. Using the Strong Campbell Interest Inventory, participants' scores were compared to norms for men and women in general on the inventory. Showed their interests were often incongruent with their physical limitations and suggested that counselors must assist in identifying vocational…

  19. Perceptions of Positive Attitudes toward People with Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Lys, K.; Pernice, R.

    1995-01-01

    This New Zealand study examined attitudes toward persons with spinal cord injury (SCI) via a survey of 35 people with SCI, 27 SCI rehabilitation workers, 16 outpatient hospital rehabilitation workers, and 37 people from the general population. Results were analyzed in terms of age, ethnic identity, gender, professional training, and amount of…

  20. Reducing synuclein accumulation improves neuronal survival after spinal cord injury.

    PubMed

    Fogerson, Stephanie M; van Brummen, Alexandra J; Busch, David J; Allen, Scott R; Roychaudhuri, Robin; Banks, Susan M L; Klärner, Frank-Gerrit; Schrader, Thomas; Bitan, Gal; Morgan, Jennifer R

    2016-04-01

    Spinal cord injury causes neuronal death, limiting subsequent regeneration and recovery. Thus, there is a need to develop strategies for improving neuronal survival after injury. Relative to our understanding of axon regeneration, comparatively little is known about the mechanisms that promote the survival of damaged neurons. To address this, we took advantage of lamprey giant reticulospinal neurons whose large size permits detailed examination of post-injury molecular responses at the level of individual, identified cells. We report here that spinal cord injury caused a select subset of giant reticulospinal neurons to accumulate synuclein, a synaptic vesicle-associated protein best known for its atypical aggregation and causal role in neurodegeneration in Parkinson's and other diseases. Post-injury synuclein accumulation took the form of punctate aggregates throughout the somata and occurred selectively in dying neurons, but not in those that survived. In contrast, another synaptic vesicle protein, synaptotagmin, did not accumulate in response to injury. We further show that the post-injury synuclein accumulation was greatly attenuated after single dose application of either the "molecular tweezer" inhibitor, CLR01, or a translation-blocking synuclein morpholino. Consequently, reduction of synuclein accumulation not only improved neuronal survival, but also increased the number of axons in the spinal cord proximal and distal to the lesion. This study is the first to reveal that reducing synuclein accumulation is a novel strategy for improving neuronal survival after spinal cord injury.

  1. Quality of Life in Patients with Spinal Cord Injury

    ERIC Educational Resources Information Center

    Gurcay, Eda; Bal, Ajda; Eksioglu, Emel; Cakci, Aytul

    2010-01-01

    The primary objective of this study was to assess the quality of life (QoL) in spinal cord injury (SCI) survivors. Secondary objectives were to determine the effects of various sociodemographic and clinical characteristics on QoL. This cross-sectional study included 54 patients with SCI. The Turkish version of the Short-Form-36 Health Survey was…

  2. Social Support, Stress, and Adjustment to Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Rounds, James B; And Others

    Social support has been considered an important coping resource moderating the stress associated with physical illness and disability. The role of social support as a buffering agent for stressful life events inherent in physical illness and disability was examined in 78 individuals with spinal cord injury, residing in community settings in…

  3. Sexual Counseling with Spinal Cord-Injured Clients

    ERIC Educational Resources Information Center

    Miller, Donald K.

    1975-01-01

    Spinal cord-injured clients have many fears and misapprehensions about their sexual functioning. Such misapprehensions can be helped by the counselor's willingness to discuss sexual issues openly. Clients need a clear and accurate picture of the facts, as well as encouragement and support to help them rediscover their sexuality. (Author)

  4. Sexuality in Spinal-Cord-Injured High School Students.

    ERIC Educational Resources Information Center

    Dailey, Anne Louise

    1982-01-01

    Presents facts, literature, and organization sources on the sexual functioning of spinal-cord-injured persons. Suggests using this information in counseling situations. Urges counselors to help their clients reach sexual maturity by speaking frankly about sexuality and expressing affection, and by accepting their sexual behavior as normal. (JAC)

  5. The Rehabilitation of the Spinal Cord-Injured Street Person.

    ERIC Educational Resources Information Center

    Coven, Arnold B.; Glazeroff, Herbert

    1978-01-01

    The spinal cord-injured street person is especially resistant to rehabilitation. His life style is characterized by the use of physical power and mobility to survive and gain respect. He loses this main form of control and attempts to manipulate the treatment environment to care for him while he avoids confronting his disability. (Author)

  6. Race-Ethnicity, Education, and Employment after Spinal Cord Injury

    ERIC Educational Resources Information Center

    Krause, James S.; Saunders, Lee; Staten, David

    2010-01-01

    The objective of this article was to identify the relationship between race-ethnicity and employment after spinal cord injury (SCI), while evaluating interrelationships with gender, injury severity, and education. The authors used a cohort design using the most current status from a post-injury interview from the National SCI Statistical Center.…

  7. [Devic disease associated with isolated spinal cord atrophy].

    PubMed

    Landragin, N; Jeanjean, L; Bouly, S; Honnorat, J; de Sèze, J; Castelnovo, G; Labauge, P

    2007-12-01

    Devic disease is a rare entity characterized by bilateral optic neuritis and transverse myelitis. Recently, recognition of antibody activity (Anti NMO) led to broaden the clinical and MR phenotype spectrum of this disease. This report is about a patient with spinal cord atrophy and bilateral optic neuritis, occurring more than 8 years after symptom onset. PMID:18355472

  8. Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.

    PubMed

    Strand, Nicholas S; Hoi, Kimberly K; Phan, Tien M T; Ray, Catherine A; Berndt, Jason D; Moon, Randall T

    2016-09-01

    Unlike mammals, zebrafish can regenerate their injured spinal cord and regain control of caudal tissues. It was recently shown that Wnt/β-catenin signaling is necessary for spinal cord regeneration in the larval zebrafish. However, the molecular mechanisms of regeneration may or may not be conserved between larval and adult zebrafish. To test this, we assessed the role of Wnt/β-catenin signaling after spinal cord injury in the adult zebrafish. We show that Wnt/β-catenin signaling is increased after spinal cord injury in the adult zebrafish. Moreover, overexpression of Dkk1b inhibited Wnt/β-catenin signaling in the regenerating spinal cord of adult zebrafish. Dkk1b overexpression also inhibited locomotor recovery, axon regeneration, and glial bridge formation in the injured spinal cord. Thus, our data illustrate a conserved role for Wnt/β-catenin signaling in adult and larval zebrafish spinal cord regeneration.

  9. Cell Therapy Augments Functional Recovery Subsequent to Spinal Cord Injury under Experimental Conditions

    PubMed Central

    Sabapathy, Vikram; Tharion, George; Kumar, Sanjay

    2015-01-01

    The spinal cord injury leads to enervation of normal tissue homeostasis ultimately leading to paralysis. Until now there is no proper cure for the treatment of spinal cord injury. Recently, cell therapy in animal spinal cord injury models has shown some progress of recovery. At present, clinical trials are under progress to evaluate the efficacy of cell transplantation for the treatment of spinal cord injury. Different types of cells such as pluripotent stem cells derived neural cells, mesenchymal stromal cells, neural stem cells, glial cells are being tested in various spinal cord injury models. In this review we highlight both the advances and lacuna in the field of spinal cord injury by discussing epidemiology, pathophysiology, molecular mechanism, and various cell therapy strategies employed in preclinical and clinical injury models and finally we discuss the limitations and ethical issues involved in cell therapy approach for treating spinal cord injury. PMID:26240569

  10. Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings.

    PubMed

    Cogiamanian, Filippo; Vergari, Maurizio; Schiaffi, Elena; Marceglia, Sara; Ardolino, Gianluca; Barbieri, Sergio; Priori, Alberto

    2011-02-01

    Aiming at developing a new, noninvasive approach to spinal cord neuromodulation, we evaluated whether transcutaneous direct current (DC) stimulation induces long-lasting changes in the central pain pathways in human beings. A double-blind crossover design was used to investigate the effects of anodal direct current (2mA, 15min) applied on the skin overlying the thoracic spinal cord on the lower-limb flexion reflex in a group of 11 healthy volunteers. To investigate whether transcutaneous spinal cord DC stimulation (tsDCS) acts indirectly on the nociceptive reflex by modulating excitability in mono-oligosynaptic segmental reflex pathways, we also evaluated the H-reflex size from soleus muscle after tibial nerve stimulation. In our healthy subjects, anodal thoracic tsDCS reduced the total lower-limb flexion reflex area by 40.25% immediately after stimulation (T0) and by 46.9% 30min after stimulation offset (T30). When we analyzed the 2 lower-limb flexion reflex components (RII tactile and RIII nociceptive) separately, we found that anodal tsDCS induced a significant reduction in RIII area with a slight but not significant effect on RII area. After anodal tsDCS, the RIII area decreased by 27% at T0 and by 28% at T30. Both sham and active tsDCS left all the tested H-reflex variables unchanged. None of our subjects reported adverse effects after active stimulation. These results suggest that tsDCS holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain. Thoracic transcutaneous direct current stimulation induces depression of nociceptive lower limb flexion reflex in human beings that persists after stimulation offset; this form of stimulation holds promise as a tool that is complementary or alternative to drugs and invasive spinal cord electrical stimulation for managing pain.

  11. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat.

    PubMed

    Saxena, Tarun; Gilbert, Jeremy; Stelzner, Dennis; Hasenwinkel, Julie

    2012-06-10

    The glial scar formed at the site of traumatic spinal cord injury (SCI) has been classically hypothesized to be a potent physical and biochemical barrier to nerve regeneration. One longstanding hypothesis is that the scar acts as a physical barrier due to its increased stiffness in comparison to uninjured spinal cord tissue. However, the information regarding the mechanical properties of the glial scar in the current literature is mostly anecdotal and not well quantified. We monitored the mechanical relaxation behavior of injured rat spinal cord tissue at the site of mid-thoracic spinal hemisection 2 weeks and 8 weeks post-injury using a microindentation test method. Elastic moduli were calculated and a modified standard linear model (mSLM) was fit to the data to estimate the relaxation time constant and viscosity. The SLM was modified to account for a spectrum of relaxation times, a phenomenon common to biological tissues, by incorporating a stretched exponential term. Injured tissue exhibited significantly lower stiffness and elastic modulus in comparison to uninjured control tissue, and the results from the model parameters indicated that the relaxation time constant and viscosity of injured tissue were significantly higher than controls. This study presents direct micromechanical measurements of injured spinal cord tissue post-injury. The results of this study show that the injured spinal tissue displays complex viscoelastic behavior, likely indicating changes in tissue permeability and diffusivity.

  12. Spinal epidural angiolipoma: A rare cause of spinal cord compression.

    PubMed

    Ghanta, Rajesh K; Koti, Kalyan; Dandamudi, Srinivas

    2012-09-01

    Spinal epidural angiolipomas are rare, benign tumors composed of mature lipocytes admixed with abnormal blood vessels. Only 128 cases of spinal epidural angiolipomas have been reported in literature till now. Spinal angiolipomas are predominantly located in the mid-thoracic region. We report a case of dorsal epidural angiolipoma in a 56-year-old male who presented with paraparesis and was diagnosed to have D4-5 epidural angiolipoma. Total surgical excision of the epidural angiolipoma was done and his paraparesis gradually improved.

  13. Biomechanical responses to open experimental spinal cord injury.

    PubMed

    Hung, T K; Albin, M S; Brown, T D; Bunegin, L; Albin, R; Jannetta, P J

    1975-08-01

    This study evaluates the dynamic biomechanical responses of the cat spinal cord during experimental impact injury. Temporal deformations of the laminectomized spinal cord were recorded by a high speed camera (1500-3000 frames/sec). The cinematograph revealed large deformations, the cord being compressed to half its posterior-anterior diameter 7 msec after the onset of the impact. Peak impact force produced by a 20 gm mass falling from 15 cm height (300 GCF) averaged about 1.2 pounds, and the corresponding stress acting on the dural surface reached 42 pounds per square inch (or 2200 mm Hg). Both positive and negative pressure waves were found to be propagated in the cerebrospinal fluid.

  14. Radionuclide assessment of heterotopic ossification in spinal cord injury patients

    SciTech Connect

    Prakash, V.

    1983-01-01

    Whole body /sup 99m/T-pyrophosphate bone scans were obtained and correlated with skeletal radiographs for detection of heterotopic ossification in 135 spinal injury patients. There were 40 patients with recent injury (less than 6 months) and 95 with injury of over 6 months duration. Heterotopic new bone was detected on the bone scan in 33.7% of 95 patients with spinal cord injuries of more than 6 months duration and 30% of 40 patients with injuries of less than 6 months. The radionuclide scan was found to be useful in detection of heterotopic ossification at its early stage and in its differentiation from other complications in spinal cord injury patients.

  15. Spinal Cord and Spinal Nerve Root Involvement (Myeloradiculopathy) in Tuberculous Meningitis

    PubMed Central

    Gupta, Rahul; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Verma, Rajesh; Sharma, Praveen Kumar

    2015-01-01

    Abstract Most of the information about spinal cord and nerve root involvement in tuberculous meningitis is available in the form of isolated case reports or case series. In this article, we evaluated the incidence, predictors, and prognostic impact of spinal cord and spinal nerve root involvement in tuberculous meningitis. In this prospective study, 71 consecutive patients of newly diagnosed tuberculous meningitis were enrolled. In addition to clinical evaluation, patients were subjected to magnetic resonance imaging (MRI) of brain and spine. Patients were followed up for at least 6 months. Out of 71 patients, 33 (46.4%) had symptoms/signs of spinal cord and spinal nerve root involvement, 22 (30.9%) of whom had symptoms/signs at enrolment. Eleven (15.4%) patients had paradoxical involvement. Paraparesis was present in 22 (31%) patients, which was of upper motor neuron type in 6 (8.4%) patients, lower motor neuron type in 10 (14%) patients, and mixed type in 6 (8.4%) patients. Quadriparesis was present in 3 (4.2%) patients. The most common finding on spinal MRI was meningeal enhancement, seen in 40 (56.3%) patients; in 22 (30.9%), enhancement was present in the lumbosacral region. Other MRI abnormalities included myelitis in 16 (22.5%), tuberculoma in 4 (5.6%), cerebrospinal fluid (CSF) loculations in 4 (5.6%), cord atrophy in 3 (4.2%), and syrinx in 2 (2.8%) patients. The significant predictor associated with myeloradiculopathy was raised CSF protein (>250 mg/dL). Myeloradiculopathy was significantly associated with poor outcome. In conclusion, spinal cord and spinal nerve root involvement in tuberculous meningitis is common. Markedly raised CSF protein is an important predictor. Patients with myeloradiculopathy have poor outcome. PMID:25621686

  16. [Role of MRI in spinal and spinal cord emergencies].

    PubMed

    Tourrette, J H; Le Vot, J; Solacroup, J C; Léonetti, P; Muyard, B; Gueguen, E; Clavel, G; Colineau, X; Abony, E

    1995-08-01

    Out of 137 cases concerning the spine and spine cord, the authors demonstrate that MRI is nowadays fully integrated in urgency investigations. In all cord compression suspicions and in spine trauma investigations, it's place is found. Coil and software improvements allow to put CT and MR scanning delays on a line. This study underlines the necessity of being equipped with non magnetic life support systems allowing management of very fragile patients. In traumas, MR provides the lesion's authentification, it's type, it's unique localisation or not, and therefore an early functional prognosis. The discovery of spine cord involving lesions in neoplastic conditions allows to follow a therapeutic strateging for maintaining the motor function. In the end, the authors discuss about practical utility of MR in scuba diving decompression accidents. No lesion of the spine cord has been demonstrated in 25 patients, probably because of technical insufficiency.

  17. Intramedullary solitary fibrous tumor of dorsal spinal cord.

    PubMed

    Ciappetta, Pasqualino; D'Urso, Pietro Ivo; Cimmino, Antonia; Ingravallo, Giuseppe; Rossi, Roberta; Colamaria, Antonio; D'Urso, Oscar Fernando

    2010-06-01

    Solitary fibrous tumors (SFT) are rare neoplasms of mesenchymal origin involving soft tissues, mainly serosal sites; the spinal cord location is uncommon. We report a case of SFT occurring in the thoracic spinal cord, discussing histological, ultrastructural and molecular aspects. A 75-year-old woman with an MRI suggesting a dorsal intracanalar lesion was admitted to our institution. T5-T7 laminectomies were performed and an intramedullary tumor was discovered. The tumor arose within the spinal cord and was completely removed. Tumor samples were processed for histological, ultrastructural and molecular analysis (comparative genomic hybridization [CGH], methylation status of O6-methylguanine-DNA methyltransferase [MGMT], p16, deleted in colorectal cancer [DCC] and death-associated protein kinase 1 [DAPK1]). The histological examination demonstrated a proliferation of spindle-shaped cells with a collagen-matrix background. Immunohistochemical staining was positive for vimentin and CD34 and negative for S-100 and epithelial membrane antigen. A histological diagnosis of SFT was made. The ultrastructural examination showed undifferentiated cells within a collagenous matrix and sparse extravascular basement membrane. CGH analysis revealed deletion of 9p21 and losses on 2q, 3p, 16q and 19q and gains on 7q; furthermore, no aberrant methylation pattern was found in the promoter region of MGMT, p16, DCC and DAPK1 genes. On the second-year follow-up, the patient was neurologically intact. The occurrence of SFT within the spinal cord parenchyma and its histological characteristics demonstrate that SFTs are not restricted to serosal surfaces. The course of spinal cord SFT is unknown and long-term follow-up is necessary. The histological, ultrastructural and molecular findings are important for the diagnosis and the authors provide a literature review of these aspects.

  18. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake.

    PubMed

    Springer, J E; Azbill, R D; Mark, R J; Begley, J G; Waeg, G; Mattson, M P

    1997-06-01

    Traumatic injury to the spinal cord initiates a host of pathophysiological events that are secondary to the initial insult. One such event is the accumulation of free radicals that damage lipids, proteins, and nucleic acids. A major reactive product formed following lipid peroxidation is the aldehyde, 4-hydroxynonenal (HNE), which cross-links to side chain amino acids and inhibits the function of several key metabolic enzymes. In the present study, we used immunocytochemical and immunoblotting techniques to examine the accumulation of protein-bound HNE, and synaptosomal preparations to study the effects of spinal cord injury and HNE formation on glutamate uptake. Protein-bound HNE increased in content in the damaged spinal cord at early times following injury (1-24 h) and was found to accumulate in myelinated fibers distant to the site of injury. Immunoblots revealed that protein-bound HNE levels increased dramatically over the same postinjury interval. Glutamate uptake in synaptosomal preparations from injured spinal cords was decreased by 65% at 24 h following injury. Treatment of control spinal cord synaptosomes with HNE was found to decrease significantly, in a dose-dependent fashion, glutamate uptake, an effect that was mimicked by inducers of lipid peroxidation. Taken together, these findings demonstrate that the lipid peroxidation product HNE rapidly accumulates in the spinal cord following injury and that a major consequence of HNE accumulation is a decrease in glutamate uptake, which may potentiate neuronal cell dysfunction and death through excitotoxic mechanisms. PMID:9166741

  19. Recovery from Chronic Spinal Cord Contusion after Nogo Receptor Intervention

    PubMed Central

    Wang, Xingxing; Duffy, Philip; McGee, Aaron W.; Hasan, Omar; Gould, Grahame; Tu, Nathan; Harel, Noam Y.; Huang, Yiyun; Carson, Richard E.; Weinzimmer, David; Ropchan, Jim; Benowitz, Larry I.; Cafferty, William B. J.; Strittmatter, Stephen M.

    2011-01-01

    Objective Several interventions promote axonal growth and functional recovery when initiated shortly after CNS injury, including blockade of myelin-derived inhibitors with soluble Nogo Receptor (NgR1, RTN4R) ‘decoy’ protein. We examined the efficacy of this intervention in the much more prevalent and refractory condition of chronic spinal cord injury. Methods We eliminated the NgR1 pathway genetically in mice by conditional gene targeting starting 8 weeks after spinal hemisection injury and monitored locomotion in the open field and by video kinematics over the ensuing 4 months. In a separate pharmacological experiment, intrathecal NgR1 decoy protein administration was initiated 3 months after spinal cord contusion injury. Locomotion and raphespinal axon growth were assessed during 3 months of treatment between 4 and 6 months after contusion injury. Results Conditional deletion of NgR1 in the chronic state results in gradual improvement of motor function accompanied by increased density of raphespinal axons in the caudal spinal cord. In chronic rat spinal contusion, NgR1 decoy treatment from 4–6 months after injury results in 29% (10 of 35) of rats recovering weight-bearing status compared to 0% (0 of 29) of control rats (P<0.05). Open field BBB locomotor scores showed a significant improvement in the NgR-treated group relative to the control group (P<0.005, repeated measures ANOVA). An increase in raphespinal axon density caudal to the injury is detected in NgR1-decoy-treated animals by immunohistology and by positron emission tomography using a serotonin reuptake ligand. Interpretation Antagonizing myelin-derived inhibitors signaling with NgR1 decoy augments recovery from chronic spinal cord injury. PMID:22162062

  20. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury

    PubMed Central

    McPherson, Jacob G.; Miller, Robert R.; Perlmutter, Steve I.

    2015-01-01

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural–computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  1. Targeted, activity-dependent spinal stimulation produces long-lasting motor recovery in chronic cervical spinal cord injury.

    PubMed

    McPherson, Jacob G; Miller, Robert R; Perlmutter, Steve I

    2015-09-29

    Use-dependent movement therapies can lead to partial recovery of motor function after neurological injury. We attempted to improve recovery by developing a neuroprosthetic intervention that enhances movement therapy by directing spike timing-dependent plasticity in spared motor pathways. Using a recurrent neural-computer interface in rats with a cervical contusion of the spinal cord, we synchronized intraspinal microstimulation below the injury with the arrival of functionally related volitional motor commands signaled by muscle activity in the impaired forelimb. Stimulation was delivered during physical retraining of a forelimb behavior and throughout the day for 3 mo. Rats receiving this targeted, activity-dependent spinal stimulation (TADSS) exhibited markedly enhanced recovery compared with animals receiving targeted but open-loop spinal stimulation and rats receiving physical retraining alone. On a forelimb reach and grasp task, TADSS animals recovered 63% of their preinjury ability, more than two times the performance level achieved by the other therapy groups. Therapeutic gains were maintained for 3 additional wk without stimulation. The results suggest that activity-dependent spinal stimulation can induce neural plasticity that improves behavioral recovery after spinal cord injury. PMID:26371306

  2. Human Mesenchymal Cells from Adipose Tissue Deposit Laminin and Promote Regeneration of Injured Spinal Cord in Rats

    PubMed Central

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a descripton of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury. PMID:24830794

  3. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    PubMed

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  4. Neuroprotective effect of epidural hypothermia after spinal cord lesion in rats

    PubMed Central

    Barbosa, Marcello Oliveira; Cristante, Alexandre Fogaça; dos Santos, Gustavo Bispo; Ferreira, Ricardo; Marcon, Raphael Martus; de Barros Filho, Tarcisio Eloy Pessoa

    2014-01-01

    OBJECTIVES : To evaluate the neuroprotective effect of epidural hypothermia in rats subjected to experimental spinal cord lesion. METHODS: Wistar rats (n = 30) weighing 320-360 g were randomized to two groups (hypothermia and control) of 15 rats per group. A spinal cord lesion was induced by the standardized drop of a 10-g weight from a height of 2.5 cm, using the New York University Impactor, after laminectomy at the T9-10 level. Rats in the hypothermia group underwent epidural hypothermia for 20 minutes immediately after spinal cord injury. Motor function was assessed for six weeks using the Basso, Beattie and Bresnahan motor scores and the inclined plane test. At the end of the final week, the rats' neurological status was monitored by the motor evoked potential test and the results for the two groups were compared. RESULTS: Analysis of the Basso, Beattie and Bresnahan scores obtained during the six-week period indicated that there were no significant differences between the two groups. There was no significant difference between the groups in the inclined plane test scores during the six-week period. Furthermore, at the end of the study, the latency and amplitude values of the motor evoked potential test were not significantly different between the two groups. CONCLUSION: Hypothermia did not produce a neuroprotective effect when applied at the injury level and in the epidural space immediately after induction of a spinal cord contusion in Wistar rats. PMID:25141116

  5. Enhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection

    PubMed Central

    Thuret, Sandrine; Thallmair, Michaela; Horky, Laura L.; Gage, Fred H.

    2012-01-01

    Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice. PMID:22348029

  6. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats

    PubMed Central

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2–8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P < 0.01), significantly more NF-positive and serotonergic fibers, and more MBP-positive mature oligodendrocytes. Animals receiving angiogenic microspheres also suffered significantly less loss of white matter volume. At 10 weeks after injury, open field tests showed that animals that received angiogenic microspheres scored significantly higher on the Basso-Beattie-Bresnahan scale than control animals (P < 0.01). Our results suggest that biodegradable, biocompatible PLGA microspheres can release angiogenic factors in a sustained fashion into sites of spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  7. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats.

    PubMed

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2-8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P < 0.01), significantly more NF-positive and serotonergic fibers, and more MBP-positive mature oligodendrocytes. Animals receiving angiogenic microspheres also suffered significantly less loss of white matter volume. At 10 weeks after injury, open field tests showed that animals that received angiogenic microspheres scored significantly higher on the Basso-Beattie-Bresnahan scale than control animals (P < 0.01). Our results suggest that biodegradable, biocompatible PLGA microspheres can release angiogenic factors in a sustained fashion into sites of spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  8. Idiopathic Transverse Myelitis Mimicking an Intramedullary Spinal Cord Tumor

    PubMed Central

    Fanous, Andrew A.; Olszewski, Nathan P.; Lipinski, Lindsay J.; Qiu, Jingxin

    2016-01-01

    The differential diagnoses for spinal cord lesions include spinal tumors and inflammatory processes. The distinction between these pathologies can be difficult if solely based on imaging. We report for the first time to our knowledge a case of idiopathic transverse myelitis (ITM) mimicking a discrete cervical spinal lesion in a 66-year-old man who presented with gait instability and neck pain. The patient's symptoms failed to resolve after an initial course of steroid therapy. Surgical biopsy confirmed the diagnosis of ITM. Subsequent treatment with dexamethasone resulted in complete resolution of the symptoms as well as the intramedullary enhancement. ITM is most common in the cervical and thoracic spine, spanning 3-4 spinal segments. It usually occupies more than 50% of the cross-sectional area of the spinal cord and tends to be central, uniform, and symmetric. It exhibits patchy and peripheral contrast enhancement. These criteria are useful guidelines that help distinguish ITM from neoplastic spinal lesions. A decision to perform biopsy must take into consideration the patient's clinical symptoms, the rate of progression of neurological deficits, and the imaging characteristics of the lesion. Surgical biopsy for questionable lesions should be reserved for patients with progressive neurological deficits refractory to empirical medical therapy. PMID:27672469

  9. Idiopathic Transverse Myelitis Mimicking an Intramedullary Spinal Cord Tumor.

    PubMed

    Fanous, Andrew A; Olszewski, Nathan P; Lipinski, Lindsay J; Qiu, Jingxin; Fabiano, Andrew J

    2016-01-01

    The differential diagnoses for spinal cord lesions include spinal tumors and inflammatory processes. The distinction between these pathologies can be difficult if solely based on imaging. We report for the first time to our knowledge a case of idiopathic transverse myelitis (ITM) mimicking a discrete cervical spinal lesion in a 66-year-old man who presented with gait instability and neck pain. The patient's symptoms failed to resolve after an initial course of steroid therapy. Surgical biopsy confirmed the diagnosis of ITM. Subsequent treatment with dexamethasone resulted in complete resolution of the symptoms as well as the intramedullary enhancement. ITM is most common in the cervical and thoracic spine, spanning 3-4 spinal segments. It usually occupies more than 50% of the cross-sectional area of the spinal cord and tends to be central, uniform, and symmetric. It exhibits patchy and peripheral contrast enhancement. These criteria are useful guidelines that help distinguish ITM from neoplastic spinal lesions. A decision to perform biopsy must take into consideration the patient's clinical symptoms, the rate of progression of neurological deficits, and the imaging characteristics of the lesion. Surgical biopsy for questionable lesions should be reserved for patients with progressive neurological deficits refractory to empirical medical therapy. PMID:27672469

  10. An Intermediate Animal Model of Spinal Cord Stimulation

    PubMed Central

    Guiho, Thomas; Coste, Christine Azevedo; Delleci, Claire; Chenu, Jean-Patrick; Vignes, Jean-Rodolphe; Bauchet, Luc; Guiraud, David

    2016-01-01

    Spinal cord injuries (SCI) result in the loss of movement and sensory feedback as well as organs dysfunctions. For example, nearly all SCI subjects loose their bladder control and are prone to kidney failure if they do not proceed to intermittent (self-) catheterization. Electrical stimulation of the sacral spinal roots with an implantable neuroprosthesis is a promising approach, with commercialized products, to restore continence and control micturition. However, many persons do not ask for this intervention since a surgical deafferentation is needed and the loss of sensory functions and reflexes become serious side effects of this procedure. Recent results renewed interest in spinal cord stimulation. Stimulation of existing pre-cabled neural networks involved in physiological processes regulation is suspected to enable synergic recruitment of spinal fibers. The development of direct spinal stimulation strategies aiming at bladder and bowel functions restoration would therefore appear as a credible alternative to existent solutions. However, a lack of suitable large animal model complicates these kinds of studies. In this article, we propose a new animal model of spinal stimulation -pig- and will briefly introduce results from one first acute experimental validation session. PMID:27478570

  11. Idiopathic Transverse Myelitis Mimicking an Intramedullary Spinal Cord Tumor

    PubMed Central

    Fanous, Andrew A.; Olszewski, Nathan P.; Lipinski, Lindsay J.; Qiu, Jingxin

    2016-01-01

    The differential diagnoses for spinal cord lesions include spinal tumors and inflammatory processes. The distinction between these pathologies can be difficult if solely based on imaging. We report for the first time to our knowledge a case of idiopathic transverse myelitis (ITM) mimicking a discrete cervical spinal lesion in a 66-year-old man who presented with gait instability and neck pain. The patient's symptoms failed to resolve after an initial course of steroid therapy. Surgical biopsy confirmed the diagnosis of ITM. Subsequent treatment with dexamethasone resulted in complete resolution of the symptoms as well as the intramedullary enhancement. ITM is most common in the cervical and thoracic spine, spanning 3-4 spinal segments. It usually occupies more than 50% of the cross-sectional area of the spinal cord and tends to be central, uniform, and symmetric. It exhibits patchy and peripheral contrast enhancement. These criteria are useful guidelines that help distinguish ITM from neoplastic spinal lesions. A decision to perform biopsy must take into consideration the patient's clinical symptoms, the rate of progression of neurological deficits, and the imaging characteristics of the lesion. Surgical biopsy for questionable lesions should be reserved for patients with progressive neurological deficits refractory to empirical medical therapy.

  12. Efficacy of a metalloproteinase inhibitor in spinal cord injured dogs.

    PubMed

    Levine, Jonathan M; Cohen, Noah D; Heller, Michael; Fajt, Virginia R; Levine, Gwendolyn J; Kerwin, Sharon C; Trivedi, Alpa A; Fandel, Thomas M; Werb, Zena; Modestino, Augusta; Noble-Haeusslein, Linda J

    2014-01-01

    Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35), dimethyl sulfoxide (n = 37), or saline (n = 41). Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0-4.0) that was significantly (P<0.05; generalized linear model) less than the estimated mean motor score for dogs receiving dimethyl sulfoxide (mean, 5; 95% CI 2.0-8.0) or GM6001 (mean, 5; 95% CI 2.0-8.0). As there was no independent effect of GM6001, we attribute improved neurological outcomes to dimethyl sulfoxide, a pleotropic agent that may target diverse secondary pathogenic

  13. Efficacy of a Metalloproteinase Inhibitor in Spinal Cord Injured Dogs

    PubMed Central

    Levine, Jonathan M.; Cohen, Noah D.; Heller, Michael; Fajt, Virginia R.; Levine, Gwendolyn J.; Kerwin, Sharon C.; Trivedi, Alpa A.; Fandel, Thomas M.; Werb, Zena; Modestino, Augusta; Noble-Haeusslein, Linda J.

    2014-01-01

    Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35), dimethyl sulfoxide (n = 37), or saline (n = 41). Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0–4.0) that was significantly (P<0.05; generalized linear model) less than the estimated mean motor score for dogs receiving dimethyl sulfoxide (mean, 5; 95% CI 2.0–8.0) or GM6001 (mean, 5; 95% CI 2.0–8.0). As there was no independent effect of GM6001, we attribute improved neurological outcomes to dimethyl sulfoxide, a pleotropic agent that may target diverse

  14. Efficacy of a metalloproteinase inhibitor in spinal cord injured dogs.

    PubMed

    Levine, Jonathan M; Cohen, Noah D; Heller, Michael; Fajt, Virginia R; Levine, Gwendolyn J; Kerwin, Sharon C; Trivedi, Alpa A; Fandel, Thomas M; Werb, Zena; Modestino, Augusta; Noble-Haeusslein, Linda J

    2014-01-01

    Matrix metalloproteinase-9 is elevated within the acutely injured murine spinal cord and blockade of this early proteolytic activity with GM6001, a broad-spectrum matrix metalloproteinase inhibitor, results in improved recovery after spinal cord injury. As matrix metalloproteinase-9 is likewise acutely elevated in dogs with naturally occurring spinal cord injuries, we evaluated efficacy of GM6001 solubilized in dimethyl sulfoxide in this second species. Safety and pharmacokinetic studies were conducted in naïve dogs. After confirming safety, subsequent pharmacokinetic analyses demonstrated that a 100 mg/kg subcutaneous dose of GM6001 resulted in plasma concentrations that peaked shortly after administration and were sustained for at least 4 days at levels that produced robust in vitro inhibition of matrix metalloproteinase-9. A randomized, blinded, placebo-controlled study was then conducted to assess efficacy of GM6001 given within 48 hours of spinal cord injury. Dogs were enrolled in 3 groups: GM6001 dissolved in dimethyl sulfoxide (n = 35), dimethyl sulfoxide (n = 37), or saline (n = 41). Matrix metalloproteinase activity was increased in the serum of injured dogs and GM6001 reduced this serum protease activity compared to the other two groups. To assess recovery, dogs were a priori stratified into a severely injured group and a mild-to-moderate injured group, using a Modified Frankel Scale. The Texas Spinal Cord Injury Score was then used to assess long-term motor/sensory function. In dogs with severe spinal cord injuries, those treated with saline had a mean motor score of 2 (95% CI 0-4.0) that was significantly (P<0.05; generalized linear model) less than the estimated mean motor score for dogs receiving dimethyl sulfoxide (mean, 5; 95% CI 2.0-8.0) or GM6001 (mean, 5; 95% CI 2.0-8.0). As there was no independent effect of GM6001, we attribute improved neurological outcomes to dimethyl sulfoxide, a pleotropic agent that may target diverse secondary pathogenic

  15. Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arsenite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats.

    PubMed

    Abdou, Heba M; Yousef, Mokhtar I; El Mekkawy, Desouki A; Al-Shami, Ahmed S

    2016-08-01

    The present study was carried out to evaluate the potential protective role of co-administration of Ginkgo biloba, Trifolium pretenseagainst sodium arsenite-induced neurotoxicity in different parts of brain (Cerebral cortex, Hippocampus, striatum and Hind brain) and in the spinal cord of rats. Sodium arsenite caused impairment in the acquisition and learning in all the behavioral tasks and caused significant increase in tumor necrosis factor-α,thiobarbituric acid-reactive substances andlipid profile, while caused significant decrease in glutathione, total thiol content, total antioxidant capacity, acetylcholinesterase, monoamine oxidase and ATPases activities. These results were confirmed by histopathological, fluorescence and scanning electron microscopy examination of different regions of brain. From these results sodium arsenite-induced neurodegenerative disorder in different regions of brain and spinal cord and this could be mediated through modifying the intracellular brain ions homeostasis, cholinergic dysfunction and oxidative damage. The presence of Ginkgo biloba and/orTrifolium pretense with sodium arsenite minimized its neurological damages. It was pronounced that using Ginkgo biloba and Trifolium pretense in combination was more effective as protective agents compared to use eachone of them alone. PMID:27234133

  16. Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arsenite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats.

    PubMed

    Abdou, Heba M; Yousef, Mokhtar I; El Mekkawy, Desouki A; Al-Shami, Ahmed S

    2016-08-01

    The present study was carried out to evaluate the potential protective role of co-administration of Ginkgo biloba, Trifolium pretenseagainst sodium arsenite-induced neurotoxicity in different parts of brain (Cerebral cortex, Hippocampus, striatum and Hind brain) and in the spinal cord of rats. Sodium arsenite caused impairment in the acquisition and learning in all the behavioral tasks and caused significant increase in tumor necrosis factor-α,thiobarbituric acid-reactive substances andlipid profile, while caused significant decrease in glutathione, total thiol content, total antioxidant capacity, acetylcholinesterase, monoamine oxidase and ATPases activities. These results were confirmed by histopathological, fluorescence and scanning electron microscopy examination of different regions of brain. From these results sodium arsenite-induced neurodegenerative disorder in different regions of brain and spinal cord and this could be mediated through modifyi