Sample records for induced structural failure

  1. Corrosion protection of prestressing strand in transportation structures and strand-concrete bond improvement.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  2. Corrosion protection and steel-concrete bond improvement of prestressing strand.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  3. Stage Separation Failure: Model Based Diagnostics and Prognostics

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry; Hafiychuk, Vasyl; Kulikov, Igor; Smelyanskiy, Vadim; Patterson-Hine, Ann; Hanson, John; Hill, Ashley

    2010-01-01

    Safety of the next-generation space flight vehicles requires development of an in-flight Failure Detection and Prognostic (FD&P) system. Development of such system is challenging task that involves analysis of many hard hitting engineering problems across the board. In this paper we report progress in the development of FD&P for the re-contact fault between upper stage nozzle and the inter-stage caused by the first stage and upper stage separation failure. A high-fidelity models and analytical estimations are applied to analyze the following sequence of events: (i) structural dynamics of the nozzle extension during the impact; (ii) structural stability of the deformed nozzle in the presence of the pressure and temperature loads induced by the hot gas flow during engine start up; and (iii) the fault induced thrust changes in the steady burning regime. The diagnostic is based on the measurements of the impact torque. The prognostic is based on the analysis of the correlation between the actuator signal and fault-induced changes in the nozzle structural stability and thrust.

  4. Dynamics of functional failures and recovery in complex road networks

    NASA Astrophysics Data System (ADS)

    Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.

    2017-11-01

    We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.

  5. Chloroquine-induced cardiomyopathy: a reversible cause of heart failure.

    PubMed

    Yogasundaram, Haran; Hung, Whitney; Paterson, Ian D; Sergi, Consolato; Oudit, Gavin Y

    2018-06-01

    Chloroquine (CQ) and hydroxychloroquine (HCQ) are anti-rheumatic medications frequently used in the treatment of connective tissue disorders. We present the case of a 45-year-old woman with CQ-induced cardiomyopathy leading to severe heart failure. Electrocardiographic abnormalities included bifascicular block, while structural disease consisted of severe biventricular and biatrial hypertrophy. Appropriate diagnosis via endomyocardial biopsy led to cessation of CQ and subsequent dramatic improvement in symptoms and structural heart disease. Cardiac toxicity is an under-recognized adverse effect of CQ/HCQ leading to cardiomyopathy with concentric hypertrophy and conduction abnormalities, with the potential for significant morbidity and mortality. Predisposing factors for CQ/HCQ-induced cardiomyopathy have been proposed. CQ/HCQ cardiomyopathy is a phenocopy of Fabry disease, and α-galactosidase A polymorphism may account for some heterogeneity of disease presentation. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  6. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure

    PubMed Central

    Rosa-Garrido, Manuel; Chapski, Douglas J.; Schmitt, Anthony D.; Kimball, Todd H.; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J.; Ren, Shuxun; Wang, Yibin; Ren, Bing

    2017-01-01

    Background: Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. Methods: To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload–induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Results: Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. Conclusions: These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. PMID:28802249

  7. High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.

    PubMed

    Rosa-Garrido, Manuel; Chapski, Douglas J; Schmitt, Anthony D; Kimball, Todd H; Karbassi, Elaheh; Monte, Emma; Balderas, Enrique; Pellegrini, Matteo; Shih, Tsai-Ting; Soehalim, Elizabeth; Liem, David; Ping, Peipei; Galjart, Niels J; Ren, Shuxun; Wang, Yibin; Ren, Bing; Vondriska, Thomas M

    2017-10-24

    Cardiovascular disease is associated with epigenomic changes in the heart; however, the endogenous structure of cardiac myocyte chromatin has never been determined. To investigate the mechanisms of epigenomic function in the heart, genome-wide chromatin conformation capture (Hi-C) and DNA sequencing were performed in adult cardiac myocytes following development of pressure overload-induced hypertrophy. Mice with cardiac-specific deletion of CTCF (a ubiquitous chromatin structural protein) were generated to explore the role of this protein in chromatin structure and cardiac phenotype. Transcriptome analyses by RNA-seq were conducted as a functional readout of the epigenomic structural changes. Depletion of CTCF was sufficient to induce heart failure in mice, and human patients with heart failure receiving mechanical unloading via left ventricular assist devices show increased CTCF abundance. Chromatin structural analyses revealed interactions within the cardiac myocyte genome at 5-kb resolution, enabling examination of intra- and interchromosomal events, and providing a resource for future cardiac epigenomic investigations. Pressure overload or CTCF depletion selectively altered boundary strength between topologically associating domains and A/B compartmentalization, measurements of genome accessibility. Heart failure involved decreased stability of chromatin interactions around disease-causing genes. In addition, pressure overload or CTCF depletion remodeled long-range interactions of cardiac enhancers, resulting in a significant decrease in local chromatin interactions around these functional elements. These findings provide a high-resolution chromatin architecture resource for cardiac epigenomic investigations and demonstrate that global structural remodeling of chromatin underpins heart failure. The newly identified principles of endogenous chromatin structure have key implications for epigenetic therapy. © 2017 The Authors.

  8. Cardioprotective Effects of QiShenYiQi Dripping Pills on Transverse Aortic Constriction-Induced Heart Failure in Mice.

    PubMed

    Ruan, Guoran; Ren, Haojin; Zhang, Chi; Zhu, Xiaogang; Xu, Chao; Wang, Liyue

    2018-01-01

    QiShenYiQi dripping pills (QSYQ), a traditional Chinese medicine, are commonly used to treat coronary heart disease, and QSYQ was recently approved as a complementary treatment for ischemic heart failure in China. However, only few studies reported on whether QSYQ exerts a protective effect on heart failure induced by pressure overload. In this study, we explored the role of QSYQ in a mouse model of heart failure induced by transverse aortic constriction (TAC). Twenty-eight C57BL/6J mice were divided into four groups: Sham + NS group, Sham + QSYQ group, TAC + NS group, and TAC + QSYQ group. QSYQ dissolved in normal saline (NS) was administered intragastrically (3.5 mg/100 g/day) in the Sham + QSYQ and TAC + QSYQ groups. In the Sham + NS and TAC + NS groups, NS was provided every day intragastrically. Eight weeks after TAC, echocardiography, and cardiac catheterization were performed to evaluate the cardiac function, and immunofluorescent staining with anti-actinin2 antibody was performed to determine the structure of the myocardial fibers. Moreover, TUNEL staining and Masson trichrome staining were employed to assess the effects of QSYQ on cardiac apoptosis and cardiac fibrosis. Western blots and real-time polymerase chain reaction (PCR) were used to measure the expression levels of vascular endothelial growth factor (VEGF) in the heart, and immunohistochemical staining with anti-CD31 antibody was performed to explore the role of QSYQ in cardiac angiogenesis. Results showed that TAC-induced cardiac dysfunction and disrupted structure of myocardial fibers significantly improved after QSYQ treatment. Moreover, QSYQ treatment also significantly improved cardiac apoptosis and cardiac fibrosis in TAC-induced heart failure, which was accompanied by an increase in VEGF expression levels and maintenance of microvessel density in the heart. In conclusion, QSYQ exerts a protective effect on TAC-induced heart failure, which could be attributed to enhanced cardiac angiogenesis, which is closely related to QSYQ. Thus, QSYQ may be a promising traditional Chinese medicine for the treatment of heart failure induced by pressure overload such as hypertension.

  9. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate

    PubMed Central

    LI, PING; LUO, SHIKE; PAN, CHUNJI; CHENG, XIAOSHU

    2015-01-01

    Heart failure is a disease predominantly caused by an energy metabolic disorder in cardiomyocytes. The present study investigated the inhibitory effects of fenofibrate (FF) on isoproterenol (ISO)-induced hear failure in rats, and examined the underlying mechanisms. The rats were divided into CON, ISO (HF model), FF and FF+ISO (HF animals pretreated with FF) groups. The cardiac structure and function of the rats were assessed, and contents of free fatty acids and glucose metabolic products were determined. In addition, myocardial cells were isolated from neonatal rats and used in vitro to investigate the mechanisms by which FF relieves heart failure. Western blot analysis was performed to quantify the expression levels of peroxisome proliferator-activated receptor (PPAR)α and uncoupling protein 2 (UCP2). FF effectively alleviated the ISO-induced cardiac structural damage, functional decline, and fatty acid and carbohydrate metabolic abnormalities. Compared with the ISO group, the serum levels of brain natriuretic peptide (BNP), free fatty acids, lactic acid and pyruvic acid were decreased in the FF animals. In the cultured myocardial cells, lactic acid and pyruvic acid contents were lower in the supernatants obtained from the FF animals, with lower levels of mitochondrial ROS production and cell necrosis, compared with the ISO group, whereas PPARα upregulation and UCP2 downregulation occurred in the FF+ISO group. The results demonstrated that FF efficiently alleviated heart failure in the ISO-induced rat model, possibly via promoting fatty acid oxidation. PMID:26497978

  10. Overview of the recommended procedures dealing with the evaluation of liquefaction-induced deformation allong a pipeline corridor

    NASA Astrophysics Data System (ADS)

    Papathanassiou, George

    2016-04-01

    The last decade several pipeline corridors have been designed in order to transmit to Europe natural gas and oil from Asia. Although the fact that a pipeline is considered as an underground structure, an analysis of earthquake-induced structural failures should be conducted in prone to earthquake countries e.g. Greece, Italy in EU. The aim of these specific analyses is to assess and evaluate the hazard and the relevant risk induced by earthquake-induced slope failures and soil liquefaction. The latter is a phenomenon that is triggered under specific site conditions. In particular the basic ingredients for the occurrence of liquefaction is the surficial water table, the existence of non-plastic or low plasticity soil layer and the generation of strong ground motion. Regarding the liquefaction-induced deformation that should be assessed and evaluated in order to minimize the risk, it is concluded that the pervasive types of ground failures for level to gently sloping sites are the ground settlements and lateral spreads. The goal of this study is to overview the most widely approaches used for the computation of liquefaction-induced settlement and to present a more detailed description, step by step, of the methodology that is recommended to follow for the evaluation of lateral spreading.

  11. A multiscale structural investigation of the annulus-endplate anchorage system and its mechanisms of failure.

    PubMed

    Rodrigues, Samantha A; Thambyah, Ashvin; Broom, Neil D

    2015-03-01

    The annulus-endplate anchorage system performs a critical role in the disc, creating a strong structural link between the compliant annulus and the rigid vertebrae. Endplate failure is thought to be associated with disc herniation, a recent study indicating that this failure mode occurs more frequently than annular rupture. The aim was to investigate the structural principles governing annulus-endplate anchorage and the basis of its strength and mechanisms of failure. Loading experiments were performed on ovine lumbar motion segments designed to induce annulus-endplate failure, followed by macro- to micro- to fibril-level structural analyses. The study was funded by a doctoral scholarship from our institution. Samples were loaded to failure in three modes: torsion using intact motion segments, in-plane tension of the anterior annulus-endplate along one of the oblique fiber angles, and axial tension of the anterior annulus-endplate. The anterior region was chosen for its ease of access. Decalcification was used to investigate the mechanical influence of the mineralized component. Structural analysis was conducted on both the intact and failed samples using differential interference contrast optical microscopy and scanning electron microscopy. Two main modes of anchorage failure were observed--failure at the tidemark or at the cement line. Samples subjected to axial tension contained more tidemark failures compared with those subjected to torsion and in-plane tension. Samples decalcified before testing frequently contained damage at the cement line, this being more extensive than in fresh samples. Analysis of the intact samples at their anchorage sites revealed that annular subbundle fibrils penetrate beyond the cement line to a limited depth and appear to merge with those in the vertebral and cartilaginous endplates. Annulus-endplate anchorage is more vulnerable to failure in axial tension compared with both torsion and in-plane tension and is probably due to acute fiber bending at the soft-hard interface of the tidemark. This finding is consistent with evidence showing that flexion, which induces a similar pattern of axial tension, increases the risk of herniation involving endplate failure. The study also highlights the important strengthening role of calcification at this junction and provides new evidence of a fibril-based form of structural integration across the cement line. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. An introductory review on gravitational-deformation induced structures, fabrics and modeling

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, Michel; Penna, Ivanna; Pedrazzini, Andrea; Baroň, Ivo; Crosta, Giovanni B.

    2013-10-01

    Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.

  13. Recent Advances In Structural Vibration And Failure Mode Control In Mainland China: Theory, Experiments And Applications

    NASA Astrophysics Data System (ADS)

    Li, Hui; Ou, Jinping

    2008-07-01

    A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced.

  14. Failure and recovery in dynamical networks.

    PubMed

    Böttcher, L; Luković, M; Nagler, J; Havlin, S; Herrmann, H J

    2017-02-03

    Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network's components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. We identify a metastable domain in the global network phase diagram spanned by the model's control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. This dynamics depends on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in dynamical networks.

  15. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    USGS Publications Warehouse

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  16. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    PubMed

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  17. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show thatmore » xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.« less

  18. Revealing catastrophic failure of leaf networks under stress

    PubMed Central

    Brodribb, Timothy J.; Bienaimé, Diane; Marmottant, Philippe

    2016-01-01

    The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought. PMID:27071104

  19. Revealing catastrophic failure of leaf networks under stress.

    PubMed

    Brodribb, Timothy J; Bienaimé, Diane; Marmottant, Philippe

    2016-04-26

    The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.

  20. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension

    PubMed Central

    Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.

    2016-01-01

    Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221

  1. Fatigue Resistant Design Criteria for MD SHA Cantilevered Mast Arm Signal Structure : Research Summary

    DOT National Transportation Integrated Search

    2017-12-01

    Over the past two decades, wind induced fatigue cracking of highway signs, luminaires, and traffic signal support structures have been increasingly reported all over the United States. While fatalities associated with these failures have been limited...

  2. Sildenafil ameliorates left ventricular T-tubule remodeling in a pressure overload-induced murine heart failure model

    PubMed Central

    Huang, Chun-kai; Chen, Bi-yi; Guo, Ang; Chen, Rong; Zhu, Yan-qi; Kutschke, William; Hong, Jiang; Song, Long-sheng

    2016-01-01

    Aim: Sildenafil, a phosphodiesterase 5 (PDE5) inhibitor, has been shown to exert beneficial effects in heart failure. The purpose of this study was to test whether sildenafil suppressed transverse-tubule (T-tubule) remodeling in left ventricular (LV) failure and thereby providing the therapeutic benefits. Methods: A pressure overload-induced murine heart failure model was established in mice by thoracic aortic banding (TAB). One day after TAB, the mice received sildenafil (100 mg·kg−1·d−1, sc) or saline for 5 weeks. At the end of treatment, echocardiography was used to examine LV function. Then the intact hearts were dissected out and placed in Langendorff-perfusion chamber for in situ confocal imaging of T-tubule ultrastructure from epicardial myocytes. Results: TAB surgery resulted in heart failure accompanied by remarkable T-tubule remodeling. Sildenafil treatment significantly attenuated TAB-induced cardiac hypertrophy and congestive heart failure, improved LV contractile function, and preserved T-tubule integrity in LV cardiomyocytes. But sildenafil treatment did not significantly affect the chamber dilation. The integrity of LV T-tubule structure was correlated with cardiac hypertrophy (R2=0.74, P<0.01) and global LV function (R2=0.47, P<0.01). Conclusion: Sildenafil effectively ameliorates LV T-tubule remodeling in TAB mice, revealing a novel mechanism underlying the therapeutic benefits of sildenafil in heart failure. PMID:26972492

  3. Fatigue failure in metal bellows due to flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.; Fargo, C. G.

    1969-01-01

    To prevent fatigue due to flow-induced vibrations in metal bellows connected to ducts carrying liquid hydrogen, a study was made which shows that the flexure lines are in general a function of the vibration coupling between the fluid and bellows structure, and the nature of the external environment.

  4. Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.

    PubMed

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah

    2009-01-01

    Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

  5. Microcracking, microcrack-induced delamination, and longitudinal splitting of advanced composite structures

    NASA Technical Reports Server (NTRS)

    Nairn, John A.

    1992-01-01

    A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.

  6. Centrifuge Modeling of Rainfall Induced Slope Failure

    NASA Astrophysics Data System (ADS)

    Ling, H.; Wu, M.

    2006-12-01

    Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves of rainfall intensity versus duration were obtained from the test results. Such curves are extremely useful for disaster management. This study indicated feasibilities of using centrifuge modeling technique in simulating rainfall induced slope failure. The results obtained may also be used for validating numerical tools.

  7. Fault propagation folds induced by gravitational failure and slumping of the Central Costa Rica volcanic range - Implications for large terrestrial and Martian volcanic edifices

    NASA Technical Reports Server (NTRS)

    Borgia, Andrea; Burr, Jeremiah; Montero, Walter; Morales, Luis Diego; Alvarado, Guillermo E.

    1990-01-01

    Maps are presented that describe the compressional tectonic structures found at the base of the Central Costa Rica volcanic range (CCRVR), which comprise thrust faults and related fault propagation folds, only partly covered by syntectonic and posttectonic volcanoclastic deposits. Evidence is presented that these structures formed by gravitational failure and lumping of the flanks of the volcanic range. It is suggested that similar structures may be found at the toe of the southern flank of Kilauea volcano, Hawaii, and along the perimeter scarp of the Olympus Mons volcano on Mars.

  8. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study.

    PubMed

    Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Di Michiel, Marco; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R

    2016-11-16

    Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO 2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO 2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.

  9. Analysis of a Memory Device Failure

    NASA Technical Reports Server (NTRS)

    Nicolas, David P.; Devaney, John; Gores, Mark; Dicken, Howard

    1998-01-01

    The recent failure of a vintage memory device presented a unique challenge to failure analysts. Normally device layouts, fabrication parameters and other technical information were available to assist the analyst in the analysis. However, this device was out of production for many years and the manufacturer was no longer in business, so the information was not available. To further complicate this analysis, the package leads were all but removed making additional electrical testing difficult. Under these conditions, new and innovative methods were used to analyze the failure. The external visual exam, radiography, PIND, and leak testing were performed with nominal results. Since electrical testing was precluded by the short lead lengths, the device was delidded to expose the internal structures for microscopic examination. No failure mechanism was identified. The available electrical data suggested an ESD or low level EOS type mechanism which left no visible surface damage. Due to parallel electrical paths, electrical probing on the chip failed to locate the failure site. Two non-destructive Scanning Electron Microscopy techniques, CIVA (Charge Induced Voltage Alteration) and EBIC (Electron Beam Induced Current), and a liquid crystal decoration technique which detects localized heating were employed to aid in the analysis. CIVA and EBIC isolated two faults in the input circuitry, and the liquid crystal technique further localized two hot spots in regions on two input gates. Removal of the glassivation and metallization revealed multiple failure sites located in the gate oxide of two input transistors suggesting machine (testing) induced damage.

  10. Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline

    PubMed Central

    Benoist, David; Stones, Rachel; Benson, Alan P.; Fowler, Ewan D.; Drinkhill, Mark J.; Hardy, Matthew E.L.; Saint, David A.; Cazorla, Olivier; Bernus, Olivier; White, Ed

    2014-01-01

    We demonstrate the synergistic benefits of using multiple technologies to investigate complex multi-scale biological responses. The combination of reductionist and integrative methodologies can reveal novel insights into mechanisms of action by tracking changes of in vivo phenomena to alterations in protein activity (or vice versa). We have applied this approach to electrical and mechanical remodelling in right ventricular failure caused by monocrotaline-induced pulmonary artery hypertension in rats. We show arrhythmogenic T-wave alternans in the ECG of conscious heart failure animals. Optical mapping of isolated hearts revealed discordant action potential duration (APD) alternans. Potential causes of the arrhythmic substrate; structural remodelling and/or steep APD restitution and dispersion were observed, with specific remodelling of the Right Ventricular Outflow Tract. At the myocyte level, [Ca2+]i transient alternans were observed together with decreased activity, gene and protein expression of the sarcoplasmic reticulum Ca2+-ATPase (SERCA). Computer simulations of the electrical and structural remodelling suggest both contribute to a less stable substrate. Echocardiography was used to estimate increased wall stress in failure, in vivo. Stretch of intact and skinned single myocytes revealed no effect on the Frank-Starling mechanism in failing myocytes. In isolated hearts acute stretch-induced arrhythmias occurred in all preparations. Significant shortening of the early APD was seen in control but not failing hearts. These observations may be linked to changes in the gene expression of candidate mechanosensitive ion channels (MSCs) TREK-1 and TRPC1/6. Computer simulations incorporating MSCs and changes in ion channels with failure, based on altered gene expression, largely reproduced experimental observations. PMID:25016242

  11. Failure of flight feathers under uniaxial compression.

    PubMed

    Schelestow, Kristina; Troncoso, Omar P; Torres, Fernando G

    2017-09-01

    Flight feathers are light weight engineering structures. They have a central shaft divided in two parts: the calamus and the rachis. The rachis is a thinly walled conical shell filled with foam, while the calamus is a hollow tube-like structure. Due to the fact that bending loads are produced during birds' flight, the resistance to bending of feathers has been reported in different studies. However, the analysis of bent feathers has shown that compression could induce failure by buckling. Here, we have studied the compression of feathers in order to assess the failure mechanisms involved. Axial compression tests were carried out on the rachis and the calamus of dove and pelican feathers. The failure mechanisms and folding structures that resulted from the compression tests were observed from images obtained by scanning electron microscopy (SEM). The rachis and calamus fail due to structural instability. In the case of the calamus, this instability leads to a progressive folding process. In contrast, the rachis undergoes a typical Euler column-type buckling failure. The study of failed specimens showed that delamination buckling, cell collapse and cell densification are the primary failure mechanisms of the rachis structure. The role of the foam is also discussed with regard to the mechanical response of the samples and the energy dissipated during the compression tests. Critical stress values were calculated using delamination buckling models and were found to be in very good agreement with the experimental values measured. Failure analysis and mechanical testing have confirmed that flight feathers are complex thin walled structures with mechanical adaptations that allow them to fulfil their functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of GENOA Progressive Failure Parallel Processing Software Systems

    NASA Technical Reports Server (NTRS)

    Abdi, Frank; Minnetyan, Levon

    1999-01-01

    A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.

  13. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors

    DOE PAGES

    Christon, Mark A.; Lu, Roger; Bakosi, Jozsef; ...

    2016-10-01

    Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less

  14. Large-eddy simulation, fuel rod vibration and grid-to-rod fretting in pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Lu, Roger; Bakosi, Jozsef

    Grid-to-rod fretting (GTRF) in pressurized water reactors is a flow-induced vibration phenomenon that results in wear and fretting of the cladding material on fuel rods. GTRF is responsible for over 70% of the fuel failures in pressurized water reactors in the United States. Predicting the GTRF wear and concomitant interval between failures is important because of the large costs associated with reactor shutdown and replacement of fuel rod assemblies. The GTRF-induced wear process involves turbulent flow, mechanical vibration, tribology, and time-varying irradiated material properties in complex fuel assembly geometries. This paper presents a new approach for predicting GTRF induced fuelmore » rod wear that uses high-resolution implicit large-eddy simulation to drive nonlinear transient dynamics computations. The GTRF fluid–structure problem is separated into the simulation of the turbulent flow field in the complex-geometry fuel-rod bundles using implicit large-eddy simulation, the calculation of statistics of the resulting fluctuating structural forces, and the nonlinear transient dynamics analysis of the fuel rod. Ultimately, the methods developed here, can be used, in conjunction with operational management, to improve reactor core designs in which fuel rod failures are minimized or potentially eliminated. Furthermore, robustness of the behavior of both the structural forces computed from the turbulent flow simulations and the results from the transient dynamics analyses highlight the progress made towards achieving a predictive simulation capability for the GTRF problem.« less

  15. In the Absence of Writhe, DNA Relieves Torsional Stress with Localized, Sequence-Dependent Structural Failure to Preserve B-form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, Graham L.; Zechiedrich, E. L.; Pettitt, Bernard M.

    2009-09-01

    To understand how underwinding and overwinding the DNA helix affects its structure, we simulated 19 independent DNA systems with fixed degrees of twist using molecular dynamics in a system that does not allow writhe. Underwinding DNA induced spontaneous, sequence-dependent base flipping and local denaturation, while overwinding DNA induced the formation of Pauling-like DNA (P-DNA). The winding resulted in a bimodal state simultaneously including local structural failure and B-form DNA for both underwinding and extreme overwinding. Our simulations suggest that base flipping and local denaturation may provide a landscape influencing protein recognition of DNA sequence to affect, for examples, replication, transcriptionmore » and recombination. Additionally, our findings help explain results from singlemolecule experiments and demonstrate that elastic rod models are strictly valid on average only for unstressed or overwound DNA up to P-DNA formation. Finally, our data support a model in which base flipping can result from torsional stress.« less

  16. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling.

    PubMed

    Liu, Xiaoyu; Kwak, Dongmin; Lu, Zhongbing; Xu, Xin; Fassett, John; Wang, Huan; Wei, Yidong; Cavener, Douglas R; Hu, Xinli; Hall, Jennifer; Bache, Robert J; Chen, Yingjie

    2014-10-01

    Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure. © 2014 American Heart Association, Inc.

  17. Application of a Probalistic Sizing Methodology for Ceramic Structures

    NASA Astrophysics Data System (ADS)

    Rancurel, Michael; Behar-Lafenetre, Stephanie; Cornillon, Laurence; Leroy, Francois-Henri; Coe, Graham; Laine, Benoit

    2012-07-01

    Ceramics are increasingly used in the space industry to take advantage of their stability and high specific stiffness properties. Their brittle behaviour often leads to size them by increasing the safety factors that are applied on the maximum stresses. It induces to oversize the structures. This is inconsistent with the major driver in space architecture, the mass criteria. This paper presents a methodology to size ceramic structures based on their failure probability. Thanks to failure tests on samples, the Weibull law which characterizes the strength distribution of the material is obtained. A-value (Q0.0195%) and B-value (Q0.195%) are then assessed to take into account the limited number of samples. A knocked-down Weibull law that interpolates the A- & B- values is also obtained. Thanks to these two laws, a most-likely and a knocked- down prediction of failure probability are computed for complex ceramic structures. The application of this methodology and its validation by test is reported in the paper.

  18. Precursory landforms and geologic structures of catastrophic landslides induced by typhoon Talas 2011 Japan (Invited)

    NASA Astrophysics Data System (ADS)

    Chigira, M.; Matsushi, Y.; Tsou, C.

    2013-12-01

    Our experience of catastrophic landslides induced by rainstorms and earthquakes in recent years suggests that many of them are preceded by deep-seated gravitational slope deformation. Deep-seated gravitational slope deformation continues slowly and continually and some of them transform into catastrophic failures, which cause devastating damage in wide areas. Some other types, however, do not change into catastrophic failure. Deep-seated gravitational slope deformation that preceded catastrophic failures induced by typhoon Talas 2011 Japan, had been surveyed with airborne laser scanner beforehand, of which high-resolution DEMs gave us an important clue to identify which type of topographic features of gravitational slope deformation is susceptible to catastrophic failure. We found that 26 of 39 deep-seated catastrophic landslides had small scarps along the heads of future landslides. These scarps were caused by gravitational slope deformation that preceded the catastrophic failure. Although the scarps may have been enlarged by degradation, their sizes relative to the whole slopes suggest that minimal slope deformation had occurred in the period immediately before the catastrophic failure. The scarp ratio, defined as the ratio of length of a scarp to that of the whole slope both measured along the slope line, ranged from 1% to 23%. 38% of the landslides with small scarps had scarp ratios less than 4%, and a half less than 8%. This fact suggests that the gravitational slope deformation preceded catastrophic failure was relatively small and may suggest that those slopes were under critical conditions just before catastrophic failure. The above scarp ratios may be characteristic to accretional complex with undulating, anastomosing thrust faults, which were major sliding surfaces of the typhoon-induced landslides. Eleven of the remaining 13 landslides occurred in landslide scars of previous landslides or occurred as an extension of landslide scars at the lower parts of gravitationally deformed slopes. Remaining one landslide had been preceded by a linear depression at its top, and the topographic precursors of the remaining one landslide could not been specified.

  19. Fractographic examination of racing greyhound central (navicular) tarsal bone failure surfaces using scanning electron microscopy.

    PubMed

    Tomlin, J L; Lawes, T J; Blunn, G W; Goodship, A E; Muir, P

    2000-09-01

    The greyhound is a fatigue fracture model of a short distance running athlete. Greyhounds have a high incidence of central (navicular) tarsal bone (CTB) fractures, which are not associated with overt trauma. We wished to determine whether these fractures occur because of accumulation of fatigue microdamage. We hypothesized that bone from racing dogs would show site-specific microdamage accumulation, causing predisposition to structural failure. We performed a fractographic examination of failure surfaces from fractured bones using scanning electron microscopy and assessed microcracking observed at the failure surface using a visual analog scale. Branching arrays of microcracks were seen in failure surfaces of CTB and adjacent tarsal bones, suggestive of compressive fatigue failure. Branching arrays of microcracks were particularly prevalent in remodeled trabecular bone that had become compact. CTB fractures showed increased microdamage when compared with other in vivo fractures (adjacent tarsal bone and long bone fractures), and ex vivo tarsal fractures induced by monotonic loading (P < 0.02). It was concluded that greyhound racing and training often results in CTB structural failure, because of accumulation and coalescence of branching arrays of fatigue microcracks, the formation of which appears to be predisposed to adapted bone.

  20. Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Komamura, K.; Shannon, R. P.; Pasipoularides, A.; Ihara, T.; Lader, A. S.; Patrick, T. A.; Bishop, S. P.; Vatner, S. F.

    1992-01-01

    We investigated in conscious dogs (a) the effects of heart failure induced by chronic rapid ventricular pacing on the sequence of development of left ventricular (LV) diastolic versus systolic dysfunction and (b) whether the changes were load dependent or secondary to alterations in structure. LV systolic and diastolic dysfunction were evident within 24 h after initiation of pacing and occurred in parallel over 3 wk. LV systolic function was reduced at 3 wk, i.e., peak LV dP/dt fell by -1,327 +/- 105 mmHg/s and ejection fraction by -22 +/- 2%. LV diastolic dysfunction also progressed over 3 wk of pacing, i.e., tau increased by +14.0 +/- 2.8 ms and the myocardial stiffness constant by +6.5 +/- 1.4, whereas LV chamber stiffness did not change. These alterations were associated with increases in LV end-systolic (+28.6 +/- 5.7 g/cm2) and LV end-diastolic stresses (+40.4 +/- 5.3 g/cm2). When stresses and heart rate were matched at the same levels in the control and failure states, the increases in tau and myocardial stiffness were no longer observed, whereas LV systolic function remained depressed. There were no increases in connective tissue content in heart failure. Thus, pacing-induced heart failure in conscious dogs is characterized by major alterations in diastolic function which are reversible with normalization of increased loading condition.

  1. Parvovirus B19-Induced Apoptosis of Hepatocytes

    PubMed Central

    Poole, Brian D.; Karetnyi, Yuory V.; Naides, Stanley J.

    2004-01-01

    Parvovirus B19 (B19 virus) can persist in multiple tissues and has been implicated in a variety of diseases, including acute fulminant liver failure. The mechanism by which B19 virus induces liver failure remains unknown. Hepatocytes are nonpermissive for B19 virus replication. We previously reported that acute fulminant liver failure associated with B19 virus infection was characterized by hepatocellular dropout. We inoculated both primary hepatocytes and the hepatocellular carcinoma cell line Hep G2 with B19 virus and assayed for apoptosis by using annexin V staining. Reverse transcriptase PCR analysis and immunofluorescence demonstrated that B19 virus was able to infect the cells and produce its nonstructural protein but little or no structural capsid protein. Infection with B19 virus induced means of 28% of Hep G2 cells and 10% of primary hepatocytes to undergo apoptosis, which were four- and threefold increases, respectively, over background levels. Analysis of caspase involvement showed that B19 virus-inoculated cultures had a significant increase in the number of cells with active caspase 3. Inhibition studies demonstrated that caspases 3 and 9, but not caspase 8, are required for B19 virus-induced apoptosis. PMID:15220451

  2. Deformation Failure Characteristics of Coal Body and Mining Induced Stress Evolution Law

    PubMed Central

    Wen, Zhijie; Wen, Jinhao; Shi, Yongkui; Jia, Chuanyang

    2014-01-01

    The results of the interaction between coal failure and mining pressure field evolution during mining are presented. Not only the mechanical model of stope and its relative structure division, but also the failure and behavior characteristic of coal body under different mining stages are built and demonstrated. Namely, the breaking arch and stress arch which influence the mining area are quantified calculated. A systematic method of stress field distribution is worked out. All this indicates that the pore distribution of coal body with different compressed volume has fractal character; it appears to be the linear relationship between propagation range of internal stress field and compressed volume of coal body and nonlinear relationship between the range of outburst coal mass and the number of pores which is influenced by mining pressure. The results provide theory reference for the research on the range of mining-induced stress and broken coal wall. PMID:24967438

  3. Nonacetaminophen Drug-Induced Acute Liver Failure.

    PubMed

    Thomas, Arul M; Lewis, James H

    2018-05-01

    Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Investigation into the vibration of metro bogies induced by rail corrugation

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Li, Wei; Foo, Elbert; Wu, Lei; Wen, Zefeng; Jin, Xuesong

    2017-01-01

    The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehicle-track parts, and the loss of ride comfort due to rail corrugation should also be taken into account. However, the influences of rail corrugation on vehicle and track vibration, and failure of vehicle and track structural parts are barely discussed in the literature. This paper presents an experimental and numerical investigation of the structural vibration of metro bogies caused by rail corrugation. Extensive experiments are conducted to investigate the effects of short-pitch rail corrugation on the vibration accelerations of metro bogies. A dynamic model of a metro vehicle coupled with a concrete track is established to study the influence of rail corrugation on the structural vibration of metro bogies. The field test results indicate that the short-pitch rail corrugation generates strong vibrations on the axle-boxes and the bogie frames, therefore, accelerates the fatigue failure of the bogie components. The numerical results show that short-pitch rail corrugation may largely reduce the fatigue life of the coil spring, and improving the damping value of the primary vertical dampers is likely to reduce the strong vibration induced by short-pitch rail corrugation. This research systematically studies the effect of rail corrugation on the vibration of metro bogies and proposes some remedies for mitigating strong vibrations of metro bogies and reducing the incidence of failure in primary coil springs, which would be helpful in developing new metro bogies and track maintenance procedures.

  5. A model for the progressive failure of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Lo, D. C.

    1991-01-01

    Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.

  6. Acoustic emissions (AE) monitoring of large-scale composite bridge components

    NASA Astrophysics Data System (ADS)

    Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.

    2008-03-01

    Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.

  7. Charged-Iron-Particles Found in Galactic Cosmic Rays are Potent Inducers of Epithelial Ovarian Tumors.

    PubMed

    Mishra, Birendra; Lawson, Gregory W; Ripperdan, Ryan; Ortiz, Laura; Luderer, Ulrike

    2018-05-21

    Astronauts traveling in deep space are exposed to high-charge and energy (HZE) particles from galactic cosmic rays. We have previously determined that irradiation of adult female mice with iron HZE particles induces DNA double-strand breaks, oxidative damage and apoptosis in ovarian follicles, causing premature ovarian failure. These effects occur at lower doses than with conventional photon irradiation. Ovarian failure with resultant loss of negative feedback and elevated levels of gonadotropin hormones is thought to play a role in the pathophysiology of ovarian cancer. Therefore, we hypothesized that charged-iron-particle irradiation induces ovarian tumorigenesis in mice. In this study, three-month-old female mice were exposed to 0 cGy (sham) or 50 cGy iron ions and aged to 18 months. The 50 cGy irradiated mice had increased weight gain with age and lack of estrous cycling, consistent with ovarian failure. A total of 47% and 7% of mice irradiated with 50 cGy had unilateral and bilateral ovarian tumors, respectively, whereas 14% of mice in the 0 cGy group had unilateral tumors. The tumors contained multiple tubular structures, which were lined with cells positive for the epithelial marker cytokeratin, and had few proliferating cells. In some tumors, packets of cells between the tubular structures were immunopositive for the granulosa cell marker FOXL2. Based on these findings, tumors were diagnosed as tubular adenomas or mixed tubular adenoma/granulosa cell tumors. In conclusion, charged-iron-particle-radiation induces ovarian tumors in mice, raising concerns about ovarian tumors as late sequelae of deep space travel in female astronauts.

  8. Comparison of hand laid-up tape and filament wound composite cylinders and panels with and without impact damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lopez, Osvaldo F.

    1991-01-01

    Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.

  9. Spatial correlation analysis of cascading failures: Congestions and Blackouts

    PubMed Central

    Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo

    2014-01-01

    Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs. PMID:24946927

  10. Probability of in-vessel steam explosion-induced containment failure for a KWU PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaili, H.; Khatib-Rahbar, M.; Zuchuat, O.

    During postulated core meltdown accidents in light water reactors, there is a likelihood for an in-vessel steam explosion when the melt contacts the coolant in the lower plenum. The objective of the work described in this paper is to determine the conditional probability of in-vessel steam explosion-induced containment failure for a Kraftwerk Union (KWU) pressurized water reactor (PWR). The energetics of the explosion depends on the mass of the molten fuel that mixes with the coolant and participates in the explosion and on the conversion of fuel thermal energy into mechanical work. The work can result in the generation ofmore » dynamic pressures that affect the lower head (and possibly lead to its failure), and it can cause acceleration of a slug (fuel and coolant material) upward that can affect the upper internal structures and vessel head and ultimately cause the failure of the upper head. If the upper head missile has sufficient energy, it can reach the containment shell and penetrate it. The analysis, must therefore, take into account all possible dissipation mechanisms.« less

  11. Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation.

    PubMed

    Lumetti, S; Ghiacci, G; Macaluso, G M; Amore, M; Galli, C; Calciolari, E; Manfredi, E

    2016-01-01

    Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation.

  12. Tardive Dyskinesia, Oral Parafunction, and Implant-Supported Rehabilitation

    PubMed Central

    Amore, M.

    2016-01-01

    Oral movement disorders may lead to prosthesis and implant failure due to excessive loading. We report on an edentulous patient suffering from drug-induced tardive dyskinesia (TD) and oral parafunction (OP) rehabilitated with implant-supported screw-retained prostheses. The frequency and intensity of the movements were high, and no pharmacological intervention was possible. Moreover, the patient refused night-time splint therapy. A series of implant and prosthetic failures were experienced. Implant failures were all in the maxilla and stopped when a rigid titanium structure was placed to connect implants. Ad hoc designed studies are desirable to elucidate the mutual influence between oral movement disorders and implant-supported rehabilitation. PMID:28050290

  13. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multistage Compressor Blading

    DTIC Science & Technology

    1992-03-01

    of realistic reduced frequency values for the ftost time. 14. SUIUECT TEIEMS IS. NUMBER OF PAGES Unsteady Aerodynamic, 143 Flow Induced Vibrations 16...Flat Plate APPENDIX X. Prediction of Turbulence Generated Random Vibrational 106 Response of Turbomachinery Blading 3 APPENDIX XI. Viscous Oscillating...failure is fatigue caused by vibrations at levels exceeding3 material endurance limits. These vibrations occur when a periodic forcing function, with

  14. Cardiac Metabolism in Heart Failure - Implications beyond ATP production

    PubMed Central

    Doenst, Torsten; Nguyen, T. Dung; Abel, E. Dale

    2013-01-01

    The heart has a high rate of ATP production and turnover which is required to maintain its continuous mechanical work. Perturbations in ATP generating processes may therefore affect contractile function directly. Characterizing cardiac metabolism in heart failure revealed several metabolic alterations termed metabolic remodeling, ranging from changes in substrate utilization to mitochondrial dysfunction, ultimately resulting in ATP deficiency and impaired contractility. However, ATP depletion is not the only relevant consequence of metabolic remodeling during heart failure. By providing cellular building blocks and signaling molecules, metabolic pathways control essential processes such as cell growth and regeneration. Thus, alterations in cardiac metabolism may also affect the progression to heart failure by mechanisms beyond ATP supply. Our aim is therefore to highlight that metabolic remodeling in heart failure not only results in impaired cardiac energetics, but also induces other processes implicated in the development of heart failure such as structural remodeling and oxidative stress. Accordingly, modulating cardiac metabolism in heart failure may have significant therapeutic relevance that goes beyond the energetic aspect. PMID:23989714

  15. Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure*.

    PubMed

    Possamai, Lucia A; McPhail, Mark J W; Quaglia, Alberto; Zingarelli, Valentina; Abeles, R Daniel; Tidswell, Robert; Puthucheary, Zudin; Rawal, Jakirty; Karvellas, Constantine J; Leslie, Elaine M; Hughes, Robin D; Ma, Yun; Jassem, Wayel; Shawcross, Debbie L; Bernal, William; Dharwan, Anil; Heaton, Nigel D; Thursz, Mark; Wendon, Julia A; Mitry, Ragai R; Antoniades, Charalambos G

    2013-11-01

    To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of acetaminophen-induced acute liver failure. A prospective observational study in two tertiary liver transplant units. Eighty-eight patients with acetaminophen-induced acute liver failure were recruited. Control groups included patients with nonacetaminophen-induced acute liver failure (n = 13), nonhepatic multiple organ failure (n = 28), chronic liver disease (n = 19), and healthy controls (n = 11). Total and caspase-cleaved cytokeratin-18 (M65 and M30) measured at admission and sequentially on days 3, 7, and 10 following admission. Levels were also determined from hepatic vein, portal vein, and systemic arterial blood in seven patients undergoing transplantation. Protein arrays of liver homogenates from patients with acetaminophen-induced acute liver failure were assessed for apoptosis-associated proteins, and histological assessment of liver tissue was performed. Admission M30 levels were significantly elevated in acetaminophen-induced acute liver failure and non-acetaminophen induced acute liver failure patients compared with multiple organ failure, chronic liver disease, and healthy controls. Admission M30 levels correlated with outcome with area under receiver operating characteristic of 0.755 (0.639-0.885, p < 0.001). Peak levels in patients with acute liver failure were seen at admission then fell significantly but did not normalize over 10 days. A negative gradient of M30 from the portal to hepatic vein was demonstrated in patients with acetaminophen-induced acute liver failure (p = 0.042) at the time of liver transplant. Analysis of protein array data demonstrated lower apoptosis-associated protein and higher catalase concentrations in acetaminophen-induced acute liver failure compared with controls (p < 0.05). Explant histological analysis revealed evidence of cellular proliferation with an absence of histological evidence of apoptosis. Hepatocellular apoptosis occurs in the early phases of human acetaminophen-induced acute liver failure, peaking on day 1 of hospital admission, and correlates strongly with poor outcome. Hepatic regenerative/tissue repair responses prevail during the later stages of acute liver failure where elevated levels of M30 are likely to reflect epithelial cell death in extrahepatic organs.

  16. Could Zinc Whiskers Be Impacting Your Electronic Systems? Raise Your Awareness. Revision D

    NASA Technical Reports Server (NTRS)

    Sampson, Michael; Brusse, Jay

    2003-01-01

    During the past several decades electrical short circuits induced by "Zinc Whiskers" have been cited as the root cause of failure for various electronic systems (e.g., apnea monitors, telecom switches). These tiny filaments of zinc that may grow from some zinc-coated items (especially those coated by electroplating processes) have the potential to induce electrical shorts in exposed circuitry. Through this article, the authors describe a particular failure scenario attributed to zinc whiskers that has affected many facilities (including some NASA facilities) that utilized zinc-coated raised "access" floor tiles and support structures. Zinc whiskers that may be growing beneath your raised floor have the potential to wreak havoc on electronic systems operating above the floor.

  17. Resilience of branching and massive corals to wave loading under sea level rise--a coupled computational fluid dynamics-structural analysis.

    PubMed

    Baldock, Tom E; Karampour, Hassan; Sleep, Rachael; Vyltla, Anisha; Albermani, Faris; Golshani, Aliasghar; Callaghan, David P; Roff, George; Mumby, Peter J

    2014-09-15

    Measurements of coral structural strength are coupled with a fluid dynamics-structural analysis to investigate the resilience of coral to wave loading under sea level rise and a typical Great Barrier Reef lagoon wave climate. The measured structural properties were used to determine the wave conditions and flow velocities that lead to structural failure. Hydrodynamic modelling was subsequently used to investigate the type of the bathymetry where coral is most vulnerable to breakage under cyclonic wave conditions, and how sea level rise (SLR) changes this vulnerability. Massive corals are determined not to be vulnerable to wave induced structural damage, whereas branching corals are susceptible at wave induced orbital velocities exceeding 0.5m/s. Model results from a large suite of idealised bathymetry suggest that SLR of 1m or a loss of skeleton strength of order 25% significantly increases the area of reef flat where branching corals are exposed to damaging wave induced flows. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands

    NASA Astrophysics Data System (ADS)

    Adelinet, M.; Fortin, J.; Schubnel, A.; Guéguen, Y.

    2013-04-01

    According to the stress state, deformation mode observed in rocks may be very different. Even in the brittle part of the crust a differential stress can induce shear failure but also localized compacting deformation, such as compaction bands in porous sedimentary rocks. The mode of deformation controls many hydrodynamic factors, such as permeability and porosity. We investigate in this paper two different modes of deformation in an Icelandic basalt by using laboratory seismological tools (elastic waves and acoustic emissions) and microstructural observations. First of all, we show that at low effective confining pressure (Peff = 5 MPa) an axial loading induces a shear failure in the basalt with an angle of about 30° with respect to the main stress direction. On the contrary, at high effective confining pressure (Peff ≥ 75 MPa and more) an increase of the axial stress induces a localization of the deformation in the form of subhorizontal bands again with respect to the main stress direction. In this second regime, focal mechanisms of the acoustic emissions reveal an important number of compression events suggesting pore collapse mechanisms. Microstructural observations confirm this assumption. Similar compaction structures are usually obtained for porous sedimentary rocks (20-25%). However, the investigated basalt has an initial total porosity of only about 10% so that compaction structures were not expected. The pore size and the ratio of pore to grain size are likely to be key factors for the particular observed mechanical behavior.

  19. Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure.

    PubMed

    Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2013-01-01

    Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.

  20. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudinsmore » were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.« less

  1. Roles of Shape and Internal Structure in Rotational Disruption of Asteroids

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Scheeres, Daniel Jay

    2015-08-01

    An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through determination of its gravity field. This talk will explore these different modes of failure and motivate divergent theories of failure that depend on properties of rubble piles.

  2. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure

    PubMed Central

    2009-01-01

    Background Isoproterenol-induced cardiac hypertrophy in mice has been used in a number of studies to model human cardiac disease. In this study, we compared the transcriptional response of the heart in this model to other animal models of heart failure, as well as to the transcriptional response of human hearts suffering heart failure. Results We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively. We compared our results to 18 different microarray data sets (318 individual arrays) representing various other animal models and four human cardiac diseases and identified a canonical set of 64 genes that are generally altered in failing hearts. We also produced a pairwise similarity matrix to illustrate relatedness of animal models with human heart disease and identified ischemia as the human condition that most resembles isoproterenol treatment. Conclusion The overall patterns of gene expression are consistent with observed structural and molecular differences between normal and maladaptive cardiac hypertrophy and support a role for the immune system (or immune cell infiltration) in the pathology of stress-induced hypertrophy. Cross-study comparisons such as the results presented here provide targets for further research of cardiac disease that might generally apply to maladaptive cardiac stresses and are also a means of identifying which animal models best recapitulate human disease at the transcriptional level. PMID:20003209

  3. Estimating earthquake-induced failure probability and downtime of critical facilities.

    PubMed

    Porter, Keith; Ramer, Kyle

    2012-01-01

    Fault trees have long been used to estimate failure risk in earthquakes, especially for nuclear power plants (NPPs). One interesting application is that one can assess and manage the probability that two facilities - a primary and backup - would be simultaneously rendered inoperative in a single earthquake. Another is that one can calculate the probabilistic time required to restore a facility to functionality, and the probability that, during any given planning period, the facility would be rendered inoperative for any specified duration. A large new peer-reviewed library of component damageability and repair-time data for the first time enables fault trees to be used to calculate the seismic risk of operational failure and downtime for a wide variety of buildings other than NPPs. With the new library, seismic risk of both the failure probability and probabilistic downtime can be assessed and managed, considering the facility's unique combination of structural and non-structural components, their seismic installation conditions, and the other systems on which the facility relies. An example is offered of real computer data centres operated by a California utility. The fault trees were created and tested in collaboration with utility operators, and the failure probability and downtime results validated in several ways.

  4. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors.

    PubMed

    Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo

    2015-12-02

    The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = -1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 10⁸ cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.

  5. Determinants of the development of mitral regurgitation in pacing-induced heart failure.

    PubMed

    Takagaki, Masami; McCarthy, Patrick M; Goormastic, Marlene; Ochiai, Yoshie; Doi, Kazuyoshi; Kopcak, Michael W; Tabata, Tomotsugu; Cardon, Lisa A; Thomas, James D; Fukamachi, Kiyotaka

    2003-01-01

    The pacing-induced heart failure model provides an opportunity to assess the structural and functional determinants of mitral regurgitation (MR) in dilated cardiomyopathy. This study aimed to evaluate MR to better understand the multitude of factors contributing to its development. Heart failure was induced by rapid ventricular pacing (230 beats/min) in 40 mongrel dogs. Left ventricular (LV) size and MR were evaluated echocardiographically. LV contractility was analyzed using a conductance catheter. MR increased to mild in 12 animals (regurgitant orifice area, 0.06+/-0.05 cm(2)), moderate in 15 (0.14+/-0.07 cm(2)), and severe in 13 (0.34+/-0.16 cm(2)). The grade of MR had an inverse relationships with E(max) (the slope of the end-systolic pressure-volume relationship, p<0.01) and dE/dt (the slope of the maximum rate of change of pressure-end-diastolic volume [V(ED)] relationship, p<0.01) and positive relationships with V(ED) and end-diastolic cross-sectional areas and lengths (p<0.05) by univariate analysis. The dE/dt had an independently significant (p<0.01) relationship by multivariable logistic regression. Many factors influence the development of MR and because of its similarity to the clinical situation, this model can be used to investigate MR and heart failure, as well as new surgical therapies.

  6. Surface flaw reliability analysis of ceramic components with the SCARE finite element postprocessor program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.; Nemeth, Noel N.

    1987-01-01

    The SCARE (Structural Ceramics Analysis and Reliability Evaluation) computer program on statistical fast fracture reliability analysis with quadratic elements for volume distributed imperfections is enhanced to include the use of linear finite elements and the capability of designing against concurrent surface flaw induced ceramic component failure. The SCARE code is presently coupled as a postprocessor to the MSC/NASTRAN general purpose, finite element analysis program. The improved version now includes the Weibull and Batdorf statistical failure theories for both surface and volume flaw based reliability analysis. The program uses the two-parameter Weibull fracture strength cumulative failure probability distribution model with the principle of independent action for poly-axial stress states, and Batdorf's shear-sensitive as well as shear-insensitive statistical theories. The shear-sensitive surface crack configurations include the Griffith crack and Griffith notch geometries, using the total critical coplanar strain energy release rate criterion to predict mixed-mode fracture. Weibull material parameters based on both surface and volume flaw induced fracture can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and grouped fracture data. The statistical fast fracture theories for surface flaw induced failure, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.

  7. Atomic-Scale Mechanisms of Defect-Induced Retention Failure in Ferroelectrics.

    PubMed

    Li, Linze; Zhang, Yi; Xie, Lin; Jokisaari, Jacob R; Beekman, Christianne; Yang, Jan-Chi; Chu, Ying-Hao; Christen, Hans M; Pan, Xiaoqing

    2017-06-14

    The ability to switch the ferroelectric polarization using an electric field makes ferroelectrics attractive for application in nanodevices such as high-density memories. One of the major challenges impeding this application, however, has been known as "retention failure", which is a spontaneous process of polarization back-switching that can lead to data loss. This process is generally thought to be caused by the domain instability arising from interface boundary conditions and countered by defects, which can pin the domain wall and impede the back-switching. Here, using in situ transmission electron microscopy and atomic-scale scanning transmission electron microscopy, we show that the polarization retention failure can be induced by commonly observed nanoscale impurity defects in BiFeO 3 thin films. The interaction between polarization and the defects can also lead to the stabilization of novel functional nanodomains with mixed-phase structures and head-to-head polarization configurations. Thus, defect engineering provides a new route for tuning properties of ferroelectric nanosystems.

  8. A New Modular Approach for Tightly Coupled Fluid/Structure Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru

    2003-01-01

    Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.

  9. Failure analysis of an aluminum alloy material framework component induced by casting defects

    NASA Astrophysics Data System (ADS)

    Li, Bo; Hu, Weiye

    2017-09-01

    Failure analysis on a fractured radome framework component was carried out through visual observations, metallographic examination using optical microscope, fractog-raphy inspections using scanning electron microscope and chemical composition analysis. The failed frame was made of casting Al-Si7-Mg0.4 aluminum alloy. It had suffered a former vi-bration performance tests. It was indicated that the fractures were attributed to fatigue cracks which were induced by casting porosities at the outer surfaces of frame. Failure analysis was carefully conducted for the semi-penetrating crack appearing on the framework. According to the fractography inspected by scanning electron microscope, it was indicated that numerous casting porosities at the outer surface of the framework played the role of multiple fracture sources due to some applied stresses. Optical microstructure observations suggested that the dendrite-shaped casting porosities largely contributed to the crack-initiation. The groove-shaped structure at roots of spatial convex-bodies on the edge of casting porosities supplied the preferred paths of the crack-propagation. Besides, the brittle silicon eutectic particles distrib-uting along grain boundaries induced the intergranular fracture mode in the region of the over-load final fracture surface.

  10. Modeling and Studying the Effect of Texture and Elastic Anisotropy of Copper Microstructure in Nanoscale Interconnects on Reliability in Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Basavalingappa, Adarsh

    Copper interconnects are typically polycrystalline and follow a lognormal grain size distribution. Polycrystalline copper interconnect microstructures with a lognormal grain size distribution were obtained with a Voronoi tessellation approach. The interconnect structures thus obtained were used to study grain growth mechanisms, grain boundary scattering, scattering dependent resistance of interconnects, stress evolution, vacancy migration, reliability life times, impact of orientation dependent anisotropy on various mechanisms, etc. In this work, the microstructures were used to study the impact of microstructure and elastic anisotropy of copper on thermal and electromigration induced failure. A test structure with copper and bulk moduli values was modeled to do a comparative study with the test structures with textured microstructure and elastic anisotropy. By subjecting the modeled test structure to a thermal stress by ramping temperature down from 400 °C to 100 °C, a significant variation in normal stresses and pressure were observed at the grain boundaries. This variation in normal stresses and hydrostatic stresses at the grain boundaries was found to be dependent on the orientation, dimensions, surroundings, and location of the grains. This may introduce new weak points within the metal line where normal stresses can be very high depending on the orientation of the grains leading to delamination and accumulation sites for vacancies. Further, the hydrostatic stress gradients act as a driving force for vacancy migration. The normal stresses can exceed certain grain orientation dependent critical threshold values and induce delamination at the copper and cap material interface, thereby leading to void nucleation and growth. Modeled test structures were subjected to a series of copper depositions at 250 °C followed by copper etch at 25 °C to obtain initial stress conditions. Then the modeled test structures were subjected to 100,000 hours ( 11.4 years) of simulated thermal stress at an elevated temperature of 150 °C. Vacancy migration due to concentration gradients, thermal gradients, and mechanical stress gradients were considered under the applied thermal stress. As a result, relatively high concentrations of vacancies were observed in the test structure due to a driving force caused by the pressure gradients resulting from the elastic anisotropy of copper. The grain growth mechanism was not considered in these simulations. Studies with two grain analysis demonstrated that the stress gradients developed will be severe when (100) grains are adjacent to (111) grains, therefore making them the weak points for potentially reliability failures. Ilan Blech discovered that electromigration occurs above a critical product of the current density and metal length, commonly referred as Blech condition. Electromigration stress simulations in this work were carried out by subjecting test structures to scaled current densities to overcome the Blech condition of (jL)crit for small dimensions of test structure and the low temperature stress condition used. Vacancy migration under the electromigration stress conditions was considered along with the vacancy migration induced stress evolution. A simple void growth model was used which assumes voids start to form when vacancies reach a critical level. Increase of vacancies in a localized region increases the resistance of the metal line. Considering a 10% increase in resistance as a failure criterion, the distributions of failure times were obtained for given electromigration stress conditions. Bimodal/multimodal failure distributions were obtained as a result. The sigma values were slightly lower than the ones commonly observed from experiments. The anisotropy of the elastic moduli of copper leads to the development of significantly different stress values which are dependent on the orientation of the grains. This results in some grains having higher normal stress than the others. This grain orientation dependent normal stress can reach a critical stress necessary to induce delamination at the copper and cap interface. Time taken to reach critical stress was considered as time to fail and distributions of failure times were obtained for structures with different grain orientations in the microstructure for different critical stress values. The sigma values of the failure distributions thus obtained for different constant critical stress values had a strong dependence of on the critical stress. It is therefore critical to use the appropriate critical stress value for the delamination of copper and cap interface. The critical stress necessary to overcome the local adhesion of the copper and the cap material interface is dependent on grain orientation of the copper. Simulations were carried out by considering grain orientation dependent critical normal stress values as failure criteria. The sigma value thus obtained with selected critical stress values were comparable to sigma values commonly observed from experiments.

  11. Fibre Break Failure Processes in Unidirectional Composites. Part 2: Failure and Critical Damage State Induced by Sustained Tensile Loading

    NASA Astrophysics Data System (ADS)

    Thionnet, A.; Chou, H. Y.; Bunsell, A.

    2015-04-01

    The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.

  12. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension

    PubMed Central

    Benoist, David; Stones, Rachel; Drinkhill, Mark J.; Benson, Alan P.; Yang, Zhaokang; Cassan, Cecile; Gilbert, Stephen H.; Saint, David A.; Cazorla, Olivier; Steele, Derek S.; Bernus, Olivier

    2012-01-01

    Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca2+ handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca2+ transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca2+-ATPase activity, increased sarcoplasmic reticular Ca2+-release fraction, and increased Ca2+ spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca2+ handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs. PMID:22427523

  13. Multiple Fatigue Failure Behaviors and Long-Life Prediction Approach of Carburized Cr-Ni Steel with Variable Stress Ratio

    PubMed Central

    Deng, Hailong; Li, Wei; Zhao, Hongqiao; Sakai, Tatsuo

    2017-01-01

    Axial loading tests with stress ratios R of −1, 0 and 0.3 were performed to examine the fatigue failure behavior of a carburized Cr-Ni steel in the long-life regime from 104 to 108 cycles. Results show that this steel represents continuously descending S-N characteristics with interior inclusion-induced failure under R = −1, whereas it shows duplex S-N characteristics with surface defect-induced failure and interior inclusion-induced failure under R = 0 and 0.3. The increasing tension eliminates the effect of compressive residual stress and promotes crack initiation from the surface or interior defects in the carburized layer. The FGA (fine granular area) formation greatly depends on the number of loading cycles, but can be inhibited by decreasing the compressive stress. Based on the evaluation of the stress intensity factor at the crack tip, the surface and interior failures in the short life regime can be characterized by the crack growth process, while the interior failure with the FGA in the long life regime can be characterized by the crack initiation process. In view of the good agreement between predicted and experimental results, the proposed approach can be well utilized to predict fatigue lives associated with interior inclusion-FGA-fisheye induced failure, interior inclusion-fisheye induced failure, and surface defect induced failure. PMID:28906454

  14. Imatinib-induced fulminant liver failure in chronic myeloid leukemia: role of liver transplant and second-generation tyrosine kinase inhibitors: a case report.

    PubMed

    Nacif, Lucas Souto; Waisberg, Daniel R; Pinheiro, Rafael Soares; Lima, Fabiana Roberto; Rocha-Santos, Vinicius; Andraus, Wellington; D'Albuquerque, Luiz Carneiro

    2018-03-10

    There is a worldwide problem of acute liver failure and mortality associated with remaining on the waiting for a liver transplant. In this study, we highlight results published in recent years by leading transplant centers in evaluating imatinib-induced acute liver failure in chronic myeloid leukemia and follow-up in liver transplantation. A 36-year-old brown-skinned woman (mixed Brazilian race) diagnosed 1 year earlier with chronic myeloid leukemia was started after delivery of a baby and continued for 6 months with imatinib mesylate (selective inhibitor of Bcr-Abl tyrosine kinase), which induced liver failure. We conducted a literature review using the PubMed database for articles published through September 2017, and we demonstrate a role of liver transplant in this situation for imatinib-induced liver failure. We report previously published results and a successful liver transplant after acute liver failure due to imatinib-induced in chronic myeloid leukemia treatment. We report a case of a successful liver transplant after acute liver failure resulting from imatinib-induced chronic myeloid leukemia treatment. The literature reveals the importance of prompt acute liver failure diagnosis and treatment with liver transplant in selected cases.

  15. Seismic reflection characteristics of naturally-induced subsidence affecting transportation

    USGS Publications Warehouse

    Miller, R.D.; Xia, J.; Steeples, D.W.

    2009-01-01

    High-resolution seismic reflections have been used effectively to investigate sinkholes formed from the dissolution of a bedded salt unit found throughout most of Central Kansas. Surface subsidence can have devastating effects on transportation structures. Roads, rails, bridges, and pipelines can even be dramatically affected by minor ground instability. Areas susceptible to surface subsidence can put public safety at risk. Subsurface expressions significantly larger than surface depressions are consistently observed on seismic images recorded over sinkholes in Kansas. Until subsidence reaches the ground surface, failure appears to be controlled by compressional forces evidenced by faults with reverse orientation. Once a surface depression forms or dissolution of the salt slows or stops, subsidence structures are consistent with a tensional stress environment with prevalent normal faults. Detecting areas of rapid subsidence potential, prior to surface failure, is the ultimate goal of any geotechnical survey where the ground surface is susceptible to settling. Seismic reflection images have helped correlate active subsidence to dormant paleofeatures, project horizontal growth of active sinkholes based on subsurface structures, and appraise the risk of catastrophic failure. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  16. Pressurized-water reactor internals aging degradation study. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, K.H.

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pinsmore » and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.« less

  17. In Situ Observation of Failure Mechanisms Controlled by Rock Masses with Weak Interlayer Zones in Large Underground Cavern Excavations Under High Geostress

    NASA Astrophysics Data System (ADS)

    Duan, Shu-Qian; Feng, Xia-Ting; Jiang, Quan; Liu, Guo-Feng; Pei, Shu-Feng; Fan, Yi-Lin

    2017-09-01

    A weak interlayer zone (WIZ) is a poor rock mass system with loose structure, weak mechanical properties, variable thickness, random distribution, strong extension, and high risk due to the shear motion of rock masses under the action of tectonism, bringing many stability problems and geological hazards, especially representing a potential threat to the overall stability of rock masses with WIZs in large underground cavern excavations. Focusing on the deformation and failure problems encountered in the process of excavation unloading, this research proposes comprehensive in situ observation schemes for rock masses with WIZs in large underground cavern on the basis of the collection of geological, construction, monitoring, and testing data. The schemes have been fully applied in two valuable project cases of an underground cavern group under construction in the southwest of China, including the plastic squeezing-out tensile failure and the structural stress-induced collapse of rock masses with WIZs. In this way, the development of rock mass failure, affected by the step-by-step excavations along the cavern's axis and the subsequent excavation downward, could be observed thoroughly. Furthermore, this paper reveals the preliminary analyses of failure mechanism of rock masses with WIZs from several aspects, including rock mass structure, strength, high stress, ground water effects, and microfracture mechanisms. Finally, the failure particularities of rock masses with WIZs and rethink on prevention and control of failures are discussed. The research results could provide important guiding reference value for stability analysis, as well as for rethinking the excavation and support optimization of rock masses with WIZs in similar large underground cavern under high geostress.

  18. Failure at Frame-Stringer Intersections in PRSEUS Panels

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2012-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This study focuses on the intersection between the rod-stiffener and the foam-filled frame in a PRSEUS specimen. Compression loading is considered, which induces stress concentrations at the intersection point that can lead to failures. An experiment with accompanying analysis for a single-frame specimen is described, followed by a parametric study of simple reinforcements to reduce strains in the intersection region.

  19. Recent Advances in Tsunami-Seabed-Structure Interaction from Geotechnical and Hydrodynamic Perspectives

    NASA Astrophysics Data System (ADS)

    Sassa, S.

    2017-12-01

    This presentation shows some recent research advances on tsunami-seabed-structure interaction following the 2011 Tohoku Earthquake Tsunami, Japan. It presents a concise summary and discussion of utilizing a geotechnical centrifuge and a large-scale hydro flume for the modelling of tsunami-seabed-structure interaction. I highlight here the role of tsunami-induced seepage in piping/boiling, erosion and bearing capacity decrease and failure of the rubble/seabed foundation. A comparison and discussion are made on the stability assessment for the design of tsunami-resistant structures on the basis of the results from both geo-centrifuge and large-scale hydrodynamic experiments. The concurrent processes of the instability involving the scour of the mound/sandy seabed, bearing capacity failure and flow of the foundation and the failure of caisson breakwaters under tsunami overflow and seepage coupling are made clear in this presentation. Three series of experiments were conducted under fifty gravities. The first series of experiments targeted the instability of the mounds themselves, and the second series of experiments clarified how the mound scour would affect the overall stability of the caissons. The third series of experiments examined the effect of a countermeasure on the basis of the results from the two series of experiments. The experimental results first demonstrated that the coupled overflow-seepage actions promoted the development of the mound scour significantly, and caused bearing capacity failure of the mound, resulting in the total failure of the caisson breakwater, which otherwise remained stable without the coupling effect. The velocity vectors obtained from the high-resolution image analysis illustrated the series of such concurrent scour/bearing-capacity-failure/flow processes leading to the instability of the breakwater. The stability of the breakwaters was significantly improved with decreasing hydraulic gradient underneath the caissons due to an embankment effect. These findings elucidate the crucial role of overflow/seepage coupling in tsunami-seabed-structure interaction from both geotechnical and hydrodynamic perspectives, as an interdisciplinary tsunami science, warranting an enhanced disaster resilience.

  20. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload.

    PubMed

    Ribeiro Junior, Rogério Faustino; Dabkowski, Erinne Rose; Shekar, Kadambari Chandra; O Connell, Kelly A; Hecker, Peter A; Murphy, Michael P

    2018-03-01

    Heart failure remains a major public-health problem with an increase in the number of patients worsening from this disease. Despite current medical therapy, the condition still has a poor prognosis. Heart failure is complex but mitochondrial dysfunction seems to be an important target to improve cardiac function directly. Our goal was to analyze the effects of MitoQ (100 µM in drinking water) on the development and progression of heart failure induced by pressure overload after 14 weeks. The main findings are that pressure overload-induced heart failure in rats decreased cardiac function in vivo that was not altered by MitoQ. However, we observed a reduction in right ventricular hypertrophy and lung congestion in heart failure animals treated with MitoQ. Heart failure also decreased total mitochondrial protein content, mitochondrial membrane potential in the intermyofibrillar mitochondria. MitoQ restored membrane potential in IFM but did not restore mitochondrial protein content. These alterations are associated with the impairment of basal and stimulated mitochondrial respiration in IFM and SSM induced by heart failure. Moreover, MitoQ restored mitochondrial respiration in heart failure induced by pressure overload. We also detected higher levels of hydrogen peroxide production in heart failure and MitoQ restored the increase in ROS production. MitoQ was also able to improve mitochondrial calcium retention capacity, mainly in the SSM whereas in the IFM we observed a small alteration. In summary, MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload, by decreasing hydrogen peroxide formation, improving mitochondrial respiration and improving mPTP opening. Published by Elsevier Inc.

  1. Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site.

    PubMed

    Bradley, Todd; Fera, Daniela; Bhiman, Jinal; Eslamizar, Leila; Lu, Xiaozhi; Anasti, Kara; Zhang, Ruijung; Sutherland, Laura L; Scearce, Richard M; Bowman, Cindy M; Stolarchuk, Christina; Lloyd, Krissey E; Parks, Robert; Eaton, Amanda; Foulger, Andrew; Nie, Xiaoyan; Karim, Salim S Abdool; Barnett, Susan; Kelsoe, Garnett; Kepler, Thomas B; Alam, S Munir; Montefiori, David C; Moody, M Anthony; Liao, Hua-Xin; Morris, Lynn; Santra, Sampa; Harrison, Stephen C; Haynes, Barton F

    2016-01-05

    Antibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not. Here, we show that immunization with TF mutant Envs gp140 oligomers induced high-titer, V5-dependent plasma neutralization for a Tier-2 autologous TF evolved mutant virus. Structural analysis of autologous nAb DH427 revealed binding to V5, demonstrating the source of narrow nAb specificity and explaining the failure to acquire breadth. Thus, oligomeric TF Envs can elicit autologous nAbs to Tier-2 HIVs, but induction of bnAbs will require targeting of precursors of B cell lineages that can mature to heterologous neutralization. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Characterization of Aftershock Sequences from Large Strike-Slip Earthquakes Along Geometrically Complex Faults

    NASA Astrophysics Data System (ADS)

    Sexton, E.; Thomas, A.; Delbridge, B. G.

    2017-12-01

    Large earthquakes often exhibit complex slip distributions and occur along non-planar fault geometries, resulting in variable stress changes throughout the region of the fault hosting aftershocks. To better discern the role of geometric discontinuities on aftershock sequences, we compare areas of enhanced and reduced Coulomb failure stress and mean stress for systematic differences in the time dependence and productivity of these aftershock sequences. In strike-slip faults, releasing structures, including stepovers and bends, experience an increase in both Coulomb failure stress and mean stress during an earthquake, promoting fluid diffusion into the region and further failure. Conversely, Coulomb failure stress and mean stress decrease in restraining bends and stepovers in strike-slip faults, and fluids diffuse away from these areas, discouraging failure. We examine spatial differences in seismicity patterns along structurally complex strike-slip faults which have hosted large earthquakes, such as the 1992 Mw 7.3 Landers, the 2010 Mw 7.2 El-Mayor Cucapah, the 2014 Mw 6.0 South Napa, and the 2016 Mw 7.0 Kumamoto events. We characterize the behavior of these aftershock sequences with the Epidemic Type Aftershock-Sequence Model (ETAS). In this statistical model, the total occurrence rate of aftershocks induced by an earthquake is λ(t) = λ_0 + \\sum_{i:t_i

  3. TVP1022 attenuates cardiac remodeling and kidney dysfunction in experimental volume overload-induced congestive heart failure.

    PubMed

    Abassi, Zaid A; Barac, Yaron D; Kostin, Sawa; Roguin, Ariel; Ovcharenko, Elena; Awad, Hoda; Blank, Ayelet; Bar-Am, Orit; Amit, Tamar; Schaper, Jutta; Youdim, Moussa; Binah, Ofer

    2011-07-01

    Despite the availability of many pharmacological and mechanical therapies, the mortality rate among patients with congestive heart failure (CHF) remains high. We tested the hypothesis that TVP1022 (the S-isomer of rasagiline; Azilect), a neuroprotective and cytoprotective molecule, is also cardioprotective in the settings of experimental CHF in rats. In rats with volume overload-induced CHF, we investigated the therapeutic efficacy of TVP1022 (7.5 mg/kg) on cardiac function, structure, biomarkers, and kidney function. Treatment with TVP1022 for 7 days before CHF induction prevented the increase in left ventricular end-diastolic area and end-systolic area, and the decrease in fractional shortening measured 14 days after CHF induction. Additionally, TVP1022 pretreatment attenuated CHF-induced cardiomyocyte hypertrophy, fibrosis, plasma and ventricular B-type natriuretic peptide levels, and reactive oxygen species expression. Further, in CHF rats, TVP1022 decreased cytochrome c and caspase 3 expression, thereby contributing to the cardioprotective efficacy of the drug. TVP1022 also enhanced the urinary Na(+) excretion and improved the glomerular filtration rate. Similar cardioprotective effects were obtained when TVP1022 was given to rats after CHF induction. TVP1022 attenuated the adverse functional, structural, and molecular alterations in CHF, rendering this drug a promising candidate for improving cardiac and renal function in this disease state.

  4. Simulation Assisted Risk Assessment: Blast Overpressure Modeling

    NASA Technical Reports Server (NTRS)

    Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael

    2006-01-01

    A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.

  5. Satellite vulnerability to space debris - an improved 3D risk assessment methodology

    NASA Astrophysics Data System (ADS)

    Grassi, Lilith; Tiboldo, Francesca; Destefanis, Roberto; Donath, Thérèse; Winterboer, Arne; Evans, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schäfer, Frank; Gelhaus, Johannes

    2014-06-01

    The work described in the present paper, performed as a part of the P2 project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE). The analysis conducted on the case study satellite shows the S/C vulnerability index to be in the range of about 4% over the complete mission, with a significant reduction with respect to the results typically obtained with the traditional analysis, which considers as a failure the structural penetration of the satellite structural panels. The methodology has then been applied to select design strategies (additional local shielding, relocation of components) to improve S/C protection with respect to MMOD. The results of the analyses conducted on the improved design show a reduction of the vulnerability index of about 18%.

  6. [The diagnostic importance of the new marker KIM-1 in kidney damage].

    PubMed

    Marchewka, Zofia; Płonka, Joanna

    2013-07-24

    In recent years, the rapid development of scientific research led to the introduction of strategies based on new markers that allow for estimation of the latent disease period before the clinical symptoms of actual kidney failure are revealed. The experimental tests carried out on animals and cell lines derived from the proximal tubule have made possible the detection of genes that are induced early after hypoxia. The protein products of these genes can be considered as useful markers for the diagnosis of renal failure. The induction of gene KIM-1 (called Kidney Injury Molecule-1) results in the formation of protein that can be considered as a diagnostic marker. This work describes the data on the structure, biological function and importance of determining the concentrations of KIM-1 in the diagnosis of drug-induced toxicity and kidney damage.

  7. Effect of fibrin glue occlusion of the hepatobiliary tract on thioacetamide-induced liver failure.

    PubMed

    Schmandra, T C; Bauer, H; Petrowsky, H; Herrmann, G; Encke, A; Hanisch, E

    2001-07-01

    Expression and activation of hepatocyte growth factor (HGF) is stimulated by a complex system of interacting proteins, with thrombin playing an initial role in this process. The impact of temporary occlusion of the hepatobiliary tract with fibrin glue (major component thrombin) on the HGF system in acute and chronic liver damage in a rat model was investigated. Chronic liver damage was induced in 40 rats by daily intraperitoneal application of thioacetamide (100 mg/kg) for 14 days. After 7 days half of them received an injection of 0.2 mL fibrin glue into the hepatobiliary system. Daily intraperitoneal administration of thioacetamide continued for 7 consecutive days. The rats were then sacrificed for blood and tissue analysis. Acute liver failure was induced in 12 rats by intraperitoneal administration of a lethal dose of thioacetamide (500 mg/kg per day for 3 days) after an injection with 0.2 mL fibrin glue into their hepatobiliary tract. Survival rates and histological outcome were investigated and compared with control animals. Fibrin glue occluded rats showed significantly lower liver enzyme activities and serum levels of bilirubin, creatinine and urea nitrogen. Immunohistochemistry revealed a significant increase in c-met-, HGFalpha- and especially HGFbeta-positive cells. Rats subjected to a lethal dose of thioacetamide survived when fibrin glue was applied 24 hours prior to the toxic challenge. These animals showed normal liver structure and no clinical abnormalities. Fibrin glue occlusion of the hepatobiliary tract induces therapeutic and prophylactic effects on chronic and acute liver failure by stimulating the HGF system. Therefore, fibrin glue occlusion might be useful in treating toxic liver failure.

  8. Reliability analysis of the F-8 digital fly-by-wire system

    NASA Technical Reports Server (NTRS)

    Brock, L. D.; Goodman, H. A.

    1981-01-01

    The F-8 Digital Fly-by-Wire (DFBW) flight test program intended to provide the technology for advanced control systems, giving aircraft enhanced performance and operational capability is addressed. A detailed analysis of the experimental system was performed to estimated the probabilities of two significant safety critical events: (1) loss of primary flight control function, causing reversion to the analog bypass system; and (2) loss of the aircraft due to failure of the electronic flight control system. The analysis covers appraisal of risks due to random equipment failure, generic faults in design of the system or its software, and induced failure due to external events. A unique diagrammatic technique was developed which details the combinatorial reliability equations for the entire system, promotes understanding of system failure characteristics, and identifies the most likely failure modes. The technique provides a systematic method of applying basic probability equations and is augmented by a computer program written in a modular fashion that duplicates the structure of these equations.

  9. Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.

    2007-01-01

    Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.

  10. Rupture testing for the quality control of electrodeposited copper interconnections in high-speed, high-density circuits

    NASA Technical Reports Server (NTRS)

    Zakraysek, Louis

    1987-01-01

    Printed Wiring Multilayer Board (PWMLB) structures for high speed, high density circuits are prone to failure due to the microcracking of electrolytic copper interconnections. The failure can occur in the foil that makes up the inner layer traces or in the plated through holes (PTH) deposit that forms the layer to layer interconnections. It is shown that there are some distinctive differences in the quality of Type E copper and that these differences can be detected before its use in a PWMLB. It is suggested that the strength of some Type E copper can be very low when the material is hot and that it is the use of this poor quality material in a PWMLB that results in PTH and inner layer microcracking. Since the PWMLB failure in question are induced by a thermal stress, and since the poorer grades of Type E materials used in these structures are susceptible to premature failure under thermal stress, the use of elevated temperature rupture and creep rupture testing is proposed as a means for screening copper foil, or its PTH equivalent, in order to eliminate the problem of Type E copper microcracking in advanced PWMLBs.

  11. Cascading failures mechanism based on betweenness-degree ratio distribution with different connecting preferences

    NASA Astrophysics Data System (ADS)

    Wang, Xiao Juan; Guo, Shi Ze; Jin, Lei; Chen, Mo

    We study the structural robustness of the scale free network against the cascading failure induced by overload. In this paper, a failure mechanism based on betweenness-degree ratio distribution is proposed. In the cascading failure model we built the initial load of an edge which is proportional to the node betweenness of its ends. During the edge random deletion, we find a phase transition. Then based on the phase transition, we divide the process of the cascading failure into two parts: the robust area and the vulnerable area, and define the corresponding indicator to measure the performance of the networks in both areas. From derivation, we find that the vulnerability of the network is determined by the distribution of betweenness-degree ratio. After that we use the connection between the node ability coefficient and distribution of betweenness-degree ratio to explain the cascading failure mechanism. In simulations, we verify the correctness of our derivations. By changing connecting preferences, we find scale free networks with a slight assortativity, which performs better both in robust area and vulnerable area.

  12. Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV

    NASA Astrophysics Data System (ADS)

    Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy

    2011-04-01

    In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.

  13. Impact of Leucine Supplementation on Exercise Training Induced Anti-Cardiac Remodeling Effect in Heart Failure Mice

    PubMed Central

    de Moraes, Wilson Max Almeida Monteiro; Melara, Thaís Plasti; de Souza, Pamella Ramona Moraes; de Salvi Guimarães, Fabiana; Bozi, Luiz Henrique Marchesi; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-01-01

    Leucine supplementation potentiates the effects of aerobic exercise training (AET) on skeletal muscle; however, its potential effects associated with AET on cardiac muscle have not been clarified yet. We tested whether leucine supplementation would potentiate the anti-cardiac remodeling effect of AET in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CARKO). Mice were assigned to five groups: wild type mice treated with placebo and sedentary (WT, n = 11), α2A/α2CARKO treated with placebo and sedentary (KO, n = 9), α2A/α2CARKO treated with leucine and sedentary (KOL, n = 11), α2A/α2CARKO treated with placebo and AET (KOT, n = 12) or α2A/α2CARKO treated with leucine and AET (KOLT, n = 12). AET consisted of four weeks on a treadmill with 60 min sessions (six days/week, 60% of maximal speed) and administration by gavage of leucine (1.35 g/kg/day) or placebo (distilled water). The AET significantly improved exercise capacity, fractional shortening and re-established cardiomyocytes’ diameter and collagen fraction in KOT. Additionally, AET significantly prevented the proteasome hyperactivity, increased misfolded proteins and HSP27 expression. Isolated leucine supplementation displayed no effect on cardiac function and structure (KOL), however, when associated with AET (KOLT), it increased exercise tolerance to a higher degree than isolated AET (KOT) despite no additional effects on AET induced anti-cardiac remodeling. Our results provide evidence for the modest impact of leucine supplementation on cardiac structure and function in exercised heart failure mice. Leucine supplementation potentiated AET effects on exercise tolerance, which might be related to its recognized impact on skeletal muscle. PMID:25988767

  14. How Robust Is Your Project? From Local Failures to Global Catastrophes: A Complex Networks Approach to Project Systemic Risk.

    PubMed

    Ellinas, Christos; Allan, Neil; Durugbo, Christopher; Johansson, Anders

    2015-01-01

    Current societal requirements necessitate the effective delivery of complex projects that can do more while using less. Yet, recent large-scale project failures suggest that our ability to successfully deliver them is still at its infancy. Such failures can be seen to arise through various failure mechanisms; this work focuses on one such mechanism. Specifically, it examines the likelihood of a project sustaining a large-scale catastrophe, as triggered by single task failure and delivered via a cascading process. To do so, an analytical model was developed and tested on an empirical dataset by the means of numerical simulation. This paper makes three main contributions. First, it provides a methodology to identify the tasks most capable of impacting a project. In doing so, it is noted that a significant number of tasks induce no cascades, while a handful are capable of triggering surprisingly large ones. Secondly, it illustrates that crude task characteristics cannot aid in identifying them, highlighting the complexity of the underlying process and the utility of this approach. Thirdly, it draws parallels with systems encountered within the natural sciences by noting the emergence of self-organised criticality, commonly found within natural systems. These findings strengthen the need to account for structural intricacies of a project's underlying task precedence structure as they can provide the conditions upon which large-scale catastrophes materialise.

  15. Molecular Evidence of Stress-Induced Acute Heart Injury in a Mouse Model Simulating Posttraumatic Stress Disorder

    DTIC Science & Technology

    2014-02-25

    risk of drug or alcohol abuse. In addition, patients with PTSD often display structural changes in the pre- frontal cortex, the amygdala, and the... triglyceride levels (12–15). An 1871 report noted that serious cardiac disorders (car- diomyopathies, heart failure, heart pain, etc.) were a consequence of...epicardium probably play a key role in the EMT process (30, 31). Maintaining the proper ECM structure is critical to pre- serving the architecture and

  16. Propylthiouracil-Induced Acute Liver Failure: Role of Liver Transplantation

    PubMed Central

    Carrion, Andres F.; Czul, Frank; Arosemena, Leopoldo R.; Selvaggi, Gennaro; Garcia, Monica T.; Tekin, Akin; Tzakis, Andreas G.; Martin, Paul; Ghanta, Ravi K.

    2010-01-01

    Propylthiouracil- (PTU-) induced hepatotoxicity is rare but potentially lethal with a spectrum of liver injury ranging from asymptomatic elevation of transaminases to fulminant hepatic failure and death. We describe two cases of acute hepatic failure due to PTU that required liver transplantation. Differences in the clinical presentation, histological characteristics, and posttransplant management are described as well as alternative therapeutic options. Frequent monitoring for PTU-induced hepatic dysfunction is strongly advised because timely discontinuation of this drug and implementation of noninvasive therapeutic interventions may prevent progression to liver failure or even death. PMID:21234410

  17. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    NASA Astrophysics Data System (ADS)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  18. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy.

    PubMed

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-12-01

    Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. © 2013 The British Pharmacological Society.

  19. Health Monitoring of a Rotating Disk Using a Combined Analytical-Experimental Approach

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Woike, Mark R.; Lekki, John D.; Baaklini, George Y.

    2009-01-01

    Rotating disks undergo rigorous mechanical loading conditions that make them subject to a variety of failure mechanisms leading to structural deformities and cracking. During operation, periodic loading fluctuations and other related factors cause fractures and hidden internal cracks that can only be detected via noninvasive types of health monitoring and/or nondestructive evaluation. These evaluations go further to inspect material discontinuities and other irregularities that have grown to become critical defects that can lead to failure. Hence, the objectives of this work is to conduct a collective analytical and experimental study to present a well-rounded structural assessment of a rotating disk by means of a health monitoring approach and to appraise the capabilities of an in-house rotor spin system. The analyses utilized the finite element method to analyze the disk with and without an induced crack at different loading levels, such as rotational speeds starting at 3000 up to 10 000 rpm. A parallel experiment was conducted to spin the disk at the desired speeds in an attempt to correlate the experimental findings with the analytical results. The testing involved conducting spin experiments which, covered the rotor in both damaged and undamaged (i.e., notched and unnotched) states. Damaged disks had artificially induced through-thickness flaws represented in the web region ranging from 2.54 to 5.08 cm (1 to 2 in.) in length. This study aims to identify defects that are greater than 1.27 cm (0.5 in.), applying available means of structural health monitoring and nondestructive evaluation, and documenting failure mechanisms experienced by the rotor system under typical turbine engine operating conditions.

  20. Parvovirus B19 induced hepatic failure in an adult requiring liver transplantation

    PubMed Central

    Krygier, Darin S; Steinbrecher, Urs P; Petric, Martin; Erb, Siegfried R; Chung, Stephen W; Scudamore, Charles H; Buczkowski, Andrzej K; Yoshida, Eric M

    2009-01-01

    Parvovirus B19 induced acute hepatitis and hepatic failure have been previously reported, mainly in children. Very few cases of parvovirus induced hepatic failure have been reported in adults and fewer still have required liver transplantation. We report the case of a 55-year-old immunocompetent woman who developed fulminant hepatic failure after acute infection with Parvovirus B19 who subsequently underwent orthotopic liver transplantation. This is believed to be the first reported case in the literature in which an adult patient with fulminant hepatic failure associated with acute parvovirus B19 infection and without hematologic abnormalities has been identified prior to undergoing liver transplantation. This case suggests that Parvovirus B19 induced liver disease can affect adults, can occur in the absence of hematologic abnormalities and can be severe enough to require liver transplantation. PMID:19705505

  1. MANAGEMENT OF ACUTE RENAL FAILURE WITH DELAYED HYPERCALCEMIA SECONDARY TO SARCOCYSTIS NEURONA-INDUCED MYOSITIS AND RHABDOMYOLYSIS IN A CALIFORNIA SEA LION (ZALOPHUS CALIFORNIANUS).

    PubMed

    Alexander, Amy B; Hanley, Christopher S; Duncan, Mary C; Ulmer, Kyle; Padilla, Luis R

    2015-09-01

    A 3-yr-old captive-born California sea lion (Zalophus californianus) developed Sarcocystis neurona-induced myositis and rhabdomyolysis that led to acute renal failure. The sea lion was successfully managed with fluid therapy, antiprotozoals, antibiotics, anti-inflammatories, antiemetics, gastroprotectants, and diuretics, but developed severe delayed hypercalcemia, a syndrome identified in humans after traumatic or exertion-induced rhabdomyolysis. Treatment with calcitonin was added to the management, and the individual recovered fully. The case emphasizes that animals with rhabdomyolysis-induced renal failure risk developing delayed hypercalcemia, which may be life threatening, and calcium levels should be closely monitored past the resolution of renal failure.

  2. Reparative resynchronization in ischemic heart failure: an emerging strategy.

    PubMed

    Yamada, Satsuki; Terzic, Andre

    2014-08-01

    Cardiac dyssynchrony refers to disparity in cardiac wall motion, a serious consequence of myocardial infarction associated with poor outcome. Infarct-induced scar is refractory to device-based cardiac resynchronization therapy, which relies on viable tissue. Leveraging the prospect of structural and functional regeneration, reparative resynchronization has emerged as a potentially achievable strategy. In proof-of-concept studies, stem-cell therapy eliminates contractile deficit originating from infarcted regions and secures long-term synchronization with tissue repair. Limited clinical experience suggests benefit of cell interventions in acute and chronic ischemic heart disease as adjuvant to standard of care. A regenerative resynchronization option for dyssynchronous heart failure thus merits validation.

  3. Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder.

    PubMed

    Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula

    2009-06-21

    Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure.

  4. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the permanent displacement potentially induced by an seismic scenario. Such methodologies found on the consideration that the conditions of seismic stability and the post-seismic functionality of engineering structures are tightly related to the entity of the permanent deformations that an earthquake can induce. Regarding the existing simplified procedures among slope stability models, Newmark's model is often used to derive indications about slope instabilities due to earthquakes. In this way, we have evaluated the seismically-induced landslides hazard in Sicily (Central Mediterranean) using the Newmark-like model. In order to determine the map distribution of the seismic ground-acceleration from an earthquake scenario, the attenuation-law of Sabetta & Pugliese has been used, analyzing some seismic recordings occurred in Italy. Also, by evaluating permanent displacements, the correlation of Ambraseys & Menu has been assumed. The seismic shaking slope vulnerability map of Sicily has been carried out using GIS application, also considering max seismic ground-acceleration peak distribution (in terms of exceedance probability for fixed time), slope acclivity, cohesion/angle of internal friction of outcropping rocks, allowing the zoning of the unstable slopes under seismic forces.

  5. Composite Grids for Reinforcement of Concrete Structures.

    DTIC Science & Technology

    1998-06-01

    to greater compressive loads before induced shear failure occurs. Concrete columns were tested in compression to explore alter- native... columns were tested on the same day as the fiber-reinforced concrete columns . Load /deflection readings were taken with the load cell to determine the...ln) Figure 78. Ultimate load vs toughness for the different beam types tested . USACERLTR-98/81 141 £\\

  6. Level 1 Tornado PRA for the High Flux Beam Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozoki, G.E.; Conrad, C.S.

    This report describes a risk analysis primarily directed at providing an estimate for the frequency of tornado induced damage to the core of the High Flux Beam Reactor (HFBR), and thus it constitutes a Level 1 Probabilistic Risk Assessment (PRA) covering tornado induced accident sequences. The basic methodology of the risk analysis was to develop a ``tornado specific`` plant logic model that integrates the internal random hardware failures with failures caused externally by the tornado strike and includes operator errors worsened by the tornado modified environment. The tornado hazard frequency, as well as earlier prepared structural and equipment fragility data,more » were used as input data to the model. To keep modeling/calculational complexity as simple as reasonable a ``bounding`` type, slightly conservative, approach was applied. By a thorough screening process a single dominant initiating event was selected as a representative initiator, defined as: ``Tornado Induced Loss of Offsite Power.`` The frequency of this initiator was determined to be 6.37E-5/year. The safety response of the HFBR facility resulted in a total Conditional Core Damage Probability of .621. Thus, the point estimate of the HFBR`s Tornado Induced Core Damage Frequency (CDF) was found to be: (CDF){sub Tornado} = 3.96E-5/year. This value represents only 7.8% of the internal CDF and thus is considered to be a small contribution to the overall facility risk expressed in terms of total Core Damage Frequency. In addition to providing the estimate of (CDF){sub Tornado}, the report documents, the relative importance of various tornado induced system, component, and operator failures that contribute most to (CDF){sub Tornado}.« less

  7. Application of foam-extend on turbulent fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Rege, K.; Hjertager, B. H.

    2017-12-01

    Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.

  8. Limits of Predictability of Cascading Overload Failures in Spatially-Embedded Networks with Distributed Flows.

    PubMed

    Moussawi, A; Derzsy, N; Lin, X; Szymanski, B K; Korniss, G

    2017-09-15

    Cascading failures are a critical vulnerability of complex information or infrastructure networks. Here we investigate the properties of load-based cascading failures in real and synthetic spatially-embedded network structures, and propose mitigation strategies to reduce the severity of damages caused by such failures. We introduce a stochastic method for optimal heterogeneous distribution of resources (node capacities) subject to a fixed total cost. Additionally, we design and compare the performance of networks with N-stable and (N-1)-stable network-capacity allocations by triggering cascades using various real-world node-attack and node-failure scenarios. We show that failure mitigation through increased node protection can be effectively achieved against single-node failures. However, mitigating against multiple node failures is much more difficult due to the combinatorial increase in possible sets of initially failing nodes. We analyze the robustness of the system with increasing protection, and find that a critical tolerance exists at which the system undergoes a phase transition, and above which the network almost completely survives an attack. Moreover, we show that cascade-size distributions measured in this region exhibit a power-law decay. Finally, we find a strong correlation between cascade sizes induced by individual nodes and sets of nodes. We also show that network topology alone is a weak predictor in determining the progression of cascading failures.

  9. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    NASA Astrophysics Data System (ADS)

    Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-01

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage "hot spots" at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7-0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.

  10. N-Acetylcysteine Use in Non-Acetaminophen-Induced Acute Liver Failure.

    PubMed

    McPheeters, Chelsey M; VanArsdale, Vanessa M; Weant, Kyle A

    2016-01-01

    This article will review the available evidence related to the management of non-acetaminophen induced acute liver failure with N-acetylcysteine. Randomized controlled trials and a meta-analysis were included in this review. The efficacy of N-acetylcysteine in the treatment of acute liver failure from causes other than acetaminophen toxicity was evaluated. The efficacy of N-acetylcysteine in non-acetaminophen-induced acute liver failure is limited to specific patient populations. Patients classified as Coma Grade I or II are more likely to benefit from the use of this agent. The use of N-acetylcysteine is associated with improved transplant-free survival, not overall survival, in adults. N-Acetylcysteine does not improve the overall survival of patients with non-acetaminophen-induced acute liver failure but may be beneficial in those patients with Coma Grades I-II. Liver transplantation remains the only definitive therapy in advanced disease.

  11. J-2X Turbopump Cavitation Diagnostics

    NASA Technical Reports Server (NTRS)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the engine redline system.

  12. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  13. Heart failure drug changes the mechanoenzymology of the cardiac myosin powerstroke.

    PubMed

    Rohde, John A; Thomas, David D; Muretta, Joseph M

    2017-03-07

    Omecamtiv mecarbil (OM), a putative heart failure therapeutic, increases cardiac contractility. We hypothesize that it does this by changing the structural kinetics of the myosin powerstroke. We tested this directly by performing transient time-resolved FRET on a ventricular cardiac myosin biosensor. Our results demonstrate that OM stabilizes myosin's prepowerstroke structural state, supporting previous measurements showing that the drug shifts the equilibrium constant for myosin-catalyzed ATP hydrolysis toward the posthydrolysis biochemical state. OM slowed the actin-induced powerstroke, despite a twofold increase in the rate constant for actin-activated phosphate release, the biochemical step in myosin's ATPase cycle associated with force generation and the conversion of chemical energy into mechanical work. We conclude that OM alters the energetics of cardiac myosin's mechanical cycle, causing the powerstroke to occur after myosin weakly binds to actin and releases phosphate. We discuss the physiological implications for these changes.

  14. Shear-induced mechanical failure of β -G a2O3 from quantum mechanics simulations

    NASA Astrophysics Data System (ADS)

    An, Qi; Li, Guodong

    2017-10-01

    Monoclinic gallium oxide (β -G a2O3 ) has important applications in power devices and deep UV optoelectronic devices because of such novel properties as a wide band gap, high breakdown electric field, and a wide range of n -type doping conductivity. However, the intrinsic failure mechanisms of β -G a2O3 remain unknown, which limits the fabrication and packaging of β -G a2O3 -based electronic devices. Here we used density-functional theory at the Perdew-Burke-Ernzerhof level to examine the shear-induced failure mechanisms of β -G a2O3 along various plausible slip systems. We found that the (001 )/〈010 〉 slip system has the lowest ideal shear strength of 3.8 GPa among five plausible slip systems, suggesting that (001 )/〈010 〉 is the most plausible activated slip system. This slip leads to an intrinsic failure mechanism arising from breaking the longest Ga-O bond between octahedral Ga and fourfold-coordinated O. Then we identified the same failure mechanism of β -G a2O3 under biaxial shear deformation that mimics indentation stress conditions. Finally, the general stacking fault energy (SFE) surface is calculated for the (001) surface from which we concluded that there is no intrinsic stacking fault structure for β -G a2O3 . The deformation modes and SFE calculations are essential to understand the intrinsic mechanical processes of this semiconductor material, which provides insightful guidance for designing high-performance semiconductor devices.

  15. Assessing changes in failure probability of dams in a changing climate

    NASA Astrophysics Data System (ADS)

    Mallakpour, I.; AghaKouchak, A.; Moftakhari, H.; Ragno, E.

    2017-12-01

    Dams are crucial infrastructures and provide resilience against hydrometeorological extremes (e.g., droughts and floods). In 2017, California experienced series of flooding events terminating a 5-year drought, and leading to incidents such as structural failure of Oroville Dam's spillway. Because of large socioeconomic repercussions of such incidents, it is of paramount importance to evaluate dam failure risks associated with projected shifts in the streamflow regime. This becomes even more important as the current procedures for design of hydraulic structures (e.g., dams, bridges, spillways) are based on the so-called stationary assumption. Yet, changes in climate are anticipated to result in changes in statistics of river flow (e.g., more extreme floods) and possibly increasing the failure probability of already aging dams. Here, we examine changes in discharge under two representative concentration pathways (RCPs): RCP4.5 and RCP8.5. In this study, we used routed daily streamflow data from ten global climate models (GCMs) in order to investigate possible climate-induced changes in streamflow in northern California. Our results show that while the average flow does not show a significant change, extreme floods are projected to increase in the future. Using the extreme value theory, we estimate changes in the return periods of 50-year and 100-year floods in the current and future climates. Finally, we use the historical and future return periods to quantify changes in failure probability of dams in a warming climate.

  16. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    PubMed

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Experimental Investigation of Secondary Flow Structures Downstream of a Model Type IV Stent Failure in a 180° Curved Artery Test Section.

    PubMed

    Bulusu, Kartik V; Plesniak, Michael W

    2016-07-19

    The arterial network in the human vasculature comprises of ubiquitously present blood vessels with complex geometries (branches, curvatures and tortuosity). Secondary flow structures are vortical flow patterns that occur in curved arteries due to the combined action of centrifugal forces, adverse pressure gradients and inflow characteristics. Such flow morphologies are greatly affected by pulsatility and multiple harmonics of physiological inflow conditions and vary greatly in size-strength-shape characteristics compared to non-physiological (steady and oscillatory) flows (1 - 7). Secondary flow structures may ultimately influence the wall shear stress and exposure time of blood-borne particles toward progression of atherosclerosis, restenosis, sensitization of platelets and thrombosis (4 - 6, 8 - 13). Therefore, the ability to detect and characterize these structures under laboratory-controlled conditions is precursor to further clinical investigations. A common surgical treatment to atherosclerosis is stent implantation, to open up stenosed arteries for unobstructed blood flow. But the concomitant flow perturbations due to stent installations result in multi-scale secondary flow morphologies (4 - 6). Progressively higher order complexities such as asymmetry and loss in coherence can be induced by ensuing stent failures vis-à-vis those under unperturbed flows (5). These stent failures have been classified as "Types I-to-IV" based on failure considerations and clinical severity (14). This study presents a protocol for the experimental investigation of the complex secondary flow structures due to complete transverse stent fracture and linear displacement of fractured parts ("Type IV") in a curved artery model. The experimental method involves the implementation of particle image velocimetry (2C-2D PIV) techniques with an archetypal carotid artery inflow waveform, a refractive index matched blood-analog working fluid for phase-averaged measurements (15 - 18). Quantitative identification of secondary flow structures was achieved using concepts of flow physics, critical point theory and a novel wavelet transform algorithm applied to experimental PIV data (5, 6, 19 - 26).

  18. F 16915 prevents heart failure-induced atrial fibrillation: a promising new drug as upstream therapy.

    PubMed

    Le Grand, Bruno; Letienne, Robert; Dupont-Passelaigue, Elisabeth; Lantoine-Adam, Frédérique; Longo, Frédéric; David-Dufilho, Monique; Michael, Georghia; Nishida, Kunihiro; Catheline, Daniel; Legrand, Philippe; Hatem, Stéphane; Nattel, Stanley

    2014-07-01

    Atrial fibrillation (AF) is a common complication of heart failure. The aim of the present study was to investigate the effects of a new pure docosahexaenoic acid derivative called F 16915 in experimental models of heart failure-induced atria dysfunction. The atrial dysfunction-induced AF was investigated (1) in a dog model of tachypacing-induced congestive heart failure and (2) in a rat model of heart failure induced by occlusion of left descending coronary artery and 2 months reperfusion. F 16915 (5 g/day for 4 weeks) significantly reduced the mean duration of AF induced by burst pacing in the dog model (989 ± 111 s in the vehicle group to 79 ± 59 s with F 16915, P < 0.01). This dose of F 16915 also significantly reduced the incidence of sustained AF (5/5 dogs in the vehicle group versus 1/5 with F 16915, P < 0.05). In the rat model, the percentage of shortening fraction in the F 16915 group (100 mg/kg p.o. daily) was significantly restored after 2 months (32.6 ± 7.4 %, n = 9 vs 17.6 ± 3.4 %, n = 9 in the vehicle group, P < 0.01). F 16915 also reduced the de-phosphorylation of connexin43 from atria tissue. The present results show that treatment with F 16915 reduced the heart dilation, resynchronized the gap junction activity, and reduced the AF duration in models of heart failure. Thus, F 16915 constitutes a promising new drug as upstream therapy for the treatment of AF in patients with heart failure.

  19. Analysis of Tsunamigenic Coastal Rock Slope Failures Triggered by the 2007 Earthquake in the Chilean Fjordland

    NASA Astrophysics Data System (ADS)

    Sepulveda, S. A.; Serey, A.; Hermanns, R. L.; Redfield, T. F.; Oppikofer, T.; Duhart, P.

    2011-12-01

    The fjordland of the Chilean Patagonia is subject to active tectonics, with large magnitude subduction earthquakes, such as the M 9.5 1960 earthquake, and shallow crustal earthquakes along the regional Liquiñe-Ofqui Fault Zone (LOFZ). One of the latter (M 6.2) struck the Aysen Fjord region (45.5 S) on the 21st of April 2007, triggering dozens of landslides in the epicentral area along the fjord coast and surroundings. The largest rock slides and rock avalanches induced a local tsunami that together with debris flows caused ten fatalities and severely damaged several salmon farms, the most important economic activity of the area. Multi-scale studies of the landslides triggered during the Aysen earthquake have been carried out, including landslide mapping and classification, slope stability back-analyses and structural and geomorphological mapping of the largest failures from field surveys and high-resolution digital surface models created from terrestrial laser scanning. The failures included rock slides, rock avalanches, rock-soil slides, soil slides and debris flows. The largest rock avalanche had a volume of over 20 million cubic metres. The landslides affected steep slopes of intrusive rocks of the North Patagonian batholith covered by a thin layer of volcanic soils, which supports a high forest. The results of geotechnical analyses suggest a site effect due to topographic amplification on the generation of the landslides, with peak ground accelerations that may have reached between about 1.0 and 2.0 g for rock avalanches and between 0.6 and 1.0 g for shallow rock-soil slides, depending on the amount of assumed vertical acceleration and the applied method (limit equilibrium and Newmark). Attenuation relationships for shallow crustal seismicity indicate accelerations below 0.5 g for earthquakes of a similar magnitude and epicentral distances. Detailed field structural analyses of the largest rock avalanche in Punta Cola indicate a key role in the failure mechanics of brittle faults and jointing related to the LOFZ. The basal failure plane closely followed an older (epidote chlorite facies) thrust fault. Later fracture patterns suggest the thrust relaxed under gravitational stress following rock column uplift. Failure probably utilized a combination of these structures. Digital geomorphic models allowed establishing a sequence of events during failure which together make up the complex rock avalanche deposit. The volume of each individual slide could be more accurately determined. These and ongoing studies will allow a unique characterization of earthquake-induced slope failures in fjord coastal environments, providing new tools for landslide, seismic and tsunami hazard assessment in Patagonia and similar geomorphological settings around the world. This work was funded by Fondecyt project 11070107, the International Center for Geohazards, the Millenium Nucleus 'International Earthquake Research Center Montessus de Ballore', FNDR-Project 'Geological-Mining Environmental Research in Aysen' of the Chilean Government and the Andean Geothermal Center of Excellence.

  20. Obesity and heart failure with preserved ejection fraction: A growing problem.

    PubMed

    Prenner, Stuart B; Mather, Paul J

    2017-12-14

    Heart Failure with Preserved Ejection Fraction (HFpEF) is increasing in prevalence due to the aging of the United States population as well as the current obesity epidemic. While obesity is very common in patients with HFpEF, obesity may represent a specific phenotype of HFpEF characterized by unique hemodynamics and structural abnormalities. Obesity induces a systemic inflammatory response that may contribute to myocardial fibrosis and endothelial dysfunction. The most obese patients continue to be excluded from HFpEF clinical trials, and thus ongoing research is needed to determine the role of pharmacologic and interventional approaches in this growing population. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Huarui, E-mail: huarui.sun@bristol.ac.uk; Bajo, Miguel Montes; Uren, Michael J.

    2015-01-26

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which ismore » consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.« less

  2. [Cardiac failure in endocrine diseases].

    PubMed

    Hashizume, K

    1993-05-01

    Several endocrine diseases show the symptoms of cardiac failure. Among them, patients with acromegaly show a specific cardiomyopathy which results in a severe left-sided cardiac failure. Hypoparathyroidism also induces cardiac failure, which is resulted from hypocalcemia and low levels of serum parathyroid hormone. In the cases of hypothyroidism, the patients with myxedemal coma show a severe cardiac failure, which is characterized by disturbance of central nervous system, renal function, and cardiac function. In the patients with thyroid crisis (storm), the cardiac failure comes from the great reduction of cardiac output with dehydration. The reduction of circulation volume, observed in the patients with pheochromocytoma easily induces cardiac failure (shock) just after the removal of adrenal tumor. In patients with malignant carcinoid syndrome, right-sided ventricular failure which may be occurred through the actions of biogenic amines is observed.

  3. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway.

    PubMed

    Zhou, Ru; Xu, Qingbin; Xu, Yehua; Xiong, Aiqin; Wang, Yang; Ma, Ping

    2016-12-01

    Oxymatrine (OMT) is an active constituent of traditional Chinese herb Sophora japonica Ait which has been shown to exert potent anti-inflammatory,anti-oxidant and anti-fibrosis properties. Our previous studies have demonstrated that OMT has protective effects on isoproterenol-induced heart failure in rats through regulation of DDAH/ADMA metabolism pathway.In this study,we further investigated whether OMT could attenuate isoproterenol-induced heart failure through the regulation of COX-2/PGI 2 pathway. Heart failure was induced in Sprague-Dawley rats by 5mg/kg isoproterenol subcutaneous injection for 7days. The rats were maintained on normal diet and randomly divided into five groups: control, isoproterenol, isoproterenol with OMT (50, 100mg/kg), and OMT alone groups (n=12 in each group). Serum brain natruretic peptide (BNP, a heart failure biomarker), histopathological variables, expression of Cytosolic phospholipase A 2 (cPLA 2 ), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and Prostacyclin synthase (PGIS) were analysed. Administration of OMT significantly reduced the increased BNP in plasm of isoproterenol-induced rats, attenuated cardiac fibrosis,suppressed overexpression of myocardial COX-1 expression, up-regulated COX-2 and PGIS expression, but had no effects on isoproterenol-induced elevated protein cPLA 2 . And compared with control group, any indexes in sham rats treated with OMT (100mg/kg) alone were unaltered. These results demonstrated that OMT has cardioprotective effects on isoproterenol-induced heart failure in rats by regulating COX-2/PGI 2 pathway. Copyright © 2016. Published by Elsevier Masson SAS.

  4. Electrolyte-induced surface transformation and transition-metal dissolution of fully delithiated LiNi 0.8Co 0.15Al 0.05O 2

    DOE PAGES

    Faenza, Nicholas V.; Lebens-Higgins, Zachary W.; Mukherjee, Pinaki; ...

    2017-06-08

    Here, enabling practical utilization of layered Rmore » $$\\bar{3}$$ m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode–electrolyte interactions that often induce failure. Using Li[Ni 0.8Co 0.15Al 0.05]O 2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li 2CO 3 content on the magnitude and character of the dissolution reaction was studied.« less

  5. Electrolyte-Induced Surface Transformation and Transition-Metal Dissolution of Fully Delithiated LiNi0.8Co0.15Al0.05O2.

    PubMed

    Faenza, Nicholas V; Lebens-Higgins, Zachary W; Mukherjee, Pinaki; Sallis, Shawn; Pereira, Nathalie; Badway, Fadwa; Halajko, Anna; Ceder, Gerbrand; Cosandey, Frederic; Piper, Louis F J; Amatucci, Glenn G

    2017-09-19

    Enabling practical utilization of layered R3̅m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode-electrolyte interactions that often induce failure. Using Li[Ni 0.8 Co 0.15 Al 0.05 ]O 2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li 2 CO 3 content on the magnitude and character of the dissolution reaction was studied.

  6. Levosimendan Prevents Pressure-Overload-induced Right Ventricular Failure.

    PubMed

    Hillgaard, Thomas Krarup; Andersen, Asger; Andersen, Stine; Vildbrad, Mads D; Ringgaard, Steffen; Nielsen, Jan M; Nielsen-Kudsk, Jens E

    2016-04-01

    We investigated if chronic levosimendan treatment can prevent and revert pressure-overload-induced right ventricular hypertrophy and failure in rats. Right ventricular hypertrophy and failure was induced in Wistar rats by pulmonary trunk banding (PTB). The PTB rats were treated with levosimendan (3 mg·kg·d) 3 days before surgery [n = 10, prevention (PREV)], 3 weeks after surgery [n = 10, reversal (REV)] or vehicle (n = 10, VEH). Sham-operated rats received vehicle (n = 16, SHAM). Right ventricular function was evaluated 7 weeks after surgery by echocardiography, magnetic resonance imaging, pressure-volume relations, gross anatomy, and histology. PTB induced right ventricular hypertrophy and compensated heart failure evident by reduced cardiac index (CI) without extra cardiac signs of heart failure. Levosimendan treatment prevented deterioration of right ventricular function measured by CI and right ventricular ejection fraction (RVEF) (CI: VEH vs. PREV 281 ± 17 vs. 362 ± 34 mL·min·kg, P ≤ 0.05, RVEF: VEH vs. PREV 57 ± 2% vs. 68 ± 3%, P ≤ 0.01) to values similar to SHAM (CI: 345 ± 21 mL·min·kg, RVEF: 71 ± 2%). RV contractility was improved in the REV group measured by preload recruitable stroke work (VEH vs. REV 39 ± 3 vs. 66 ± 10 mmHg P ≤ 0.05). Chronic treatment with levosimendan prevents the development of right ventricular failure and improves contractility in established pressure-overload-induced right ventricular failure.

  7. [Pregnancy proceeding to term following failed induced abortion].

    PubMed

    Doppenberg, H J; Mulder-Meiss, H B

    1986-06-21

    The 4th Pregnacy of a 30 year old woman proceeded to term following the failure of induced abortion via aspiration conducted during the 8th week. The woman feared possible damage to her unborn child once the failure of the abortion was determined. Only after careful counselling and emotional suport from both her personal physician, the clinic staff, and the midwife who supervised her home delivery was the woman able to decide to carry the pregnancy to term. Anxiety surfaced during the subsequent 6 months, even though the child was found to be healthy in all respects. Only through intsive psychosocial counseling was she able to regain self assurance and self control. A review by computer of the international literature revealed few documented cases of serious congenital malformations following failed abortions. Postdelivery psychosocial support structures for such women are particularly vital and require the sensitive intervention of trained personnel, including family physicians, as well as staff physicians of hospitals and family planning centers.

  8. Satellite Vulnerability to Space Debris- An Improved 3D Risk Assessment Methodology

    NASA Astrophysics Data System (ADS)

    Grassi, Lilith; Destefanis, Roberto; Tiboldo, Francesca; Donath, Therese; Winterboer, Arne; Evand, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schafer, Frank; Gelhaus, Johannes

    2013-08-01

    The work described in the present paper, performed as a part of the PÇ-ROTECT project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE).

  9. Prediction of flow-induced failures of braided flexible hoses and bellows

    NASA Technical Reports Server (NTRS)

    Sack, L. E.; Nelson, R. L.; Mason, D. R.; Cooper, R. A.

    1972-01-01

    Analytical techniques were developed to evaluate braided hoses and bellows for possibility of flow induced resonance. These techniques determine likelihood of high cycle fatigue failure when such resonance exists.

  10. Improving the Estimates of International Space Station (ISS) Induced K-Factor Failure Rates for On-Orbit Replacement Unit (ORU) Supportability Analyses

    NASA Technical Reports Server (NTRS)

    Anderson, Leif F.; Harrington, Sean P.; Omeke, Ojei, II; Schwaab, Douglas G.

    2009-01-01

    This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis.

  11. Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure

    PubMed Central

    Riba, Adam; Deres, Laszlo; Eros, Krisztian; Szabo, Aliz; Magyar, Klara; Sumegi, Balazs; Toth, Kalman; Halmosi, Robert; Szabados, Eszter

    2017-01-01

    In addition to their anti-bacterial action, tetracyclines also have complex biological effects, including the modification of mitochondrial protein synthesis, metabolism and gene-expression. Long-term clinical studies have been performed using tetracyclines, without significant side effects. Previous studies demonstrated that doxycycline (DOX), a major tetracyclin antibiotic, exerted a protective effect in animal models of heart failure; however, its exact molecular mechanism is still unknown. Here, we provide the first evidence that DOX reduces oxidative stress—induced mitochondrial fragmentation and depolarization in H9c2 cardiomyocytes and beneficially alters the expression of Mfn-2, OPA-1 and Drp-1 –the main regulators of mitochondrial fusion and fission—in our isoproterenol (ISO)–induced heart failure model, ultimately decreasing the severity of heart failure. In mitochondria, oxidative stress causes a shift toward fission which leads to mitochondrial fragmentation and cell death. Protecting mitochondria from oxidative stress, and the regulation of mitochondrial dynamics by drugs that shift the balance toward fusion, could be a novel therapeutic approach for heart failure. On the basis of our findings, we raise the possibility that DOX could be a novel therapeutic agent in the future treatment of heart failure. PMID:28384228

  12. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure.

    PubMed

    Trifilò, Patrizia; Casolo, Valentino; Raimondo, Fabio; Petrussa, Elisa; Boscutti, Francesco; Lo Gullo, Maria Assunta; Nardini, Andrea

    2017-11-01

    Drought-induced tree decline is a complex event, and recent hypotheses suggest that hydraulic failure and carbon starvation are co-responsible for this process. We tested the possible role of non-structural carbohydrates (NSC) content on post-drought hydraulic recovery, to verify the hypothesis that embolism reversal represents a mechanistic link between carbon starvation and stem hydraulics. Measurements were performed in laurel plants subjected to similar water stress levels either over short or long term, to induce comparable embolism levels. Plants subjected to mild and prolonged water shortage (S) showed reduced growth, adjustment of turgor loss point driven by changes in both osmotic potential at full turgor and bulk modulus of elasticity, a lower content of soluble NSC and a higher content of starch with respect to control (C) plants. Moreover, S plants showed a lower ability to recover from xylem embolism than C plants, even after irrigation. Our data suggest that plant carbon status might indirectly influence plant performance during and after drought via effects on xylem hydraulic functioning, supporting the view of a possible mechanistic link between the two processes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Theoretical studies of structure-property relations in graphene-based carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Maroudas, Dimitrios

    2014-03-01

    This presentation focuses on establishing relations between atomic structure, electronic structure, and properties in graphene-based carbon nanostructures through first-principles density functional theory calculations and molecular-dynamics simulations. We have analyzed carbon nanostructure formation from twisted bilayer graphene, upon creation of interlayer covalent C-C bonds due to patterned hydrogenation or fluorination. For small twist angles and twist angles near 30 degrees, interlayer covalent bonding generates superlattices of diamond-like nanocrystals and of fullerene-like configurations, respectively, embedded within the graphene layers. The electronic band gaps of these superlattices can be tuned through selective chemical functionalization and creation of interlayer bonds, and range from a few meV to over 1.2 eV. The mechanical properties of these superstructures also can be precisely tuned by controlling the extent of chemical functionalization. Importantly, the shear modulus is shown to increase monotonically with the fraction of sp3-hybridized C-C bonds. We have also studied collective interactions of multiple defects such as random distributions of vacancies in single-layer graphene (SLG). We find that a crystalline-to-amorphous structural transition occurs at vacancy concentrations of 5-10% over a broad temperature range. The structure of our defect-induced amorphized graphene is in excellent agreement with experimental observations of SLG exposed to a high electron irradiation dose. Simulations of tensile tests on these irradiated graphene sheets identify trends for the ultimate tensile strength, failure strain, and toughness as a function of vacancy concentration. The vacancy-induced amorphization transition is accompanied by a brittle-to-ductile transition in the failure response of irradiated graphene sheets and even heavily damaged samples exhibit tensile strengths near 30 GPa, in significant excess of those typical of engineering materials.

  14. Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.

    PubMed

    Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia

    2018-01-01

    Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.

  15. Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.

    1997-01-01

    A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.

  16. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  17. Crataegus tanacetifolia leaf extract prevents L-NAME-induced hypertension in rats: a morphological study.

    PubMed

    Koçyildiz, Z Celebi; Birman, H; Olgaç, V; Akgün-Dar, K; Melikoğlu, G; Meriçli, A H

    2006-01-01

    Crataegus (hawthorn) has long been used as a folk medicine all around the world. Most of the studies with Crataegus species focus on effects on heart failure and cardiovascular disease. The pharmacological effects of Crataegus have been attributed mainly to the content of flavonoids, procyanidin, aromatic acid and cardiotonic amines. The present study investigated the blood pressure and the structure of the coronary arterial wall of L-NAME-induced hypertensive rats given an aqueous leaf extract of C. tanacetifolia (100 mg/kg), for 4 weeks via gavage. It was observed that C. tanacetifolia, especially the hyperoside fraction, prevented L-NAME-induced hypertension in rats and had beneficial effects on the cardiovascular system. Copyright 2006 John Wiley & Sons, Ltd.

  18. Seismic response of elevated rectangular water tanks considering soil structure interaction

    NASA Astrophysics Data System (ADS)

    Visuvasam, J.; Simon, J.; Packiaraj, J. S.; Agarwal, R.; Goyal, L.; Dhingra, V.

    2017-11-01

    The overhead staged water tanks are susceptible for high lateral forces during earthquakes. Due to which, the failure of beam-columns joints, framing elements and toppling of tanks arise. To avoid such failures, they are analyzed and designed for lateral forced induced by devastating earthquakes assuming the base of the structures are fixed and considering functional needs, response reduction, soil types and severity of ground shaking. In this paper, the flexible base was provided as spring stiffness in order to consider the effect of soil properties on the seismic behaviour of water tanks. A linear time history earthquake analysis was performed using SAP2000. Parametric studies have been carried out based on various types of soils such as soft, medium and hard. The soil stiffness values highly influence the time period and base shear of the structure. The ratios of time period of flexible to fixed base and base shear of flexible to fixed base were observed against capacities of water tank and the overall height of the system. The both responses are found to be increased as the flexibility of soil medium decreases

  19. Structural failure; International Symposium on Structural Crashworthiness, 2nd, Massachusetts Institute of Technology, Cambridge, June 6-8, 1988, Invited Lectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierzbicki, T.; Jones, N.

    1989-01-01

    The book discusses the fragmentation of solids under dynamic loading, the debris-impact protection of space structures, the controlled fracturing of structures by shock-wave interaction and focusing, the tearing of thin metal sheets, and the dynamic inelastic failure of beams, and dynamic rupture of shells. Consideration is also given to investigations of the failure of brittle and composite materials by numerical methods, the energy absorption of polymer matrix composite structures (frictional effects), the mechanics of deep plastic collapse of thin-walled structures, the denting and bending of tubular beams under local loads, the dynamic bending collapse of strain-softening cantilever beams, and themore » failure of bar structures under repeated loading. Other topics discussed are on the behavior of composite and metallic superstructures under blast loading, the catastrophic failure modes of marine structures, and industrial experience with structural failure.« less

  20. Stress Transfer and Structural Failure of Bilayered Material Systems

    NASA Astrophysics Data System (ADS)

    Prieto-Munoz, Pablo Arthur

    Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture saturation ratio---which is the ratio of fracture spacing to the thickness of the weak layer where an increase in load will not cause any new fractures to form. Moreover, these specific material systems are looked at in the context of existing and novel experimental results, further demonstrating the advantage of the stress transfer analysis proposed. This research provides a closed-form stress solution for various structural systems that is applied to different failure analyses. The versatility of this method is in the flexibility and the ease upon which the stress and displacement field results can be applied to existing stress- or displacement-based structural failure criteria. As presented, this analysis can be directly used to: (1) design adhesive anchoring systems for long-term creep loading, (2) evaluate the fracture mechanics behind bilayered material coatings and pavement overlay systems, and (3) determine the fracture spacing to layer thickness ratio of layered sedimentary rocks. As is shown in the four material systems presented, this general solution has far reaching applications in facilitating design and analysis of typical bilayered structural systems.

  1. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  2. Surgical management of early pregnancy failure: history, politics, and safe, cost-effective care.

    PubMed

    Harris, Lisa H; Dalton, Vanessa K; Johnson, Timothy R B

    2007-05-01

    Early pregnancy failure and induced abortion are often managed differently, even though safe uterine evacuation is the goal in both. Early pregnancy failure is commonly treated by curettage in operating room settings in anesthetized patients. Induced abortion is most commonly managed by office vacuum aspiration in awake or sedated patients. Medical evidence does not support routine operating room management of early pregnancy failure. This commentary reviews historical origins of these different care standards, explores political factors responsible for their perpetuation, and uses experience at University of Michigan to dramatize the ways in which history, politics, and biomedicine intersect to produce patient care. The University of Michigan initiated office uterine evacuations for early pregnancy failure treatment. Patients previously went to the operating room. These changes required faculty, staff, and resident education. Our efforts blurred the lines between spontaneous and induced abortion management, improved patient care and better utilized hospital resources.

  3. Protease Activated Receptor-2 Contributes to Heart Failure

    PubMed Central

    Antoniak, Silvio; Sparkenbaugh, Erica M.; Tencati, Michael; Rojas, Mauricio; Mackman, Nigel; Pawlinski, Rafal

    2013-01-01

    Heart failure is a major clinical problem worldwide. Previous studies have demonstrated an important role for G protein-coupled receptors, including protease-activated receptors (PARs), in the pathology of heart hypertrophy and failure. Activation of PAR-2 on cardiomyocytes has been shown to induce hypertrophic growth in vitro. PAR-2 also contributes to myocardial infarction and heart remodeling after ischemia/reperfusion injury. In this study, we found that PAR-2 induced hypertrophic growth of cultured rat neonatal cardiomyocytes in a MEK1/2 and p38 dependent manner. In addition, PAR-2 activation on mouse cardiomyocytes increased expression of the pro-fibrotic chemokine MCP-1. Furthermore, cardiomyocyte-specific overexpression of PAR-2 in mice induced heart hypertrophy, cardiac fibrosis, inflammation and heart failure. Finally, in a mouse model of myocardial infarction induced by permanent ligation of the left anterior descending coronary artery, PAR-2 deficiency attenuated heart remodeling and improved heart function independently of its contribution to the size of the initial infarct. Taken together, our data indicate that PAR-2 signaling contributes to the pathogenesis of hypertrophy and heart failure. PMID:24312345

  4. A nanometallic nickel-coated, glass-fibre-based structural health monitoring system for polymer composites

    NASA Astrophysics Data System (ADS)

    Balaji, R.; Sasikumar, M.

    2017-09-01

    Glass-fibre-reinforced polymer matrix composites are widely used in various industries because of their unique high strength to weight ratio. Unlike metals, strain-induced and damage states of composites are complicated to predict under real-time loading due to their anisotropic nature. With that focus, a piezoresistive nanomaterial-based structural health monitoring system for laminated polymer composites is proposed to measure the strain induced in the composite under real-time loading. Nanometallic nickel-coated glass fibres are embedded into the polymer composites to monitor the strain and damage induced in them. The nanometallic nickel is coated over the glass fibre by a dip coating technique using epoxy as the binding agent. A microcontroller-based electrical resistance measurement system is used to measure the piezoresistive variation in the coated glass fibre under real-time loading. Using the piezoresistance variation of the embedded nanometallic nickel-coated glass fibre, the real-time strain and damage induced in the composite can be correlated. The piezoresistive response of the coated glass fibre is descibed in two phases, the deformation phase and the failure phase, which clearly show the various states of strain and damage induced in the composites.

  5. Neutron-induced single event burnout in high voltage electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.; Wert, J.L.; Oberg, D.L.

    Energetic neutrons with an atmospheric neutron spectrum, which were demonstrated to induce single event burnout in power MOSFETs, have been shown to induce burnout in high voltage (>3,000V) electronics when operated at voltages as low as 50% of rated voltage. The laboratory failure rates correlate well with field failure rates measured in Europe.

  6. p53-mediated miR-18 repression activates HSF2 for IGF-IIR-dependent myocyte hypertrophy in hypertension-induced heart failure.

    PubMed

    Huang, Chih-Yang; Pai, Pei-Ying; Kuo, Chia-Hua; Ho, Tsung-Jung; Lin, Jing-Ying; Lin, Ding-Yu; Tsai, Fu-Jen; Padma, V Vijaya; Kuo, Wei-Wen; Huang, Chih-Yang

    2017-08-10

    Hypertension-induced cardiac hypertrophy and attenuated cardiac function are the major characteristics of early stage heart failure. Cardiomyocyte death in pathological cardiac conditions is the primary cause of heart failure and mortality. Our previous studies found that heat shock factor 1 (HSF1) protected cardiomyocytes from death by suppressing the IGF-IIR signaling pathway, which is critical for hypertensive angiotensin II-induced cardiomyocyte apoptosis. However, the role of heat shock factor 2 (HSF2) in hypertension-induced cardiac hypertrophy is unknown. We identified HSF2 as a miR-18 target for cardiac hypertrophy. p53 activation in angiotensin II (ANG II)-stimulated NRVMs is responsible for miR-18 downregulation both in vitro and in vivo, which triggers HSF2 expression and the activation of IGF-IIR-induced cardiomyocyte hypertrophy. Finally, we provide genetic evidence that miR-18 is required for cardiomyocyte functions in the heart based on the gene transfer of cardiac-specific miR-18 via adenovirus-associated virus 2 (AAV2). Transgenic overexpression of miR-18 in cardiomyocytes is sufficient to protect against dilated cardiomyopathy during hypertension-induced heart failure. Our results demonstrated that the p53-miR-18-HSF2-IGF-IIR axis was a critical regulatory pathway of cardiomyocyte hypertrophy in vitro and in vivo, suggesting that miR-18 could be a therapeutic target for the control of cardiac functions and the alleviation of cardiomyopathy during hypertension-induced heart failure.

  7. Limits of performance: CW laser damage

    NASA Astrophysics Data System (ADS)

    Shah, Rashmi S.; Rey, Justin J.; Stewart, Alan F.

    2007-01-01

    High performance optical coatings are an enabling technology for many applications - navigation systems, telecom, fusion, advanced measurement systems of many types as well as directed energy weapons. The results of recent testing of superior optical coatings conducted at high flux levels have been presented. Failure of these coatings was rare. However, induced damage was not expected from simple thermal models relating flux loading to induced temperatures. Clearly, other mechanisms must play a role in the occurrence of laser damage. Contamination is an obvious mechanism-both particulate and molecular. Less obvious are structural defects and the role of induced stresses. These mechanisms are examined through simplified models and finite element analysis. The results of the models are compared to experiment, for induced temperatures and observed stress levels. The role of each mechanism is described and limiting performance is determined.

  8. Distributed collaborative probabilistic design of multi-failure structure with fluid-structure interaction using fuzzy neural network of regression

    NASA Astrophysics Data System (ADS)

    Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen

    2018-05-01

    To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.

  9. Active Control of Jet Engine Inlet Flows

    DTIC Science & Technology

    2007-03-31

    These S-shaped ducts do not provide a direct line of sight to the compressor blades , thus hiding the engine from incoming radar waves. Also, serpentine...circumferential distortion pattern acts as an unsteady forcing function, inducing blade vibration that can result in structural fatigue and failure 3. This...shortcoming occurs when the rotor blades pass through regions of reduced axial velocity (i.e., where the total pressure is low). In these areas, since the

  10. The iothalamate clearance in cats with experimentally induced renal failure.

    PubMed

    Ohashi, F; Kuroda, K; Shimada, T; Shimada, Y; Ota, M

    1996-08-01

    Plasma iothalamate (IOT) disappearance rates were measured after a single-injection of IOT (113.8 mg/kg, IV) in cats with experimentally induced renal failure. The disappearance rates especially fitted into the one compartment model. The mean value of plasma disappearance rates of IOT in these cats with induced renal failure (2.16 +/- 0.240 x 10(-3) micrograms/ml/min) was markedly lower than that of clinically healthy cats (4.10 +/- 1.00 x 10(-3) micrograms/ml/min). These results demonstrate that IOT clearance is available for evaluation of renal function in cats.

  11. Testing failure surface prediction methods and deposit reconstruction for the landslides cluster occurring during Talas Typhoon (Japan)

    NASA Astrophysics Data System (ADS)

    Jaboyedoff, Michel; Chigira, Masahiro; Arai, Noriyuki; Derron, Marc-Henri; Rudaz, Benjamin; Tsou, Ching-Ying

    2016-04-01

    Talas Typhoon hit Japan from 2 to 5 September 2011. It induced more than 70 deep-seated landslides in Kii peninsula. The hi-resolution topography of these landslides have been acquired by aerial 1 m LiDAR digital elevation models (DEM) before (pre-DEM) and after (post-DEM) the events (data from Nara prefectural Government and the Kinki Regional development Bureau of Ministry of Land, Infrastructure, Transportation, and Tourism). This extraordinary opportunity allows us to test methods to construct failure surface geometries, buried valley topographies and/or to rebuild deposits surfaces. We tested the sloping base local level method (SLBL) on 5 deep seated landslides which occurred during Typhoon Talas (Akatani, Kitamata, Nagatono, Shimizu and Akatani-East; see Chigira et al., 2013). The SLBL corresponds to a quadratic surface with a constant second derivative in all x-y directions. This curvature can be based on the knowledge of the length of the landslide and its maximum thickness. We used mainly hillshade DEM, slope maps and Coltop schemes to define the limits of landslides and to interpret their structures. Different attempts were performed to reconstruct the failure surface and deposits depending on a priori knowledge. Basically the morphological features extracted from the pre-DEM were used to delineate the limits of the landslides. The curvature of the failure surface was obtained by "expert" interpretations. The failure surfaces obtained using SLBL are in good agreement with the failure surface observed on the post-DEM. The results are improved when (1) they are adjusted to obtain similar estimate of the volume deduced by Chigira et al. (2013), and when (2) the contours of the landslides used comes from an interpretation of both post and pre-DEM. In order to obtain the expansion coefficient some of these landslide, the missing volume of the deposits (by river erosion) were calculated using inverse SLBL. The coefficient of expansion ranges from 13% to 30%. The reconstruction of topography before the landslides in the scar or below the deposits gives also reliable results. Even if in many of the above cases the failure surface is controlled by structures (faults, joints, bedding, etc.), the quadratic surface used in SLBL seems to be a suitable solution to fit failure surfaces. If the structures are controlling large parts of the surface of failure, usually several of them are participating to the failure surfaces. It seems that this network of surfaces tends to adopt quadratic shapes when combined. Looking at other landslides or rockslide scar profiles around the world, the quadratic shape appears as very relevant. These study shows the efficiency of the SLBL method as a tool to estimate quickly the failure surface without a lot of knowledge. Preliminary investigations indicates that failure surface are roughly close to quadratic surface. References: Chigira M., Tsou C.-Y., Matsushi Y., Hiraishi N., Matsuzawa M. 2013.Topographic precursors and geological structures of deep-seated catastrophic landslides caused by Typhoon Talas. Geomorphology 201, 479-493

  12. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity

    PubMed Central

    Winkelmann, Donald A.; Forgacs, Eva; Miller, Matthew T.; Stock, Ann M.

    2015-01-01

    Omecamtiv Mecarbil (OM) is a small molecule allosteric effector of cardiac myosin that is in clinical trials for treatment of systolic heart failure. A detailed kinetic analysis of cardiac myosin has shown that the drug accelerates phosphate release by shifting the equilibrium of the hydrolysis step towards products, leading to a faster transition from weak to strong actin-bound states. The structure of the human β-cardiac motor domain (cMD) with OM bound reveals a single OM-binding site nestled in a narrow cleft separating two domains of the human cMD where it interacts with the key residues that couple lever arm movement to the nucleotide state. In addition, OM induces allosteric changes in three strands of the β-sheet that provides the communication link between the actin-binding interface and the nucleotide pocket. The OM-binding interactions and allosteric changes form the structural basis for the kinetic and mechanical tuning of cardiac myosin. PMID:26246073

  13. Resetting the transcription factor network reverses terminal chronic hepatic failure

    PubMed Central

    Nishikawa, Taichiro; Bell, Aaron; Brooks, Jenna M.; Setoyama, Kentaro; Melis, Marta; Han, Bing; Fukumitsu, Ken; Handa, Kan; Tian, Jianmin; Kaestner, Klaus H.; Vodovotz, Yoram; Locker, Joseph; Soto-Gutierrez, Alejandro; Fox, Ira J.

    2015-01-01

    The cause of organ failure is enigmatic for many degenerative diseases, including end-stage liver disease. Here, using a CCl4-induced rat model of irreversible and fatal hepatic failure, which also exhibits terminal changes in the extracellular matrix, we demonstrated that chronic injury stably reprograms the critical balance of transcription factors and that diseased and dedifferentiated cells can be returned to normal function by re-expression of critical transcription factors, a process similar to the type of reprogramming that induces somatic cells to become pluripotent or to change their cell lineage. Forced re-expression of the transcription factor HNF4α induced expression of the other hepatocyte-expressed transcription factors; restored functionality in terminally diseased hepatocytes isolated from CCl4-treated rats; and rapidly reversed fatal liver failure in CCl4-treated animals by restoring diseased hepatocytes rather than replacing them with new hepatocytes or stem cells. Together, the results of our study indicate that disruption of the transcription factor network and cellular dedifferentiation likely mediate terminal liver failure and suggest reinstatement of this network has therapeutic potential for correcting organ failure without cell replacement. PMID:25774505

  14. Thioredoxin 1 is Essential for Sodium Sulfide-Mediated Cardioprotection in the Setting of Heart Failure

    PubMed Central

    Nicholson, Chad K.; Lambert, Jonathan P.; Molkentin, Jeffery D.; Sadoshima, Junichi; Calvert, John W.

    2013-01-01

    Objective The aim of this study was to determine if thioredoxin-1 (Trx1) mediates the cardioprotective effects of hydrogen sulfide (H2S) in a model of ischemic-induced heart failure. Approach/Results Mice with a cardiac-specific overexpression of a dominant negative mutant of Trx1 (Tg-DN-Trx1) and wild-type littermates were subjected to ischemic-induced heart failure. Treatment with H2S as sodium sulfide (Na2S) not only increased the gene and protein expression of Trx1 in the absence of ischemia, but also augmented the heart failure-induced increase in both. Wild-type mice treated with Na2S experienced less left ventricular (LV) dilatation, improved LV function, and less cardiac hypertrophy after the induction of heart failure. In contrast, Na2S therapy failed to improve any of these parameters in the Tg-DN-Trx1 mice. Studies aimed at evaluating the underlying cardioprotective mechanisms found that Na2S therapy inhibited heart failure-induced apoptosis signaling kinase-1 (ASK1) signaling and nuclear export of histone deacetylase 4 (HDAC4) in a Trx1-dependent manner. Conclusions These findings provide novel information that the upregulation of Trx1 by Na2S therapy in the setting of heart failure sets into motion events, such as the inhibition of ASK1 signaling and HDAC4 nuclear export, which ultimately leads to the attenuation of LV remodeling. PMID:23349187

  15. Failure Mechanisms of Thermomechanically Loaded SnAgCu/Plastic Core Solder Ball Composite Joints in Low-Temperature Co-Fired Ceramic/Printed Wiring Board Assemblies

    NASA Astrophysics Data System (ADS)

    Nousiainen, O.; Putaala, J.; Kangasvieri, T.; Rautioaho, R.; Vähäkangas, J.

    2007-03-01

    The thermal fatigue endurance of completely lead-free 95.5Sn4Ag0.7Cu/plastic core solder ball (PCSB) composite joint structures in low-temperature Co-fired ceramic/printed wiring board (LTCC/PWB) assemblies was investigated using thermal cycling tests over the temperature ranges of -40°C 125°C and 0°C 100°C. Two separate creep/fatigue failures initiated and propagated in the joints during the tests: (1) a crack along the intermetallic compound (IMC)/solder interface on the LTCC side of the joint, which formed at the high-temperature extremes; and (2) a crack in the solder near the LTCC solder land, which formed at the low-temperature extremes. Moreover, localized recrystallization was detected at the outer edge of the joints that were tested in the harsh (-40°C 125°C) test conditions. The failure mechanism was creep/fatigue-induced mixed intergranular and transgranular cracking in the recrystallized zone, but it was dominated by transgranular thermal fatigue failure beyond the recrystallized zone. The change in the failure mechanism increased the rate of crack growth. When the lower temperature extreme was raised from -40°C to 0°C, no recrystallized zone was detected and the failure was due to intergranular cracks.

  16. Evaluation of critical nuclear power plant electrical cable response to severe thermal fire conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Gabriel James

    The failure of electrical cables exposed to severe thermal fire conditions are a safety concern for operating commercial nuclear power plants (NPPs). The Nuclear Regulatory Commission (NRC) has promoted the use of risk-informed and performance-based methods for fire protection which resulted in a need to develop realistic methods to quantify the risk of fire to NPP safety. Recent electrical cable testing has been conducted to provide empirical data on the failure modes and likelihood of fire-induced damage. This thesis evaluated numerous aspects of the data. Circuit characteristics affecting fire-induced electrical cable failure modes have been evaluated. In addition, thermal failure temperatures corresponding to cable functional failures have been evaluated to develop realistic single point thermal failure thresholds and probability distributions for specific cable insulation types. Finally, the data was used to evaluate the prediction capabilities of a one-dimension conductive heat transfer model used to predict cable failure.

  17. Failure of a massive earthquake-induced landslide dam in Papua New Guinea

    USGS Publications Warehouse

    King, J. P.; Loveday, I. C.; Schuster, R.L.

    1987-01-01

    This article discusses the recent occurrence of a large earthquake-induced landslide that dammed the Bairaman River in the interior of hte island of New Britian, Papua New Guinea, and the subsequent overtopping and failure of this landslide dam. 

  18. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Santhanagopalan, S.; Sprague, M. A.

    2016-07-28

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less

  19. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenizationmore » model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.« less

  20. Suppression of Shear Banding and Transition to Necking and Homogeneous Flow in Nanoglass Nanopillars

    NASA Astrophysics Data System (ADS)

    Adibi, Sara; Branicio, Paulo S.; Joshi, Shailendra P.

    2015-10-01

    In order to improve the properties of metallic glasses (MG) a new type of MG structure, composed of nanoscale grains, referred to as nanoglass (NG), has been recently proposed. Here, we use large-scale molecular dynamics (MD) simulations of tensile loading to investigate the deformation and failure mechanisms of Cu64Zr36 NG nanopillars with large, experimentally accessible, 50 nm diameter. Our results reveal NG ductility and failure by necking below the average glassy grain size of 20 nm, in contrast to brittle failure by shear band propagation in MG nanopillars. Moreover, the results predict substantially larger ductility in NG nanopillars compared with previous predictions of MD simulations of bulk NG models with columnar grains. The results, in excellent agreement with experimental data, highlight the substantial enhancement of plasticity induced in experimentally relevant MG samples by the use of nanoglass architectures and point out to exciting novel applications of these materials.

  1. Tribocorrosion Failure Mechanism of TiN/SiOx Duplex Coating Deposited on AISI304 Stainless Steel.

    PubMed

    Chen, Qiang; Xie, Zhiwen; Chen, Tian; Gong, Feng

    2016-11-26

    TiN/SiO x duplex coatings were synthesized on AISI304 stainless steel by plasma immersion ion implantation and deposition (PIIID) followed by radio frequency magnetron sputtering (RFMS). The microstructure and tribocorrosion failure behaviors of the duplex coatings were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy, reciprocating-sliding tribometer, and electrochemical tests. The as-deposited duplex coating had a two-layered columnar growth structure consisting of face-centered cubic TiN and amorphous SiO x . Sliding tests showed that the TiN interlayer had good adhesion with the substrate, but the SiO x layer suffered from severe delamination failure. Friction force induced a number of micro-cracks in the coating, which provided channels for the diffusion of NaCl solution. The tribocorrosion test showed that the duplex coating exhibited a lower wear-performance in NaCl solution than in ambient atmosphere. Multi-scale chloride ion corrosion occurred simultaneously and substantially degraded the bonding strength of the columnar crystals or neighboring layers. Force-corrosion synergy damage eventually led to multi-degradation failure of the duplex coating. The presented results provide a comprehensive understanding of the tribocorrosion failure mechanism in coatings with duplex architecture.

  2. Uncertainty and Intelligence in Computational Stochastic Mechanics

    NASA Technical Reports Server (NTRS)

    Ayyub, Bilal M.

    1996-01-01

    Classical structural reliability assessment techniques are based on precise and crisp (sharp) definitions of failure and non-failure (survival) of a structure in meeting a set of strength, function and serviceability criteria. These definitions are provided in the form of performance functions and limit state equations. Thus, the criteria provide a dichotomous definition of what real physical situations represent, in the form of abrupt change from structural survival to failure. However, based on observing the failure and survival of real structures according to the serviceability and strength criteria, the transition from a survival state to a failure state and from serviceability criteria to strength criteria are continuous and gradual rather than crisp and abrupt. That is, an entire spectrum of damage or failure levels (grades) is observed during the transition to total collapse. In the process, serviceability criteria are gradually violated with monotonically increasing level of violation, and progressively lead into the strength criteria violation. Classical structural reliability methods correctly and adequately include the ambiguity sources of uncertainty (physical randomness, statistical and modeling uncertainty) by varying amounts. However, they are unable to adequately incorporate the presence of a damage spectrum, and do not consider in their mathematical framework any sources of uncertainty of the vagueness type. Vagueness can be attributed to sources of fuzziness, unclearness, indistinctiveness, sharplessness and grayness; whereas ambiguity can be attributed to nonspecificity, one-to-many relations, variety, generality, diversity and divergence. Using the nomenclature of structural reliability, vagueness and ambiguity can be accounted for in the form of realistic delineation of structural damage based on subjective judgment of engineers. For situations that require decisions under uncertainty with cost/benefit objectives, the risk of failure should depend on the underlying level of damage and the uncertainties associated with its definition. A mathematical model for structural reliability assessment that includes both ambiguity and vagueness types of uncertainty was suggested to result in the likelihood of failure over a damage spectrum. The resulting structural reliability estimates properly represent the continuous transition from serviceability to strength limit states over the ultimate time exposure of the structure. In this section, a structural reliability assessment method based on a fuzzy definition of failure is suggested to meet these practical needs. A failure definition can be developed to indicate the relationship between failure level and structural response. In this fuzzy model, a subjective index is introduced to represent all levels of damage (or failure). This index can be interpreted as either a measure of failure level or a measure of a degree of belief in the occurrence of some performance condition (e.g., failure). The index allows expressing the transition state between complete survival and complete failure for some structural response based on subjective evaluation and judgment.

  3. Crack detection and fatigue related delamination in FRP composites applied to concrete

    NASA Astrophysics Data System (ADS)

    Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew

    2008-03-01

    Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.

  4. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event

    NASA Astrophysics Data System (ADS)

    Yang, Zhihua; Lan, Hengxing; Zhang, Yongshuang; Gao, Xing; Li, Langping

    2013-03-01

    Strong earthquakes and faults have significant effect on the stability capability of underground tunnel structures. This study used a 3-Dimensional Discrete Element model and the real records of ground motion in the Wenchuan earthquake to investigate the dynamic response of tunnel-fault system. The typical tunnel-fault system was composed of one planned railway tunnel and one seismically active fault. The discrete numerical model was prudentially calibrated by means of the comparison between the field survey and numerical results of ground motion. It was then used to examine the detailed quantitative information on the dynamic response characteristics of tunnel-fault system, including stress distribution, strain, vibration velocity and tunnel failure process. The intensive tunnel-fault interaction during seismic loading induces the dramatic stress redistribution and stress concentration in the intersection of tunnel and fault. The tunnel-fault system behavior is characterized by the complicated nonlinear dynamic failure process in response to a real strong seismic event. It can be qualitatively divided into 5 main stages in terms of its stress, strain and rupturing behaviors: (1) strain localization, (2) rupture initiation, (3) rupture acceleration, (4) spontaneous rupture growth and (5) stabilization. This study provides the insight into the further stability estimation of underground tunnel structures under the combined effect of strong earthquakes and faults.

  5. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.

    PubMed

    Zeng, F; Jiang, M Q; Dai, L H

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  6. Dilatancy induced ductile-brittle transition of shear band in metallic glasses

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Jiang, M. Q.; Dai, L. H.

    2018-04-01

    Dilatancy-generated structural disordering, an inherent feature of metallic glasses (MGs), has been widely accepted as the physical mechanism for the primary origin and structural evolution of shear banding, as well as the resultant shear failure. However, it remains a great challenge to determine, to what degree of dilatation, a shear banding will evolve into a runaway shear failure. In this work, using in situ acoustic emission monitoring, we probe the dilatancy evolution at the different stages of individual shear band in MGs that underwent severely plastic deformation by the controlled cutting technology. A scaling law is revealed that the dilatancy in a shear band is linearly related to its evolution degree. A transition from ductile-to-brittle shear bands is observed, where the formers dominate stable serrated flow, and the latter lead to a runaway instability (catastrophe failure) of serrated flow. To uncover the underlying mechanics, we develop a theoretical model of shear-band evolution dynamics taking into account an atomic-scale deformation process. Our theoretical results agree with the experimental observations, and demonstrate that the atomic-scale volume expansion arises from an intrinsic shear-band evolution dynamics. Importantly, the onset of the ductile-brittle transition of shear banding is controlled by a critical dilatation.

  7. Thermally induced fracture for core-veneered dental ceramic structures.

    PubMed

    Zhang, Zhongpu; Guazzato, Massimiliano; Sornsuwan, Tanapon; Scherrer, Susanne S; Rungsiyakull, Chaiy; Li, Wei; Swain, Michael V; Li, Qing

    2013-09-01

    Effective and reliable clinical uses of dental ceramics necessitate an insightful analysis of the fracture behaviour under critical conditions. To better understand failure characteristics of porcelain veneered to zirconia core ceramic structures, thermally induced cracking during the cooling phase of fabrication is studied here by using the extended finite element method (XFEM). In this study, a transient thermal analysis of cooling is conducted first to determine the temperature distributions. The time-dependent temperature field is then imported to the XFEM model for viscoelastic thermomechanical analysis, which predicts thermally induced damage and cracking at different time steps. Temperature-dependent material properties are used in both transient thermal and thermomechanical analyses. Three typical ceramic structures are considered in this paper, namely bi-layered spheres, squat cylinders and dental crowns with thickness ratios of either 1:2 or 1:1. The XFEM fracture patterns exhibit good agreement with clinical observation and the in vitro experimental results obtained from scanning electron microscopy characterization. The study reveals that fast cooling can lead to thermal fracture of these different bi-layered ceramic structures, and cooling rate (in terms of heat transfer coefficient) plays a critical role in crack initiation and propagation. By exploring different cooling rates, the heat transfer coefficient thresholds of fracture are determined for different structures, which are of clear clinical implication. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  9. Analytical and experimental studies of flow-induced vibration of SSME components

    NASA Technical Reports Server (NTRS)

    Chen, S. S.; Jendrzejczyk, J. A.; Wambsganss, M. W.

    1987-01-01

    Components of the Space Shuttle Main Engines (SSMEs) are subjected to a severe environment that includes high-temperature, high-velocity flows. Such flows represent a source of energy that can induce and sustain large-amplitude vibratory stresses and/or result in fluidelastic instabilities. Three components are already known to have experienced failures in evaluation tests as a result of flow-induced structural motion. These components include the liquid-oxygen (LOX) posts, the fuel turbine bellows shield, and the internal inlet tee splitter vane. Researchers considered the dynamic behavior of each of these components with varying degrees of effort: (1) a theoretical and experimental study of LOX post vibration excited by a fluid flow; (2) an assessment of the internal inlet tee splitter vane vibration (referred to as the 4000-Hz vibration problem); and (3) a preliminary consideration of the bellows shield problem. Efforts to resolve flow-induced vibration problems associated with the SSMEs are summarized.

  10. Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events: examples of lacustrine varved sediments in Japan

    NASA Astrophysics Data System (ADS)

    Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri

    2016-04-01

    Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are dominated by rip-up clasts of diatomite. The former is well continued in outcrops; however, the thickness of the latter is changeable and the lower contact is erosive. In the Hirzenbara Fm., flood-induced type includes epiphytic diatom valves as river inflows, whereas slope failure-induced type is composed of diatom valves of varved diatomite. Flood-induced types are suggested to be classified into hyperpycnal flow and hypopycnal flow types with regard to the presence of basal erosion. On the other hand, slope failure-induced types can be interpreted as debris flow deposits occurred in the lakes. Differences in the two types are also shown as bed-thickness frequency distributions indicating event magnitude.

  11. Magnesium sulphate and (123)I-MIBG in pheochromocytoma: Two useful techniques for a complicated disease.

    PubMed

    Vendrell, M; Martín, N; Tejedor, A; Ortiz, J T; Muxí, À; Taurà, P

    2016-01-01

    Pheochromocytoma is a tumour of the chromaffin tissue. It may, through catecholamine release, have deleterious effects on myocardial structure. A 48-year-old woman with a history of hypertension and type II diabetes mellitus (ASA II) was diagnosed of pheochromocytoma-induced myocarditis, which caused severe cardiogenic shock, with an ejection fraction of 20%. Extreme blood pressure swings required aggressive therapy with vasoactive drugs (norepinephrine and dopamine) and an intra-aortic balloon pump, despite which severe haemodynamic instability persisted. Finally, the use of magnesium sulphate allowed for cardiovascular stabilization and weaning off vasoactive drugs prior to surgery. (123)I-metaiodobenzylguanidine scintigraphy helps not only to functionally confirm tumour tissue, but also to assess severity and prognosis of cardiac failure. Prognosis of pheochromocytoma-induced heart failure can be very poor. The use of these two well-known and relatively simple 'tools' for treatment and prognosis is a helpful option to keep in mind. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    NASA Technical Reports Server (NTRS)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  13. Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.

  14. Induction of ovarian function by using short-term human menopausal gonadotrophin in patients with ovarian failure following cytotoxic chemotherapy for haematological malignancy.

    PubMed

    Chatterjee, R; Mills, W; Katz, M; McGarrigle, H H; Goldstone, A H

    1993-07-01

    Currently no treatment has proved successful in inducing ovarian steroidogenic and/or gametogenic recovery in patients with haematological malignancies treated by cytotoxic chemotherapy once biochemical failure becomes manifest i.e., when FSH levels exceed 40 IU/L. This paper reports two such cases with classical biochemical ovarian failure in which ovarian function was induced by brief stimulation with Human Menopausal Gonadotrophin (HMG).

  15. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress

    PubMed Central

    Dai, Dao-Fu; Hsieh, Edward J.; Liu, Yonggang; Chen, Tony; Beyer, Richard P.; Chin, Michael T.; MacCoss, Michael J.; Rabinovitch, Peter S.

    2012-01-01

    Aims We investigate the role of mitochondrial oxidative stress in mitochondrial proteome remodelling using mouse models of heart failure induced by pressure overload. Methods and results We demonstrate that mice overexpressing catalase targeted to mitochondria (mCAT) attenuate pressure overload-induced heart failure. An improved method of label-free unbiased analysis of the mitochondrial proteome was applied to the mouse model of heart failure induced by transverse aortic constriction (TAC). A total of 425 mitochondrial proteins were compared between wild-type and mCAT mice receiving TAC or sham surgery. The changes in the mitochondrial proteome in heart failure included decreased abundance of proteins involved in fatty acid metabolism, an increased abundance of proteins in glycolysis, apoptosis, mitochondrial unfolded protein response and proteolysis, transcription and translational control, and developmental processes as well as responses to stimuli. Overexpression of mCAT better preserved proteins involved in fatty acid metabolism and attenuated the increases in apoptotic and proteolytic enzymes. Interestingly, gene ontology analysis also showed that monosaccharide metabolic processes and protein folding/proteolysis were only overrepresented in mCAT but not in wild-type mice in response to TAC. Conclusion This is the first study to demonstrate that scavenging mitochondrial reactive oxygen species (ROS) by mCAT not only attenuates most of the mitochondrial proteome changes in heart failure, but also induces a subset of unique alterations. These changes represent processes that are adaptive to the increased work and metabolic requirements of pressure overload, but which are normally inhibited by overproduction of mitochondrial ROS. PMID:22012956

  16. Triennial Reproduction Symposium: influence of follicular characteristics at ovulation on early embryonic survival.

    PubMed

    Geary, T W; Smith, M F; MacNeil, M D; Day, M L; Bridges, G A; Perry, G A; Abreu, F M; Atkins, J A; Pohler, K G; Jinks, E M; Madsen, C A

    2013-07-01

    Reproductive failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. Although fertilization failure occurs, embryonic mortality represents a greater contribution to reproductive failure. Reproductive success varies among species and production goals but is measured as a binomial trait (i.e., pregnancy), derived by the success or failure of multiple biological steps. This review focuses primarily on follicular characteristics affecting oocyte quality, fertilization, and embryonic health that lead to pregnancy establishment in beef cattle. When estrous cycles are manipulated with assisted reproductive technologies and ovulation is induced, duration of proestrus (i.e., interval from induced luteolysis to induced ovulation), ovulatory follicle growth rate, and ovulatory follicle size are factors that affect the maturation of the follicle and oocyte at induced ovulation. The most critical maturational component of the ovulatory follicle is the production of sufficient estradiol to prepare follicular cells for luteinization and progesterone synthesis and prepare the uterus for pregnancy. The exact roles of estradiol in oocyte maturation remain unclear, but cows that have lesser serum concentrations of estradiol have decreased fertilization rates and decreased embryo survival on d 7 after induced ovulation. When length of proestrus is held constant, perhaps the most practical follicular measure of fertility is ovulatory follicle size because it is an easily measured attribute of the follicle that is highly associated with its ability to produce estradiol.

  17. Acute Liver Failure from Tumor Necrosis Factor-α Antagonists: Report of Four Cases and Literature Review.

    PubMed

    Kok, Beverley; Lester, Erica L W; Lee, William M; Hanje, A James; Stravitz, R Todd; Girgis, Safwat; Patel, Vaishali; Peck, Joshua R; Esber, Christopher; Karvellas, Constantine J

    2018-06-01

    Tumor necrosis factor-α antagonists (anti-TNF-α) have been associated with drug-induced liver injury. However, cases of anti-TNF-α-associated acute liver failure have only been rarely reported. To identify cases of anti-TNF-α-associated acute liver failure and evaluate patterns of liver injury and common characteristics to the cases. The United States Acute Liver Failure Study Group database was searched from 1998 to 2014. Four subjects were identified. A PubMed search for articles that reported anti-TNF-α-associated acute liver failure identified five additional cases. The majority of individuals affected were female (eight of nine cases). Age of individual ranged from 20 to 53 years. The most common anti-TNF-α agent associated with acute liver failure was infliximab (n = 8). The latency between initial drug exposure and acute liver failure ranged from 3 days to over a year. Of the nine cases, six required emergency LT. Liver biopsy was obtained in seven cases with a preponderance toward cholestatic-hepatitic features; none showed clear autoimmune features. Anti-TNF-α-associated acute liver failure displays somewhat different characteristics compared with anti-TNF-α-induced drug-induced liver injury. Infliximab was implicated in the majority of cases. Cholestatic-hepatitic features were frequently found on pre-transplant and explant histology.

  18. [Hyperkalemia-induced failure of pacemaker capture and sensing: a case report].

    PubMed

    Wang, Y P; Chen, B X; Su, K J; Sun, L J; Zhang, Y; Guo, L J; Gao, W

    2014-12-18

    Hyperkalemia may induce serious cardiac arrhythmia, with possible life-threatening effects. It may cause cardiac pacemaker (PMK) malfunctioning due to a reduction of the electronegativity of the resting myocardial potential. We report the case of a 71-year-old woman who had a previous history of chronic heart failure, chronic renal failure and DDI pacemaker. She was admitted for disturbance of consciousness. During hospitalization, she was observed for extreme hypotension, acute hyperkalemia, ventricular escape rhythm, associated with failure of pacemaker capture and sensing. She was treated with calcium chloride injection, followed by insulin/glucose and sodium bicarbonate infusions; the electrocardiogram recordings showed an correction of the PMK malfunctioning and serial improvement of the intraventricular conduction. This case supports that hyperkalemia should be closely monitored in the chronic heart failure patients combined with chronic renal failure.

  19. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 3; Titan, ASRM, and Subscale Motor Analyses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A computational fluid dynamics (CFD) analysis has been performed on the aft slot region of the Titan 4 Solid Rocket Motor Upgrade (SRMU). This analysis was performed in conjunction with MSFC structural modeling of the propellant grain to determine if the flow field induced stresses would adversely alter the propellant geometry to the extent of causing motor failure. The results of the coupled CFD/stress analysis have shown that there is a continual increase of flow field resistance at the aft slot due to the aft segment propellant grain being progressively moved radially toward the centerline of the motor port. This 'bootstrapping' effect between grain radial movement and internal flow resistance is conducive to causing a rapid motor failure.

  20. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures

    NASA Astrophysics Data System (ADS)

    Brideau, Marc-André; Yan, Ming; Stead, Doug

    2009-01-01

    Rock slope failures are frequently controlled by a complex combination of discontinuities that facilitate kinematic release. These discontinuities are often associated with discrete folds, faults, and shear zones, and/or related tectonic damage. The authors, through detailed case studies, illustrate the importance of considering the influence of tectonic structures not only on three-dimensional kinematic release but also in the reduction of rock mass properties due to induced damage. The case studies selected reflect a wide range of rock mass conditions. In addition to active rock slope failures they include two major historic failures, the Hope Slide, which occurred in British Columbia in 1965 and the Randa rockslides which occurred in Switzerland in 1991. Detailed engineering geological mapping combined with rock testing, GIS data analysis and for selected case numerical modelling, have shown that specific rock slope failure mechanisms may be conveniently related to rock mass classifications such as the Geological Strength Index (GSI). The importance of brittle intact rock fracture in association with pre-existing rock mass damage is emphasized though a consideration of the processes involved in the progressive-time dependent development not only of though-going failure surfaces but also lateral and rear-release mechanisms. Preliminary modelling data are presented to illustrate the importance of intact rock fracture and step-path failure mechanisms; and the results are discussed with reference to selected field observations. The authors emphasize the importance of considering all forms of pre-existing rock mass damage when assessing potential or operative failure mechanisms. It is suggested that a rock slope rock mass damage assessment can provide an improved understanding of the potential failure mode, the likely hazard presented, and appropriate methods of both analysis and remedial treatment.

  1. Inhibition of HSF2 SUMOylation via MEL18 upregulates IGF-IIR and leads to hypertension-induced cardiac hypertrophy.

    PubMed

    Huang, Chih-Yang; Kuo, Chia-Hua; Pai, Pei-Ying; Ho, Tsung-Jung; Lin, Yueh-Min; Chen, Ray-Jade; Tsai, Fuu-Jen; Vijaya Padma, V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-04-15

    Cardiac hypertrophy is a major characteristic of early-stage hypertension-related heart failure. We have found that the insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II-induced cardiomyocyte hypertrophy and apoptosis. Moreover, this IGF-IIR signaling was elegantly modulated by the heat shock transcription factors (HSFs) during heart failure. However, the detailed mechanism by which HSFs regulates IGF-IIR during hypertension-induced cardiac hypertrophy remains elusive. In this study, we found that heat shock transcription factor 2 (HSF2) activated IGF-IIR to induce cardiac hypertrophy for hypertension-induced heart failure. The transcriptional activity of HSF2 appeared to be primarily mediated by SUMOylation via conjugation with small ubiquitin-like modifier-1 (SUMO-1). The SUMOylation of HSF2 was severely attenuated by MEL18 (also known as polycomb group ring finger 2 or PCGF2) in the heart of spontaneously hypertensive rats (SHR). Inhibition of HSF2 SUMOylation severely induced cardiac hypertrophy via IGF-IIR-mediated signaling in hypertensive rats. Angiotensin II receptor type I blocker (ARB) treatment in spontaneously hypertensive rats restored HSF2 SUMOylation and alleviated the cardiac defects. Thus, our study uncovered a novel MEL18-SUMO-1-HSF2-IGF-IIR pathway in the heart that profoundly influences cardiac hypertrophy for hypertension-induced heart failure. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Damage assessment in reinforced concrete using nonlinear vibration techniques

    NASA Astrophysics Data System (ADS)

    Van Den Abeele, K.; De Visscher, J.

    2000-07-01

    Reinforced concrete (RC) structures are subject to microcrack initiation and propagation at load levels far below the actual failure load. In this paper, nonlinear vibration techniques are applied to investigate stages of progressive damage in RC beams induced by static loading tests. At different levels of damage, a modal analysis is carried out, assuming the structure to behave linearly. At the same time, measurement of resonant frequencies and damping ratios as function of vibration amplitude are performed using a frequency domain technique as well as a time domain technique. We compare the results of the linear and nonlinear techniques, and value them against the visual damage evaluation.

  3. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    NASA Astrophysics Data System (ADS)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a second example, the option of seasonal hydrogen storage in a deep saline aquifer is considered. The induced thermal and hydraulic multiphase flow processes were simulated. Also, an integrative approach towards geophysical monitoring of gas presence was evaluated by synthetically applying these monitoring methods to the synthetic, however realistically defined numerical storage scenarios. Laboratory experiments provided parameterisations of geochemical effects caused by storage gas leakage into shallow aquifers in cases of sealing failure. Ultimately, the analysis of realistically defined scenarios of subsurface energy storage within the ANGUS+ project allows a quantification of the subsurface space claimed by a storage operation and its induced effects. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".

  4. Fatigue of restorative materials.

    PubMed

    Baran, G; Boberick, K; McCool, J

    2001-01-01

    Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.

  5. Pathological alterations in liver injury following congestive heart failure induced by volume overload in rats

    PubMed Central

    Shaqura, Mohammed; Mohamed, Doaa M.; Aboryag, Noureddin B.; Bedewi, Lama; Dehe, Lukas; Treskatsch, Sascha; Shakibaei, Mehdi; Schäfer, Michael

    2017-01-01

    Heart failure has emerged as a disease with significant public health implications. Following progression of heart failure, heart and liver dysfunction are frequently combined in hospitalized patients leading to increased morbidity and mortality. Here, we investigated the underlying pathological alterations in liver injury following heart failure. Heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. Sham operated and ACF rats were compared for their morphometric and hemodynamic data, for histopathological and ultrastructural changes in the liver as well as differences in the expression of apoptotic factors. ACF-induced heart failure is associated with light microscopic signs of apparent congestion of blood vessels, increased apoptosis and breakdown of hepatocytes and inflammatory cell inifltration were observed. The glycogen content depletion associated with the increased hepatic fibrosis, lipid globule formation was observed in ACF rats. Moreover, cytoplasmic organelles are no longer distinguishable in many ACF hepatocytes with degenerated fragmented rough endoplasmic reticulum, shrunken mitochondria and heavy cytoplasm vacuolization. ACF is associated with the upregulation of the hepatic TUNEL-positive cells and proapoptotic factor Bax protein concomitant with the mitochondrial leakage of cytochrome C into the cell cytoplasm and the transfer of activated caspase 3 from the cytoplasm into the nucleus indicating intrinsic apoptotic events. Taken together, the results demonstrate that ACF-induced congestive heart failure causes liver injury which results in hepatocellular apoptotic cell death mediated by the intrinsic pathway of mitochondrial cytochrome C leakage and subsequent transfer of activated caspase 3 into to the nucleus to initiate overt DNA fragmentation and cell death. PMID:28934226

  6. Mitochondrial division/mitophagy inhibitor (Mdivi) Ameliorates Pressure Overload Induced Heart Failure

    PubMed Central

    Givvimani, Srikanth; Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Metreveli, Naira; Tyagi, Suresh C.

    2012-01-01

    Background We have previously reported the role of anti-angiogenic factors in inducing the transition from compensatory cardiac hypertrophy to heart failure and the significance of MMP-9 and TIMP-3 in promoting this process during pressure overload hemodynamic stress. Several studies reported the evidence of cardiac autophagy, involving removal of cellular organelles like mitochondria (mitophagy), peroxisomes etc., in the pathogenesis of heart failure. However, little is known regarding the therapeutic role of mitochondrial division inhibitor (Mdivi) in the pressure overload induced heart failure. We hypothesize that treatment with mitochondrial division inhibitor (Mdivi) inhibits abnormal mitophagy in a pressure overload heart and thus ameliorates heart failure condition. Materials and Methods To verify this, ascending aortic banding was done in wild type mice to create pressure overload induced heart failure and then treated with Mdivi and compared with vehicle treated controls. Results Expression of MMP-2, vascular endothelial growth factor, CD31, was increased, while expression of anti angiogenic factors like endostatin and angiostatin along with MMP-9, TIMP-3 was reduced in Mdivi treated AB 8 weeks mice compared to vehicle treated controls. Expression of mitophagy markers like LC3 and p62 was decreased in Mdivi treated mice compared to controls. Cardiac functional status assessed by echocardiography showed improvement and there is also a decrease in the deposition of fibrosis in Mdivi treated mice compared to controls. Conclusion Above results suggest that Mdivi inhibits the abnormal cardiac mitophagy response during sustained pressure overload stress and propose the novel therapeutic role of Mdivi in ameliorating heart failure. PMID:22479323

  7. Pseudoephedrine/ephedrine shows potent anti-inflammatory activity against TNF-α-mediated acute liver failure induced by lipopolysaccharide/D-galactosamine.

    PubMed

    Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun

    2014-02-05

    The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats.

    PubMed

    Li, Dongliang; Fan, Jingjing; He, Xiuhua; Zhang, Xia; Zhang, Zhiqiang; Zeng, Zhiyu; Ruan, Mei; Cai, Lirong

    2015-01-01

    To evaluate the therapeutic efficacy of rat bone marrow mesenchymal stem cells (BMSCs) induced into hepatocyte-like cells and of un-induced BMSCs in acute liver failure rats. BMSCs in highly homogenous passage 3 were cultured using the whole bone marrow adherent culture method. Hepatic-related characters were confirmed with morphology, RT-PCR analysis, glycogen staining and albumin (ALB) immunofluorescence assay. Carbon tetrachloride (CCl4) was injected intraperitoneally to establish an acute rat liver failure model. Hepatocyte-like cells or un-induced BMSCs were respectively injected into the models to examine rats' appearance, liver function assay and liver tissue pathology. Hepatocyte-like morphology, higher expression of cytokeratin 18 (CK18) mRNA and ALB protein, and glycogen accumulation were confirmed in the induced BMSCs. The transplanted DAPI-labeled BMSCs were localized in the liver tissue 3-14 days after transplantation. The levels of liver function indicators (AST, ALT, ALP, and TBIL) from transplanted rats were significant decreased and pathology was improved, indicating the recovery of liver function. However, the differences were statistically insignificant. Both hepatocyte-like cells and un-induced BMSCs had a similarly positively therapeutic efficacy on liver regeneration in rat liver failure model.

  9. Self-heating and failure in scalable graphene devices

    DOE PAGES

    Beechem, Thomas E.; Shaffer, Ryan A.; Nogan, John; ...

    2016-06-09

    Self-heating induced failure of graphene devices synthesized from both chemical vapor deposition (CVD) and epitaxial means is compared using a combination of infrared thermography and Raman imaging. Despite a larger thermal resistance, CVD devices dissipate >3x the amount of power before failure than their epitaxial counterparts. The discrepancy arises due to morphological irregularities implicit to the graphene synthesis method that induce localized heating. As a result, morphology, rather than thermal resistance, therefore dictates power handling limits in graphene devices.

  10. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200-300 1-hr cycles with only moderate weight gains (0.5 mg/cm2). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in an accompanying video-recording. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  11. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural cracking directly into account may provide a more physics-based approach for compressive failure in the future.

  12. Effect of stress concentrations in composite structures

    NASA Technical Reports Server (NTRS)

    Babcock, G. D.; Knauss, W. G.

    1984-01-01

    The goal of achieving a better understanding of the failure of complex composite structure is sought. This type of structure requires a thorough understanding of the behavior under load both on a macro and micro scale if failure mechanisms are to be understood. The two problems being studied are the failure at a panel/stiffener interface and a generic problem of failure at a stress concentration.

  13. Report of the NASA Ad Hoc Committee on failure of high strength structural materials

    NASA Technical Reports Server (NTRS)

    Brown, W. F., Jr. (Editor)

    1972-01-01

    An analysis of structural failures that have occurred in NASA programs was conducted. Reports of 231 examples of structural failure were reviewed. Attempts were made to identify those factors which contributed to the failures, and recommendations were formulated for actions which would minimize their effects on future NASA programs. Two classes of factors were identified: (1) those associated with deficiencies in existing materials and structures technology and (2) those attributable to inadequate documentation or communication of that technology.

  14. Dietary Salt Exacerbates Isoproterenol-induced Cardiomyopathy in Rats

    EPA Science Inventory

    Spontaneously Hypertensive Heart Failure rats (SHHFs) take far longer to develop compensated heart failure and congestive decompensation than common surgical models of heart failure. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loa...

  15. Stability of mechanical joints in launching vehicles: Local and global stationary values of energy density

    NASA Astrophysics Data System (ADS)

    Chue, Ching-Hwei

    A method was developed for predicting the behavior of mechanical joints in launch vehicles with particular emphasis placed on how the combined effects of loading, geometry, and materials could be optimized in terms of structure instability and/or integrity. What was considered to be essential is the fluctuation of the volume energy density with time in the structure. The peaks and valleys of the volume energy density function will be associated with failure by fracture and/or yielding while the distance between their local and global stationary values govern the structure instability. The Solid Rocket Booster (SRB) of the space shuttle was analyzed under axisymmetric and non-axisymmetric loadings. A semi-analytical finite element program was developed for solving the case of non-axisymmetric loading. Following a dynamic stress analysis, contours of the volume energy density in the structure were obtained as a function of time. The magnitudes and locations of these stationary values were then calculated locally and globally and related to possible failure by fracture. In the case of axisymmetric flight, the local and global instability behavior do not change appreciably. Fluctuations in the energy density and the dynamic stability length parameter become appreciable when the non-axisymmetric loads are considered. The magnitude of the energy in the shell structure is sensitive to alterations in the gas pressure induced by the solid propellant.

  16. An Investigation of the Effects of Discrete Wing Tip Jets on Wake Vortex Roll Up.

    DTIC Science & Technology

    1983-08-01

    failure of these devices does not mean that the vortex structure cannot be altered such as to reduce rolling moment. On the contrary, Yuan and Bloom (43...which has demonstrated a capabilitv, to e:ra induced rolling moment - the downward blowing jet of .𔄁, ,and Bloom (43)- was also the only jet...eliminated the large vortex excursions associated with close approaches. Bloom and Jen (83) used the method of Kuwahara and Takami to calculate vortex roll up

  17. Present-day stress state in the Outokumpu deep drill hole, Finland

    NASA Astrophysics Data System (ADS)

    Pierdominici, Simona; Ask, Maria; Kukkonen, Ilmo; Kueck, Jochem

    2017-04-01

    This study aims to investigate the present-day stress field in the Outokumpu area, eastern Finland, using interpretation of borehole failure on acoustic image logs in a 2516 m deep hole. Two main objectives of this study are: i. to constrain the orientation of maximum horizontal stress by mapping the occurrence of stress-induced deformation features using two sets of borehole televiewer data, which were collected in 2006 and 2011; and ii. to investigate whether any time dependent deformation of the borehole wall has occurred (creep). The Outokumpu deep hole was drilled during 2004-2005 to study deep structures and seismic reflectors within the Outokumpu formation and conducted within the International Continental Scientific Drilling Program (ICDP). The hole was continuously core-drilled into Paleoproterozoic formation of metasediments, ophiolite-derived altered ultrabasic rocks and pegmatitic granite. In 2006 and 2011 two downhole logging campaigns were performed by the Operational Support Group of ICDP to acquire a set of geophysical data. Here we focus on a specific downhole logging measurement, the acoustic borehole televiewer (BHTV), to determine the present-day stress field in the Outokumpu area. We constrain the orientation and magnitude of in situ stress tensor based on borehole wall failures detected along a 2516 m deep hole. Horizontal stress orientation was determined by interpreting borehole breakouts (BBs) and drilling-induced tensile fractures (DIFs) from BHTV logs. BBs are stress-induced enlargements of the borehole cross section and occur in two opposite zones at angles around the borehole where the wellbore stress concentration (hoop stress) exceeds the value required to cause compressive failure of intact rock. DIFs are caused by tensile failure of the borehole wall and form at two opposite spots on the borehole where the stress concentration is lower than the tensile strength of the rock. This occurs at angles 90° apart from the center of the breakout zone. Acoustic imaging logs provide a high-resolution oriented picture of the borehole wall that allows for the direct observation of BBs, which appear as two almost vertical swaths on the borehole image separated by 180°. BBs show poor sonic reflectivity and long travel times due to the many small brittle fractures and the resulting spalling. DIFs appear as two narrow stripes of low reflectivity separated by 180° and typically sub-parallel or slightly inclined to the borehole axis. The analysis of these images shows a distinct compressive failure area consistent with major geological and tectonic lineaments of the area. Deviations from this trend reflect local structural perturbations. Additionally, the 2006 and 2011 dataset are used to compare the changes of breakout geometry and to quantify the growth of the breakouts in this time span from differences in width, length and depth to estimate the magnitude of the horizontal stress tensors. Our study contributes to understand the structure of the shallow crust in the Outokumpu area by defining the current stress field. Furthermore, a detailed understanding of the regional stress field is a fundamental contribution in several research areas such as exploration and exploitation of underground resources, and geothermal reservoir studies.

  18. An overview of computational simulation methods for composite structures failure and life analysis

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1993-01-01

    Three parallel computational simulation methods are being developed at the LeRC Structural Mechanics Branch (SMB) for composite structures failure and life analysis: progressive fracture CODSTRAN; hierarchical methods for high-temperature composites; and probabilistic evaluation. Results to date demonstrate that these methods are effective in simulating composite structures failure/life/reliability.

  19. Charge collection and SEU mechanisms

    NASA Astrophysics Data System (ADS)

    Musseau, O.

    1994-01-01

    In the interaction of cosmic ions with microelectronic devices a dense electron-hole plasma is created along the ion track. Carriers are separated and transported by the electric field and under the action of the concentration gradient. The subsequent collection of these carriers induces a transient current at some electrical node of the device. This "ionocurrent" (single ion induced current) acts as any electrical perturbation in the device, propagating in the circuit and inducing failures. In bistable systems (registers, memories) the stored data can be upset. In clocked devices (microprocessors) the parasitic perturbation may propagate through the device to the outputs. This type of failure only effects the information, and do not degrade the functionally of the device. The purpose of this paper is to review the mechanisms of single event upset in microelectronic devices. Experimental and theoretical results are presented, and actual questions and problems are discussed. A brief introduction recalls the creation of the dense plasma of electron-hole pairs. The basic processes for charge collection in a simple np junction (drift and diffusion) are presented. The funneling-field effect is discussed and experimental results are compared to numerical simulations and semi-empirical models. Charge collection in actual microelectronic structures is then presented. Due to the parasitic elements, coupling effects are observed. Geometrical effects, in densely packed structures, results in multiple errors. Electronic couplings are due to the carriers in excess, acting as minority carriers, that trigger parasitic bipolar transistors. Single event upset of memory cells is discussed, based on numerical and experimental data. The main parameters for device characterization are presented. From the physical interpretation of charge collection mechanisms, the intrinsic sensitivity of various microelectronic technologies is determined and compared to experimental data. Scaling laws and future trends are finally discussed.

  20. Pacemaker failure resulting from radiation damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quertermous, T.; Megahy, M.S.; Das Gupta, D.S.

    1983-07-01

    The authors present a case of radiation-induced pacemaker failure. After 2000 rad (20 Gy) of photon irradiation for metastatic bronchogenic carcinoma, the pulse generator circuitry failed, producing a runaway rhythm. This suggests that present pacemaker circuitry may be more susceptible to irradiation than previously believed, and that even modest radiation doses can induce life-threatening arrhythmias.

  1. Effect of stress concentrations in composite structures

    NASA Technical Reports Server (NTRS)

    Babcock, C. D.; Waas, A. M.

    1985-01-01

    Composite structures have found wide use in many engineering fields and a sound understanding of their response under load is important to their utilization. An experimental program is being carried out to gain a fundamental understanding of the failure mechanics of multilayered composite structures at GALCIT. As a part of this continuing study, the performance of laminated composite plates in the presence of a stress gradient and the failure of composite structures at points of thickness discontinuity is assessed. In particular, the questions of initiation of failure and its subsequent growth to complete failure of the structure are addressed.

  2. Protective effects of low-dose rosuvastatin on isoproterenol-induced chronic heart failure in rats by regulation of DDAH-ADMA-NO pathway.

    PubMed

    Zhou, Ru; Ma, Ping; Xiong, Aiqin; Xu, Yehua; Wang, Yang; Xu, Qingbin

    2017-04-01

    Cardiovascular disease is the leading cause of death with high morbidity and mortality, and chronic heart failure is the terminal phase of it. This study aimed to investigate the protective effects of the low-dose rosuvastatin on isoproterenol-induced chronic heart failure and to explore the possible related mechanisms. Male Sprague Dawley rats were given isoproterenol 5 mg/kg once a day for 7 days to establish heart failure model by subcutaneous injection. Simultaneously, low-dose rosuvastatin (5 mg/kg) was orally administrated from day 1 to day 14. Protective effects were evaluated by hemodynamic parameter, histopathological variables, serum asymmetric dimethylarginine (ADMA), cardiac troponin I (cTnI), brain natriuretic peptide (BNP) and myocardial nitric oxide (NO), and the levels of dimethylarginine dimethylaminohydrolase 2 (DDAH2), arginine methyltransferases 1 (PRMT1) and endothelial nitric oxide synthase (eNOS) expression were analyzed. Therapeutic rosuvastatin (5 mg/kg) significantly attenuated isoproterenol-induced hypertrophy, remodeling and dysfunction of ventricle, reduced the increased serum content of ADMA, cTnI, and BNP, and elevated myocardial NO in rats (P<.05). Besides, rosuvastatin also significantly inhibited fibrosis of myocardium, normalized the increased PRMT1 and decreased DDAH2 expression. Low-dose rosuvastatin exerted cardioprotective effects on isoproterenol-induced heart failure in rats by modulating DDAH-ADMA-NO pathway, and it may present the new therapeutic value in ameliorating chronic heart failure. © 2016 John Wiley & Sons Ltd.

  3. Protective role of hypoxia-inducible factor-1α-dependent CD39 and CD73 in fulminant acute liver failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tak, Eunyoung

    Acute liver failure (ALF) is a severe life-threatening disease which usually arises in patients with-irreversible liver illnesses. Although human ectonucleotide triphosphate diphosphohydrolase-1, E-NTPDase1 (CD39) and ecto-5′-nucleotidase, Ecto5′NTase (CD73) are known to protect tissues from ALF, the expression and function of CD39 and CD73 during ALF are currently not fully investigated. We tested whether CD39 and CD73 are upregulated by hypoxia inducible factor (HIF)-1α, and improve ischemic tolerance to ALF. To test our hypothesis, liver biopsies were obtained and we found that CD39 and CD73 mRNA and proteins from human specimens were dramatically elevated in ALF. We investigated that induction ofmore » CD39 and CD73 in ALF-related with wild type mice. In contrast, deletion of cd39 and cd73 mice has severe ALF. In this study, we concluded that CD39 and CD73 are molecular targets for the development of drugs for ALF patients care. - Highlights: • HIF-1a is stabilized during acute liver failure • Upregulation of CD39 and CD73 following acute liver failure • CD39 and CD73 are transcriptionally induced by HIF-1a • Deletion of Cd39 and CD73 aggravates murine acute liver failure • DMOG treatment induces HIF-1a stabilization, CD39 and CD73 during acute liver failure in WT mice.« less

  4. Prevention of hepatocarcinogenesis and increased susceptibility to acetaminophen-induced liver failure in transaldolase-deficient mice by N-acetylcysteine

    PubMed Central

    Hanczko, Robert; Fernandez, David R.; Doherty, Edward; Qian, Yueming; Vas, Gyorgy; Niland, Brian; Telarico, Tiffany; Garba, Adinoyi; Banerjee, Sanjay; Middleton, Frank A.; Barrett, Donna; Barcza, Maureen; Banki, Katalin; Landas, Steve K.; Perl, Andras

    2009-01-01

    Although oxidative stress has been implicated in acute acetaminophen-induced liver failure and in chronic liver cirrhosis and hepatocellular carcinoma (HCC), no common underlying metabolic pathway has been identified. Recent case reports suggest a link between the pentose phosphate pathway (PPP) enzyme transaldolase (TAL; encoded by TALDO1) and liver failure in children. Here, we show that Taldo1–/– and Taldo1+/– mice spontaneously developed HCC, and Taldo1–/– mice had increased susceptibility to acetaminophen-induced liver failure. Oxidative stress in Taldo1–/– livers was characterized by the accumulation of sedoheptulose 7-phosphate, failure to recycle ribose 5-phosphate for the oxidative PPP, depleted NADPH and glutathione levels, and increased production of lipid hydroperoxides. Furthermore, we found evidence of hepatic mitochondrial dysfunction, as indicated by loss of transmembrane potential, diminished mitochondrial mass, and reduced ATP/ADP ratio. Reduced β-catenin phosphorylation and enhanced c-Jun expression in Taldo1–/– livers reflected adaptation to oxidative stress. Taldo1–/– hepatocytes were resistant to CD95/Fas-mediated apoptosis in vitro and in vivo. Remarkably, lifelong administration of the potent antioxidant N-acetylcysteine (NAC) prevented acetaminophen-induced liver failure, restored Fas-dependent hepatocyte apoptosis, and blocked hepatocarcinogenesis in Taldo1–/– mice. These data reveal a protective role for the TAL-mediated branch of the PPP against hepatocarcinogenesis and identify NAC as a promising treatment for liver disease in TAL deficiency. PMID:19436114

  5. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  6. Failures in Hybrid Microcircuits During Environmental Testing. History Cases

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    This purpose of this viewgraph presentation is to discuss failures in hermetic hybrids observed at the GSFC PA Lab during environmental stress testing. The cases discussed are: Case I. Substrate metallization failures during Thermal cycling (TC). Case II. Flex lid-induced failure. Case Ill. Hermeticity failures during TC. Case IV. Die metallization cracking during TC. and how many test cycles and parts is necessary? Case V. Wire Bond failures after life test. Case VI. Failures caused by Au/In IMC growth.

  7. Liver failure induces a systemic inflammatory response. Prevention by recombinant N-terminal bactericidal/permeability-increasing protein.

    PubMed Central

    Boermeester, M. A.; Houdijk, A. P.; Meyer, S.; Cuesta, M. A.; Appelmelk, B. J.; Wesdorp, R. I.; Hack, C. E.; Van Leeuwen, P. A.

    1995-01-01

    The observed increased susceptibility of patients with fulminant hepatic failure for local and systemic infections has been hypothesized to be due to a failure for the hepatic clearance function and subsequent leaking of endogenous endotoxins into the systemic circulation. However, experimental evidence for such a systemic inflammation during liver failure due to endogenous endotoxemia is lacking. Therefore, we designed a study to clarify whether circulating endotoxins due to liver failure could lead to the development of systemic inflammations. In a rat model for liver failure induced by a two-thirds partial hepatectomy, we evaluated the course of circulating tumor necrosis factor and interleukin-6, changes in blood chemistry and hemodynamics, and histopathological changes in the lungs. Partially hepatectomized animals, but not sham-operated animals, demonstrated cardiac failure, increased levels of creatinin and urea, metabolic acidosis, high plasma levels of tumor necrosis factor and interleukin-6, and an influx of PMNs in the lungs-together indicating the development of a systemic inflammatory response. Continuous infusion of recombinant N-terminal bactericidal/permeability-increasing protein (rBPI23), a well described endotoxin-neutralizing protein, prevented these inflammatory reactions. Ex vivo experiments with rat plasma samples confirmed the presence of circulating endotoxins in partially hepatectomized rats as opposed to those treated with rBPI23. Thus, our results indicate that the early phase of liver failure induces a systemic inflammatory response triggered by circulating endotoxins, which can be prevented by perioperative infusion of rBPI23. Images Figure 2 PMID:7485405

  8. Storm-Induced Slope Failure Susceptibility Mapping

    DOT National Transportation Integrated Search

    2018-01-01

    A pilot study was conducted to characterize and map the areas susceptible to slope failure using state-wide available data. The objective was to determine whether it would be possible to provide slope-failure susceptibility mapping that could be used...

  9. The structural robustness of geographical networks against regional failure and their pre-optimization

    NASA Astrophysics Data System (ADS)

    Li, Yixiao; Zhang, Lin; Huang, Chaogeng; Shen, Bin

    2016-06-01

    Failures of real-world infrastructure networks due to natural disasters often originate in a certain region, but this feature has seldom been considered in theoretical models. In this article, we introduce a possible failure pattern of geographical networks-;regional failure;-by which nodes and edges within a region malfunction. Based on a previous spatial network model (Louf et al., 2013), we study the robustness of geographical networks against regional failure, which is measured by the fraction of nodes that remain in the largest connected component, via simulations. A small-area failure results in a large reduction of their robustness measure. Furthermore, we investigate two pre-deployed mechanisms to enhance their robustness: One is to extend the cost-benefit growth mechanism of the original network model by adding more than one link in a growth step, and the other is to strengthen the interconnection of hubs in generated networks. We measure the robustness-enhancing effects of both mechanisms on the basis of their costs, i.e., the amount of excessive links and the induced geographical length. The latter mechanism is better than the former one if a normal level of costs is considered. When costs exceed a certain level, the former has an advantage. Because the costs of excessive links affect the investment decision of real-world infrastructure networks, it is practical to enhance their robustness by adding more links between hubs. These results might help design robust geographical networks economically.

  10. Diabetic db/db mice do not develop heart failure upon pressure overload: a longitudinal in vivo PET, MRI, and MRS study on cardiac metabolic, structural, and functional adaptations.

    PubMed

    Abdurrachim, Desiree; Nabben, Miranda; Hoerr, Verena; Kuhlmann, Michael T; Bovenkamp, Philipp; Ciapaite, Jolita; Geraets, Ilvy M E; Coumans, Will; Luiken, Joost J F P; Glatz, Jan F C; Schäfers, Michael; Nicolay, Klaas; Faber, Cornelius; Hermann, Sven; Prompers, Jeanine J

    2017-08-01

    Heart failure is associated with altered myocardial substrate metabolism and impaired cardiac energetics. Comorbidities like diabetes may influence the metabolic adaptations during heart failure development. We quantified to what extent changes in substrate preference, lipid accumulation, and energy status predict the longitudinal development of hypertrophy and failure in the non-diabetic and the diabetic heart. Transverse aortic constriction (TAC) was performed in non-diabetic (db/+) and diabetic (db/db) mice to induce pressure overload. Magnetic resonance imaging, 31P magnetic resonance spectroscopy (MRS), 1H MRS, and 18F-fluorodeoxyglucose-positron emission tomography (PET) were applied to measure cardiac function, energy status, lipid content, and glucose uptake, respectively. In vivo measurements were complemented with ex vivo techniques of high-resolution respirometry, proteomics, and western blotting to elucidate the underlying molecular pathways. In non-diabetic mice, TAC induced progressive cardiac hypertrophy and dysfunction, which correlated with increased protein kinase D-1 (PKD1) phosphorylation and increased glucose uptake. These changes in glucose utilization preceded a reduction in cardiac energy status. At baseline, compared with non-diabetic mice, diabetic mice showed normal cardiac function, higher lipid content and mitochondrial capacity for fatty acid oxidation, and lower PKD1 phosphorylation, glucose uptake, and energetics. Interestingly, TAC affected cardiac function only mildly in diabetic mice, which was accompanied by normalization of phosphorylated PKD1, glucose uptake, and cardiac energy status. The cardiac metabolic adaptations in diabetic mice seem to prevent the heart from failing upon pressure overload, suggesting that restoring the balance between glucose and fatty acid utilization is beneficial for cardiac function. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  11. Micromechanics of failure waves in glass. 2: Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espinosa, H.D.; Xu, Y.; Brar, N.S.

    1997-08-01

    In an attempt to elucidate the failure mechanism responsible for the so-called failure waves in glass, numerical simulations of plate and rod impact experiments, with a multiple-plane model, have been performed. These simulations show that the failure wave phenomenon can be modeled by the nucleation and growth of penny-shaped shear defects from the specimen surface to its interior. Lateral stress increase, reduction of spall strength,and progressive attenuation of axial stress behind the failure front are properly predicted by the multiple-plane model. Numerical simulations of high-strain-rate pressure-shear experiments indicate that the model predicts reasonably well the shear resistance of the materialmore » at strain rates as high as 1 {times} 10{sup 6}/s. The agreement is believed to be the result of the model capability in simulating damage-induced anisotropy. By examining the kinetics of the failure process in plate experiments, the authors show that the progressive glass spallation in the vicinity of the failure front and the rate of increase in lateral stress are more consistent with a representation of inelasticity based on shear-activated flow surfaces, inhomogeneous flow, and microcracking, rather than pure microcracking. In the former mechanism, microcracks are likely formed at a later time at the intersection of flow surfaces, in the case of rod-on-rod impact, stress and radial velocity histories predicted by the microcracking model are in agreement with the experimental measurements. Stress attenuation, pulse duration, and release structure are properly simulated. It is shown that failure wave speeds in excess to 3,600 m/s are required for adequate prediction in rod radial expansion.« less

  12. Beta1-adrenoceptor antagonist, metoprolol attenuates cardiac myocyte Ca2+ handling dysfunction in rats with pulmonary artery hypertension.

    PubMed

    Fowler, Ewan D; Drinkhill, Mark J; Norman, Ruth; Pervolaraki, Eleftheria; Stones, Rachel; Steer, Emma; Benoist, David; Steele, Derek S; Calaghan, Sarah C; White, Ed

    2018-07-01

    Right heart failure is the major cause of death in Pulmonary Artery Hypertension (PAH) patients but is not a current, specific therapeutic target. Pre-clinical studies have shown that adrenoceptor blockade can improve cardiac function but the mechanisms of action within right ventricular (RV) myocytes are unknown. We tested whether the β 1 -adrenoceptor blocker metoprolol could improve RV myocyte function in an animal model of PAH, by attenuating adverse excitation-contraction coupling remodeling. PAH with RV failure was induced in rats by monocrotaline injection. When PAH was established, animals were given 10 mg/kg/day metoprolol (MCT + BB) or vehicle (MCT). The median time to the onset of heart failure signs was delayed from 23 days (MCT), to 31 days (MCT + BB). At 23 ± 1 days post-injection, MCT + BB showed improved in vivo cardiac function, measured by echocardiography. RV hypertrophy was reduced despite persistent elevated afterload. RV myocyte contractility during field stimulation was improved at higher pacing frequencies in MCT + BB. Preserved t-tubule structure, more uniform evoked Ca 2+ release, increased SERCA2a expression and faster ventricular repolarization (measured in vivo by telemetry) may account for the improved contractile function. Sarcoplasmic reticulum Ca 2+ overload was prevented in MCT + BB myocytes resulting in fewer spontaneous Ca 2+ waves, with a lower pro-arrhythmic potential. Our novel finding of attenuation of defects in excitation contraction coupling by β 1 -adrenoceptor blockade with delays in the onset of HF, identifies the RV as a promising therapeutic target in PAH. Moreover, our data suggest existing therapies for left ventricular failure may also be beneficial in PAH induced RV failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Dynamic loads during failure risk assessment of bridge crane structures

    NASA Astrophysics Data System (ADS)

    Gorynin, A. D.; Antsev, V. Yu; Shaforost, A. N.

    2018-03-01

    The paper presents the method of failure risk assessment associated with a bridge crane metal structure at the design stage. It also justifies the necessity of taking into account dynamic loads with regard to the operational cycle of a bridge crane during failure risk assessment of its metal structure.

  14. Precursor slope distress leading up to the 2010 Mount Meager landslide, British Columbia

    NASA Astrophysics Data System (ADS)

    Roberti, Gioachino; Ward, Brent; van Wyk de Vries, Benjamin; Friele, Pierre; Clague, John; Perotti, Luigi; Giardino, Marco

    2017-04-01

    Volcanoes are highly prone to landslides, in part due to erosion of the flanks by glaciers and streams. Mount Meager (British Columbia, Canada) is a glacier-clad volcano that is one of the most landslide-prone areas in Canada, due in part to glacial erosion. In 2010, the south flank of the volcano failed catastrophically, generating one of the largest (˜50 x 106 m 3) landslides in Canadian history. We document the evolution of the edifice up to the time of this failure using an archive of historic aerial photographs spanning the period from 1948 to 2006. Oblique digital photos taken after the landslide yielded information on the geology and internal structure of the volcano. All photos were processed with Structure from Motion (SfM) photogrammetry. We used the SfM products to produce pre-and post-failure geomorphic maps that document glacier and edifice changes. The maps show that a glacier below the 2010 landslide source area re-advanced in the 1980s, then rapidly retreated up to the present. Our photographic reconstruction documents 60 years of progressive development of tension cracks, bulging, and precursor failures (1998, 2009) at the toe of the 2010 failure zone. The final 2010 collapse was conditioned by glacial debuttressing and triggered by hot summer weather accompanied by ice and snow melt. Meltwater increased porewater pressures in fragmented and fractured material at the base of the 2010 failure zone, causing it to mobilize, which in turn triggered several secondary failures controlled by lithology and faults. The landslide retrogressed from the base of the slope to near the peak of Mount Meager and involved basement rock and the overlying volcanic sequence. Elsewhere on the flanks of Mount Meager, large fractures have developed in recently deglaciated areas, conditioning these slopes for collapse and debris avalanches. Potential failures in these areas have larger volumes than the 2010 landslide. Atmospheric warming over the next several decades will cause further loss of snow and glacier ice, and induce additional slope instability. Satellite- and ground-based monitoring of these slopes might provide advanced warning of future landslides and could be used to reduce risk in regions downstream of the volcano.

  15. Moisture-Induced Delamination Video of an Oxidized Thermal Barrier Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Zhu, Dongming; Cuy, Michael D.

    2008-01-01

    PVD TBC coatings were thermally cycled to near-failure at 1150 C. Normal failure occurred after 200 to 300 1-hr cycles with only moderate weight gains (0.5 mg/sq cm). Delamination and buckling was often delayed until well after cooldown (desktop spallation), but could be instantly induced by the application of water drops, as shown in a video clip which can be viewed by clicking on figure 2 of this report. Moisture therefore plays a primary role in delayed desktop TBC failure. Hydrogen embrittlement is proposed as the underlying mechanism.

  16. Fourth-power law structure of the shock wave fronts in metals and ceramics

    NASA Astrophysics Data System (ADS)

    Bayandin, Yuriy; Naimark, Oleg; Saveleva, Natalia

    2017-06-01

    The plate impact experiments were performed for solids during last fifty years. It was established that the dependence between the strain rate and the shock wave amplitude for metals and ceramics expressed by a fourth-power law. Present study is focused on the theoretical investigation and numerical simulation of plane shock wave propagation in metals and ceramics. Statistically based constitutive model of solid with defects (microcracks and microshears) was developed to provide the relation between damage induced mechanisms of structural relaxation, thermally activated plastic flow and material reactions for extreme loading conditions. Original approach based on the wide range constitutive equations was proposed for the numerical simulation of multiscale damage-failure transition mechanisms and plane shock wave propagation in solids with defects in the range of strain rate 103 -108s-1 . It was shown that mechanisms of plastic relaxation and damage-failure transitions are linked to the multiscale kinetics of defects leading to the self-similar nature of shock wave fronts in metals and ceramics. The work was supported by the Russian Science Foundation (Project No. 14-19-01173).

  17. Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells

    DOE PAGES

    Finegan, Donal P.; Tjaden, Bernhard; M. M. Heenan, Thomas; ...

    2017-10-31

    Mechanical abuse of lithium-ion batteries is widely used during testing to induce thermal runaway, characterize associated risks, and expose cell and module vulnerabilities. But, the repeatability of puncture or 'nail penetration' tests is a key issue as there is often a high degree of variability in the resulting thermal runaway process. Here, the failure mechanisms of 18650 cells punctured at different locations and orientations are characterized with respect to their internal structural degradation, and both their internal and surface temperature, all of which are monitored in real time. The initiation and propagation of thermal runaway is visualized via high-speed synchrotronmore » X-ray radiography at 2000 frames per second, and the surface and internal temperatures are recorded via infrared imaging and a thermocouple embedded in the tip of the penetrating nail, respectively. The influence of the nail, as well as how and where it penetrates the cell, on the initiation and propagation of thermal runaway is described and the suitability of this test method for representing in-field failures is discussed.« less

  18. Life-threatening bleeding in a case of autoantibody-induced factor VII deficiency.

    PubMed

    Okajima, K; Ishii, M

    1999-02-01

    A male patient presented with life-threatening bleeding induced by autoantibody-induced factor VII (F.VII) deficiency. This patient had macroscopic hematuria, skin ecchymosis, gastrointestinal bleeding, and a neck hematoma that was causing disturbed respiration. He developed acute renal failure and acute hepatic failure, probably due to obstruction of the ureters and the biliary tract, respectively. Although activated partial thromboplastin time was normal, prothrombin time (PT) was remarkably prolonged at 71.8 seconds compared to 14.0 seconds in a normal control. Both the immunoreactive level of F.VII antigen and the F.VII activity of the patient's plasma samples were < 1.0% of normal. Although an equal part of normal plasma was added to the patient's plasma, PT was not corrected. The patient's plasma inhibited F.VII activity. These findings suggested the presence of a plasma inhibitor for F.VII. After administration of large doses of methylprednisolone, PT was gradually shortened and plasma levels of F.VII increased over time. Bleeding, acute renal failure, and acute hepatic failure improved markedly following the steroid treatment. These observations suggest that life-threatening bleeding can be induced by autoantibody-induced F.VII deficiency and that immunosuppressive therapy using large doses of steroid can be successful in inhibiting the production of the autoantibody.

  19. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano

    2017-10-01

    This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.

  20. Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.

    PubMed

    Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika

    2018-02-01

    Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Defined Engineered Human Myocardium with Advanced Maturation for Applications in Heart Failure Modelling and Repair

    PubMed Central

    Tiburcy, Malte; Hudson, James E.; Balfanz, Paul; Schlick, Susanne; Meyer, Tim; Liao, Mei-Ling Chang; Levent, Elif; Raad, Farah; Zeidler, Sebastian; Wingender, Edgar; Riegler, Johannes; Wang, Mouer; Gold, Joseph D.; Kehat, Izhak; Wettwer, Erich; Ravens, Ursula; Dierickx, Pieterjan; van Laake, Linda W.; Goumans, Marie Jose; Khadjeh, Sara; Toischer, Karl; Hasenfuss, Gerd; Couture, Larry A.; Unger, Andreas; Linke, Wolfgang A.; Araki, Toshiyuki; Neel, Benjamin; Keller, Gordon; Gepstein, Lior; Wu, Joseph C.; Zimmermann, Wolfram-Hubertus

    2017-01-01

    Background Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modelling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) towards an adult phenotype under defined conditions. Methods We systematically investigated cell composition, matrix and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We employed morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M-bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency-response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and NT-proBNP release; all are classical hallmarks of heart failure. Additionally, we demonstrate scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions We provide proof-of-concept for a universally applicable technology for the engineering of macro-scale human myocardium for disease modelling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions. PMID:28167635

  2. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair.

    PubMed

    Tiburcy, Malte; Hudson, James E; Balfanz, Paul; Schlick, Susanne; Meyer, Tim; Chang Liao, Mei-Ling; Levent, Elif; Raad, Farah; Zeidler, Sebastian; Wingender, Edgar; Riegler, Johannes; Wang, Mouer; Gold, Joseph D; Kehat, Izhak; Wettwer, Erich; Ravens, Ursula; Dierickx, Pieterjan; van Laake, Linda W; Goumans, Marie Jose; Khadjeh, Sara; Toischer, Karl; Hasenfuss, Gerd; Couture, Larry A; Unger, Andreas; Linke, Wolfgang A; Araki, Toshiyuki; Neel, Benjamin; Keller, Gordon; Gepstein, Lior; Wu, Joseph C; Zimmermann, Wolfram-Hubertus

    2017-05-09

    Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β 1 - and β 2 -adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions. © 2017 American Heart Association, Inc.

  3. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current statemore » of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.« less

  4. Implementation and Validation of an Anisotropic Plasticity Model for Clay and a Two-Scale Micropolar Constitutive Model for Sand

    NASA Astrophysics Data System (ADS)

    Yonten, Karma

    As a multi-phase material, soil exhibits highly nonlinear, anisotropic, and inelastic behavior. While it may be impractical for one constitutive model to address all features of the soil behavior, one can identify the essential aspects of the soil's stress-strainstrength response for a particular class of problems and develop a suitable constitutive model that captures those aspects. Here, attention is given to two important features of the soil stress-strain-strength behavior: anisotropy and post-failure response. An anisotropic soil plasticity model is implemented to investigate the significance of initial and induced anisotropy on the response of geo-structures founded on cohesive soils. The model is shown to produce realistic responses for a variety of over-consolidation ratios. Moreover, the performance of the model is assessed in a boundary value problem in which a cohesive soil is subjected to the weight of a newly constructed soil embankment. Significance of incorporating anisotropy is clearly demonstrated by comparing the results of the simulation using the model with those obtained by using an isotropic plasticity model. To investigate post-failure response of soils, the issue of strain localization in geostructures is considered. Post-failure analysis of geo-structures using numerical techniques such as mesh-based or mesh-free methods is often faced with convergence issues which may, at times, lead to incorrect failure mechanisms. This is due to the fact that majority of existing constitutive models are formulated within the framework of classical continuum mechanics that leads to ill-posed governing equations at the onset of localization. To overcome this challenge, a critical state two-surface plasticity model is extended to incorporate the micro-structural mechanisms that become significant within the shear band. The extended model is implemented to study the strain localization of granular soils in drained and undrained conditions. It is demonstrated that the extended model is capable of capturing salient features of soil behavior in pre- and post-failure regimes. The effects of soil particle size, initial density and confining pressure on the thickness and orientation of shear band are investigated and compared with the observed behavior of soils.

  5. Laser-driven mechanical fracture in fused silica

    NASA Astrophysics Data System (ADS)

    Dahmani, Faiz

    1999-10-01

    Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack growth. Experimental results on stress-inhibited laser-driven crack growth and stress-delayed-laser-damage initiation thresholds in fused silica and borosilicate glass (BK7) are presented. The results obtained show that, for very low compressive stresses (<10 psi), the damage initiation threshold is raised by as much as 78%, while the crack growth is arrested by 70%. Different loading- geometries are tested, giving different crack growth rates and raising the distinction between uniaxial and biaxial states of stresses.

  6. Docosahexaenoic acid supplementation alters key properties of cardiac mitochondria and modestly attenuates development of left ventricular dysfunction in pressure overload-induced heart failure.

    PubMed

    Dabkowski, Erinne R; O'Connell, Kelly A; Xu, Wenhong; Ribeiro, Rogerio F; Hecker, Peter A; Shekar, Kadambari Chandra; Daneault, Caroline; Des Rosiers, Christine; Stanley, William C

    2013-12-01

    Supplementation with the n3 polyunsaturated fatty acid docosahexaenoic acid (DHA) is beneficial in heart failure patients, however the mechanisms are unclear. DHA is incorporated into membrane phospholipids, which may prevent mitochondrial dysfunction. Thus we assessed the effects of DHA supplementation on cardiac mitochondria and the development of heart failure caused by aortic pressure overload. Pathological cardiac hypertrophy was generated in rats by thoracic aortic constriction. Animals were fed either a standard diet or were supplemented with DHA (2.3 % of energy intake). After 14 weeks, heart failure was evident by left ventricular hypertrophy and chamber enlargement compared to shams. Left ventricle fractional shortening was unaffected by DHA treatment in sham animals (44.1 ± 1.6 % vs. 43.5 ± 2.2 % for standard diet and DHA, respectively), and decreased with heart failure in both treatment groups, but to a lesser extent in DHA treated animals (34.9 ± 1.7 %) than with the standard diet (29.7 ± 1.5 %, P < 0.03). DHA supplementation increased DHA content in mitochondrial phospholipids and decreased membrane viscosity. Myocardial mitochondrial oxidative capacity was decreased by heart failure and unaffected by DHA. DHA treatment enhanced Ca(2+) uptake by subsarcolemmal mitochondria in both sham and heart failure groups. Further, DHA lessened Ca(2+)-induced mitochondria swelling, an index of permeability transition, in heart failure animals. Heart failure increased hydrogen peroxide-induced mitochondrial permeability transition compared to sham, which was partially attenuated in interfibrillar mitochondria by treatment with DHA. DHA decreased mitochondrial membrane viscosity and accelerated Ca(2+) uptake, and attenuated susceptibility to mitochondrial permeability transition and development of left ventricular dysfunction.

  7. Upregulation of adenosine A1 receptors facilitates sinoatrial node dysfunction in chronic canine heart failure by exacerbating nodal conduction abnormalities revealed by novel dual-sided intramural optical mapping.

    PubMed

    Lou, Qing; Hansen, Brian J; Fedorenko, Olga; Csepe, Thomas A; Kalyanasundaram, Anuradha; Li, Ning; Hage, Lori T; Glukhov, Alexey V; Billman, George E; Weiss, Raul; Mohler, Peter J; Györke, Sándor; Biesiadecki, Brandon J; Carnes, Cynthia A; Fedorov, Vadim V

    2014-07-22

    Although sinoatrial node (SAN) dysfunction is a hallmark of human heart failure (HF), the underlying mechanisms remain poorly understood. We aimed to examine the role of adenosine in SAN dysfunction and tachy-brady arrhythmias in chronic HF. We applied multiple approaches to characterize SAN structure, SAN function, and adenosine A1 receptor expression in control (n=17) and 4-month tachypacing-induced chronic HF (n=18) dogs. Novel intramural optical mapping of coronary-perfused right atrial preparations revealed that adenosine (10 μmol/L) markedly prolonged postpacing SAN conduction time in HF by 206 ± 99 milliseconds (versus 66 ± 21 milliseconds in controls; P=0.02). Adenosine induced SAN intranodal conduction block or microreentry in 6 of 8 dogs with HF versus 0 of 7 controls (P=0.007). Adenosine-induced SAN conduction abnormalities and automaticity depression caused postpacing atrial pauses in HF versus control dogs (17.1 ± 28.9 versus 1.5 ± 1.3 seconds; P<0.001). Furthermore, 10 μmol/L adenosine shortened atrial repolarization and led to pacing-induced atrial fibrillation in 6 of 7 HF versus 0 of 7 control dogs (P=0.002). Adenosine-induced SAN dysfunction and atrial fibrillation were abolished or prevented by adenosine A1 receptor antagonists (50 μmol/L theophylline/1 μmol/L 8-cyclopentyl-1,3-dipropylxanthine). Adenosine A1 receptor protein expression was significantly upregulated during HF in the SAN (by 47 ± 19%) and surrounding atrial myocardium (by 90 ± 40%). Interstitial fibrosis was significantly increased within the SAN in HF versus control dogs (38 ± 4% versus 23 ± 4%; P<0.001). In chronic HF, adenosine A1 receptor upregulation in SAN pacemaker and atrial cardiomyocytes may increase cardiac sensitivity to adenosine. This effect may exacerbate conduction abnormalities in the structurally impaired SAN, leading to SAN dysfunction, and potentiate atrial repolarization shortening, thereby facilitating atrial fibrillation. Atrial fibrillation may further depress SAN function and lead to tachy-brady arrhythmias in HF. © 2014 American Heart Association, Inc.

  8. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael

    2006-02-15

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceousmore » material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from culture substratum. In addition, dermonecrotic toxin treatment of MDCK cells changed their viability evaluated by XTT and Neutral-Red Uptake methodologies. The present results point to brown spider dermonecrotic toxin cytotoxicity upon renal structures in vivo and renal cells in vitro and provide experimental evidence that this brown spider toxin is directly involved in nephrotoxicity evoked during Loxosceles spider venom accidents.« less

  9. Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review).

    PubMed

    Belloum, Yassine; Rannou-Bekono, Françoise; Favier, François B

    2017-05-01

    Cachexia is a wasting syndrome observed in many patients suffering from several chronic diseases including cancer. In addition to the progressive loss of skeletal muscle mass, cancer cachexia results in cardiac function impairment. During the severe stage of the disease, patients as well as animals bearing cancer cells display cardiac atrophy. Cardiac energy metabolism is also impeded with disruption of mitochondrial homeostasis and reduced oxidative capacity, although the available data remain equivocal. The release of inflammatory cytokines by tumor is a key mechanism in the initiation of heart failure. Oxidative stress, which results from the combination of chemotherapy, inadequate antioxidant consumption and chronic inflammation, will further foster heart failure. Protein catabolism is due to the concomitant activation of proteolytic systems and inhibition of protein synthesis, both processes being triggered by the deactivation of the Akt/mammalian target of rapamycin pathway. The reduction in oxidative capacity involves AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1α dysregulation. The nuclear factor-κB transcription factor plays a prominent role in the coordination of these alterations. Physical exercise appears as an interesting non-pharmaceutical way to counteract cancer cachexia-induced-heart failure. Indeed, aerobic training has anti-inflammatory effects, increases anti-oxidant defenses, prevents atrophy and promotes oxidative metabolism. The present review points out the importance of better understanding the concurrent structural and metabolic changes within the myocardium during cancer and the protective effects of exercise against cardiac cachexia.

  10. [Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction

    PubMed Central

    Serpooshan, Vahid; Sivanesan, Senthilkumar; Huang, Xiaoran; Mahmoudi, Morteza; Malkovskiy, Andrey V.; Zhao, Mingming; Inayathullah, Mohammed; Wagh, Dhananjay; Zhang, Xuexiang J.; Metzler, Scott; Bernstein, Daniel; Wu, Joseph C.; Ruiz-Lozano, Pilar; Rajadas, Jayakumar

    2017-01-01

    Nanoparticle-mediated sustained delivery of therapeutics is one of the highly effective and increasingly utilized applications of nanomedicine. Here, we report the development and application of a drug delivery system consisting of polyethylene glycol (PEG)-conjugated liposomal nanoparticles as an efficient in vivo delivery approach for [Pyr1]-apelin-13 polypeptide. Apelin is an adipokine that regulates a variety of biological functions including cardiac hypertrophy and hypertrophy-induced heart failure. The clinical use of apelin has been greatly impaired by its remarkably short half-life in circulation. Here, we investigate whether [Pyr1]-apelin-13 encapsulation in liposome nanocarriers, conjugated with PEG polymer on their surface, can prolong apelin stability in the blood stream and potentiate apelin beneficial effects in cardiac function. Atomic force microscopy and dynamic light scattering were used to assess the structure and size distribution of drug-laden nanoparticles. [Pyr1]-apelin-13 encapsulation in PEGylated liposomal nanocarriers resulted in sustained and extended drug release both in vitro and in vivo. Moreover, intraperitoneal injection of [Pyr1]-apelin-13 nanocarriers in a mouse model of pressure-overload induced heart failure demonstrated a sustainable long-term effect of [Pyr1]-apelin-13 in preventing cardiac dysfunction. We concluded that this engineered nanocarrier system can serve as a delivery platform for treating heart injuries through sustained bioavailability of cardioprotective therapeutics. PMID:25443792

  11. Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant.

    PubMed

    Saiki, Shin-Taro; Ishida, Atsushi; Yoshimura, Kenichi; Yazaki, Kenichi

    2017-06-07

    Drought-induced tree die-off related to climate change is occurring worldwide and affects the carbon stocks and biodiversity in forest ecosystems. Hydraulic failure and carbon starvation are two commonly proposed mechanisms for drought-induced tree die-off. Here, we show that inhibited branchlet respiration and soil-to-leaf hydraulic conductance, likely caused by cell damage, occur prior to hydraulic failure (xylem embolism) and carbon starvation (exhaustion of stored carbon in sapwood) in a drought-tolerant woody species, Rhaphiolepis wrightiana Maxim. The ratio of the total leaf area to the twig sap area was used as a health indicator after drought damage. Six adult trees with different levels of tree health and one dead adult tree were selected. Two individuals having the worst and second worst health among the six live trees died three months after our study was conducted. Soil-to-leaf hydraulic conductance and leaf gas exchange rates decreased linearly as tree health declined, whereas xylem cavitation and total non-structural carbon remained unchanged in the branchlets except in the dead and most unhealthy trees. Respiration rates and the number of living cells in the sapwood decreased linearly as tree health declined. This study is the first report on the importance of dehydration tolerance and respiration maintenance in living cells.

  12. Elastic deformation of helical-conical boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, F. F.; Bando, Y.; Golberg, D.; Ma, R. Z.; Li, Y. B.; Tang, C. C.

    2003-08-01

    Boron nitride nanotubes with hollow conical-helix geometry have exhibited striking flexibility and elasticity comparable to metals. During an electron-beam induced deformation at room temperature, the nanotubes can be bent by a maximum angle as high as 180° and then retrieve the starting morphology without any evidence of structural failure. The outstanding low-temperature elasticity in this nano-material is interpreted by a theoretical model, displaying deformation processes dominated by slide of filaments along with changes in apex angles stepwise. The specific tubular geometry is believed to take advantages of both high stiffness and extraordinary flexibility of BN filaments, and easiness of interlayer slide in graphitic structure, hence leading to high resistance to fracture.

  13. Register of specialized sources for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Denny, F. J.

    1973-01-01

    Specialized information sources that generate information relative to six problem areas in aerospace mechanics of structural failure are identified. Selection for inclusion was based upon information obtained from the individual knowledge and professional contacts of Martin Marietta Aerospace staff members and the information uncovered by the staff of technical reviewers. Activities listed perform basic or applied research related to the mechanics of structural failure and publish the results of such research. The purpose of the register is to present, in easy reference form, original sources for dependable information regarding failure modes and mechanisms of aerospace structures.

  14. Bed failure induced by internal solitary waves

    NASA Astrophysics Data System (ADS)

    Rivera-Rosario, Gustavo A.; Diamessis, Peter J.; Jenkins, James T.

    2017-07-01

    The pressure field inside a porous bed induced by the passage of an Internal Solitary Wave (ISW) of depression is examined using high-accuracy numerical simulations. The velocity and density fields are obtained by solving the Dubreil-Jacotin-Long Equation, for a two-layer, continuously stratified water column. The total wave-induced pressure across the surface of the bed is computed by vertically integrating for the hydrostatic and nonhydrostatic contributions. The bed is assumed to be a continuum composed of either sand or silt, with a small amount of trapped gas. Results show variations in pore-water pressure penetrating deeper into more conductive materials and remaining for a prolonged period after the wave has passed. In order to quantify the potential for failure, the vertical pressure gradient is compared against the buoyant weight of the bed. The pressure gradient exceeds this weight for weakly conductive materials. Failure is further enhanced by a decrease in bed saturation, consistent with studies in surface-wave induced failure. In deeper water, the ISW-induced pressure is stronger, causing failure only for weakly conductive materials. The pressure associated with the free-surface displacement that accompanies ISWs is significant, when the water depth is less than 100 m, but has little influence when it is greater than 100 m, where the hydrostatic pressure due to the pycnocline displacement is much larger. Since the pore-pressure gradient reduces the specific weight of the bed, results show that particles are easier for the flow to suspend, suggesting that pressure contributes to the powerful resuspension events observed in the field.

  15. Part I. Mechanisms of injury associated with extracorporeal shock wave lithotripsy; Part II. Exsolution of volatiles

    NASA Astrophysics Data System (ADS)

    Howard, Danny Dwayne

    Part I - Shock waves are focused in extracorporeal shock wave lithotripsy (ESWL) machines to strengths sufficient to fracture kidney stones. Substantial side effects-most of them acute-have resulted from this procedure, including injury to soft tissue. The focusing of shock waves through various layers of tissue is a complex process which stimulates many bio-mechano-chemical responses.This thesis presents results of an in vitro study of the initial mechanical stimulus. Planar nitrocellulose membranes of order 10 um thick were used as models of thin tissue structures. Two modes of failure were recorded: Failure due to cavitation collapsing on or near the membranes, and failure induced by altering the structure of shock waves. Tests were done in water at and around F2 to characterize the extent of cavitation damage, and was found to be confined within the focal region, 1.2 cm along the axis of focus.Scattering media were used to simulate the effects of acoustic nonuniformity of tissue and to alter the structure of focusing shock waves. 40 um diameter (average) hollow glass spheres were added to ethylene glycol, glycerine and castor oil to vary the properties of the scattering media. Multiple layer samples of various types of phantom tissue were tested in degassed castor oil to gauge the validity of the scattering media. The scattering media and tissue samples increased the rise time decreased strain rate in a similar fashion. Membranes were damaged by the decreased strain rate and accumulated effects of the altered structure: After about 20 or so shocks immersed in the scattering media and after about 100 shocks behind the tissue samples. The mode of failure was tearing with multiple tears in some cases from about .1 cm to about 3 cm depending of the number of shocks and membrane thickness.Part II - This work examines the exsolution of volatiles-carbon dioxide from water-in a cylindrical test cell under different pressure conditions. Water was supersaturated with carbon dioxide under various pressures (620 to 1062 kPa), and depressurized rapidly to investigate how carbon dioxide is undissolved, exsolution, and its effects on the surrounding environment. Cavities grow as a result of convective diffusion: They move before depleting carbon dioxide in a given region. The radius of a cavity in this environment grows at a faster rate [...] than that of a cavity at rest [...]. Bubble growth rates were inferred by measuring the bulk liquid using high speed motion pictures. Water in the test-cell is accelerated as a result of buoyancy induced by cavity growth. Cavities are elliptical in shape and grow until mutual interaction causes them to fragment. Accelerations range from 10 to 100 g were measured with velocities ranging from 7 to 13 m/s.

  16. Packaging-induced failure of semiconductor lasers and optical telecommunications components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharps, J.A.

    1996-12-31

    Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with highmore » intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, D. I.; Han, S. H.

    A PSA analyst has been manually determining fire-induced component failure modes and modeling them into the PSA logics. These can be difficult and time-consuming tasks as they need much information and many events are to be modeled. KAERI has been developing the IPRO-ZONE (interface program for constructing zone effect table) to facilitate fire PSA works for identifying and modeling fire-induced component failure modes, and to construct a one top fire event PSA model. With the output of the IPRO-ZONE, the AIMS-PSA, and internal event one top PSA model, one top fire events PSA model is automatically constructed. The outputs ofmore » the IPRO-ZONE include information on fire zones/fire scenarios, fire propagation areas, equipment failure modes affected by a fire, internal PSA basic events corresponding to fire-induced equipment failure modes, and fire events to be modeled. This paper introduces the IPRO-ZONE, and its application results to fire PSA of Ulchin Unit 3 and SMART(System-integrated Modular Advanced Reactor). (authors)« less

  18. Does working memory capacity predict cross-modally induced failures of awareness?

    PubMed

    Kreitz, Carina; Furley, Philip; Simons, Daniel J; Memmert, Daniel

    2016-01-01

    People often fail to notice unexpected stimuli when they are focusing attention on another task. Most studies of this phenomenon address visual failures induced by visual attention tasks (inattentional blindness). Yet, such failures also occur within audition (inattentional deafness), and people can even miss unexpected events in one sensory modality when focusing attention on tasks in another modality. Such cross-modal failures are revealing because they suggest the existence of a common, central resource limitation. And, such central limits might be predicted from individual differences in cognitive capacity. We replicated earlier evidence, establishing substantial rates of inattentional deafness during a visual task and inattentional blindness during an auditory task. However, neither individual working memory capacity nor the ability to perform the primary task predicted noticing in either modality. Thus, individual differences in cognitive capacity did not predict failures of awareness even though the failures presumably resulted from central resource limitations. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System.

    PubMed

    Ouyang, Min; Tian, Hui; Wang, Zhenghua; Hong, Liu; Mao, Zijun

    2017-01-17

    This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large-scale systems. This article introduces three SLFs models: node centered SLFs, district-based SLFs, and circle-shaped SLFs, and proposes a SLFs-induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs-induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions. © 2017 Society for Risk Analysis.

  20. The acoustic characteristics of turbomachinery cavities

    NASA Technical Reports Server (NTRS)

    Lucas, M. J.; Noreen, R.; Southerland, L. D.; Cole, J., III; Junger, M.

    1995-01-01

    Internal fluid flows are subject not only to self-sustained oscillations of the purely hydrodynamic type but also to the coupling of the instability with the acoustic mode of the surrounding cavity. This situation is common to turbomachinery, since flow instabilities are confined within a flow path where the acoustic wavelength is typically smaller than the dimensions of the cavity and flow speeds are low enough to allow resonances. When acoustic coupling occurs, the fluctuations can become so severe in amplitude that it may induce structural failure of engine components. The potential for catastrophic failure makes identifying flow-induced noise and vibration sources a priority. In view of the complexity of these types of flows, this report was written with the purpose of presenting many of the methods used to compute frequencies for self-sustained oscillations. The report also presents the engineering formulae needed to calculate the acoustic resonant modes for ducts and cavities. Although the report is not a replacement for more complex numerical or experimental modeling techniques, it is intended to be used on general types of flow configurations that are known to produce self-sustained oscillations. This report provides a complete collection of these models under one cover.

  1. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    EPA Science Inventory

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats

    Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
    Mendel rat when administered either by corn oil gavage or in drin...

  2. Characterization and modeling of SET/RESET cycling induced read-disturb failure time degradation in a resistive switching memory

    NASA Astrophysics Data System (ADS)

    Su, Po-Cheng; Hsu, Chun-Chi; Du, Sin-I.; Wang, Tahui

    2017-12-01

    Read operation induced disturbance in SET-state in a tungsten oxide resistive switching memory is investigated. We observe that the reduction of oxygen vacancy density during read-disturb follows power-law dependence on cumulative read-disturb time. Our study shows that the SET-state read-disturb immunity progressively degrades by orders of magnitude as SET/RESET cycle number increases. To explore the cause of the read-disturb degradation, we perform a constant voltage stress to emulate high-field stress effects in SET/RESET cycling. We find that the read-disturb failure time degradation is attributed to high-field stress-generated oxide traps. Since the stress-generated traps may substitute for some of oxygen vacancies in forming conductive percolation paths in a switching dielectric, a stressed cell has a reduced oxygen vacancy density in SET-state, which in turn results in a shorter read-disturb failure time. We develop an analytical read-disturb degradation model including both cycling induced oxide trap creation and read-disturb induced oxygen vacancy reduction. Our model can well reproduce the measured read-disturb failure time degradation in a cycled cell without using fitting parameters.

  3. Treatment failure in patients with HPV 16-induced vulvar intraepithelial neoplasia: understanding different clinical responses to immunotherapy.

    PubMed

    van Esch, Edith M G; Welters, Marij J P; Jordanova, Ekaterina S; Trimbos, J Baptist M Z; van der Burg, Sjoerd H; van Poelgeest, Mariëtte I E

    2012-07-01

    Failure of the immune system to launch a strong and effective immune response to high-risk HPV is related to viral persistence and the development of anogenital (pre)malignant lesions such as vulvar intraepithelial neoplasia (VIN). Different forms of immunotherapy, aimed at overcoming the inertia of the immune system, have been developed and met with clinical success. Unfortunately these, in principal successful, therapeutic approaches also fail to induce clinical responses in a substantial number of cases. In this review, the authors summarize the traits of the immune response to HPV in healthy individuals and in patients with HPV-induced neoplasia. The potential mechanisms involved in the escape of HPV-induced lesions from the immune system indicate gaps in our knowledge. Finally, the interaction between the immune system and VIN is discussed with a special focus on the different forms of immunotherapy applied to treat VIN and the potential causes of therapy failure. The authors conclude that there are a number of pre-existing conditions that determine the patients' responsiveness to immunotherapy. An immunotherapeutic strategy in which different aspects of immune failure are attacked by complementary approaches, will improve the clinical response rate.

  4. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    ERIC Educational Resources Information Center

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  5. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex.

    PubMed

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A; Xing, Yongna

    2017-05-23

    The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR-ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.

  6. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    PubMed Central

    Lee, Woojong; Jiang, Li; Molugu, Kaivalya; Zheng, Aiping; Li, Yitong; Park, Sanghyun; Bradfield, Christopher A.; Xing, Yongna

    2017-01-01

    The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands. PMID:28396409

  7. Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seok, Seung-Hyeon; Lee, Woojong; Jiang, Li

    he aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR–ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomainmore » interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.« less

  8. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach

    PubMed Central

    Patel, Deepak K.

    2016-01-01

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294

  9. Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach.

    PubMed

    Patel, Deepak K; Waas, Anthony M

    2016-07-13

    This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  10. NiCd cell reliability in the mission environment

    NASA Technical Reports Server (NTRS)

    Denson, William K.; Klein, Glenn C.

    1993-01-01

    This paper summarizes an effort by Gates Aerospace Batteries (GAB) and the Reliability Analysis Center (RAC) to analyze survivability data for both General Electric and GAB NiCd cells utilized in various spacecraft. For simplicity sake, all mission environments are described as either low Earth orbital (LEO) or geosynchronous Earth orbit (GEO). 'Extreme value statistical methods' are applied to this database because of the longevity of the numerous missions while encountering relatively few failures. Every attempt was made to include all known instances of cell-induced-failures of the battery and to exclude battery-induced-failures of the cell. While this distinction may be somewhat limited due to availability of in-flight data, we have accepted the learned opinion of the specific customer contacts to ensure integrity of the common databases. This paper advances the preliminary analysis reported upon at the 1991 NASA Battery Workshop. That prior analysis was concerned with an estimated 278 million cell-hours of operation encompassing 183 satellites. The paper also cited 'no reported failures to date.' This analysis reports on 428 million cell hours of operation emcompassing 212 satellites. This analysis also reports on seven 'cell-induced-failures.'

  11. Ventricular, but not atrial, M2-muscarinic receptors increase in the canine pacing-overdrive model of heart failure.

    PubMed

    Wilkinson, M; Giles, A; Armour, J A; Cardinal, R

    1996-01-01

    To investigate the effects of heart failure induced by chronic rapid ventricular pacing (six weeks) on canine atrial and ventricular muscarinic receptors. Dogs (n = 4) were fitted with a bipolar pacing electrode connected to a Medtronic pacemaker set at 240 stimuli/min. Pacing was maintained for six weeks. Tissue samples obtained from the left atrium and ventral wall of the left ventricle were frozen at -70 degrees C. Control tissue was obtained from normal dogs (n = 6) following anesthesia and thoracotomy. M2-muscarinic receptors were characterized and quantified in tissue micropunches using the hydrophilic ligand [3H] N-methyl-scopolamine (NMS). Cardiac tissue bound [3H] NMS with the specificity of an M2 subtype. Tachycardia-induced heart failure did not affect atrial muscarinic receptors but signify left ventricular myocytes (control 160.0 +/- 10.0 fmol/mg protein versus heart failure 245.0 +/- 25.0 fmol/mg protein; P < 0.01). Canine ventricular muscarinic receptors display a specificity for the M2 subtype. In contrast to previous work, tachycardia-induced heart failure was accompanied by an increase (+ 53%) in ventricular, but not atrial, M2 receptors compared with normal dogs.

  12. [Pulmonary-renal crosstalk in the critically ill patient].

    PubMed

    Donoso F, Alejandro; Arriagada S, Daniela; Cruces R, Pablo

    2015-01-01

    Despite advances in the development of renal replacement therapy, mortality of acute renal failure remains high, especially when occurring simultaneously with distant organic failure as it is in the case of the acute respiratory distress syndrome. In this update, birideccional deleterious relationship between lung and kidney on the setting of organ dysfunction is reviewed, which presents important clinical aspects of knowing. Specifically, the renal effects of acute respiratory distress syndrome and the use of positive-pressure mechanical ventilation are discussed, being ventilator induced lung injury one of the most common models for studying the lung-kidney crosstalk. The role of renal failure induced by mechanical ventilation (ventilator-induced kidney injury) in the pathogenesis of acute renal failure is emphasized. We also analyze the impact of the acute renal failure in the lung, recognizing an increase in pulmonary vascular permeability, inflammation, and alteration of sodium and water channels in the alveolar epithelial. This conceptual model can be the basis for the development of new therapeutic strategies to use in patients with multiple organ dysfunction syndrome. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Stress redistribution and damage in interconnects caused by electromigration

    NASA Astrophysics Data System (ADS)

    Chiras, Stefanie Ruth

    Electromigration has long been recognized as a phenomenon that induces mass redistribution in metals which, when constrained, can lead to the creation of stress. Since the development of the integrated circuit, electromigration. in interconnects, (the metal lines which carry current between devices in integrated circuits), has become a reliability concern. The primary failure mechanism in the interconnects is usually voiding, which causes electrical resistance increases in the circuit. In some cases, however, another failure mode occurs, fracture of the surrounding dielectric driven by electromigration induced compressive stresses within the interconnect. It is this failure mechanism that is the focus of this thesis. To study dielectric fracture, both residual processing stresses and the development of electromigration induced stress in isolated, constrained interconnects was measured. The high-resolution measurements were made using two types of piezospectroscopy, complemented by finite element analysis (FEA). Both procedures directly measured stress in the underlying or neighboring substrate and used FEA to determine interconnect stresses. These interconnect stresses were related to the effected circuit failure mode through post-test scanning electron microscopy and resistance measurements taken during electromigration testing. The results provide qualitative evidence of electromigration driven passivation fracture, and quantitative analysis of the theoretical model of the failure, the "immortal" interconnect concept.

  14. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these clusters of organic-hosted pores prevents the overpressure from dissipating, resulting in localized overpressure at the micron scale. When the rock is subjected to a hydraulic fracture stimulation, the rock surrounding the main induced fracture experiences shear deformation. Those parts of the rock that contain overpressured fluids in the organic-hosted pores will be more likely to experience dilatancy in the form of brittle deformation; the portions of the rock lacking in organic-hosted pores will tend to experience compactive shear failure since the effective normal stresses are larger. The microcrack networks that propagate into the regions of organic-hosted porosity allow the hydrocarbons resident in those pores to migrate to the main induced tensile fractures. The disconnected nature of the microcrack networks causes only a slight increase in permeability, which is consistent with other observations. Our work illustrates how multiscale pore networks in shale interact with in situ stresses to affect the bulk shale rheology.

  15. Improvement of Carbon Tetrachloride-Induced Acute Hepatic Failure by Transplantation of Induced Pluripotent Stem Cells without Reprogramming Factor c-Myc

    PubMed Central

    Chang, Hua-Ming; Liao, Yi-Wen; Chiang, Chih-Hung; Chen, Yi-Jen; Lai, Ying-Hsiu; Chang, Yuh-Lih; Chen, Hen-Li; Jeng, Shaw-Yeu; Hsieh, Jung-Hung; Peng, Chi-Hsien; Li, Hsin-Yang; Chien, Yueh; Chen, Szu-Yu; Chen, Liang-Kung; Huo, Teh-Ia

    2012-01-01

    The only curative treatment for hepatic failure is liver transplantation. Unfortunately, this treatment has several major limitations, as for example donor organ shortage. A previous report demonstrated that transplantation of induced pluripotent stem cells without reprogramming factor c-Myc (3-genes iPSCs) attenuates thioacetamide-induced hepatic failure with minimal incidence of tumorigenicity. In this study, we investigated whether 3-genes iPSC transplantation is capable of rescuing carbon tetrachloride (CCl4)-induced fulminant hepatic failure and hepatic encephalopathy in mice. Firstly, we demonstrated that 3-genes iPSCs possess the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) that exhibit biological functions and express various hepatic specific markers. 3-genes iPSCs also exhibited several antioxidant enzymes that prevented CCl4-induced reactive oxygen species production and cell death. Intraperitoneal transplantation of either 3-genes iPSCs or 3-genes iPSC-Heps significantly reduced hepatic necrotic areas, improved hepatic functions, and survival rate in CCl4-treated mice. CCl4-induced hepatic encephalopathy was also improved by 3-genes iPSC transplantation. Hoechst staining confirmed the successful engraftment of both 3-genes iPSCs and 3-genes iPSC-Heps, indicating the homing properties of these cells. The most pronounced hepatoprotective effect of iPSCs appeared to originate from the highest antioxidant activity of 3-gene iPSCs among all transplanted cells. In summary, our findings demonstrated that 3-genes iPSCs serve as an available cell source for the treatment of an experimental model of acute liver diseases. PMID:22489170

  16. FRP debonding monitoring using OTDR techniques

    NASA Astrophysics Data System (ADS)

    Hou, Shuang; Cai, C. S. Steve; Ou, Jinping

    2009-07-01

    Debonding failure has been reported as the dominant failure mode for FRP strengthening in flexure. This paper explores a novel debonding monitoring method for FRP strengthened structures by means of OTDR-based fiber optic technology. Interface slip as a key factor in debonding failures will be measured through sensing optic fibers, which is instrumented in the interface between FRP and concrete in the direction perpendicular to the FRP filaments. Slip in the interface will induce power losses in the optic fiber signals at the intersection point of the FRP strip and the sensing optic fiber and the signal change will be detected through OTDR device. The FRP double shear tests and three-point bending tests were conducted to verify the effectiveness of the proposed monitoring method. It is found that the early bebonding can be detected before it causes the interface failure. The sensing optic fiber shows signal changes in the slip value at about 36~156 micrometer which is beyond sensing capacity of the conventional sensors. The tests results show that the proposed method is feasible in slip measurement with high sensitivity, and would be cost effective because of the low price of sensors used, which shows its potential of large-scale applications in civil infrastructures, especially for bridges.

  17. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine

    PubMed Central

    Torres‐Ruiz, José M.; Poyatos, Rafael; Martinez‐Vilalta, Jordi; Meir, Patrick; Cochard, Hervé; Mencuccini, Maurizio

    2015-01-01

    Abstract Understanding physiological processes involved in drought‐induced mortality is important for predicting the future of forests and for modelling the carbon and water cycles. Recent research has highlighted the variable risks of carbon starvation and hydraulic failure in drought‐exposed trees. However, little is known about the specific responses of leaves and supporting twigs, despite their critical role in balancing carbon acquisition and water loss. Comparing healthy (non‐defoliated) and unhealthy (defoliated) Scots pine at the same site, we measured the physiological variables involved in regulating carbon and water resources. Defoliated trees showed different responses to summer drought compared with non‐defoliated trees. Defoliated trees maintained gas exchange while non‐defoliated trees reduced photosynthesis and transpiration during the drought period. At the branch scale, very few differences were observed in non‐structural carbohydrate concentrations between health classes. However, defoliated trees tended to have lower water potentials and smaller hydraulic safety margins. While non‐defoliated trees showed a typical response to drought for an isohydric species, the physiology appears to be driven in defoliated trees by the need to maintain carbon resources in twigs. These responses put defoliated trees at higher risk of branch hydraulic failure and help explain the interaction between carbon starvation and hydraulic failure in dying trees. PMID:25997464

  18. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  19. 14. Detail, crack evidencing structural failure, northeast rear, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Detail, crack evidencing structural failure, northeast rear, view to southwest, 90mm lens. Note failure of sandstone lintel above window. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  20. Dynamically induced cascading failures in power grids.

    PubMed

    Schäfer, Benjamin; Witthaut, Dirk; Timme, Marc; Latora, Vito

    2018-05-17

    Reliable functioning of infrastructure networks is essential for our modern society. Cascading failures are the cause of most large-scale network outages. Although cascading failures often exhibit dynamical transients, the modeling of cascades has so far mainly focused on the analysis of sequences of steady states. In this article, we focus on electrical transmission networks and introduce a framework that takes into account both the event-based nature of cascades and the essentials of the network dynamics. We find that transients of the order of seconds in the flows of a power grid play a crucial role in the emergence of collective behaviors. We finally propose a forecasting method to identify critical lines and components in advance or during operation. Overall, our work highlights the relevance of dynamically induced failures on the synchronization dynamics of national power grids of different European countries and provides methods to predict and model cascading failures.

  1. The Influence of a High Salt Diet on a Rat Model of Isoproterenol-Induced Heart Failure

    EPA Science Inventory

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4 weeks) isoproterenol (ISO) infusion exacerbated cardiomyopathy in Spontaneously Hypertensive Heart Failure (SHHF) rats. Others have shown...

  2. A RAT MODEL OF HEART FAILURE INDUCED BY ISOPROTERENOL AND A HIGH SALT DIET

    EPA Science Inventory

    Rat models of heart failure (HF) show varied pathology and time to disease outcome, dependent on induction method. We found that subchronic (4wk) isoproterenol (ISO) infusion in Spontaneously Hypertensive Heart Failure (SHHF) rats caused cardiac injury with minimal hypertrophy. O...

  3. Building Quakes: Detection of Weld Fractures in Buildings using High-Frequency Seismic Techniques

    NASA Astrophysics Data System (ADS)

    Heckman, V.; Kohler, M. D.; Heaton, T. H.

    2009-12-01

    Catastrophic fracture of welded beam-column connections in buildings was observed in the Northridge and Kobe earthquakes. Despite the structural importance of such connections, it can be difficult to locate damage in structural members underneath superficial building features. We have developed a novel technique to locate fracturing welds in buildings in real time using high-frequency information from seismograms. Numerical and experimental methods were used to investigate an approach for detecting the brittle fracture of welds of beam-column connections in instrumented steel moment-frame buildings through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalogue of Green’s functions for an instrumented building to detect high-frequency failure events in the building during a later earthquake by screening continuous data for the presence of one or more of the events. This was explored experimentally by comparing structural responses of a small-scale laboratory structure under a variety of loading conditions. Experimentation was conducted on a polyvinyl chloride frame model structure with data recorded at a sample rate of 2000 Hz using piezoelectric accelerometers and a 24-bit digitizer. Green’s functions were obtained by applying impulsive force loads at various locations along the structure with a rubber-tipped force transducer hammer. We performed a blind test using cross-correlation techniques to determine if it was possible to use the catalogue of Green’s functions to pinpoint the absolute times and locations of subsequent, induced failure events in the structure. A finite-element method was used to simulate the response of the model structure to various source mechanisms in order to determine the types of elastic waves that were produced as well as to obtain a general understanding of the structural response to localized loading and fracture.

  4. Degradation of Au-Ti contacts of SiGe HBTs during electromagnetic field stress

    NASA Astrophysics Data System (ADS)

    Alaeddine, A.; Genevois, C.; Kadi, M.; Cuvilly, F.; Daoud, K.

    2011-02-01

    This paper addresses electromagnetic field stress effects on SiGe heterojunction bipolar transistors (HBTs)' reliability issues, focusing on the relationship between the stress-induced current and device structure degradations. The origin of leakage currents and electrical parameter shifts in failed transistors has been studied by complementary failure analysis techniques. Characterization of the structure before and after ageing was performed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). For the stressed samples, interface deformations of the titanium (Ti) thin film around all gold (Au) contacts have been clearly detected. These degradations include localized interface reaction between Au and Ti layers as well as their lateral atomic migration causing a significant reduction of Ti thickness. EDS analysis of the disordered region which is near the Si3N4 interface has shown significant signals from Au. These observations could be attributed to the coupling between high current densities induced by stress and thermal effects due to local heating effects.

  5. Fatigue-Induced Damage in Zr-Based Bulk Metallic Glasses

    PubMed Central

    Chuang, Chih-Pin; Yuan, Tao; Dmowski, Wojciech; Wang, Gong-Yao; Freels, Matt; Liaw, Peter K.; Li, Ran; Zhang, Tao

    2013-01-01

    In the present work, we investigate the effect of “fatigue” on the fatigue behavior and atomic structure of Zr-based BMGs. Fatigue experiments on the failed-by-fatigue samples indicate that the remnants generally have similar or longer fatigue life than the as-cast samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-fatigue samples showed very small changes of local atomic structures. These observations suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the number of pre-existing crack-initiation sites in the sample. Once the crack initiates in the specimen, the fatigue-induced damage is accumulated locally on these initiated sites, while the rest of the region deforms elastically. The results suggest that the fatigue failure of BMGs under compression-compression fatigue experiments is a defect-controlled process. The present work indicates the significance of the improved fatigue resistance with decreasing the sample size. PMID:23999496

  6. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)

    1983-01-01

    The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.

  7. Failure prediction of thin beryllium sheets used in spacecraft structures

    NASA Technical Reports Server (NTRS)

    Roschke, Paul N.; Mascorro, Edward; Papados, Photios; Serna, Oscar R.

    1991-01-01

    The primary objective of this study is to develop a method for prediction of failure of thin beryllium sheets that undergo complex states of stress. Major components of the research include experimental evaluation of strength parameters for cross-rolled beryllium sheet, application of the Tsai-Wu failure criterion to plate bending problems, development of a high order failure criterion, application of the new criterion to a variety of structures, and incorporation of both failure criteria into a finite element code. A Tsai-Wu failure model for SR-200 sheet material is developed from available tensile data, experiments carried out by NASA on two circular plates, and compression and off-axis experiments performed in this study. The failure surface obtained from the resulting criterion forms an ellipsoid. By supplementing experimental data used in the the two-dimensional criterion and modifying previously suggested failure criteria, a multi-dimensional failure surface is proposed for thin beryllium structures. The new criterion for orthotropic material is represented by a failure surface in six-dimensional stress space. In order to determine coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial experiments are required. Details of these experiments and a complementary ultrasonic investigation are described in detail. Finally, validity of the criterion and newly determined mechanical properties is established through experiments on structures composed of SR200 sheet material. These experiments include a plate-plug arrangement under a complex state of stress and a series of plates with an out-of-plane central point load. Both criteria have been incorporated into a general purpose finite element analysis code. Numerical simulation incrementally applied loads to a structural component that is being designed and checks each nodal point in the model for exceedance of a failure criterion. If stresses at all locations do not exceed the failure criterion, the load is increased and the process is repeated. Failure results for the plate-plug and clamped plate tests are accurate to within 2 percent.

  8. Landslide Frequency and Failure Mechanisms at NE Gela Basin (Strait of Sicily)

    NASA Astrophysics Data System (ADS)

    Kuhlmann, J.; Asioli, A.; Trincardi, F.; Klügel, A.; Huhn, K.

    2017-11-01

    Despite intense research by both academia and industry, the parameters controlling slope stability at continental margins are often speculated upon. Lack of core recovery and age control on failed sediments prevent the assessment of failure timing/frequency and the role of prefailure architecture as shaped by paleoenvironmental changes. This study uses an integrated chronological framework from two boreholes and complementary ultrahigh-resolution acoustic profiling in order to assess (1) the frequency of submarine landsliding at the continental margin of NE Gela Basin and (2) the associated mechanisms of failure. Accurate age control was achieved through absolute radiocarbon dating and indirect dating relying on isotope stratigraphic and micropaleontological reconstructions. A total of nine major slope failure events have been recognized that occurred within the last 87 kyr ( 10 kyr return frequency), though there is evidence for additional syndepositional, small-scaled transport processes of lower volume. Preferential failure involves translational movement of mudflows along subhorizontal surfaces that are induced by sedimentological changes relating to prefailure stratal architecture. Along with sequence-stratigraphic boundaries reflecting paleoenvironmental fluctuations, recovered core material suggests that intercalated volcaniclastic layers are key to the basal confinement and lateral movement of these events in the study area. Another major predisposing factor is given by rapid loading of fine-grained homogenous strata and successive generation of excess pore pressure, as expressed by several fluid escape structures. Recurrent failure, however, requires repeated generation of favorable conditions, and seismic activity, though low if compared to many other Mediterranean settings, is shown to represent a legitimate trigger mechanism.

  9. Mediational and Deviance Theories of Late High School Failure: Process Roles of Structural Strains, Academic Competence, and General versus Specific Problem Behavior

    ERIC Educational Resources Information Center

    Newcomb, Michael D.; Abbott, Robert D.; Catalano, Richard F.; Hawkins, J. David; Battin-Pearson, Sara; Hill, Karl

    2002-01-01

    Understanding and preventing high school failure is a national priority. Structural strain and general deviance theories attempt to explain late high school failure. The authors tested the hypotheses that general (vs. specific) deviance and academic competence mediate the relationships between structural strain factors (gender, ethnicity, and…

  10. Effects of low-molecular-weight-chitosan on the adenine-induced chronic renal failure rats in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Zhi, Xuan; Han, Baoqin; Sui, Xianxian; Hu, Rui; Liu, Wanshun

    2015-02-01

    The effects of low-molecular-weight-chitosan (LMWC) on chronic renal failure (CRF) rats induced by adenine were investigated in vivo and in vitro. Chitosan were hydrolyzed using chitosanase at pH 6-7 and 37° for 24 h to obtain LMWC. In vitro, the effect of LMWC on the proliferation of renal tubular epithelial cells (RTEC) showed that it had no cytotoxic effect and could promote cell growth. For the in vivo experiment, chronic renal failure rats induced by adenine were randomly divided into control group, Niaoduqing group, and high-, medium- and low-dose LMWC groups. For each group, we detected serum creatinine (SCR), blood urea nitrogen (BUN), and total superoxide dismutase (T-SOD), glutathione oxidase (GSH-Px) activities of renal tissue, and obtained the ratio of kidney weight/body weight, pathological changes of kidney. The levels of serum SCR, BUN were higher in the adenine-induced rats than those in the control group, indicating that the rat chronic renal failure model worked successfully. The results after treatment showed that LMWC could reduce the SCR and BUN levels and enhance the activities/levels of T-SOD and GSH-PX in kidney compared to control group. Histopathological examination revealed that adenine-induced renal alterations were restored by LMWC at three tested dosages, especially at the low dosage of 100 mg kg-1 d-1.

  11. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats.

    PubMed

    Chang, Xue-Ying; Cui, Lei; Wang, Xing-Zhi; Zhang, Lei; Zhu, Dan; Zhou, Xiao-Rong; Hao, Li-Rong

    2017-01-01

    This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta ( P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway.

  12. Quercetin Attenuates Vascular Calcification through Suppressed Oxidative Stress in Adenine-Induced Chronic Renal Failure Rats

    PubMed Central

    Chang, Xue-ying; Cui, Lei; Wang, Xing-zhi; Zhang, Lei; Zhu, Dan

    2017-01-01

    Background This study investigated whether quercetin could alleviate vascular calcification in experimental chronic renal failure rats induced by adenine. Methods 32 adult male Wistar rats were randomly divided into 4 groups fed normal diet, normal diet with quercetin supplementation (25 mg/kg·BW/d), 0.75% adenine diet, or adenine diet with quercetin supplementation. All rats were sacrificed after 6 weeks of intervention. Serum renal functions biomarkers and oxidative stress biomarkers were measured and status of vascular calcification in aorta was assessed. Furthermore, the induced nitric oxide synthase (iNOS)/p38 mitogen activated protein kinase (p38MAPK) pathway was determined to explore the potential mechanism. Results Adenine successfully induced renal failure and vascular calcification in rat model. Quercetin supplementation reversed unfavorable changes of phosphorous, uric acid (UA) and creatinine levels, malonaldehyde (MDA) content, and superoxide dismutase (SOD) activity in serum and the increases of calcium and alkaline phosphatase (ALP) activity in the aorta (P < 0.05) and attenuated calcification and calcium accumulation in the medial layer of vasculature in histopathology. Western blot analysis showed that iNOS/p38MAPK pathway was normalized by the quercetin supplementation. Conclusions Quercetin exerted a protective effect on vascular calcification in adenine-induced chronic renal failure rats, possibly through the modulation of oxidative stress and iNOs/p38MAPK pathway. PMID:28691026

  13. Entry flight control system downmoding evaluation

    NASA Technical Reports Server (NTRS)

    Barnes, H. A.

    1978-01-01

    A method to desensitize the entry flight control system to structural vibration feedback which might induce an oscillatory instability is described. Trends in vehicle response and handling characteristics as a function of gain combinations in the FCS forward and rate feedback loops were described as observed in a man-in-the-loop simulation. Among the flight conditions considered are the effects of downmoding with APU failures, off-nominal trajectory conditions, sensed angle of attack errors, the impact on RCS fuel consumption, performance in the presence of aero variations, recovery from large FCS upsets, and default gains.

  14. Translational Control in Bone Marrow Failure

    DTIC Science & Technology

    2015-05-01

    HCLS1 associated protein X-1 (HAX1), cause hereditary forms of neutropenia . Previously, competing hypotheses have posited that mutant forms of...derived induced pluripotent stem cell (iPSC) model of ELANE-associated neutropenia . During the second year of this project, in order to facilitate...pathology. 3 2. KEY WORDS neutropenia bone marrow failure neutrophil elastase ELANE HAX1 alternate translation induced pluripotent stem cells (iPSC

  15. Theoretical model of impact damage in structural ceramics

    NASA Technical Reports Server (NTRS)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.

    1984-01-01

    This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.

  16. Damage detection in rotating machinery by means of entropy-based parameters

    NASA Astrophysics Data System (ADS)

    Tocarciuc, Alexandru; Bereteu, Liviu; ǎgǎnescu, Gheorghe Eugen, Dr

    2014-11-01

    The paper is proposing two new entropy-based parameters, namely Renyi Entropy Index (REI) and Sharma-Mittal Entropy Index (SMEI), for detecting the presence of failures (or damages) in rotating machinery, namely: belt structural damage, belt wheels misalignment, failure of the fixing bolt of the machine to its baseplate and eccentricities (i.e.: due to detaching a small piece of material or bad mounting of the rotating components of the machine). The algorithms to obtain the proposed entropy-based parameters are described and test data is used in order to assess their sensitivity. A vibration test bench is used for measuring the levels of vibration while artificially inducing damage. The deviation of the two entropy-based parameters is compared in two states of the vibration test bench: not damaged and damaged. At the end of the study, their sensitivity is compared to Shannon Entropic Index.

  17. Analysis and reduction of well failures in diatomite reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, L.; Jacobsen, J.; Horsman, J.

    1995-12-31

    Well damage induced by compactable formation deformation has occurred in oil fields in the Gulf of Mexico, the mid-continent region, the North Sea, on-shore Europe, Asia, and South America. The diatomite reservoirs of California are particularly susceptible to compaction due to the very high porosity of the diatomite. In these reservoirs well replacement, lost production and abandonment costs have exceeded $200 million to date. In 1994 alone about 40 wells were damaged. A study is currently underway involving data analysis and 3-D visualization, laboratory testing, and numerical modelling to improve understanding of casing damage due to reservoir compaction and tomore » develop tools and operating strategies to reduce casing damage. The study is focused on the South Belridge field. Results to date show a consistent correlation between failure and structural markers and apparent influence of local production and injection supporting the need for 3-D simulation.« less

  18. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  19. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  20. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  1. Recent advances in computational structural reliability analysis methods

    NASA Astrophysics Data System (ADS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  2. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  3. Nkx2.5 enhances the efficacy of mesenchymal stem cells transplantation in treatment heart failure in rats.

    PubMed

    Deng, Bo; Wang, Jin Xin; Hu, Xing Xing; Duan, Peng; Wang, Lin; Li, Yang; Zhu, Qing Lei

    2017-08-01

    The aim of this study is to determine whether Nkx2.5 transfection of transplanted bone marrow mesenchymal stem cells (MSCs) improves the efficacy of treatment of adriamycin-induced heart failure in a rat model. Nkx2.5 was transfected in MSCs by lentiviral vector transduction. The expressions of Nkx2.5 and cardiac specific genes in MSCs and Nkx2.5 transfected mesenchymal stem cells (MSCs-Nkx2.5) were analyzed with quantitative real-time PCR and Western blot in vitro. Heart failure models of rats were induced by adriamycin and were then randomly divided into 3 groups: injected saline, MSCs or MSCs-Nkx2.5 via the femoral vein respectively. Four weeks after injection, the cardiac function, expressions of cardiac specific gene, fibrosis formation and collagen volume fraction in the myocardium as well as the expressions of GATA4 and MEF2 in rats were analyzed with echocardiography, immunohistochemistry, Masson staining, quantitative real-time PCR and Western blot, respectively. Nkx2.5 enhanced cardiac specific gene expressions including α-MHC, TNI, CKMB, connexin-43 in MSCs-Nkx2.5 in vitro. Both MSCs and MSCs-Nkx2.5 improved cardiac function, promoted the differentiation of transplanted MSCs into cardiomyocyte-like cells, decreased fibrosis formation and collagen volume fraction in the myocardium, as well as increased the expressions of GATA4 and MEF2 in adriamycin-induced rat heart failure models. Moreover, the effect was much more remarkable in MSCs-Nkx2.5 than in MSCs group. This study has found that Nkx2.5 enhances the efficacy of MSCs transplantation in treatment adriamycin-induced heart failure in rats. Nkx2.5 transfected to transplanted MSCs provides a potential effective approach to heart failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Reading tarot cards.

    PubMed

    Edmunds, L Henry

    2004-02-01

    In some patients acute myocardial infarction and/or infarct expansion induces progressive left ventricular dilatation that eventually leads to heart failure and death. The five year mortality after onset of heart failure is 50%. Chronically stretched viable myocardium adjacent to or remote from an expanding infarction initiates a myopathic process that leads to progressive myocyte apoptosis and adverse postinfarction remodeling. Revascularization of stunned or hibernating myocardium restores contractility and benefits patients in heart failure; however, revascularization does not restore contractility to myopathic, remodeling myocardium. Contemporary operations for heart failure temporarily reduce ventricular wall stress, but fail to reverse stretch induced myocyte apoptosis, which may not be reversible. Logically, prevention of this myopathic process after acute infarction seems required to extend survival. It follows that surgeons should operate before adverse postinfarction left ventricular remodeling occurs, using new operations, rather than afterwards.

  5. Success rate and risk factors of failure of the induced membrane technique in children: a systematic review.

    PubMed

    Aurégan, Jean-Charles; Bégué, Thierry; Rigoulot, Guillaume; Glorion, Christophe; Pannier, Stéphanie

    2016-12-01

    The induced membrane technique was designed by Masquelet et al. to address segmental bone defects of critical size in adults. It has been used after bone defects of traumatic, infectious and tumoral origin with satisfactory results. Recently, it has been used in children but, after an initial enthusiasm, several cases of failure have been reported. The purpose of this study was to assess the success rate and the risk factors of failure of the induced membrane for children. We conducted a systematic review of all the studies reporting the results of the induced membrane technique to address bone defects of critical size in children. Our primary outcome was the success rate of the technique defined as a bone union before any iterative surgery. Our secondary outcomes were the complications and the risk factors of failure. We searched Medline via Pubmed, EMBASE and the Cochrane Library. Twelve studies, including 69 patients, met the inclusion criteria. There were 41 boys and 28 girls. Mean age at surgery was 10 years. Mean size of resection was 12.38 cm and the mean time between the two stages was 5.86 months. Mean rate of bone union after the two stages of the induced membrane technique was 58% (40/69) but this rate increased to 87% after revision surgeries (60/69). Main complications were non-unions (19/69), lysis of the graft (6/69) and fractures of the bone graft (6/69). Only 1/69 deep infection was reported. Other non specific complications were regularly reported such limb length discrepancies, joint stiffness and protruding wires. Risk factor of failure that could be suspected comprised the resection of a malignant tumour, a bone defect located at the femur, a wide resection, a long time between the two stages, an unstable osteosynthesis and a bone graft associating autograft to other graft materials. The induced membrane technique is suitable for bone defects of critical size in children. It is a reliable technique with no need of micro vascular surgery. However, we found several risk factors of failure for the use of the induced membrane technique to address segmental bone defect of critical size in children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Investigation of progressive failure robustness and alternate load paths for damage tolerant structures

    NASA Astrophysics Data System (ADS)

    Marhadi, Kun Saptohartyadi

    Structural optimization for damage tolerance under various unforeseen damage scenarios is computationally challenging. It couples non-linear progressive failure analysis with sampling-based stochastic analysis of random damage. The goal of this research was to understand the relationship between alternate load paths available in a structure and its damage tolerance, and to use this information to develop computationally efficient methods for designing damage tolerant structures. Progressive failure of a redundant truss structure subjected to small random variability was investigated to identify features that correlate with robustness and predictability of the structure's progressive failure. The identified features were used to develop numerical surrogate measures that permit computationally efficient deterministic optimization to achieve robustness and predictability of progressive failure. Analysis of damage tolerance on designs with robust progressive failure indicated that robustness and predictability of progressive failure do not guarantee damage tolerance. Damage tolerance requires a structure to redistribute its load to alternate load paths. In order to investigate the load distribution characteristics that lead to damage tolerance in structures, designs with varying degrees of damage tolerance were generated using brute force stochastic optimization. A method based on principal component analysis was used to describe load distributions (alternate load paths) in the structures. Results indicate that a structure that can develop alternate paths is not necessarily damage tolerant. The alternate load paths must have a required minimum load capability. Robustness analysis of damage tolerant optimum designs indicates that designs are tailored to specified damage. A design Optimized under one damage specification can be sensitive to other damages not considered. Effectiveness of existing load path definitions and characterizations were investigated for continuum structures. A load path definition using a relative compliance change measure (U* field) was demonstrated to be the most useful measure of load path. This measure provides quantitative information on load path trajectories and qualitative information on the effectiveness of the load path. The use of the U* description of load paths in optimizing structures for effective load paths was investigated.

  7. Structures and geriatrics from a failure analysis experience viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopper, D.M.

    In a failure analysis consulting engineering practice one sees a variety of structural failures from which observations may be made concerning geriatric structures. Representative experience with power plants, refineries, offshore structures, and forensic investigations is summarized and generic observations are made regarding the maintenance of fitness for purpose of structures. Although it is important to optimize the engineering design for a range of operational and environmental variables, it is essential that fabrication and inspection controls exist along with common sense based ongoing monitoring and operations procedures. 18 figs.

  8. Extreme Threshold Failures Within a Heterogeneous Elastic Thin Sheet and the Spatial-Temporal Development of Induced Seismicity Within the Groningen Gas Field

    NASA Astrophysics Data System (ADS)

    Bourne, S. J.; Oates, S. J.

    2017-12-01

    Measurements of the strains and earthquakes induced by fluid extraction from a subsurface reservoir reveal a transient, exponential-like increase in seismicity relative to the volume of fluids extracted. If the frictional strength of these reactivating faults is heterogeneously and randomly distributed, then progressive failures of the weakest fault patches account in a general manner for this initial exponential-like trend. Allowing for the observable elastic and geometric heterogeneity of the reservoir, the spatiotemporal evolution of induced seismicity over 5 years is predictable without significant bias using a statistical physics model of poroelastic reservoir deformations inducing extreme threshold frictional failures of previously inactive faults. This model is used to forecast the temporal and spatial probability density of earthquakes within the Groningen natural gas reservoir, conditional on future gas production plans. Probabilistic seismic hazard and risk assessments based on these forecasts inform the current gas production policy and building strengthening plans.

  9. Solder Reflow Failures in Electronic Components During Manual Soldering

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander; Greenwell, Chris; Felt, Frederick

    2008-01-01

    This viewgraph presentation reviews the solder reflow failures in electronic components that occur during manual soldering. It discusses the specifics of manual-soldering-induced failures in plastic devices with internal solder joints. The failure analysis turned up that molten solder had squeezed up to the die surface along the die molding compound interface, and the dice were not protected with glassivation allowing solder to short gate and source to the drain contact. The failure analysis concluded that the parts failed due to overheating during manual soldering.

  10. Failure analysis of thick composite cylinders under external pressure

    NASA Technical Reports Server (NTRS)

    Caiazzo, A.; Rosen, B. W.

    1992-01-01

    Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.

  11. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  12. Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)

    2002-01-01

    A part of aviation accident mitigation is a crashworthy airframe structure, and an important measure of merit for a crashworthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crashworthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for a textile composite, circumferential fuselage frame subjected to a quasi-static, crash-type load. The test data for the frame are reported, and these data are used to develop and to validate methods for the progressive failure response.

  13. CRISPR/Cas9 Technology Targeting Fas Gene Protects Mice From Concanavalin-A Induced Fulminant Hepatic Failure.

    PubMed

    Liang, Wei-Cheng; Liang, Pu-Ping; Wong, Cheuk-Wa; Ng, Tzi-Bun; Huang, Jun-Jiu; Zhang, Jin-Fang; Waye, Mary Miu-Yee; Fu, Wei-Ming

    2017-03-01

    Fulminant hepatic failure is a life-threatening disease which occurs in patients without preexisting liver disease. Nowadays, there is no ideal therapeutic tool in the treatment of fulminant hepatic failure. Recent studies suggested that a novel technology termed CRISPR/Cas9 may be a promising approach for the treatment of fulminant hepatic failure. In this project, we have designed single chimeric guide RNAs specifically targeting the genomic regions of mouse Fas gene. The in vitro and in vivo effects of sgRNAs on the production of Fas protein were examined in cultured mouse cells and in a hydrodynamic injection-based mouse model, respectively. The in vivo delivery of CRISPR/Cas9 could maintain liver homeostasis and protect hepatocytes from Fas-mediated cell apoptosis in the fulminant hepatic failure model. Our study indicates the clinical potential of developing the CRISPR/Cas9 system as a novel therapeutic strategy to rescue Concanavalin-A-induced fulminant hepatic failure in the mouse model. J. Cell. Biochem. 118: 530-536, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Study of Electromigration-Induced Failures on Cu Pillar Bumps Joined to OSP and ENEPIG Substrates

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Hsiang; Lin, Kwang-Lung; Lee, Chiu-Wen; Shao, Yu-Hsiu; Lai, Yi-Shao

    2012-12-01

    This work studies electromigration (EM)-induced failures on Cu pillar bumps joined to organic solderability preservative (OSP) on Cu substrates (OSP-bumps) and electroless Ni(P)/electroless Pd/immersion Au (ENEPIG) under bump metallurgy (UBM) on Cu substrates (ENEPIG-bumps). Two failure modes (Cu pad consumption and gap formation) were found with OSP-bumps, but only one failure mode (gap formation) was found with ENEPIG-bumps. The main interfacial compound layer was the Cu6Sn5 compound, which suffered significant EM-induced dissolution, eventually resulting in severe Cu pad consumption at the cathode side for OSP-bumps. A (Cu,Ni)6Sn5 layer with strong resistance to EM-induced dissolution exists at the joint interface when a nickel barrier layer is incorporated at the cathode side (Ni or ENEPIG), and these imbalanced atomic fluxes result in the voids and gap formation. OSP-bumps showed better lifetime results than ENEPIG-bumps for several current stressing conditions. The inverse Cu atomic flux ( J Cu,chem) which diffuses from the Cu pad to cathode side retards the formation of voids. The driving force for J Cu,chem comes from the difference in chemical potential between the (Cu,Ni)6Sn5 and Cu6Sn5 phases.

  15. Thyroid Echography-induced Thyroid Storm and Exacerbation of Acute Heart Failure.

    PubMed

    Nakabayashi, Keisuke; Nakazawa, Naomi; Suzuki, Toshiaki; Asano, Ryotaro; Saito, Hideki; Nomura, Hidekimi; Isomura, Daichi; Okada, Hisayuki; Sugiura, Ryo; Oka, Toshiaki

    2016-01-01

    Hyperthyroidism and thyroid storm affect cardiac circulation in some conditions. Several factors including trauma can induce thyroid storms. We herein describe the case of a 57-year-old woman who experienced a thyroid storm and exacerbation of acute heart failure on thyroid echography. She initially demonstrated a good clinical course after medical rate control for atrial fibrillation; however, thyroid echography for evaluating hyperthyroidism led to a thyroid storm and she collapsed. A multidisciplinary approach stabilized her thyroid hormone levels and hemodynamics. Thus, the medical staff should be prepared for a deterioration in the patient's condition during thyroid echography in heart failure patients with hyperthyroidism.

  16. Structural qualification testing and operational loading on a fiberglass rotor blade for the Mod-OA wind turbine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1983-01-01

    Fatigue tests were performed on full- and half-scale root end sections, first to qualify the root retention design, and second to induce failure. Test methodology and results are presented. Two operational blades were proof tested to design limit load to ascertain buckling resistance. Measurements of natural frequency, damping ratio, and deflection under load made on the operational blades are documented. The tests showed that all structural design requirements were met or exceeded. Blade loads measured during 3000 hr of field operation were close to those expected. The measured loads validated the loads used in the fatigue tests and gave high confidence in the ability of the blades to achieve design life.

  17. Revisiting drought impact on tree mortality and carbon fluxes in ORCHIDEE-CAN DGVM

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Bartlett, M. K.; Sack, L.; Poulter, B.; Ciais, P.

    2016-12-01

    In the past decade, two extreme droughts in the Amazon rainforest led to a perturbation of carbon cycle dynamics and forest structure, partly through an increase in tree mortality. While there is a relatively strong consensus in CMIP5 projections for an increase in both frequency and intensity of droughts across the Amazon, the potential for forest die-off constitutes a large uncertainty in projections of climate impacts on terrestrial ecosystems and carbon cycle feedbacks. Two long-term through fall exclusion experiments (TFE) provided novel observations of Amazonian ecosystem responses under drought. These experiments also provided a great opportunity to evaluate and improve models' behavior under drought. While current DGVMs use a wide array of algorithms to represent drought effect on ecosystem, most are associated with large uncertainty for representing drought-induced mortality, and require updating to include current information of physiological processes. During very strong droughts, the leaves desiccate and stems may undergo catastrophic embolism. However, even before that point, stomata close, to minimize excessive water loss and risk of hydraulic failure, which reduces carbon assimilation. Here, we describe a new parameterization of the stomatal conductance and mortality processes induced by drought using the ORCHIDEE-CAN dynamic vegetation model and test it using the two TFE results. We implemented a direct climate effect on mortality through catastrophic stem embolism using a new hydraulic architecture to represent the hydraulic potential gradient from the soil to the leaves based on vulnerability curves, and tree capacitance. In addition, growth primary productivity and transpiration are down-regulated by the hydraulic architecture in case of drought through stomatal conductance, which depends on the hydraulic potential of the leaf. We also explored the role of non structural carbohydrates (NSC) on hydraulic failure and mortality following the idea that stored NSC serves a critical osmotic function. Our results suggest that models have the capacity to represent drought induced individual mortality from a mechanistic perspective allowing a better understanding of the drought impacts on carbon cycle and forest structure in the tropics.

  18. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.

  19. Mending a Broken Heart: Treatment of Stress-Induced Heart Failure after Solid Organ Transplantation

    PubMed Central

    Kumm, Kayla; Kueht, Michael; Ha, Cindy P.; Yoeli, Dor; Cotton, Ronald T.; Rana, Abbas; O'Mahony, Christine A.; Halff, Glenn; Goss, John A.

    2018-01-01

    Stress-induced heart failure, also known as Broken Heart Syndrome or Takotsubo Syndrome, is a phenomenon characterized as rare but well described in the literature, with increasing incidence. While more commonly associated with postmenopausal women with psychiatric disorders, this entity is found in the postoperative patient. The nonischemic cardiogenic shock manifests as biventricular failure with significant decreases in ejection fraction and cardiac function. In a review of over 3000 kidney and liver transplantations over the course of 17 years within two transplant centers, we describe a series of 7 patients with Takotsubo Syndrome after solid organ transplantation. Furthermore, we describe a novel approach of successfully treating the transient, though potentially fatal, cardiogenic shock with a percutaneous ventricular assistance device in two liver transplant patients, while treating one kidney transplant patient medically and the remaining four liver transplant patients with an intra-aortic balloon pump. We describe our experience with Takotsubo's Syndrome and compare the three modalities of treatment and cardiac augmentation. Our series is novel in introducing the percutaneous ventricular assist device as a more minimally invasive intervention in treating nonischemic heart failure in the solid organ transplant patient, while serving as a comprehensive overview of treatment modalities for stress-induced heart failure. PMID:29670765

  20. Improving the durability of the optical fiber sensor based on strain transfer analysis

    NASA Astrophysics Data System (ADS)

    Wang, Huaping; Jiang, Lizhong; Xiang, Ping

    2018-05-01

    To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.

  1. Analysis of asteroid (216) Kleopatra using dynamical and structural constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Masatoshi; Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu

    This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure;more » in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true size of this body is established through additional measurements, this method will provide strong constraints on the current friction angle for the body.« less

  2. A Procedure for Modeling Structural Component/Attachment Failure Using Transient Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)

    2007-01-01

    Structures often comprise smaller substructures that are connected to each other or attached to the ground by a set of finite connections. Under static loading one or more of these connections may exceed allowable limits and be deemed to fail. Of particular interest is the structural response when a connection is severed (failed) while the structure is under static load. A transient failure analysis procedure was developed by which it is possible to examine the dynamic effects that result from introducing a discrete failure while a structure is under static load. The failure is introduced by replacing a connection load history by a time-dependent load set that removes the connection load at the time of failure. The subsequent transient response is examined to determine the importance of the dynamic effects by comparing the structural response with the appropriate allowables. Additionally, this procedure utilizes a standard finite element transient analysis that is readily available in most commercial software, permitting the study of dynamic failures without the need to purchase software specifically for this purpose. The procedure is developed and explained, demonstrated on a simple cantilever box example, and finally demonstrated on a real-world example, the American Airlines Flight 587 (AA587) vertical tail plane (VTP).

  3. 14 CFR 21.3 - Reporting of failures, malfunctions, and defects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that has left its quality control system and that it determines could result in any of the occurrences... propeller control system. (5) A propeller or rotorcraft hub or blade structural failure. (6) Flammable fluid.... (11) Any structural or flight control system malfunction, defect, or failure which causes an...

  4. Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin

    PubMed Central

    Ueba, Hiroto; Brines, Michael; Yamin, Michael; Umemoto, Tomio; Ako, Junya; Momomura, Shin-ichi; Cerami, Anthony; Kawakami, Masanobu

    2010-01-01

    Erythropoietin (EPO), originally identified for its critical hormonal role in regulating production and survival of erythrocytes, is a member of the type 1 cytokine superfamily. Recent studies have shown that EPO has cytoprotective effects in a wide variety of tissues, including the heart, by preventing apoptosis. However, EPO also has undesirable effects, such as thrombogenesis. In the present study, we investigated whether a helix B-surface peptide (HBSP), a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin, protects cardiomyocytes from apoptosis in vitro and in vivo. In cultured neonatal rat cardiomyocytes, HBSP clearly inhibited apoptosis (≈80%) induced by TNF-α, which was comparable with the effect of EPO, and activated critical signaling pathways of cell survival, including Akt, ERK1/2, and STAT3. Among these pathways, Akt was shown to play an essential role in HBSP-induced prevention of apoptosis, as assessed by using a small interfering RNA approach. In the dilated cardiomyopathic hamster (J2N-k), whose cardiac tissues diffusely expressed TNF-α, HBSP also inhibited apoptosis (≈70%) and activated Akt in cardiomyocytes. Furthermore, the levels of serum creatine kinase activity and of cardiac expression of atrial natriuretic peptide, a marker of chronic heart failure, were down-regulated in animals treated with HBSP. These data demonstrate that HBSP protects cardiomyocytes from apoptosis and leads to a favorable outcome in failing hearts through an Akt-dependent pathway. Because HBSP does not have the undesirable effects of EPO, it could be a promising alternative for EPO to treat cardiovascular diseases, such as myocardial infarction and heart failure. PMID:20660739

  5. Electromigration-induced void grain-boundary interactions: The mean time to failure for copper interconnects with bamboo and near-bamboo structures

    NASA Astrophysics Data System (ADS)

    Ogurtani, Tarik Omer; Oren, Ersin Emre

    2004-12-01

    A well-posed moving boundary-value problem, describing the dynamics of curved interfaces and surfaces associated with voids and/or cracks that are interacting with grain boundaries, is obtained. Extensive computer simulations are performed for void configuration evolution during intergranular motion, under the actions of capillary and electromigration forces in thin-film metallic interconnects with bamboo structures. The analysis of experimental data, utilizing the mean time to failure formulas derived in this paper, gives consistent values for the interface diffusion coefficients and enthalpies of voids. 5.85×10-5exp(-0.95eV/kT)m2s-1 is the value obtained for voids that form in the interior of the copper interconnects avoiding any surface contamination. 1.80×10-4exp(-1.20eV/kT)m2s-1 is obtained for those voids that nucleate either at triple junctions or at the grain-boundary technical surface intersections (grain-boundary groove), where the chemical impurities such as Si, O, S, and even C are segregated during the metallization and annealing processes and may act as trap centers for hopping vacancies.

  6. Fe model predicting the increase in seismic resistance induced by the progressive FRP strengthening on already damaged masonry arches subjected to settlement

    NASA Astrophysics Data System (ADS)

    Stockdale, G.; Milani, G.

    2017-11-01

    In seismic regions, the retrofitting of masonry structures subjected to differential foundation settlements is of the upmost importance. This practice however poses significant challenges, most notably in the consideration of historical monuments where the integrity of the original structure must be weighted alongside public safety. Fiber reinforced polymers (FRPs), when appropriately applied, provide the potential to balance this duality of heritage preservation and modern safety. Using an advanced FE point of view, this work studies the seismic response of a progressive reinforcement strategy aimed at strengthening and controlling the failure mechanism for masonry arches that exist in a damaged state induced through a differential abutment settlement. A heterogeneous FE approach of a semi-circular block and mortar arch on continuously spreading supports is examined. In this model hinge formation is obtained by assigning a damage plasticity behavior to the mortar joints. Strategically placed FRPs, designed through the utilization of the Italian CNR recommendations for externally bonded FRP systems, are applied through the Abaqus birth and death approach and introduced to the spreading support model after settlement. Finally, the structural behavior of the reinforced and unreinforced models are examined for a seismic response.

  7. Mesenchymal Stem Cell/Red Blood Cell-Inspired Nanoparticle Therapy in Mice with Carbon Tetrachloride-Induced Acute Liver Failure.

    PubMed

    Liang, Hongxia; Huang, Ke; Su, Teng; Li, Zhenhua; Hu, Shiqi; Dinh, Phuong-Uyen; Wrona, Emily A; Shao, Chen; Qiao, Li; Vandergriff, Adam C; Hensley, M Taylor; Cores, Jhon; Allen, Tyler; Zhang, Hongyu; Zeng, Qinglei; Xing, Jiyuan; Freytes, Donald O; Shen, Deliang; Yu, Zujiang; Cheng, Ke

    2018-06-26

    Acute liver failure is a critical condition characterized by global hepatocyte death and often time needs a liver transplantation. Such treatment is largely limited by donor organ shortage. Stem cell therapy offers a promising option to patients with acute liver failure. Yet, therapeutic efficacy and feasibility are hindered by delivery route and storage instability of live cell products. We fabricated a nanoparticle that carries the beneficial regenerative factors from mesenchymal stem cells and further coated it with the membranes of red blood cells to increase blood stability. Unlike uncoated nanoparticles, these particles promote liver cell proliferation in vitro and have lower internalization by macrophage cells. After intravenous delivery, these artificial stem cell analogs are able to remain in the liver and mitigate carbon tetrachloride-induced liver failure in a mouse model, as gauged by histology and liver function test. Our technology provides an innovative and off-the-shelf strategy to treat liver failure.

  8. Bending cyclic load test for crystalline silicon photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Suzuki, Soh; Doi, Takuya; Masuda, Atsushi; Tanahashi, Tadanori

    2018-02-01

    The failures induced by thermomechanical fatigue within crystalline silicon photovoltaic modules are a common issue that can occur in any climate. In order to understand these failures, we confirmed the effects of compressive or tensile stresses (which were cyclically loaded on photovoltaic cells and cell interconnect ribbons) at subzero, moderate, and high temperatures. We found that cell cracks were induced predominantly at low temperatures, irrespective of the compression or tension applied to the cells, although the orientation of cell cracks was dependent on the stress applied. The fracture of cell interconnect ribbons was caused by cyclical compressive stress at moderate and high temperatures, and this failure was promoted by the elevation of temperature. On the basis of these results, the causes of these failures are comprehensively discussed in relation to the viscoelasticity of the encapsulant.

  9. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  10. Reconstruction of multistage massive rock slope failure: Polymethodical approach in Lake Oeschinen (CH)

    NASA Astrophysics Data System (ADS)

    Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka

    2016-04-01

    Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die damalige Umwelt. Eclogae Geologicae Helvetiae, 98(1), 83-95.

  11. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure.

    PubMed

    Dickinson, Brent A; Semus, Hillary M; Montgomery, Rusty L; Stack, Christianna; Latimer, Paul A; Lewton, Steven M; Lynch, Joshua M; Hullinger, Thomas G; Seto, Anita G; van Rooij, Eva

    2013-06-01

    Recent studies have shown that microRNAs (miRNAs), besides being potent regulators of gene expression, can additionally serve as circulating biomarkers of disease. The aim of this study is to determine if plasma miRNAs can be used as indicators of disease progression or therapeutic efficacy in hypertension-induced heart disease. In order to define circulating miRNAs that change during hypertension-induced heart failure and that respond to therapeutic treatment, we performed miRNA arrays on plasma RNA from hypertensive rats that show signs of heart failure. Array analysis indicated that approximately one-third of the miRNAs on the array are detectable in plasma. Quantitative real-time polymerase chain reaction (PCR) analysis for a selected panel of miRNAs indicated that circulating levels of miR-16, miR-20b, miR-93, miR-106b, miR-223, and miR-423-5p were significantly increased in response to hypertension-induced heart failure, while this effect was blunted in response to treatment with antimiR-208a as well as an ACE inhibitor. Moreover, treatment with antimiR-208a resulted in a dramatic increase in one miRNA, miR-19b. A time course study indicated that several of these miRNA changes track with disease progression. Circulating levels of miRNAs are responsive to therapeutic interventions and change during the progression of hypertension-induced heart disease.

  12. Left atrial function in heart failure with impaired and preserved ejection fraction.

    PubMed

    Fang, Fang; Lee, Alex Pui-Wai; Yu, Cheuk-Man

    2014-09-01

    Left atrial structural and functional changes in heart failure are relatively ignored parts of cardiac assessment. This review illustrates the pathophysiological and functional changes in left atrium in heart failure as well as their prognostic value. Heart failure can be divided into those with systolic dysfunction and heart failure with preserved ejection fraction (HFPEF). Left atrial enlargement and dysfunction commonly occur in systolic heart failure, in particular, in idiopathic dilated cardiomyopathy. Atrial enlargement and dysfunction also carry important prognostic value in systolic heart failure, independently of known parameters such as left ventricular ejection fraction. In HFPEF, there is evidence of left atrial enlargement, impaired atrial compliance, and reduction of atrial pump function. This occurs not only at rest but also during exercise, indicating significant impairment of atrial contractile reserve. Furthermore, atrial dyssynchrony is common in HFPEF. These factors further contribute to the development of new onset or progression of atrial arrhythmias, in particular, atrial fibrillation. Left atrial function is an integral part of cardiac function and its structural and functional changes in heart failure are common. As changes of left atrial structure and function have different clinical implications in systolic heart failure and HFPEF, routine assessment is warranted.

  13. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdem, Savas, E-mail: evxse1@nottingham.ac.uk; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing.more » In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.« less

  14. Triggering conditions and mobility of debris flows associated to complex earthflows

    NASA Astrophysics Data System (ADS)

    Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.

    2005-03-01

    Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging between 2000 to 5000 m 3. Slope failures induced by 25-year return period rainfall can trigger large debris flow events (30,000 to 50,000 m 3) that can reach the alluvial fan and cause damage.

  15. Prophylaxis of Contrast-Induced Nephrotoxicity

    PubMed Central

    2014-01-01

    Contrast-induced nephrotoxicity (CIN) is a form of acute kidney injury that follows intravascular contrast media exposure. CIN may be preventable because its risk factors are well established and the timing of renal insult is commonly known in advance. However, contrast-induced nephrotoxicity is still the third leading cause of iatrogenic renal failure. This important complication accounts up to 10% of acute renal failure cases in hospitalized patients and it is associated with increased short- and long-term morbidity and mortality. Prolonged hospitalization follows and overall increases healthcare resource utilization. This paper will discuss the various prophylactic procedures tested in clinical trials. PMID:24812612

  16. Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)

    2002-01-01

    A part of aviation accident mitigation is a crash worthy airframe structure, and an important measure of merit for a crash worthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crash worthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for textile composite. circumferential fuselage frames subjected to a quasi-static, crash-type load. The test data for these frames are reported, and these data, along with stub column test data, are to be used to develop and to validate methods for the progressive failure response.

  17. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  18. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    DTIC Science & Technology

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...Stir Weld Failure Mechanisms in Aluminum -Armor Structures Under Ballistic Impact Loading Conditions M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen...K.O. Pedersen, Fracture Mechanisms of Aluminum Alloy AA7075-T651 Under Various Loading Conditions , Int. J. Impact Eng., 2010, 37, p 537–551 24. T

  19. The role of impaired esophageal and gastric motility in end-stage lung diseases and after lung transplantation.

    PubMed

    Fisichella, Piero Marco; Jalilvand, Anahita

    2014-01-01

    Today, many questions persist regarding the causal relationship of gastroesophageal reflux disease (GERD) to promote aspiration and its potential to induce both pulmonary and allograft failure. Current hypotheses, which have identified GERD as a nonimmune risk factor in inducing pulmonary and allograft failure, center on the role of GERD-induced aspiration of gastroduodenal contents. Risk factors of GERD, such as impaired esophageal and gastric motility, may indirectly play a role in the aspiration process. In fact, although impaired esophageal and gastric motility is not independently a cause of lung deterioration or allograft failure, they may cause and or exacerbate GERD. This report seeks to review present research on impaired esophageal and gastric motility in end-stage lung disease to characterize prevalence, etiology, pathophysiology, and current treatment options within this special patient population. Published by Elsevier Inc.

  20. Acute respiratory failure secondary to mesalamine-induced interstitial pneumonitis

    PubMed Central

    Abraham, Albin; Karakurum, Ali

    2013-01-01

    Interstitial pneumonitis as an adverse effect of mesalamine therapy is a rare but potentially serious complication. Patients typically have a mild disease course with no documented cases of respiratory failure in published literature. Given its variable latent period and non-specific signs and symptoms, it may be difficult to diagnose. We present the case of a 65-year-old man who presented with symptoms of fever, shortness of breath and a non-productive cough, 2 weeks after initiation of therapy with mesalamine. His hospital course was complicated by acute respiratory failure requiring intubation and mechanical ventilation. Radiographic studies revealed bilateral lower lobe infiltrates and bronchosopy with bronchoalveolar lavage and transbronchial biopsy were consistent with a diagnosis of drug-induced interstitial pneumonitis. The aim of this paper is to highlight the importance of considering a diagnosis of mesalamine-induced lung injury in patients presenting with respiratory symptoms while on mesalamine therapy and to review relevant literature. PMID:23964037

  1. Acute respiratory failure secondary to mesalamine-induced interstitial pneumonitis.

    PubMed

    Abraham, Albin; Karakurum, Ali

    2013-08-20

    Interstitial pneumonitis as an adverse effect of mesalamine therapy is a rare but potentially serious complication. Patients typically have a mild disease course with no documented cases of respiratory failure in published literature. Given its variable latent period and non-specific signs and symptoms, it may be difficult to diagnose. We present the case of a 65-year-old man who presented with symptoms of fever, shortness of breath and a non-productive cough, 2 weeks after initiation of therapy with mesalamine. His hospital course was complicated by acute respiratory failure requiring intubation and mechanical ventilation. Radiographic studies revealed bilateral lower lobe infiltrates and bronchosopy with bronchoalveolar lavage and transbronchial biopsy were consistent with a diagnosis of drug-induced interstitial pneumonitis. The aim of this paper is to highlight the importance of considering a diagnosis of mesalamine-induced lung injury in patients presenting with respiratory symptoms while on mesalamine therapy and to review relevant literature.

  2. The Critical Criterion on Runaway Shear Banding in Metallic Glasses

    PubMed Central

    Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.

    2016-01-01

    The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures. PMID:26893196

  3. 75 FR 31731 - Airworthiness Directives; Bombardier, Inc. Model BD-700-1A10 and BD-700-1A11 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... turbine imbalance. Such imbalance could potentially result in RAT structural failure (including blade... turbine imbalance. Such imbalance could potentially result in RAT structural failure (including blade... reported cases of balance washer screw failure on similar RATs [ram air turbines]/air driven generators...

  4. Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension

    PubMed Central

    Nadadur, Rangarajan D.; Umar, Soban; Wong, Gabriel; Eghbali, Mansour; Iorga, Andrea; Matori, Humann; Partow-Navid, Rod

    2012-01-01

    Chronic pulmonary hypertension (PH) leads to right-ventricular failure (RVF) characterized by RV remodeling. Ventricular remodeling is emerging as an important process during heart failure and recovery. Remodeling in RVF induced by PH is not fully understood. Recently we discovered that estrogen (E2) therapy can rescue severe preexisting PH. Here, we focused on whether E2 (42.5 μg·kg−1·day−1, 10 days) can reverse adverse RV structural and extracellular matrix (ECM) remodeling induced by PH using monocrotaline (MCT, 60 mg/kg). RV fibrosis was evident in RVF males. Intact females developed less severe RV remodeling compared with males and ovariectomized (OVX) females. Novel ECM-degrading disintegrin-metalloproteinases ADAM15 and ADAM17 transcripts were elevated ∼2-fold in all RVF animals. E2 therapy reversed RV remodeling in all groups. In vitro, E2 directly inhibited ANG II-induced expression of fibrosis markers as well as the metalloproteinases in cultured cardiac fibroblasts. Estrogen receptor-β agonist diarylpropionitrile (DPN) but not estrogen receptor-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) was as effective as E2 in inhibiting expression of these genes. Expression of ECM-interacting cardiac fetal-gene osteopontin (OPN) also increased ∼9-fold in RVF males. Intact females were partially protected from OPN upregulation (∼2-fold) but OVX females were not. E2 reversed OPN upregulation in all groups. Upregulation of OPN was also reversed in vitro by E2. Plasma OPN was elevated in RVF (∼1.5-fold) and decreased to control levels in the E2 group. RVF resulted in elevated Akt phosphorylation, but not ERK, in the RV, and E2 therapy restored Akt phosphorylation. In conclusion, E2 therapy reverses adverse RV remodeling associated with PH by reversing fibrosis and upregulation of novel ECM enzymes ADAM15, ADAM17, and OPN. These effects are likely mediated through estrogen receptor-β. PMID:22628376

  5. The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury.

    PubMed

    Zorov, D B; Plotnikov, E Y; Jankauskas, S S; Isaev, N K; Silachev, D N; Zorova, L D; Pevzner, I B; Pulkova, N V; Zorov, S D; Morosanova, M A

    2012-07-01

    Programmed execution of various cells and intracellular structures is hypothesized to be not the only example of elimination of biological systems - the general mechanism can also involve programmed execution of organs and organisms. Modern rating of programmed cell death mechanisms includes 13 mechanistic types. As for some types, the mechanism of actuation and manifestation of cell execution has been basically elucidated, while the causes and intermediate steps of the process of fatal failure of organs and organisms remain unknown. The analysis of deaths resulting from a sudden heart arrest or multiple organ failure and other acute and chronic pathologies leads to the conclusion of a special role of mitochondria and oxidative stress activating the immune system. Possible mechanisms of mitochondria-mediated induction of the signaling cascades involved in organ failure and death of the organism are discussed. These mechanisms include generation of reactive oxygen species and damage-associated molecular patterns in mitochondria. Some examples of renal failure-induced deaths are presented with mechanisms and settings determined by some hypothetical super system rather than by the kidneys themselves. This system plays the key role in the process of physiological senescence and termination of an organism. The facts presented suggest that it is the immune system involved in mitochondrial signaling that can act as the system responsible for the organism's death.

  6. Zebrafish Heart Failure Models for the Evaluation of Chemical Probes and Drugs

    PubMed Central

    Monte, Aaron; Cook, James M.; Kabir, Mohd Shahjahan; Peterson, Karl P.

    2013-01-01

    Abstract Heart failure is a complex disease that involves genetic, environmental, and physiological factors. As a result, current medication and treatment for heart failure produces limited efficacy, and better medication is in demand. Although mammalian models exist, simple and low-cost models will be more beneficial for drug discovery and mechanistic studies of heart failure. We previously reported that aristolochic acid (AA) caused cardiac defects in zebrafish embryos that resemble heart failure. Here, we showed that cardiac troponin T and atrial natriuretic peptide were expressed at significantly higher levels in AA-treated embryos, presumably due to cardiac hypertrophy. In addition, several human heart failure drugs could moderately attenuate the AA-induced heart failure by 10%–40%, further verifying the model for drug discovery. We then developed a drug screening assay using the AA-treated zebrafish embryos and identified three compounds. Mitogen-activated protein kinase kinase inhibitor (MEK-I), an inhibitor for the MEK-1/2 known to be involved in cardiac hypertrophy and heart failure, showed nearly 60% heart failure attenuation. C25, a chalcone derivative, and A11, a phenolic compound, showed around 80% and 90% attenuation, respectively. Time course experiments revealed that, to obtain 50% efficacy, these compounds were required within different hours of AA treatment. Furthermore, quantitative polymerase chain reaction showed that C25, not MEK-I or A11, strongly suppressed inflammation. Finally, C25 and MEK-I, but not A11, could also rescue the doxorubicin-induced heart failure in zebrafish embryos. In summary, we have established two tractable heart failure models for drug discovery and three potential drugs have been identified that seem to attenuate heart failure by different mechanisms. PMID:24351044

  7. Detection of anti-isoniazid and anti-cytochrome P450 antibodies in patients with isoniazid-induced liver failure.

    PubMed

    Metushi, Imir G; Sanders, Corron; Lee, William M; Uetrecht, Jack

    2014-03-01

    Isoniazid (INH)-induced hepatotoxicity remains one of the most common causes of drug-induced idiosyncratic liver injury and liver failure. This form of liver injury is not believed to be immune-mediated because it is not usually associated with fever or rash, does not recur more rapidly on rechallenge, and previous studies have failed to identify anti-INH antibodies (Abs). In this study, we found Abs present in sera of 15 of 19 cases of INH-induced liver failure. Anti-INH Abs were present in 8 sera; 11 had anti-cytochrome P450 (CYP)2E1 Abs, 14 had Abs against CYP2E1 modified by INH, 14 had anti-CYP3A4 antibodies, and 10 had anti-CYP2C9 Abs. INH was found to form covalent adducts with CYP2E1, CYP3A4, and CYP2C9. None of these Abs were detected in sera from INH-treated controls without significant liver injury. The presence of a range of antidrug and autoAbs has been observed in other drug-induced liver injury that is presumed to be immune mediated. These data provide strong evidence that INH induces an immune response that causes INH-induced liver injury. © 2014 by the American Association for the Study of Liver Diseases.

  8. Test and Analysis Correlation of a Large-Scale, Orthogrid-Stiffened Metallic Cylinder without Weld Lands

    NASA Technical Reports Server (NTRS)

    Rudd, Michelle T.; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.

    2018-01-01

    The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program.

  9. Hypothyroidism-induced myocardial damage and heart failure: an overlooked entity.

    PubMed

    Shuvy, Mony; Shifman, Oshrat E Tayer; Nusair, Samir; Pappo, Orit; Lotan, Chaim

    2009-01-01

    Hypothyroid state may induce cardiac muscle impairment such as diastolic dysfunction and abnormal relaxation time. Advanced heart failure in hypothyroid patients has been described only in severe symptomatic cases, mostly during myxedematous coma. We describe an unusual case of asymptomatic patient with hypothyroidism who presented with severely reduced cardiac function with elevated cardiac enzymes reflecting significant myocardial injury. Comprehensive evaluation for heart failure was suggestive only for long-standing untreated hypothyroidism. Endomyocadial biopsy demonstrated unique histological findings of mucopolysaccharide accumulation attributed to hypothyroid state. Asymptomatic hypothyroidism may cause severe reduction in cardiac function accompanied with elevated cardiac enzymes. To our knowledge, this is the first description of human myocardial biopsy revealing mucopolysaccharide accumulation attributed to hypothyroid state.

  10. Antiretroviral treatment interruptions induced by the Kenyan postelection crisis are associated with virological failure.

    PubMed

    Mann, Marita; Diero, Lameck; Kemboi, Emmanuel; Mambo, Fidelis; Rono, Mary; Injera, Wilfred; Delong, Allison; Schreier, Leeann; Kaloustian, Kara W; Sidle, John; Buziba, Nathan; Kantor, Rami

    2013-10-01

    Antiretroviral treatment interruptions (TIs) cause suboptimal clinical outcomes. Data on TIs during social disruption are limited. We determined effects of unplanned TIs after the 2007-2008 Kenyan postelection violence on virological failure, comparing viral load (VL) outcomes in HIV-infected adults with and without conflict-induced TI. Two hundred and one patients were enrolled, median 2.2 years after conflict and 4.3 years on treatment. Eighty-eight patients experienced conflict-related TIs and 113 received continuous treatment. After adjusting for preconflict CD4, patients with TIs were more likely to have detectable VL, VL >5,000 and VL >10,000. Unplanned conflict-related TIs are associated with increased likelihood of virological failure.

  11. Surveys for sensitivity to fibers and potential impacts from fiber induced failures

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.

    1979-01-01

    The surveys for sensitivities to fibers and potential impacts from fiber induced failures begins with a review of the survey work completed to date and then describes an impact study involving four industrial installations located in Virginia. The observations and results from both the surveys and the study provide guidelines for future efforts. The survey work was done with three broad objectives: (1) identify the pieces of potentially vulnerable equipment as candidates for test; (2) support the transfer function work by gaining an understanding of how fibers could get into a building; and (3) support the economic analysis by understanding what would happen if fibers precipitated a failure in an item of equipment.

  12. Failure Behavior of Unidirectional Composites under Compression Loading: Effect of Fiber Waviness

    PubMed Central

    Yue, Chee Yoon

    2017-01-01

    The key objective of this work is to highlight the effect of manufacturing-induced fiber waviness defects on the compressive failure of glass fiber-reinforced unidirectional specimens. For this purpose, in-plane, through-thickness waviness defects (with different waviness severities) are induced during the manufacturing of the laminate. Numerical and experimental results show that the compressive strength of the composites decreases as the severity of the waviness defects increases. A reduction of up to 75% is noted with a wave severity of 0.075. Optical and scanning electron microscopy observations of the failed specimens reveal that kink-bands are created in the wavy regions and lead to failure. PMID:28783057

  13. Map showing ground failures from the Greenville/Mount Diablo earthquake sequence of January 1980, Northern California

    USGS Publications Warehouse

    Wilson, R.C.; Wieczorek, G.F.; Keefer, D.K.; Harp, E.L.; Tannaci, N.E.

    1985-01-01

    Information about the individual ground failures may be obtained from the map and the brief descriptions in table 1. The following text is a general discussion of the distribution and the mechanisms of the ground failures, followed by a discussion of the effects of wet winter conditions and of topographic amplification on the distribution and mechanisms of slope failure, and it concludes with a description of our (unsuccessful) efforts to locate any ground failures due to liquefaction. The discussion is intended not only to describe the GMDES slope failures but also to place them into the larger general context of seismically induced slope failures.

  14. Reliability and mode of failure of bonded monolithic and multilayer ceramics.

    PubMed

    Alessandretti, Rodrigo; Borba, Marcia; Benetti, Paula; Corazza, Pedro Henrique; Ribeiro, Raissa; Della Bona, Alvaro

    2017-02-01

    To evaluate the reliability of monolithic and multilayer ceramic structures used in the CAD-on technique (Ivoclar), and the mode of failure produced in ceramic structures bonded to a dentin analog material (NEMA-G10). Ceramic specimens were fabricated as follows (n=30): CAD-on- trilayer structure (IPS e.max ZirCAD/IPS e.max Crystall./Connect/IPS e.max CAD); YLD- bilayer structure (IPS e.max ZirCAD/IPS e.max Ceram); LDC- monolithic structure (IPS e.max CAD); and YZW- monolithic structure (Zenostar Zr Translucent). All ceramic specimens were bonded to G10 and subjected to compressive load in 37°C distilled water until the sound of the first crack, monitored acoustically. Failure load (L f ) values were recorded (N) and statistically analyzed using Weibull distribution, Kruskal-Wallis test, and Student-Newman-Keuls test (α=0.05). L f values of CAD-on and YZW structures were statistically similar (p=0.917), but higher than YLD and LDC (p<0.01). Weibull modulus (m) values were statistically similar for all experimental groups. Monolithic structures (LDC and YZW) failed from radial cracks. Failures in the CAD-on and YLD groups showed, predominantly, both radial and cone cracks. Monolithic zirconia (YZW) and CAD-on structures showed similar failure resistance and reliability, but a different fracture behavior. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Determination of a tissue-level failure evaluation standard for rat femoral cortical bone utilizing a hybrid computational-experimental method.

    PubMed

    Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun

    2018-01-01

    Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.

  16. Defect induced plasticity and failure mechanism of boron nitride nanotubes under tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anoop Krishnan, N. M., E-mail: anoopnm@civil.iisc.ernet.in; Ghosh, Debraj

    2014-07-28

    The effects of Stone-Wales (SW) and vacancy defects on the failure behavior of boron nitride nanotubes (BNNTs) under tension are investigated using molecular dynamics simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chiralities but similar diameter is considered first to evaluate the chirality dependence. The variation ofmore » failure strength with the radius is then studied by considering nanotubes of different diameters but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs, only the zigzag ones undergo brittle failure. An interesting defect induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure.« less

  17. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    PubMed

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Advanced composites structural concepts and materials technologies for primary aircraft structures: Structural response and failure analysis

    NASA Technical Reports Server (NTRS)

    Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.

  19. Energy Efficiency and Renewables: Market and Behavioral Failures

    ScienceCinema

    James Sweeney

    2017-12-09

    Thursday, January 28, 2010: Policies to promote renewable energy and energy efficiency have been gaining momentum throughout the world, often justified by environmental and energy security concerns. This presentation first talks about energy efficiency options, then delves into the economic motivation for energy efficiency and renewable energy policies by articulating the classes of relevant behavioral failures and market failures. Such behavioral and market failures may vary intertemporally or atemporally; the temporal structure and the extent of the failures are the critical considerations in the development of energy policies. The talk discusses key policy instruments and assess the extent to which they are well-suited to correct for failures with different structures. http://eetd.lbl.gov/dls/lecture-01-28...

  20. Interrelation of structure and operational states in cascading failure of overloading lines in power grids

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Bompard, Ettore; Huang, Tao; Jiang, Lin; Lu, Shaofeng; Zhu, Huaiying

    2017-09-01

    As the modern power system is expected to develop to a more intelligent and efficient version, i.e. the smart grid, or to be the central backbone of energy internet for free energy interactions, security concerns related to cascading failures have been raised with consideration of catastrophic results. The researches of topological analysis based on complex networks have made great contributions in revealing structural vulnerabilities of power grids including cascading failure analysis. However, existing literature with inappropriate assumptions in modeling still cannot distinguish the effects between the structure and operational state to give meaningful guidance for system operation. This paper is to reveal the interrelation between network structure and operational states in cascading failure and give quantitative evaluation by integrating both perspectives. For structure analysis, cascading paths will be identified by extended betweenness and quantitatively described by cascading drop and cascading gradient. Furthermore, the operational state for cascading paths will be described by loading level. Then, the risk of cascading failure along a specific cascading path can be quantitatively evaluated considering these two factors. The maximum cascading gradient of all possible cascading paths can be used as an overall metric to evaluate the entire power grid for its features related to cascading failure. The proposed method is tested and verified on IEEE30-bus system and IEEE118-bus system, simulation evidences presented in this paper suggests that the proposed model can identify the structural causes for cascading failure and is promising to give meaningful guidance for the protection of system operation in the future.

  1. Seismic design and engineering research at the U.S. Geological Survey

    USGS Publications Warehouse

    1988-01-01

    The Engineering Seismology Element of the USGS Earthquake Hazards Reduction Program is responsible for the coordination and operation of the National Strong Motion Network to collect, process, and disseminate earthquake strong-motion data; and, the development of improved methodologies to estimate and predict earthquake ground motion.  Instrumental observations of strong ground shaking induced by damaging earthquakes and the corresponding response of man-made structures provide the basis for estimating the severity of shaking from future earthquakes, for earthquake-resistant design, and for understanding the physics of seismologic failure in the Earth's crust.

  2. Bioorganometallic Chemistry and Malaria

    NASA Astrophysics Data System (ADS)

    Biot, Christophe; Dive, Daniel

    This chapter summarizes recent developments in the design, synthesis, and structure-activity relationship studies of organometallic antimalarials. It begins with a general introduction to malaria and the biology of the parasite Plasmodium falciparum, with a focus on the heme detoxification system. Then, a number of metal complexes from the literature are reported for their antiplasmodial activity. The second half of the chapter deals with the serendipitous discovery of ferroquine, its mechanism(s) of action, and the failure to induce a resistance. Last, but not least, we suggest that the bioorganometallic approach offers the potential for the design of novel therapeutic agents.

  3. S-52, a novel nootropic compound, protects against β-amyloid induced neuronal injury by attenuating mitochondrial dysfunction.

    PubMed

    Gao, Xin; Zheng, Chun Yan; Qin, Guo Wei; Tang, Xi Can; Zhang, Hai Yan

    2012-10-01

    Accumulating evidence suggests that β-amyloid (Aβ)-induced oxidative DNA damage and mitochondrial dysfunction may initiate and contribute to the progression of Alzheimer's disease (AD). This study evaluated the neuroprotective effects of S-52, a novel nootropic compound, on Aβ-induced mitochondrial failure. In an established paradigm of moderate cellular injury induced by Aβ, S-52 was observed to attenuate the toxicity of Aβ to energy metabolism, mitochondrial membrane structure, and key enzymes in the electron transport chain and tricarboxylic acid cycle. In addition, S-52 also effectively inhibited reactive oxygen species accumulation dose dependently not only in Aβ-harmed cells but also in unharmed, normal cells. The role of S-52 as a scavenger of free radicals is involved in the antioxidative effect of this compound. The beneficial effects on mitochondria and oxidative stress extend the neuroprotective effects of S-52. The present study provides crucial information for better understanding the beneficial profiles of this compound and discovering novel potential drug candidates for AD therapy. Copyright © 2012 Wiley Periodicals, Inc.

  4. Dyssynchronous Ventricular Activation in Asymptomatic Wolff-Parkinson-White Syndrome: A Risk Factor for Development of Dilated Cardiomyopathy

    PubMed Central

    Udink ten Cate, Floris EA; Wiesner, Nathalie; Trieschmann, Uwe; Khalil, Markus; Sreeram, Narayanswami

    2010-01-01

    A subset of children and adults with Wolff-Parkinson-White (WPW) syndrome develop dilated cardiomyopathy (DCM). Although DCM may occur in symptomatic WPW patients with sustained tachyarrhythmias, emerging evidence suggests that significant left ventricular dysfunction may arise in WPW in the absence of incessant tachyarrhythmias. An invariable electrophysiological feature in this non-tachyarrhythmia type of DCM is the presence of a right-sided septal or paraseptal accessory pathway. It is thought that premature ventricular activation over these accessory pathways induces septal wall motion abnormalities and ventricular dyssynchrony. LV dyssynchrony induces cellular and structural ventricular remodelling, which may have detrimental effects on cardiac performance. This review summarizes recent evidence for development of DCM in asymptomatic patients with WPW, discusses its pathogenesis, clinical presentation, management and treatment. The prognosis of accessory pathway-induced DCM is excellent. LV dysfunction reverses following catheter ablation of the accessory pathway, suggesting an association between DCM and ventricular preexcitation. Accessory pathway-induced DCM should be suspected in all patients presenting with heart failure and overt ventricular preexcitation, in whom no cause for their DCM can be found. PMID:20552060

  5. User-Defined Material Model for Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)

    2006-01-01

    An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.

  6. Investigation of photoplethysmographic signals and blood oxygen saturation values on healthy volunteers during cuff-induced hypoperfusion using a multimode PPG/SpO₂ sensor.

    PubMed

    Shafique, M; Kyriacou, P A; Pal, S K

    2012-06-01

    Photoplethysmography (PPG) is a technique widely used to monitor volumetric blood changes induced by cardiac pulsations. Pulse oximetry uses the technique of PPG to estimate arterial oxygen saturation values (SpO₂). In poorly perfused tissues, SpO₂ readings may be compromised due to the poor quality of the PPG signals. A multimode finger PPG probe that operates simultaneously in reflectance, transmittance and a combined mode called "transreflectance" was developed, in an effort to improve the quality of the PPG signals in states of hypoperfusion. Experiments on 20 volunteers were conducted to evaluate the performance of the multimode PPG sensor and compare the results with a commercial transmittance pulse oximeter. A brachial blood pressure cuff was used to induce artificial hypoperfusion. Results showed that the amplitude of the transreflectance AC PPG signals were significantly different (p < 0.05) than the AC PPG signals obtained from the other two conventional PPG sensors (reflectance and transmittance). At induced brachial pressures between 90 and 135 mmHg, the reflectance finger pulse oximeter failed 25 times (failure rate 42.2 %) to estimate SpO₂ values, whereas the transmittance pulse oximeter failed 8 times (failure rate 15.5 %). The transreflectance pulse oximeter failed only 3 times (failure rate 6.8 %) and the commercial pulse oximeter failed 17 times (failure rate 29.4 %).

  7. Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure.

    PubMed

    Woolbright, Benjamin L; Jaeschke, Hartmut

    2017-04-01

    Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application. Final report. [For us to 2400F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, W.E.

    1977-04-01

    A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniquesmore » succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.« less

  9. Mechanical instability of monocrystalline and polycrystalline methane hydrates

    PubMed Central

    Wu, Jianyang; Ning, Fulong; Trinh, Thuat T.; Kjelstrup, Signe; Vlugt, Thijs J. H.; He, Jianying; Skallerud, Bjørn H.; Zhang, Zhiliang

    2015-01-01

    Despite observations of massive methane release and geohazards associated with gas hydrate instability in nature, as well as ductile flow accompanying hydrate dissociation in artificial polycrystalline methane hydrates in the laboratory, the destabilising mechanisms of gas hydrates under deformation and their grain-boundary structures have not yet been elucidated at the molecular level. Here we report direct molecular dynamics simulations of the material instability of monocrystalline and polycrystalline methane hydrates under mechanical loading. The results show dislocation-free brittle failure in monocrystalline hydrates and an unexpected crossover from strengthening to weakening in polycrystals. Upon uniaxial depressurisation, strain-induced hydrate dissociation accompanied by grain-boundary decohesion and sliding destabilises the polycrystals. In contrast, upon compression, appreciable solid-state structural transformation dominates the response. These findings provide molecular insight not only into the metastable structures of grain boundaries, but also into unusual ductile flow with hydrate dissociation as observed during macroscopic compression experiments. PMID:26522051

  10. Evaluation of coated columbium alloy heat shields for space shuttle thermal protection system application

    NASA Technical Reports Server (NTRS)

    Black, W. E.

    1977-01-01

    A three-phase program to develop and demonstrate the feasibility of a metallic heat shield suitable for use on Space Shuttle Orbiter class vehicles at operating surface temperatures of up to 1590 K (2400 F) is summarized. An orderly progression of configuration studies, material screening tests, and subscale structural tests was performed. Scale-up feasibility was demonstrated in the final phase when a sizable nine-panel array was fabricated and successfully tested. The full-scale tests included cyclic testing at reduced air pressure to 1590 K (2400 F) and up to 158 dB overall sound pressure level. The selected structural configuration and design techniques succesfully eliminated thermal induced failures. The thermal/structural performance of the system was repeatedly demonstrated. Practical and effective field repair methods for coated columbium alloys were demonstrated. Major uncertainties of accessibility, refurbishability, and durability were eliminated.

  11. X-33 LH2 Tank Failure Investigation Findings

    NASA Technical Reports Server (NTRS)

    Niedermeyer, Mindy; Clinton, R. G., Jr. (Technical Monitor)

    2000-01-01

    This presentation focuses on the tank history, test objectives, failure description, investigation and conclusions. The test objectives include verify structural integrity at 105% expected flight load limit varying the following parameters: cryogenic temperature; internal pressure; and mechanical loading. The Failure description includes structural component of the aft body, quad-lobe design, and sandwich - honeycomb graphite epoxy construction.

  12. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  13. Verification and Validation Process for Progressive Damage and Failure Analysis Methods in the NASA Advanced Composites Consortium

    NASA Technical Reports Server (NTRS)

    Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl

    2017-01-01

    The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.

  14. [Sodium hydrosulfide improves cardiac functions and structures in rats with chronic heart failure].

    PubMed

    Li, Xiao-hui; Zhang, Chao-ying; Zhang, Ting

    2011-11-22

    To explore the effects of sodium hydrosulfide (NaHS), a hydrogen sulphide (H(2)S) donor, on cardiac functions and structures in rats with chronic heart failure induced by volume overload and examine its influence on cardiac remodelling. A total of 47 SD rats (120 - 140 g) were randomly divided into 5 groups:shunt group (n = 11), sham group (n = 8), shunt + NaHS group (n = 10), sham + NaHS group (n = 8) and shunt + phentolamine group (n = 10). The rat model of chronic heart failure was induced by abdominal aorta-inferior vena cava puncture. At Week 8 post-operation, hemodynamic parameters, microstructures and ultrastructures of myocardial tissues were analyzed. Extracellular collagen content in myocardial tissues was analyzed after Sirius red staining. Right ventricular hydroxyproline concentration was determined and compared. At Week 8 post-operation, compared with the sham operation and shunt + NaHS groups, the shunt group showed significantly increased right ventricular systolic pressure (RVSP) and right ventricular end diastolic pressure (RVEDP) (mm Hg: 35.2 ± 3.9 vs 21.4 ± 3.7 and 28.1 ± 2.7, 32 ± 5 vs 21 ± 4 and 26 ± 4, all P < 0.05, 1 mm Hg = 0.133 kPa). The RV peak rate of contraction and relaxation markedly decreased (RV ± dp/dt max) (mm Hg/s: 1528 ± 113 vs 2336 ± 185 and 1835 ± 132, 1331 ± 107 vs 2213 ± 212 and 1768 ± 116, all P < 0.05). It was found microscopically that myocardial fibers in the shunt group were irregularly arranged, partially cytolysis and infiltrated by inflammatory cells. Electron microscopy revealed that myocardial fibers thickened non-uniformly in the shunt group, some fiber mitochondria were highly swollen and contained vacuoles. And sarcoplasmic reticulum appeared slightly dilated. Polarized microscopy indicated that, collagen content (particularly type-I collagen) increased in the shunt group compared with the sham operation group. Additionally, compared with the shunt group, the shunt and NaHS treatment groups showed an amelioration of myocardial damage, an alleviation of myocardial fiber changes and a decrease in myocardial collagen content (particularly type-I collagen). Compared with the sham operation and shunt + NaHS groups, the shunt group displayed increased right ventricular hydroxyproline (mg×g(-1)·pro: 1.32 ± 0.25 vs 0.89 ± 0.18 and 0.83 ± 0.19, all P < 0.05). H(2)S may improve cardiac functions and ameliorate cardiac structures in rats with chronic heart failure probably through dilating the blood vessels and affecting the extracellular collagen metabolism.

  15. Radiation Tests on 2Gb NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc N.; Guertin, Steven M.; Patterson, J. D.

    2006-01-01

    We report on SEE and TID tests of highly scaled Samsung 2Gbits flash memories. Both in-situ and biased interval irradiations were used to characterize the response of the total accumulated dose failures. The radiation-induced failures can be categorized as followings: single event upset (SEU) read errors in biased and unbiased modes, write errors, and single-event-functional-interrupt (SEFI) failures.

  16. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure

    PubMed Central

    Rothermel, Beverly A.; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A.

    2014-01-01

    Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease. PMID:16033866

  17. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure.

    PubMed

    Rothermel, Beverly A; Berenji, Kambeez; Tannous, Paul; Kutschke, William; Dey, Asim; Nolan, Bridgid; Yoo, Ki-Dong; Demetroulis, Elaine; Gimbel, Michael; Cabuay, Barry; Karimi, Mohsen; Hill, Joseph A

    2005-09-21

    Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease.

  18. Linking lung function to structural damage of alveolar epithelium in ventilator-induced lung injury.

    PubMed

    Hamlington, Katharine L; Smith, Bradford J; Dunn, Celia M; Charlebois, Chantel M; Roy, Gregory S; Bates, Jason H T

    2018-05-06

    Understanding how the mechanisms of ventilator-induced lung injury (VILI), namely atelectrauma and volutrauma, contribute to the failure of the blood-gas barrier and subsequent intrusion of edematous fluid into the airspace is essential for the design of mechanical ventilation strategies that minimize VILI. We ventilated mice with different combinations of tidal volume and positive end-expiratory pressure (PEEP) and linked degradation in lung function measurements to injury of the alveolar epithelium observed via scanning electron microscopy. Ventilating with both high inspiratory plateau pressure and zero PEEP was necessary to cause derangements in lung function as well as visually apparent physical damage to the alveolar epithelium of initially healthy mice. In particular, the epithelial injury was tightly associated with indicators of alveolar collapse. These results support the hypothesis that mechanical damage to the epithelium during VILI is at least partially attributed to atelectrauma-induced damage of alveolar type I epithelial cells. Copyright © 2018. Published by Elsevier B.V.

  19. Fracture analysis of tube boiler for physical explosion accident.

    PubMed

    Kim, Eui Soo

    2017-09-01

    Material and failure analysis techniques are key tools for determining causation in case of explosive and bursting accident result from material and process defect of product in the field of forensic science. The boiler rupture generated by defect of the welding division, corrosion, overheating and degradation of the material have devastating power. If weak division of boiler burner is fractured by internal pressure, saturated vapor and water is vaporized suddenly. At that time, volume of the saturated vapor and water increases up to thousands of volume. This failure of boiler burner can lead to a fatal disaster. In order to prevent an explosion and of the boiler, it is critical to introduce a systematic investigation and prevention measures in advance. In this research, the cause of boiler failure is investigated through forensic engineering method. Specifically, the failure mechanism will be identified by fractography using scanning electron microscopes (SEM) and Optical Microscopes (OM) and mechanical characterizations. This paper presents a failure analysis of household welding joints for the water tank of a household boiler burner. Visual inspection was performed to find out the characteristics of the fracture of the as-received material. Also, the micro-structural changes such as grain growth and carbide coarsening were examined by optical microscope. Detailed studies of fracture surfaces were made to find out the crack propagation on the weld joint of a boiler burner. It was concluded that the rupture may be caused by overheating induced by insufficient water on the boiler, and it could be accelerated by the metal temperature increase. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ammonia-induced brain swelling and neurotoxicity in an organotypic slice model

    PubMed Central

    Back, Adam; Tupper, Kelsey Y.; Bai, Tao; Chiranand, Paulpoj; Goldenberg, Fernando D.; Frank, Jeffrey I.; Brorson, James R.

    2013-01-01

    Objectives Acute liver failure produces cerebral dysfunction and edema, mediated in part by elevated ammonia concentrations, often leading to coma and death. The pathophysiology of cerebral edema in acute liver failure is incompletely understood. In vitro models of the cerebral effects of acute liver failure have predominately consisted of dissociated astrocyte cultures or acute brain slices. We describe a stable long-term culture model incorporating both neural and glial elements in a three-dimensional tissue structure offering significant advantages to the study of astrocytic-neuronal interactions in the pathophysiology of cerebral edema and dysfunction in acute liver failure. Methods We utilized chronic organotypic slice cultures from mouse forebrain, applying ammonium acetate in iso-osmolar fashion for 72 hours. Imaging of slice thickness to assess for tissue swelling was accomplished in living slices with optical coherence tomography, and confocal microscopy of fluorescence immunochemical and histochemical staining served to assess astrocyte and neuronal numbers, morphology, and volume in the fixed brain slices. Results Ammonia exposure at 1–10 mM produced swelling of immunochemically-identified astrocytes, and at 10 mM resulted in macroscopic tissue swelling, with slice thickness increasing by about 30%. Astrocytes were unchanged in number. In contrast, 10 mM ammonia treatment severely disrupted neuronal morphology and reduced neuronal survival at 72 hours by one-half. Discussion Elevated ammonia produces astrocytic swelling, tissue swelling, and neuronal toxicity in cerebral tissues. Ammonia-treated organotypic brain slice cultures provide an in vitro model of cerebral effects of conditions relevant to acute liver failure, applicable to pathophysiological investigations. PMID:22196764

  1. Mechanical behaviour of TWIP steel under shear loading

    NASA Astrophysics Data System (ADS)

    Vincze, G.; Butuc, M. C.; Barlat, F.

    2016-08-01

    Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was investigated at room temperature under monotonic and reverse simple shear loading. It was shown that all the expected features of load reversal such as Bauschinger effect, transient strain hardening with high rate and permanent softening, depend on the prestrain level. This is in agreement with the fact that these effects, which occur during reloading, are related to the rearrangement of the dislocation structure induced during the predeformation. The homogeneous anisotropic hardening (HAH) approach proposed by Barlat et al. (2011) [1] was successfully employed to predict the experimental results.

  2. Damage evolution during actuation fatigue in shape memory alloys (SPIE Best Student Paper Award)

    NASA Astrophysics Data System (ADS)

    Phillips, Francis R.; Wheeler, Robert; Lagoudas, Dimitris C.

    2018-03-01

    Shape Memory Alloys (SMAs) are unique materials able to undergo a thermomechanically induced, reversible phase transformation. Additionally, SMA are subject to two types of fatigue, that is structural fatigue due to cyclic loading as experienced by most materials, as well as actuation fatigue due to repeated thermally induced phase transformation. The evolution of multiple material characteristics is presented over the actuation fatigue lifetime of NiTiHf actuators, including the accumulation of irrecoverable strain, the evolution of internal voids, and the evolution of the effective modulus of the actuator. The results indicate that all three of these material characteristics are clearly interconnected and careful analysis of each of these characteristics can help to understand the evolution of the others, as well as help to understand how actuation fatigue leads to ultimate failure of the actuator.

  3. Failure of underground concrete structures subjected to blast loadings

    NASA Technical Reports Server (NTRS)

    Ross, C. A.; Nash, P. T.; Griner, G. R.

    1979-01-01

    The response and failure of two edges of free reinforced concrete slabs subjected to intermediate blast loadings are examined. The failure of the reinforced concrete structures is defined as a condition where actual separation or fracture of the reinforcing elements has occurred. Approximate theoretical methods using stationary and moving plastic hinge mechanisms with linearly varying and time dependent loadings are developed. Equations developed to predict deflection and failure of reinforced concrete beams are presented and compared with the experimental results.

  4. Field-scale and wellbore modeling of compaction-induced casing failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilbert, L.B. Jr.; Gwinn, R.L.; Moroney, T.A.

    1999-06-01

    Presented in this paper are the results and verification of field- and wellbore-scale large deformation, elasto-plastic, geomechanical finite element models of reservoir compaction and associated casing damage. The models were developed as part of a multidisciplinary team project to reduce the number of costly well failures in the diatomite reservoir of the South Belridge Field near Bakersfield, California. Reservoir compaction of high porosity diatomite rock induces localized shearing deformations on horizontal weak-rock layers and geologic unconformities. The localized shearing deformations result in casing damage or failure. Two-dimensional, field-scale finite element models were used to develop relationships between field operations, surfacemore » subsidence, and shear-induced casing damage. Pore pressures were computed for eighteen years of simulated production and water injection, using a three-dimensional reservoir simulator. The pore pressures were input to the two-dimensional geomechanical field-scale model. Frictional contact surfaces were used to model localized shear deformations. To capture the complex casing-cement-rock interaction that governs casing damage and failure, three-dimensional models of a wellbore were constructed, including a frictional sliding surface to model localized shear deformation. Calculations were compared to field data for verification of the models.« less

  5. Internal associations and dynamic expression of c-kit and nanog genes in ventricular remodelling induced by adriamycin.

    PubMed

    Liu, Zhen; Li, Shuo; Liu, Lingling; Guo, Zhikun; Wang, Pengfei

    2016-09-01

    The present study aimed to investigate the dynamic expression of the c-kit and nanog genes in rats with left ventricular remodelling induced by adriamycin (ADR), and explore its internal association and mechanism of action. Sprague-Dawley male rats were randomly divided into a normal control group and a heart failure model group. Heart failure was induced by a single intraperitoneal injection of ADR (4 mg/kg) weekly for six weeks. The normal control group was given the same amount of saline. At the eighth week, rat cardiac function was examined to demonstrate the formation of heart failure. The rat hearts were harvested frozen and sectioned, and the expression levels of the nanog and c-kit genes in the myocardial tissue samples were detected using immunohistochemistry, immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Hematoxylin and eosin staining demonstrated various pathological changes in the myocardial cells in the heart failure model group, whereas myocardial infarction was not observed in the normal control group. Immunohistochemistry and immunofluorescence demonstrated that nanog-positive cells were predominantly expressed in the vascular endothelium, with a few myocardial cells and stem cells in normal myocardium. The expression levels of c-kit and nanog in the myocardium of the rats with heart failure decreased significantly. c-kit-positive cells clustered together in the epicardium and its vicinity, and c-kit expression significantly decreased in the myocardium of rats with heart failure, as compared with normal rats. In both groups, some cells co-expressed both the c-kit and nanog genes. The RT-PCR results demonstrated that the expression levels of the two genes in the heart failure model group were significantly lower compared with those in the normal control group (P<0.05). In conclusion, the c-kit- and nanog-positive stem cells decreased in the myocardium of the rats with left ventricular remodelling induced by ADR. Their abnormal expression was significantly correlated with left ventricular remodelling, thereby indicating an internal association (influences of two indexes in the experimental group and control group) between them.

  6. Failure mechanisms in energy-absorbing composite structures

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; David, Matthew

    2010-11-01

    Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.

  7. Study of Impact Damage in PVA-ECC Beam under Low-Velocity Impact Loading Using Piezoceramic Transducers and PVDF Thin-Film Transducers.

    PubMed

    Qi, Baoxin; Kong, Qingzhao; Qian, Hui; Patil, Devendra; Lim, Ing; Li, Mo; Liu, Dong; Song, Gangbing

    2018-02-24

    Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests.

  8. Study of Impact Damage in PVA-ECC Beam under Low-Velocity Impact Loading Using Piezoceramic Transducers and PVDF Thin-Film Transducers

    PubMed Central

    Qian, Hui; Li, Mo; Liu, Dong; Song, Gangbing

    2018-01-01

    Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests. PMID:29495277

  9. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    PubMed

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  10. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Eculizumab for drug-induced de novo posttransplantation thrombotic microangiopathy: A case report.

    PubMed

    Safa, Kassem; Logan, Merranda S; Batal, Ibrahim; Gabardi, Steven; Rennke, Helmut G; Abdi, Reza

    2015-02-01

    De novo thrombotic microangiopathy (TMA) following renal transplantation is a severe complication associated with high rates of allograft failure. Several immunosuppressive agents are associated with TMA. Conventional approaches to managing this entity, such as withdrawal of the offending agent and/or plasmapheresis, often offer limited help, with high rates of treatment failure and graft loss. We herein report a case of drug induced de novo TMA successfully treated using the C5a inhibitor eculizumab in a renal transplant patient. This report highlights a potentially important role for eculizumab in settings where drug-induced de novo TMA is refractory to conventional therapies.

  12. ST-segment elevation during levosimendan infusion.

    PubMed

    Barillà, Francesco; Giordano, Federica; Jacomelli, Ilaria; Pellicano, Mariano; Dominici, Tania

    2012-07-01

    Levosimendan increases the sensitivity of the heart to calcium and consequently exerts positive inotropic effects. Levosimendan is indicated in acutely decompensated severe congestive heart failure. We report that levosimendan infusion may induce myocardial ischemia in patients with acute heart failure.

  13. Intracellular calcium dynamics and acetylcholine-induced triggered activity in the pulmonary veins of dogs with pacing-induced heart failure

    PubMed Central

    Chou, Chung-Chuan; Nguyen, Bich Lien; Tan, Alex Y.; Chang, Po-Cheng; Lee, Hui-Ling; Lin, Fun-Chung; Yeh, San-Jou; Fishbein, Michael C.; Lin, Shien-Fong; Wu, Delon; Wen, Ming-Shien; Chen, Peng-Sheng

    2009-01-01

    BACKGROUND Heart failure increases autonomic nerve activities and changes intracellular calcium (Cai) dynamics. OBJECTIVE The purpose of this study was to investigate the hypothesis that abnormal Cai dynamics are responsible for triggered activity in the pulmonary veins (PVs) during acetylcholine infusion in a canine model of heart failure. METHODS Simultaneous optical mapping of and membrane Cai potential was performed in isolated Langendorff-perfused PV–left atrial (LA) preparations from nine dogs with ventricular pacing-induced heart failure. Mapping was performed at baseline, during acetylcholine (1 μmol/L) infusion (N = 9), and during thapsigargin and ryanodine infusion (N = 6). RESULTS Acetylcholine abbreviated the action potential. In four tissues, long pauses were followed by elevated diastolic Cai, late phase 3 early afterdepolarizations, and atrial fibrillation (AF). The incidence of PV focal discharges during AF was increased by acetylcholine from 2.4 ± 0.6 beats/s (N = 4) to 6.5 ± 2.2 beats/s (N = 8; P = .003). PV focal discharge and PV–LA microreentry coexisted in 6 of 9 preparations. The spatial distribution of dominant frequency demonstrated a focal source pattern, with the highest dominant frequency areas colocalized with PV focal discharge sites in 35 (95%) of 37 cholinergic AF episodes (N = 8). Thapsigargin and ryanodine infusion eliminated focal discharges in 6 of 6 preparations and suppressed the inducibility of AF in 4 of 6 preparations. PVs with focal discharge have higher densities of parasympathetic nerves than do PVs without focal discharges (P = .01), and periodic acid–Schiff (PAS)-positive cells were present at the focal discharge sites. CONCLUSION Cai dynamics are important in promoting triggered activity during acetylcholine infusion in PVs from pacing-induced heart failure. PV focal discharge sites have PAS-positive cells and high densities of parasympathetic nerves. PMID:18554987

  14. Low STAT3 expression sensitizes to toxic effects of β-adrenergic receptor stimulation in peripartum cardiomyopathy

    PubMed Central

    Stapel, Britta; Kohlhaas, Michael; Ricke-Hoch, Melanie; Haghikia, Arash; Erschow, Sergej; Knuuti, Juhani; Silvola, Johanna M. U.; Roivainen, Anne; Saraste, Antti; Nickel, Alexander G.; Saar, Jasmin A.; Sieve, Irina; Pietzsch, Stefan; Müller, Mirco; Bogeski, Ivan; Kappl, Reinhard; Jauhiainen, Matti; Thackeray, James T.; Scherr, Michaela; Bengel, Frank M.; Hagl, Christian; Tudorache, Igor; Bauersachs, Johann; Maack, Christoph; Hilfiker-Kleiner, Denise

    2017-01-01

    Abstract Aims The benefit of the β1-adrenergic receptor (β1-AR) agonist dobutamine for treatment of acute heart failure in peripartum cardiomyopathy (PPCM) is controversial. Cardiac STAT3 expression is reduced in PPCM patients. Mice carrying a cardiomyocyte-restricted deletion of STAT3 (CKO) develop PPCM. We hypothesized that STAT3-dependent signalling networks may influence the response to β-AR agonist treatment in PPCM patients and analysed this hypothesis in CKO mice. Methods and results Follow-up analyses in 27 patients with severe PPCM (left ventricular ejection fraction ≤25%) revealed that 19 of 20 patients not obtaining dobutamine improved cardiac function. All seven patients obtaining dobutamine received heart transplantation (n = 4) or left ventricular assist devices (n = 3). They displayed diminished myocardial triglyceride, pyruvate, and lactate content compared with non-failing controls. The β-AR agonist isoproterenol (Iso) induced heart failure with high mortality in postpartum female, in non-pregnant female and in male CKO, but not in wild-type mice. Iso induced heart failure and high mortality in CKO mice by impairing fatty acid and glucose uptake, thereby generating a metabolic deficit. The latter was governed by disturbed STAT3-dependent signalling networks, microRNA-199a-5p, microRNA-7a-5p, insulin/glucose transporter-4, and neuregulin/ErbB signalling. The resulting cardiac energy depletion and oxidative stress promoted dysfunction and cardiomyocyte loss inducing irreversible heart failure, which could be attenuated by the β1-AR blocker metoprolol or glucose-uptake-promoting drugs perhexiline and etomoxir. Conclusions Iso impairs glucose uptake, induces energy depletion, oxidative stress, dysfunction, and death in STAT3-deficient cardiomyocytes mainly via β1-AR stimulation. These cellular alterations may underlie the dobutamine-induced irreversible heart failure progression in PPCM patients who frequently display reduced cardiac STAT3 expression. PMID:28201733

  15. Determinants of performance failure in the nursing home industry☆

    PubMed Central

    Zinn, Jacqueline; Mor, Vincent; Feng, Zhanlian; Intrator, Orna

    2013-01-01

    This study investigates the determinants of performance failure in U.S. nursing homes. The sample consisted of 91,168 surveys from 10,901 facilities included in the Online Survey Certification and Reporting system from 1996 to 2005. Failed performance was defined as termination from the Medicare and Medicaid programs. Determinants of performance failure were identified as core structural change (ownership change), peripheral change (related diversification), prior financial and quality of care performance, size and environmental shock (Medicaid case mix reimbursement and prospective payment system introduction). Additional control variables that could contribute to the likelihood of performance failure were included in a cross-sectional time series generalized estimating equation logistic regression model. Our results support the contention, derived from structural inertia theory, that where in an organization’s structure change occurs determines whether it is adaptive or disruptive. In addition, while poor prior financial and quality performance and the introduction of case mix reimbursement increases the risk of failure, larger size is protective, decreasing the likelihood of performance failure. PMID:19128865

  16. Determinants of performance failure in the nursing home industry.

    PubMed

    Zinn, Jacqueline; Mor, Vincent; Feng, Zhanlian; Intrator, Orna

    2009-03-01

    This study investigates the determinants of performance failure in U.S. nursing homes. The sample consisted of 91,168 surveys from 10,901 facilities included in the Online Survey Certification and Reporting system from 1996 to 2005. Failed performance was defined as termination from the Medicare and Medicaid programs. Determinants of performance failure were identified as core structural change (ownership change), peripheral change (related diversification), prior financial and quality of care performance, size and environmental shock (Medicaid case mix reimbursement and prospective payment system introduction). Additional control variables that could contribute to the likelihood of performance failure were included in a cross-sectional time series generalized estimating equation logistic regression model. Our results support the contention, derived from structural inertia theory, that where in an organization's structure change occurs determines whether it is adaptive or disruptive. In addition, while poor prior financial and quality performance and the introduction of case mix reimbursement increases the risk of failure, larger size is protective, decreasing the likelihood of performance failure.

  17. Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints

    NASA Astrophysics Data System (ADS)

    Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.

    2013-09-01

    Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.

  18. Perceptual, not memorial, disruption underlies emotion-induced blindness.

    PubMed

    Kennedy, Briana L; Most, Steven B

    2012-04-01

    Emotion-induced blindness refers to impaired awareness of stimuli appearing in the temporal wake of an emotionally arousing stimulus (S. B. Most, Chun, Widders, & Zald, 2005). In previous emotion-induced blindness experiments, participants withheld target responses until the end of a rapid stream of stimuli, even though each target appeared in the middle of the stream. The resulting interval between the targets' offset and participants' initiation of a response leaves open the possibility that emotion-induced blindness reflects a failure to encode or maintain target information in memory rather than a failure of perception. In the present study, participants engaged in a typical emotion-induced blindness task but initiated a response immediately upon seeing each target. Emotion-induced blindness was nevertheless robust. This suggests that emotion-induced blindness is not attributable to the delay between awareness of a target and the initiation of a response, but rather reflects the disruptive impact of emotional distractors on mechanisms driving conscious perception. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  19. Specific subcortical structures are activated during seizure-induced death in a model of sudden unexpected death in epilepsy (SUDEP): A manganese-enhanced magnetic resonance imaging study.

    PubMed

    Kommajosyula, Srinivasa P; Randall, Marcus E; Brozoski, Thomas J; Odintsov, Boris M; Faingold, Carl L

    2017-09-01

    Sudden unexpected death in epilepsy (SUDEP) is a major concern for patients with epilepsy. In most witnessed cases of SUDEP generalized seizures and respiratory failure preceded death, and pre-mortem neuroimaging studies in SUDEP patients observed changes in specific subcortical structures. Our study examined the role of subcortical structures in the DBA/1 mouse model of SUDEP using manganese-enhanced magnetic resonance imaging (MEMRI). These mice exhibit acoustically-evoked generalized seizures leading to seizure-induced respiratory arrest (S-IRA) that results in sudden death unless resuscitation is rapidly instituted. MEMRI data in the DBA/1 mouse brain immediately after acoustically-induced S-IRA were compared to data in C57 (control) mice that were exposed to the same acoustic stimulus that did not trigger seizures. The animals were anesthetized and decapitated immediately after seizure in DBA/1 mice and after an equivalent time in control mice. Comparative T1 weighted MEMRI images were evaluated using a 14T MRI scanner and quantified. We observed significant increases in activity in DBA/1 mice as compared to controls at previously-implicated auditory (superior olivary complex) and sensorimotor-limbic [periaqueductal gray (PAG) and amygdala] networks and also in structures in the respiratory network. The activity at certain raphe nuclei was also increased, suggesting activation of serotonergic mechanisms. These data are consistent with previous findings that enhancing the action of serotonin prevents S-IRA in this SUDEP model. Increased activity in the PAG and the respiratory and raphe nuclei suggest that compensatory mechanisms for apnea may have been activated by S-IRA, but they were not sufficient to prevent death. The present findings indicate that changes induced by S-IRA in specific subcortical structures in DBA/1 mice are consistent with human SUDEP findings. Understanding the changes in brain activity during seizure-induced death in animals may lead to improved approaches directed at prevention of human SUDEP. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; hide

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  1. Seismic Stability Evaluation of Ririe Dam and Reservoir Project. Report 2. Stability Calculations, Analysis, and Evaluations. Volume 1. Main Text

    DTIC Science & Technology

    1991-09-01

    Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by

  2. A critical role of acute bronchoconstriction in the mortality associated with high-dose sarin inhalation: Effects of epinephrine and oxygen therapies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundavarapu, Sravanthi; Zhuang, Jianguo; Barrett, Edward G.

    Sarin is an organophosphate nerve agent that is among the most lethal chemical toxins known to mankind. Because of its vaporization properties and ease and low cost of production, sarin is the nerve agent with a strong potential for use by terrorists and rouge nations. The primary route of sarin exposure is through inhalation and, depending on the dose, sarin leads to acute respiratory failure and death. The mechanism(s) of sarin-induced respiratory failure is poorly understood. Sarin irreversibly inhibits acetylcholine esterase, leading to excessive synaptic levels of acetylcholine and, we have previously shown that sarin causes marked ventilatory changes includingmore » weakened response to hypoxia. We now show that LD{sub 50} sarin inhalation causes severe bronchoconstriction in rats, leading to airway resistance, increased hypoxia-induced factor-1α, and severe lung epithelium injury. Transferring animals into 60% oxygen chambers after sarin exposure improved the survival from about 50% to 75% at 24 h; however, many animals died within hours after removal from the oxygen chambers. On the other hand, if LD{sub 50} sarin-exposed animals were administered the bronchodilator epinephrine, > 90% of the animals survived. Moreover, while both epinephrine and oxygen treatments moderated cardiorespiratory parameters, the proinflammatory cytokine surge, and elevated expression of hypoxia-induced factor-1α, only epinephrine consistently reduced the sarin-induced bronchoconstriction. These data suggest that severe bronchoconstriction is a critical factor in the mortality induced by LD{sub 50} sarin inhalation, and epinephrine may limit the ventilatory, inflammatory, and lethal effects of sarin. - Highlights: • Inhalation exposure of rats to LD{sub 50} sarin causes death through respiratory failure. • Severe bronchoconstriction is the major cause of sarin-induced respiratory failure. • Transfer of sarin exposed rats to 60% oxygen improves the mortality temporarily. • Epinephrine improves bronchoconstriction and mortality in LD{sub 50} sarin-exposed rats. • Both epinephrine and oxygen moderate the sarin-induced lung inflammatory response.« less

  3. Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae

    2013-02-01

    In order to investigate whether or not the grid-to-rod fretting wear-induced fuel failure will occur for newly developed spacer grid spring designs for the fuel lifetime, out-of-pile fretting wear tests with one or two fuel assemblies are to be performed. In this study, the out-of-pile fretting wear tests were performed in order to compare the potential for wear-induced fuel failure in two newly-developed, Korean PWR spacer grid designs. Lasting 20 days, the tests simulated maximum grid-to-rod gap conditions and the worst flow induced vibration effects that might take place over the fuel life time. The fuel rod perforation times calculated from the out-of-pile tests are greater than 1933 days for 2 μm oxidized fuel rods with a 100 μm grid-to-rod gap, whereas those estimated from in-reactor fretting wear failure database may be about in the range of between 60 and 100 days. This large discrepancy in fuel rod perforation may occur due to irradiation-induced cladding oxide microstructure changes on the one hand and a temperature gradient-induced hydrogen content profile across the cladding metal region on the other hand, which may accelerate brittleness in the grid-contacting cladding oxide and metal regions during the reactor operation. A three-phase grid-to-rod fretting wear model is proposed to simulate in-reactor fretting wear progress into the cladding, considering the microstructure changes of the cladding oxide and the hydrogen content profile across the cladding metal region combined with the temperature gradient. The out-of-pile tests cannot be directly applicable to the prediction of in-reactor fretting wear-induced cladding perforations but they can be used only for evaluating a relative wear resistance of one grid design against the other grid design.

  4. VIPR III VADR SPIDER Structural Design and Analysis

    NASA Technical Reports Server (NTRS)

    Li, Wesley; Chen, Tony

    2016-01-01

    In support of the National Aeronautics and Space Administration (NASA) Vehicle Integrated Propulsion Research (VIPR) Phase III team to evaluate the volcanic ash environment effects on the Pratt & Whitney F117-PW-100 turbofan engine, NASA Armstrong Flight Research Center has successfully performed structural design and analysis on the Volcanic Ash Distribution Rig (VADR) and the Structural Particulate Integration Device for Engine Research (SPIDER) for the ash ingestion test. Static and dynamic load analyses were performed to ensure no structural failure would occur during the test. Modal analysis was conducted, and the results were used to develop engine power setting avoidance zones. These engine power setting avoidance zones were defined to minimize the dwell time when the natural frequencies of the VADR/SPIDER system coincided with the excitation frequencies of the engine which was operating at various revolutions per minute. Vortex-induced vibration due to engine suction air flow during the ingestion test was also evaluated, but was not a concern.

  5. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE PAGES

    Chen, Yanyu; Li, Tiantian; Jia, Zian; ...

    2017-10-12

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  6. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yanyu; Li, Tiantian; Jia, Zian

    Here, we describe the in-plane compressive performance of a new type of hierarchical cellular structure created by replacing cell walls in regular honeycombs with triangular lattice configurations. The fabrication of this relatively complex material architecture with size features spanning from micrometer to centimeter is facilitated by the availability of commercial 3D printers. We apply to these hierarchical honeycombs a thermal treatment that facilitates the shape preservation and structural integrity of the structures under large compressive loading. The proposed hierarchical honeycombs exhibit a progressive failure mode, along with improved stiffness and energy absorption under uniaxial compression. High energy dissipation and shapemore » integrity at large imposed strains (up to 60%) have also been observed in these hierarchical honeycombs under cyclic loading. Experimental and numerical studies suggest that these anomalous mechanical behaviors are attributed to the introduction of a structural hierarchy, intrinsically controlled by the cell wall slenderness of the triangular lattice and by the shape memory effect induced by the thermal and mechanical compressive treatment.« less

  7. Nuclear factor κB–inducing kinase activation as a mechanism of pancreatic β cell failure in obesity

    PubMed Central

    Malle, Elisabeth K.; Zammit, Nathan W.; Walters, Stacey N.; Koay, Yen Chin; Wu, Jianmin; Tan, Bernice M.; Villanueva, Jeanette E.; Brink, Robert; Loudovaris, Tom; Cantley, James; McAlpine, Shelli R.; Hesselson, Daniel

    2015-01-01

    The nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB–inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo. We identify NIK as a critical negative regulator of β cell function, as pharmacological NIK activation results in impaired glucose-stimulated insulin secretion in mouse and human islets. NIK levels are elevated in pancreatic islets isolated from diet-induced obese (DIO) mice, which exhibit increased processing of noncanonical NF-κB components p100 to p52, and accumulation of RelB. TNF and receptor activator of NF-κB ligand (RANKL), two ligands associated with diabetes, induce NIK in islets. Mice with constitutive β cell–intrinsic NIK activation present impaired insulin secretion with DIO. NIK activation triggers the noncanonical NF-κB transcriptional network to induce genes identified in human type 2 diabetes genome-wide association studies linked to β cell failure. These studies reveal that NIK contributes a central mechanism for β cell failure in diet-induced obesity. PMID:26122662

  8. 15. Detail, cracks evidencing structural failure, northeast rear, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail, cracks evidencing structural failure, northeast rear, view to southwest, 90mm lens. - Benicia Arsenal, Powder Magazine No. 5, Junction of Interstate Highways 680 & 780, Benicia, Solano County, CA

  9. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure

    PubMed Central

    Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara

    2015-01-01

    The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485

  10. Modeling Marrow Failure and MDS for Novel Therapeutics

    DTIC Science & Technology

    2017-03-01

    predisposition syndrome Shwachman-Diamond syndrome (SDS) into which a deletion of the MDS-associated region of 7q has been genomically engineered . We...associated region of 7q has been genomically engineered . We will perform functional genomic screens to identify genes and molecular pathways with...disease arising from marrow failure. 2. Keywords Bone marrow failure, clonal evolution, induced pluripotent stem cells, genomic engineering 3

  11. Investigating students’ failure in fractional concept construction

    NASA Astrophysics Data System (ADS)

    Kurniawan, Henry; Sutawidjaja, Akbar; Rahman As’ari, Abdur; Muksar, Makbul; Setiawan, Iwan

    2018-04-01

    Failure is a failure to achieve goals. This failure occurs because a larger scheme integrates the schemes in mind that are related to the problem at hand. These schemes are integrated so that they are interconnected to form new structures. This new scheme structure is used to interpret the problems at hand. This research is a qualitative research done to trace student’s failure which happened in fractional concept construction. Subjects in this study as many as 2 students selected from 15 students with the consideration of these students meet the criteria that have been set into two groups that fail in solving the problem. Both groups, namely group 1 is a search group for the failure of students of S1 subject and group 2 is a search group for the failure of students of S2 subject.

  12. Two-Scale Simulation of Drop-Induced Failure of Polysilicon MEMS Sensors

    PubMed Central

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Martini, Roberto; Simoni, Barbara

    2011-01-01

    In this paper, an industrially-oriented two-scale approach is provided to model the drop-induced brittle failure of polysilicon MEMS sensors. The two length-scales here investigated are the package (macroscopic) and the sensor (mesoscopic) ones. Issues related to the polysilicon morphology at the micro-scale are disregarded; an upscaled homogenized constitutive law, able to describe the brittle cracking of silicon, is instead adopted at the meso-scale. The two-scale approach is validated against full three-scale Monte-Carlo simulations, which allow for stochastic effects linked to the microstructural properties of polysilicon. Focusing on inertial MEMS sensors exposed to drops, it is shown that the offered approach matches well the experimentally observed failure mechanisms. PMID:22163885

  13. Antiretroviral Treatment Interruptions Induced by the Kenyan Postelection Crisis Are Associated With Virological Failure

    PubMed Central

    Kemboi, Emmanuel; Mambo, Fidelis; Rono, Mary; Injera, Wilfred; Delong, Allison; Schreier, Leeann; Kaloustian, Kara W.; Sidle, John; Buziba, Nathan; Kantor, Rami

    2014-01-01

    Background Antiretroviral treatment interruptions (TIs) cause suboptimal clinical outcomes. Data on TIs during social disruption are limited. Methods We determined effects of unplanned TIs after the 2007–2008 Kenyan postelection violence on virological failure, comparing viral load (VL) outcomes in HIV-infected adults with and without conflict-induced TI. Results Two hundred and one patients were enrolled, median 2.2 years after conflict and 4.3 years on treatment. Eighty-eight patients experienced conflict-related TIs and 113 received continuous treatment. After adjusting for preconflict CD4, patients with TIs were more likely to have detectable VL, VL >5,000 and VL >10,000. Conclusions Unplanned conflict-related TIs are associated with increased likelihood of virological failure. PMID:24047971

  14. Intravesical foreign body–induced bladder calculi resulting in obstructive renal failure

    PubMed Central

    Kamal, Fadi; Clark, Aaron T.D.; Lavallée, Luke Thomas; Roberts, Matthew; Watterson, James

    2008-01-01

    We report the case of a 30-year-old man who presented with obstructive renal failure and urosepsis due to bladder outlet–obstructing bladder calculi that formed around 3 copper wires that were self-inserted into his urinary bladder 15 years previously. We present the evaluation, imaging and management of the unique complications resulting from the self-insertion of an intra-vesical foreign body. Our patient’s case was unique for 2 reasons. First, the length of time (15 yr) from foreign body insertion to presentation is the longest interval reported in the literature. Second, this is the first report of bladder calculi induced by the insertion of a foreign body that resulted in obstructive renal failure. PMID:18953457

  15. Pulmonary hypertension and isolated right heart failure complicating amiodarone induced hyperthyroidism.

    PubMed

    Wong, Sean-Man; Tse, Hung-Fat; Siu, Chung-Wah

    2012-03-01

    Hyperthyroidism is a common side effect encountered in patients prescribed long-term amiodarone therapy for cardiac arrhythmias. We previously studied 354 patients prescribed amiodarone in whom the occurrence of hyperthyroidism was associated with major adverse cardiovascular events including heart failure, myocardial infarction, ventricular arrhythmias, stroke and even death [1]. We now present a case of amiodarone-induced hyperthyroidism complicated by isolated right heart failure and pulmonary hypertension that resolved with treatment of hyperthyroidism. Detailed quantitative echocardiography enables improved understanding of the haemodynamic mechanisms underlying the condition. Copyright © 2011 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  16. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    PubMed

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Cytokinesis Failure Leading to Chromosome Instability in v-Src-Induced Oncogenesis.

    PubMed

    Nakayama, Yuji; Soeda, Shuhei; Ikeuchi, Masayoshi; Kakae, Keiko; Yamaguchi, Naoto

    2017-04-12

    v-Src, an oncogene found in Rous sarcoma virus, is a constitutively active variant of c-Src. Activation of Src is observed frequently in colorectal and breast cancers, and is critical in tumor progression through multiple processes. However, in some experimental conditions, v-Src causes growth suppression and apoptosis. In this review, we highlight recent progress in our understanding of cytokinesis failure and the attenuation of the tetraploidy checkpoint in v-Src-expressing cells. v-Src induces cell cycle changes-such as the accumulation of the 4N cell population-and increases the number of binucleated cells, which is accompanied by an excess number of centrosomes. Time-lapse analysis of v-Src-expressing cells showed that cytokinesis failure is caused by cleavage furrow regression. Microscopic analysis revealed that v-Src induces delocalization of cytokinesis regulators including Aurora B and Mklp1. Tetraploid cell formation is one of the causes of chromosome instability; however, tetraploid cells can be eliminated at the tetraploidy checkpoint. Interestingly, v-Src weakens the tetraploidy checkpoint by inhibiting the nuclear exclusion of the transcription coactivator YAP, which is downstream of the Hippo pathway and its nuclear exclusion is critical in the tetraploidy checkpoint. We also discuss the relationship between v-Src-induced chromosome instability and growth suppression in v-Src-induced oncogenesis.

  18. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    PubMed Central

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-01-01

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056

  19. [Temporary disappearance of EEG activity during reversible respiratory failure in rabbits and cats].

    PubMed

    Jurco, M; Tomori, Z; Tkácová, R; Calfa, J

    1989-02-01

    The dynamics of changes of EEG activity was studied on the model of reversible respiratory failure in rabbits and cats in pentobarbital anesthesia. During N2 inhalation, apnea of 60 second duration, and subsequent resuscitation the electrocorticogram in bifrontal and bioccipital connection was recorded. Evaluation of 19 episodes of apnea in 7 rabbits and of 25 episodes in 8 cats yielded the following results: 1. During hyperventilation induced by N2 inhalation a certain activation of the EEG was observed (spindles more pronounced, increased occurrence rate of discharges of the reticular activation system). 2. At the onset of apnea the EEG was still distinct, suggesting that primary apnea is presumably not caused by anoxia and the accompanying electric silence of the structures that control respiration. 3. Disappearance of EEG occurred within 50 seconds from the onset of apnea in rabbits and within 30 seconds in cats. 4. After repeated episodes of apnea lasting for 60 sec., artificial ventilation mostly resulted in normalization of EEG.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finegan, Donal P.; Tjaden, Bernhard; M. M. Heenan, Thomas

    Mechanical abuse of lithium-ion batteries is widely used during testing to induce thermal runaway, characterize associated risks, and expose cell and module vulnerabilities. But, the repeatability of puncture or 'nail penetration' tests is a key issue as there is often a high degree of variability in the resulting thermal runaway process. Here, the failure mechanisms of 18650 cells punctured at different locations and orientations are characterized with respect to their internal structural degradation, and both their internal and surface temperature, all of which are monitored in real time. The initiation and propagation of thermal runaway is visualized via high-speed synchrotronmore » X-ray radiography at 2000 frames per second, and the surface and internal temperatures are recorded via infrared imaging and a thermocouple embedded in the tip of the penetrating nail, respectively. The influence of the nail, as well as how and where it penetrates the cell, on the initiation and propagation of thermal runaway is described and the suitability of this test method for representing in-field failures is discussed.« less

  1. Liquefaction and soil failure during 1994 northridge earthquake

    USGS Publications Warehouse

    Holzer, T.L.

    1999-01-01

    The 1994 Northridge, Calif., earthquake caused widespread permanent ground deformation on the gently sloping alluvial fan surface of the San Fernando Valley. The ground cracks and distributed deformation damaged both pipelines and surface structures. To evaluate the mechanism of soil failure, detailed subsurface investigations were conducted at four sites. Three sites are underlain by saturated sandy silts with low standard penetration test and cone penetration test values. These soils are similar to those that liquefied during the 1971 San Fernando earthquake, and are shown by widely used empirical relationships to be susceptible to liquefaction. The remaining site is underlain by saturated clay whose undrained shear strength is approximately half the value of the earthquake-induced shear stress at this location. This study demonstrates that the heterogeneous nature of alluvial fan sediments in combination with variations in the ground-water table can be responsible for complex patterns of permanent ground deformation. It may also help to explain some of the spatial variability of strong ground motion observed during the 1994 earthquake. ?? ASCE,.

  2. Rupture, waves and earthquakes.

    PubMed

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  3. Rupture, waves and earthquakes

    PubMed Central

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merzari, E.; Yuan, Haomin; Kraus, A.

    The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less

  5. Cascading failures in complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Lin, Guoqiang; di, Zengru; Fan, Ying

    2014-12-01

    Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.

  6. Probabilistic confidence for decisions based on uncertain reliability estimates

    NASA Astrophysics Data System (ADS)

    Reid, Stuart G.

    2013-05-01

    Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.

  7. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  8. Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity

    NASA Astrophysics Data System (ADS)

    Zerathe, Swann; Lebourg, Thomas; Braucher, Régis; Bourlès, Didier

    2014-04-01

    Although it is generally assumed that the internal structure of a slope (e.g. lithology and rock mass properties, inherited faults and heterogeneities, etc.) is preponderant for the progressive development of large-scale landslides, the ability to identify triggering factors responsible for final slope failures such as glacial debuttressing, seismic activities or climatic changes, especially when considering landslide cluster at an orogen-scale, is still debated. Highlighting in this study the spatial and temporal concordant clustering of deep-seated slope failures in the external Southwestern Alps, we discuss and review the possible causes for such wide-spread slope instabilities at both local and larger (Alpine) scale. High resolution field mapping coupled with electrical resistivity tomography first allows establishing an inventory of large landslides in the Southwestern Alps, determining their structural model, precising their depth limit (100-200 m) as well as the involved rock volumes (>107 m3). We show that they developed in the same geostructural context of thick mudstone layers overlain by faulted limestone and followed a block-spread model of deformation that could evolve in rock-collapse events. Cosmic ray exposure dating (CRE), using both 36Cl and 10Be in coexisting limestone and chert, respectively, has been carried out from the main scarps of six Deep Seated Landslides (DSL) and leads to landslide-failure CRE ages ranging from 3.7 to 4.7 ka. They highlighted: (i) mainly single and fast ruptures and (ii) a possible concomitant initiation with a main peak of activity between 3.3 and 5.1 ka, centered at ca 4.2 ka. Because this region was not affected by historical glaciations events, landslide triggering by glacial unloading can be excluded. The presented data combined with field observations preferentially suggest that these failures were climatically driven and were most likely controlled by high pressure changes in the karstic medium. In effect, the chronicle of failure-ages is concomitant to a well-known climatic pulse, the “4.2 ka” climate event characterized by intense hydrological perturbations associated to the heaviest rainfall period of the entire Holocene. Despite requiring further investigations and discussions, the dating of numerous events across the entire Alps during the middle Holocene period suggests a potential synchronous triggering of several large-scale gravitational-failures induced by the mid-Holocene climatic transition.

  9. Flow-induced vibration and fretting-wear damage in a moisture separator reheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.

    1996-12-01

    Tube failures due to excessive flow-induced vibration were experienced in the tube bundles of moisture separator reheaters in a BWR nuclear station. This paper presents the results of a root cause analysis and covers recommendations for continued operation and for replacement tube bundles. The following tasks are discussed: tube failure analysis; flow velocity distribution calculations; flow-induced vibration analysis with particular emphasis on finned-tubes; fretting-wear testing of a tube and tube-support material combination under simulated operating conditions; field measurements of flow-induced vibration; and development of vibration specifications for replacement tube bundles. The effect of transient operating conditions and of other operationalmore » changes such as tube fouling were considered in the analysis. This paper outlines a typical field problem and illustrates the application of flow-induced vibration technology for the solution of a practical problem.« less

  10. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease.

    PubMed

    Prasad, Kailash; Dhar, Indu

    2014-12-01

    Added sugars comprising of table sugar, brown sugar, corn syrup, maple syrup, honey, molasses, and other sweeteners in the prepared processed foods and beverages have been implicated in the pathophysiology of cardiovascular diseases. This article deals with the reactive oxygen species (ROS) as a mechanism of sugar-induced cardiovascular diseases. There is an association between the consumption of high levels of serum glucose with cardiovascular diseases. Various sources of sugar-induced generation of ROS, including mitochondria, nicotinamide adenine dinucleotide phosphate-oxidase, advanced glycation end products, insulin, and uric acid have been discussed. The mechanism by which ROS induce the development of atherosclerosis, hypertension, peripheral vascular disease, coronary artery disease, cardiomyopathy, heart failure, and cardiac arrhythmias have been discussed in detail. In conclusion, the data suggest that added sugars induce atherosclerosis, hypertension, peripheral vascular disease, coronary artery disease, cardiomyopathy, heart failure, and cardiac arrhythmias and that these effects of added sugars are mediated through ROS.

  11. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method

    PubMed Central

    Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan

    2018-01-01

    Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824

  12. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    NASA Astrophysics Data System (ADS)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.

  13. TRPC6 counteracts TRPC3-Nox2 protein complex leading to attenuation of hyperglycemia-induced heart failure in mice.

    PubMed

    Oda, Sayaka; Numaga-Tomita, Takuro; Kitajima, Naoyuki; Toyama, Takashi; Harada, Eri; Shimauchi, Tsukasa; Nishimura, Akiyuki; Ishikawa, Tatsuya; Kumagai, Yoshito; Birnbaumer, Lutz; Nishida, Motohiro

    2017-08-08

    Excess production of reactive oxygen species (ROS) caused by hyperglycemia is a major risk factor for heart failure. We previously reported that transient receptor potential canonical 3 (TRPC3) channel mediates pressure overload-induced maladaptive cardiac fibrosis by forming stably functional complex with NADPH oxidase 2 (Nox2). Although TRPC3 has been long suggested to form hetero-multimer channels with TRPC6 and function as diacylglycerol-activated cation channels coordinately, the role of TRPC6 in heart is still obscure. We here demonstrated that deletion of TRPC6 had no impact on pressure overload-induced heart failure despite inhibiting interstitial fibrosis in mice. TRPC6-deficient mouse hearts 1 week after transverse aortic constriction showed comparable increases in fibrotic gene expressions and ROS production but promoted inductions of inflammatory cytokines, compared to wild type hearts. Treatment of TRPC6-deficient mice with streptozotocin caused severe reduction of cardiac contractility with enhancing urinary and cardiac lipid peroxide levels, compared to wild type and TRPC3-deficient mice. Knockdown of TRPC6, but not TRPC3, enhanced basal expression levels of cytokines in rat cardiomyocytes. TRPC6 could interact with Nox2, but the abundance of TRPC6 was inversely correlated with that of Nox2. These results strongly suggest that Nox2 destabilization through disrupting TRPC3-Nox2 complex underlies attenuation of hyperglycemia-induced heart failure by TRPC6.

  14. Role of heat shock transcription factor 1(HSF1)-upregulated macrophage in ameliorating pressure overload-induced heart failure in mice.

    PubMed

    Du, Peizhao; Chang, Yaowei; Dai, Fangjie; Wei, Chunyan; Zhang, Qi; Li, Jiming

    2018-08-15

    In order to explore the role of macrophages in HSF1-mediated alleviation of heart failure, mice model of pressure overload-induced heart failure was established using transverse aortic constriction (TAC). Changes in cardiac function and morphology were studied in TAC and SHAM groups using ultrasonic device, tissue staining, electron microscopy, real-time quantitative polymerase chain reaction (RT-QPCR), and Western blotting. We found that mice in the TAC group showed evidence of impaired cardiac function and aggravation of fibrosis on ultrasonic and histopathological examination when compared to those in the SHAM group. The expressions of HSF1, LC3II/LC3I, Becline-1 and HIF-1, as well as autophagosome formation in TAC group were greater than that in SHAM group. On sub-group analyses in the TAC group, improved cardiac function and alleviation of fibrosis was observed in the HSF1 TG subgroup as compared to that in the wild type subgroup. Expressions of LC3II/LC3I, Becline-1 and HIF-1, too showed an obvious increase; and increased autophagosome formation was observed on electron microscopy. Opposite results were observed in the HSF1 KO subgroup. These results collectively suggest that in the pressure overload heart failure model, HSF1 promoted formation of macrophages by inducing upregulation of HIF-1 expression, through which heart failure was ameliorated. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Structural pathways and prevention of heart failure and sudden death.

    PubMed

    Pacifico, Antonio; Henry, Philip D

    2003-07-01

    We review the macroscopic and microscopic anatomy of myocardial disease associated with heart failure (HF) and sudden cardiac death (SCD) and focus on the prevention of SCD in light of its structural pathways. Compared to patients without SCD, patients with SCD exhibit 5- to 6-fold increases in the risks of ventricular arrhythmias and SCD. Epidemiologically, left ventricular hypertrophy by ECG or echocardiography acts as a potent dose-dependent SCD predictor. Dyslipidemia, a coronary disease risk factor, independently predicts echocardiographic hypertrophy. In adult SCD autopsy studies, increases in heart weight and severe coronary disease are constant findings, whereas rates of acute coronary thrombi vary remarkably. The microscopic myocardial anatomy of SCD is incompletely defined but may include prevalent changes of advanced myocardial disease, including cardiomyocyte hypertrophy, cardiomyocyte apoptosis, fibroblast hyperplasia, diffuse and focal matrix protein accumulation, and recruitment of inflammatory cells. Hypertrophied cardiomyocytes express "fetospecific" genetic programs that can account for acquired long QT physiology with risk for polymorphic ventricular arrhythmias. Structural heart disease associated with HF and high SCD risk is causally related to an up-regulation of the adrenergic renin-angiotensin-aldosterone pathway. In outcome trials, suppression of this pathway with combinations of beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, and mineralocorticoid receptor blockers have achieved substantial total mortality and SCD reductions. Contrarily, trials with ion channel-active agents that are not known to reduce structural heart disease have failed to reduce these risks. Device therapy effectively prevents SCD, but whether biventricular pacing-induced remodeling decreases left ventricular mass remains uncertain.

  16. TRPV4 channels: physiological and pathological role in cardiovascular system.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-11-01

    TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.

  17. Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients.

    PubMed

    Benda, Nathalie M M; Seeger, Joost P H; Stevens, Guus G C F; Hijmans-Kersten, Bregina T P; van Dijk, Arie P J; Bellersen, Louise; Lamfers, Evert J P; Hopman, Maria T E; Thijssen, Dick H J

    2015-01-01

    Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT. Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload-alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60-75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)). Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.). Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III. Nederlands Trial Register NTR3671.

  18. Comprehensive Analysis of Gene Expression Profiles of Sepsis-Induced Multiorgan Failure Identified Its Valuable Biomarkers.

    PubMed

    Wang, Yumei; Yin, Xiaoling; Yang, Fang

    2018-02-01

    Sepsis is an inflammatory-related disease, and severe sepsis would induce multiorgan dysfunction, which is the most common cause of death of patients in noncoronary intensive care units. Progression of novel therapeutic strategies has proven to be of little impact on the mortality of severe sepsis, and unfortunately, its mechanisms still remain poorly understood. In this study, we analyzed gene expression profiles of severe sepsis with failure of lung, kidney, and liver for the identification of potential biomarkers. We first downloaded the gene expression profiles from the Gene Expression Omnibus and performed preprocessing of raw microarray data sets and identification of differential expression genes (DEGs) through the R programming software; then, significantly enriched functions of DEGs in lung, kidney, and liver failure sepsis samples were obtained from the Database for Annotation, Visualization, and Integrated Discovery; finally, protein-protein interaction network was constructed for DEGs based on the STRING database, and network modules were also obtained through the MCODE cluster method. As a result, lung failure sepsis has the highest number of DEGs of 859, whereas the number of DEGs in kidney and liver failure sepsis samples is 178 and 175, respectively. In addition, 17 overlaps were obtained among the three lists of DEGs. Biological processes related to immune and inflammatory response were found to be significantly enriched in DEGs. Network and module analysis identified four gene clusters in which all or most of genes were upregulated. The expression changes of Icam1 and Socs3 were further validated through quantitative PCR analysis. This study should shed light on the development of sepsis and provide potential therapeutic targets for sepsis-induced multiorgan failure.

  19. Dendritic cells with increased expression of suppressor of cytokine signaling 1(SOCS1) gene ameliorate lipopolysaccharide/d-galactosamine-induced acute liver failure.

    PubMed

    Li, Shan-Shan; Yang, Min; Chen, Yong-Ping; Tang, Xin-Yue; Zhang, Sheng-Guo; Ni, Shun-Lan; Yang, Nai-Bin; Lu, Ming-Qin

    2018-05-28

    Acute liver failure is a devastating clinical syndrome with extremely terrible inflammation reaction, which is still lack of effective treatment in clinic. Suppressor of Cytokine Signaling 1 protein is inducible intracellular negative regulator of Janus kinases (JAK)/signal transducers and activators of transcription (STAT) pathway that plays essential role in inhibiting excessive intracellular signaling cascade and preventing autoimmune reaction. In this paper, we want to explore whether dendritic cells (DCs) with overexpression of SOCS1 have a therapeutic effect on experimental acute liver failure. Bone marrow derived dendritic cells were transfected with lentivirus encoding SOCS1 and negative control lentivirus, thereafter collected for costimulatory molecules analysis, allogeneic Mixed Lymphocyte Reaction and Western blot test of JAK/STAT pathway. C57BL/6 mice were randomly separated into normal control and treatment groups which respectively received tail vein injection of modified DCs, negative control DCs and normal saline 12 h earlier than acute liver failure induction. Our results indicated that DCs with overexpression of SOCS1 exhibited like regulatory DCs (DCregs) with low level of costimulatory molecules and poor allostimulatory ability in vitro, which was supposed to correlate with block of JAK2/STAT1 signaling. In vivo tests, we found that infusion of modified DCs increased survival rate of acute liver failure mice and alleviate liver injury via inhibition of TLR4/HMGB1 pathway. We concluded that DCs transduced with SOCS1 gene exhibit as DCregs through negative regulation of JAK2/STAT1 pathway and ameliorated lipopolysaccharide/d-galactosamine induced acute liver failure via inhibition of TLR4 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. The weekend effect or DeskTop Spallation (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond coat are reported. Cut sections were intermittently oxidized at 1100, 1150, and 1200 C and monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that embrittle the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  1. Moisture-Induced TBC Spallation on Turbine Blade Samples

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2011-01-01

    Delayed failure of TBCs is a widely observed laboratory phenomenon, although many of the early observations went unreported. "The weekend effect" or "DeskTop Spallation" (DTS) is characterized by initial survival of a TBC after accelerated laboratory thermal cycling, then failure by exposure to ambient humidity or water. Once initiated, failure can occur quite dramatically in less than a second. To this end, the water drop test and digital video recordings have become useful techniques in studies at NASA (Smialek, Zhu, Cuy), DECHMA (Rudolphi, Renusch, Schuetze), and CNRS Toulouse/SNECMA (Deneux, Cadoret, Hervier, Monceau). In the present study the results for a commercial turbine blade, with a standard EB-PVD 7YSZ TBC top coat and Pt-aluminide diffusion bond monitored by weight change and visual appearance. Failures were distributed widely over a 5-100 hr time range, depending on temperature. At some opportune times, failure was captured by video recording, documenting the appearance and speed of the moisture-induced spallation process. Failure interfaces exhibited alumina scale grains, decorated with Ta-rich oxide particles, and alumina inclusions as islands and streamers. The phenomenon is thus rooted in moisture-induced delayed spallation (MIDS) of the alumina scale formed on the bond coat. In that regard, many studies show the susceptibility of alumina scales to moisture, as long as high strain energy and a partially exposed interface exist. The latter conditions result from severe cyclic oxidation conditions, which produce a highly stressed and partially damaged scale. In one model, it has been proposed that moisture reacts with aluminum in the bond coat to release hydrogen atoms that 'embrittle' the interface. A negative synergistic effect with interfacial sulfur is also invoked.

  2. Reversal of subcellular remodelling by losartan in heart failure due to myocardial infarction

    PubMed Central

    Babick, Andrea; Chapman, Donald; Zieroth, Shelley; Elimban, Vijayan; Dhalla, Naranjan S

    2012-01-01

    This study tested the reversal of subcellular remodelling in heart failure due to myocardial infarction (MI) upon treatment with losartan, an angiotensin II receptor antagonist. Twelve weeks after inducing MI, rats were treated with or without losartan (20 mg/kg; daily) for 8 weeks and assessed for cardiac function, cardiac remodelling, subcellular alterations and plasma catecholamines. Cardiac hypertrophy and lung congestion in 20 weeks MI-induced heart failure were associated with increases in plasma catecholamine levels. Haemodynamic examination revealed depressed cardiac function, whereas echocardiographic analysis showed impaired cardiac performance and marked increases in left ventricle wall thickness and chamber dilatation at 20 weeks of inducing MI. These changes in cardiac function, cardiac remodelling and plasma dopamine levels in heart failure were partially or fully reversed by losartan. Sarcoplasmic reticular (SR) Ca2+-pump activity and protein expression, protein and gene expression for phospholamban, as well as myofibrillar (MF) Ca2+-stimulated ATPase activity and α-myosin heavy chain mRNA levels were depressed, whereas β-myosin heavy chain expression was increased in failing hearts; these alterations were partially reversed by losartan. Although SR Ca2+-release activity and mRNA levels for SR Ca2+-pump were decreased in failing heart, these changes were not reversed upon losartan treatment; no changes in mRNA levels for SR Ca2+-release channels were observed in untreated or treated heart failure. These results suggest that the partial improvement of cardiac performance in heart failure due to MI by losartan treatment is associated with partial reversal of cardiac remodelling as well as partial recovery of SR and MF functions. PMID:22947202

  3. Clinical types and drug therapy of renal impairment in cirrhosis

    PubMed Central

    Rodés, J.; Bosch, J.; Arroyo, V.

    1975-01-01

    Four separate types of renal failure in cirrhosis are described: functional renal failure; diuretic induced uraemia; acute tubular necrosis; chronic intrinsic renal disease. Functional renal failure may arise spontaneously or be precipitated by such factors as haemorrhage, surgery, or infection. It carries a poor prognosis but preliminary results of treating this condition with plasma volume expansion in combination with high doses of furosemide are encouraging. PMID:1234328

  4. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    PubMed Central

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  5. Cordyceps sinensis prevents apoptosis in mouse liver with D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Cheng, Yu-Jung; Cheng, Shiu-Min; Teng, Yi-Hsien; Shyu, Woei-Cherng; Chen, Hsiu-Ling; Lee, Shin-Da

    2014-01-01

    Cordyceps sinensis (C. sinensis) has long been considered to be an herbal medicine and has been used in the treatment of various inflammatory diseases. The present study examined the cytoprotective properties of C. sinensis on D(+)-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were randomly assigned into control, GalN/LPS, CS 20 mg and CS 40 mg groups (C. sinensis, oral gavage, five days/week, four weeks). After receiving saline or C. sinensis, mice were intraperitoneally given GalN (800 mg/kg)/LPS (10 μg/kg). The effects of C. sinensis on TNF-α, IL-10, AST, NO, SOD, and apoptoticrelated proteins after the onset of endotoxin intoxication were determined. Data demonstrated that GalN/LPS increased hepatocyte degeneration, circulating AST, TNF-α, IL-10, and hepatic apoptosis and caspase activity. C. sinensis pre-treatment reduced AST, TNF-α, and NO and increased IL-10 and SOD in GalN/LPS induced fulminant hepatic failure. C. sinensis attenuated the apoptosis of hepatocytes, as evidenced by the TUNEL and capase-3, 6 activity analyses. In summary, C. sinensis alleviates GalN/LPS-induced liver injury by modulating the cytokine response and inhibiting apoptosis.

  6. Radiation induced failures of complementary metal oxide semiconductor containing pacemakers: a potentially lethal complication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewin, A.A.; Serago, C.F.; Schwade, J.G.

    1984-10-01

    New multi-programmable pacemakers frequently employ complementary metal oxide semiconductors (CMOS). This circuitry appears more sensitive to the effects of ionizing radiation when compared to the semiconductor circuits used in older pacemakers. A case of radiation induced runaway pacemaker in a CMOS device is described. Because of this and other recent reports of radiation therapy-induced CMOS type pacemaker failure, these pacemakers should not be irradiated. If necessary, the pacemaker can be shielded or moved to a site which can be shielded before institution of radiation therapy. This is done to prevent damage to the CMOS circuit and the life threatening arrythmiasmore » which may result from such damage.« less

  7. Analysis of beam loss induced abort kicker instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang W.; Sandberg, J.; Ahrens, L.

    2012-05-20

    Through more than a decade of operation, we have noticed the phenomena of beam loss induced kicker instability in the RHIC beam abort systems. In this study, we analyze the short term beam loss before abort kicker pre-fire events and operation conditions before capacitor failures. Beam loss has caused capacitor failures and elevated radiation level concentrated at failed end of capacitor has been observed. We are interested in beam loss induced radiation and heat dissipation in large oil filled capacitors and beam triggered thyratron conduction. We hope the analysis result would lead to better protection of the abort systems andmore » improved stability of the RHIC operation.« less

  8. Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China

    NASA Astrophysics Data System (ADS)

    Ding, Kuo; Ma, Fengshan; Guo, Jie; Zhao, Haijun; Lu, Rong; Liu, Feng

    2018-04-01

    On 13 March 2016, a sudden, violent roof caving event with a collapse area of nearly 11,000 m2 occurred in the Jinchuan Nickel Mine and accompanied by air blasts, loud noises and ground vibrations. This collapse event coincided with related, conspicuous surface subsidence across an area of nearly 19,000 m2. This article aims to analyse this collapse event. In previous studies, various mining-induced collapses have been studied, but collapse accidents associated with the filling mining method are very rare and have not been thoroughly studied. The filling method has been regarded as a safe mining method for a long time, so research on associated collapse mechanisms is of considerable significance. In this study, a detailed field investigation of roadway damage was performed, and GPS monitoring results were used to analyse the surface failure. In addition, a numerical model was constructed based on the geometry of the ore body and a major fault. The analysis of the model revealed three failure mechanisms acting during different stages of destruction: double-sided embedded beam deformation, fault activation, and cantilever-articulated rock beam failure. The fault activation and the specific filling method are the key factors of this collapse event. To gain a better understanding of these factors, the shear stress and normal stress along the fault plane were monitored to determine the variation in stress at different failure stages. Discrete element models were established to study two filling methods and to analyse the stability of different filling structures.

  9. Embryonic kidney function in a chronic renal failure model in rodents.

    PubMed

    Fujimoto, Eisuke; Yamanaka, Shuichiro; Kurihara, Sho; Tajiri, Susumu; Izuhara, Luna; Katsuoka, Yuichi; Yokote, Shinya; Matsumoto, Kei; Kobayashi, Eiji; Okano, Hirotaka James; Chikaraishi, Tatsuya; Yokoo, Takashi

    2017-08-01

    Rapid advancements have been made in alternative treatments for renal diseases. Our goal for renal regeneration is to establish a kidney graft derived from human embryonic tissues. In this study, we investigated the effects of host renal failure on the structure and activity of transplanted embryonic kidney and bladder, and found that diuretics effectively induced urine production in the transplanted kidney. Uremic conditions were reproduced using a 5/6 renal infarction rat model. An embryonic kidney plus bladder (embryonic day 15) was isolated from a pregnant Lewis rat and transplanted into the para-aortic area of a 5/6 renal-infarcted Lewis rat. Following growth, the embryonic bladder was successfully anastomosed to the host ureter. We assessed graft function in terms of survival rates and found no differences between normal (n = 5) and renal failure (n = 8) groups (median survival: 70.5 vs 74.5 h; p = 0.331) in terms of survival, indicating that the grafts prolonged rat survival, even under renal failure conditions. Furosemide (n = 9) significantly increased urine volume compared with saline-treated controls (n = 7; p < 0.05), confirming that the grafts were functional. We also demonstrated the possibilities of an in vivo imaging system for determining the viability of transplanted embryonic kidney with bladder. The results of this study demonstrate that transplanted embryonic kidney and bladder can grow and function effectively, even under uremic conditions.

  10. Simulations of stress evolution and the current density scaling of electromigration-induced failure times in pure and alloyed interconnects

    NASA Astrophysics Data System (ADS)

    Park, Young-Joon; Andleigh, Vaibhav K.; Thompson, Carl V.

    1999-04-01

    An electromigration model is developed to simulate the reliability of Al and Al-Cu interconnects. A polynomial expression for the free energy of solution by Murray [Int. Met. Rev. 30, 211 (1985)] was used to calculate the chemical potential for Al and Cu while the diffusivities were defined based on a Cu-trapping model by Rosenberg [J. Vac. Sci. Technol. 9, 263 (1972)]. The effects of Cu on stress evolution and lifetime were investigated in all-bamboo and near-bamboo stud-to-stud structures. In addition, the significance of the effect of mechanical stress on the diffusivity of both Al and Cu was determined in all-bamboo and near-bamboo lines. The void nucleation and growth process was simulated in 200 μm, stud-to-stud lines. Current density scaling behavior for void-nucleation-limited failure and void-growth-limited failure modes was simulated in long, stud-to-stud lines. Current density exponents of both n=2 for void nucleation and n=1 for void growth failure modes were found in both pure Al and Al-Cu lines. Limitations of the most widely used current density scaling law (Black's equation) in the analysis of the reliability of stud-to-stud lines are discussed. By modifying the input materials properties used in this model (when they are known), this model can be adapted to predict the reliability of other interconnect materials such as pure Cu and Cu alloys.

  11. DNA double-strand breaks and Aurora B mislocalization induced by exposure of early mitotic cells to H2O2 appear to increase chromatin bridges and resultant cytokinesis failure.

    PubMed

    Cho, Min-Guk; Ahn, Ju-Hyun; Choi, Hee-Song; Lee, Jae-Ho

    2017-07-01

    Aneuploidy, an abnormal number of chromosomes that is a hallmark of cancer cells, can arise from tetraploid/binucleated cells through a failure of cytokinesis. Reactive oxygen species (ROS) have been implicated in various diseases, including cancer. However, the nature and role of ROS in cytokinesis progression and related mechanisms has not been clearly elucidated. Here, using time-lapse analysis of asynchronously growing cells and immunocytochemical analyses of synchronized cells, we found that hydrogen peroxide (H 2 O 2 ) treatment at early mitosis (primarily prometaphase) significantly induced cytokinesis failure. Cytokinesis failure and the resultant formation of binucleated cells containing nucleoplasmic bridges (NPBs) seemed to be caused by increases in DNA double-strand breaks (DSBs) and subsequent unresolved chromatin bridges. We further found that H 2 O 2 induced mislocalization of Aurora B during mitosis. All of these effects were attenuated by pretreatment with N-acetyl-L-cysteine (NAC) or overexpression of Catalase. Surprisingly, the PARP inhibitor PJ34 also reduced H 2 O 2 -induced Aurora B mislocalization and binucleated cell formation. Results of parallel experiments with etoposide, a topoisomerase IIα inhibitor that triggers DNA DSBs, suggested that both DNA DSBs and Aurora B mislocalization contribute to chromatin bridge formation. Aurora B mislocalization also appeared to weaken the "abscission checkpoint". Finally, we showed that KRAS-induced binucleated cell formation appeared to be also H 2 O 2 -dependent. In conclusion, we propose that a ROS, mainly H 2 O 2 increases binucleation through unresolved chromatin bridges caused by DNA damage and mislocalization of Aurora B, the latter of which appears to augment the effect of DNA damage on chromatin bridge formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Establishment of design criteria for acceptable failure modes and fail safe considerations for the space shuttle structural system

    NASA Technical Reports Server (NTRS)

    Westrup, R. W.

    1971-01-01

    The application of general design approaches for preventing failures due to repeated load cycles is briefly discussed. Program objective, mission requirements, and structural design criteria are summarized. Discrete structural elements and associated sections were selected for detailed strength, fatigue, and fracture mechanics investigations.

  13. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  14. [A case of fulminant hepatic failure secondary to hepatic metastasis of small cell lung carcinoma].

    PubMed

    Hwang, Young Tae; Shin, Jung Woo; Lee, Jun Ho; Hwang, Dae Sung; Eum, Jun Bum; Choi, Hye Jeong; Park, Neung Hwa

    2007-12-01

    Although liver metastasis is commonly found in cancer patients, fulminant hepatic failure secondary to diffuse cancer infiltration into the liver is rare. Liver metastasis-induced fulminant hepatic failure has been reported in patients with primary cancer of the gastrointestinal tract, breast and uroepithelium, and in patients with melanoma and hematologic malignancy. Small cell lung cancer is so highly invasive that hepatic metastasis is common, but rapid progression to fulminant hepatic failure is extremely rare. We report here on a case of a patient who died because of rapid progression to fulminant hepatic failure as a result of hepatic metastasis of small cell lung carcinoma.

  15. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  16. Determination of Paleoseismic Ground Motions from Inversion of Block Failures in Masonry Structures

    NASA Astrophysics Data System (ADS)

    Yagoda-Biran, G.; Hatzor, Y. H.

    2010-12-01

    Accurate estimation of ground motion parameters such as expected peak ground acceleration (PGA), predominant frequency and duration of motion in seismically active regions, is crucial for hazard preparedness and sound engineering design. The best way to estimate quantitatively these parameters would be to investigate long term recorded data of past strong earthquakes in a studied region. In some regions of the world however recorded data are scarce due to lack of seismic network infrastructure, and in all regions the availability of recorded data is restricted to the late 19th century and onwards. Therefore, existing instrumental data are hardly representative of the true seismicity of a region. When recorded data are scarce or not available, alternative methods may be applied, for example adopting a quantitative paleoseismic approach. In this research we suggest the use of seismically damaged masonry structures as paleoseismic indicators. Visitors to archeological sites all over the world are often struck by structural failure features which seem to be "seismically driven", particularly when inspecting old masonry structures. While it is widely accepted that no other loading mechanism can explain the preserved damage, the actual driving mechanism remains enigmatic even now. In this research we wish to explore how such failures may be triggered by earthquake induced ground motions and use observed block displacements to determine the characteristic parameters of the paleoseismic earthquake motion, namely duration, frequency, and amplitude. This is performed utilizing a 3D, fully dynamic, numerical analysis performed with the Discontinuous Deformation Analysis (DDA) method. Several case studies are selected for 3D numerical analysis. First we study a simple structure in the old city of L'Aquila, Italy. L'Aquila was hit by an earthquake on April 6th, 2009, with over 300 casualties and many of its medieval buildings damaged. This case study is an excellent opportunity to validate our method, since in the case of L'Aquila, both the damaged structure and the ground motions are recorded. The 3D modeling of the structure is rather complicated, and is performed by first modeling the structure with CAD software and later "translating" the model to the numerical code used. In the future, several more case studies will be analyzed, such as Kedesh and Avdat in Israel, and in collaboration with Hugh and Bilham the Temple of Shiva at Pandrethan, Kashmir. Establishing a numerical 3D dynamic analysis for back analysis of stone displacement in masonry structures as a paleoseismic tool can provide much needed data on ground motion parameters in regions where instrumental data are scarce, or are completely absent.

  17. Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death

    PubMed Central

    Morgan, Jessica A.; Lynch, John; Panetta, John C.; Wang, Yao; Frase, Sharon; Bao, Ju; Zheng, Jie; Opferman, Joseph T.; Janke, Laura; Green, Daniel M.; Chemaitilly, Wassim; Schuetz, John D.

    2015-01-01

    Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer. PMID:26576726

  18. Apoptosome activation, an important molecular instigator in 6-mercaptopurine induced Leydig cell death.

    PubMed

    Morgan, Jessica A; Lynch, John; Panetta, John C; Wang, Yao; Frase, Sharon; Bao, Ju; Zheng, Jie; Opferman, Joseph T; Janke, Laura; Green, Daniel M; Chemaitilly, Wassim; Schuetz, John D

    2015-11-18

    Leydig cells are crucial to the production of testosterone in males. It is unknown if the cancer chemotherapeutic drug, 6-mercaptopurine (6 MP), produces Leydig cell failure among adult survivors of childhood acute lymphoblastic leukemia. Moreover, it is not known whether Leydig cell failure is due to either a loss of cells or an impairment in their function. Herein, we show, in a subset of childhood cancer survivors, that Leydig cell failure is related to the dose of 6 MP. This was extended, in a murine model, to demonstrate that 6 MP exposure induced caspase 3 activation, and the loss of Leydig cells was independent of Bak and Bax activation. The death of these non-proliferating cells was triggered by 6 MP metabolism, requiring formation of both cytosolic reactive oxygen species and thiopurine nucleotide triphosphates. The thiopurine nucleotide triphosphates (with physiological amounts of dATP) uniquely activated the apoptosome. An ABC transporter (Abcc4/Mrp4) reduced the amount of thiopurines, thereby providing protection for Leydig cells. The studies reported here demonstrate that the apoptosome is uniquely activated by thiopurine nucleotides and suggest that 6 MP induced Leydig cell death is likely a cause of Leydig cell failure in some survivors of childhood cancer.

  19. Mechanical Properties of Shock-Damaged Rocks

    NASA Technical Reports Server (NTRS)

    He, Hongliang; Ahrens, T. J.

    1994-01-01

    Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.

  20. Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

    PubMed

    Daicho, Takuya; Yagi, Tatsuya; Abe, Yohei; Ohara, Meiko; Marunouchi, Tetsuro; Takeo, Satoshi; Tanonaka, Kouichi

    2009-09-01

    The present study was undertaken to explore the possible involvement of alterations in the mitochondrial energy-producing ability in the development of the right ventricular failure in monocrotaline-administered rats. The rats at the 6th week after subcutaneous injection of 60 mg/kg monocrotaline revealed marked myocardial hypertrophy and fibrosis, that is, severe cardiac remodeling. The time-course study on the cardiac hemodynamics of the monocrotaline-administered rat by the cannula and echocardiographic methods showed a reduction in cardiac double product, a decrease in cardiac output index, and an increase in the right ventricular Tei index, suggesting that the right ventricular failure was induced at the 6th week after monocrotaline administration in rats. The mitochondrial oxygen consumption rate of the right ventricular muscle isolated from the monocrotaline-administered animal was decreased, which was associated with a reduction in myocardial high-energy phosphates. Furthermore, the decrease in mitochondrial oxygen consumption rate was inversely related to the increase in the right ventricular Tei index of the monocrotaline-administered rats. These results suggest that impairment of the mitochondrial energy-producing ability is involved in the development of the right ventricular failure in monocrotaline-induced pulmonary hypertensive rats.

  1. Flight Test Comparison of Different Adaptive Augmentations for Fault Tolerant Control Laws for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.

    2009-01-01

    This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.

  2. Bio-Environment-Induced Degradation and Failure of Internal Fixation Implants.

    PubMed

    Zhou, Yan; Perkins, Luke A; Wang, Guodong; Zhou, Dongsheng; Liang, Hong

    2015-10-15

    Internal fixations provide fast healing but their failure remains problematic to patients. Here, we report an experimental study in failure of three typical cases of metals: a bent intramedullary stainless steel nail, a broken exterior pure Ti plate, and a broken intramedullary stainless steel nail. Characterization of the bent nail indicates that those metals are vulnerable to corrosion with the evidence of increased surface roughness and embrittlement. Depredated surface of the Ti plate resulted debris particles in the surrounding tissue of 15.2 ± 6.5 μm in size. Nanoparticles were observed in transmission electron microscope. The electron diffraction pattern of the debris indicates a combination of nanocrystalline and amorphous phases. The failure mode of the broken nail made of stainless steel was found to be fatigue initiated from the surface. This study clearly shows the biological-attack induced surface degradation resulting in debris and fatigue. Future design and selection of implant materials should consider such factors for improvement.

  3. Impact Processes in the Solar System

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2004-01-01

    Our laboratory has previously conducted impact fracture and dynamic failure tests. Polanskey and Ahrens [1990] mapped the fractures from a series of laboratory craters (Fig. 1) and Ahrens and Rubin [ 1993] inferred that the usually further extending radial cracks resulted from tensional failure during the compression of the shock propagation. The radial spreading induced by the particle velocity field caused the stresses perpendicular to the shock front to become sufficiently large and tensile. This induces "radial fractures." The concentric fractures are attributed to the tensional failure occurring after the initial compressive phase. Upon radial propagation of the stress wave the negative tension behind the stress-wave front caused failure along the quasi-spherical concentric fractures. The near-surface and spall fractures are attributed to the fractures described by Melosh [1984]. These are activated by impact and can launch relatively unshocked samples of planetary surfaces to speeds exceeding escape velocity. In the case of Mars, some of these surface samples presumably become the SNC (Mars) meteorites.

  4. Abacavir-induced fulminant hepatic failure in a HIV/HCV co-infected patient

    PubMed Central

    Haas, Christopher; Ziccardi, Mary Rodriguez; Borgman, Jody

    2015-01-01

    Abacavir hypersensitivity is a rare, yet significant adverse reaction that results in a spectrum of physical and laboratory abnormalities, and has been postulated to stem from a variety of aetiological factors. The major histocompatibility complex haplotype human leucocyte antigen (HLA)-B5701 is a significant risk factor in development of hypersensitivity reactions, yet only 55% of HLA-B5701+ individuals develop such reactions, suggesting a multifactorial aetiology. Nevertheless, prospective screening and avoidance of abacavir in these patients has limited adverse events. Within this spectrum of adverse events, abacavir-induced liver toxicity is exceedingly rare and reported events have ranged from mild elevations of aminotransferases to fulminant hepatic failure. We report the case of a 50-year-old Caucasian woman with a history significant for HIV, hepatitis C virus and a HLA-B5701+ status, transferred to our emergency department in a hypotensive state and found to have acute liver failure, acute renal failure and significant rhabdomyolysis following a change of highly active antiretroviral therapy regimen. PMID:26670894

  5. Abacavir-induced fulminant hepatic failure in a HIV/HCV co-infected patient.

    PubMed

    Haas, Christopher; Ziccardi, Mary Rodriguez; Borgman, Jody

    2015-12-15

    Abacavir hypersensitivity is a rare, yet significant adverse reaction that results in a spectrum of physical and laboratory abnormalities, and has been postulated to stem from a variety of aetiological factors. The major histocompatibility complex haplotype human leucocyte antigen (HLA)-B5701 is a significant risk factor in development of hypersensitivity reactions, yet only 55% of HLA-B5701+ individuals develop such reactions, suggesting a multifactorial aetiology. Nevertheless, prospective screening and avoidance of abacavir in these patients has limited adverse events. Within this spectrum of adverse events, abacavir-induced liver toxicity is exceedingly rare and reported events have ranged from mild elevations of aminotransferases to fulminant hepatic failure. We report the case of a 50-year-old Caucasian woman with a history significant for HIV, hepatitis C virus and a HLA-B5701+ status, transferred to our emergency department in a hypotensive state and found to have acute liver failure, acute renal failure and significant rhabdomyolysis following a change of highly active antiretroviral therapy regimen. 2015 BMJ Publishing Group Ltd.

  6. Cyanobacteria blooms induce embryonic heart failure in an endangered fish species.

    PubMed

    Zi, Jinmei; Pan, Xiaofu; MacIsaac, Hugh J; Yang, Junxing; Xu, Runbing; Chen, Shanyuan; Chang, Xuexiu

    2018-01-01

    Cyanobacterial blooms drive water-quality and aquatic-ecosystem deterioration in eutrophic lakes worldwide, mainly owing to their harmful, secondary metabolites. The response of fish exposed to these cyanobacterial chemicals, however, remains largely unknown. In this paper, we employed an endangered fish species (Sinocyclocheilus grahami) in Dianchi Lake, China to evaluate the risks of cell-free exudates (MaE) produced by a dominant cyanobacterium (Microcystis aeruginosa) on embryo development, as well as the molecular mechanisms responsible. MaE (3d cultured) caused a reduction of fertilization (35.4%) and hatching (15.5%) rates, and increased mortality rates (≤90.0%) and malformation rate (27.6%), typically accompanied by heart failure. Proteomics analysis revealed that two greatest changed proteins - protein S100A1 (over-expressed 26 times compared with control) and myosin light chain (under-expressed 25 fold) - are closely associated with heart function. Further study revealed that heart failure was due to calcium ion imbalance and malformed cardiac structure. We conclude that harmful secondary metabolites from cyanobacteria may adversely affect embryo development in this endangered fish, and possibly contribute to its disappearance and unsuccessful recovery in Dianchi Lake. Hazardous consequences of substances released by cyanobacteria should raise concerns for managers addressing recovery of this and other imperiled species in affected lakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less

  8. Radiation Enhanced Absorption of Frank Loops by Nanovoids in Cu

    DOE PAGES

    Chen, Youxing; Zhang, Xinghang; Wang, Jian

    2016-11-01

    Neutron and heavy ion irradiation generally induces voids in metallic materials, and continuous radiations typically result in void swelling and mechanical failure of the irradiated materials. Recent experiments showed that nanovoids in nanotwinned copper could act as sinks for radiation-induced Frank loops, significantly mitigating radiation damage [Y. Chen et al., Nat. Commun. 6:7036 (2015)]. In this paper, we report on structural evolution of Frank loops under cascades and address the role of nanovoids in absorbing Frank loops in detail by using molecular dynamics simulations. Results show that a stand-alone Frank loop is stable under cascades. When Frank loops are adjacentmore » to nanovoids, the diffusion of a group of atoms from the loop into nanovoids is accomplished via the formation and propagation of dislocation loops. The loop-nanovoid interactions result in the shrinkage of the nanovoids and the Frank loops.« less

  9. Alpha-lipoic acid treatment of acetaminophen-induced rat liver damage.

    PubMed

    Mahmoud, Y I; Mahmoud, A A; Nassar, G

    2015-01-01

    Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.

  10. GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors

    PubMed Central

    Chiu, Shu-Ling; Diering, Graham Hugh; Ye, Bing; Takamiya, Kogo; Chen, Chih-Ming; Jiang, Yuwu; Niranjan, Tejasvi; Schwartz, Charles E.; Wang, Tao; Huganir, Richard L.

    2017-01-01

    Summary Learning depends on experience-dependent modification of synaptic efficacy and neuronal connectivity in the brain. We provide direct evidence for physiological roles of the recycling endosome protein GRASP1 in glutamatergic synapse function and animal behavior. Mice lacking GRASP1 showed abnormal excitatory synapse number, synaptic plasticity and hippocampal-dependent learning and memory due to a failure in learning-induced synaptic AMPAR incorporation. We identified two GRASP1 point mutations from intellectual disability (ID) patients that showed convergent disruptive effects on AMPAR recycling and glutamate uncaging-induced structural and functional plasticity. Wild-type GRASP1, but not ID mutants, rescues spine loss in hippocampal CA1 neurons of Grasp1 knockout mice. Together, these results demonstrate a requirement for normal recycling endosome function in AMPAR-dependent synaptic function and neuronal connectivity in vivo, and suggest a potential role for GRASP1 in the pathophysiology of human cognitive disorders. PMID:28285821

  11. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex

    PubMed Central

    Dielforder, Armin; Vollstaedt, Hauke; Vennemann, Torsten; Berger, Alfons; Herwegh, Marco

    2015-01-01

    Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. PMID:26105966

  12. Energy budgets of mining-induced earthquakes and their interactions with nearby stopes

    USGS Publications Warehouse

    McGarr, A.

    2000-01-01

    In the early 1960's, N.G.W. Cook, using an underground network of geophones, demonstrated that most Witwatersrand tremors are closely associated with deep level gold mining operations. He also showed that the energy released by the closure of the tabular stopes at depths of the order of 2 km was more than sufficient to account for the mining-induced earthquakes. I report here updated versions of these two results based on more modern underground data acquired in the Witwatersrand gold fields. Firstly, an extensive suite of in situ stress data indicate that the ambient state of crustal stress here is close to the failure state in the absence of mining even though the tectonic setting is thoroughly stable. Mining initially stabilizes the rock mass by reducing the pore fluid pressure from its initial hydrostatic state to nearly zero. The extensive mine excavations, as Cook showed, concentrate the deviatoric stresses, in localized regions of the abutments, back into a failure state resulting in seismicity. Secondly, there appears to be two distinct types of mining-induced earthquakes: the first is strongly coupled to the mining and involves shear failure plus a coseismic volume reduction; the second type is not evidently coupled to any particular mine face, shows purely deviatoric failure, and is presumably caused by more regional changes in the state of stress due to mining. Thirdly, energy budgets for mining induced earthquakes of both types indicate that, of the available released energy, only a few per cent is radiated by the seismic waves with the majority being consumed in overcoming fault friction. Published by Elsevier Science Ltd.In the early 1960's, N.G.W. Cook, using an underground network of geophones, demonstrated that most Witwatersrand tremors are closely associated with deep level gold mining operations. He also showed that the energy released by the closure of the tabular stopes at depths of the order of 2 km was more than sufficient to account for the mining-induced earthquakes. I report here updated versions of these two results based on more modern underground data acquired in the Witwatersrand gold fields. Firstly, an extensive suite of in situ stress data indicate that the ambient state of crustal stress here is close to the failure state in the absence of mining even though the tectonic setting is thoroughly stable. Mining initially stabilizes the rock mass by reducing the pore fluid pressure from its initial hydrostatic state to nearly zero. The extensive mine excavations, as Cook showed, concentrate the deviatoric stresses, in localized regions of the abutments, back into a failure state resulting in seismicity. Secondly, there appears to be two distinct types of mining-induced earthquakes: the first is strongly coupled to the mining and involves shear failure plus a coseismic volume reduction; the second type is not evidently coupled to any particular mine face, shows purely deviatoric failure, and is presumably caused by more regional changes in the state of stress due to mining. Thirdly, energy budgets for mining induced earthquakes of both types indicate that, of the available released energy, only a few per cent is radiated by the seismic waves with the majority being consumed in overcoming fault friction.

  13. Influence of multi-cycle loading on the structure and mechanics of marine mussel plaques.

    PubMed

    Wilhelm, Menaka H; Filippidi, Emmanouela; Waite, J Herbert; Valentine, Megan T

    2017-10-18

    The proteinaceous byssal plaque-thread structures created by marine mussels exhibit extraordinary load-bearing capability. Although the nanoscopic protein interactions that support interfacial adhesion are increasingly understood, major mechanistic questions about how mussel plaques maintain toughness on supramolecular scales remain unanswered. This study explores the mechanical properties of whole mussel plaques subjected to repetitive loading cycles, with varied recovery times. Mechanical measurements were complemented with scanning electron microscopy to investigate strain-induced structural changes after yield. Multicyclic loading of plaques decreases their low-strain stiffness and introduces irreversible, strain-dependent plastic damage within the plaque microstructure. However, strain history does not compromise critical strength or maximum extension compared with plaques monotonically loaded to failure. These results suggest that a multiplicity of force transfer mechanisms between the thread and plaque-substrate interface allow the plaque-thread structure to accommodate a wide range of extensions as it continues to bear load. This improved understanding of the mussel system at micron-to-millimeter lengthscales offers strategies for including similar fail-safe mechanisms in the design of soft, tough and resilient synthetic structures.

  14. The Failure Envelope Concept Applied To The Bone-Dental Implant System.

    PubMed

    Korabi, R; Shemtov-Yona, K; Dorogoy, A; Rittel, D

    2017-05-17

    Dental implants interact with the jawbone through their common interface. While the implant is an inert structure, the jawbone is a living one that reacts to mechanical stimuli. Setting aside mechanical failure considerations of the implant, the bone is the main component to be addressed. With most failure criteria being expressed in terms of stress or strain values, their fulfillment can mean structural flow or fracture. However, in addition to those effects, the bony structure is likely to react biologically to the applied loads by dissolution or remodeling, so that additional (strain-based) criteria must be taken into account. While the literature abounds in studies of particular loading configurations, e.g. angle and value of the applied load to the implant, a general study of the admissible implant loads is still missing. This paper introduces the concept of failure envelopes for the dental implant-jawbone system, thereby defining admissible combinations of vertical and lateral loads for various failure criteria of the jawbone. Those envelopes are compared in terms of conservatism, thereby providing a systematic comparison of the various failure criteria and their determination of the admissible loads.

  15. Detection of system failures in multi-axes tasks. [pilot monitored instrument approach

    NASA Technical Reports Server (NTRS)

    Ephrath, A. R.

    1975-01-01

    The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.

  16. Rotordynamic Characteristics of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1984-01-01

    Rotational stability of turbopump components in the space shuttle main engine was studied via analysis of component and structural dynamic models. Subsynchronous vibration caused unacceptable migration of the rotor/housing unit with unequal load sharing of the synchronous bearings that resulted in the failure of the High Pressure Oxygen Turbopump. Linear analysis shows that a shrouded inducer eliminates the second critical speed and the stability problem, a stiffened rotor improves the rotordynamic characteristics of the turbopump, and installing damper boost/impeller seals reduces bearing loads. Nonlinear analysis shows that by increasing the "dead band' clearances, a marked reduction in peak bearing loads occurs.

  17. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  18. Redox-dependent transcriptional regulation.

    PubMed

    Liu, Hongjun; Colavitti, Renata; Rovira, Ilsa I; Finkel, Toren

    2005-11-11

    Reactive oxygen species contribute to the pathogenesis of a number of disparate disorders including tissue inflammation, heart failure, hypertension, and atherosclerosis. In response to oxidative stress, cells activate expression of a number of genes, including those required for the detoxification of reactive molecules as well as for the repair and maintenance of cellular homeostasis. In many cases, these induced genes are regulated by transcription factors whose structure, subcellular localization, or affinity for DNA is directly or indirectly regulated by the level of oxidative stress. This review summarizes the recent progress on how cellular redox status can regulate transcription-factor activity and the implications of this regulation for cardiovascular disease.

  19. Investigation of abrupt degradation of drain current caused by under-gate crack in AlGaN/GaN high electron mobility transistors during high temperature operation stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Chang; Liao, XueYang; Li, RuGuan

    2015-09-28

    In this paper, we investigate the degradation mode and mechanism of AlGaN/GaN based high electron mobility transistors (HEMTs) during high temperature operation (HTO) stress. It demonstrates that there was abrupt degradation mode of drain current during HTO stress. The abrupt degradation is ascribed to the formation of crack under the gate which was the result of the brittle fracture of epilayer based on failure analysis. The origin of the mechanical damage under the gate is further investigated and discussed based on top-down scanning electron microscope, cross section transmission electron microscope and energy dispersive x-ray spectroscopy analysis, and stress simulation. Basedmore » on the coupled analysis of the failure physical feature and stress simulation considering the coefficient of thermal expansion (CTE) mismatch in different materials in gate metals/semiconductor system, the mechanical damage under the gate is related to mechanical stress induced by CTE mismatch in Au/Ti/Mo/GaN system and stress concentration caused by the localized structural damage at the drain side of the gate edge. These results indicate that mechanical stress induced by CTE mismatch of materials inside the device plays great important role on the reliability of AlGaN/GaN HEMTs during HTO stress.« less

  20. 16 CFR 1207.5 - Design.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pool slide shall be such that no structural failures of any component part shall cause failures of any... such fasteners shall not cause a failure of the tread under the ladder loading conditions specified in... without failure or permanent deformation. (d) Handrails. Swimming pool slide ladders shall be equipped...

  1. 16 CFR 1207.5 - Design.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pool slide shall be such that no structural failures of any component part shall cause failures of any... such fasteners shall not cause a failure of the tread under the ladder loading conditions specified in... without failure or permanent deformation. (d) Handrails. Swimming pool slide ladders shall be equipped...

  2. Effect of Joule heating and current crowding on electromigration in mobile technology

    NASA Astrophysics Data System (ADS)

    Tu, K. N.; Liu, Yingxia; Li, Menglu

    2017-03-01

    In the present era of big data and internet of things, the use of microelectronic products in all aspects of our life is manifested by the ubiquitous presence of mobile devices as i-phones and wearable i-products. These devices are facing the need for higher power and greater functionality applications such as in i-health, yet they are limited by physical size. At the moment, software (Apps) is much ahead of hardware in mobile technology. To advance hardware, the end of Moore's law in two-dimensional integrated circuits can be extended by three-dimensional integrated circuits (3D ICs). The concept of 3D ICs has been with us for more than ten years. The challenge in 3D IC technology is dense packing by using both vertical and horizontal interconnections. Mass production of 3D IC devices is behind schedule due to cost because of low yield and uncertain reliability. Joule heating is serious in a dense structure because of heat generation and dissipation. A change of reliability paradigm has advanced from failure at a specific circuit component to failure at a system level weak-link. Currently, the electronic industry is introducing 3D IC devices in mainframe computers, where cost is not an issue, for the purpose of collecting field data of failure, especially the effect of Joule heating and current crowding on electromigration. This review will concentrate on the positive feedback between Joule heating and electromigration, resulting in an accelerated system level weak-link failure. A new driving force of electromigration, the electric potential gradient force due to current crowding, will be reviewed critically. The induced failure tends to occur in the low current density region.

  3. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.

    PubMed

    Christensen, Kyle; Davis, Brian; Jin, Yifei; Huang, Yong

    2018-08-01

    Additive manufacturing, or 3D printing, is a promising approach for the fabrication of biological structures for regenerative medicine applications using tissue-like materials such as hydrogels. Herein, inkjet printing is implemented as a model droplet-based 3D printing technology for which interfaces have been shown to form between printed lines within printed layers of hydrogel structures. Experimental samples with interfaces in two orientations are fabricated by inkjet printing and control samples with and without interfaces are fabricated by extrusion printing and casting, respectively. The formation of partial and full interfaces is modeled in terms of printing conditions and gelation parameters, and an approach to predicting the ratio of interfacial area to the total contact area between two adjacent lines is presented. Digital image correlation is used to determine strain distributions and identify regions of increased localized deformation for samples under uniaxial tension. Despite the presence of interfaces in inkjet-printed samples, strain distributions are found to be homogeneous regardless of interface orientation, which may be attributed to the multi-layer nature of samples. Conversely, single-layer extrusion-printed samples exhibit localized regions of increased deformation between printed lines, indicating delamination along interfaces. The effective stiffness, failure strength, and failure strain of inkjet-printed samples are found to be dependent on the orientation of interfaces within layers. Specifically, inkjet-printed samples in which tensile forces pull apart interfaces exhibit significantly decreased mechanical properties compared to cast samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complexmore » in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.« less

  5. An Examination of Radiation Induced Tensile Failure of Stressed and Unstressed Polymer Films Flown on MISSE-6

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K.; Sechkar, Edward A.

    2012-01-01

    Thin film polymers are used in many spacecraft applications for thermal control (multilayer insulation and sunshields), as lightweight structural members (solar array blankets, inflatable/deployable structures) and have been proposed for propulsion (solar sails). Polymers in these applications are often under a tensile load and are directly exposed to the space environment, therefore it is important to understand the effect of stress in combination with the environment on the durability of these polymer films. The purpose of the Polymer Film Tensile Experiment, flown as part of Materials International Space Station Experiment 6 (MISSE 6), was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. This paper describes the results of post flight tensile testing of these samples.

  6. I2 basal stacking fault as a degradation mechanism in reverse gate-biased AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Lang, A. C.; Hart, J. L.; Wen, J. G.; Miller, D. J.; Meyer, D. J.; Taheri, M. L.

    2016-09-01

    Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an I2 basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.

  7. Intramyocardial injection of SERCA2a-expressing lentivirus improves myocardial function in doxorubicin-induced heart failure.

    PubMed

    Mattila, Minttu; Koskenvuo, Juha; Söderström, Mirva; Eerola, Kim; Savontaus, Mikko

    2016-07-01

    Doxorubicin is an effective anticancer drug. The major limitation to its use is the induction of dose-dependent cardiomyopathy. No specific treatment exists for doxorubicin-induced cardiomyopathy and treatments used for other forms of heart failure have only limited beneficial effects. The contraction-relaxation cycle of the heart is controlled by cytosolic calcium concentrations, which, in turn, are critically regulated by the activity of the sarcoplasmic reticulum Ca(2) (+) ATPase (SERCA2a) pump. We hypothesized that SERCA2a gene transfer would ameliorate doxorubicin-induced cardiomyopathy. Lentiviral vectors LV-SERCA2a-GFP and LV-GFP were constructed and in vitro gene transfer of LV-SERCA2a-GFP confirmed SERCA2a expression by western blot analysis. Heart failure was induced by giving a single intraperitoneal injection of doxorubicin. LV-SERCA2a-GFP, LV-GFP vectors and phosphate-buffered saline (PBS) were injected under echocardiographic control to the anterior wall of the left ventricle. Echocardiography analyses were performed on the injection day and 28 days postinjection. On the injection day, there were no significant differences in the average ejection fractions (EFs) among SERCA2a (40.0%), GFP (41.1%) and PBS (39.4%) injected animals. On day 28, EF in the SERCA2a group had increased by 16.6 ± 6.7% to 46.4 ± 2.1%. By contrast, EFs in the GFP (40.2 ± 1.3%) and PBS (40.6 ± 1.4%) groups remained at pre-injection levels. In addition, end systolic and end diastolic left ventricle volumes were significantly smaller in the SERCA2a group compared to controls. SERCA2a gene transfer significantly improves left ventricle function and dimensions in doxorubicin-induced cardiomyopathy, thus making LV-SERCA2a gene transfer an attractive treatment modality for doxorubicin-induced heart failure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Shu-Fang; Jin, Shi-Yun; Wu, Hao

    Preconditioning against myocardial ischemia–reperfusion (I/R) injury can be suppressed in some pathological conditions. This study was designed to investigate whether morphine preconditioning (MPC) exerts cardioprotection in doxorubicin (DOX)-induced heart failure in rats and the mechanisms involved. Phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt), extracellular signal-regulated kinase (ERK) and glycogen synthase kinase (GSK)-3β pathways were examined. Normal and DOX-induced failing rat hearts were subjected to I/R injury using a Langendorff perfusion system with or without MPC or ischemic preconditioning (IPC). The PI3K inhibitor (wortmannin) or ERK inhibitor (PD98059) was infused before MPC. In normal hearts, both MPC and IPC significantly reduced infarct sizemore » and the rise in lactate dehydrogenase (LDH) level caused by I/R injury. Pretreatment with wortmannin or PD98059 abrogated the protective effects of MPC and suppressed the phosphorylation of Akt, ERK and GSK-3β. In failing rat hearts, however, MPC retained its cardioprotection while IPC did not. This protective effect was abolished by PD98059 but not wortmannin. MPC increased the level of p-ERK rather than p-Akt. The phosphorylation of GSK-3β induced by MPC was reversed by PD98059 only. IPC did not elevate the expression of p-ERK, p-Akt and p-GSK-3β in failing rat hearts. We conclude that MPC is cardioprotective in rats with DOX-induced heart failure while IPC is not. The effect of MPC appears to be mediated via the ERK/GSK-3β pathway independent of PI3K/Akt. - Highlights: • Morphine and ischemic preconditioning are cardioprotective in normal rat hearts. • Ischemic preconditioning fails to confer cardioprotection in rats with heart failure. • Morphine retains cardioprotection in doxorubicin-induced heart failure. • Morphine exerts cardioprotection via the ERK/GSK-β pathway independent of PI3K/Akt.« less

  9. A Novel AKT Activator, SC79, Prevents Acute Hepatic Failure Induced by Fas-Mediated Apoptosis of Hepatocytes.

    PubMed

    Liu, Wei; Jing, Zhen-Tang; Wu, Shu-Xiang; He, Yun; Lin, Yan-Ting; Chen, Wan-Nan; Lin, Xin-Jian; Lin, Xu

    2018-05-01

    Acute liver failure is a serious clinical problem of which the underlying pathogenesis remains unclear and for which effective therapies are lacking. The Fas receptor/ligand system, which is negatively regulated by AKT, is known to play a prominent role in hepatocytic cell death. We hypothesized that AKT activation may represent a strategy to alleviate Fas-induced fulminant liver failure. We report here that a novel AKT activator, SC79, protects hepatocytes from apoptosis induced by agonistic anti-Fas antibody CH11 (for humans) or Jo2 (for mice) and significantly prolongs the survival of mice given a lethal dose of Jo2. Under Fas-signaling stimulation, SC79 inhibited Fas aggregation, prevented the recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 [or FADD-like IL-1β-converting enzyme (FLICE)] into the death-inducing signaling complex (DISC), but SC79 enhanced the recruitment of the long and short isoforms of cellular FLICE-inhibitory protein at the DISC. All of the SC79-induced hepatoprotective and DISC-interruptive effects were confirmed to have been reversed by the Akt inhibitor LY294002. These results strongly indicate that SC79 protects hepatocytes from Fas-induced fatal hepatic apoptosis. The potent alleviation of Fas-mediated hepatotoxicity by the relatively safe drug SC79 highlights the potential of our findings for immediate hepatoprotective translation. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Moxonidine-induced central sympathoinhibition improves prognosis in rats with hypertensive heart failure.

    PubMed

    Honda, Nobuhiro; Hirooka, Yoshitaka; Ito, Koji; Matsukawa, Ryuichi; Shinohara, Keisuke; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji

    2013-11-01

    Enhanced central sympathetic outflow is an indicator of the prognosis of heart failure. Although the central sympatholytic drug moxonidine is an established therapeutic strategy for hypertension, its benefits for hypertensive heart failure are poorly understood. In the present study, we investigated the effects of central sympathoinhibition by intracerebral infusion of moxonidine on survival in a rat model of hypertensive heart failure and the possible mechanisms involved. As a model of hypertensive heart failure, we fed Dahl salt-sensitive rats an 8% NaCl diet from 7 weeks of age. Intracerebroventricular (ICV) infusion of moxonidine (moxonidine-ICV-treated group [Mox-ICV]) or vehicle (vehicle-ICV-treated group [Veh-ICV]) was performed at 14-20 weeks of age, during the increased heart failure phase. Survival rates were examined, and sympathetic activity, left ventricular function and remodelling, and brain oxidative stress were measured. Hypertension and left ventricular hypertrophy were established by 13 weeks of age. At around 20 weeks of age, Veh-ICV rats exhibited overt heart failure concomitant with increased urinary norepinephrine (uNE) excretion as an index of sympathetic activity, dilated left ventricle, decreased percentage fractional shortening, and myocardial fibrosis. Survival rates at 21 weeks of age (n = 28) were only 23% in Veh-ICV rats, and 76% (n = 17) in Mox-ICV rats with concomitant decreases in uNE, myocardial fibrosis, collagen type I/III ratio, brain oxidative stress, and suppressed left ventricular dysfunction. Moxonidine-induced central sympathoinhibition attenuated brain oxidative stress, prevented cardiac dysfunction and remodelling, and improved the prognosis in rats with hypertensive heart failure. Central sympathoinhibition can be effective for the treatment of hypertensive heart failure.

  11. Primary investigation the impacts of the external memory (DDR3) failures on the performance of Xilinx Zynq-7010 SoC based system (MicroZed) using laser irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Shuhuan; Du, Xuecheng; Du, Xiaozhi; Zhang, Yao; Mubashiru, Lawal Olarewaju; Luo, Dongyang; yuan, Yuan; Deng, Tianxiang; Li, Zhuoqi; Zang, Hang; Li, Yonghong; He, Chaohui; Ma, Yingqi; Shangguan, Shipeng

    2017-09-01

    The impacts of the external dynamic memory (DDR3) failures on the performance of 28 nm Xilinx Zynq-7010 SoC based system (MicroZed) were investigated with two sets of 1064 nm laser platforms. The failure sensitive area distributionsons on the back surface of the test DDR3 were primarily localized with a CW laser irradiation platform. During the CW laser scanning on the back surface of the DDR3 of the test board system, various failure modes except SEU and SEL (MBU, SEFI, data storage address error, rebooting, etc) were found in the testing embedded modules (ALU, PL, Register, Cache and DMA, etc) of SoC. Moreover, the experimental results demonstrated that there were 16 failure sensitive blocks symmetrically distributed on the back surface of the DDR3 with every sensitive block area measured was about 1 mm × 0.5 mm. The influence factors on the failure modes of the embedded modules were primarily analyzed and the SEE characteristics of DDR3 induced by the picoseconds pulsed laser were tested. The failure modes of DDR3 found were SEU, SEFI, SEL, test board rebooting by itself, unknown data, etc. Furthermore, the time interval distributions of failure occurrence in DDR3 changes with the pulsed laser irradiation energy and the CPU operating frequency were measured and compared. Meanwhile, the failure characteristics of DDR3 induced by pulsed laser irradiation were primarily explored. The measured results and the testing techniques designed in this paper provide some reference information for evaluating the reliability of the test system or other similar electronic system in harsh environment.

  12. Structural Analysis for the American Airlines Flight 587 Accident Investigation: Global Analysis

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Lovejoy, Andrew E.; Hilburger, Mark W.; Moore, David F.

    2005-01-01

    NASA Langley Research Center (LaRC) supported the National Transportation Safety Board (NTSB) in the American Airlines Flight 587 accident investigation due to LaRC's expertise in high-fidelity structural analysis and testing of composite structures and materials. A Global Analysis Team from LaRC reviewed the manufacturer s design and certification procedures, developed finite element models and conducted structural analyses, and participated jointly with the NTSB and Airbus in subcomponent tests conducted at Airbus in Hamburg, Germany. The Global Analysis Team identified no significant or obvious deficiencies in the Airbus certification and design methods. Analysis results from the LaRC team indicated that the most-likely failure scenario was failure initiation at the right rear main attachment fitting (lug), followed by an unstable progression of failure of all fin-to-fuselage attachments and separation of the VTP from the aircraft. Additionally, analysis results indicated that failure initiates at the final observed maximum fin loading condition in the accident, when the VTP was subjected to loads that were at minimum 1.92 times the design limit load condition for certification. For certification, the VTP is only required to support loads of 1.5 times design limit load without catastrophic failure. The maximum loading during the accident was shown to significantly exceed the certification requirement. Thus, the structure appeared to perform in a manner consistent with its design and certification, and failure is attributed to VTP loads greater than expected.

  13. Structural and Functional Phenotyping of the Failing Heart: Is the Left Ventricular Ejection Fraction Obsolete?

    PubMed

    Bristow, Michael R; Kao, David P; Breathett, Khadijah K; Altman, Natasha L; Gorcsan, John; Gill, Edward A; Lowes, Brian D; Gilbert, Edward M; Quaife, Robert A; Mann, Douglas L

    2017-11-01

    Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Pre-configured polyhedron based protection against multi-link failures in optical mesh networks.

    PubMed

    Huang, Shanguo; Guo, Bingli; Li, Xin; Zhang, Jie; Zhao, Yongli; Gu, Wanyi

    2014-02-10

    This paper focuses on random multi-link failures protection in optical mesh networks, instead of single, the dual or sequential failures of previous studies. Spare resource efficiency and failure robustness are major concerns in link protection strategy designing and a k-regular and k-edge connected structure is proved to be one of the optimal solutions for link protection network. Based on this, a novel pre-configured polyhedron based protection structure is proposed, and it could provide protection for both simultaneous and sequential random link failures with improved spare resource efficiency. Its performance is evaluated in terms of spare resource consumption, recovery rate and average recovery path length, as well as compared with ring based and subgraph protection under probabilistic link failure scenarios. Results show the proposed novel link protection approach has better performance than previous works.

  15. Biomechanical properties of the thoracic aorta in Marfan patients

    PubMed Central

    Sulejmani, Fatiesa; Pokutta-Paskaleva, Anastassia; Ziganshin, Bulat; Leshnower, Bradley; Iannucci, Glen; Elefteriades, John

    2017-01-01

    Background Marfan syndrome (MFS), a genetic disorder of the connective tissue, has been strongly linked to dilation of the thoracic aorta, among other cardiovascular complications. As a result, MFS patients frequently suffer from aortic dissection and rupture, contributing to the high rate of mortality and morbidity among MFS patients. Despite the significant effort devoted to the investigation of mechanical and structural properties of aneurysmal tissue, studies on Marfan aneurysmal biomechanics are scarce. Ex vivo mechanical characterization of MFS aneurysmal tissue can provide a better insight into tissue strength outside the physiologic loading range and serve as a basis for improved risk assessment and failure prediction. Methods The mechanical and microstructural properties of MFS aneurysmal thoracic aorta (MFS, n=15, 39.5±3.91 years), non-MFS aneurysmal thoracic aorta (TAA, n=8, 52.8±4.9 years), healthy human thoracic aorta (HH, n=8, 75.4±6.1 years), and porcine thoracic aorta (n=10) are investigated. Planar biaxial tensile testing and uniaxial failure testing were utilized to characterize the mechanical and failure properties of the tissue, respectively. Verhoeff-Van Gieson (VVG) and PicroSirius Red stains were utilized to visualize the elastin and collagen fiber architecture, respectively. Results MFS tissue was found to have age-dependent but diameter-independent mechanical, structural, and morphological properties, also showing extensive elastin fiber degradation. Non-MFS thoracic aneurysmal aorta was thicker and stiffer than age-matched MFS tissue. Moreover, non-MFS thoracic aneurysmal mechanics resembled closely the mechanics of older healthy human tissue. Younger MFS tissue (<40 years) exhibited similar mechanical and structural properties to aged porcine tissue. Conclusions Both age and aneurysmal presence were found to be factors associated with increased stiffness in aortic tissue, and aortic diameter was not a significant determinant of mechanical property deterioration. Additionally, the presence of MFS was found to induce stiffening of the thoracic aorta, although not to the extent of the non-MFS aneurysm. PMID:29270373

  16. Morphologic Risk Factors in Predicting Symptomatic Structural Failure of Arthroscopic Rotator Cuff Repairs: Tear Size, Location, and Atrophy Matter.

    PubMed

    Gasbarro, Gregory; Ye, Jason; Newsome, Hillary; Jiang, Kevin; Wright, Vonda; Vyas, Dharmesh; Irrgang, James J; Musahl, Volker

    2016-10-01

    To evaluate whether morphologic characteristics of rotator cuff tear have prognostic value in determining symptomatic structural failure of arthroscopic rotator cuff repair independent of age or gender. Arthroscopic rotator cuff repair cases performed by five fellowship-trained surgeons at our institution from 2006 to 2013 were retrospectively reviewed. Data extraction included demographics, comorbidities, repair technique, clinical examination, and radiographic findings. Failure in symptomatic patients was defined as structural defect on postoperative magnetic resonance imaging or pseudoparalysis on examination. Failures were age and gender matched with successful repairs in a 1:2 ratio. A total of 30 failures and 60 controls were identified. Supraspinatus atrophy (P = .03) and tear size (18.3 mm failures v 13.9 mm controls; P = .02) were significant risk factors for failure, as was the presence of an infraspinatus tear greater than 10 mm (62% v 17%, P < .01). Single-row repair (P = .06) and simple suture configuration (P = .17) were more common but similar between groups. Diabetes mellitus and active tobacco use were not significantly associated with increased failure risk but psychiatric medication use was more frequent in the failure group. This study confirms previous suspicions that tear size and fatty infiltration are associated with failure of arthroscopic rotator cuff repair but independent of age or gender in symptomatic patients. There is also a quantitative cutoff on magnetic resonance imaging for the size of infraspinatus involvement that can be used clinically as a predicting factor. Although reported in the literature, smoking and diabetes were not associated with failure. Level III, retrospective case control. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. The Use of Probabilistic Methods to Evaluate the Systems Impact of Component Design Improvements on Large Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Packard, Michael H.

    2002-01-01

    Probabilistic Structural Analysis (PSA) is now commonly used for predicting the distribution of time/cycles to failure of turbine blades and other engine components. These distributions are typically based on fatigue/fracture and creep failure modes of these components. Additionally, reliability analysis is used for taking test data related to particular failure modes and calculating failure rate distributions of electronic and electromechanical components. How can these individual failure time distributions of structural, electronic and electromechanical component failure modes be effectively combined into a top level model for overall system evaluation of component upgrades, changes in maintenance intervals, or line replaceable unit (LRU) redesign? This paper shows an example of how various probabilistic failure predictions for turbine engine components can be evaluated and combined to show their effect on overall engine performance. A generic model of a turbofan engine was modeled using various Probabilistic Risk Assessment (PRA) tools (Quantitative Risk Assessment Software (QRAS) etc.). Hypothetical PSA results for a number of structural components along with mitigation factors that would restrict the failure mode from propagating to a Loss of Mission (LOM) failure were used in the models. The output of this program includes an overall failure distribution for LOM of the system. The rank and contribution to the overall Mission Success (MS) is also given for each failure mode and each subsystem. This application methodology demonstrates the effectiveness of PRA for assessing the performance of large turbine engines. Additionally, the effects of system changes and upgrades, the application of different maintenance intervals, inclusion of new sensor detection of faults and other upgrades were evaluated in determining overall turbine engine reliability.

  18. Acute Liver Failure During Deferasirox Chelation: A Toxicity Worth Considering.

    PubMed

    Menaker, Nathan; Halligan, Katharine; Shur, Natasha; Paige, John; Hickling, Matthew; Nepo, Anne; Weintraub, Lauren

    2017-04-01

    This case report details a unique case of acute, reversible liver failure in a 12-year-old male with sickle cell anemia on chronic transfusion protocol and deferasirox chelation. There is substantial literature documenting deferasirox-induced renal injury, including Fanconi syndrome, but less documentation of hepatic toxicity and few reports of hepatic failure. The case highlights the importance of close monitoring of ferritin, bilirubin, and transaminases for patients on deferasirox.

  19. Single-event burnout of n-p-n bipolar-junction transistors in hybrid DC/DC converters

    NASA Astrophysics Data System (ADS)

    Warren, K.; Roth, D.; Kinnison, J.; Pappalardo, R.

    2002-12-01

    Single-event-induced failure of the Lambda Advanced Analog AMF2805S DC/DC Converter has been traced to burnout of an n-p-n transistor in the MOSFET drive stage. The failures were observed during testing while in inhibit mode only. Modifications to prevent burnout of the drive stage were successfully employed. A discussion of the failure mechanism and consequences for DC/DC converter testing are presented.

  20. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline

    USDA-ARS?s Scientific Manuscript database

    Ecosystems worldwide are facing increasingly severe and prolonged droughts during which hydraulic failure from drought-induced embolism can lead to organ or whole plant death. Understanding the determinants of xylem failure across species is critical especially in leaves, the engine of plant growth....

  1. A1M Ameliorates Preeclampsia-Like Symptoms in Placenta and Kidney Induced by Cell-Free Fetal Hemoglobin in Rabbit

    PubMed Central

    Axelsson, Josefin; Larsson, Irene; Johansson, Martin; Wester-Rosenlöf, Lena; Mörgelin, Matthias; Casslén, Vera; Gram, Magnus; Åkerström, Bo; Hansson, Stefan R.

    2015-01-01

    Preeclampsia is one of the most serious pregnancy-related diseases and clinically manifests as hypertension and proteinuria after 20 gestational weeks. The worldwide prevalence is 3-8% of pregnancies, making it the most common cause of maternal and fetal morbidity and mortality. Preeclampsia lacks an effective therapy, and the only “cure” is delivery. We have previously shown that increased synthesis and accumulation of cell-free fetal hemoglobin (HbF) in the placenta is important in the pathophysiology of preeclampsia. Extracellular hemoglobin (Hb) and its metabolites induce oxidative stress, which may lead to acute renal failure and vascular dysfunction seen in preeclampsia. The human endogenous protein, α1-microglobulin (A1M), removes cell-free heme-groups and induces natural tissue repair mechanisms. Exogenously administered A1M has been shown to alleviate the effects of Hb-induced oxidative stress in rat kidneys. Here we attempted to establish an animal model mimicking the human symptoms at stage two of preeclampsia by administering species-specific cell-free HbF starting mid-gestation until term, and evaluated the therapeutic effect of A1M on the induced symptoms. Female pregnant rabbits received HbF infusions i.v. with or without A1M every second day from gestational day 20. The HbF-infused animals developed proteinuria and a significantly increased glomerular sieving coefficient in kidney that was ameliorated by co-administration of A1M. Transmission electron microscopy analysis of kidney and placenta showed both intracellular and extracellular tissue damages after HbF-treatment, while A1M co-administration resulted in a significant reduction of the structural and cellular changes. Neither of the HbF-treated animals displayed any changes in blood pressure during pregnancy. In conclusion, infusion of cell-free HbF in the pregnant rabbits induced tissue damage and organ failure similar to those seen in preeclampsia, and was restored by co-administration of A1M. This study provides preclinical evidence supporting further examination of A1M as a potential new therapy for preeclampsia. PMID:25955715

  2. Acute effect of L-arginine on hemodynamics and vascular capacitance in the canine pacing model of heart failure.

    PubMed

    Ogilvie, R I; Zborowska-Sluis, D

    1995-09-01

    The effect of L-arginine, 250 mg/kg over 10 min, on hemodynamics and venous function was studied in nine splenectomized dogs under light pentobarbital anesthesia before and after 17 +/- 1 days of rapid right ventricular pacing (RRVP) at 250 beats/min. Chronic RRVP induced mild congestive heart failure with increased mean circulatory filling (Pmcf), right atrial (Pra) and pulmonary capillary wedge pressures (Ppcw), and reduced cardiac output (CO). During the development of heart failure, total vascular compliance assessed from Pmcf-blood volume relationships during circulatory arrest was unchanged, but total vascular capacitance was markedly reduced, with an increase in stressed and reduction in unstressed blood volumes. At baseline but not after RRVP, L-arginine increased CO and reduced pulmonary vascular resistance. There were no significant changes in Pra, Ppcw, or total peripheral resistance. L-Arginine failed to alter total vascular compliance and capacitance or central blood volume in the baseline or failure state. These results do not support the hypothesis that increased Pmcf and reduced total vascular capacitance in the early stages of pacing-induced heart failure are caused by reduced substrate availability for or an endogenous competitive antagonist of NO synthase in venous endothelial cells.

  3. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

  4. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

    PubMed Central

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J.; Rau, Christoph D.; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M.; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2015-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  5. A performance study of unmanned aerial vehicle-based sensor networks under cyber attack

    NASA Astrophysics Data System (ADS)

    Puchaty, Ethan M.

    In UAV-based sensor networks, an emerging area of interest is the performance of these networks under cyber attack. This study seeks to evaluate the performance trade-offs from a System-of-Systems (SoS) perspective between various UAV communications architecture options in the context two missions: tracking ballistic missiles and tracking insurgents. An agent-based discrete event simulation is used to model a sensor communication network consisting of UAVs, military communications satellites, ground relay stations, and a mission control center. Network susceptibility to cyber attack is modeled with probabilistic failures and induced data variability, with performance metrics focusing on information availability, latency, and trustworthiness. Results demonstrated that using UAVs as routers increased network availability with a minimal latency penalty and communications satellite networks were best for long distance operations. Redundancy in the number of links between communication nodes helped mitigate cyber-caused link failures and add robustness in cases of induced data variability by an adversary. However, when failures were not independent, redundancy and UAV routing were detrimental in some cases to network performance. Sensitivity studies indicated that long cyber-caused downtimes and increasing failure dependencies resulted in build-ups of failures and caused significant degradations in network performance.

  6. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  7. Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2005-01-01

    The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.

  8. 77 FR 6945 - Special Conditions: Learjet Inc., Learjet Model LJ-200-1A10; Interaction of Systems and Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... the system responses and performances. They cannot be considered in isolation but should be included... maintained. (iv) Failures of the system that result in forced structural vibrations (oscillatory failures...

  9. Probability of failure prediction for step-stress fatigue under sine or random stress

    NASA Technical Reports Server (NTRS)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  10. The effects of visceral obesity and androgens on bone: trenbolone protects against loss of femoral bone mineral density and structural strength in viscerally obese and testosterone-deficient male rats.

    PubMed

    Donner, D G; Elliott, G E; Beck, B R; Forwood, M R; Du Toit, E F

    2016-03-01

    In males, visceral obesity and androgen deficiency often present together and result in harmful effects on bone. Our findings show that both factors are independently associated with adverse effects on femoral bone structure and strength, and trenbolone protects rats from diet-induced visceral obesity and consequently normalises femoral bone structural strength. In light of the rapidly increasing incidence of obesity and osteoporosis globally, and recent conjecture regarding the effects of visceral adiposity and testosterone deficiency on bone health, we investigated the effects of increased visceral adipose tissue (VAT) mass on femoral bone mineral density (BMD), structure and strength in normal weight rats with testosterone deficiency. Male Wistar rats (n = 50) were fed either standard rat chow (CTRL, n = 10) or a high-fat/high-sugar diet (HF/HS, n = 40). Following 8 weeks of feeding, rats underwent sham surgery (CTRL, n = 10; HF/HS, n = 10) or orchiectomy (HF/HS + ORX, n = 30). Following a 4-week recovery period, mini-osmotic pumps containing either vehicle (CTRL, n = 10; HF/HS, n = 10; HF/HS + ORX, n = 10), 2.0 mg kg day(-1), testosterone (HF/HS + ORX + TEST, n = 10) or 2.0 mg kg day(-1) trenbolone (HF/HS + ORX + TREN, n = 10) were implanted for 8 weeks of treatment. Dual-energy X-ray absorptiometry and three-point bending tests were used to assess bone mass, structure and strength of femora. Diet-induced visceral obesity resulted in decreased bone mineral area (BMA) and content (BMC) and impaired femoral stiffness and strength. Orchiectomy further impaired BMA, BMC and BMD and reduced energy to failure in viscerally obese animals. Both TEST and TREN treatment restored BMA, BMC, BMD and energy to failure. Only TREN reduced visceral adiposity and improved femoral stiffness and strength. Findings support a role for both visceral adiposity and testosterone deficiency as independent risk factors for femoral osteoporosis, adverse bone geometry and impaired bone strength in male rats. Trenbolone may be a more effective candidate for androgen replacement therapy than testosterone in viscerally obese testosterone-deficient males.

  11. Renoprotective effects of Andrographis paniculata (Burm. f.) Nees in rats

    PubMed Central

    Singh, Pratibha; Srivastava, Man Mohan

    2009-01-01

    Background Renal failure is an increasingly common condition with limited treatment options that is causing a major financial and emotional burden on the community. Andrographis paniculata is the plant used in Ayurveda for several remedies. Scientific evidence suggests its versatile biological functions that support its traditional use in the Orient. The plant is claimed to possess immunological, antibacterial, anti-inflammatory, antithrombotic, and hepatoprotective properties. But, to date, there is no study demonstrating the protective effect of A. paniculata on gentamicin-induced renal failure. The present study aims to highlight the first ever reported, antirenal failure activity of A. paniculata. Methods Male Wistar albino rats were divided into three groups: normal control, gentamicin control, and aqueous extract of A. paniculata (200 mg/kg, per oral (p.o.))-treated. The nephrotoxic model was induced by gentamicin (80 mg/kg, intraperitoeal (i.p.)). Blood samples were examined for serum creatinine, serum urea, and blood urea nitrogen after the 10 days of treatment. Results A gentamicin-induced nephrotoxic animal model was successfully prepared. Aqueous extract of A. paniculata attenuated the gentamicin-induced increase in serum creatinine, serum urea, and blood urea nitrogen levels by 176.92%, 106.27%, and 202.90%, respectively. Conclusion The present study reports that the aqueous extract (whole plant) of A. paniculata (Burm. f.) Nees exhibits a significant renoprotective effect in gentamicin-induced nephrotoxicity in male Wistar albino rats. PMID:19736602

  12. Failure analysis of a tool steel torque shaft

    NASA Technical Reports Server (NTRS)

    Reagan, J. R.

    1981-01-01

    A low design load drive shaft used to deliver power from an experimental exhaust heat recovery system to the crankshaft of an experimental diesel truck engine failed during highway testing. An independent testing laboratory analyzed the failure by routine metallography and attributed the failure to fatigue induced by a banded microstructure. Visual examination by NASA of the failed shaft plus the knowledge of the torsional load that it carried pointed to a 100 percent ductile failure with no evidence of fatigue. Scanning electron microscopy confirmed this. Torsional test specimens were produced from pieces of the failed shaft and torsional overload testing produced identical failures to that which had occurred in the truck engine. This pointed to a failure caused by a high overload and although the microstructure was defective it was not the cause of the failure.

  13. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  14. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  15. Construct validity of the Chinese version of the Self-care of Heart Failure Index determined using structural equation modeling.

    PubMed

    Kang, Xiaofeng; Dennison Himmelfarb, Cheryl R; Li, Zheng; Zhang, Jian; Lv, Rong; Guo, Jinyu

    2015-01-01

    The Self-care of Heart Failure Index (SCHFI) is an empirically tested instrument for measuring the self-care of patients with heart failure. The aim of this study was to develop a simplified Chinese version of the SCHFI and provide evidence for its construct validity. A total of 182 Chinese with heart failure were surveyed. A 2-step structural equation modeling procedure was applied to test construct validity. Factor analysis showed 3 factors explaining 43% of the variance. Structural equation model confirmed that self-care maintenance, self-care management, and self-care confidence are indeed indicators of self-care, and self-care confidence was a positive and equally strong predictor of self-care maintenance and self-care management. Moreover, self-care scores were correlated with the Partners in Health Scale, indicating satisfactory concurrent validity. The Chinese version of the SCHFI is a theory-based instrument for assessing self-care of Chinese patients with heart failure.

  16. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    PubMed

    Xu, Dan; Nishimura, Toshi; Nishimura, Sachiko; Zhang, Haili; Zheng, Ming; Guo, Ying-Ying; Masek, Marylin; Michie, Sara A; Glenn, Jeffrey; Peltz, Gary

    2014-04-01

    Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU]) developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po) for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use of chimeric mice in preclinical toxicology studies could improve the safety of candidate medications selected for testing in human participants. Please see later in the article for the Editors' Summary.

  17. An improved approach for flight readiness certification: Probabilistic models for flaw propagation and turbine blade failure. Volume 1: Methodology and applications

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for designs failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.

  18. An improved approach for flight readiness certification: Probabilistic models for flaw propagation and turbine blade failure. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflights systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for design, failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.

  19. On a common critical state in localized and diffuse failure modes

    NASA Astrophysics Data System (ADS)

    Zhu, Huaxiang; Nguyen, Hien N. G.; Nicot, François; Darve, Félix

    2016-10-01

    Accurately modeling the critical state mechanical behavior of granular material largely relies on a better understanding and characterizing the critical state fabric in different failure modes, i.e. localized and diffuse failure modes. In this paper, a mesoscopic scale is introduced, in which the organization of force-transmission paths (force-chains) and cells encompassed by contacts (meso-loops) can be taken into account. Numerical drained biaxial tests using a discrete element method are performed with different initial void ratios, in order to investigate the critical state fabric on the meso-scale in both localized and diffuse failure modes. According to the displacement and strain fields extracted from tests, the failure mode and failure area of each specimen are determined. Then convergent critical state void ratios are observed in failure area of specimens. Different mechanical features of two kinds of meso-structures (force-chains and meso-loops) are investigated, to clarify whether there exists a convergent meso-structure inside the failure area of granular material, as the signature of critical state. Numerical results support a positive answer. Failure area of both localized and diffuse failure modes therefore exhibits the same fabric in critical state. Hence, these two failure modes prove to be homological with respect to the concept of the critical state.

  20. A finite element formulation with combined loadings for shear dominant RC structures.

    DOT National Transportation Integrated Search

    2008-08-01

    Inelastic failure of reinforced concrete (RC) structures under seismic loadings can be due either to loss of flexural, shear or bond : capacity. Specifically, the effect of combined loadings can lead to a complex failure mechanism that plays a vital ...

Top