Science.gov

Sample records for induced vibrational cooling

  1. Flow-induced vibration of component cooling water heat exchangers

    SciTech Connect

    Yeh, Y.S.; Chen, S.S. . Nuclear Engineering Dept.; Argonne National Lab., IL )

    1990-01-01

    This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

  2. Fibre optic sensor based measurements of flow-induced vibration in a liquid metal cooled nuclear reactor set-up

    NASA Astrophysics Data System (ADS)

    De Pauw, B.; Vanlanduit, S.; Van Tichelen, K.; Geernaert, T.; Thienpont, H.; Berghmans, F.

    2017-04-01

    Fuel assembly vibrations in nuclear reactor cores should not be excessive as these can compromise the lifetime of the assembly and lead to safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants. We therefore demonstrate accurate measurements of the vibrations of a fuel assembly in a lead-bismuth eutectic cooled installation with fibre Bragg grating (FBG) based sensors. The use of FBGs in combination with a dedicated sensor integration approach allows accounting for the severe geometrical constraints and providing for the required minimal intrusiveness of the instrumentation, identifying the vibration modes with required accuracy and observing the differences between the vibration amplitudes of the individual fuel pins as well as evidencing a low frequency fuel pin vibration mode resulting from the supports.

  3. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  4. Vibrational Cooling of Photoassociated Homonuclear Cold Molecules

    NASA Astrophysics Data System (ADS)

    Passagem, Henry; Ventura, Paulo; Tallant, Jonathan; Marcassa, Luis

    2015-05-01

    In this work, we produce vibrationally cold homonuclear Rb molecules using spontaneous optical pumping. The vibrationally cooled molecules are produced in three steps. In the first step, we use a photoassociation laser to produce molecules in high vibrational levels of the singlet ground state. Then in a second step, a 50 W broadband laser at 1071 nm, which bandwidth is about 2 nm, is used to transfer the molecules to lower vibrational levels via optical pumping through the excited state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels below ν = 35 . The molecules can be further cooled using a broadband light source near 685 nm. In order to obtain such broadband source, we have used a 5 mW superluminescent diode, which is amplified in a tapered amplifier using a double pass configuration. After the amplification, the spectrum is properly shaped and we end up with about 90 mW distributed in the 682-689 nm range. The final vibrational distribution is probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm operating at 4KHz. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  5. Friction induced rail vibrations

    NASA Astrophysics Data System (ADS)

    Kralov, Ivan; Sinapov, Petko; Nedelchev, Krasimir; Ignatov, Ignat

    2012-11-01

    A model of rail, considered as multiple supported beam, subjected on friction induced vibration is studied in this work using FEM. The model is presented as continuous system and the mass and elastic properties of a real object are taken into account. The friction forces are nonlinear functions of the relative velocity during slipping. The problem is solved using Matlab Simulink.

  6. Flow-Induced Vibration of a Reed in a Channel: Effect of Reed Shape on Convective Heat Transfer with Application to Electronic Cooling

    NASA Astrophysics Data System (ADS)

    Rips, Aaron; Shoele, Kourosh; Glezer, Ari; Mittal, Rajat

    2015-11-01

    Flow-induced vibration of a reed (a thin plate or flag) in a channel can improve heat transfer efficiency in forced convection applications, allowing for more heat transfer for the same fan power. Such systems have wide ranging applications in electronic and power cooling. We investigate the effect of 3D reed shape on heat transfer enhancement. To study 3D effects, we first use 2D fluid-structure interaction (FSI) simulations of an optimized reed (in terms of mass and stiffness) to generate a prescribed reed motion. We then apply that motion to a pseudo 3D reed (i.e. infinitely stiff in the spanwise direction) and study the heat transfer enhancement in a 3D channel. This method allows us to explore a large parameter space exhaustively, and using this method, we examine the effect of several parameters, such as reed planform and spanwise gap, on the heat transfer enhancements for forced convection in a channel. Simulations indicate that these geometrical feature have a significant effect on the vortex dynamics in the wake as well as the heat transfer efficiency. This work was supported by grants from AFOSR, EPRI and NSF.

  7. Angular vibrations of cryogenically cooled double-crystal monochromators.

    PubMed

    Sergueev, I; Döhrmann, R; Horbach, J; Heuer, J

    2016-09-01

    The effect of angular vibrations of the crystals in cryogenically cooled monochromators on the beam performance has been studied theoretically and experimentally. A simple relation between amplitude of the vibrations and size of the focused beam is developed. It is shown that the double-crystal monochromator vibrations affect not only the image size but also the image position along the optical axis. Several methods to measure vibrations with the X-ray beam are explained and analyzed. The methods have been applied to systematically study angular crystal vibrations at monochromators installed at the PETRA III light source. Characteristic values of the amplitudes of angular vibrations for different monochromators are presented.

  8. SHAKE OUT WORKER DUMPING COOLED MOLDS ONTO THE VIBRATING CONVEYOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SHAKE OUT WORKER DUMPING COOLED MOLDS ONTO THE VIBRATING CONVEYOR THAT TRANSPORTS SAND AND CASTINGS TO THE SEPARATION SCREEN. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  9. SHAKE OUT WORKER DUMPING COOLED MOLDS ONTO THE VIBRATING CONVEYOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SHAKE OUT WORKER DUMPING COOLED MOLDS ONTO THE VIBRATING CONVEYOR THAT TRANSPORTS SAND AND CASTINGS TO THE SEPARATION SCREEN. - Southern Ductile Casting Company, Centerville Foundry, 101 Airport Road, Centreville, Bibb County, AL

  10. Continuous Vibrational Cooling of Ground State Rb2

    NASA Astrophysics Data System (ADS)

    Tallant, Jonathan; Marcassa, Luis

    2014-05-01

    The process of photoassociation generally results in a distribution of vibrational levels in the electronic ground state that is energetically close to the dissociation limit. Several schemes have appeared that aim to transfer the population from the higher vibrational levels to lower ones, especially the ground vibrational state. We demonstrate continuous production of vibrationally cooled Rb2 using optical pumping. The vibrationally cooled molecules are produced in three steps. First, we use a dedicated photoassociation laser to produce molecules in high vibrational levels of the X1Σg+ state. Second, a broadband fiber laser at 1071 nm is used to transfer the molecules to lower vibrational levels via optical pumping through the A1Σu+ state. This process transfers the molecules from vibrational levels around ν ~= 113 to a distribution of levels where ν < 35. The molecules may then be further cooled using a broadband superluminescent diode near 685 nm that has its frequency spectrum shaped. The resulting vibrational distributions are probed using resonance-enhanced multiphoton ionization with a pulsed dye laser near 670 nm. The results are presented and compared with theoretical simulations. This work was supported by Fapesp and INCT-IQ.

  11. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    PubMed

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  12. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    NASA Astrophysics Data System (ADS)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  13. Vibration-Induced Droplet Atomization

    NASA Technical Reports Server (NTRS)

    Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.

    1999-01-01

    Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance

  14. System and method of active vibration control for an electro-mechanically cooled device

    DOEpatents

    Lavietes, Anthony D.; Mauger, Joseph; Anderson, Eric H.

    2000-01-01

    A system and method of active vibration control of an electro-mechanically cooled device is disclosed. A cryogenic cooling system is located within an environment. The cooling system is characterized by a vibration transfer function, which requires vibration transfer function coefficients. A vibration controller generates the vibration transfer function coefficients in response to various triggering events. The environments may differ by mounting apparatus, by proximity to vibration generating devices, or by temperature. The triggering event may be powering on the cooling system, reaching an operating temperature, or a reset action. A counterbalance responds to a drive signal generated by the vibration controller, based on the vibration signal and the vibration transfer function, which adjusts vibrations. The method first places a cryogenic cooling system within a first environment and then generates a first set of vibration transfer function coefficients, for a vibration transfer function of the cooling system. Next, the cryogenic cooling system is placed within a second environment and a second set of vibration transfer function coefficients are generated. Then, a counterbalance is driven, based on the vibration transfer function, to reduce vibrations received by a vibration sensitive element.

  15. Vibration Induced Microfluidic Atomization

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie; Qi, Aisha; Friend, James

    2008-11-01

    We demonstrate rapid generation of micron aerosol droplets in a microfluidic device in which a fluid drop is exposed to surface vibration as it sits atop a piezoelectric substrate. Little, however, is understood about the processes by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory and numerical modelling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Droplets form due to the axisymmetric break-up of cylindrical liquid jets ejected as a consequence of interfacial destabilization. Their 10 μm size correlates with the jet radius and the instability wavelength, both determined from a viscous-capillary dominant force balance and confirmed through a numerical solution. With the exception of drops that spread into thin films with thicknesses on the order of the boundary layer dimension, the free surface is always observed to vibrate at the capillary-viscous resonance frequency despite the surface vibration frequency being several orders larger. This is contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation, which has commonly led to spurious predictions in the droplet size.

  16. Chaotic vortex induced vibrations

    SciTech Connect

    Zhao, J.; Sheridan, J.; Leontini, J. S.; Lo Jacono, D.

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  17. Vibrational cooling, heating, and instability in molecular conducting junctions: full counting statistics analysis.

    PubMed

    Simine, Lena; Segal, Dvira

    2012-10-28

    We study current-induced vibrational cooling, heating, and instability in a donor-acceptor rectifying molecular junction using a full counting statistics approach. In our model, electron-hole pair excitations are coupled to a given molecular vibrational mode which is either harmonic or highly anharmonic. This mode may be further coupled to a dissipative thermal environment. Adopting a master equation approach, we confirm the charge and heat exchange fluctuation theorem in the steady-state limit, for both harmonic and anharmonic models. Using simple analytical expressions, we calculate the charge current and several measures for the mode effective temperature. At low bias, we observe the effect of bias-induced cooling of the vibrational mode. At higher bias, the mode effective temperature is higher than the environmental temperature, yet the junction is stable. Beyond that, once the vibrational mode (bias-induced) excitation rate overcomes its relaxation rate, instability occurs. We identify regimes of instability as a function of voltage bias and coupling to an additional phononic thermal bath. Interestingly, we observe a reentrant behavior where an unstable junction can properly behave at a high enough bias. The mechanism for this behavior is discussed.

  18. Vibrational excitation induces double reaction.

    PubMed

    Huang, Kai; Leung, Lydie; Lim, Tingbin; Ning, Zhanyu; Polanyi, John C

    2014-12-23

    Electron-induced reaction at metal surfaces is currently the subject of extensive study. Here, we broaden the range of experimentation to a comparison of vibrational excitation with electronic excitation, for reaction of the same molecule at the same clean metal surface. In a previous study of electron-induced reaction by scanning tunneling microscopy (STM), we examined the dynamics of the concurrent breaking of the two C-I bonds of ortho-diiodobenzene physisorbed on Cu(110). The energy of the incident electron was near the electronic excitation threshold of E0=1.0 eV required to induce this single-electron process. STM has been employed in the present work to study the reaction dynamics at the substantially lower incident electron energies of 0.3 eV, well below the electronic excitation threshold. The observed increase in reaction rate with current was found to be fourth-order, indicative of multistep reagent vibrational excitation, in contrast to the first-order rate dependence found earlier for electronic excitation. The change in mode of excitation was accompanied by altered reaction dynamics, evidenced by a different pattern of binding of the chemisorbed products to the copper surface. We have modeled these altered reaction dynamics by exciting normal modes of vibration that distort the C-I bonds of the physisorbed reagent. Using the same ab initio ground potential-energy surface as in the prior work on electronic excitation, but with only vibrational excitation of the physisorbed reagent in the asymmetric stretch mode of C-I bonds, we obtained the observed alteration in reaction dynamics.

  19. Vibrational Spectroscopy of Sympathetically Cooled CaH^+ Molecular Ions

    NASA Astrophysics Data System (ADS)

    Khanyile, Ncamiso B.; Goeders, James E.; Brown, Kenneth R.

    2013-06-01

    The search for time variation in the fundamental constants of nature such as the fine structure constant(α) and the proton/electron mass ratio(μ), is an area of active research. Comparing the vibrational overtones of CaH^+ with electronic transitions in atoms has been proposed as a means to detect possible time variation of μ Before these precision measurements can be realized, the survey spectroscopy needs to be performed. We describe our experiments using a Coulomb crystal of sympathetically cooled CaH^+ and laser-cooled Ca^+ ions to measure the vibrational overtones by resonance-enhanced multiphoton photo-dissociation (REMPD) in a linear Paul trap. The dissociation of CaH^+ is detected by observing the change in the crystal composition by monitoring the Ca^+ fluorescence. Future single ion experiments for the precision measurement are also discussed. J. Uzan, Rev. Mod. Phys. 75, 403 (2003). M. Kajita and Y. Moriwaki, J. Phys. B: At. Mol. Opt. Phys. 42, 154022(2009).

  20. FE design of vibration protective pads for portable cryogenically cooled infrared imagers

    NASA Astrophysics Data System (ADS)

    Azoulay, Michel; Veprik, Alexander; Babitsky, Vladimir

    2008-04-01

    Design of novel, portable and aurally undetectable cryogenically cooled infrared imagers often relies on compliant vibration protective pads for mounting the integrated dewar-detector-cooler assembly upon the imager's enclosure. Extensive analytical study and experimental effort have shown that for the best acoustic performance the visco-elastic properties of such pads need to be matched with the dynamic properties of the typically undamped enclosure, subjected to the tight limitations imposed on the low frequency cooler-induced line of sight jitter resulting from the oscillations of the gasodynamic torque and compliance of the above pads. Unfortunately, the regular approach to a design of the optimal vibration protective pad does not seem to exist. As a result, the development of the suitable vibration protective pad is widely regarded as a purely empirical process and requires a great deal of experimental trial-and-error effort. The authors are attempting to apply the regular finite element modeling approaches to an optimal design of such vibration protective pads. In doing so, they are making use of the full finite elements models of infrared imager enclosure with vibration mounted integrated dewar-detector-cooler assembly. The optimal geometry and dynamic properties of a compliant layer of vibration protective pad are evaluated using the optimisation procedure with purpose of attenuation the volume velocity of the active radiating surface. The theoretical findings are in fair agreement with the outcomes of the full-scale experimentation.

  1. Controlling vibrational cooling with zero-width resonances: An adiabatic Floquet approach

    NASA Astrophysics Data System (ADS)

    Leclerc, Arnaud; Viennot, David; Jolicard, Georges; Lefebvre, Roland; Atabek, Osman

    2016-10-01

    In molecular photodissociation, some specific combinations of laser parameters (wavelength and intensity) lead to unexpected zero-width resonances (ZWRs) with, in principle, infinite lifetimes. Their potential to induce basic quenching mechanisms has recently been devised in the laser control of vibrational cooling through filtration strategies [O. Atabek et al., Phys. Rev. A 87, 031403(R) (2013), 10.1103/PhysRevA.87.031403]. A full quantum adiabatic control theory based on the adiabatic Floquet Hamiltonian is developed to show how a laser pulse could be envelope-shaped and frequency-chirped so as to protect a given initial vibrational state against dissociation, taking advantage of its continuous transport on the corresponding ZWR all along the pulse duration. As compared with previous control scenarios that actually suffered from nonadiabatic contamination, drastically different and much more efficient filtration goals are achieved. A semiclassical analysis helps us to find and interpret a complete map of ZWRs in the laser parameter plane. In addition, the choice of a given ZWR path, among the complete series identified by the semiclassical approach, turns out to be crucial for the cooling scheme, targeting a single vibrational state population left at the end of the pulse, while all others have almost completely decayed. The illustrative example, which has the potential to be transposed to other diatomics, is Na2 prepared by photoassociation in vibrationally hot but translationally and rotationally cold states.

  2. Vibrational Relaxation of the Aqueous Proton in Acetonitrile: Ultrafast Cluster Cooling and Vibrational Predissociation.

    PubMed

    Ottosson, N; Liu, L; Bakker, H J

    2016-07-28

    We study the ultrafast O-H stretch vibrational relaxation dynamics of protonated water clusters embedded in a matrix of deuterated acetonitrile, using polarization-resolved mid-IR femtosecond spectroscopy. The clusters are produced by mixing triflic (trifluoromethanesulfonic) acid and H2O in molar ratios of 1:1, 1:2, and 1:3, thus varying the degree of hydration of the proton. At all hydration levels the excited O-H stretch vibration of the hydrated proton shows an ultrafast vibrational relaxation with a time constant T1 < 100 fs, leading to an ultrafast local heating of the protonated water cluster. This excess thermal energy, initially highly localized to the region of the excited proton, first re-distributes over the aqueous cluster and then dissipates into the surrounding acetonitrile matrix. For clusters with a triflic acid to H2O ratio of 1:3 these processes occur with time constants of 320 ± 20 fs and 1.4 ± 0.1 ps, respectively. The cooling of the clusters reveals a long-living, underlying transient absorption change with high anisotropy. We argue that this feature stems from the vibrational predissociation of a small fraction of the proton hydration structures, directly following the ultrafast infrared excitation.

  3. Thermally induced vibrations due to internal heat generation

    NASA Astrophysics Data System (ADS)

    Blandino, Joseph Robert

    Virtually all previous research on thermally induced vibrations has investigated vibrations caused by surface heating. This is the first detailed study of a thermally induced vibration caused by surface cooling. The phenomenon is shown to be driven by thermal moments. The thermal moments are caused by convection because the vibrations occur in air but not in a vacuum. A mathematical model was developed to predict the thermal-structural behavior of an internally heated beam. The convection heat transfer for a vibrating beam is complex. In most cases it is neither completely natural nor completely forced convection. The convection heat transfer is a mix of both components. The convection is further complicated by the transition of the airflow along the beam from laminar to turbulent flow. An experimental heat transfer investigation was conducted to determine expressions for the natural and forced convection as functions of both position along the beam and velocity. The results from the model were verified using experimental data for an internally heated beam undergoing thermally induced vibrations. The model was shown to predict the steady-state temperatures accurately. The model adequately predicted the steady-state displacements, although it predicted the displacement histories with some error. The analysis showed that the thermal and structural problems are coupled by the forced convection. Once initiated, the amplitude of the vibration increases until the amplitude is such that the heat removed by convection balances the internal heating. The steady-state amplitude is not affected by the initial displacement of the beam. Thermally induced vibrations of internally heated beams belong to the class of vibrations called self-sustaining oscillations.

  4. Attenuation of cryocooler induced vibration in spaceborne infrared payloads

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Twitto, A.

    2014-01-01

    Recent advancement of operational responsive space programs calls for a development of compact, reliable, low power and vibration free cryogenic cooling for sophisticated infrared payloads. The refrigeration in a typical closed cycle split Stirling linear cryocooler is achieved by a cyclic compression and expansion of a gaseous working agent due to a synchronized reciprocation of electro-dynamically and pneumatically actuated compressor and expander pistons. Attenuation of the cryocooler induced vibration usually relies on the concept of actively assisted momentum cancellation. In a typical dual-piston compressor this objective is achieved by actively synchronizing the motion of oppositely moving piston assemblies; a typical single-piston expander may be counterbalanced by a motorized counter-balancer. The above approach produces complexity, weight, size, high incurred costs and affects reliability. The authors analyze the case of passive attenuation the vibration export induced by the split Stirling linear cryocooler comprised of inline mounted single-piston compressor and expander. Placement of all the moving components onto a common axis results in a single axis consolidation of vibration export and enables use of single tuned dynamic absorber and low frequency vibration mount. From theoretical analysis and full-scale testing, the performance of such vibration protection arrangement is similar to known systems of active vibration cancellation.

  5. Vibration-induced droplet atomization

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan

    The atomization of liquid drops is investigated experimentally using laser vibrometry, high-speed imaging, and particle tracking techniques. The spray is generated by a novel vibration-induced droplet atomization (VIDA) process in which a sessile drop is atomized by an underlying vibrating thin metal diaphragm, resulting in rapid ejection of small secondary droplets from the free surface of the primary drop. Under some conditions, the primary drop can be atomized extremely rapidly by a bursting-like mechanism (e.g., a 0.1 ml water drop can be atomized in 0.4 seconds). The present research has focused on four major areas: global characteristics of VIDA process, instability modes and free surface dynamics of the forced drop, mechanisms of the interface breakup, and parametric characterization of the ensuing spray. Prior to atomization, the drop free surface undergoes three transitions: from axisymmetric standing waves to azimuthal waves, to a newly-observed lattice mode, and to a disordered pre-ejection state. The droplet ejection results from localized collapse of surface troughs and initiation and ultimate breakup of momentary liquid spikes. Breakup begins with capillary pinch-off from spike tips and can be followed by additional pinching of liquid droplets. For a relatively low-viscosity liquid, e.g., water, a capillary-wave instability of the spike is observed in some cases, while for a very viscous liquid, e.g., a glycerin/water solution, the first breakup occurs near the stem of the spike, with or without subsequent breakup of the detached, elongated thread. Different mechanisms dominating the primary breakup of the spike are operative in the low- and high-viscosity ejection regimes. When ejection of the secondary droplets is triggered, the evolution and rate of atomization depend on the coupled dynamics of the primary drop and the vibrating diaphragm. Due to these dynamics, the process can be either self-intensifying or self-decaying. The resulting VIDA spray

  6. [Skull vibration induced nystagmus test].

    PubMed

    Dumas, G; De Waele, C; Hamann, K F; Cohen, B; Negrevergne, M; Ulmer, E; Schmerber, S

    2007-09-01

    To establish during a consensus meeting the fundamental basis, the validity criteria, the main indications and results of the skull vibration induced nystagmus test (SVINT) which explores the vestibule high frequencies. The SVINT is applied on the mastoid process (right and left sides) at 100 Hz during 10 seconds on a sitting upright subject. Total unilateral peripheral lesions (tUVL: operated vestibular shwannomas, vestibular neurectomies) and partial unilateral peripheral lesions (pUVL: preoperative neuromas, Meniere's disease, vestibular neuritis, chemical labyrinthectomies) were studied. Thirty-six patients had brainstem lesions and 173 normal subjects were used as controls. The SVINT is considered positive when the application of the vibrator produces a reproducible sustained nystagmus always beating in the same direction following several trials in various stimulation topographies (on the right and left mastoid). The skull vibratory nystagmus (SVN) begins and ends with the stimulation; the direction of the nystagmus has no secondary reversal. The slow phase velocity (SPV) is>2 degrees /second. In tUVL the SVINT always reveals a lesional nystagmus beating toward the safe side at all frequencies. The mean SVN SPV is 10.8 degrees /s+/-7.5 SD (N=45). The mastoid site was more efficient than the cervical or vertex sites. Mastoïd stimulation efficiency is not correlated with the side of stimulation. The SVN SPV is correlated with the total caloric efficiency on the healthy ear. In pUVL the SVINT is positive in 71 to 76% of cases; the mean SVN. SPV (6.7 degrees /s+/-4.7 SD)(N=30) is significantly lower than in tUVL (P=0.0004). SVINT is positive in 6 to 10% of the normal population, 31% of brain stem lesions and negative in total bilateral vestibular peripheral lesions. SVINT is an effective, rapid and non invasive test used to detect vestibular asymmetry between 20 to 150 Hz stimulation. This test used in important cohorts of patients during the ten last years has

  7. Vibration-induced liquefaction of granular suspensions.

    PubMed

    Hanotin, C; Kiesgen de Richter, S; Marchal, P; Michot, L J; Baravian, C

    2012-05-11

    We investigate the mechanical behavior of granular suspensions subjected to coupled vibrations and shear. At high shear stress, whatever the mechanical vibration energy and bead size, the system behaves like a homogeneous suspension of hard spheres. At low shear stress, in addition to a dependence on bead size, vibration energy drastically influences the viscosity of the material that can decrease by more than 2 orders of magnitude. All experiments can be rationalized by introducing a hydrodynamical Peclet number defined as the ratio between the lubrication stress induced by vibrations and granular pressure. The behavior of vibrated wet and dry granular materials can then be unified by assimilating the hookean stress in dry media to the lubrication stress in suspensions.

  8. Efficient cooling of quantized vibrations using a four-level configuration

    NASA Astrophysics Data System (ADS)

    Yan, Lei-Lei; Zhang, Jian-Qi; Zhang, Shuo; Feng, Mang

    2016-12-01

    Cooling vibrational degrees of freedom down to ground states is essential to observation of quantum properties of systems with mechanical vibration. We propose two cooling schemes employing four internal levels of the systems, which achieve the ground-state cooling in an efficient fashion by completely deleting the carrier and first-order blue-sideband transitions. The schemes, based on quantum interference and Stark-shift gates, are robust to fluctuations of laser intensity and frequency. The feasibility of the schemes is justified using current laboratory technology. In practice, our proposal readily applies to a nanodiamond nitrogen-vacancy center levitated in an optical trap or attached to a cantilever.

  9. Solvent and solvent isotope effects on the vibrational cooling dynamics of a DNA base derivative.

    PubMed

    Middleton, Chris T; Cohen, Boiko; Kohler, Bern

    2007-10-25

    Vibrational cooling by 9-methyladenine was studied in a series of solvents by femtosecond transient absorption spectroscopy. Signals at UV and near-UV probe wavelengths were assigned to hot ground state population created by ultrafast internal conversion following electronic excitation by a 267 nm pump pulse. A characteristic time for vibrational cooling was determined from bleach recovery signals at 250 nm. This time increases progressively in H2O (2.4 ps), D2O (4.2 ps), methanol (4.5 ps), and acetonitrile (13.1 ps), revealing a pronounced solvent effect on the dissipation of excess vibrational energy. The trend also indicates that the rate of cooling is enhanced in solvents with a dense network of hydrogen bonds. The faster rate of cooling seen in H2O vs D2O is noteworthy in view of the similar hydrogen bonding and macroscopic thermal properties of both liquids. We propose that the solvent isotope effect arises from differences in the rates of solute-solvent vibrational energy transfer. Given the similarities of the vibrational friction spectra of H2O and D2O at low frequencies, the solvent isotope effect may indicate that a considerable portion of the excess energy decays by exciting relatively high frequency (>/=700 cm-1) solvent modes.

  10. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    SciTech Connect

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  11. [Scalp cooling for chemotherapy-induced alopecia].

    PubMed

    Komen, Marion M C; Smorenburg, Carolien H; van den Hurk, Corina J G; Nortier, J W R Hans

    2011-01-01

    Alopecia is a very common side effect of cytostatic therapy and is considered one of the most emotionally distressing effects. To prevent alopecia scalp cooling is currently used in some indications in medical oncology in 59 hospitals in the Netherlands. The success of scalp cooling depends on various factors such as type of chemotherapy, dose, infusion time, number of treatment cycles and combinations of drugs. In general, scalp cooling is well tolerated. The reported side-effects are headache, coldness, dizziness and sometimes claustrophobia. An increase in the risk of scalp metastases has not been demonstrated. Proceeding from the South Netherlands Comprehensive Cancer Centre a national working group is put together in order to draw up a national guideline for chemotherapy-induced alopecia.

  12. Bellows flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.

    1983-01-01

    The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.

  13. Vibration syndrome diagnosis using a cooling test verified by computerized photoplethysmography.

    PubMed

    Dyszkiewicz, Andrzej; Tendera, Michał

    2006-04-01

    This study addresses the problem of vibration syndrome diagnosis by means of a cooling test verified by photoplethysmography. Measurement was taken on a small area on the fingertip plexus in which many arterio-venous anastomoses are present. In the opinion of many authors, flow disorders in this area are more typical for developing vibration syndrome than changes in the micro vessels. The study group comprised 128 subjects (58 women aged 40.9 +/- 5.4 years and 70 men aged 38.7 +/- 8.8 years) exposed to vibration. The control group consisted of 41 people (20 women aged 39.6 +/- 7.3 years and 21 men aged 39.3 +/- 6.4 years) who were not exposed to vibration. The patients were examined by a questionnaire and then a vibration perception threshold test and a cooling test were performed. The cooling test was verified both visually and using the computer method. Measurement data (S1, S2 and A) for each patient were obtained from averaging three pulse graphs. We departed from an average of 60 graphs (and more), the standard established in the literature, because of the cooling test specification, which causes huge thermodynamic parameter changeability in the plexus mass of the small finger under pulse waves coming one after another. A longer measurement time will reflect the thermal drift of the tested area in a direction to compensate for the reduced temperature. In the control group, all subjects showed an increase in planimetric indicators during the cooling test verified by computerized photoplethysmography. In the study group visual verification of the cooling test was positive in eight cases (6.2%) and the vibration perception threshold test was positive in seven cases (5.5%), but in computerized photoplethysmography the planimetric indicators decreased after cooling in 87 (67.4%) cases. Computer photoplethysmography is highly specific and shows greater sensitivity in detecting preclinical forms of vascular-type vibration syndrome when compared with palesthesiometry

  14. Vibration-induced drop atomization and bursting

    NASA Astrophysics Data System (ADS)

    James, A. J.; Vukasinovic, B.; Smith, Marc K.; Glezer, A.

    2003-02-01

    A liquid drop placed on a vibrating diaphragm will burst into a fine spray of smaller secondary droplets if it is driven at the proper frequency and amplitude. The process begins when capillary waves appear on the free surface of the drop and then grow in amplitude and complexity as the acceleration amplitude of the diaphragm is slowly increased from zero. When the acceleration of the diaphragm rises above a well-defined critical value, small secondary droplets begin to be ejected from the free-surface wave crests. Then, quite suddenly, the entire volume of the drop is ejected from the vibrating diaphragm in the form of a spray. This event is the result of an interaction between the fluid dynamical process of droplet ejection and the vibrational dynamics of the diaphragm. During droplet ejection, the effective mass of the drop diaphragm system decreases and the resonance frequency of the system increases. If the initial forcing frequency is above the resonance frequency of the system, droplet ejection causes the system to move closer to resonance, which in turn causes more vigorous vibration and faster droplet ejection. This ultimately leads to drop bursting. In this paper, the basic phenomenon of vibration-induced drop atomization and drop bursting will be introduced, demonstrated, and characterized. Experimental results and a simple mathematical model of the process will be presented and used to explain the basic physics of the system.

  15. Flow-induced vibration -- 1996. PVP-Volume 328

    SciTech Connect

    Pettigrew, M.J.; Paidoussis, M.P.; Weaver, D.S.; Au-Yang, M.K.

    1996-12-01

    Although much progress has been made in the last three decades, flow-induced vibration is still the cause of many costly failures in nuclear power plants and process industries. Reasonable design guidelines have been developed to avoid flow-induced problems at the design stage of some areas. However, much work remains to be done in other areas such as two-phase flow-induced vibration, fretting-wear damage prediction, and acoustically induced piping vibration. Hopefully, this Symposium is a significant contribution to understanding vibration excitation mechanisms and to avoiding flow-induced vibration problems. Separate abstracts were prepared for all 45 papers in this volume.

  16. Vortex-induced vibrations of a sphere

    NASA Astrophysics Data System (ADS)

    Govardhan, R. N.; Williamson, C. H. K.

    2005-05-01

    There are many studies on the vortex-induced vibrations of a cylindrical body, but almost none concerned with such vibrations for a sphere, despite the fact that tethered bodies are a common configuration. In this paper, we study the dynamics of an elastically mounted or tethered sphere in a steady flow, employing displacement, force and vorticity measurements. Within a particular range of flow speeds, where the oscillation frequency (f) is of the order of the static-body vortex shedding frequency (f_{vo}), there exist two modes of periodic large-amplitude oscillation, defined as modes I and II, separated by a transition regime exhibiting non-periodic vibration. The dominant wake structure for both modes is a chain of streamwise vortex loops on alternating sides of the wake. Further downstream, the heads of the vortex loops pinch off to form a sequence of vortex rings. We employ an analogy with the lift on an aircraft that is associated with its trailing vortex pair (of strength Gamma(*) and spacing b(*) ), and thereby compute the rate of change of impulse for the streamwise vortex pair, yielding the vortex force coefficient (cvortex): [ cvortex = {8}/{pi} {U^*_{v}}b^*( - Gamma^*). ] This calculation yields predicted forces in reasonable agreement with direct measurements on the sphere. This is significant because it indicates that the principal vorticity dynamics giving rise to vortex-induced vibration for a sphere are the motions of these streamwise vortex pairs. The Griffin plot, showing peak amplitudes as a function of the mass damping (m(*zeta) ), exhibits a good collapse of data, indicating a maximum response of around 0.9 diameters. Following recent studies of cylinder vortex-induced vibration, we deduce the existence of a critical mass ratio, m(*_{crit}) {≈} 0.6, below which large-amplitude vibrations are predicted to persist to infinite normalized velocities. An unexpected large-amplitude and highly periodic mode (mode III) is found at distinctly higher

  17. Laser cooling of vibrational degrees of freedom of a molecular system.

    PubMed

    Banerjee, Sumana; Gangopadhyay, Gautam

    2005-09-15

    We consider the cooling of vibrational degrees of freedom in a photoinduced excited electronic state of a model molecular system. For the various parameters of the potential surfaces of the ground and excited electronic states and depending on the excitation frequency of a single-mode laser light, the average energy or average vibrational temperature of the excited state passes through a minimum. The amount of cooling is quantified in terms of the overlap integral between the ground and excited electronic states of the molecule. We have given an approach to calculate the Franck-Condon factor for a multimode displaced-distorted-rotated oscillator surface of the molecular system. This is subsequently used to study the effect of displacement, distortion, and Duschinsky rotation on the vibrational cooling in the excited state. The absorption spectra and also the average energy or the effective temperature of the excited electronic state are studied for the above model molecular system. Considering the non-Condon effect for the symmetry-forbidden transitions, we have discussed the absorption spectra and average temperature in the excited-state vibrational manifold.

  18. CFD Simulations of Vibration Induced Droplet Ejection.

    NASA Astrophysics Data System (ADS)

    James, Ashley; Smith, Marc K.; Glezer, Ari

    1998-11-01

    Vibration-induced droplet ejection is a process that occurs when a liquid droplet is placed on a vibrating membrane. Above a critical value of the excitation amplitude, Faraday waves form on the surface of the drop. As the amplitude is increased secondary drops are ejected from the wave crests. A Navier-Stokes solver designed to simulate the transient fluid mechanics of the process is presented. The solver is based on a MAC method on a staggered grid. A volume of fluid method is implemented to track the free surface. The volume fraction is advected via a second-order, unsplit method that minimizes numerical diffusion of the interface. Surface tension is incorporated as a continuum surface force. This work is intended to provide a comprehensive description of the fluid dynamics involved in vibration-induced droplet ejection, with the aim of understanding the mechanism behind the ejection process. The evolution of the interface through droplet ejection will be simulated. The dependence of the ejection process on the driving parameters will be evaluated and the resonance characteristics of the drop will be determined. The results of the computations will be compared with experimental results.

  19. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly.

    PubMed

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-04-21

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  20. Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories

    NASA Astrophysics Data System (ADS)

    Shapiro, Brett; Adhikari, Rana X.; Aguiar, Odylio; Bonilla, Edgard; Fan, Danyang; Gan, Litawn; Gomez, Ian; Khandelwal, Sanditi; Lantz, Brian; MacDonald, Tim; Madden-Fong, Dakota

    2017-01-01

    Interferometric gravitational wave observatories recently launched a new field of gravitational wave astronomy with the first detections of gravitational waves in 2015. The number and quality of these detections is limited in part by thermally induced vibrations in the mirrors, which show up as noise in these interferometers. One way to reduce this thermally induced noise is to use low temperature mirrors made of high purity single-crystalline silicon. However, these low temperatures must be achieved without increasing the mechanical vibration of the mirror surface or the vibration of any surface within close proximity to the mirrors. The vibration of either surface can impose a noise inducing phase shift on the light within the interferometer or physically push the mirror through oscillating radiation pressure. This paper proposes a system for the Laser Interferometric Gravitational-wave Observatory (LIGO) to achieve the dual goals of low temperature and low vibration to reduce the thermally induced noise in silicon mirrors. Experimental results are obtained at Stanford University to prove that these dual goals can be realized simultaneously.

  1. Vibrational branching ratios and radiative lifetimes in the laser cooling of AlBr.

    PubMed

    Gao, Yufeng; Wan, Mingjie

    2017-02-15

    The feasibility of laser cooling of the AlBr molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the ground state X(1)Σ(+) and the first two excited states (a(3)Π and A(1)Π) are calculated using the multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with the ACVQZ basis set; the spin-orbit coupling effects are also taken into account in electronic structure calculations at the MRCI level. Based on the acquired potential energy curves and transition dipole moments, highly diagonally distributed Franck-Condon factors (f00 = 0.9540, f11 = 0.8172) and vibrational branching ratios (R00 = 0.9708, R11 = 0.8420) for the transition are determined. Radiative lifetime calculations of the A(1)Π1 (ν' = 0-4) state are found to be short (9.16-11.48 ns) enough for rapid laser cooling. The proposed main cycling laser drives the transition at the wavelength λ00 = 279.19 nm. The vibrational branching loss ratios of the A(1)Π1 (ν') state to the intervening states a(3)Π0(+) and a(3)Π1 are small (<5.2 × 10(-6)) enough to be negligible. The present theoretical results indicate that the AlBr molecule is a promising candidate for laser cooling.

  2. Unsteady Cavity Induced Vibrations of Flexible Hydrofoils

    NASA Astrophysics Data System (ADS)

    Akcabay, Deniz Tolga; Chae, Eun Jung; Young, Yin Lu

    2012-11-01

    The objective of this study is to investigate the dynamic interplay between elastic foil deformation and unsteady sheet/cloud cavitation. Recently, there is increasing interest in the use of light and flexible materials in marine propulsion devices and controlled surfaces, which can deform/vibrate due to un-intentional overload when operating in off-design conditions, or due to intentional passive/active controlled response of the hydrofoil. Numerical studies are conducted by applying a new hybrid coupling approach to efficiently and stably couple a URANS solver with a simplified structural model of the cantilevered, rectangular foil represented by a two degree-of-freedom system. The numerical model is first validated with experimental measurements of a rigid and a plastic NACA 66 hydrofoil. Next, numerical results are shown for plastic NACA 66 hydrofoil with varying mass and stiffness in turbulent subcavitating and cavitating flows. The influence of varying mass and stiffness on the cavitation patterns, vorticity contours and flow streamlines, bending and twisting deformation, and hydrodynamic load coefficients are presented. In particular, results are shown for un-locked and locked-in response due to unsteady sheet/cloud cavitation induced vibration.

  3. Prediction of vibrations induced by underground railway traffic in Beijing

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Liu, W. F.; Degrande, G.; Lombaert, G.; Liu, W. N.

    2008-02-01

    This paper examines the problem of subway induced vibrations on line 4 of Beijing metro, which is currently under construction and is planned to pass in close proximity of the Physics Laboratory of Beijing University. The laboratory has a lot of equipment that is very sensitive to traffic induced vibrations and future operation of metro line 4 is a matter of concern. Hence, it is important to study the influence of subway induced vibrations inside the laboratory and to propose a viable solution to mitigate the vibrations. In this paper, the tunnel north of Chengfulu station is modelled using a coupled periodic FE-BE model and the free-field response due to moving trains is predicted. In addition, vibration measurements have been performed on the site of the Physics Laboratory to estimate the existing vibration levels due to road traffic. The predicted and measured vibrations are superimposed to assess the vibrations due to the combined effect of road and railway traffic in the vicinity of the Physics Laboratory. Apart from the numerical investigations, vibration measurements have also been performed on a similar site at line 1 of Beijing metro to substantiate the estimated results on metro line 4. Finally, it is studied how the vibrations can be controlled using a floating slab track, which is widely used as an effective measure of vibration isolation in tunnels. The efficiency of a 7.9 Hz floating slab track as a vibration countermeasure is assessed in this paper. This study demonstrates the applicability of the numerical model for the relevant assessment of subway induced vibrations and its use to study the performance of different track structures in the tunnel.

  4. An experimental investigation of airflow-induced vibrations within the multiplicity and vertex detector

    SciTech Connect

    Bernardin, J.D.; Bosze, E.; Boissevain, J.; Simon-Gillo, J.

    1997-07-01

    This report summarizes an experimental investigation of vibrations within the multiplicity and vertex detector (MVD). In particular, the maximum displacements of several MVD components were determined from accelerometer measurements of vibrations induced by an electronics air-cooling system. For an MVD inlet air volumetric flow rate of 0.022 m{sup 3}/s, maximum displacements of several MVD components including a multi-chip module, the Rohacell inlet air plenum, and an aluminum structural cross support, were found to be on the order of 1.5 {mu}m. Consequently, it was concluded that air induced vibrations will not significantly interfere with the MVD`s long-term structural integrity or operating performance. 2 refs., 3 figs., 1 tab.

  5. Analgesia by cooling vibration during venipuncture in children with cognitive impairment.

    PubMed

    Schreiber, Silvana; Cozzi, Giorgio; Rutigliano, Rosaria; Assandro, Paola; Tubaro, Martina; Cortellazzo Wiel, Luisa; Ronfani, Luca; Barbi, Egidio

    2016-01-01

    Children with cognitive impairment experience pain more frequently than healthy children and are more likely to require venipuncture or intravenous cannulation for various procedures. They are frequently unable to report pain and often receive poor pain assessment and management. This study assessed the effectiveness of physical analgesia during vascular access in children with cognitive impairments. We conducted a prospective randomised controlled study at a tertiary-level children's hospital in Italy from April to May 2015 to assess whether a cooling vibration device called Buzzy decreased pain during venipuncture and intravenous cannulation in children with cognitive impairment. None of the children had verbal skills and the main cognitive impairments were cerebral palsy, epileptic encephalopathy and genetic syndromes. We tested 70 children with a median age of nine years: 34 in the Buzzy group and 36 in the no-intervention group. Parents were trained in the use of the Noncommunicating Children's Pain Checklist--postoperative version scale, and they reported no or mild procedural pain in 32 cases (91.4%) in the Buzzy group and in 22 cases (61.1%) in the no-intervention group (p = 0.003). Cooling vibration analgesia during vascular access reduced pain in children with cognitive impairment. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Application of NASTRAN to propeller-induced ship vibration

    NASA Technical Reports Server (NTRS)

    Liepins, A. A.; Conaway, J. H.

    1975-01-01

    An application of the NASTRAN program to the analysis of propeller-induced ship vibration is presented. The essentials of the model, the computational procedure, and experience are described. Desirable program enhancements are suggested.

  7. Flow-Induced Vibration of Circular Cylindrical Structures

    SciTech Connect

    Chen, Shoei-Sheng

    1985-06-01

    Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling

  8. Evaluation of Various Cooling Systems After Exercise-Induced Hyperthermia.

    PubMed

    Tan, Pearl M S; Teo, Eunice Y N; Ali, Noreffendy B; Ang, Bryan C H; Iskandar, Iswady; Law, Lydia Y L; Lee, Jason K W

    2017-02-01

    Rapid diagnosis and expeditious cooling of individuals with exertional heat stroke is paramount for survival. To evaluate the efficacy of various cooling systems after exercise-induced hyperthermia. Crossover study. Laboratory. Twenty-two men (age = 24 ± 2 years, height = 1.76 ± 0.07 m, mass = 70.7 ± 9.5 kg) participated. Each participant completed a treadmill walk until body core temperature reached 39.50°C. The treadmill walk was performed at 5.3 km/h on an 8.5% incline for 50 minutes and then at 5.0 km/h until the end of exercise. Each participant experienced 4 cooling phases in a randomized, repeated-crossover design: (1) no cooling (CON), (2) body-cooling unit (BCU), (3) EMCOOLS Flex.Pad (EC), and (4) ThermoSuit (TS). Cooling continued for 30 minutes or until body core temperature reached 38.00°C, whichever occurred earlier. Body core temperature (obtained via an ingestible telemetric temperature sensor) and heart rate were measured continuously during the exercise and cooling phases. Rating of perceived exertion was monitored every 5 minutes during the exercise phase and thermal sensation every minute during the cooling phase. The absolute cooling rate was greatest with TS (0.16°C/min ± 0.06°C/min) followed by EC (0.12°C/min ± 0.04°C/min), BCU (0.09°C/min ± 0.06°C/min), and CON (0.06°C/min ± 0.02°C/min; P < .001). The TS offered a greater cooling rate than all other cooling modalities in this study, whereas EC offered a greater cooling rate than both CON and BCU (P < .0083 for all). Effect-size calculations, however, showed that EC and BCU were not clinically different. These findings provide objective evidence for selecting the most effective cooling system of those we evaluated for cooling individuals with exercise-induced hyperthermia. Nevertheless, factors other than cooling efficacy need to be considered when selecting an appropriate cooling system.

  9. Crowd-induced random vibration of footbridge and vibration control using multiple tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Li, Quan; Fan, Jiansheng; Nie, Jianguo; Li, Quanwang; Chen, Yu

    2010-09-01

    This paper investigates vibration characteristics of footbridge induced by crowd random walking, and presents the application of multiple tuned mass dampers (MTMD) in suppressing crowd-induced vibration. A single foot force model for the vertical component of walking-induced force is developed, avoiding the phase angle inaccessibility of the continuous walking force. Based on the single foot force model, the crowd-footbridge random vibration model, in which pedestrians are modeled as a crowd flow characterized with the average time headway, is developed to consider the worst vibration state of footbridge. In this random vibration model, an analytic formulation is developed to calculate the acceleration power spectral density in arbitrary position of footbridge with arbitrary span layout. Resonant effect is observed as the footbridge natural frequencies fall within the frequency bandwidth of crowd excitation. To suppress the excessive acceleration for human normal walking comfort, a MTMD system is used to improve the footbridge dynamic characteristics. According to the random vibration model, an optimization procedure, based on the minimization of maximum root-mean-square (rms) acceleration of footbridge, is introduced to determine the optimal design parameters of MTMD system. Numerical analysis shows that the proposed MTMD designed by random optimization procedure, is more effective than traditional MTMD design methodology in reducing dynamic response during crowd-footbridge resonance, and that the proper frequency spacing enlargement will effectively reduce the off-tuning effect of MTMD.

  10. Concorde Noise-Induced Building Vibrations, Montgomery County, Maryland

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Scholl, H. F.; Stephens, D. G.; Holliday, B. G.; Deloach, R.; Finley, T. D.; Holmes, H. K.; Lewis, R. B.; Lynch, J. W.

    1976-01-01

    A series of studies are reported to assess the noise induced building vibrations associated with Concorde operations. The levels of induced vibration and associated indoor/outdoor noise levels resulting from aircraft and nonaircraft events in selected homes, historic and other buildings near Dulles International Airport were recorded. The building response resulting from aircraft operations was found to be directly proportional to the overall sound pressure level and approximately independent of the aircraft type. The noise levels and, consequently, the response levels were observed to be higher for the Concorde operations than for the CTOL operations. Furthermore, the vibration could be closely reproduced by playing aircraft noise through a loudspeaker system located near the vibration measurement location. Nonaircraft events such as door closing were again observed to result in higher response levels than those induced by aircraft.

  11. Laser cooling of the vibrational motion of Na{sub 2} combining the effects of zero-width resonances and exceptional points

    SciTech Connect

    Lefebvre, R.; Jaouadi, A.; Dulieu, O.; Atabek, O.

    2011-10-15

    We propose various scenarios for molecular vibrational cooling combining the effects of two kinds of resonance states occurring during the photodissociation of Na{sub 2} taken as an illustrative example. Such resonances result from an appropriate sampling of laser parameters (wavelength and intensity): (a) For particular choices of intensity and wavelength, two resonance energies can be brought to complete coalescence, with their positions and widths becoming equal and leading to a so-called exceptional point (EP) in the parameter plane. Advantage can be taken from such points for very selective laser-controlled vibrational transfer strategies. (b) For specific intensities, far beyond the perturbation regime, some resonances can have a zero width (infinite lifetime). They are referred to as a zero-width resonance (ZWR) and may be used for vibrational purification purposes. We show how appropriately shaped, experimentally reachable laser pulses, encircling EPs or inducing ZWRs, may be used for a thorough and comprehensive control aiming at population transfer or purification schemes, which, starting from an initial field-free vibrational distribution, ends up in the ground vibrational level.

  12. Mechanical Bed for Investigating Sleep-Inducing Vibration

    PubMed Central

    Kuramoto, Akisue; Inui, Yuma

    2017-01-01

    In running cars or trains, passengers often feel sleepy. Our study focuses on this physiological phenomenon. If a machine can reproduce this phenomenon, it is feasible to put a person, such as an insomnia patient or an infant, to sleep without any harmful effects. The results of our previous study suggest that low-frequency vibration induces sleep. This report describes a new mechanical bed for inducing sleep and discusses the effects of different vibration conditions. The new bed has two active DOFs in the vertical and horizontal directions to examine the anisotropy of sensation. The bed includes three main parts: a vertical driver unit, a horizontal driver unit, and a unique 2-DOF counterweight system to reduce driving force and noise. With regard to motion accuracy, the maximum motion error in the vertical direction lifting 75 kg load was only 0.06 mm with a 5.0 mm amplitude of a 0.5 Hz sinusoidal wave. The results of excitation experiments with 10 subjects showed a significant difference in sleep latency between the conditions with vibration and without vibration. Furthermore, the average latency with insensible vibration (amplitude = 2.4 mm) was shorter than that with sensible vibration (amplitude = 7.5 mm). These results suggest the ability of appropriate vibration to induce sleep.

  13. Numerical and theoretical analysis of beam vibration induced acoustic streaming and the associated heat transfer

    NASA Astrophysics Data System (ADS)

    Wan, Qun

    The purpose of this research is to numerically and analytically investigate the acoustic streaming and the associated heat transfer, which are induced by a beam vibrating in either standing or traveling waveforms. Analytical results show that the beam vibrating in standing waveforms scatters the acoustic waves into the free space, which have a larger attenuation coefficient and longer propagating traveling wavelength than those of the plane wave. In contrast to a constant Reynolds stress in the plane wave, the Reynolds stress generated by such acoustic wave is expected to drive the free space streaming away from the anti-nodes and towards nodes of the standing wave vibration. The sonic and ultrasonic streamings within the channel between the vibrating beam and a parallel stationary beam are also investigated. The acoustic streaming is utilized to cool the stationary beam, which has either a heat source attached to it or subjected to a uniform heat flux. The sonic streaming is found to be mainly the boundary layer streaming dominating the whole channel while the ultrasonic streaming is clearly composed of two boundary layer streamings near both beams and a core region streaming, which is driven by the streaming velocity at the edge of the boundary layer near the vibrating beam. The standing wave vibration of the beam induces acoustic streaming in a series of counterclockwise eddies, which is directed away from the anti-nodes and towards the nodes. The magnitude of the sonic streaming is proportional to o2A 2 while that of the ultrasonic streaming is proportional to o 3/2A2. Numerical results show that the acoustic streaming induced by the beam vibrating in either standing or traveling waveforms has almost the same cooling efficiency for the heat source and the heat flux cases although the flow and temperature fields within the channel are different. The hysteresis of the ultrasonic streaming flow patterns associated with the change of the aspect ratio of the channel

  14. Scalp cooling: management option for chemotherapy-induced alopecia.

    PubMed

    Roe, Helen

    Chemotherapy is increasingly being administered as a treatment for cancer and with it are a number of possible side effects. One, which has a negative impact on a patient's quality of life and their self-esteem, is that of chemotherapy-induced alopecia (CIA). A side effect of which, for some, could be prevented by the use of scalp cooling, dependent on the regimen being administered and patient choice. This article explores the issue of CIA from the patient's perspective and scalp cooling as a preventative measure, along with a review of the evidence around the risk associated with developing scalp metastases following scalp cooling. It also discusses why scalp cooling should be available for both male and female patients; along with the potential impact scalp cooling may have on clinical areas delivering chemotherapy.

  15. Prevention of chemotherapy-induced hair loss by scalp cooling.

    PubMed

    Grevelman, E G; Breed, W P M

    2005-03-01

    Chemotherapy-induced temporary hair loss is one of the most common and distressing side-effects of cancer therapy. Scalp cooling to reduce this hair loss is a controversial issue for many doctors and nurses. This may be due to inadequate knowledge. This review from 53 publications and three personal communications focuses on the efficacy of the treatment, side-effects, possible disadvantages and the controversies in these areas. Scalp cooling has become an increasingly effective method to prevent hair loss, especially when anthracyclines or taxanes are used. Unfortunately, many studies were small and badly designed and are therefore difficult to compare. There is a considerable variation in the success rates in the various studies. This remains unexplained, but the cooling time, the chemotherapy used and the temperature seem to be influential. Scalp cooling should not be used if chemotherapy is given with a curative intent in patients with generalised haematogenic metastases. The majority of patients tolerate cooling very well. Scalp cooling is effective but not for all chemotherapy patients. Further psychological, clinical and biophysical research is needed to determine exact indications for cooling and to improve the effect, tolerance, side-effects and the cooling procedure. Multicentre trials should be carried out to gather this information.

  16. Vibration attenuation of conductive beams by inducing eddy currents

    NASA Astrophysics Data System (ADS)

    Irazu, L.; Elejabarrieta, M. J.

    2016-09-01

    The increasing requirements for structural vibration control in many industries, require innovative attenuation techniques. In this work, the phenomenon of eddy currents is proposed to reduce the vibration of conductive and non-magnetic beam-like structures without modifying the system, neither the weight nor the stiffness. The motion of a conductive material in a stationary magnetic field induces eddy currents, which in turn generate a repulsive force and attenuate the vibration. In this study, the vibrational response of a thin aluminium beam under a partial and stationary magnetic field is analysed. The influence of the eddy currents is experimentally studied in the bandwidth from 0 to 1 kHz and a preliminary numerical model is proposed. The results show the vibration of all the length of the beam can be attenuated by inducing eddy currents, whereas the natural frequencies of the system remain unmodified. The attenuation of the vibration is more remarkable at low frequencies and when the position of the magnetic field coincides with a maximum vibration of a mode.

  17. Picosecond Raman Study of Vibrational Cooling and Protein Dynamics in the Primary Photochemistry of Rhodopsin

    NASA Astrophysics Data System (ADS)

    Kim, Judy; Mathies, Richard

    2003-03-01

    Picosecond Stokes and anti-Stokes Raman spectra are used to probe the structural dynamics and reactive energy flow of both the chromophore and binding pocket residues in the primary cis-to-trans isomerization reaction of rhodopsin. The appearance of characteristic ethylenic, hydrogen out-of-plane (HOOP) and low-wavenumber photoproduct bands in the Stokes Raman spectra of the chromophore is instrument-response limited, consistent with a sub-picosecond product appearance time (1,2). Intense high and low-frequency anti-Stokes chromophore peaks demonstrate that the all-trans photoproduct, photorhodopsin, is produced vibrationally hot on the ground-state surface (2). Specifically, the low-frequency modes at 282, 350 and 477 cm-1 are highly vibrationally excited (T > 2000 K) immediately following isomerization, revealing that these low-frequency motions directly participate in the reactive curve-crossing process. The anti-Stokes modes are characterized by a ˜2.5 ps temporal decay that coincides with the conversion of photorhodopsin to bathorhodopsin. This correspondence shows that the photo-to-batho transition is a ground-state cooling process, and that energy storage in the primary visual photoproduct is complete on the picosecond time scale. The remarkable similarity between the room-temperature picosecond vibrational structure of photo- and bathorhodopsin and that of the low-temperature trapped primary photoproduct suggests that chromophore isomerization impulsively excites and drives changes in nearby protein residues. These amino acid changes within the binding pocket are probed by picosecond UV Raman spectroscopy of aromatic residues (3). Difference spectra reveal that at least one tryptophan (trp265) and one tyrosine (tyr191, 268 and/or 178) residue undergoes structural changes in < 5 ps, presumably due to steric interaction with the isomerizing chromophore as well as energy flow from chromophore to the binding pocket. This result indicates that the protein

  18. Hydrogen bond donors accelerate vibrational cooling of hot purine derivatives in heavy water.

    PubMed

    Zhang, Yuyuan; Chen, Jinquan; Kohler, Bern

    2013-08-08

    Natural nucleobases and many of their derivatives have ultrashort excited state lifetimes that make them excellent model systems for studying intermolecular energy flow from a hot solute molecule to the solvent. UV-pump/broadband-mid-IR-probe transient absorption spectra of canonical purine nucleobases and several xanthine derivatives were acquired in D2O and acetonitrile in the probe frequency range of 1500-1750 cm(-1). The spectra reveal that vibrationally hot ground state molecules created by ultrafast internal conversion return to thermal equilibrium in several picoseconds by dissipating their excess energy to solvent molecules. In acetonitrile solution, where hydrogen bonding is minimal, vibrational cooling (VC) occurs with the same time constant of 10 ± 3 ps for paraxanthine, theophylline, and caffeine within experimental uncertainty. In D2O, VC by these molecules occurs more rapidly and at different rates that are correlated with the number of N-D bonds. Hypoxanthine has a VC time constant of 3 ± 1 ps, while similar lifetimes of 2.3 ± 0.8 ps and 3.1 ± 0.3 ps are seen for 5'-adenosine monophosphate and 5'-guanosine monophosphate, respectively. All three molecules have at least two N-D bonds. Slightly slower VC time constants are measured for paraxanthine (4 ± 1 ps) and theophylline (5.1 ± 0.8 ps), dimethylated xanthines that have only one N-D bond. Caffeine, a trimethylated xanthine with no N-D bonds, has a VC time constant of 7.7 ± 0.9 ps, the longest ever observed for any nucleobase in aqueous solution. Hydrogen bond donation by solute molecules is proposed to enable rapid energy disposal to water via direct coupling of high frequency solute-solvent modes.

  19. Scale modeling flow-induced vibrations of reactor components

    SciTech Connect

    Mulcahy, T M

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response.

  20. Reduction of vortex-induced vibration in vane geometries

    NASA Astrophysics Data System (ADS)

    Liu, B. L.; O'Farrell, J. M.; Lowrey, G. A.; Nesman, Tomas E.

    Computations using a time-accurate, compressible Navier-Stokes flow model were conducted to analyze both unsteady laminar and turbulent flows over two curved configurations of vanes which were shaped to treat a 4.0 kHz vibration problem which has occurred in several SSMEs. This problem involves vortex shedding from vanes which causes excessive vane vibration and cracking. The original vane configuration exhibited strong flow-induced vibrations at a Strouhal number near 0.19 for a the first bending mode excitation. Scalloping of the leading edge raised the frequency of the vane's first torsional mode, which in turn increased the onset flow velocity at lock-in. Beveling the vane's trailing edge eliminated vortex shedding at the trailing edge, which decoupled the flow oscillation from the vibrating wave. A modified vane configuration with a beveled trailing edge at a 30 deg angle was also studied.

  1. Non-equilibrium effects evidenced by vibrational spectra during the coil-to-globule transition in poly(N-isopropylacrylamide) subjected to an ultrafast heating-cooling cycle.

    PubMed

    Deshmukh, Sanket A; Kamath, Ganesh; Suthar, Kamlesh J; Mancini, Derrick C; Sankaranarayanan, Subramanian K R S

    2014-03-14

    Molecular dynamics simulations in conjunction with finite element calculations are used to explore the conformational dynamics of a thermo-sensitive oligomer, namely poly(N-isopropylacrylamide) (PNIPAM), subjected to an ultra-fast heating-cooling cycle. Finite element (FE) calculations were used to predict the temperature profile resulting from laser-induced heating of the polymer-aqueous system. The heating rate (∼0.6 K ps(-1)) deduced from FE calculations was used to heat an aqueous solution of PNIPAM consisting of 30 monomeric units (30-mer) from 285 K to 315 K. Non-equilibrium effects arising from the ultra-fast heating-cooling cycle results in a hysteresis during the coil-to-globule transition. The corresponding atomic scale conformations were characterized by monitoring the changes in the vibrational spectra, which provided a reliable metric to study the coil-to-globule transition in PNIPAM and vice-versa across the LCST. The vibrational spectra of bonds involving atoms from the oligomer backbone and the various side-groups (amide I, amide II, and the isopropyl group of PNIPAM) of the oligomers were analyzed to study the conformational changes in the oligomer corresponding to the observed hysteresis. The differences in the vibrational spectra calculated at various temperatures during heating and cooling cycles were used to understand the coil-to-globule and globule-to-coil transitions in the PNIPAM oligomer and identify the changes in the relative interactions between various atoms in the backbone and in the side groups of the oligomer with water. The shifts in the computed vibrational spectral peaks and the changes in the intensity of peaks for the different regions of PNIPAM, seen across the LCST during the heating cycle, are in good agreement with previous experimental studies. The changes in the radius of gyration (Rg) and vibrational spectra for amide I and amide II regions of PNIPAM suggest a clear coil-to-globule transition at ∼301 K during the

  2. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly †

    PubMed Central

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-01-01

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation. PMID:27110782

  3. Drop motion induced by vertical vibrations

    NASA Astrophysics Data System (ADS)

    Sartori, Paolo; Quagliati, Damiano; Varagnolo, Silvia; Pierno, Matteo; Mistura, Giampaolo; Magaletti, Francesco; Massimo Casciola, Carlo

    2015-11-01

    We have studied the motion of liquid drops on an inclined plate subject to vertical vibrations. The liquids comprised distilled water and different aqueous solutions of glycerol, ethanol and isopropanol spanning the range 1-39 mm2 s-1 in kinematic viscosities and 40-72 mN m-1 in surface tension. At sufficiently low oscillating amplitudes, the drops are always pinned to the surface. Vibrating the plate above a certain amplitude yields sliding of the drop. Further increasing the oscillating amplitude drives the drop upward against gravity. In the case of the most hydrophilic aqueous solutions, this motion is not observed and the drop only slides downward. Images taken with a fast camera show that the drop profile evolves in a different way during sliding and climbing. In particular, the climbing drop experiences a much bigger variation in its profile during an oscillating period. Complementary numerical simulations of 2D drops based on a diffuse interface approach confirm the experimental findings. The overall qualitative behavior is reproduced suggesting that the contact line pinning due to contact angle hysteresis is not necessary to explain the drop climbing.

  4. Low Head, Vortex Induced Vibrations River Energy Converter

    SciTech Connect

    Bernitsas, Michael B.; Dritz, Tad

    2006-06-30

    Vortex Induced Vibrations Aquatic Clean Energy (VIVACE) is a novel, demonstrated approach to extracting energy from water currents. This invention is based on a phenomenon called Vortex Induced Vibrations (VIV), which was first observed by Leonardo da Vinci in 1504AD. He called it ‘Aeolian Tones.’ For decades, engineers have attempted to prevent this type of vibration from damaging structures, such as offshore platforms, nuclear fuel rods, cables, buildings, and bridges. The underlying concept of the VIVACE Converter is the following: Strengthen rather than spoil vortex shedding; enhance rather than suppress VIV; harness rather than mitigate VIV energy. By maximizing and utilizing this unique phenomenon, VIVACE takes this “problem” and successfully transforms it into a valuable resource for mankind.

  5. Reductions in finger blood flow induced by 125-Hz vibration: effect of location of contact with vibration.

    PubMed

    Ye, Ying; Griffin, Michael J

    2016-04-01

    This study investigated whether the reductions in finger blood flow induced by 125-Hz vibration applied to different locations on the hand depend on thresholds for perceiving vibration at these locations. Subjects attended three sessions during which vibration was applied to the right index finger, the right thenar eminence, or the left thenar eminence. Absolute thresholds for perceiving vibration at these locations were determined. Finger blood flow in the middle finger of both hands was then measured at 30-s intervals during five successive 5-min periods: (i) pre-exposure, (ii) pre-exposure with 2-N force, (iii) 2-N force with vibration, (iv) post-exposure with 2-N force, (v) recovery. During period (iii), vibration was applied at 15 dB above the absolute threshold for perceiving vibration at the right thenar eminence. Vibration at all three locations reduced finger blood flow on the exposed and unexposed hand, with greater reductions when vibrating the finger. Vibration-induced vasoconstriction was greatest for individuals with low thresholds and locations of excitation with low thresholds. Differences in vasoconstriction between subjects and between locations are consistent with the Pacinian channel mediating both absolute thresholds and vibration-induced vasoconstriction.

  6. Evaluating vehicular-induced bridge vibrations for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Reichenbach, Matthew; Fasl, Jeremiah; Samaras, Vasilis A.; Wood, Sharon; Helwig, Todd; Lindenberg, Richard

    2012-04-01

    Highway bridges are vital links in the transportation network in the United States. Identifying possible safety problems in the approximately 600,000 bridges across the country is generally accomplished through labor-intensive, visual inspections. Ongoing research sponsored by NIST seeks to improve inspection practices by providing real-time, continuous monitoring technology for steel bridges. A wireless sensor network with a service life of ten years that is powered by an integrated energy harvester is targeted. In order to achieve the target ten-year life for the monitoring system, novel approaches to energy harvesting for use in recharging batteries are investigated. Three main sources of energy are evaluated: (a) vibrational energy, (b) solar energy, and (c) wind energy. Assessing the energy produced from vehicular-induced vibrations and converted through electromagnetic induction is the focus of this paper. The goal of the study is to process acceleration data and analyze the vibrational response of steel bridges to moving truck loads. Through spectral analysis and harvester modeling, the feasibility of vibration-based energy harvesting for longterm monitoring can be assessed. The effects of bridge conditions, ambient temperature, truck traffic patterns, and harvester position on the power content of the vibrations are investigated. With sensor nodes continually recharged, the proposed real-time monitoring system will operate off the power grid, thus reducing life cycle costs and enhancing inspection practices for state DOTs. This paper will present the results of estimating the vibration energy of a steel bridge in Texas.

  7. Molecular dynamics modeling of cooling of vibrationally highly excited carbon dioxide produced in the photodissociation of organic peroxides in solution.

    PubMed

    Kandratsenka, Alexander; Schroeder, Jörg; Schwarzer, Dirk; Vikhrenko, Vyacheslav S

    2005-03-21

    Non-equilibrium (NEMD) and equilibrium (EMD) molecular dynamics simulations are performed to investigate the vibrational cooling and asymmetric stretch spectral evolution of highly excited carbon dioxide produced in the photodissociation of organic peroxides in the solvents dichloromethane, carbon tetrachloride and xenon. Due to strong Fermi resonance the symmetric stretching and bending modes of carbon dioxide in CH2Cl2 and CCl4 jointly relax on a ten and hundred picosecond timescale, respectively, which is in accordance with experiment. However, the high frequency CO2 asymmetric stretch vibration relaxes on a considerably longer time scale because of weak interaction with the other modes. The relaxation rate coefficients of (and works done by) different modes obtained from NEMD and the Landau-Teller rate coefficients calculated through equilibrium force time correlation functions are in reasonable agreement. The analysis of these results leads to the conclusion that, in contrast to xenon where the relaxation takes about 20 ns, the shorter time scales in CH2Cl2 and CCl4 are caused by efficient near resonant vibration to vibration energy transfer from carbon dioxide to solvent molecules. The results of the non-equilibrium simulations are used to monitor the quasi-stationary asymmetric stretch infrared spectra of carbon dioxide during the cooling process. Comparison of the corresponding experimental results suggests that carbon dioxide initially is produced with a broad distribution of energy disposed in its bend and symmetric stretch modes while the asymmetric stretch mode remains unexcited.

  8. Active tuning of stroke-induced vibrations by tennis players.

    PubMed

    Chadefaux, Delphine; Rao, Guillaume; Androuet, Philippe; Berton, Eric; Vigouroux, Laurent

    2016-09-06

    This paper investigates how tennis players control stroke-induced vibration. Its aim is to characterise how a tennis player deals with entering vibration waves or how he/she has the ability to finely adjust them. A specific experimental procedure was designed, based on simultaneously collecting sets of kinematic, vibration and electromyographic data during forehand strokes using various commercial rackets and stroke intensities. Using 14 expert players, a wide range of excitations at spectral and temporal levels were investigated. Energetic and spectral descriptors of stroke-induced vibration occurring at the racket handle and at the player's wrist and elbow were computed. Results indicated that vibrational characteristics are strongly governed by grip force and to a lower extent by the racket properties. Grip force management drives the amount of energy, as well as its distribution, into the forearm. Furthermore, hand-grip can be assimilated to an adaptive filter which can significantly modify the spectral parameters propagating into the player's upper limb. A significant outcome is that these spectral characteristics are as much dependent on the player as on the racket. This contribution opens up new perspectives in equipment manufacture by underlining the need to account for player/racket interaction in the design process.

  9. Rocket Launch-Induced Vibration and Ignition Overpressure Response

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul; Margasahayam, Ravi; Nayfeh, Jamal; Thompson, Karen (Technical Monitor)

    2001-01-01

    Rocket-induced vibration and ignition overpressure response environments are predicted in the low-frequency (5 to 200 hertz) range. The predictions are necessary to evaluate their impact on critical components, structures, and facilities in the immediate vicinity of the rocket launch pad.

  10. Rocket Launch-Induced Vibration and Ignition Overpressure Response

    NASA Technical Reports Server (NTRS)

    Caimi, Raoul E.; Margashayam, Ravi N.; Nayfeh, Jamal F.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Rocket-induced vibration and ignition overpressure response environments are predicted in the low-frequency (5 to 200 hertz) range. The predictions are necessary to evaluate their impact on critical components, structures, and facilities in the immediate vicinity of the rocket launch pad.

  11. A numerical investigation of flow induced vibrations in a rocket engine manifold

    NASA Astrophysics Data System (ADS)

    Peugeot, John W.

    2011-12-01

    Flow induced vibrations are common in liquid rocket engine components and have been the subject of several recent studies within the Space Shuttle and Delta launch vehicle programs. Understanding how unsteady flow phenomena develop is important when investigating failures in existing hardware and in the design of new propulsion systems. In this study, a subsonic turbulent flow in a rocket engine manifold is analyzed using a compressible form of the viscous flow equations coupled with a hybrid RANS-DES turbulence model. It is found that vortex shedding and pressure perturbations within a manifold significantly influence the stability of shear layers and flow through exit cooling tubes. By adding a chamfer to the inlet of the cooling tubes, it was demonstrated that greater shear layer stability can be obtaIned at a given pressure ratio.

  12. Dose-response patterns for vibration-induced white finger

    PubMed Central

    Griffin, M; Bovenzi, M; Nelson, C

    2003-01-01

    Aims: To investigate alternative relations between cumulative exposures to hand-transmitted vibration (taking account of vibration magnitude, lifetime exposure duration, and frequency of vibration) and the development of white finger (Raynaud's phenomenon). Methods: Three previous studies have been combined to provide a group of 1557 users of powered vibratory tools in seven occupational subgroups: stone grinders, stone carvers, quarry drillers, dockyard caulkers, dockyard boilermakers, dockyard painters, and forest workers. The estimated total operating duration in hours was thus obtained for each subject, for each tool, and for all tools combined. From the vibration magnitudes and exposure durations, seven alternative measurements of cumulative exposure were calculated for each subject, using expressions of the form: dose = ∑amiti, where ai is the acceleration magnitude on tool i, ti is the lifetime exposure duration for tool i, and m = 0, 1, 2, or 4. Results: For all seven alternative dose measures, an increase in dose was associated with a significant increase in the occurrence of vibration-induced white finger, after adjustment for age and smoking. However, dose measures with high powers of acceleration (m > 1) faired less well than measures in which the weighted or unweighted acceleration, and lifetime exposure duration, were given equal weight (m = 1). Dose determined solely by the lifetime exposure duration (without consideration of the vibration magnitude) gave better predictions than measures with m greater than unity. All measures of dose calculated from the unweighted acceleration gave better predictions than the equivalent dose measures using acceleration frequency-weighted according to current standards. Conclusions: Since the total duration of exposure does not discriminate between exposures accumulated over the day and those accumulated over years, a linear relation between vibration magnitude and exposure duration seems appropriate for predicting

  13. Vibration-Induced Property Change in the Melting and Solidifying Process of Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zheng, Yonggang; Ding, Liquan; Ye, Hongfei; Chen, Zhen

    2017-04-01

    Tuning material properties in the 3-D printing process of metallic parts is a challenging task of current interests. Much research has been conducted to understand the effects of controlling parameters such as the particle geometry (size and shape), heating, and cooling ways on the outcome of the printing process. However, nothing has been done to explore the system vibration effect. This letter reports our findings on the vibration-induced property change in the melting and solidifying process of silver nanoparticles with the use of molecular dynamics simulation. We find that the increase of system vibration magnitude would increase the number fraction of disordered atoms, which in turn changes the nanostructure of solidified products. For a given system vibration magnitude, the number fraction of disordered atoms reaches the maximum around the system natural frequency so that the stiffness of solidified products becomes the minimum. Since this trend is not affected by the system size, the above findings reveal a feasible path toward the real-time tuning of material properties for advancing additive manufacturing.

  14. Mode-specific energy absorption by solvent molecules during CO2 vibrational cooling.

    PubMed

    Kandratsenka, Alexander; Schroeder, Jörg; Schwarzer, Dirk; Vikhrenko, Vyacheslav S

    2007-04-14

    Non-equilibrium molecular dynamics (NEMD) simulations of energy transfer from vibrationally excited CO(2) to CCl(4) and CH(2)Cl(2) solvent molecules are performed to identify the efficiency of different energy pathways into the solvent bath. Studying in detail the work performed by the vibrationally excited solute on the different solvent degrees of freedom, it is shown that vibration-to-vibration (V-V) processes are strongly dominant and controlled by those accepting modes which are close in frequency to the CO(2) bend and symmetric stretch vibration.

  15. Nonlinear restoring forces in vortex-induced vibration

    NASA Astrophysics Data System (ADS)

    Mackowski, A. W.; Williamson, C. H. K.

    2011-11-01

    When studying vortex-induced vibration of a rigid circular cylinder, almost all experimental and computational studies involve the cylinder being supported by linear springs. However, there are cases in which we may be interested in the VIV response of a cylinder supported by nonlinear springs. A system with nonlinearities in the restoring force has the potential to increase the amplitude response envelope, critical to the success of aero-vibrating energy harvesters. On the other hand, designing nonlinear restoring forces to decrease the amplitude response may lead to structures more able to withstand flow-induced vibration. In addition, adding nonlinear terms to the restoring force on a rigid cylinder might be used to simulate higher-order dynamics of long, elastic marine cables. To experimentally observe the effects of nonlinear springs on flow-induced vibration, we apply a novel approach that lets us parametrically control the nature of the springs and the strength of the nonlinearities. The technique, called Cyber-Physical Fluid Dynamics, uses a force-feedback control system to simulate arbitrary forces on a submerged body [the details of this system were shown in the APS presentation of Mackowski & Williamson (2010)]. We present results using this technique to explore the amplitude response of a circular cylinder in a crossflow.

  16. The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine

    NASA Astrophysics Data System (ADS)

    Trachsel, Maria A.; Wiedmer, Timo; Blaser, Susan; Frey, Hans-Martin; Li, Quansong; Ruiz-Barragan, Sergi; Blancafort, Lluís; Leutwyler, Samuel

    2016-10-01

    We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm-1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1ππ∗ excitation predicted by the calculations. The methyl torsion and ν1 ' (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ˜ 500 cm-1, indicating that a barrier in front of the ethylene-type S1⇝S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm-1. The S1⇝S0 internal conversion rate constant increases from kIC = 2 ṡ 109 s-1 near the S1(v = 0) level to 1 ṡ 1011 s-1 at Eexc = 516 cm-1. The 1ππ∗ state of 1MCyt also relaxes into the lower-lying triplet T1 (3ππ∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm-1. The ISC rate constant is 10-100 times lower than kIC; it increases from kISC = 2 ṡ 108 s-1 near S1(v = 0) to kISC = 2 ṡ 109 s-1 at Eexc = 516 cm-1. The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm-1. The T2 (3nπ∗) state lies >1500 cm-1 above S1(v = 0), so S1⇝T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm-1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 e

  17. The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine.

    PubMed

    Trachsel, Maria A; Wiedmer, Timo; Blaser, Susan; Frey, Hans-Martin; Li, Quansong; Ruiz-Barragan, Sergi; Blancafort, Lluís; Leutwyler, Samuel

    2016-10-07

    We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond time-resolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm(-1) about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon (1)ππ(∗) excitation predicted by the calculations. The methyl torsion and ν1(') (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ∼ 500 cm(-1), indicating that a barrier in front of the ethylene-type S1⇝S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm(-1). The S1⇝S0 internal conversion rate constant increases from kIC = 2 ⋅ 10(9) s(-1) near the S1(v = 0) level to 1 ⋅ 10(11) s(-1) at Eexc = 516 cm(-1). The (1)ππ(∗) state of 1MCyt also relaxes into the lower-lying triplet T1 ((3)ππ(∗)) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm(-1). The ISC rate constant is 10-100 times lower than kIC; it increases from kISC = 2 ⋅ 10(8) s(-1) near S1(v = 0) to kISC = 2 ⋅ 10(9) s(-1) at Eexc = 516 cm(-1). The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm(-1). The T2 ((3)nπ(∗)) state lies >1500 cm(-1) above S1(v = 0), so S1⇝T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm(-1). An upper limit to the adiabatic

  18. Fluid patterns and dynamics induced by vibrations in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Tinao Perez-Miravete, Ignacio; Laverón-Simavilla, Ana

    Understanding the effects of vibrations is extremely important in microgravity environments where residual acceleration, or g-jitter, is easily generated by crew manoeuvring or machinery, and can have a significant impact on material processing systems and on-board experiments. Indeed, vibrations can dramatically affect fluid behaviour whether gravity is present or not, inducing instability in some cases while suppressing it in others. We will describe the results of investigations being conducted at the ESA affiliated Spanish User Support and Operations Centre (E-USOC) on the effect of vibrations on fluids interfaces, most notably with the forcing oriented parallel to the fluid surface. Pattern formation properties will be described in detail, and the importance of symmetry constraints and mean flows will be considered. Current exper-imental results are intriguing and have challenged existing assumptions in the field, particularly with regard to the parametric instability underlying subharmonic cross-waves. They suggest an intimate connection between Faraday waves, which are observed in vertically vibrated systems, and cross-waves, which are found in horizontally forced systems. Concurrent theoretical work, based on the analysis of reduced models, and on numerical simulations, will then be described. Finally, this research will be placed in a microgravity context and used to motivate the defini-tion of a proposed set of experiments on the International Space Station (ISS). The experiments would be in the large-aspect-ratio-limit, requiring relatively high frequency but low amplitude vibrations, where comparatively little microgravity research has been done. The interest of such a microgravity experiment will be discussed, with emphasis on fluid management and the potential of vibrations to act as a kind of artificial gravity by orienting surfaces (or density contours) perpendicular to the axis of vibration.

  19. Effects of induced vibration modes on droplet sliding phenomena

    NASA Astrophysics Data System (ADS)

    Mejia, Jose Eduardo; Alvarado, Jorge; Yao, Chun-Wei; Dropwise Condensation Collaboration; Engineered Surfaces Collaboration

    2016-11-01

    An analytical and experimental investigation has been undertaken to understand the effects of induced vibration modes on droplet sliding phenomena. A mathematical model has been postulated which is capable of estimating accurately droplet sliding angles when using hydrophobic and hydrophilic surfaces. The model, which takes into account equilibrium contact angle, contact angle hysteresis, and droplet volume, has been validated using experimental data. The model has been modified to be able to estimate droplet sliding angle when different modes of vibrations are imposed on the surfaces. Experimental results to date reveal that when resonance modes of vibrations are imposed, the droplet sliding angles decrease considerably. The results also indicate that the modified model can be used effectively to relate imposed resonance frequencies to the critical sliding angle of droplets. LSAMP sponsored NSF Fellowship.

  20. Piezoelectric energy harvesting from traffic-induced bridge vibrations

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël; Siegert, Dominique

    2013-09-01

    This paper focuses on energy harvesting from traffic-induced vibrations in bridges. Using a pre-stressed concrete highway bridge as a case study, in situ vibration measurements are presented and analysed. From these results, a prototype of a cantilever piezoelectric harvester is designed, tested and modelled. Even though the considered bridge vibrations are characterized by small amplitude and a low frequency (i.e. below 15 Hz), it is shown that mean power of the order of 0.03 mW can be produced, with a controlled voltage between 1.8 and 3.6 V. A simple model is proposed for theoretical prediction of the delivered power in terms of traffic intensity. This model shows good agreement with the experimental results and leads to a simple but effective design rule for piezoelectric harvesters to be used on bridges.

  1. Wind induced deformation and vibration of a Platanus acerifolia leaf

    NASA Astrophysics Data System (ADS)

    Shao, Chuan-Ping; Chen, Ye-Jun; Lin, Jian-Zhong

    2012-06-01

    Deformation and vibration of twig-connected single leaf in wind is investigated experimentally. Results show that the Reynolds number based on wind speed and length of leaf blade is a key parameter to the aerodynamic problem. In case the front surface facing the wind and with an increase of Reynolds number, the leaf experiences static deformation, large amplitude and low frequency sway, reconfiguration to delta wing shape, flapping of tips, high frequency vibration of whole leaf blade, recovery of delta wing shape, and twig-leaf coupling vibration. Abrupt changes from one state to another occur at critical Reynolds numbers. In case the back surface facing the wind, the large amplitude and low frequency sway does not occur, the recovered delta wing shape is replaced by a conic shape, and the critical Reynolds numbers of vibrations are higher than the ones corresponding to the case with the front surface facing the wind. A pair of ram-horn vortex is observed behind the delta wing shaped leaf. A single vortex is found downstream of the conic shaped leaf. A lift is induced by the vortex, and this lift helps leaf to adjust position and posture, stabilize blade distortion and reduce drag and vibration.

  2. Attenuation of cryocooler induced vibration using multimodal tuned dynamic absorbers

    NASA Astrophysics Data System (ADS)

    Veprik, Alexander; Babitsky, Vladimir; Tuito, Avi

    2017-05-01

    Modern infrared imagers often rely on split Stirling linear cryocoolers comprising compressor and expander, the relative position of which is governed by the optical design and packaging constraints. A force couple generated by imbalanced reciprocation of moving components inside both compressor and expander result in cryocooler induced vibration comprising angular and translational tonal components manifesting itself in the form of line of sight jitter and dynamic defocusing. Since linear cryocooler is usually driven at a fixed and precisely adjustable frequency, a tuned dynamic absorber is a well suited tool for vibration control. It is traditionally made in the form of lightweight single degree of freedom undamped mechanical resonator, the frequency of which is essentially matched with the driving frequency or vice versa. Unfortunately, the performance of such a traditional approach is limited in terms of simultaneous attenuating translational and angular components of cooler induced vibration. The authors are enhancing the traditional concept and consider multimodal tuned dynamic absorber made in the form of weakly damped mechanical resonator, where the frequencies of useful dynamic modes are essentially matched with the driving frequency. Dynamic analysis and experimental testing show that the dynamic reactions (forces and moments) produced by such a device may simultaneously attenuate both translational and angular components of cryocoolerinduced vibration. The authors are considering different embodiments and their suitability for different packaging concepts. The outcomes of theoretical predictions are supported by full scale experimentation.

  3. Flow-induced vibrations of turbomachinery blades

    NASA Astrophysics Data System (ADS)

    Jadic, Ioan

    1997-12-01

    The fluid-structure interaction problems associated with turbine engine applications are tackled by means of a time marching method. It is well known that both fluid and structural characteristics are playing an important role, and neglecting one of these characteristics leads to an unrealistic simplification of the problem. The purpose of this study is to show that the fluid and structure characteristics need to be considered with their fully coupled interaction, in order to capture the true vibrations features of the system. The method developed here addresses all the aspects of the problem, starting with the modeling of the flow propagated disturbances and ending with the estimation of the fatigue life of the blades. The choice of a time marching algorithm enables the consideration of the various interference aspects characteristics to the jet engine environment, and allows a modular approach in which the components may be substituted with other more accurate or efficient procedures. The coupling between fluid and structure is achieved by an iterative process that ensures the proper transfer of information between the aerodynamics and structural modules. The methodology has been validated by comparison with reference linear theory data for a flutter case. However, the present results have indicated that nonlinear effects become more important at speeds close to the flutter point. Modeling of flow disturbances encountered in turbomachinery is realized by means of periodic patterns of discrete vortices, which enable a sufficiently accurate representation of the physical phenomenon. The results show that the fluid-structure coupling leads, for all the external excitation cases considered, to a Limit Cycle Oscillation (LCO) behavior. Other important findings are related to resonance phenomena. It is shown that (structural) resonance can lead to dramatic reductions (up to ten orders of magnitude) in the blade fatigue life. An aerodynamic resonance phenomenon is

  4. Optimal energy harvesting from vortex-induced vibrations of cables

    NASA Astrophysics Data System (ADS)

    Antoine, G. O.; de Langre, E.; Michelin, S.

    2016-11-01

    Vortex-induced vibrations (VIV) of flexible cables are an example of flow-induced vibrations that can act as energy harvesting systems by converting energy associated with the spontaneous cable motion into electricity. This work investigates the optimal positioning of the harvesting devices along the cable, using numerical simulations with a wake oscillator model to describe the unsteady flow forcing. Using classical gradient-based optimization, the optimal harvesting strategy is determined for the generic configuration of a flexible cable fixed at both ends, including the effect of flow forces and gravity on the cable's geometry. The optimal strategy is found to consist systematically in a concentration of the harvesting devices at one of the cable's ends, relying on deformation waves along the cable to carry the energy towards this harvesting site. Furthermore, we show that the performance of systems based on VIV of flexible cables is significantly more robust to flow velocity variations, in comparison with a rigid cylinder device. This results from two passive control mechanisms inherent to the cable geometry: (i) the adaptability to the flow velocity of the fundamental frequencies of cables through the flow-induced tension and (ii) the selection of successive vibration modes by the flow velocity for cables with gravity-induced tension.

  5. Optimal energy harvesting from vortex-induced vibrations of cables.

    PubMed

    Antoine, G O; de Langre, E; Michelin, S

    2016-11-01

    Vortex-induced vibrations (VIV) of flexible cables are an example of flow-induced vibrations that can act as energy harvesting systems by converting energy associated with the spontaneous cable motion into electricity. This work investigates the optimal positioning of the harvesting devices along the cable, using numerical simulations with a wake oscillator model to describe the unsteady flow forcing. Using classical gradient-based optimization, the optimal harvesting strategy is determined for the generic configuration of a flexible cable fixed at both ends, including the effect of flow forces and gravity on the cable's geometry. The optimal strategy is found to consist systematically in a concentration of the harvesting devices at one of the cable's ends, relying on deformation waves along the cable to carry the energy towards this harvesting site. Furthermore, we show that the performance of systems based on VIV of flexible cables is significantly more robust to flow velocity variations, in comparison with a rigid cylinder device. This results from two passive control mechanisms inherent to the cable geometry: (i) the adaptability to the flow velocity of the fundamental frequencies of cables through the flow-induced tension and (ii) the selection of successive vibration modes by the flow velocity for cables with gravity-induced tension.

  6. Microstructure formation mechanism and properties of AZ61 alloy processed by melt treatment with vibrating cooling slope and semisolid rolling

    NASA Astrophysics Data System (ADS)

    Zhao, Zhan Yong; Guan, Ren Guo; Wang, Xiang; Li, Yang; Dong, Lei; Lee, Chong Soo; Liu, Chun Ming

    2013-09-01

    A melt treatment with a vibrating cooling slope and a semisolid rolling process to produce an AZ61 alloy strip was proposed. The microstructure formation mechanism and the properties of the AZ61 alloy produced by the proposed process were investigated. Due to the high cooling rate and stirring action caused by the vibration cooling slope, the nucleation rate was greatly improved, which caused the formation of fine spherical or rosette primary grains. During the rolling process, the solid fraction increased from the entrance to the exit of the roll gap, and under the shearing action of the roller, the distribution of solute in the melt was homogenous, and the primary grains grew further. When the casting temperature was 680 °C, a strip with a cross section of 4 mm×160 mm was produced and a homogeneous microstructure was obtained. The ultimate tensile strength of the AZ61 alloy strip produced by the proposed method reached 242 MPa, and the corresponding elongation to failure was 4%, which were better than those achieved in previous similar studies.

  7. Impact-Ionization Cooling in Laser-Induced Plasma Filaments

    SciTech Connect

    Filin, A.; Romanov, D. A.; Compton, R.; Levis, R. J.

    2009-04-17

    The ionization rates and subsequent electron dynamics for laser-induced plasma channels are measured for the noble gas series He, Ne, Ar, Kr, and Xe at 1.0 atm. The cw fluorescence emission increases superlinearly in the series from He to Xe in agreement with Ammosov-Delone-Krainov tunnel ionization calculations. The electron temperature after laser-induced plasma formation, measured by four-wave mixing, evolves from >20 eV to <1 eV kinetic energies with time constants ranging from 1 ns for He to 100 ps for Xe in agreement with an impact-ionization cooling model.

  8. Excited-state structure, vibrations, and nonradiative relaxation of jet-cooled 5-fluorocytosine.

    PubMed

    Lobsiger, Simon; Trachsel, Maria A; Den, Takuya; Leutwyler, Samuel

    2014-03-20

    The S0 → S1 vibronic spectrum and S1 state nonradiative relaxation of jet-cooled keto-amino 5-fluorocytosine (5FCyt) are investigated by two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm(–1) resolution. The 0(0)(0) rotational band contour is polarized in-plane, implying that the electronic transition is (1)ππ*. The electronic transition dipole moment orientation and the changes of rotational constants agree closely with the SCS-CC2 calculated values for the (1)ππ* (S1) transition of 5FCyt. The spectral region from 0 to 300 cm(–1) is dominated by overtone and combination bands of the out-of-plane ν1′ (boat), ν2′ (butterfly), and ν3′ (HN–C6H twist) vibrations, implying that the pyrimidinone frame is distorted out-of-plane by the (1)ππ* excitation, in agreement with SCS-CC2 calculations. The number of vibronic bands rises strongly around +350 cm(–1); this is attributed to the (1)ππ* state barrier to planarity that corresponds to the central maximum of the double-minimum out-of-plane vibrational potentials along the ν1′, ν2′, and ν3′ coordinates, which gives rise to a high density of vibronic excitations. At +1200 cm(–1), rapid nonradiative relaxation (k(nr) ≥ 10(12) s(–1)) sets in, which we interpret as the height of the (1)ππ* state barrier in front of the lowest S1/S0 conical intersection. This barrier in 5FCyt is 3 times higher than that in cytosine. The lifetimes of the ν′ = 0, 2ν1′, 2ν2′, 2ν1′ + 2ν2′, 4ν2′, and 2ν1′ + 4ν2′ levels are determined from Lorentzian widths fitted to the rotational band contours and are τ ≥ 75 ps for ν′ = 0, decreasing to τ ≥ 55 ps at the 2ν1′ + 4ν2′ level at +234 cm(–1). These gas-phase lifetimes are twice those of S1 state cytosine and 10–100 times those of the other canonical nucleobases in the gas phase. On the other hand, the 5FCyt gas-phase lifetime is close to the 73 ps lifetime in room-temperature solvents. This lack of

  9. Sub-Doppler laser cooling using electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    He, Peiru; Tengdin, Phoebe M.; Anderson, Dana Z.; Rey, Ana Maria; Holland, Murray

    2017-05-01

    We propose a sub-Doppler laser-cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the phenomenon of electromagnetically induced transparency (EIT). EIT is a destructive quantum interference phenomenon experienced by atoms with multiple internal quantum states when illuminated by laser fields with appropriate frequencies. By detuning the lasers slightly from the "dark resonance," we observe that, within the transparency window, atoms can be subject to a strong viscous force, while being only slightly heated by the diffusion caused by spontaneous photon scattering. In contrast to other laser-cooling schemes, such as polarization gradient cooling or EIT-sideband cooling, no external magnetic field or strong external confining potential is required. Using a semiclassical approximation, we derive analytically quantitative expressions for the steady-state temperature, which is confirmed by full quantum mechanical numerical simulations. We find that the lowest achievable temperatures approach the single-photon recoil energy. In addition to dissipative forces, the atoms are subject to a stationary conservative potential, leading to the possibility of spatial confinement. We find that under typical experimental parameters, this effect is weak and stable trapping is not possible.

  10. DEAP-based energy harvesting using vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Hoffstadt, Thorben; Heinze, Robert; Wahl, Tim; Kameier, Frank; Maas, Jürgen

    2014-03-01

    Generators based on dielectric electroactive polymers (DEAP) convert mechanical strain energy into electrical field energy. In order to harvest renewable energy from ambient sources adequate generator setups have to be developed. Thus, in this contribution a DEAP generator is presented which uses periodic vortex induced vibration of a circular cylinder as excitation mechanism, by which e.g. Flow energy of a wind or water current can be converted. For this purpose a novel generator design consisting of a cylinder that is elastically mounted on DEAP material is presented. Since the effect of vortex induced vibrations depends on the stiffness and damping of the utilized generator's eigenmode, a method to adapt both via the electrostatic pressure and energy conversion is proposed. After the validation of the general functionality of the novel generator design, analyses concerning the control of the overall harvester are carried out.

  11. Thermally induced coherent vibrations in DNA

    NASA Astrophysics Data System (ADS)

    Rasmussen, Kim O.; Kalosakas, George; Voulgarakis, N. K.; Bishop, Alan R.; Choi, C. H.; Usheva, A.

    2004-05-01

    We compare numerical calculations and experimental data showing that large, slow thermally-induced openings of double stranded DNA coincide with the location of functionally relevant sites for transcription. Investigating a bacteriophage DNA gene promoter segment, we find that the large opening tends to occur at the transcription start site. Other probable large openings appear to be related to other regulatory sites. Sequence specificity, nonlinearity and entropy, are the basic elements for controlling coherent dynamics. To further characterize the dynamics related to the bubble formation we investigate the temperature dependence on the dynamic structure factor. A distinct feature in the dynamics structure factor is identified and attributed to the denaturation bubbles.

  12. Laser-controlled vibrational heating and cooling of oriented H+2 molecules

    NASA Astrophysics Data System (ADS)

    Niederhausen, Thomas; Thumm, Uwe; Martín, Fernando

    2012-05-01

    We investigate the control of the vibrational dynamics in the hydrogen molecular ion H+2 using strong femto-second infrared control-laser pulses. For our three-dimensional calculations, we use infrared laser pulses of 800 nm wavelength, 6 fs pulse duration and a peak intensity between 1012 and 1015 W cm-2. For laser electric fields aligned along the molecular axis, we numerically solve the full vibronic Schrödinger equation and compare our results with a model calculation that only includes the nuclear motion on the two lowest coupled adiabatic Born-Oppenheimer potential curves. The initial vibrational wave packet is launched with the ionization of the parent H2 molecule in the pump pulse. Precise timing between pump- and control-laser pulses allows for the direct manipulation of the final bound vibrational-state composition and dissociation dynamics of the ion. We show that significant enhancement of the occupation of particular stationary vibrational-state contributions can be achieved for laser intensities below the onset of strong ionization (≈1014 W cm-2). In addition, we find that this vibrational selectivity strongly depends on the delay time but not on the intensity of the control pulse. The relative stationary vibrational-state contributions and the shape of the vibrating wave packet depend sensitively on the control-pulse delay time, and the overall amplitude of the final vibrational wave packet depends on the intensity of the control pulse.

  13. Sub-Tg features of glasses formed by cooling glycerol under pressure - Additional incompatibility of vibrational with configurational states in the depressurized, high density glass

    NASA Astrophysics Data System (ADS)

    Andersson, Ove; Johari, G. P.

    2016-11-01

    The vibrational state of a glass is naturally incompatible with its configurational state, which makes the glass structurally unstable. When a glass is kept at constant temperature, both the vibrational and configurational states of a glass change with time until it becomes metastable (equilibrium) liquid and the two states become compatible. The process, known as structural relaxation, occurs at a progressively higher rate during heating, and the properties of a glass change accordingly. We add to this incompatibility by depressurizing a glass that had been formed by cooling a liquid under a high pressure, p, and then investigate the effects of the added incompatibility by studying thermal conductivity, κ , and the heat capacity per unit volume ρ Cp of the depressurized glass. We use glycerol for the purpose and study first the changes in the features of κ and of ρ Cp during glass formation on cooling under a set of different p. We then partially depressurize the glass and study the effect of the p-induced instability on the features of κ and ρ Cp as the glass is isobarically heated to the liquid state. At a given low p, the glass configuration that was formed by cooling at high-p had a higher κ than the glass configuration that was formed by cooling at a low p. The difference is more when the glass is formed at a higher p and/or is depressurized to a lower p. On heating at a low p, its κ decreases before its glass-liquid transition range is reached. The effect is the opposite of the increase in κ observed on heating a glass at the same p under which it was formed. It is caused by thermally assisted loss of the added incompatibility of configurational and vibrational states of a high-p formed glass kept at low p. If a glass formed under a low-p is pressurized and then heated under high p, it would show the opposite effect, i.e., its κ would first increase to its high p value before its glass-to-liquid transition range.

  14. Prediction of induced vibrations for a passenger - car ferry

    NASA Astrophysics Data System (ADS)

    Crudu, L.; Neculet, O.; Marcu, O.

    2016-08-01

    In order to evaluate the ship hull global vibrations, propeller excitation must be properly considered being mandatory to know enough accurate the magnitude of the induced hull pressure impulses. During the preliminary design stages, the pressures induced on the aft part of the ship by the operating propeller can be evaluated based on the guidelines given by the international standards or by the provisions of the Classification Societies. These approximate formulas are taking into account the wake field which, unfortunately, can be only estimated unless experimental towing tank tests are carried out. Another possibility is the numerical evaluation with different Computational Fluid Dynamics (CFD) codes. However, CFD methods are not always easy to be used requiring an accurate description of the hull forms in the aft part of the ship. The present research underlines these aspects during the preliminary prediction of propeller induced vibrations for a double-ended passenger-car ferry propelled by two azimuth fixed pitch thrusters placed at both ends of the ship. The evaluation of the global forced vibration is performed considering the 3D global Finite Element (FE) model, with NX Nastran for Windows. Based on the presented results, the paper provides reliable information to be used during the preliminary design stages.

  15. Vibrational cooling dynamics of a [FeFe]-hydrogenase mimic probed by time-resolved infrared spectroscopy.

    PubMed

    Caplins, Benjamin W; Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2014-12-11

    Picosecond time-resolved infrared spectroscopy (TRIR) was performed for the first time on a dithiolate bridged binuclear iron(I) hexacarbonyl complex ([Fe₂(μ-bdt)(CO)₆], bdt = benzene-1,2-dithiolate) which is a structural mimic of the active site of the [FeFe]-hydrogenase enzyme. As these model active sites are increasingly being studied for their potential in photocatalytic systems for hydrogen production, understanding their excited and ground state dynamics is critical. In n-heptane, absorption of 400 nm light causes carbonyl loss with low quantum yield (<10%), while the majority (ca. 90%) of the parent complex is regenerated with biexponential kinetics (τ₁ = 21 ps and τ₂ = 134 ps). In order to understand the mechanism of picosecond bleach recovery, a series of UV-pump TRIR experiments were performed in different solvents. The long time decay (τ₂) of the transient spectra is seen to change substantially as a function of solvent, from 95 ps in THF to 262 ps in CCl₄. Broadband IR-pump TRIR experiments were performed for comparison. The measured vibrational lifetimes (T₁(avg)) of the carbonyl stretches were found to be in excellent correspondence to the observed τ₂ decays in the UV-pump experiments, signifying that vibrationally excited carbonyl stretches are responsible for the observed longtime decays. The fast spectral evolution (τ₁) was determined to be due to vibrational cooling of low frequency modes anharmonically coupled to the carbonyl stretches that were excited after electronic internal conversion. The results show that cooling of both low and high frequency vibrational modes on the electronic ground state give rise to the observed picosecond TRIR transient spectra of this compound, without the need to invoke electronically excited states.

  16. Jet-Cooled Laser-Induced Fluorescence Spectroscopy of T-Butoxy

    NASA Astrophysics Data System (ADS)

    Reilly, Neil J.; Cheng, Lan; Stanton, John F.; Miller, Terry A.; Liu, Jinjun

    2015-06-01

    The vibrational structures of the tilde A ^2A_1 and tilde X ^2E states of t-butoxy were obtained in jet-cooled laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectroscopic measurements. The observed transitions are assigned based on vibrational frequencies calculated using Complete Active Space Self-Consistent Field (CASSCF) method and the predicted Franck-Condon factors. The spin-orbit (SO) splitting was measured to be 35(5) cm-1 for the lowest vibrational level of the ground (tilde X ^2E) state and increases with increasing vibrational quantum number of the CO stretch mode. Vibronic analysis of the DF spectra suggests that Jahn-Teller (JT)-active modes of the ground-state t-butoxy radical are similar to those of methoxy and would be the same if methyl groups were replaced by hydrogen atoms. Coupled-cluster calculations show that electron delocalization, introduced by the substitution of hydrogens with methyl groups, reduces the electronic contribution of the SO splittings by only around ten percent, and a calculation on the vibronic levels based on quasidiabatic model Hamiltonian clearly attributes the relatively small SO splitting of the tilde X ^2E state of t-butoxy mainly to stronger reduction of orbital angular momentum by the JT-active modes when compared to methoxy. The rotational and fine structure of the LIF transition to the first CO stretch overtone level of the tilde A^2A_1 state has been simulated using a spectroscopic model first proposed for methoxy, yielding an accurate determination of the rotational constants of both tilde A and tilde X states.

  17. Vibration-induced white finger among selected underground rock drillers in British Columbia.

    PubMed

    Brubaker, R L; Mackenzie, C J; Hutton, S G

    1986-08-01

    Ninety-five rock drillers who used pneumatic hand-held drills were interviewed and tested. Thirty-seven were excluded because of factors predisposing to the appearance of white fingers other than exposure to industrial hand-drill vibration. Forty-five percent of the remaining 58 drillers suffered from periodic attacks of Raynaud's phenomenon. Symptoms were present in 25% of the drillers exposed for 1-5 years and in 80% of those exposed for greater than or equal to 16 years. Nine percent of the cases were classified as severe. The median latency for the onset of the blanching symptoms was 7.5 years. The prevalence of Raynaud's phenomenon was 4% among a reference group of 56 miners not exposed to hand vibration and corrected for possible predisposing factors. Objective evidence indicated delayed finger rewarming after a combination of digital ischemia and cooling in 75% of the drillers with blanching symptoms and 18% of the referents without symptoms. There was evidence of an increased frequency of vibration-induced white finger among current cigarette smokers. Weighted 4-h equivalent acceleration levels measured from the handles of 26 jack-leg and 13 stoper drills from the same mines as the miners ranged from 15 to 32 m/s2. These levels exceed recommended guidelines of the International Organization for Standardization.

  18. Experimental validation of a numerical model for subway induced vibrations

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Degrande, G.; Lombaert, G.

    2009-04-01

    This paper presents the experimental validation of a coupled periodic finite element-boundary element model for the prediction of subway induced vibrations. The model fully accounts for the dynamic interaction between the train, the track, the tunnel and the soil. The periodicity or invariance of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transformation, which allows for an efficient formulation in the frequency-wavenumber domain. A general analytical formulation is used to compute the response of three-dimensional invariant or periodic media that are excited by moving loads. The numerical model is validated by means of several experiments that have been performed at a site in Regent's Park on the Bakerloo line of London Underground. Vibration measurements have been performed on the axle boxes of the train, on the rail, the tunnel invert and the tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Prior to these vibration measurements, the dynamic soil characteristics and the track characteristics have been determined. The Bakerloo line tunnel of London Underground has been modelled using the coupled periodic finite element-boundary element approach and free field vibrations due to the passage of a train at different speeds have been predicted and compared to the measurements. The correspondence between the predicted and measured response in the tunnel is reasonably good, although some differences are observed in the free field. The discrepancies are explained on the basis of various uncertainties involved in the problem. The variation in the response with train speed is similar for the measurements as well as the predictions. This study demonstrates the applicability of the coupled periodic finite element-boundary element model to make realistic predictions of the vibrations from underground railways.

  19. Vortex-induced vibrations mitigation through a nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-01-01

    The passive suppression mechanism of the vortex-induced vibrations (VIV) of the cylinder by means of an essentially nonlinear element, the nonlinear energy sink (NES) is investigated. The flow-induced loads on the cylinder are modeled using a prevalent van der Pol oscillator which is experimentally validated, coupling to the structural vibrations in the presence of the NES structure. Based on the coupled nonlinear governing equations of motion, the performed analysis indicates that the mass and damping of NES have significant effects on the coupled frequency and damping of the aero-elastic system, leading to the shift of synchronization region and mitigation of vibration responses. It is demonstrated that the coupled system of flow-cylinder-NES behaves resonant interactions, showing periodic, aperiodic, and multiple stable responses which depend on the values of the NES parameters. In addition, it is found that the occurrence of multiple stable responses can enhance the nonlinear energy pumping effect, resulting in the increment of transferring energy from the flow via the cylinder to the NES, which is related to the essential nonlinearity of the sink stiffness. This results in a significant reduction in the VIV amplitudes of the primary circular cylinder for appropriate NES parameter values.

  20. Ionic vibration induced transparency and Autler–Townes splitting

    NASA Astrophysics Data System (ADS)

    Shao, Wenjun; Wang, Fei; Feng, Xun-Li; Oh, C. H.

    2017-04-01

    In this work, the absorption spectrum of a two-level ion in a linear Paul trap is investigated, the ion is supposed to be driven by two orthogonal laser beams, the one along the axial of the trap acts as the control light beam, the other as probe beam. When the frequency of the control laser is tuned to the first red sideband of the ionic transition, the coupling between the internal states of the ion and vibrational mode turns out to be a Jaynes–Cummings (JC) Hamiltonian, which together with the coupling between the probe beam and the two-level ion constructs a Λ -type three-level structure. In this case the transparency window may appear in the absorption spectrum of the probe light, which is induced by the ionic vibration and is very similar to the cavity induced transparency (Rice and Brecha 1996 Opt. Commun. 126 230–5). On the other hand, when the frequency of the control laser is tuned to the first blue sideband of the ionic transition, the two-level ion and vibrational mode are governed by an anti-Jaynes–Cummings (anti-JC) Hamiltonian, the total system including the probe beam forms a V-type three-level structure. And the Autler–Townes splitting in the absorption spectrum is found.

  1. Numerical Approximations of Flow Induced Vibrations of Vocal Folds

    NASA Astrophysics Data System (ADS)

    Sváček, P.; Horáček, J.

    2010-09-01

    The paper is interested in numerical modelling of incompressible channel flow interacting with elastic part of its walls simulating vocal fold oscillations. The flow in moving domain is described with the aid of the Arbitrary Lagrangian-Eulerian method, see e.g. [1], and governed by the 2D incompressible Navier-Stokes equations. The flow model is coupled with the structural motion modelled by an aeroelastic two degrees of freedom model of the oscillating vocal folds, cf. [2], [9]. The described fluid-structure interaction problem is discretized in time and space, see also [1]. The numerical results of a channel flow modelling the glottal region of the human vocal tract including the vibrating vocal folds are shown. The vibrations of the channel walls are either prescribed (1st case) or induced by the aerodynamical forces (2nd case).

  2. Spray characterization during vibration-induced drop atomization

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    2004-02-01

    Vibration-induced drop atomization is a process of rapid droplet ejection from a larger liquid drop. This occurs when a liquid drop resting on a thin diaphragm is vibrated under the appropriate forcing conditions using an attached piezoelectric actuator. The resulting spray of small droplets is characterized in this work using high-speed imaging and particle-tracking techniques. The results show that the average spatial and velocity distributions of the spray droplets are fairly axisymmetric during all stages of the atomization. The mean diameter of the droplets depends on the forcing frequency to the -2/3 power. The ejection velocity of the spray droplets depends on both the magnitude and the rate of change of the forcing amplitude. Thus, controlling the characteristics of the forcing signal may lead to strategies for controlling the spray process in specific applications.

  3. Laser-induced vibration of a thin soap film.

    PubMed

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.

  4. Experimental chaotic quantification in bistable vortex induced vibration systems

    NASA Astrophysics Data System (ADS)

    Huynh, B. H.; Tjahjowidodo, T.

    2017-02-01

    The study of energy harvesting by means of vortex induced vibration systems has been initiated a few years ago and it is considered to be potential as a low water current energy source. The energy harvester is realized by exposing an elastically supported blunt structure under water flow. However, it is realized that the system will only perform at a limited operating range (water flow) that is attributed to the resonance phenomenon that occurs only at a frequency that corresponds to the fluid flow. An introduction of nonlinear elements seems to be a prominent solution to overcome the problem. Among many nonlinear elements, a bistable spring is known to be able to improve the harvested power by a vortex induced vibrations (VIV) based energy converter at the low velocity water flows. However, it is also observed that chaotic vibrations will occur at different operating ranges that will erratically diminish the harvested power and cause a difficulty in controlling the system that is due to the unpredictability in motions of the VIV structure. In order to design a bistable VIV energy converter with improved harvested power and minimum negative effect of chaotic vibrations, the bifurcation map of the system for varying governing parameters is highly on demand. In this study, chaotic vibrations of a VIV energy converter enhanced by a bistable stiffness element are quantified in a wide range of the governing parameters, i.e. damping and bistable gap. Chaotic vibrations of the bistable VIV energy converter are simulated by utilization of a wake oscillator model and quantified based on the calculation of the Lyapunov exponent. Ultimately, a series of experiments of the system in a water tunnel, facilitated by a computer-based force-feedback testing platform, is carried out to validate the existence of chaotic responses. The main challenge in dealing with experimental data is in distinguishing chaotic response from noise-contaminated periodic responses as noise will smear

  5. Flow-induced vibration and instability of some nuclear-reactor-system components. [PWR

    SciTech Connect

    Chen, S.S.

    1983-01-01

    The high-velocity coolant flowing through a reactor system component is a source of energy that can induce component vibration and instability. In fact, many reactor components have suffered from excessive vibration and/or dynamic instability. The potential for detrimental flow-induced vibration makes it necessary that design engineers give detailed considerations to the flow-induced vibration problems. Flow-induced-vibration studies have been performed in many countries. Significant progress has been made in understanding the different phenomena and development of design guidelines to avoid damaging vibration. The purpose of this paper is to present an overview of the recent progress in several selected areas, to discuss some new results and to indentify future research needs. Specifically, the following areas will be presented: examples of flow-induced-vibration problems in reactor components; excitation mechanisms and component response characteristics; instability mechanisms and stability criteria; design considerations; and future research needs.

  6. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons

    PubMed Central

    Christensen, Rasmus Bjerregaard; Lü, Jing-Tao; Hedegård, Per

    2016-01-01

    Summary We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibrational instabilities using a simplified eigen-mode analysis. Our study illustrates how armchair nanoribbons can serve as a possible testbed for probing the current-induced forces. PMID:26925354

  7. Current-induced runaway vibrations in dehydrogenated graphene nanoribbons.

    PubMed

    Christensen, Rasmus Bjerregaard; Lü, Jing-Tao; Hedegård, Per; Brandbyge, Mads

    2016-01-01

    We employ a semi-classical Langevin approach to study current-induced atomic dynamics in a partially dehydrogenated armchair graphene nanoribbon. All parameters are obtained from density functional theory. The dehydrogenated carbon dimers behave as effective impurities, whose motion decouples from the rest of carbon atoms. The electrical current can couple the dimer motion in a coherent fashion. The coupling, which is mediated by nonconservative and pseudo-magnetic current-induced forces, change the atomic dynamics, and thereby show their signature in this simple system. We study the atomic dynamics and current-induced vibrational instabilities using a simplified eigen-mode analysis. Our study illustrates how armchair nanoribbons can serve as a possible testbed for probing the current-induced forces.

  8. Cross flow induced vibrations in staggered arrays of cylindrical structures

    SciTech Connect

    Marn, J.

    1991-12-31

    Flow induced vibrations cause by instability is the subject of this investigation. The bulk of the work performed is theoretical in nature, the comparison with some of existing experimental data is given for each of four models described. First model encompasses the effects of prescribed motion on the cylinder. Such circumstances occur in the case of vortex shedding initiated instability. The reduced velocity within the cylinder array is low and there is no coupling between the adjacent cylinders. Second model assumes certain form of vibration and corresponding behavior of the perturbed velocity field in temporal and one of spatial coordinates thus transforming partial differential equations into ordinary differential equations and takes into account the motion of the neighboring cylinder. This corresponds to fluid elastic controlled instabilities. The resulting equations are solved analytically. The model is used for better understanding of the equations of cylinder motion as well as for quick estimates of threshold of instability. Third model relaxes an assumption about the form of vibration in spatial direction and uses the vorticity formulation of equation of fluid motion to account for fluid-solid interaction. This model analysis is of two phase (air-water mixture) flow. The void fraction distribution is found to be the single most decisive factor to determine the onset of instability for such a domain. In conclusion, two distinct mechanism were found to be responsible for flow induced vibration caused instabilities, (1) outside source controlled periodic excitation (such as vortex shedding) -- described by the first model and (2) fluid elastic forces -- described by second, third and fourth models. For the values of reduced velocity below 0.7 first model is proposed, for the values above 0.7, the rest.

  9. Expansion of radiative cooling of the laser induced plasma

    SciTech Connect

    Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph; Russo,Richard

    2006-05-05

    To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.

  10. Complex muscle vibration patterns to induce gait-like lower-limb movements: proof of concept.

    PubMed

    Duclos, Cyril; Kemlin, Claire; Lazert, David; Gagnon, Dany; Dyer, Joseph-Omer; Forget, Robert

    2014-01-01

    Muscle vibrations can induce motor responses and illusions of complex movements. However, inducing gait-like cyclical movements and illusions requires the application of multiple fast alternating vibrations to lower-limb muscles. The objectives were (1) to test the feasibility of delivering complex vibrations in a time-organized manner and (2) to illustrate the possibility of inducing alternate gait-in-place-like movements using these vibrations. Patterns of vibration, produced by 12 vibrators applied bilaterally on the flexor and extensor muscle groups of the lower limbs, were based on normal gait kinematics. We tested 1 s and 2 s cycle patterns of vibration. Vibrator responses were assessed using auto- and crosscorrelations and frequency analyses based on accelerometry measurements, and compared between patterns. High auto- (>0.8) and crosscorrelation (>0.6) coefficients demonstrated a good response by the vibrators to the control signal. Vibrations induced cyclical, low-amplitude stepping-in-place movements that mimicked alternate walking movements with both legs, with 1 s and 2 s cycle durations, in one nondisabled participant and one participant with American Spinal Injury Association Impairment Scale B spinal cord injury standing, relaxed, with body-weight support. Electromechanical vibrators can deliver complex cyclical vibrations and trigger gait-like lower-limb movements. These results warrant the application of these vibration patterns on individuals with sensorimotor impairments to test their potential in gait rehabilitation.

  11. An Experimental Investigation of Vibration Induced Droplet Atomization*

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    1999-11-01

    The atomization of a millimeter-scale liquid droplet placed on a vibrating diaphragm is investigated experimentally using high-speed imaging and particle-tracking techniques. Atomization is the result of the rapid ejection of small secondary droplets from the wave crests of a hierarchy of forced surface waves on the primary droplet. The evolution and rate of ejection depend on the coupled dynamics of the primary droplet and the vibrating diaphragm. The present data indicate that secondary droplet ejection results from the collapse of surface craters formed during the evolution of capillary surface waves on the primary droplet. The collapse of the crater and the ensuing ejection of a momentary liquid jet are similar to ejection processes at free surfaces that are induced by the bursting of gas bubbles or the impingement of liquid droplets. The spray characteristics of the ejected droplets are investigated over a broad range of vibrating frequencies (up to 14 kHz) using particle-tracking velocimetry. * Supported by NASA Microgravity Res. Div., Grant NAG3-1949.

  12. An Experimental Investigation of Vibration-Induced Single Droplet Ejection.

    NASA Astrophysics Data System (ADS)

    Range, Kai; Smith, Marc K.; Glezer, Ari

    1998-11-01

    Vibration-induced droplet atomization occurs when small secondary droplets are ejected from the free surface of a larger droplet placed on a vibrating membrane. To model a single ejection event, a liquid droplet is placed on a small piston and vibrated using an electromagnetic driver. The droplet oscillates in a characteristic mode shape that depends on the driving frequency and amplitude, the properties of the liquid, and the size of the droplet. When the excitation amplitude is large enough, a small secondary droplet is ejected from the primary droplet. Observations of this process using high-speed digital video imaging show that droplet ejection occurs when a small liquid column or jet appears on the primary droplet and a secondary droplet forms on the column by a capillary-pinching mechanism. The liquid column or jet emanates from a crater in the primary droplet. As the driving frequency increases, this crater becomes smaller and the diameter of the ejected droplet decreases. We shall present results showing how the ejected droplet diameter and speed depends on the driving frequency and amplitude, the liquid properties, and the primary droplet volume.

  13. Flow induced vibrations in arrays of irregularly spaced cylinders

    NASA Astrophysics Data System (ADS)

    Taub, Gordon; Michelin, Sébastien

    2014-11-01

    Historically the main industrial applications of cylinder arrays in cross flows favored regular arrangements of cylinders. For this reason, most past studies of Flow Induced Vibrations (FIV) in large cylinder arrays have focused on such arrangements. Recently there has been some interest in generating renewable energy using FIV of bluff bodies. In such applications it will likely be beneficial to enhance, rather than suppress FIV. It is not known a priori if regular or irregularly spaced arrays are most adequate for this type of application. In this study, wind tunnel experiments were conducted on one regularly spaced array and four different irregularly spaced arrays of cylinders in a cross flow. Each arrangement of cylinders was examined under eight different orientations to a cross flow ranging between 10 m/s and 17 m/s. The average amplitude of vibration of the cylinders was found to highly depend on arrangement and orientation. The typical amplitude of vibration of the rods in the irregular arrangements were found to be an order of magnitude larger than that of the regular array. A simple model was proposed in order to predict if a given arrangement was likely to produce large oscillations, and the validity of the model was examined. This research was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (Grant PIRG08-GA-2010-276762).

  14. Neck muscle vibration induces lasting recovery in spatial neglect

    PubMed Central

    Schindler, I; Kerkhoff, G; Karnath, H; Keller, I; Goldenberg, G

    2002-01-01

    See Editorial Commentary, page 357 Objectives: To evaluate whether neck muscle vibration is an effective technique for neglect rehabilitation, with lasting beneficial effects. Methods: The effects of differential treatment of visual exploration training alone or in combination with neck muscle vibration were evaluated in a crossover study of two matched groups of 10 patients suffering from left sided neglect. Each group received a sequence of 15 consecutive sessions of exploration training and combined treatment. The effects of treatment were assessed with respect to different aspects of the neglect disorder such as impaired perception of the egocentric midline, exploration deficits in visual and tactile modes, and visual size distortion. The transfer of treatment effects to activities of daily living was examined by a reading test and a questionnaire of neglect related everyday problems. All variables were measured six times: three baseline measurements, two post-treatment measurements, and one follow up after two months. Results: The results showed superior effects of combination treatment. A specific and lasting reduction in the symptoms of neglect was achieved in the visual mode, which transferred to the tactile mode with a concomitant improvement in activities of daily living. The improvement was evident two months after the completion of treatment. In contrast, isolated exploration training resulted in only minor therapeutic benefits in visual exploration without any significant transfer effects to other tasks. Conclusions: Neck muscle vibration is a decisive factor in the rehabilitation of spatial neglect and induces lasting recovery when given as a supplement to conventional exploration training. PMID:12235310

  15. The Temporary Threshold Shift of Vibratory Sensation Induced by Hand-Arm Vibration Composed of Four One-Third Octave Band Vibrations

    NASA Astrophysics Data System (ADS)

    Nishiyama, K.; Taoda, K.; Yamashita, H.; Watanabe, S.

    1997-03-01

    The aim of the present study was to define the multiple effect hand-arm vibration composed of four equally effective one-third octave band vibrations (63 Hz, 125 Hz, 250 Hz and 500 Hz) on the temporary threshold shift in vibratory sensation.Seven healthy subjects were exposed to vibration by grasping a vibrated handle in a soundproof thermo-regulated room. The vibratory sensation threshold at 125 Hz was measured before and after vibration exposure at an exposed fingertip. At first we determined each acceleration of the component one-third octave band vibrations for each subject. These should induce the same magnitude of temporary threshold shift in vibratory sensation immediately after the vibration exposure (TTSv.0as induced by the reference one-third octave band vibration (250 Hz, 4g). We measured TTSv.tfor the exposures of the composed vibrations and the four component vibrations. TTSv.0was determined for each exposure according to the exponential recovery model stated in the previous study.The TTSv.0induced by the composite vibration was not longer than that which might have been induced by each component vibration. This result confirms our previous speculation that the component of the vibration inducing the largest TTSv.0determines TTSv.0by broadband random vibration.

  16. Flow induced vibrations in the SSME injector heads

    NASA Technical Reports Server (NTRS)

    Lepore, Frank A.

    1991-01-01

    A description is given of the flowfield in the Space Shuttle Main Engine (SSME) powerhead, the mechanisms which control flow-induced vibrations, and previous experimental work. An in-depth description is given of the development phase of the program , which includes the analysis, design, and fabrication of liquid oxygen (LOX) posts models used in the experimental phase, as well as test facilities, equipment, and procedures used. Also covered is the experimental data analysis, which includes overall steady state powerhead flowfield as well as the high frequency response of the LOX posts.

  17. Turbulence Induced Vibration: Theory and Application to the Next Linear Collider(LCC-0094)

    SciTech Connect

    Adiga, S.

    2003-10-07

    A semianalytical approach is used to estimate turbulence-induced vibration. The results are compared with the measured vibrations for three different cases, a 16-inch pipe at the NLCTA, a 10-inch pipe at the SLD and the coolant pipes around the copper structure model of the linear collider. The variation of vibrations with respect to velocity of flow is studied as well.

  18. Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space

    NASA Technical Reports Server (NTRS)

    Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.

    2001-01-01

    The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.

  19. The temporary threshold shift of vibratory sensation induced by composite-band vibration exposure.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    Eight healthy subjects were exposed to three 1/3 octave-band vibrations (63, 200, and 500 Hz) by hand clasping a vibrated handle in a soundproof and thermoregulated room. The vibratory sensation threshold at 125 Hz was measured before and after the vibration exposure at an exposed fingertip. According to a preceding study, we first determined the relationship between the acceleration of the vibration and the temporary threshold shift of vibratory sensation immediately after the vibratory exposure (TTSv,0) induced by 1/3 octave-band vibration. We then measured TTSv after the exposure to a composite vibration composed of two 1/3 octave-band vibrations that might induce an equal magnitude of TTSv,0 on the basis of the above relationship. The TTSv,0 induced by the composite vibration was not larger than the TTSv,0 induced by the component vibrations. This result suggests that the component of the vibration inducing the largest TTSv,0 determines the TTSv,0 by broad-band random vibration.

  20. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity

    PubMed Central

    Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir

    2014-01-01

    Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15

  1. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir

    2014-03-01

    Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by

  2. Harbor seal vibrissa morphology suppresses vortex-induced vibrations.

    PubMed

    Hanke, Wolf; Witte, Matthias; Miersch, Lars; Brede, Martin; Oeffner, Johannes; Michael, Mark; Hanke, Frederike; Leder, Alfred; Dehnhardt, Guido

    2010-08-01

    Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.

  3. Flow Induced Vibration Program at Argonne National Laboratory

    SciTech Connect

    Not Available

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  4. Piezoelectric power generation using friction-induced vibration

    NASA Astrophysics Data System (ADS)

    Tadokoro, Chiharu; Matsumoto, Aya; Nagamine, Takuo; Sasaki, Shinya

    2017-06-01

    In order to examine the feasibility of power generation by using friction-induced vibration with a piezoelectric element, we performed experiments and numerical analysis. In the experiments, the generated power in the piezoelectric element and the displacement of an oscillator were measured by a newly developed apparatus that embodied a single-degree-of-freedom (1-DOF) system with friction. In the numerical analysis, an analytical model of a 1-DOF system with friction and piezoelectric element was proposed to simulate the experiments. The experimental results demonstrated that the power of a few microwatts was generated by sliding between a steel ball and a steel plate lubricated with glycerol. In this study, a maximum power of approximately 10 μW was generated at a driving velocity of 40 mm s-1 and a normal load of 15 N. The numerical results demonstrated good qualitative agreement with the experimental results. This implies that this analytical model can be applied to optimize the oscillator design in piezoelectric power generation using friction-induced vibration.

  5. Vibrational Studies of Adsorbate-Induced Reconstruction on Molybdenum Surfaces.

    NASA Astrophysics Data System (ADS)

    Lopinski, Gregory Peter

    Adsorbate-induced rearrangement of the substrate structure strongly modifies the adsorbate-substrate and adsorbate-adsorbate interactions, leading to the complex behavior observed in many chemisorption systems. In this thesis the H/Mo(211), O/Mo(211) and Na/Mo(100) systems have been studied using high resolution electron energy loss spectroscopy (HREELS) to observe vibrations of the adsorbed atoms. The vibrational data is correlated with observations of the long-range order probed by LEED as well as the work function changes induced by adsorption. Adsorbate -induced substrate reconstruction plays an important role in all three of these systems. Studies of the coadsorption systems O+H/Mo(211) and Na+O/Mo(100) indicate how these effects can influence interactions between adsorbates. For H/Mo(211), above 1ML a (1 x 1) to (1 x 2) transition is observed and attributed to modification of the substrate periodicity. Below 1ML, H atoms are bridge bonded and induce local distortions of the substrate. The transition to the (1 x 2) phase involves the ordering of these displacements and occupation of three-fold sites partially populated by conversion of the bridge bonded species. This conversion accounts for the sawtooth-like coverage dependence of the work function. The structural model proposed for this system is also supported by the desorption parameters and partial molar entropy extracted from adsorption isobars. Oxygen adsorption on Mo(211) involves the occupation of multiple binding sites, with both the long-range order and the local geometry of the adsorbate phases strongly temperature dependent. Coadsorption of low coverages of oxygen and hydrogen leads to segregation of the two adsorbates which can be understood in terms of a substrate-mediated repulsive interaction between O and H. For Na/Mo(100), the frequency of the Na-Mo symmetric stretch mode does not shift with coverage although the mode intensity is strongly coverage dependent. The absence of a frequency shift

  6. Aircraft noise-induced building vibrations. [human annoyance responses

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Mayes, W. H.

    1979-01-01

    The outdoor/indoor noise levels and associated vibration levels resulting from aircraft and nonaircraft events are recorded at 11 homesites, a historic building, and a school. In addition, limited subjective tests are conducted to examine the human detection/annoyance thresholds for building vibration and rattle caused by aircraft noise. Results include relationships between aircraft noise and building vibration and between vibration and human response. Comparisons of building vibration data with existing criteria for building damage and human response are also considered.

  7. Reduction in finger blood flow induced by hand-transmitted vibration: effect of hand elevation.

    PubMed

    Ye, Ying; Mauro, Marcella; Bovenzi, Massimo; Griffin, Michael J

    2015-10-01

    This study investigated the effect of hand elevation on reductions in finger blood flow (FBF) induced by hand-transmitted vibration. Fourteen males attended six sessions on six separate days, with a control sessions and a vibration session (125-Hz vibration at 44 ms(-2) rms) with the right hand supported at each of three elevations: 20 cm below heart level (HL), at HL, and 20 cm above HL. Finger blood flow on the left and right hand was measured every 30 s during each 25-min session comprised of five periods: (1) no force and no vibration (5 min), (2) 2-N force and no vibration (5 min), (3) 2-N force and vibration (5 min), (4) 2-N force and no vibration (5 min), and (5) no force and no vibration (5 min). Without vibration, FBF decreased with increasing elevation of the hand. During vibration of the right hand, FBF reduced on both hands. With elevation of the right hand, the percentage reduction in FBF due to vibration (relative to FBF on the same finger at the same elevation before exposure to vibration) was similar on the middle and little fingers of both hands. After cessation of vibration, there was delayed return of FBF with all three hand heights. Vibration of one hand reduces FBF on both exposed and unexposed hands, with the reduction dependent on the elevation of the hand. The mechanisms responsible for vibration-induced reductions in FBF seem to reduce blood flow as a percentage of the blood flow without vibration. Tasks requiring the elevation of the hands will be associated with lower FBF, and the FBF will be reduced further if there is exposure to hand-transmitted vibration.

  8. The use of scalp cooling for chemotherapy-induced hair loss.

    PubMed

    Young, Annie; Arif, Azra

    Chemotherapy-induced hair loss is a common and distressing side effect of cancer therapy and is one of the major unmet challenges in cancer management. Scalp cooling can prevent chemotherapy-induced hair loss in some cancer patients with solid tumours receiving certain chemotherapy regimens. Recent evidence indicates that this technique does not increase the risk of scalp metastasis. A reduction in post-chemotherapy infusion duration of scalp cooling and the advancement in cool cap technology may assist clinicians in promoting scalp cooling to cancer patients. This article discusses recent research, scalp cooling guidelines, products available and implications for nurses and their organisations in providing scalp cooling. It also considers recent advancements in identifying genes associated with chemotherapy-induced hair loss and international research collaborations including a registry and a 'chemotherapy-induced hair loss action group'--all striving to improve the patient experience of chemotherapy-induced hair loss.

  9. Ultrafast Relaxation Dynamics of Photoexcited Heme Model Compounds: Observation of Multiple Electronic Spin States and Vibrational Cooling.

    PubMed

    Govind, Chinju; Karunakaran, Venugopal

    2017-04-13

    Hemin is a unique model compound of heme proteins carrying out variable biological functions. Here, the excited state relaxation dynamics of heme model compounds in the ferric form are systematically investigated by changing the axial ligand (Cl/Br), the peripheral substituent (vinyl/ethyl-meso), and the solvent (methanol/DMSO) using femtosecond pump-probe spectroscopy upon excitation at 380 nm. The relaxation time constants of these model compounds are obtained by global analysis. Excited state deactivation pathway of the model compounds comprising the decay of the porphyrin excited state (S*) to ligand to metal charge transfer state (LMCT, τ1), back electron transfer from metal to ligand (MLCT, τ2), and relaxation to the ground state through different electronic spin states of iron (τ3 and τ4) are proposed along with the vibrational cooling processes. This is based on the excited state absorption spectral evolution, similarities between the transient absorption spectra of the ferric form and steady state absorption spectra of the low-spin ferrous form, and the data analysis. The observation of an increase of all the relaxation time constants in DMSO compared to the methanol reflects the stabilization of intermediate states involved in the electronic relaxation. The transient absorption spectra of met-myoglobin are also measured for comparison. Thus, the transient absorption spectra of these model compounds reveal the involvement of multiple iron spin states in the electronic relaxation dynamics, which could be an alternative pathway to the ground state beside the vibrational cooling processes and associated with the inherent features of the heme b type.

  10. High Resolution Measurements of Impurity-Induced Localized Vibrational Modes in Semiconductors.

    DTIC Science & Technology

    1984-03-26

    Induced Localized Vibrational Modes in Semiconductors by William G. Spitzer Electronic Sciences Laboratory University of Southern California under Grant...neighbors (isotopic change) on the frequency of localized vibrational modes induced by impurities in a crystalline lattice. The earlier observations of...CA 90089-0241 (Received ~~1k~h~i ’~i ABSTRACT The infrared absorption due to excitation of localized vibrational modes (LVM) involving Si impurities

  11. Vibration-Induced-Emission (VIE) for imaging amyloid β fibrils.

    PubMed

    Dou, Wei-Tao; Chen, Wei; He, Xiao-Peng; Su, Jianhua; Tian, He

    2017-02-01

    This paper discusses the use of N,N'-disubstituted-dihydrodibenzo[a,c]phenazines with typical Vibration-Induced-Emission (VIE) properties for imaging amyloid β (Aβ) fibrils, which are a signature of neurological disorders such as Alzheimer's disease. A water-soluble VIEgen with a red fluorescence emission shows a pronounced, blue-shifted emission with Aβ peptide monomers and fibrils. The enhancement in blue fluorescence can be ascribed to the restriction of the molecular vibration by selectively binding to Aβ. We determine an increasing blue-to-red emission ratio of the VIEgen with both the concentration and fibrogenesis time of Aβ, thereby enabling a ratiometric detection of Aβ in its different morphological forms. Importantly, the VIEgen was proven to be suitable for the fluorescence imaging of small Aβ plaques in the hippocampus of a transgenic mouse brain (five months old), with the blue and red emissions well overlapped on the Aβ. This research offers a new rationale to design molecular VIE probes for biological applications.

  12. Ejection Dynamics in Vibration-Induced Droplet Atomization

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    2001-11-01

    A primary sessile liquid drop is atomized into a fine spray of secondary droplets using vibration-induced atomization (VIDA) resulting from forced waves on a free surface of the primary drop. The mechanism of free surface breakup during the VIDA process is investigated using high-speed imaging and laser vibrometry. Secondary droplets result from a localized collapse of surface troughs and the ejection and ultimate breakup of momentary liquid spikes. The characteristic breakup time of these liquid spikes scales with the vibration period and the spike length initially varies like t0.5. The breakup begins with a capillary pinch-off from the tip of the spike that can be followed by additional pinching of liquid droplets. For relatively low-viscosity liquid (e.g., water) a capillary-wave instability of a jet is observed in some cases, while in very viscous liquid (e.g., glycerin-water solution) the first breakup occurs near the stem of the jet. The mechanisms of secondary droplet ejection and the influence of the operating parameters and fluid properties are discussed.

  13. Vibration-induced multifocal neuropathy in forestry workers: electrophysiological findings in relation to vibration exposure and finger circulation.

    PubMed

    Bovenzi, M; Giannini, F; Rossi, S

    2000-11-01

    To investigate neural conduction in the upper limbs of symptomatic forestry workers with and without exposure to hand-transmitted vibration. A further aim was to assess the possible relationships between vibration exposure, nerve conduction and finger circulation in the forestry workers who used chain saws. A detailed neurophysiological investigation was performed on the upper extremities of 20 chain saw workers, 20 forestry operators with heavy manual work but without vibration exposure, and 20 healthy male controls. All subjects were screened to exclude polyneuropathy. Measurements of sensory and motor nerve conduction (velocity and amplitude) were obtained bilaterally from the median, ulnar and radial nerves. To assess peripheral vascular function, the forestry workers underwent a cold test with plethysmographic measurement of finger systolic blood pressure (FSBP). In the chain saw operators, vibration exposure was evaluated according to the International Standard ISO 5349. Indices of daily vibration exposure and lifetime cumulative vibration dose were estimated for each chain saw operator. Sensory nerve conduction in several segments of the median and radial nerves was significantly reduced in the chain saw operators compared with that in the workers doing heavy manual work and the controls. The neurophysiological pattern more frequently observed in the chain saw operators was a multifocal nerve conduction impairment to several neural segments with predominant involvement of sensory rather than motor fibres. Sensory nerve conduction velocities in the hands of the chain saw operators were inversely related to both daily and lifetime cumulative vibration exposures. In the vibration-exposed forestry workers, neither were sensori-motor complaints associated with vascular symptoms (finger whiteness) nor were electrophysiological data related to cold-induced changes in FSBP. Exposure to hand-transmitted vibration, in addition to ergonomic stress factors, can

  14. Sub-Picosecond Intersystem Crossing and Vibrational Cooling in the Triplet Manifold of 1-NITRONAPHTHALENE

    NASA Astrophysics Data System (ADS)

    Reichardt, Christian; Vogt, R. Aaron; Crespo-Hernández, Carlos E.

    2009-06-01

    The electronic energy relaxation of 1-nitronaphthalene (1NN) was studied in different solvents using broadband transient absorption spectroscopy with femtosecond time resolution. UV excitation of 1NN populates an unrelaxed S_1(ππ*) state, which decays by conformational relaxation (primarily twisting of the NO_2 group) with a time constant of 100 fs. The twisting of the NO_2 group and formation of a structurally relaxed singlet state opens up a doorway for ultrafast intersystem crossing (ISC) to a high-energy receiver triplet state T_n(nπ*), which then undergoes internal conversion to form a vibrationally excited T_1(π π*) state. Quantum chemical calculations that include solvent effects support the experimental observations. Our results show that an essentially barrierless path connects the initial S_1 state to the receiver T_n state, which enables the observation of vibrational energy transfer and its dependence on the surrounding solvent. According to this kinetic model, which was first proposed by Crespo-Hernández et al. for 1-nitropyrene[1], the S_1(π π) electronic energy decays rapidly and irreversibly to dark triplet states, explaining why small nitro-polycyclic aromatic compounds are typically considered to be nonfluorescent. [1] C. E. Crespo-Hernández, G. Burdzinski, R. Arce, J. Phys. Chem. A., 2008, 112,6313

  15. Light-induced vibration in the hearing organ.

    PubMed

    Ren, Tianying; He, Wenxuan; Li, Yizeng; Grosh, Karl; Fridberger, Anders

    2014-08-04

    The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity.

  16. Stall-Induced Vibrations of the AVATAR Rotor Blade

    NASA Astrophysics Data System (ADS)

    Stettner, M.; Reijerkerk, M. J.; Lünenschloß, A.; Riziotis, V.; Croce, A.; Sartori, L.; Riva, R.; Peeringa, J. M.

    2016-09-01

    In the course of the AVATAR project, partner predictions for key load components in storm/idle conditions separated in two groups. One group showed large loading due to edgewise instability, the other group damped edgewise oscillation and lower load levels. To identify the cause for this separation, the impact of structural and aerodynamic modeling options on damping of stall-induced vibrations is investigated for two simplified operating conditions of a single AVATAR blade. The choice of the dynamic stall model is found to be the primary driver, and is therefore most likely also the reason for previously observed differences in AVATAR storm load predictions. Differences in structural dynamics, mode shapes, structural and dynamic twist, as well as wake model are only secondary in terms of impact on damping. Resolution suffered from failure of system identification methods to extract reliable damping values from various non-linear response simulations.

  17. Light-induced vibration in the hearing organ

    PubMed Central

    Ren, Tianying; He, Wenxuan; Li, Yizeng; Grosh, Karl; Fridberger, Anders

    2014-01-01

    The exceptional sensitivity of mammalian hearing organs is attributed to an active process, where force produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these fundamental precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. This shows that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex. A physiologically-based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity. PMID:25087606

  18. Vibration Induced Phenomena in Granular Media in Microgravity

    NASA Astrophysics Data System (ADS)

    Opsomer, Eric; Noirhomme, Martial; Vandewalle, Nicolas

    2017-06-01

    In order to study the dynamical behavior and the handling properties of granular materials under microgravity conditions, ESA is developing the VIP-Gran instrument whose multiple functionalities allow for the study of Vibration Induced Phenomena in Granular media in low gravity. Here, we present an overview of VIP-Gran's evolution, from the original idea to the latest encouraging and fascinating results. At first, we give a description of the instrument and the different investigated topics. Then, we present numerical simulations that we performed in order to prepare our experiments and tackle fundamental questions concerning granular gases. Finally, we give an insight on the first experimental results from parabolic flight campaigns and confront them with preliminary works and theoretical models.

  19. Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration

    SciTech Connect

    Lee, Young-Ho; Kim, Hyung-Kyu; Kang, Heung-Seok; Yoon, Kyung-Ho; Kim, Jae-Yong; Lee, Kang-Hee

    2012-06-06

    Recently, a dual-cooled fuel (i.e., annular fuel) that is compatible with current operating PWR plants has been proposed in order to realize both a considerable amount of power uprating and an increase of safety margins. As the design concept should be compatible with current operating PWR plants, however, it shows a narrow gap between the fuel rods when compared with current solid nuclear fuel arrays and needs to modify the spacer grid shapes and their positions. In this study, fretting wear tests have been performed to evaluate the wear resistance of a dual-cooled fuel by using a proposed spring and dimple of spacer grids that have a cantilever type and hemispherical shape, respectively. As a result, the wear volume of the spring specimen gradually increases as the contact condition is changed from a certain gap, just contact to positive force. However, in the dimple specimen, just contact condition shows a large wear volume. In addition, a circular rod motion at upper region of contact surface is gradually increased and its diametric size depends on the wear depth increase. Based on the test results, the fretting wear resistance of the proposed spring and dimple is analyzed by comparing the wear measurement results and rod motion in detail.

  20. Hybrid isolation of micro vibrations induced by reaction wheels

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Oen; Park, Geeyong; Han, Jae-Hung

    2016-02-01

    As the technology for precision satellite payloads continues to advance, the requirements for the pointing stability of the satellites are becoming extremely high. In many situations, even small amplitude disturbances generated by the onboard components may cause serious degradation in the performance of high precision payloads. In such situations, vibration isolators can be installed to reduce the vibration transmission. In this work, a hybrid vibration isolator comprising passive and active components is proposed to provide an effective solution to the vibration problems caused by the reaction wheel disturbances. Firstly, mathematical modeling and experimental study of a single axis vibration isolator having high damping and high roll-off rate for the high frequency region and active components that enhance isolation performance for narrow frequency bands are presented. This concept is then extended to multi-axis by forming Stewart platform and the performance is experimentally verified. The tests on a flexible testbed show effective vibration isolation by the proposed vibration isolator.

  1. The effects of pre-exercise vibration stimulation on the exercise-induced muscle damage

    PubMed Central

    Kim, Ji-Yun; Kang, Da-Haeng; Lee, Joon-Hee; O, Se-Min; Jeon, Jae-Keun

    2017-01-01

    [Purpose] To investigate the effects of pre-induced muscle damage vibration stimulation on the pressure-pain threshold and muscle-fatigue-related metabolites of exercise-induced muscle damage. [Subjects and Methods] Thirty healthy, adult male subjects were randomly assigned to the pre-induced muscle damage vibration stimulation group, post-induced muscle damage vibration stimulation group, or control group (n=10 per group). To investigate the effects of pre-induced muscle damage vibration stimulation, changes in the pressure-pain threshold (lb), creatine kinase level (U/L), and lactate dehydrogenase level (U/L) were measured and analyzed at baseline and at 24 hours, 48 hours, and 72 hours after exercise. [Results] The pressure-pain thresholds and concentrations of creatine kinase and lactate dehydrogenase varied significantly in each group and during each measurement period. There were interactions between the measurement periods and groups, and results of the post-hoc test showed that the pre-induced muscle damage vibration stimulation group had the highest efficacy among the groups. [Conclusion] Pre-induced muscle damage vibration stimulation is more effective than post-induced muscle damage vibration stimulation for preventing muscle damage. PMID:28210056

  2. Train-induced field vibration measurements of ground and over-track buildings.

    PubMed

    Zou, Chao; Wang, Yimin; Moore, James A; Sanayei, Masoud

    2017-01-01

    Transit-oriented development, such as metro depot and over-track building complexes, has expanded rapidly over the last 5years in China. Over-track building construction has the advantage of comprehensive utilization of land resources, ease of commuting to work, and provide funds for subway construction. But the high frequency of subway operations into and out of the depots can generate excessive vibrations that transmit into the over track buildings, radiate noise within the buildings, hamper the operation of vibration sensitive equipment, and adversely affect the living quality of the building occupants. Field measurements of vibration during subway operations were conducted at Shenzhen, China, a city of 10.62 million people in southern China. Considering the metro depot train testing line and throat area train lines were the main vibration sources, vibration data were captured in five measurement setups. The train-induced vibrations were obtained and compared with limitation of FTA criteria. The structure-radiated noise was calculated using measured vibration levels. The vertical vibration energy directly passed through the columns on both sides of track into the platform, amplifying vibration on the platform by up to 6dB greater than ground levels at testing line area. Vibration amplification around the natural frequency in the vertical direction of over-track building made the peak values of indoor floor vibration about 16dB greater than outdoor platform vibration. We recommend to carefully examining design of new over-track buildings within 40m on the platform over the throat area to avoid excessive vertical vibrations and noise. For both buildings, the measured vertical vibrations were less than the FTA limit. However, it is demonstrated that the traffic-induced high-frequency noise has the potential to annoy occupants on the upper floors.

  3. Simulation of scalp cooling by external devices for prevention of chemotherapy-induced alopecia.

    PubMed

    Pliskow, Bradley; Mitra, Kunal; Kaya, Mehmet

    2016-02-01

    Hypothermia of the scalp tissue during chemotherapy treatment (scalp cooling) has been shown to reduce or prevent chemotherapy-induced hair loss. In this study, numerical models are developed to investigate the interaction between different types of external scalp cooling devices and the human scalp tissue. This work focuses on improving methods of modeling scalp cooling devices as it relates specifically to the prevention of chemotherapy-induced alopecia. First, the cooling power needed for any type of device to achieve therapeutic levels of scalp hypothermia is investigated. Subsequently, two types of scalp cooling devices are simulated: a pre-cooled/frozen cap design and a liquid-cooled cap design. For an average patient, simulations show that 38.5W of heat must be extracted from the scalp tissue for this therapy in order to cool the hair follicle to 22°C. In practice, the cooling power must be greater than this amount to account for thermal losses of the device. Simulations show that pre-cooled and liquid-cooled cap designs result in different tissue temperatures over the course of the procedure. However, it is the temperature of the coolant that largely determines the resulting tissue temperature. Simulations confirm that the thermal resistance of the hair/air layer has a large impact on the resulting tissue temperatures. The results should be correlated with experimental data as an effort to determine the optimal parameter choices for this model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Vibrational predissociation and vibrationally induced isomerization of 3-aminophenol-ammonia

    SciTech Connect

    Heid, Cornelia G.; Merrill, Wyatt G.; Case, Amanda S. Crim, F. Fleming

    2015-01-07

    We investigate the vibrational predissociation dynamics of the hydrogen-bonded 3-aminophenol-ammonia cluster (3-AP-NH{sub 3}) in the OH and NH stretching regions. Vibrational excitation provides enough energy to dissociate the cluster into its constituent 3-AP and NH{sub 3} monomers, and we detect the 3-AP fragments via (1 + 1) resonance-enhanced multiphoton ionization (REMPI). The distribution of vibrational states of the 3-AP fragment suggests the presence of two distinct dissociation pathways. The first dissociation channel produces a broad, unstructured feature in the REMPI-action spectrum after excitation of any of the OH or NH stretching vibrations, pointing to a nearly statistical dissociation pathway with extensive coupling among the vibrations in the cluster during the vibrational predissociation. The second dissociation channel produces distinct, resolved features on top of the broad feature but only following excitation of the OH or symmetric NH{sub 3} stretch in the cluster. This striking mode-specificity is consistent with strong coupling of these two modes to the dissociation coordinate (the O–H⋯N bond). The presence of clearly resolved transitions to the electronic origin and to the 10a{sup 2} + 10b{sup 2} state of the cis-3-AP isomer shows that vibrational excitation is driving the isomerization of the trans-3-AP-NH{sub 3} isomer to the cis-3-AP-NH{sub 3} isomer in the course of the dissociation.

  5. Laser induced rovibrational cooling of the linear polyatomic ion C2H2(+).

    PubMed

    Deb, Nabanita; Heazlewood, Brianna R; Rennick, Christopher J; Softley, Timothy P

    2014-04-28

    The laser-induced blackbody-assisted rotational cooling of a linear polyatomic ion, C2H2(+), in its (2)Π ground electronic state in the presence of the blackbody radiation field at 300 K and 77 K is investigated theoretically using a rate-equations model. Although pure rotational transitions are forbidden in this non-polar species, the ν5 cis-bending mode is infrared active and the (1-0) band of this mode strongly overlaps the 300 K blackbody spectrum. Hence the lifetimes of state-selected rotational levels are found to be short compared to the typical timescale of ion trapping experiments. The ν5 (1-0) transition is split by the Renner-Teller coupling of vibrational and electronic angular momentum, and by the spin-orbit coupling, into six principal components and these effects are included in the calculations. In this paper, a rotational-cooling scheme is proposed that involves simultaneous pumping of a set of closely spaced Q-branch transitions on the (2)Δ5/2 - (2)Π3/2 band together with two Q-branch lines in the (2)Σ(+) - (2)Π1/2 band. It is shown that this should lead to >70% of total population in the lowest rotational level at 300 K and over 99% at 77 K. In principle, the multiple Q-branch lines could be pumped with just two broad-band (∼Δν = 0.4-3 cm(-1)) infrared lasers.

  6. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice

    PubMed Central

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E

    2015-01-01

    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes. PMID:26632783

  7. Characterization of Train-Induced Vibration and its Effect on Fecal Corticosterone Metabolites in Mice.

    PubMed

    Atanasov, Nicholas A; Sargent, Jennifer L; Parmigiani, John P; Palme, Rupert; Diggs, Helen E

    2015-11-01

    Excessive environmental vibrations can have deleterious effects on animal health and experimental results, but they remain poorly understood in the animal laboratory setting. The aims of this study were to characterize train-associated vibration in a rodent vivarium and to assess the effects of this vibration on the reproductive success and fecal corticosterone metabolite levels of mice. An instrumented cage, featuring a high-sensitivity microphone and accelerometer, was used to characterize the vibrations and sound in a vivarium that is near an active railroad. The vibrations caused by the passing trains are 3 times larger in amplitude than are the ambient facility vibrations, whereas most of the associated sound was below the audible range for mice. Mice housed in the room closest to the railroad tracks had pregnancy rates that were 50% to 60% lower than those of mice of the same strains but bred in other parts of the facility. To verify the effect of the train vibrations, we used a custom-built electromagnetic shaker to simulate the train-induced vibrations in a controlled environment. Fecal pellets were collected from male and female mice that were exposed to the simulated vibrations and from unexposed control animals. Analysis of the fecal samples revealed that vibrations similar to those produced by a passing train can increase the levels of fecal corticosterone metabolites in female mice. These increases warrant attention to the effects of vibration on mice and, consequently, on reproduction and experimental outcomes.

  8. Water-soluble cooling lubricants induce airway hyperresponsiveness in rabbits.

    PubMed

    Marek, W; Mensing, T; Fricke, H; Baur, X

    1998-01-01

    Airway hyperresponsiveness (AHR) to water-soluble cooling lubricants (CL) induced by aerosol administered by tracheal tube was studied in a rabbit model of occupational lung disease. Two commercial CL were examined: the first was of the boric acid amine ester type without biozide (CL-BAE), the second was of the sulfonate type with biozide (CL-SB). 50, 5.0 or 0.5 mg/m3 CL was administered over a period of twice 2 h to six different groups of rabbits. Airway responsiveness (AR) to aerosols of 0.2% and 2.0% acetylcholine solution (ACH) was measured before and after each exposure to CL. A control group A of nine animals not exposed to CL showed no significant respiratory responses following inhalation of 0.2% ACH for 1 min. Conversely, inhalation of 2.0% ACH almost doubled the dynamic elastance (Edyn) in the ACH challenge test in this animal group. Airway resistance (RI), Edyn, slope of inspiratory pressure generation (delta Pes/tI), arterial pressure (Pa) and arterial blood gas tensions (PaO2, PaCO2) were not significantly altered during and after exposures to CL. However, after CL-BAE inhalation of 50 and 5 mg/m3 over 4 h, the amplitude of the ACH-induced airway obstruction indicated by the changes in Edyn rose significantly to almost five times the control response before exposure (group C, D, p < 0.005). Similar changes in RI and delta Pes/tI were obtained. After inhalation of 0.5 mg/m3 CL-BAE (group D), no significant changes in AR were observed. Similar to CL-BAE inhalation of 50 mg/m3, CL-SB caused enlarged AR in the ACH challenge test (group E), whereas no significant changes were found after exposure to 5.0 and 0.5 mg/m3 in groups F and G. In summary, CL aerosols with and without biozide in the range of 50 and 5 mg/m3 applied via tracheal tubes increased AR to ACH within 4 h of exposure in a time- and concentration-dependent manner. It has to be assumed that this augmented AR indicates an increased risk of developing lubricant-induced obstructive lung diseases.

  9. Vibration induced white-feet: Overview and field study of vibration exposure and reported symptoms in workers

    PubMed Central

    Eger, Tammy; Thompson, Aaron; Leduc, Mallorie; Krajnak, Kristine; Goggins, Katie; Godwin, Alison; House, Ron

    2015-01-01

    BACKGROUND Workers who stand on platforms or equipment that vibrate are exposed to foot-transmitted vibration (FTV). Exposure to FTV can lead to vibration white feet/toes resulting in blanching of the toes, and tingling and numbness in the feet and toes. OBJECTIVES The objectives are 1) to review the current state of knowledge of the health risks associated with foot-transmitted vibration (FTV), and 2) to identify the characteristics of FTV and discuss the associated risk of vibration-induced injury. PARTICIPANTS Workers who operated locomotives (n = 3), bolting platforms (n = 10), jumbo drills (n = 7), raise drilling platforms (n = 4), and crushers (n = 3), participated. METHODS A tri-axial accelerometer was used to measure FTV in accordance with ISO 2631-1 guidelines. Frequency-weighted root-mean-square acceleration and the dominant frequency are reported. Participants were also asked to report pain/ache/discomfort in the hands and/or feet. RESULTS Reports of pain/discomfort/ache were highest in raise platform workers and jumbo drill operators who were exposed to FTV in the 40 Hz and 28 Hz range respectively. Reports of discomfort/ache/pain were lowest in the locomotive and crusher operators who were exposed to FTV below 10 Hz. These findings are consistent with animal studies that have shown vascular and neural damage in exposed appendages occurs at frequencies above 40 Hz. CONCLUSIONS Operators exposed to FTV at 40 Hz appear to be at greater risk of experiencing vibration induced injury. Future research is required to document the characteristics of FTV and epidemiological evidence is required to link exposure with injury. PMID:24004754

  10. Out-of-plane low-frequency vibrations and nonradiative decay in the 1ππ* state of jet-cooled 5-methylcytosine.

    PubMed

    Trachsel, Maria A; Lobsiger, Simon; Leutwyler, Samuel

    2012-09-13

    We investigate the UV vibronic spectrum and excited-state nonradiative processes of jet-cooled 5-methylcytosine (5MCyt) using two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm(–1) resolution. In contrast to cytosine, which shows only five bands above its electronic origin, the lowest electronic transition of 5MCyt exhibits about 25 low-frequency vibronic bands that extend to 0(0)(0) + 450 cm(–1), allowing to extract detailed information on the excited-state electronic and nuclear structure. Most bands are overtones and combinations of the out-of-plane vibrations ν'(1), ν'(2), and ν'(3). Their large intensities reflect butterfly-, boat-, and twist-deformations of the 5MCyt framework upon electronic excitation. From the rotational contours of the 0(0)(0), 1(0)(2), 2(0)(2), and 3(0)(2) bands, the transition is found to be polarized along the in-plane a/b axes, characteristic of a (1)ππ* transition. Approximate second-order coupled-cluster (CC2) and time-dependent B3LYP calculations both predict that 5MCyt undergoes an out-of-plane deformation in its (1)ππ* (S(2)) state but both methods overestimate the out-of-plane ν'(1), ν'(2), and ν'(3) vibrational frequencies by a factor of 3–5. The TD-B3LYP (1)ππ* transition dipole moment direction is 10%:90% a:b, in good agreement with experiment. From the Lorentzian line shape contributions needed to fit the rotational contours, a lower limit to the 5MCyt (1)ππ* state lifetime at the 0(0)(0), 1(0)(2), 2(0)(2), and 3(0)(2) bands is determined as τ ≥ 30 ps. These values are in stark contrast to the ultrafast (picosecond) lifetimes measured for jet-cooled cytosine by femtosecond pump–probe techniques. They also confirm the observation from the R2PI spectrum that 5-methylation of cytosine increases its excited-state lifetime. The higher out-of-plane overtone and combination bands disappear from the spectrum by ~460 cm(–1), signaling the onset of lifetimes τ < 0.5 ps, induced by

  11. Role of Kv4.3 in Vibration-Induced Muscle Pain in the Rat.

    PubMed

    Conner, Lindsay B; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D

    2016-04-01

    We hypothesized that changes in the expression of voltage-gated potassium channel (Kv) 4.3 contribute to the mechanical hyperalgesia induced by vibration injury, in a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant downregulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia. We additionally show that the intrathecal administration of antisense oligonucleotides for Kv4.3 messenger RNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. Our findings establish Kv4.3 as a potential molecular target for the treatment of hand-arm vibration syndrome. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Airways obstruction in asthmatics induced by body cooling.

    PubMed

    Chen, W Y; Horton, D J

    1978-02-01

    Pulmonary and thermoregulatory reactions to body cooling were studied in eight asthmatic and five normal subjects. The cooling was achieved by a cold shower at water temperature (T) of 15 degrees C for 1 min, followed by exposing the wet body to a high wind generated by a fan for another minute. The skin T, oral T and pulmonary functions were measured before and after cooling. After the cooling, skin T fell a mean of 7 degrees in all subjects and the oral T fell 0.5 degrees in the normals and 0.7 degrees in the asthmatics. In asthmatics, the post-cooling forced expiratory volume in 1 s (FEV1) and maximal mid-expiratory flow (MMEF) fell significantly (P less than .05) to a mean of 79% and 72%of baseline, respectively, and thoracic gas volume (TGV) and airway resistance (Raw) increased significantly to 133% and 198% of baseline, respectively. In normal subjects a small but significant increase in Raw was found. No obstruction developed in the asthmatics after a warm shower at 37 degrees or after breathing the cold shower mist. It is suggested that it is body cooling which leads first to vasoconstriction and then cooling of respiratory mucosa that initiates bronchoconstriction in asthmatics.

  13. Substrate-borne vibrations induce behavioral responses in the leaf-dwelling cerambycid, Paraglenea fortunei.

    PubMed

    Tsubaki, Remi; Hosoda, Naoe; Kitajima, Hiroshi; Takanashi, Takuma

    2014-12-01

    Many insects utilize substrate-borne vibrations as a source of information for recognizing mates or predators. Among various substrates, plant leaves are commonly used for transmitting and receiving vibrational information. However, little is known about the utilization of vibrations by leaf-dwelling insects, especially coleopteran beetles. We conducted two experiments to examine the response of the leaf-dwelling cerambycid beetle, Paraglenea fortunei, to substrate-borne vibrations. We recorded and analyzed vibrations of host plant leaves from four different sources: wind (0.5 m/s), a beetle during landing, a walking beetle, and a beetle walking in the wind (0.5 m/s). We then measured the behavioral thresholds, the lowest amplitudes that induce behavioral responses, from beetles walking and resting on horizontal and vertical substrates with pulsed vibrations ranging from 20 Hz to 1 kHz. The vibrational characteristics of biotic and abiotic stimuli clearly differed. Beetle-generated vibrations (landing, walking, and walking in the wind) were broadly high in the low-frequency components above ∼30 Hz, while wind-generated vibrations showed a dominant peak at ∼30 Hz and a steep decrease thereafter. Among four situations, beetles walking on horizontal substrates showed lowest thresholds to vibrations of 75-500 Hz, which are characteristic of beetle-generated vibrations. Given that P. fortunei beetles are found on horizontal leaf surfaces of the host plant, vibrations transmitted though horizontal substrates may induce a strong freeze response in walking beetles to detect conspecifics or heterospecifics. Our findings provide evidence that leaf-dwelling beetles can discriminate among biotic and abiotic factors via differences in vibrational characteristics.

  14. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    PubMed

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (P<0.001). No difference was observed between the different vibratory locations when vibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice

  15. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    SciTech Connect

    Uvan Catton; Vijay K. Dhir; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

    2004-04-06

    Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers.

  16. Statistical analysis of vibration-induced bone and joint damages.

    PubMed

    Schenk, T

    1995-01-01

    Vibration-induced damages to bones and joints are still occupational diseases with insufficient knowledge about causing and moderating factors and resulting damages. For a better understanding of these relationships also retrospective analyses of already acknowledged occupational diseases may be used. Already recorded detailed data for 203 in 1970 to 1979 acknowledged occupational diseases in the building industry and the building material industry of the GDR are the basis for the here described investigations. The data were gathered from the original documents of the occupational diseases and scaled in cooperation of an industrial engineer and an industrial physician. For the purposes of this investigations the data are to distinguish between data which describe the conditions of the work place (e.g. material, tools and posture), the exposure parameters (e.g. beginning of exposure and latency period) and the disease (e.g. anamnestical and radiological data). These data are treated for the use with sophisticated computerized statistical methods. The following analyses were carried out. Investigation of the connections between the several characteristics, which describe the occupational disease (health damages), including the comparison of the severity of the damages at the individual joints. Investigation of the side dependence of the damages. Investigation of the influence of the age at the beginning of the exposure and the age at the acknowledgement of the occupational disease and herewith of the exposure duration. Investigation of the effect of different occupational and exposure conditions.

  17. Suppressing molecular vibrations in organic semiconductors by inducing strain

    PubMed Central

    Kubo, Takayoshi; Häusermann, Roger; Tsurumi, Junto; Soeda, Junshi; Okada, Yugo; Yamashita, Yu; Akamatsu, Norihisa; Shishido, Atsushi; Mitsui, Chikahiko; Okamoto, Toshihiro; Yanagisawa, Susumu; Matsui, Hiroyuki; Takeya, Jun

    2016-01-01

    Organic molecular semiconductors are solution processable, enabling the growth of large-area single-crystal semiconductors. Improving the performance of organic semiconductor devices by increasing the charge mobility is an ongoing quest, which calls for novel molecular and material design, and improved processing conditions. Here we show a method to increase the charge mobility in organic single-crystal field-effect transistors, by taking advantage of the inherent softness of organic semiconductors. We compress the crystal lattice uniaxially by bending the flexible devices, leading to an improved charge transport. The mobility increases from 9.7 to 16.5 cm2 V−1 s−1 by 70% under 3% strain. In-depth analysis indicates that compressing the crystal structure directly restricts the vibration of the molecules, thus suppresses dynamic disorder, a unique mechanism in organic semiconductors. Since strain can be easily induced during the fabrication process, we expect our method to be exploited to build high-performance organic devices. PMID:27040501

  18. Regimes of flow induced vibration for tandem, tethered cylinders

    NASA Astrophysics Data System (ADS)

    Nave, Gary; Stremler, Mark

    2015-11-01

    In the wake of a bluff body, there are a number of dynamic response regimes that exist for a trailing bluff body depending on spacing, structural restoring forces, and the mass-damping parameter m* ζ . For tandem cylinders with low values of m* ζ , two such regimes of motion are Gap Flow Switching and Wake Induced Vibration. In this study, we consider the dynamics of a single degree-of-freedom rigid cylinder in the wake of another in these regimes for a variety of center-to-center cylinder spacings (3-5 diameters) and Reynolds numbers (4,000-11,000). The system consists of a trailing cylinder constrained to a circular arc around a fixed leading cylinder, which, for small angle displacements, bears a close resemblance to the transversely oscillating cylinders found more commonly in existing literature. From experiments on this system, we compare and contrast the dynamic response within these two regimes. Our results show sustained oscillations in the absence of a structural restoring force in all cases, providing experimental support for the wake stiffness assumption, which is based on the mean lift toward the center line of flow.

  19. Harbor Seal Vibrissa Morphology Reduces Vortex-Induced Vibrations

    NASA Astrophysics Data System (ADS)

    Beem, Heather; Dahl, Jason; Triantafyllou, Michael

    2011-11-01

    Studies show that harbor seals are adept at tracking small movements in the water, such as those left in the wake of fish, by using their highly sensitive whiskers to detect fluid structures, even without auditory or visual cues. The present work investigates the intriguing claim that the unique morphology of the harbor seal whisker suppresses Vortex Induced Vibrations (VIV). This implies that the geometry is specialized to reduce the background noise caused by the whisker's own wake in the detection of the upstream target. Forces on a rigid whisker model (scale: 50x) being towed steadily down a water tank while experiencing imposed oscillations are measured. A range of frequencies and amplitudes are tested, the hydrodynamic lift coefficient in phase with velocity (CL,v) is calculated for each, and values are combined in a contour plot. The region of positive CL,v peaks at an amplitude ratio of 0.1, indicating that the whisker's undulatory, asymmetric structure considerably reduces (but does not entirely suppress) regions where the structure experiences VIV in comparison with a standard cylinder, whose peak reaches an amplitude ratio of 0.8.

  20. Tangential acceleration feedback control of friction induced vibration

    NASA Astrophysics Data System (ADS)

    Nath, Jyayasi; Chatterjee, S.

    2016-09-01

    Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.

  1. Light-induced basilar membrane vibrations in the sensitive cochlea

    NASA Astrophysics Data System (ADS)

    Grosh, Karl; Ren, Tianying; He, Wenxuan; Fridberger, Anders; Li, Yizeng; Nankali, Amir

    2015-12-01

    The exceptional sensitivity of mammalian hearing organ is attributed to an outer hair cell-mediated active process, where forces produced by sensory cells boost sound-induced vibrations, making soft sounds audible. This process is thought to be local, with each section of the hearing organ capable of amplifying sound-evoked movement, and nearly instantaneous, since amplification can work for sounds at frequencies up to 100 kHz in some species. To test these precepts, we developed a method for focally stimulating the living hearing organ with light. Light pulses caused intense and highly damped mechanical responses followed by traveling waves that developed with considerable delay. The delayed response was identical to movements evoked by click-like sounds. A physiologically based mathematical model shows that such waves engage the active process, enhancing hearing sensitivity. The experiments and the theoretical analysis show that the active process is neither local nor instantaneous, but requires mechanical waves traveling from the cochlear base toward its apex.

  2. Vibration-induced PM and AM noise in microwave components.

    PubMed

    Hati, Archita; Nelson, Craig W; Howe, David A

    2009-10-01

    The performance of microwave components is sensitive to vibrations to some extent. Aside from the resonator, microwave cables, and connectors, bandpass filters, mechanical phase shifters, and some nonlinear components are the most sensitive. The local oscillator is one of the prime performance-limiting components in microwave systems ranging from simple RF receivers to advanced radars. The increasing present and future demand for low acceleration sensitive oscillators, approaching 10(-13)/g, requires a reexamination of sensitivities of basic nonoscillatory building-block components under vibration. The purpose of this paper is to study the phase-modulation (PM) noise performance of an assortment of oscillatory and nonoscillatory microwave components under vibration at 10 GHz. We point out some challenges and provide suggestions for the accurate measurement of vibration sensitivity of these components. We also study the effect of vibration on the amplitude-modulation (AM) noise.

  3. Wind induced resonant cross flow vibrations on Norwegian offshore flare booms

    SciTech Connect

    Oppen, A.N.; Kvitrud, A.

    1995-12-31

    Vibrations and fatigue cracking have occurred, for some years, i flare boom structures on a number of platforms on the Norwegian continental shelf. In view of this, the objective of this paper is to: (1) Describe the vibrations and its characteristics on Statfjord A and Heimdal which had the largest vibrations, the vibrations can`t be predicted by vortex induced vibrations of individual members but could be caused by wake effects, local frame vibrations or global dynamic effects. (2) Review the evaluation of cracks in other flare boom structures, the work has been based on DIN 4133 and includes vibrations of both individual members and frames. (3) Review the design practice and operational experience with design parameters especially measurements of damping on individual tubular members and observed vibrations of individual members and frames. Possible limitations of the DIN standard will be discussed. (4) A promising device for reducing the vibrations is described. The problems have mainly been caused by the methods used in design, however, evidence of welding defects initiating fatigue cracks has also been found. A review of the existing methods has led to the recommendation of using the German DIN 4133 code for design purposes. This code is to a large extent similar to the proposed Eurocode-1. A design procedure based on DIN 4133 is proposed including additional parametric boundaries for avoiding resonant vibration.

  4. Achilles tendon vibration-induced changes in plantar flexor corticospinal excitability.

    PubMed

    Lapole, Thomas; Temesi, John; Gimenez, Philippe; Arnal, Pierrick J; Millet, Guillaume Y; Petitjean, Michel

    2015-02-01

    Daily Achilles tendon vibration has been shown to increase muscle force, likely via corticospinal neural adaptations. The aim of the present study was to determine the extent by which corticospinal excitability is influenced during direct Achilles tendon vibration. Motor-evoked potentials (MEPs) were elicited in the soleus (SOL), gastrocnemius medialis (GM) and tibialis anterior (TA) by transcranial magnetic stimulation of the motor cortical area of the leg with and without Achilles tendon vibration at various frequencies (50, 80 and 110 Hz). Contralateral homologues were also investigated. SOL and GM MEP amplitude significantly increased by 226 ± 188 and 66 ± 39%, respectively, during Achilles tendon vibration, without any difference between the tested frequencies. No MEP changes were reported for TA or contralateral homologues. Increased SOL and GM MEP amplitude suggests increased vibration-induced corticospinal excitability independent of vibration frequency.

  5. Mechanisms Mediating Vibration-induced Chronic Musculoskeletal Pain Analyzed in the Rat

    PubMed Central

    Dina, Olayinka A.; Joseph, Elizabeth K.; Levine, Jon D.; Green, Paul G.

    2009-01-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and re-exposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60–80 Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a pro-inflammatory cytokine or re-exposure to vibration. Exposure of a hind limb to vibration produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for ~2 weeks. When nociceptive thresholds had returned to baseline, exposure to a pro-inflammatory cytokine or re-exposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia induced by vibration was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cε, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-α (TNFα) receptor. Finally, in TNFα-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. Perspective These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFα and the second messenger PKCε as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. PMID:19962353

  6. Effects of Vibration Therapy on Immobilization-Induced Hypersensitivity in Rats.

    PubMed

    Hamaue, Yohei; Nakano, Jiro; Sekino, Yuki; Chuganji, Sayaka; Sakamoto, Junya; Yoshimura, Toshiro; Okita, Minoru; Origuchi, Tomoki

    2015-07-01

    Cast immobilization induces mechanical hypersensitivity, which disturbs rehabilitation. Although vibration therapy can reduce various types of pain, whether vibration reduces immobilization-induced hypersensitivity remains unclear. The purpose of this study was to investigate the preventive and therapeutic effects of vibration therapy on immobilization-induced hypersensitivity. The experimental design of the study involved conducting behavioral, histological, and immunohistochemical studies in model rats. Thirty-five Wistar rats (8 weeks old, all male) were used. The right ankle joints of 30 rats were immobilized by plaster cast for 8 weeks, and 5 rats were used as controls. The immobilized rats were divided randomly into the following 3 groups: (1) immobilization-only group (Im, n=10); (2) vibration therapy group 1, for which vibration therapy was initiated immediately after the onset of immobilization (Im+Vib1, n=10); and (3) vibration therapy group 2, for which vibration therapy was initiated 4 weeks after the onset of immobilization (Im+Vib2, n=10). Vibration was applied to the hind paw. The mechanical hypersensitivity and epidermal thickness of the hind paw skin were measured. To investigate central sensitization, calcitonin gene-related peptide (CGRP) expression in the spinal cord and dorsal root ganglion (DRG) was analyzed. Immobilization-induced hypersensitivity was inhibited in the Im+Vib1 group but not in the Im+Vib2 group. Central sensitization, which was indicated by increases in CGRP expression in the spinal cord and the size of the area of CGRP-positive neurons in the DRG, was inhibited in only the Im+Vib1 group. Epidermal thickness was not affected by vibration stimulation. A limitation of this study is that the results were limited to an animal model and cannot be generalized to humans. The data suggest that initiation of vibration therapy in the early phase of immobilization may inhibit the development of immobilization-induced hypersensitivity.

  7. Neuropathic Pain-like Alterations in Muscle Nociceptor Function Associated with Vibration-induced Muscle Pain

    PubMed Central

    Chen, Xiaojie; Green, Paul G.; Levine, Jon D.

    2010-01-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of action potentials in response to sustained suprathreshold mechanical stimulation (average of 2635 action potentials with frequency of ~44 Hz during a 1 minute suprathreshold stimulus) much greater than has been reported to be produced even by potent inflammatory mediators. While these high-firing nociceptors had lower mechanical thresholds than the remaining nociceptors, exposure to vibration had no effect on conduction velocity and did not induce spontaneous activity. Hyperactivity was not observed in any of 19 neurons from vibration exposed rats pretreated with intrathecal antisense for the IL-6 receptor subunit gp130. Since vibration can injure peripheral nerves, and IL-6 has been implicated in painful peripheral neuropathies, we suggest that the dramatic change in sensory neuron function and development of muscles pain, induced by exposure to vibration, reflects a neuropathic muscle pain syndrome. PMID:20800357

  8. Study on thermally induced vibration of flexible boom in various thermal environments of vacuum chamber

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Oh, Kyung-Won; Park, Hyun-Bum; Sugiyama, Y.

    2005-02-01

    In order to simulate the thermally-induced vibration phenomenon of the flexible thin boom structure of the spacecraft such as the thin solar panel and the flexible cantilever with the attached tip mass in space, the thermally-induced vibration including thermal flutter of the flexible thin boom with the concentrated tip mass was experimentally investigated at various thermal environments using a heat lamp and both vacuum and air condition using the vacuum chamber. In this experimental study, divergence speed, natural frequency and thermal strains of the thermally-induced vibration were comparatively evaluated at various thermal environment conditions. Finally the thermally-induced vibration of the flexible boom structure of the earth orbit satellite in solar radiation environment from the earth eclipse region including umbra and penumbra was simulated using the vacuum chamber and power control of the heating lamp.

  9. Effects of a Device on Mitigation of Rain/Wind-Induced Vibration

    NASA Astrophysics Data System (ADS)

    Bi, Jihong; Yin, Yuanbiao; Li, Jizhong

    2010-05-01

    Due to its complexity, the mechanism of the rain/wind-induced vibration is still unclear even now, and further studies are required on effective methods to mitigate the vibration. In this paper, based on the Den Hartog/s galloping theory, a device, which was designed to restrain larger displacement of a stayed-cable, was analyzed numerically. Parametric studies were carried out to make clear the characteristics of the dynamic behaviors of the device. Results show that the device could mitigate effectively the vibration of a stayed-cable induced by rain/wind and it could provide a choice for the bridge engineering practice.

  10. Acoustically-coupled flow-induced vibration of a computational vocal fold model.

    PubMed

    Daily, David Jesse; Thomson, Scott L

    2013-01-15

    The flow-induced vibration of synthetic vocal fold models has been previously observed to be acoustically-coupled with upstream flow supply tubes. This phenomenon was investigated using a finite element model that included flow-structure-acoustic interactions. The length of the upstream duct was varied to explore the coupling between model vibration and subglottal acoustics. Incompressible and slightly compressible flow models were tested. The slightly compressible model exhibited acoustic coupling between fluid and solid domains in a manner consistent with experimental observations, whereas the incompressible model did not, showing the slightly compressible approach to be suitable for simulating acoustically-coupled vocal fold model flow-induced vibration.

  11. Acoustically-coupled flow-induced vibration of a computational vocal fold model

    PubMed Central

    Daily, David Jesse; Thomson, Scott L.

    2012-01-01

    The flow-induced vibration of synthetic vocal fold models has been previously observed to be acoustically-coupled with upstream flow supply tubes. This phenomenon was investigated using a finite element model that included flow–structure–acoustic interactions. The length of the upstream duct was varied to explore the coupling between model vibration and subglottal acoustics. Incompressible and slightly compressible flow models were tested. The slightly compressible model exhibited acoustic coupling between fluid and solid domains in a manner consistent with experimental observations, whereas the incompressible model did not, showing the slightly compressible approach to be suitable for simulating acoustically-coupled vocal fold model flow-induced vibration. PMID:23585700

  12. Laser-induced fluorescence, dispersed fluorescence and lifetime measurements of jet-cooled chloro-substituted benzyl radicals

    NASA Astrophysics Data System (ADS)

    Hamatani, Satoshi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2002-07-01

    We measured the laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of jet-cooled α-, o- and m-chlorobenzyl radicals after they were generated by the 193 nm photolysis of the corresponding parent molecules. The vibronically resolved spectra were obtained to analyze their D1-D0 transitions. The fluorescence lifetimes of α-, o-, m- and p-chlorobenzyls in the zeroth vibrational levels of the D1 states were measured to estimate the oscillator strengths of a series of benzyl derivatives. It was found that the α-substitution is inefficient to break the `accidental forbiddenness' of the D1-D0 transition of benzyl, while the ring-substitution enhances the oscillator strength by 50%.

  13. Railway ground vibrations induced by wheel and rail singular defects

    NASA Astrophysics Data System (ADS)

    Kouroussis, Georges; Connolly, David P.; Alexandrou, Georgios; Vogiatzis, Konstantinos

    2015-10-01

    Railway local irregularities are a growing source of ground-borne vibration and can cause negative environmental impacts, particularly in urban areas. Therefore, this paper analyses the effect of railway track singular defects (discontinuities) on ground vibration generation and propagation. A vehicle/track/soil numerical railway model is presented, capable of accurately predicting vibration levels. The prediction model is composed of a multibody vehicle model, a flexible track model and a finite/infinite element soil model. Firstly, analysis is undertaken to assess the ability of wheel/rail contact models to accurately simulate the force generation at the wheel/rail contact, in the presence of a singular defect. It is found that, although linear contact models are sufficient for modelling ground vibration on smooth tracks, when singular defects are present higher accuracy wheel/rail models are required. Furthermore, it is found that the variation in wheel/rail force during the singular defect contact depends on the track flexibility, and thus requires a fully coupled vehicle/track/foundation model. Next, a parametric study of ground vibrations generated by singular rail and wheel defects is undertaken. Six shapes of discontinuity are modelled, representing various defect types such as transition zones, switches, crossings, rail joints and wheel flats. The vehicle is modelled as an AM96 train set and it is found that ground vibration levels are highly sensitive to defect height, length and shape.

  14. Multicenter study on finger systolic blood pressure test for diagnosis of vibration-induced white finger.

    PubMed

    Nasu, Yoshiro; Kurozawa, Youichi; Fujiwara, Yutaka; Honma, Hiroki; Yanai, Toshiro; Kido, Kenji; Ikeda, Takashi

    2008-04-01

    A multicenter study (six Rosai hospitals around Japan) was performed to investigate the diagnostic value of changes in finger systolic blood pressure (FSBP) after segmental local cooling for vibration-induced white finger (VWF). Subjects were 154 men without exposure to vibration and 135 men with occupational vibration exposure. They were classified into four groups: Group A, 154 unexposed control cases; Group B, 21 exposed cases without VWF; Group C, 31 cases with a history of VWF but without any signs of VWF within the last year; and Group D, 83 cases with active VWF within the last year. FSBP% measurements were taken at room temperatures of 23 +/- 1 and 21 +/- 1 degrees C, using a strain-gauge Digimatic 2000 plethysmograph (Medimatic). At a room temperature of 23 +/- 1 degrees C, there was a significant difference between Groups A and D, and B and D. At a room temperature of 21 +/- 1 degrees C, there was a significant difference between Groups A and C, A and D, and B and D. The values in Group D were the lowest at both room temperatures. Assuming a cut-off value of 75% at 23 +/- 1 degrees C, the sensitivity and specificity were 65.2 and 87.5%, respectively. Assuming the same cut-off value at 21 +/- 1 degrees C, the sensitivity and specificity were 73.9 and 82.5%, respectively. These values were not too high. Most of the subjects with WVF in this study were retired and had not used vibratory tools for many years. The situation of the subjects may affect the results of the FSBP test. Our data did not confirm a difference in diagnostic accuracy between room temperatures of 23 +/- 1 and 21 +/- 1 degrees C. Our study showed that the sensitivity and specificity of the FSBP test with a cut-off value of 75% at 23 +/- 1 degrees C, were 65.2 and 87.5%, respectively, and at 21 +/- 1 degrees C, they were 73.9 and 82.5%, respectively.

  15. Vibration-induced post-effects: a means to improve postural asymmetry in lower leg amputees?

    PubMed

    Duclos, C; Roll, R; Kavounoudias, A; Roll, J-P; Forget, R

    2007-10-01

    Muscle vibration has been shown to induce long-lasting and oriented alteration of standing posture in healthy individuals. The postural alterations can last several minutes following the end of vibration and are called post-effects. The goal of this study was to determine whether persons with lower leg amputation that show persistent postural asymmetry after usual rehabilitation experience these postural post-effects and if this could improve their weight bearing on the prosthesis. Centre of pressure (CP) position during stance was recorded prior to and up to 13 min after a 30s unilateral vibration applied during sitting to lateral neck (trapezius) or hip (gluteus medius) muscles in 14 individuals with unilateral lower leg amputation and 18 controls. The amputees' postural asymmetry was confirmed prior to the vibration intervention. A CP displacement, without an increase in CP velocity, was observed in both groups of participants over the 13 min post-vibration. For both the neck or hip vibration sites, the CP shifts were directed in the medio-lateral plane and were oriented either towards the vibrated side or the opposite side across subjects. This led to a decrease of postural asymmetry in half of the group of amputees. Within subject, the orientation of the post-effect was constant and changed to the opposite direction with vibration of the opposite body side. It is suggested that the post-effects are produced by a change of the postural reference consequent to the sustained proprioceptive message induced during the muscle vibration period. The orientation of the post-effects is discussed in relation to the notion of reference frame preference. All in all, because post-effect orientation is constant within subject and adaptive, future studies should investigate if individuals with lower leg amputation could benefit from postural post-effects induced by muscle vibration to improve function.

  16. Role of Kv 4.3 in vibration-induced muscle pain in the rat

    PubMed Central

    Conner, Lindsay; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D.

    2015-01-01

    We hypothesized that changes in the expression of Kv4.3 contribute to the mechanical hyperalgesia induced by vibration injury, a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant down-regulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia (DRG). We additionally demonstrate that the intrathecal administration of antisense oligonucleotides for Kv4.3 mRNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. PMID:26721612

  17. Effects of osteocytes on vibration-induced reflex muscle activity in postmenopausal women.

    PubMed

    Karamehmetoğlu, Safak Sahir; Karacan, Ilhan; Cidem, Muharrem; Küçük, Suat Hayri; Ekmekçi, Hakan; Bahadir, Cengiz

    2014-01-01

    To assess whether osteocytes have an effect on reflex myoelectrical activity during whole-body vibration (WBV) in postmenopausal women. Participants were classified into 2 groups: the low bone mineral density (BMD) group (n = 37) and normal BMD group (n = 43). Hip BMD was measured using dual-energy X-ray absorptiometry. Surface electromyography data recorded from the adductor longus muscle were processed to obtain vibration-induced reflex myoelectrical activity. Changes in plasma sclerostin (SOST) levels with WBV were expressed as a standardized vibration-induced SOST index. The standardized vibration-induced SOST index was 1.03 ± 0.24 in the low BMD group and 0.99 ± 0.33 in the normal BMD group. For plasma SOST levels, no group-by-time interaction was found. The resting myoelectrical activities of adductor muscles increased significantly during WBV in both groups. However, there was no significant difference in the main effects of WBV on resting myoelectrical activity between the groups. The standardized vibration-induced plasma SOST index was found to be a significant independent predictor of the standardized vibration-induced reflex myoelectrical activity of the adductor muscle in both groups. This study suggests that osteocytes serve as mechanoreceptors of reflex electromyography during WBV.

  18. Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat.

    PubMed

    Dina, Olayinka A; Joseph, Elizabeth K; Levine, Jon D; Green, Paul G

    2010-04-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. Copyright 2010 American Pain Society. All rights reserved.

  19. Noise-Induced Building Vibrations Caused by Concorde and Conventional Aircraft Operations at Dulles and Kennedy International Airports

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.

  20. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion.

    PubMed

    Khoshnevis, Sepideh; Craik, Natalie K; Matthew Brothers, R; Diller, Kenneth R

    2016-03-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC-skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy.

  1. Cryotherapy-Induced Persistent Vasoconstriction After Cutaneous Cooling: Hysteresis Between Skin Temperature and Blood Perfusion

    PubMed Central

    Khoshnevis, Sepideh; Craik, Natalie K.; Matthew Brothers, R.; Diller, Kenneth R.

    2016-01-01

    The goal of this study was to investigate the persistence of cold-induced vasoconstriction following cessation of active skin-surface cooling. This study demonstrates a hysteresis effect that develops between skin temperature and blood perfusion during the cooling and subsequent rewarming period. An Arctic Ice cryotherapy unit (CTU) was applied to the knee region of six healthy subjects for 60 min of active cooling followed by 120 min of passive rewarming. Multiple laser Doppler flowmetry perfusion probes were used to measure skin blood flow (expressed as cutaneous vascular conductance (CVC)). Skin surface cooling produced a significant reduction in CVC (P < 0.001) that persisted throughout the duration of the rewarming period. In addition, there was a hysteresis effect between CVC and skin temperature during the cooling and subsequent rewarming cycle (P < 0.01). Mixed model regression (MMR) showed a significant difference in the slopes of the CVC–skin temperature curves during cooling and rewarming (P < 0.001). Piecewise regression was used to investigate the temperature thresholds for acceleration of CVC during the cooling and rewarming periods. The two thresholds were shown to be significantly different (P = 0.003). The results show that localized cooling causes significant vasoconstriction that continues beyond the active cooling period despite skin temperatures returning toward baseline values. The significant and persistent reduction in skin perfusion may contribute to nonfreezing cold injury (NFCI) associated with cryotherapy. PMID:26632263

  2. Vibration-Induced Gas-Liquid Interface Breakup

    NASA Astrophysics Data System (ADS)

    O'Hern, Timothy; Torczynski, John; Romero, Ed; Shelden, Bion

    2010-11-01

    Gas-liquid interfaces can be forced to break up when subjected to vibrations within critical ranges of frequency and amplitude. This breakup mechanism was examined experimentally using deep layers of silicone oils over a range of viscosity and sinusoidal, primarily axial vibration conditions that can produce dramatic disturbances at the gas-liquid free surface. Although small-amplitude vibrations produce standing Faraday waves, large-amplitude vibrations produce liquid jets into the gas, droplets pinching off from the jets, gas cavities in the liquid from droplet impact, and bubble transport below the interface. Experiments used several different silicone oils over a range of pressures and vibration conditions. Computational simulations exhibiting similar behavior will be included in the presentation. Applications include liquid fuel rockets, inertial sensing devices, moving vehicles, mixing processes, and acoustic excitation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Surface instabilities and reorientation induced by vibration in microgravity conditions

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier; Ezquerro Navarro, Jose Miguel

    2012-07-01

    The behavior of vibrated fluids and, in particular, the surface or interfacial instabilities that commonly arise in these systems have been the subject of continued experimental and theoretical attention since Faraday's seminal experiments in 1831. Both orientation and frequency are critical in determining the response of the fluid to excitation. Low frequencies are associated with sloshing while higher frequencies may generate Faraday waves or cross-waves, depending on whether the axis of vibration is perpendicular or parallel to the interface. In addition, high frequency vibrations are known to produce large scale reorientation of the fluid (vibroequilibria), an effect that becomes especially pronounced in the absence of gravity. We describe the results of investigations conducted at the ESA affiliated Spanish User Support and Operations Centre (E-USOC) on the effect of vibrations on fluid interfaces, particularly the interaction between Faraday waves, which arise in vertically vibrated systems, cross-waves, which are found in horizontally forced systems, and large scale reorientation (vibroequilibria). Ongoing ground experiments utilizing a dual-axis shaker configuration are described, including the effect on pattern formation of varying the two independent forcing frequencies, amplitudes, and phases. Theoretical results, based on the analysis of reduced models, and on numerical simulations, are then described and compared to experiment. Finally, the interest of a corresponding microgravity experiment is discussed and implications for fluid management strategies considered.

  4. Infrared-induced conformational isomerization and vibrational relaxation dynamics in melatonin and 5-methoxy-N-acetyl tryptophan methyl amide

    NASA Astrophysics Data System (ADS)

    Dian, Brian C.; Florio, Gina M.; Clarkson, Jasper R.; Longarte, Asier; Zwier, Timothy S.

    2004-05-01

    The conformational isomerization dynamics of melatonin and 5-methoxy N-acetyltryptophan methyl amide (5-methoxy NATMA) have been studied using the methods of IR-UV hole-filling spectroscopy and IR-induced population transfer spectroscopy. Using these techniques, single conformers of melatonin were excited via a well-defined NH stretch fundamental with an IR pump laser. This excess energy was used to drive conformational isomerization. By carrying out the infrared excitation early in a supersonic expansion, the excited molecules were re-cooled into their zero-point levels, partially re-filling the hole created in the ground state population of the excited conformer, and creating gains in population of the other conformers. These changes in population were detected using laser-induced fluorescence downstream in the expansion via an UV probe laser. The isomerization quantum yields for melatonin show some conformation specificity but no hint of vibrational mode specificity. In 5-methoxy NATMA, no isomerization was observed out of the single conformational well populated in the expansion in the absence of the infrared excitation. In order to study the dependence of the isomerization on the cooling rate, the experimental arrangement was modified so that faster cooling conditions could be studied. In this arrangement, the pump and probe lasers were overlapped in space in the high density region of the expansion, and the time dependence of the zero-point level populations of the conformers was probed following selective excitation of a single conformation. The analysis needed to extract isomerization quantum yields from the timing scans was developed and applied to the melatonin timing scans. Comparison between the frequency and time domain isomerization quantum yields under identical experimental conditions produced similar results. Under fast cooling conditions, the product quantum yields were shifted from their values under standard conditions. The results for melatonin

  5. Nonresonant electronic transitions induced by vibrational motion in light-induced potentials.

    PubMed

    Sampedro, Pablo; Chang, Bo Y; Sola, Ignacio R

    2016-09-14

    We find a new mechanism of electronic population inversion using strong femtosecond pulses, where the transfer is mediated by vibrational motion on a light-induced potential. The process can be achieved with a single pulse tuning its frequency to the red of the Franck-Condon window. We show the determinant role that the gradient of the transition dipole moment can play on the dynamics, and extend the method to multiphoton processes with odd number of pulses. As an example, we show how the scheme can be applied to population inversion in Na2.

  6. Whole-body vibration-induced muscular reflex: Is it a stretch-induced reflex?

    PubMed Central

    Cakar, Halil Ibrahim; Cidem, Muharrem; Sebik, Oguz; Yilmaz, Gizem; Karamehmetoglu, Safak Sahir; Kara, Sadik; Karacan, Ilhan; Türker, Kemal Sıtkı

    2015-01-01

    [Purpose] Whole-body vibration (WBV) can induce reflex responses in muscles. A number of studies have reported that the physiological mechanisms underlying this type of reflex activity can be explained by reference to a stretch-induced reflex. Thus, the primary objective of this study was to test whether the WBV-induced muscular reflex (WBV-IMR) can be explained as a stretch-induced reflex. [Subjects and Methods] The present study assessed 20 healthy males using surface electrodes placed on their right soleus muscle. The latency of the tendon reflex (T-reflex) as a stretch-induced reflex was compared with the reflex latency of the WBV-IMR. In addition, simulations were performed at 25, 30, 35, 40, 45, and 50 Hz to determine the stretch frequency of the muscle during WBV. [Results] WBV-IMR latency (40.5 ± 0.8 ms; 95% confidence interval [CI]: 39.0–41.9 ms) was significantly longer than T-reflex latency (34.6 ± 0.5 ms; 95% CI: 33.6–35.5 ms) and the mean difference was 6.2 ms (95% CI of the difference: 4.7–7.7 ms). The simulations performed in the present study demonstrated that the frequency of the stretch signal would be twice the frequency of the vibration. [Conclusion] These findings do not support the notion that WBV-IMR can be explained by reference to a stretch-induced reflex. PMID:26310784

  7. Nature and occurrence of cooling-induced cracking in volcanic rocks

    NASA Astrophysics Data System (ADS)

    Browning, John; Meredith, Philip G.; Gudmundssom, Agust

    2015-04-01

    Several hypotheses have been proposed regarding the role of thermo-mechanical contraction in producing cracks and joints in volcanic rocks. Nevertheless, most studies of thermally-induced cracking to date have focused on the generation of cracks formed during heating. In this latter case, the cracks are formed under an overall compressional regime. By contrast, cooling cracks are formed under an overall tensile regime. Therefore, both the nature and mechanism of crack formation during cooling are hypothesised to be different from those for crack formation during heating. Furthermore, it remains unclear whether cooling simply reactivates pre-existing cracks, induces the growth of new cracks, or both. We present results from experiments based on a new method for testing ideas on cooling-induced cracking. Cored samples of volcanic rock (basaltic to dacitic in composition) were heated at varying rates to different maximum temperatures inside a tube furnace. In the highest temperature experiments samples of both rocks were raised to the liquidus temperature appropriate to their composition, forcing melt interaction and crack annealing. We present in-situ seismic velocity and acoustic emission data, which were recorded throughout each heating and cooling cycle. It is found consistently that the rate of acoustic emission is much higher during cooling than during heating. In addition, acoustic emission events produced on cooling tend to be significantly higher in energy than those produced during heating. We therefore suggest that cracks formed during cooling are significantly larger than those formed during heating. Thin-section and crack morphology analysis of our cyclically heated samples provide further evidence of contrasting fracture morphologies. These new data are important for assessing the contribution of cooling-induced damage within volcanic structures and layers such as sills and lava flows. Our observations may also help to constrain evolving ideas regarding

  8. Interfacial condensation induced by sub-cooled liquid jet

    NASA Astrophysics Data System (ADS)

    Rame, Enrique; Balasubramaniam, R.

    2016-11-01

    When a sub-cooled liquid jet impinges on the free surface between a liquid and its vapor, vapor will condense at a rate dependent on the sub-cooling, the jet strength and fluid properties. In 1966 and during the examination of a different type of condensation flow, Shekriladeze found an approximate result, valid at large condensation rates, that decouples the flow in the liquid phase from that of the vapor, without putting it in the context of a formal asymptotic approximation. In this talk we will develop an asymptotic approximation that contains Shekriladze's result, and extend the calculations to the case when a non-condensable gas is present in the vapor phase.

  9. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    PubMed

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  10. Scalp Cooling: The Prevention of Chemotherapy-Induced Alopecia
.

    PubMed

    Katz, Anne

    2017-08-01

    Hair loss (alopecia) from chemotherapy is one of the most feared side effects of many patients, particularly women. Many patients and their healthcare providers believe that cryotherapy can help prevent or mitigate these changes. Scalp cooling has been used for more than 30 years to prevent alopecia caused by chemotherapy, particularly taxanes and anthracyclines. This article presents an overview of the evidence for this strategy, as well as its impact on nursing care provision.

  11. Experimental investigations on flow induced vibration of an externally excited flexible plate

    NASA Astrophysics Data System (ADS)

    Purohit, Ashish; Darpe, Ashish K.; Singh, S. P.

    2016-06-01

    Flow-induced vibration of a harmonically actuated flexible plate in the wake of an upstream bluff body is experimentally investigated. The experiments are performed in an open-ended wind tunnel. A flexible plate trailing a bluff body is under fluid induced excitation due to the flowing fluid. The additional external excitation to the trailing plate is applied using an electro-magnetic exciter. The frequency and amplitude of the external harmonic excitation are selected as variable parameters in the experiments and their effect on the plate vibration and is investigated. To know the nature of acoustic pressure wave generated from the vibrating system, near-field acoustic pressure is also measured. A laser vibrometer, a pressure microphone and a high-speed camera are employed to measure the plate vibration, pressure signal, and instantaneous images of the plate motion respectively. The results obtained indicate that the dynamics of the plate is influenced by both the flow-induced excitation and external harmonic excitation. When frequency of the two excitations is close enough, a large vibration level and a high tonal sound pressure are observed. At higher amplitude of external excitation, the frequency component corresponding to the flow-induced excitation is found to reduce significantly in the frequency spectrum of the vibration signal. It is observed that, for certain range of excitation frequency, the plate vibration first reduces, reaches a minimum value and then increases with increase in the level of external excitation. A fair qualitative agreement of the experimental results with numerical simulation result of the past study has been noted. In addition to the experiments, the role of phase difference between the flow-induced excitation generated from the front obstacle and externally applied harmonic excitation is investigated through numerical simulations. The result obtained reveals that the final steady state vibration of the coupled system is

  12. Active Control of Panel Vibrations Induced by a Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1998-01-01

    In recent years, active and passive control of sound and vibration in aeroelastic structures have received a great deal of attention due to many potential applications to aerospace and other industries. There exists a great deal of research work done in this area. Recent advances in the control of sound and vibration can be found in the several conference proceedings. In this report we will summarize our research findings supported by the NASA grant NAG-1-1175. The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to study the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. The vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings will be presented in the next three sections. In Section II we shall describe our results on the boundary control of nonlinear panel vibration, with or without flow excitation. Section III is concerned with active control of the vibration and sound radiation from a nonlinear elastic panel. A detailed description of our work on the parametric vibrational control of nonlinear elastic panel will be presented in Section IV. This paper will be submitted to the Journal

  13. Active control of panel vibrations induced by a boundary layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1995-01-01

    The problems of active and passive control of sound and vibration has been investigated by many researchers for a number of years. However, few of the articles are concerned with the sound and vibration with flow-structure interaction. Experimental and numerical studies on the coupling between panel vibration and acoustic radiation due to flow excitation have been done by Maestrello and his associates at NASA/Langley Research Center. Since the coupled system of nonlinear partial differential equations is formidable, an analytical solution to the full problem seems impossible. For this reason, we have to simplify the problem to that of the nonlinear panel vibration induced by a uniform flow or a boundary-layer flow with a given wall pressure distribution. Based on this simplified model, we have been able to consider the control and stabilization of the nonlinear panel vibration, which have not been treated satisfactorily by other authors. Although the sound radiation has not been included, the vibration suppression will clearly reduce the sound radiation power from the panel. The major research findings are presented in three sections. In section two we describe results on the boundary control of nonlinear panel vibration, with or without flow excitation. Sections three and four are concerned with some analytical and numerical results in the optimal control of the linear and nonlinear panel vibrations, respectively, excited by the flow pressure fluctuations. Finally, in section five, we draw some conclusions from research findings.

  14. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  15. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  16. Experimental and numerical investigation of turbulent flow induced pipe vibration in fully developed flow

    NASA Astrophysics Data System (ADS)

    Pittard, Matthew T.; Evans, Robert P.; Maynes, R. Daniel; Blotter, Jonathan D.

    2004-07-01

    Flow-induced pipe vibration caused by fully developed pipe flow has been observed but not fully investigated when turbulent flow prevails. This article presents experimental results that indicate a strong correlation between the volume flow rate and a measure of the pipe vibration. In this work, the standard deviation of the frequency-averaged time-series signal, measured using an accelerometer attached to the pipe, is used as the measure of pipe vibration. A numerical, fluid-structure interaction (FSI) model used to investigate the relationship between pipe wall vibration and the physical characteristics of turbulent flow is also presented. This numerical FSI approach, unlike commercial FSI software packages, which are based on Reynolds averaged Navier-Stokes flow models, is based on large eddy simulation (LES) flow models that compute the instantaneous pressure fluctuations in turbulent flow. The results from the numerical LES models also indicate a strong correlation between pipe vibration and flow rate. In general, the numerical simulations show that the standard deviation of the pipe wall vibration is proportional to the pressure fluctuations at the wall induced by the flow turbulence. This research, indicates that the pressure fluctuations on the pipe wall have a near quadratic relationship with the flow rate. Furthermore, the experimental results and the numerical modeling show that there is a definite relationship between the acceleration of the pipe (pipe vibration) and the flow rate. These last two concepts open possible avenues for the development of a non-intrusive flow sensor.

  17. Do the Amazon and Orinoco freshwater plumes really matter for hurricane-induced ocean surface cooling?

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; Jouanno, J.; Durand, F.

    2016-04-01

    Recent studies suggested that the plume of low-saline waters formed by the discharge of the Amazon and Orinoco rivers could favor Atlantic Tropical Cyclone (TC) intensification by weakening the cool wake and its impact on the hurricane growth potential. The main objective of this study is to quantify the effects of the Amazon-Orinoco river discharges in modulating the amplitude of TC-induced cooling in the western Tropical Atlantic. Our approach is based on the analysis of TC cool wake statistics obtained from an ocean regional numerical simulation with ¼º horizontal resolution over the 1998-2012 period, forced with realistic TC winds. In both model and observations, the amplitude of TC-induced cooling in plume waters (0.3-0.4ºC) is reduced significantly by around 50-60% compared to the cooling in open ocean waters out of the plume (0.6-0.7ºC). A twin simulation without river runoff shows that TC-induced cooling over the plume region (defined from the reference experiment) is almost unchanged (˜0.03ºC) despite strong differences in salinity stratification and the absence of barrier layers. This argues for a weaker than thought cooling inhibition effect of salinity stratification and barrier layers in this region. Indeed, results suggest that haline stratification and barrier layers caused by the river runoff may explain only ˜10% of the cooling difference between plume waters and open ocean waters. Instead, the analysis of the background oceanic conditions suggests that the regional distribution of the thermal stratification is the main factor controlling the amplitude of cooling in the plume region.

  18. Vibration-induced jitter control in satellite optical communication

    NASA Astrophysics Data System (ADS)

    Xue, Zheng-yan; Qi, Bo; Ren, Ge

    2013-08-01

    Laser satellite communication has become especially attractive in recent years. However, because the laser beam is very narrow and there is a long distance between satellites, the laser communication channel is very sensitive to vibrations of the optical platform. These vibrations cause optical jitter, leading to the reduction of received signals and bit-error rate degradation. Consequently, optical jitter control with PAT (pointing acquisition and tracking) subsystems is a critical problem in laser satellite communication. To compensate for the platform vibration effectively in realtime, in this paper, an adaptive feedback control technique based on Youla-parameterization is presented, which can adapt to the current disturbance acting on the laser beam by adjusting its parameters in realtime to maintain optimal performance. The main idea is to use the well-known Youla parameterization formula to construct a feedback control scheme with the guaranteed closed loop stability, and the feedback controller is a function of plant coprime factors and a free parameter Q. For adaptive disturbance estimation, the free parameter Q is set to an adaptive finite impulse response (FIR) filter, the coefficients of which are updated by a recursive least-squares (RLS) algorithm in realtime. It is shown in experiment that the adaptive feedback control technique based on Youla-parameterization can reject the optical jitter caused by satellite platform vibration effectively and improve the performance of the system.

  19. Texture-induced vibrations in the forearm during tactile exploration

    PubMed Central

    Delhaye, Benoit; Hayward, Vincent; Lefèvre, Philippe; Thonnard, Jean-Louis

    2012-01-01

    Humans can detect and discriminate between fine variations of surface roughness using active touch. It is hitherto believed that roughness perception is mediated mostly by cutaneous and subcutaneous afferents located in the fingertips. However, recent findings have shown that following abolishment of cutaneous afferences resulting from trauma or pharmacological intervention, the ability of subjects to discriminate between textures roughness was not significantly altered. These findings suggest that the somatosensory system is able to collect textural information from other sources than fingertip afference. It follows that signals resulting of the interaction of a finger with a rough surface must be transmitted to stimulate receptor populations in regions far away from the contact. This transmission was characterized by measuring in the wrist vibrations originating at the fingertip and thus propagating through the finger, the hand and the wrist during active exploration of textured surfaces. The spectral analysis of the vibrations taking place in the forearm tissues revealed regularities that were correlated with the scanned surface and the speed of exploration. In the case of periodic textures, the vibration signal contained a fundamental frequency component corresponding to the finger velocity divided by the spatial period of the stimulus. This regularity was found for a wide range of textural length scales and scanning velocities. For non-periodic textures, the spectrum of the vibration did not contain obvious features that would enable discrimination between the different stimuli. However, for both periodic and non-periodic stimuli, the intensity of the vibrations could be related to the microgeometry of the scanned surfaces. PMID:22783177

  20. Light-transmission aggregometer using a vibration-induced disaggregation mechanism

    NASA Astrophysics Data System (ADS)

    Shin, S.; Jang, J. H.; Park, M. S.; Ku, Y. H.; Suh, J. S.

    2005-01-01

    The vibration-induced disaggregation technique of red blood cell (RBC) aggregates has been applied to design a new light-transmission aggregometer for measurement of aggregation index. For disaggregation of RBCs, the rotational shear flow in the Couette system is replaced with a simple low-frequency vibration in a disposable cavity slide glass. Using a vibration generator, one can disaggregate the RBC aggregates stored in the cavity slide glass. After applying the vibration for a specified duration, RBCs tend to reaggregate and instantaneous light-transmittance intensity is measured over time. A syllectogram (the transmitted light intensity versus time) consists of an initial decrease caused by the vibration-induced disaggregation, immediately followed by an increase in the light intensity due to RBC aggregation. The indices of aggregation are determined from the syllectogram using a curve-fitting program. The noble feature of this design is the vibration-induced disaggregation mechanism, which enables to incorporate disposable element that holds the blood sample.

  1. Evaporative cooling over the Tibetan Plateau induced by vegetation growth.

    PubMed

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z X; Li, Yue; Myneni, Ranga B; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-07-28

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.

  2. Energy harvesting by means of flow-induced vibrations on aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Li, Daochun; Wu, Yining; Da Ronch, Andrea; Xiang, Jinwu

    2016-10-01

    This paper reviews the design, implementation, and demonstration of energy harvesting devices that exploit flow-induced vibrations as the main source of energy. Starting with a presentation of various concepts of energy harvesters that are designed to benefit from a general class of flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to extend the operational capabilities and to monitor critical parameters of unmanned aerial vehicles. Various phenomena characterized by flow-induced vibrations are discussed, including limit cycle oscillations of plates and wing sections, vortex-induced and galloping oscillations of bluff bodies, vortex-induced vibrations of downstream structures, and atmospheric turbulence and gusts. It was found that linear or linearized modeling approaches are commonly employed to support the design phase of energy harvesters. As a result, highly nonlinear and coupled phenomena that characterize flow-induced vibrations are neglected in the design process. The Authors encourage a shift in the current design paradigm: considering coupled nonlinear phenomena, and adequate modeling tools to support their analysis, from a design limitation to a design opportunity. Special emphasis is placed on identifying designs and implementations applicable to aircraft configurations. Application fields of flow-induced vibrations-based energy harvesters are discussed including power supply for wireless sensor networks and simultaneous energy harvest and control. A large body of work on energy harvesters is included in this review journal. Whereas most of the references claim direct applications to unmanned aerial vehicles, it is apparent that, in most of the cases presented, the working principles and characteristics of the energy harvesters are incompatible with any aerospace applications. Finally, the challenges that hold back the integration of energy harvesting

  3. Phase-shifting interferometry based on induced vibrations.

    PubMed

    Vargas, J; Quiroga, J Antonio; Alvarez-Herrero, A; Belenguer, T

    2011-01-17

    The presence of uncontrolled mechanical vibrations is typically the main precision-limiting factor of a phase-shifting interferometer. We present a method that instead of trying to insolate vibrations; it takes advantage of their presence to produce the different phase-steps. The method is based on spatial and time domain processing techniques to compute first the different unknown phase-steps and then reconstruct the phase from these tilt-shifted interferograms. In order to compensate the camera movement, it is needed to perform an affine registration process between the different interferograms. Simulated and experimental results demonstrate the effectiveness of the proposed technique without the use of any phase-shifter device.

  4. Tyre induced vibrations of the car-trailer system

    NASA Astrophysics Data System (ADS)

    Beregi, S.; Takács, D.; Stépán, G.

    2016-02-01

    The lateral and yaw dynamics of the car-trailer combination are analysed by means of a single track model. The equations of motion are derived rigorously by means of the Appell-Gibbs equations for constant longitudinal velocity of the vehicle. The tyres are described with the help of the so-called delayed tyre model, which is based on a brush model with pure rolling contact. The lateral forces and aligning torques of the tyre/road interaction are calculated via the instantaneous lateral deformations in the contact patches. The linear stability analysis of the rectilinear motion is performed via the analytically determined characteristic function of the system. Stability charts are constructed with respect to the vehicle longitudinal velocity and the payload position on the trailer. Self-excited lateral vibrations are detected with different vibration modes at low and at high longitudinal speeds of the vehicle. The effects of the tyre parameters are also investigated.

  5. Modulation of cutaneous flexor responses induced in man by vibration-elicited proprioceptive or exteroceptive inputs.

    PubMed

    Martin, B J; Roll, J P; Hugon, M

    1990-10-01

    The effects of muscle tendon or skin vibration on the early and late components of polyphasic cutaneous responses elicited in the flexor carpi radialis by electrical stimulation of the radial nerve at the wrist were studied in the human, with all muscles at rest. Both early and late flexor responses were enhanced by flexor vibration and depressed by extensor vibration; facilitation was accompanied by a reduction of latency. Furthermore, when an "antagonist vibration response" was present, inhibition of the flexor reflexes was replaced by a facilitation. Palm skin vibration depressed both components of the flexor reflex, while dorsal or "back-hand" skin vibration induced either a facilitation or an inhibition. In addition, back-hand vibration modified the location of the sensations evoked by electrical stimulation of the nerve. In all cases, vibratory stimulus attenuated the perceived intensity of the electrical stimulus. These observations indicate that proprioceptive or exteroceptive information can modulate the gain of the cutaneous reflex loops in a flexible way, under supraspinal control. These data also suggest a possible impairment of the protective withdrawal reflex under vibratory environmental conditions at rest and eventually in active muscles.

  6. Concorde noise-induced building vibrations John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.

    1978-01-01

    The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Preliminary results indicate that the relationship between window vibration and aircraft noise is: (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window; (2) consistent from flyover to flyover for a given aircraft type under approach conditions; (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced under approach power conditions); and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics.

  7. Design of Control Laws for Alleviation of Ground - Induced Vibrations

    DTIC Science & Technology

    2000-05-01

    VIBRATIONS W.R. Krfiger,* W. Kortilm DLR - Institute for Robotics & System Dynamics, AE-OP Miinchner Strasse, 20 D - 82234 Wessling 1 Summary slender...high damping factor is desirable to reduce 3.1 Multibody Systems aircraft pitch and heave motions . Obviously, only one of For a thorough analysis of...Only the program has evolved into a mechatronic simulation for the valve motion a small amount of external energy and design tool. The basis of SIMPACK

  8. 2P Vortex Wake Pattern in Vortex-Induced Vibration

    NASA Astrophysics Data System (ADS)

    Govardhan, R.; Williamson, C. H. K.

    1999-11-01

    Flow-visualization in the free vibration experiments of Khalak & Williamson (1997,1999) indicated the existence of the 2P wake vortex pattern (2 pairs of vortices per cycle; as defined in the forced vibration experiments of Williamson & Roshko, 1988), in support of Brika & Laneville (1993), although these visualization techniques are distinctly unclear at high Reynolds numbers (Re ~10^3-10^4 ). Forced vibrations [Sheridan et al. (1998), Techet et al. (1998)] show the 2P mode under some conditions. However, a large number of accurate numerical simulations, at low Re ~200, as well as 2D simulations at higher Re ~500 (Blackburn & Henderson 1999), clearly do not find the 2P mode. There has thus been some debate as to the existence of the 2P mode as a steady state pattern. Hence, DPIV measurements in the wake of the elastically-mounted cylinder have been performed to finally resolve this question. The present results show that the 2P mode is remarkably repeatable and continues indefinitely. The reason for this apparent disparity between experiments and DNS therefore seems to be either a Reynolds number effect or the fact that the computed flow is constrained to be 2D. Further, it is shown that this pattern corresponds with the splitting of a region of vorticity due to the strain rate field of neighbouring vortices. wake patterns show interesting differences. Supported by ONR Contracts N00014-94-1-1197 & N00014-95-1-0332.

  9. Investigation into piston-slap-induced vibration for engine condition simulation and monitoring

    NASA Astrophysics Data System (ADS)

    Geng, Z.; Chen, J.

    2005-04-01

    Piston slap is a common impact phenomenon existing in the reciprocating engine. It is also a major cause of the complex transient vibration response related to the impact excitation inside the engine. In order to correlate the piston-slap impact with the slap-induced vibration and consequently find out an effective approach for the engine dynamic behaviour simulation and working condition monitoring, an in-depth investigation from theoretical modelling to experimental verification is made in this paper. Firstly, the piston-slap phenomenon inside the reciprocating engine is briefly discussed from the viewpoint of engine mechanics. Based upon this, a nonlinear model is developed to simulate the slap-induced vibration response. Using numerical integration procedure, the slap-induced vibration response and its correlation with the inner-cylinder piston-slap impact are reasonably evaluated. Guided by the simulating results and, by introducing a fast wavelet-packet decomposition and reconstruction algorithm, a specially designed experiment is made to practically measure and extract the slap-induced impact message inside the 6190Z LC diesel engine. Comparison between the simulation and practically measured and reconstructed engine vibration signals verifies the effectiveness and practicality of this approach for more detailed academic research and engineering application.

  10. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    PubMed Central

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  11. Laser induced vibration-rotation fluorescence and infrared forbidden transitions in acetylene

    NASA Astrophysics Data System (ADS)

    Jungner, Peter; Halonen, Lauri

    1997-08-01

    Laser induced fluorescence method has been used to study highly excited vibrational overtones in acetylene. A sample cell has been placed inside a Ti:Sapphire ring laser cavity and the total fluorescence collected by a parabolic mirror has been dispersed by a high-resolution FTIR spectrometer. The laser has pumped specific rotational states of the CH stretching vibrational overtone state ν1+3ν3(∑u+) and transitions to the symmetric state ν1+2ν3(∑g+) have been observed. The observations allow determining both the vibrational term value and the rotational constant of the symmetric state, which is not accessible from the ground vibrational state by one-photon absorption. The parameters obtained are in excellent agreement with simple local mode predictions.

  12. Experimental investigation of the flow-induced vibration of hydrofoils in cavitating flows

    NASA Astrophysics Data System (ADS)

    Wang, Guoyu; Wu, Qin; Huang, Biao; Gao, Yuan

    2015-12-01

    The objective of this paper is to investigate the correlation between fluid induced vibration and unsteady cavitation behaviours. Experimental results are presented for a modified NACA66 hydrofoil, which is fixed at α=8°. The high-speed camera is synchronized with a single point Laser Doppler Vibrometer to analyze the transient cavitating flow structures and the corresponding structural vibration characteristics. The results showed that, with the decreasing of the cavitation number, the cavitating flows in a water tunnel display several types of cavitation patterns, such as incipient cavitation, sheet cavitation and cloud cavitation. The cavity shedding frequency reduces with the decrease of the cavitation number. As for the cloud cavitation regime, the trend of the vibration velocity goes up with the growth of the attached cavity, accompanied with small amplitude fluctuations. Then the collapse and shedding of the large-scale cloud cavities leads to substantial increase of the vibration velocity fluctuations.

  13. Tactile perception of skin and skin cream by friction induced vibrations.

    PubMed

    Ding, Shuyang; Bhushan, Bharat

    2016-11-01

    Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Vibrational relaxation and collision-induced dissociation of xenon fluoride by neon

    SciTech Connect

    Wilkins, R.L.

    1989-03-01

    Rate coefficients were calculated for vibrational relaxation and collision induced dissociation of ground-state xenon fluoride in neon at temperatures between 300 and 1000 K for each of nine vibrational levels. These coefficients were calculated using a pairwise additive potential energy surface, which consists, of a Morse function for the XeF interaction and Lennard-Jones functions for the NeXe and NeF interactions. Rate coefficients are provided for temperature and v-dependences. The vibrational relaxation and dissociation processes occur by multiquanta transitions. Dissociation can take place from all v-levels, provided that the internal energy of the XeF molecule is close to the rotationless dissociation limit. The order of increase effectiveness of the various forms of energy in promoting dissociation in XeF was found to be translation-rotation-vibration. At room temperature, neon atoms were more efficient than helium atoms in the dissociation processes.

  15. Scale-model characterization of flow-induced vibrational response of FFTF reactor internals

    SciTech Connect

    Ryan, J. A.; Mahoney, J. J.

    1980-10-01

    Fast Test Reactor core internal and peripheral components were assessed for flow-induced vibrational characteristics under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup as an integral part of the Fast Test Reactor Vibration Program. The Hydraulic Core Mockup was an 0.285 geometric scale model of the Fast Test Reactor internals designed to simulate prototype vibrational and hydraulic characteristics. Using water to simulate sodium coolant, vibrational characteristics were measured and determined for selected model components over the scaled flow range of 36 to 110%. Additionally, in-situ shaker tests were conducted on selected Hydraulic Core Mockup outlet plenum components to establish modal characteristics. Most components exhibited resonant response at all test flow rates; however, the measured dynamic response was neither abnormal nor anomalously flow-rate dependent, and the predicted prototype components' response were deemed acceptable.

  16. Spectroscopic visualization of sound-induced liquid vibrations using a supramolecular nanofibre.

    PubMed

    Tsuda, Akihiko; Nagamine, Yuka; Watanabe, Reiko; Nagatani, Yoshiki; Ishii, Noriyuki; Aida, Takuzo

    2010-11-01

    The question of whether sound vibration of a medium can bring about any kind of molecular or macromolecular events is a long-standing scientific controversy. Although it is known that ultrasonic vibrations with frequencies of more than 1 MHz are able to align certain macromolecules in solution, no effect has yet been reported with audible sound, the frequency of which is much lower (20-20,000 Hz). Here, we report on the design of a supramolecular nanofibre that in solution becomes preferentially aligned parallel to the propagation direction of audible sound. This phenomenon can be used to spectroscopically visualize sound-induced vibrations in liquids and may find application in a wide range of vibration sensing technologies.

  17. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    PubMed

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots.

  18. Proprioceptive control of wrist movements in Parkinson's disease. Reduced muscle vibration-induced errors.

    PubMed

    Rickards, C; Cody, F W

    1997-06-01

    The effects upon the trajectories of practised slow (approximately 9 degrees/s) voluntary wrist-extension movements of applying vibration to the tendon of an antagonist muscle (flexor carpi radialis) during the course of the movement have been studied in patients with idiopathic Parkinson's disease and age-matched healthy individuals. In both patient and control groups, flexor vibration elicited undershooting of wrist-extension movements. Wrist extensor and flexor surface EMG recordings indicated that, in patients and controls, such undershooting resulted principally from sustained reductions in extensor (prime mover) activity. Small vibration reflexes were commonly elicited in the wrist flexors which, in both Parkinson's disease and healthy subjects, were usually otherwise virtually quiescent during these slow extension movements. The amplitudes of such vibration reflexes did not differ systematically between patient and control groups and appeared inadequate to have exerted an appreciable braking action upon the extension trajectories. However, the extent of vibration-induced undershooting was, on average, significantly less in the Parkinson's disease group. In a subgroup of patients with asymmetrical parkinsonism the effects of antagonist vibration upon wrist movements of the more and less affected limb were compared. The degree of vibration-induced undershooting was significantly smaller on the more affected side. This finding suggests that disturbed proprioceptive guidance of voluntary movements in Parkinson's disease is related to the severity of clinical motor deficits. A small number Parkinson's disease patients were studied 'ON' and 'OFF' their routine anti-parkinsonian medication. A non-significant tendency was found for vibration-induced errors to be less marked in the 'OFF' state. In a separate series of experiments, under isometric conditions, vibration-induced EMG changes were recorded whilst subjects attempted to maintain a steady (15% maximum

  19. Whole-body vibration induces pain and lumbar spinal inflammation responses in the rat that vary with the vibration profile.

    PubMed

    Zeeman, Martha E; Kartha, Sonia; Winkelstein, Beth A

    2016-08-01

    Whole-body vibration (WBV) is linked epidemiologically to neck and back pain in humans, and to forepaw mechanical allodynia and cervical neuroinflammation in a rodent model of WBV, but the response of the low back and lumbar spine to WBV is unknown. A rat model of WBV was used to determine the effect of different WBV exposures on hind paw behavioral sensitivity and neuroinflammation in the lumbar spinal cord. Rats were exposed to 30 min of WBV at either 8 or 15 Hz on days 0 and 7, with the lumbar spinal cord assayed using immunohistochemistry at day 14. Behavioral sensitivity was measured using mechanical stimulation of the hind paws to determine the onset, persistence, and/or recovery of allodynia. Both WBV exposures induce mechanical allodynia 1 day following WBV, but only the 8 Hz WBV induces a sustained decrease in the withdrawal threshold through day 14. Similarly, increased activation of microglia, macrophages, and astrocytes in the superficial dorsal horn of the lumbar spinal cord is only evident after the painful 8 Hz WBV. Moreover, extracellular signal-regulated kinase (ERK)-phosphorylation is most robust in neurons and astrocytes of the dorsal horn, with the most ERK phosphorylation occurring in the 8 Hz group. These findings indicate that a WBV exposure that induces persistent pain also induces a host of neuroimmune cellular activation responses that are also sustained. This work indicates there is an injury-dependent response that is based on the vibration parameters, providing a potentially useful platform for studying mechanisms of painful spinal injuries. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1439-1446, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Scalp cooling to prevent chemotherapy-induced hair loss: practical and clinical considerations.

    PubMed

    Mols, Floortje; van den Hurk, Corina J; Vingerhoets, Ad J J M; Breed, Wim P M

    2009-02-01

    The objective of this prospective multicenter study was to obtain insight into the severity and burden of hair loss among cancer patients treated with chemotherapy. In addition, we described the effectiveness and burden of scalp cooling and the satisfaction with wigs, with hair regrowth, and with body image. Breast cancer patients treated with (n = 98) and without (n = 168) scalp cooling completed questionnaires before chemotherapy and 3 weeks and 6 months after completion of chemotherapy. Scalp cooling was effective in preventing chemotherapy-induced hair loss in 32 of 62 available patients (52%). Even though patients knew hair loss was temporary, it was a burden to 54% of them (n = 100). Scalp cooling was a burden for only 17 out of 51 patients (33%). Most patients who used a wig or head cover were satisfied with it (82%, n = 126). Patients were moderately satisfied with the regrowth of their hair after chemotherapy (mean 11.6; SD 2.53; range 0-20). Successfully cooled patients rated their hair as less important for their body image compared to patients who did experience hair loss (p = 0.014). Chemotherapy-induced hair loss is perceived as burdensome. It may be prevented by offering scalp cooling which is often an effective method to prevent this form of hair loss and is tolerated well by patients. However, if possible, scalp-cooling techniques should be improved and their effectiveness should be increased because if scalp cooling is unsuccessful, patients' rate their hair loss as more burdensome compared to noncooled patients.

  1. Electronic Aharonov-Bohm effect induced by quantum vibrations.

    PubMed

    Shekhter, R I; Gorelik, L Y; Glazman, L I; Jonson, M

    2006-10-13

    Mechanical displacements of a nanoelectromechanical system shift the electron trajectories and hence perturb phase coherent charge transport through the device. We show theoretically that in the presence of a magnetic field such quantum-coherent displacements may give rise to an Aharonov-Bohm-type of effect. In particular, we demonstrate that quantum vibrations of a suspended carbon nanotube result in a positive nanotube magnetoresistance, which decreases slowly with the increase of temperature. This effect may enable one to detect quantum displacement fluctuations of a nanomechanical device.

  2. Vibration-induced elastic deformation of Fabry-Perot cavities

    SciTech Connect

    Chen Lisheng; Hall, John L.; Ye Jun; Yang Tao; Zang Erjun; Li Tianchu

    2006-11-15

    We perform a detailed numerical analysis of Fabry-Perot cavities used for state-of-the-art laser stabilization. Elastic deformation of Fabry-Perot cavities with various shapes and mounting methods is quantitatively analyzed using finite-element analysis. We show that with a suitable choice of mounting schemes it is feasible to minimize the susceptibility of the resonator length to vibrational perturbations. This investigation offers detailed information on stable optical cavities that may benefit the development of ultrastable optical local oscillators in optical atomic clocks and precision measurements probing the fundamental laws of physics.

  3. Vibration serviceability of footbridges under human-induced excitation: a literature review

    NASA Astrophysics Data System (ADS)

    Živanović, S.; Pavic, A.; Reynolds, P.

    2005-01-01

    Increasing strength of new structural materials and longer spans of new footbridges, accompanied with aesthetic requirements for greater slenderness, are resulting in more lively footbridge structures. In the past few years this issue attracted great public attention. The excessive lateral sway motion caused by crowd walking across the infamous Millennium Bridge in London is the prime example of the vibration serviceability problem of footbridges. In principle, consideration of footbridge vibration serviceability requires a characterisation of the vibration source, path and receiver. This paper is the most comprehensive review published to date of about 200 references which deal with these three key issues. The literature survey identified humans as the most important source of vibration for footbridges. However, modelling of the crowd-induced dynamic force is not clearly defined yet, despite some serious attempts to tackle this issue in the last few years. The vibration path is the mass, damping and stiffness of the footbridge. Of these, damping is the most uncertain but extremely important parameter as the resonant behaviour tends to govern vibration serviceability of footbridges. A typical receiver of footbridge vibrations is a pedestrian who is quite often the source of vibrations as well. Many scales for rating the human perception of vibrations have been found in the published literature. However, few are applicable to footbridges because a receiver is not stationary but is actually moving across the vibrating structure. During footbridge vibration, especially under crowd load, it seems that some form of human-structure interaction occurs. The problem of influence of walking people on footbridge vibration properties, such as the natural frequency and damping is not well understood, let alone quantified. Finally, there is not a single national or international design guidance which covers all aspects of the problem comprehensively and some form of their

  4. Building vibrations induced by noise from rotorcraft and propeller aircraft flyovers

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P.; Hubbard, Harvey H.

    1992-01-01

    Noise and building vibrations were measured for a series of helicopter and propeller-driven aircraft flyovers at WFF during May 1978. The building response data are compared with similar data acquired earlier at sites near Dulles and Kennedy Airports for operation of commercial jet transports, including the Concorde supersonic transport. Results show that noise-induced vibration levels in windows and walls are directly proportional to sound pressure level and that for a given noise level, the acceleration levels induced by a helicopter or a propeller-driven aircraft flyover cannot be distinguished from the acceleration levels induced by a commercial jet transport flyover. Noise-induced building acceleration levels were found to be lower than those levels which might be expected to cause structural damage and were also lower than some acceleration levels induced by such common domestic events as closing windows and doors.

  5. An Experimental Investigation of Vibration-Induced Droplet Atomization.

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    1998-11-01

    The atomization process in a mm-scale liquid droplet placed on a vibrating membrane is investigated experimentally. When the wavelength of the Faraday surface waves is smaller than the characteristic dimension of the droplet, the waves grow in amplitude as the excitation amplitude increases and ultimately begin to eject small secondary droplets from the wave crests. The high membrane acceleration needed to attain ejection (typically 300g) is achieved by driving a light-weight membrane near its resonant frequencies (nominally 1000-6000 Hz). The evolution and rate of the droplet-ejection process depend on a coupled system dynamic between the liquid droplet and the vibrating membrane. Depending on the excitation frequency and amplitude, various types of droplet-ejection processes can occur. For example, when step forcing (with prescribed frequency and amplitude) is applied, rapid atomization occurs. This event is triggered along the circumference of the droplet near the contact line by a strong azimuthal instability. In the present experiments, the droplet-ejection process and the resulting spray characteristics are investigated using high-speed video and two-frame particle tracking velocimetry.

  6. Vertical motion of particles in vibration-induced granular capillarity

    NASA Astrophysics Data System (ADS)

    Fan, Fengxian; Liu, Ju; Parteli, Eric J. R.; Pöschel, Thorsten

    2017-06-01

    When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon - which we term granular capillarity - we numerically investigate the system using the Discrete Element Method (DEM). We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary) height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.

  7. Dissociative ionization of liquid water induced by vibrational overtone excitation

    SciTech Connect

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H/sup +/ and OH/sup -/ ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H/sub 2/O, the quantum yield at 283 +- 1 K varies from 2 x 10/sup -9/ to 4 x 10/sup -5/ for wave numbers between 7605 and 18140 cm/sup -1/. In D/sub 2/O, the dependence of quantum yield on wavelength has the same qualitative shape as for H/sub 2/O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D/sub 2/O than for excitation of D/sub 2/O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H/sub 2/O and with isotopic composition at 25 +- 1/sup 0/C.

  8. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer.

    PubMed

    Chen, Qingming; Jin, Chao; Bao, Yuan; Li, Zhaohui; Li, Jianping; Lu, Chao; Yang, Liang; Li, Guifang

    2014-02-10

    We propose and experimentally demonstrate a novel ultra-long range and sensitive distributed fiber vibration sensor. Only one unidirectional Mach-Zehnder interferometer (MZI) is employed in this scheme as the sensing element. In this sensor structure, we utilize chromatic dispersion-induced walk-off effect between the vibration signals sensed by two distributed feedback (DFB) lasers at different wavelengths to locate the vibration position. Vibration signals with frequencies up to 9 MHz can be detected and the spatial resolution of 31 m is achieved over 320 km of the standard single mode fiber. Monitoring multiple vibration sources can also be realized using this scheme.

  9. Light-induced vibration characteristics of free-standing carbon nanotube films fabricated by vacuum filtration

    SciTech Connect

    Li, Junying; Zhu, Yong Wang, Ning; Zhang, Jie; Wang, Xin

    2014-07-14

    In this paper, we fabricated carbon nanotube (CNT) films with different thickness by vacuum filtration method, and the films were separated from Mixed Cellulose Ester membranes with burn-off process. The thickness of CNT films with different concentrations of CNTs 50 mg, 100 mg, 150 mg, and 200 mg are 10.36 μm, 20.90 μm, 30.19 μm, and 39.98 μm respectively. The CNT bundles are homogeneously distributed and entangled with each other, and still maintain 2D continuous network structures after burn-off process. The optical absorptivity of the films is between 84% and 99% at wavelengths ranging from 400 nm to 2500 nm. Vibration characteristics were measured with the Fabry-Perot (F-P) interferometer vibration measurement system. CNT films vibrate only under the xenon light irradiating perpendicularly to the surface. Vibration recorded by Fabry-Perot interferometer is considered to be caused by the time-dependent thermal moment, which is due to the temperature differences of two sides of CNT films. The vibration frequency spectrums between 0.1 ∼ 0.5 Hz were obtained by the Fast Fourier Transform spectra from time domain to frequency domain, and showed a linear relationship with films thickness, which is in accordance with theoretical model of thermal induced vibration.

  10. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  11. Vibration-induced effects in stroke patients with spastic hemiparesis--a pilot study.

    PubMed

    Liepert, Joachim; Binder, Christian

    2010-01-01

    Spasticity manifesting as a dysbalance between extensor and flexor muscles may contribute to an impaired hand function. We studied clinical (n=10 patients) and electrophysiological (n=9 patients) changes produced by vibration of forearm extensor muscles (FEM) in chronic stroke patients with spastic hemiparesis. In Exp. 1, the Box and Block Test (BBT) was applied to test dexterity before and after 5 minutes of FEM vibration. In Exp. 2, transcranial magnetic stimulation was used to study the cortical silent period (CSP) before and during FEM vibration. Recordings were taken from the antagonistic flexor carpi radialis muscle. After vibration, performance of the BBT was improved by 20%. The effect persisted for at least 10-15 minutes. Vibration induced a prolongation of the CSP. This effect occurred in the affected and non-affected side to a similar degree. The magnitude of performance changes and CSP changes was not correlated. FEM vibration enhances inhibitory neuronal circuits targeting the antagonistic forearm flexor muscles and is associated with an improved dexterity in the spastic arm. It might become a supporting tool in the motor recovery of spastic hemiparesis.

  12. Poiseuille flow-induced vibrations of two tandem circular cylinders with different mass ratios

    NASA Astrophysics Data System (ADS)

    Jiang, Ren-Jie; Lin, Jian-Zhong

    2016-06-01

    Flow-induced vibrations of two tandem circular cylinders with different mass ratios confined between two parallel walls are numerically studied via a lattice Boltzmann method. With fixed Reynolds number Re = 100 and blockage ratio β = 1/4, the effects of mass ratio m* = [0.0625, 16] and streamwise separation between two cylinders S/D = [1.125, 10] on the cylinder motions and vortex wake modes are investigated. A variety of distinct cylinder motion regimes involving the symmetric periodic vibration, biased quasi-periodic vibration, beating vibration, and steady regimes, with the corresponding wake structures, e.g., two rows of alternately rotating vortices, a single row of same-sign vortices, and steady wake, are observed. For each current case, the cylinder motion type is exclusive and in the binary oscillation regime, both cylinders always vibrate at a common primary frequency. The lighter cylinder usually oscillates at a larger amplitude than the heavier one, while the heavier cylinder undergoes larger lift force than the lighter one. The lift force and cylinder displacement always behave as an out-of-phase state. In the gap-interference region, large-amplitude oscillations could be produced extensively and in the wake-interference region, the cylinder motions and fluid flows are mainly dependent on the upstream cylinder. When the separation is large enough, both cylinders behave as two isolated ones. The mechanisms for the excitations of cylinder vibrations have also been analysed.

  13. Collision--induced absorption in dense atmospheres of cool stars

    SciTech Connect

    Borysow, Aleksandra; Joergensen, Uffe Graae

    1999-04-01

    In the atmosphere of the Sun the major interaction between the matter and the radiation is through light absorption by ions (predominantly the negative ion of hydrogen atoms), neutral atoms and a small amount of polar molecules. The majority of stars in the universe are, however, cooler and denser than our Sun, and for a large fraction of these, the above absorption processes are very weak. Here, collision-induced absorption (CIA) becomes the dominant opacity source. The radiation is absorbed during very short mutual passages ('collisions') of two non-polar molecules (and/or atoms), while their electric charge distributions are temporarily distorted which gives rise to a transient dipole moment. We present here a review of the present-day knowledge about the impact of collision-induced absorption processes on the structure and the spectrum of such stars.

  14. Effects of breathing warm humidified air on bronchoconstriction induced by body cooling and by inhalation of methacholine.

    PubMed

    Horton, D J; Chen, W Y

    1979-01-01

    The effect of breathing warm humidified air upon bronchoconstriction induced with body cooling or inhalation of methacholine was studied in two groups of eight asthmatic subjects. One group had the body cooled using one-minute exposures, first to a cold shower at 15 degrees C and then to a current of wind. The other group received methacholine by inhalation until a decrease of 20 percent or more occurred in the forced expiratory volume in one second. Both groups of asthmatic subjects were tested when breathing room air and warm humidified air. Pulmonary functions were assessed before and after cooling of the body and during inhalation of methacholine. Breathing warm humidified air substantially reduced bronchoconstriction induced by body cooling, but not that induced by inhalation of methacholine. Thus, bronchoconstriction induced by cooling of the body appears to be related to cooling of the airways, which may be compensated by breathing warm humidified air.

  15. Temporary threshold shift of vibratory sensation induced by a vibrating handle and its gripping force.

    PubMed

    Nishiyama, K; Taoda, K; Yamashita, H; Watanabe, S

    1996-01-01

    This study examines the effect of the force with which a vibrating handle is gripped on the temporary threshold shift of vibratory sensation (TTSv) induced by hand-arm vibration. Six healthy subjects gripped a handle vibrating with a 1.3 octave-band vibration, with a central frequency of 200 Hz and an intensity of 39.2 m/s2. Exposure was for 1 min and 10 min, respectively. Gripping forces for the 1-min exposure were 5 N, 10 N, 40 N and 80 N, respectively, with 0 N push-pull force. Gripping forces for the 10-min exposure were the same as for the 1-min exposure but omitting 80 N. The vibratory sensation threshold at 125 Hz was measured before and after exposure of an exposed fingertip to vibration. The differences measured determine TTSv.t at time t. TTSv.t determines TTSv.0, that is, the temporary threshold shift of vibratory sensation immediately after exposure to vibration according to the estimate made on the basis of the preceding study. The same experimental conditions were repeated 3 times on different days in a soundproof and thermoregulated room. Our findings show that TTSv increases significantly with increasing gripping force. We also determined the quantitative relationships between TTSv.0 and gripping force as described by the equation TTSv.0 = exp(kf x F + Cf). where kt and Cf are constants and F is gripping force. This study revealed the importance of ergonomic design in reducing the force with which a vibrating handle is gripped to prevent an adverse effect of local vibration. The equation devised may help in the quantitative assessment of the effect of reduced gripping force.

  16. Investigation into the vibration of metro bogies induced by rail corrugation

    NASA Astrophysics Data System (ADS)

    Ling, Liang; Li, Wei; Foo, Elbert; Wu, Lei; Wen, Zefeng; Jin, Xuesong

    2017-01-01

    The current research of rail corrugation mainly focuses on the mechanisms of its formation and development. Compared with the root causes and development mechanisms, the wheel-rail impacts, the fatigue failure of vehicle-track parts, and the loss of ride comfort due to rail corrugation should also be taken into account. However, the influences of rail corrugation on vehicle and track vibration, and failure of vehicle and track structural parts are barely discussed in the literature. This paper presents an experimental and numerical investigation of the structural vibration of metro bogies caused by rail corrugation. Extensive experiments are conducted to investigate the effects of short-pitch rail corrugation on the vibration accelerations of metro bogies. A dynamic model of a metro vehicle coupled with a concrete track is established to study the influence of rail corrugation on the structural vibration of metro bogies. The field test results indicate that the short-pitch rail corrugation generates strong vibrations on the axle-boxes and the bogie frames, therefore, accelerates the fatigue failure of the bogie components. The numerical results show that short-pitch rail corrugation may largely reduce the fatigue life of the coil spring, and improving the damping value of the primary vertical dampers is likely to reduce the strong vibration induced by short-pitch rail corrugation. This research systematically studies the effect of rail corrugation on the vibration of metro bogies and proposes some remedies for mitigating strong vibrations of metro bogies and reducing the incidence of failure in primary coil springs, which would be helpful in developing new metro bogies and track maintenance procedures.

  17. Cryo Cooler Induced Micro-Vibration Disturbances to the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jedrich, Nick; Zimbelman, Darrell; Turczyn, Mark; Sills, Joel; Voorhees, Carl; Clapp, Brian; Brumfield, Mark (Technical Monitor)

    2002-01-01

    This paper presents an overview of the Hubble Space Telescope (HST) Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryo Cooler (MCC) system, a description of the micro-vibration characterization testing performed, and a discussion of the simulated performance. The NCC is a reverse Brayton cycle system that employs micro turbo-machinery to provide cooling to the NICMOS instrument. Extensive testing was conducted to quantify the expected on-orbit disturbances caused by the micro turbo-machinery and provide input to a flexible-body dynamic simulation to demonstrate compliance with the HST 7 milli-arcsecond root mean square jitter requirement.

  18. Impact of Typhoon-induced sea surface cooling on the track of next Typhoon

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Horiguchi, M.; Kodera, K.; Tachibana, Y.; Yamazaki, K.

    2015-12-01

    Typhoons (TCs) MATMO, HALONG, and NAKRI (2014), which caused Japan catastrophic disaster, landed the western part of Japan. The TCs came to Japan one after another during late July to early August 2014. The tracks of these TCs were similar, i.e., the TCs followed the western edge of the subtropical northwestern Pacific high (SNPH). However, the tracks gradually reached to Japan, which were associated with weakening the westward expansion of the SNPH. It was found that the changes in westward expansion of the SNPH were associated with TC-induced sea surface cooling of previous Typhoon. It has previously been reported that TC-induced sea surface cooling is mainly caused by Ekman upwelling and vertical turbulent mixing. The TCs MATMO, HALONG, and NAKRI passed around the Philippines, and induced sea surface cooling of this area. The sea surface temperatures of this area are important for Pacific-Japan pattern, which was associated with the westward expansion of the SNPH. Consequently, previous Typhoon induced sea surface cooling around the Philippines, which weakening the westward expansion of the SNPH. Then, the tracks of next Typhoon were changed, and gradually reached to Japan.

  19. Factors influencing the effectiveness of scalp cooling in the prevention of chemotherapy-induced alopecia.

    PubMed

    Komen, Manon M C; Smorenburg, Carolien H; van den Hurk, Corina J G; Nortier, Johan W R

    2013-01-01

    The success of scalp cooling in preventing or reducing chemotherapy-induced alopecia (CIA) is highly variable between patients and chemotherapy regimens. The outcome of hair preservation is often unpredictable and depends on various factors. Methods. We performed a structured search of literature published from 1970 to February 2012 for articles that reported on factors influencing the effectiveness of scalp cooling to prevent CIA in patients with cancer. Results. The literature search identified 192 reports, of which 32 studies were considered relevant. Randomized studies on scalp cooling are scarce and there is little information on the determinants of the result. The effectiveness of scalp cooling for hair preservation depends on dose and type of chemotherapy, with less favorable results at higher doses. Temperature seems to be an important determinant. Various studies suggest that a subcutaneous scalp temperature less than 22 °C is required for hair preservation. Conclusions. The effectiveness of scalp cooling for hair preservation varies by chemotherapy type and dose, and probably by the degree and duration of cooling.

  20. Factors Influencing the Effectiveness of Scalp Cooling in the Prevention of Chemotherapy-Induced Alopecia

    PubMed Central

    Smorenburg, Carolien H.; van den Hurk, Corina J.G.; Nortier, Johan W.R.

    2013-01-01

    Introduction. The success of scalp cooling in preventing or reducing chemotherapy-induced alopecia (CIA) is highly variable between patients and chemotherapy regimens. The outcome of hair preservation is often unpredictable and depends on various factors. Methods. We performed a structured search of literature published from 1970 to February 2012 for articles that reported on factors influencing the effectiveness of scalp cooling to prevent CIA in patients with cancer. Results. The literature search identified 192 reports, of which 32 studies were considered relevant. Randomized studies on scalp cooling are scarce and there is little information on the determinants of the result. The effectiveness of scalp cooling for hair preservation depends on dose and type of chemotherapy, with less favorable results at higher doses. Temperature seems to be an important determinant. Various studies suggest that a subcutaneous scalp temperature less than 22°C is required for hair preservation. Conclusions. The effectiveness of scalp cooling for hair preservation varies by chemotherapy type and dose, and probably by the degree and duration of cooling. PMID:23650021

  1. Regarding "A new method for predicting nonlinear structural vibrations induced by ground impact loading" [Journal of Sound and Vibration, 331/9 (2012) 2129-2140

    NASA Astrophysics Data System (ADS)

    Cartmell, Matthew P.

    2016-09-01

    The Editor wishes to make the reader aware that the paper "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140, did not contain a direct citation of the fundamental and original work in this field by Dr. Mark Svinkin. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.

  2. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  3. Effect of Angle on Flow-Induced Vibrations of Pinniped Vibrissae

    PubMed Central

    Murphy, Christin T.; Eberhardt, William C.; Calhoun, Benton H.; Mann, Kenneth A.; Mann, David A.

    2013-01-01

    Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the

  4. Effect of angle on flow-induced vibrations of pinniped vibrissae.

    PubMed

    Murphy, Christin T; Eberhardt, William C; Calhoun, Benton H; Mann, Kenneth A; Mann, David A

    2013-01-01

    Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina) and northern elephant seals (Mirounga angustirostris) and the smooth vibrissae of California sea lions (Zalophus californianus). Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90°) to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°), compared to when the thin edge faced into the flow (0°). Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self-noise of the

  5. Whole-body vibration training induces hypertrophy of the human patellar tendon.

    PubMed

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-08-01

    Animal studies suggest that regular exposure to whole-body vibration (WBV) induces an anabolic response in bone and tendon. However, the effects of this type of intervention on human tendon properties and its influence on the muscle-tendon unit function have never been investigated. The aim of this study was to investigate the effect of WBV training on the patellar tendon mechanical, material and morphological properties, the quadriceps muscle architecture and the knee extension torque-angle relationship. Fifty-five subjects were randomized into either a vibration, an active control, or an inactive control group. The active control subjects performed isometric squats on a vibration platform without vibration. Muscle and tendon properties were measured using ultrasonography and dynamometry. Vibration training induced an increase in proximal (6.3%) and mean (3.8%) tendon cross-sectional area, without any appreciable change in tendon stiffness and modulus or in muscle architectural parameters. Isometric torque at a knee angle of 90° increased in active controls (6.7%) only and the torque-angle relation remained globally unchanged in all groups. The present protocol did not appreciably alter knee extension torque production or the musculo-tendinous parameters underpinning this function. Nonetheless, this study shows for the first time that WBV elicits tendon hypertrophy in humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Concorde noise-induced building vibrations for Sully Plantation, Chantilly, Virginia

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Scholl, H. F.; Stephens, D. G.; Holliday, B. G.; Deloach, R.; Holmes, H. K.; Lewis, R. B.; Lynch, J. W.

    1976-01-01

    A study to assess the noise-induced building vibrations associated with Concorde operations is presented. The approach is to record the levels of induced vibrations and associated indoor/outdoor noise levels in selected homes, historic and other buildings near Dulles and Kennedy International Airports. Presented is a small, representative sample of data recorded at Sully Plantation, Chantilly, Virginia during the period of May 20 through May 28, 1976. Recorded data provide relationships between the vibration levels of walls, floors, windows, and the noise associated with Concorde operations (2 landings and 3 takeoffs), other aircraft, nonaircraft sources, and normal household activities. Results suggest that building vibrations resulting from aircraft operations were proportional to the overall sound pressure levels and relatively insensitive to spectral differences associated with the different types of aircraft. Furthermore, the maximum levels of vibratory response resulting from Concorde operations were higher than those associated with conventional aircraft. The vibrations of nonaircraft events were observed in some cases to exceed the levels resulting from aircraft operations. These nonaircraft events are currently being analyzed in greater detail.

  7. Inducing any virtual two-dimensional movement in humans by applying muscle tendon vibration.

    PubMed

    Roll, Jean-Pierre; Albert, Frédéric; Thyrion, Chloé; Ribot-Ciscar, Edith; Bergenheim, Mikael; Mattei, Benjamin

    2009-02-01

    In humans, tendon vibration evokes illusory sensation of movement. We developed a model mimicking the muscle afferent patterns corresponding to any two-dimensional movement and checked its validity by inducing writing illusory movements through specific sets of muscle vibrators. Three kinds of illusory movements were compared. The first was induced by vibration patterns copying the responses of muscle spindle afferents previously recorded by microneurography during imposed ankle movements. The two others were generated by the model. Sixteen different vibratory patterns were applied to 20 motionless volunteers in the absence of vision. After each vibration sequence, the participants were asked to name the corresponding graphic symbol and then to reproduce the illusory movement perceived. Results showed that the afferent patterns generated by the model were very similar to those recorded microneurographically during actual ankle movements (r=0.82). The model was also very efficient for generating afferent response patterns at the wrist level, if the preferred sensory directions of the wrist muscle groups were first specified. Using recorded and modeled proprioceptive patterns to pilot sets of vibrators placed at the ankle or wrist levels evoked similar illusory movements, which were correctly identified by the participants in three quarters of the trials. Our proprioceptive model, based on neurosensory data recorded in behaving humans, should then be a useful tool in fields of research such as sensorimotor learning, rehabilitation, and virtual reality.

  8. Vibrational relaxation and dissociative recombination of H{sub 2}{sup +} induced by slow electrons

    SciTech Connect

    Ngassam, V.; Motapon, O.; Florescu, A.; Pichl, L.; Schneider, I. F.; Suzor-Weiner, A.

    2003-09-01

    We present calculations of cross sections and rate coefficients for the dissociative recombination of H{sub 2}{sup +} ions initially in v=0-6 vibrational levels, together with rate coefficients for the competing electron-induced vibrational deexcitation. We used the multichannel quantum defect theory with a second-order treatment of the K matrix, and show that electronic interactions dominate not only the dissociative recombination but also the vibrational relaxation induced by slow electrons. Most of our rate coefficients for dissociative recombination are in good agreement with the measurements at the TSR storage ring [S. Krohn et al., Phys. Rev. A 62, 032713 (2000)]. On the contrary, our rates for vibrational deexcitation, close to former results obtained by R-matrix calculations [B. K. Sarpal and J. Tennyson, Mon. Not. R. Astron. Soc. 263, 909 (1993)], are smaller by up to one order of magnitude than the experimental values which are deduced from the time evolution of the vibrational populations, measured by the Coulomb explosion imaging method.

  9. Analysis & Test of Reaction Wheel Induced Micro-Vibrations

    NASA Astrophysics Data System (ADS)

    Runte, Torben; Brito, Miguel; Bourne, Duncan M.; Mariani, Marco

    2014-06-01

    Microvibrations are a major disturbance source of the pointing stability for high-precision Spacecraft. These undesirable mechanical vibrations are generated by active mechanisms and transferred via the Spacecraft structure.Throughout OHB System's design of Spacecraft platforms for Spacecraft missions with high precision pointing performance, Reaction Wheels (RWs) have been identified as the most dominant source of microvibrations in Spacecraft platforms. The RW perturbations consist of numerous harmonic components whose frequencies and amplitudes depend on the wheel speed and the ball bearing characteristics of each unit. This paper focuses on the analysis methodology used to estimate the disturbance caused by these units, its transmission via the Spacecraft structure and its verification by measurement.

  10. Irrigation Induced Surface Cooling in the Context of Modern and Increased Greenhouse Gas Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Puma, Michael J.; Krakauer, Nir Y.

    2010-01-01

    There is evidence that expected warming trends from increased greenhouse gas (GHG) forcing have been locally masked by irrigation induced cooling, and it is uncertain how the magnitude of this irrigation masking effect will change in the future. Using an irrigation dataset integrated into a global general circulation model, we investigate the equilibrium magnitude of irrigation induced cooling under modern (Year 2000) and increased (A1B Scenario, Year 2050) GHG forcing, using modern irrigation rates in both scenarios. For the modern scenario, the cooling is largest over North America, India, the Middle East, and East Asia. Under increased GHG forcing, this cooling effect largely disappears over North America, remains relatively unchanged over India, and intensifies over parts of China and the Middle East. For North America, irrigation significantly increases precipitation under modern GHG forcing; this precipitation enhancement largely disappears under A1B forcing, reducing total latent heat fluxes and the overall irrigation cooling effect. Over India, irrigation rates are high enough to keep pace with increased evaporative demand from the increased GHG forcing and the magnitude of the cooling is maintained. Over China, GHG forcing reduces precipitation and shifts the region to a drier evaporative regime, leading to a relatively increased impact of additional water from irrigation on the surface energy balance. Irrigation enhances precipitation in the Middle East under increased GHG forcing, increasing total latent heat fluxes and enhancing the irrigation cooling effect. Ultimately, the extent to which irrigation will continue to compensate for the warming from increased GHG forcing will primarily depend on changes in the background evaporative regime, secondary irrigation effects (e.g. clouds, precipitation), and the ability of societies to maintain (or increase) current irrigation rates.

  11. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  12. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  13. Experimental investigation of railway train-induced vibrations of surrounding ground and a nearby multi-story building

    NASA Astrophysics Data System (ADS)

    Xia, He; Chen, Jianguo; Wei, Pengbo; Xia, Chaoyi; de Roeck, G.; Degrande, G.

    2009-03-01

    In this paper, a field experiment was carried out to study train-induced environmental vibrations. During the field experiment, velocity responses were measured at different locations of a six-story masonry structure near the Beijing-Guangzhou Railway and along a small road adjacent to the building. The results show that the velocity response levels of the environmental ground and the building floors increase with train speed, and attenuate with the distance to the railway track. Heavier freight trains induce greater vibrations than lighter passenger trains. In the multi-story building, the lateral velocity levels increase monotonically with floor elevation, while the vertical ones increase with floor elevation in a fluctuating manner. The indoor floor vibrations are much lower than the outdoor ground vibrations. The lateral vibration of the building along the direction of weak structural stiffness is greater than along the direction with stronger stiffness. A larger room produces greater floor vibrations than the staircase at the same elevation, and the vibration at the center of a room is greater than at its corner. The vibrations of the building were compared with the Federal Transportation Railroad Administration (FTA) criteria for acceptable ground-borne vibrations expressed in terms of rms velocity levels in decibels. The results show that the train-induced building vibrations are serious, and some exceed the allowance given in relevant criterion.

  14. Preventing chemotherapy-induced alopecia in cancer patients: is scalp cooling worthwhile?

    PubMed

    Tierney, A J

    1987-05-01

    Alopecia (hair loss) is often singled out as the most distressing side-effect of cancer chemotherapy treatment. This paper provides a comprehensive and critical review of the research literature on scalp cooling, a procedure introduced to prevent chemotherapy-induced alopecia. In spite of a considerable amount of research (both nursing and medical) over a 15-year period, the evidence on scalp cooling is inconclusive. Although concerned with a specialist issue, this paper may interest the general reader as it illustrates the value of a literature review in raising questions about current practice and in identifying issues for future research.

  15. Sliding mode control of wind-induced vibrations using fuzzy sliding surface and gain adaptation

    NASA Astrophysics Data System (ADS)

    Thenozhi, Suresh; Yu, Wen

    2016-04-01

    Although fuzzy/adaptive sliding mode control can reduce the chattering problem in structural vibration control applications, they require the equivalent control and the upper bounds of the system uncertainties. In this paper, we used fuzzy logic to approximate the standard sliding surface and designed a dead-zone adaptive law for tuning the switching gain of the sliding mode control. The stability of the proposed controller is established using Lyapunov stability theory. A six-storey building prototype equipped with an active mass damper has been used to demonstrate the effectiveness of the proposed controller towards the wind-induced vibrations.

  16. [Vibration-induced Raynaud phenomenon caused by an electric hedge trimmer].

    PubMed

    Kákosy, T; Martin, J; Zentai, N; Székely, A

    1995-08-06

    Authors observed Raynaud's phenomenon verified by cold-provocation test and measuring finger systolic blood pressure on a man working with bush cutter equipment installed on a tractor. Vibration measurements showed acceleration superior to maximal allowable level. Other causes of a secondary Raynaud's phenomenon were excluded by means of detailed internal examination. On the ground of the exposure data and lack of other ethiological factors the authors think that the patient had vibration-induced Raynaud's phenomenon. For prevention they proposed the diminishing of the daily exposure time and periodical medical examinations. They want to draw the attention for this sort of exposure.

  17. Vibrational analysis of carbonyl modes in different stages of light-induced cyclopyrimidine dimer repair reactions

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul; Nonella, Marco

    2001-11-01

    The formation of cyclopyrimidine dimers is a DNA defect, which is repaired by the enzyme DNA photolyase in a light-induced reaction. Radical anions of the dimers have been suggested to occur as short-lived intermediates during repair. For their identification time-resolved Fourier-transform infrared (FTIR) spectroscopy will be a method of choice. To support and guide such spectroscopic studies we have calculated the vibrational spectra of various pyrimidine compounds using density functional methods. Our results suggest that the carbonyl vibrations of these molecules can serve as marker modes to identify and distinguish intermediates of the repair reaction.

  18. On the analysis of labyrinth seal flow induced vibration by Oscillating Fluid Mechanics Method

    NASA Astrophysics Data System (ADS)

    Chen, Zuoyi; Jing, Youhao; Sun, Yongzhong

    1994-12-01

    A numerical model and a solution method to analyze the labyrinth seal flow induced vibration by Oscillating Fluid Mechanics Method (OFMM) are presented in this paper, including the basic equations and solution procedure to determine the oscillating velocity, pressure and the dynamic characteristic coefficients of Labyrinth seal such as the stiffness coefficients and damping coefficients. The results show that this method has the advantages of both less time consuming and high accuracy. In addition, it can be applied to the field diagnosis of the vibration of the axis of turbomachinery system.

  19. The impact of the storm-induced SST cooling on hurricane intensity

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Zhang, D. L.

    2006-01-01

    The effects of storm-induced sea surface temperature (SST) cooling on hurricane intensity are investigated using a 5-day cloud-resolving simulation of Hurricane Bonnie (1998). Two sensitivity simulations are performed in which the storm-induced cooling is either ignored or shifted close to the modeled storm track. Results show marked sensitivity of the model-simulated storm intensity to the magnitude and relative position with respect to the hurricane track. It is shown that incorporation of the storm-induced cooling, with an average value of 1.3 degrees C, causes a 25-hPa weakening of the hurricane, which is about 20 hPa per 1 degrees C change in SST. Shifting the SST cooling close to the storm track generates the weakest storm, accounting for about 47% reduction in the storm intensity. It is found that the storm intensity changes are well correlated with the air-sea temperature difference. The results have important implications for the use of coupled hurricane-ocean models for numerical prediction of tropical cyclones.

  20. Does vibration counteract the static stretch-induced deficit on muscle force development?

    PubMed

    Fernandes, Igor Alexandre; Kawchuk, Gregory; Bhambhani, Yagesh; Gomes, Paulo Sergio Chagas

    2013-09-01

    To determine the residual acute vibration-stretching effect on preactivation levels, short-latency stretch reflex, and performance during execution of drop jumps. Repeated measures. Eleven male recreational athletes performed a set of three 45cm drop jumps before and immediately after a 30s static stretching exercise with and without simultaneously imposed muscle vibration (45Hz, 5mm). Drop jump height, ground reaction forces and electromyographic data including Vastus Lateralis onset/levels of preactivation and short-latency stretch reflex were recorded. No changes were induced on drop jump height. However, stretching-induced decrements on ground reaction force peak and time to peak as well as an increment in contact time followed a delay in short-latency stretch reflex onset and a reduced preactivation level of Vastus Lateralis. Otherwise, when vibration was simultaneously imposed, there was no evidence of changes in high-speed force production variables or electromyographic recordings. Mechanical vibration, when applied simultaneously to static-stretching routines, appeared to be effective to counteract decreased musculotendinous unit stiffness-induced high-speed force production deficit during jumping performance. Copyright © 2012. Published by Elsevier Ltd.

  1. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear.

    PubMed

    Uzer, Gunes; Pongkitwitoon, Suphannee; Ete Chan, M; Judex, Stefan

    2013-09-03

    Consistent across studies in humans, animals and cells, the application of vibrations can be anabolic and/or anti-catabolic to bone. The physical mechanisms modulating the vibration-induced response have not been identified. Recently, we developed an in vitro model in which candidate parameters including acceleration magnitude and fluid shear can be controlled independently during vibrations. Here, we hypothesized that vibration induced fluid shear does not modulate mesenchymal stem cell (MSC) proliferation and mineralization and that cell's sensitivity to vibrations can be promoted via actin stress fiber formation. Adipose derived human MSCs were subjected to vibration frequencies and acceleration magnitudes that induced fluid shear stress ranging from 0.04 Pa to 5 Pa. Vibrations were applied at magnitudes of 0.15 g, 1g, and 2g using frequencies of both 100 Hz and 30 Hz. After 14 d and under low fluid shear conditions associated with 100 Hz oscillations, mineralization was greater in all vibrated groups than in controls. Greater levels of fluid shear produced by 30 Hz vibrations enhanced mineralization only in the 2g group. Over 3d, vibrations led to the greatest increase in total cell number with the frequency/acceleration combination that induced the smallest level of fluid shear. Acute experiments showed that actin remodeling was necessary for early mechanical up-regulation of RUNX-2 mRNA levels. During osteogenic differentiation, mechanically induced up-regulation of actin remodeling genes including Wiskott-Aldrich syndrome (WAS) protein, a critical regulator of Arp2/3 complex, was related to the magnitude of the applied acceleration but not to fluid shear. These data demonstrate that fluid shear does not regulate vibration induced proliferation and mineralization and that cytoskeletal remodeling activity may play a role in MSC mechanosensitivity.

  2. Vibration-Induced Droplet Atomization --- A Theoretical Investigation.

    NASA Astrophysics Data System (ADS)

    James, Ashley; Smith, Marc K.; Glezer, Ari

    1997-11-01

    The atomization of a liquid droplet placed on a vibrating membrane starts with the development of Faraday free surface waves. As the excitation amplitude increases, the waves grow in amplitude and ultimately begin to eject smaller secondary droplets from the wave crests. The rate of droplet ejection can be large enough to completely drain the primary droplet, an event we call bursting. The evolution of the droplet ejection process depends on a coupled system dynamic between the droplet and the membrane. When droplets are ejected the resonant frequency of the system increases. This changes the acceleration felt by the droplet and, in turn, the rate of droplet ejection. Depending on the excitation frequency and amplitude, various types of bursting or droplet ejection processes may occur. A simple, single degree-of-freedom model of this coupled system is presented. The model is used to illustrate the effect of the excitation frequency and amplitude and the initial droplet size on the acceleration of the membrane and the droplet ejection rate. The results of the model will be compared to our experimental data on droplet ejection. Additional work is directed towards an understanding of the mechanism behind the droplet ejection process.

  3. Vibration-Induced Droplet Atomization --- An Experimental Investigation.

    NASA Astrophysics Data System (ADS)

    Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari

    1997-11-01

    The atomization of a liquid droplet placed on a vibrating membrane starts with the development of Faraday free surface waves. As the excitation amplitude increases, the waves grow in amplitude and ultimately begin to eject smaller secondary droplets from the wave crests. The rate of droplet ejection can be large enough to completely drain the primary droplet, an event we call bursting. The evolution of the droplet ejection process depends on a coupled system dynamic between the droplet and the membrane. When droplets are ejected the resonant frequency of the system increases. This changes the acceleration felt by the droplet and, in turn, the rate of droplet ejection. Depending on the excitation frequency and amplitude, various types of bursting or droplet ejection processes may occur. In the present experiments, the high acceleration needed to attain ejection (typically 300g) is achieved by driving a light-weight membrane near its resonant frequency (nominally 1000 Hz). The resonant characteristics and the acceleration during the ejection process for various droplet sizes and excitation amplitudes are investigated using a surface-mounted microfabricated accelerometer and a laboratory computer system.

  4. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    PubMed

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  5. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure.

    PubMed

    Soares de Lima Filho, Elton; Nemova, Galina; Loranger, Sébastien; Kashyap, Raman

    2013-10-21

    We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10⁻⁴ cm⁻¹ was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample's dimensions.

  6. Venus pancake dome formation: Morphologic effects of a cooling-induced variable viscosity during emplacement

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Zuber, M. T.

    1993-01-01

    The distinctive steep-sided 'pancake' domes discovered in the Magellan images of Venus have morphologies that suggest formation by a single continuous emplacement of a high viscosity magma. A resemblance of the venusian domes to much smaller terrestrial rhyolite and dacite volcanic domes has prompted some authors to suggest that the domes on Venus also have high silica compositions and thus, high viscosities. However, viscosity is a function of crystallinity as well as silica content in a magma, and thus increases as a result of magmatic cooling. To investigate the effect of a cooling-induced viscosity increase on dome morphology, we have modeled the domes as radial viscous gravity currents that cool during emplacement. Various aspects of the investigation are discussed.

  7. Verification of an empirical prediction method for railway induced vibrations by means of numerical simulations

    NASA Astrophysics Data System (ADS)

    Verbraken, H.; Lombaert, G.; Degrande, G.

    2011-04-01

    Vibrations induced by the passage of trains are a major environmental concern in urban areas. In practice, vibrations are often predicted using empirical methods such as the detailed vibration assessment procedure of the Federal Railroad Administration (FRA) of the U.S. Department of Transportation. This procedure allows predicting ground surface vibrations and re-radiated noise in buildings. Ground vibrations are calculated based on force densities, measured when a vehicle is running over a track, and line source transfer mobilities, measured on site to account for the effect of the local geology on wave propagation. Compared to parametric models, the advantage of this approach is that it inherently takes into account all important parameters. It can only be used, however, when an appropriate estimation of the force density is available. In this paper, analytical expressions are derived for the force density and the line source transfer mobility of the FRA procedure. The derivation of these expressions is verified using a coupled finite element-boundary element method.

  8. The efficacy of airflow and seat vibration on reducing visually induced motion sickness.

    PubMed

    D'Amour, Sarah; Bos, Jelte E; Keshavarz, Behrang

    2017-06-20

    Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable countermeasure is still missing. In the present study, the effect of airflow and seat vibration to alleviate VIMS was investigated. Eighty-two participants were randomly assigned to one of four groups (airflow, vibration, combined airflow and vibration, and control) and then exposed to a 15 min long video of a bicycle ride shot from first-person view. VIMS was measured using the Fast Motion Sickness Scale (FMS) and the Simulator Sickness Questionnaire (SSQ). Results showed that the exposure of airflow significantly reduced VIMS, whereas the presence of seat vibration, in contrast, did not have an impact on VIMS. Additionally, we found that females reported higher FMS scores than males, however, this sex difference was not found in the SSQ scores. Our findings demonstrate that airflow can be an effective and easy-to-apply technique to reduce VIMS in virtual environments and simulators, while vibration applied to the seat is not a successful method.

  9. Abnormal vibration induced illusion of movement in essential tremor: evidence for abnormal muscle spindle afferent function

    PubMed Central

    Frima, N; Grunewald, R

    2005-01-01

    Objectives: Vibration induced illusion of movement (VIIM) is abnormal in patients with idiopathic focal dystonia, an abnormality which corrects with fatigue of the vibrated muscle. Since dystonia and essential tremor sometimes coexist in families, we investigated the perception of VIIM and the effect of fatigue on VIIM in patients with essential tremor. Methods: VIIM in 18 patients with essential tremor was compared with VIIM in 18 healthy control participants before and after volitional fatigue of the vibrated muscles. Results: Vibration of the immobilised biceps produced a subnormal VIIM in patients with essential tremor (12.81° (SEM 2.15)) compared with healthy control subjects (28.55° (1.66)). The perception increased following volitional fatigue of the vibrated arm in patients with essential tremor (16.23° (2.50)) but not in healthy controls (27.55° (1.66)). No difference was observed in patients with alcohol or non-alcohol responsive tremor. Conclusions: The VIIM decreased with increasing age in healthy control subjects. Abnormal VIIM implies abnormal sensorimotor processing in patients with essential tremor, similar to that found in idiopathic focal dystonia, and the change of the perception with age could explain the age related onset of the disorder. PMID:15607995

  10. Vibration amplitude and induced temperature limitation of high power air-borne ultrasonic transducers.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2014-01-01

    The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer

    NASA Astrophysics Data System (ADS)

    Loh, Byoung-Gook; Hyun, Sinjae; Ro, Paul I.; Kleinstreuer, Clement

    2002-02-01

    Acoustic streaming induced by ultrasonic flexural vibrations and the associated convection enhancement are investigated. Acoustic streaming pattern, streaming velocity, and associated heat transfer characteristics are experimentally observed. Moreover, analytical analysis based on Nyborg's formulation is performed along with computational fluid dynamics (CFD) simulation using a numerical solver CFX 4.3. Two distinctive acoustic streaming patterns in half-wavelength of the flexural vibrations are observed, which agree well with the theory. However, acoustic streaming velocities obtained from CFD simulation, based on the incompressible flow assumption, exceed the theoretically estimated velocity by a factor ranging from 10 to 100, depending upon the location along the beam. Both CFD simulation and analytical analysis reveal that the acoustic streaming velocity is proportional to the square of the vibration amplitude and the wavelength of the vibrating beam that decreases with the excitation frequency. It is observed that the streaming velocity decreases with the excitation frequency. Also, with an open-ended channel, a substantial increase in streaming velocity is observed from CFD simulations. Using acoustic streaming, a temperature drop of 40 °C with a vibration amplitude of 25 μm at 28.4 kHz is experimentally achieved.

  12. Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer.

    PubMed

    Loh, Byoung-Gook; Hyun, Sinjae; Ro, Paul I; Kleinstreuer, Clement

    2002-02-01

    Acoustic streaming induced by ultrasonic flexural vibrations and the associated convection enhancement are investigated. Acoustic streaming pattern, streaming velocity, and associated heat transfer characteristics are experimentally observed. Moreover, analytical analysis based on Nyborg's formulation is performed along with computational fluid dynamics (CFD) simulation using a numerical solver CFX 4.3. Two distinctive acoustic streaming patterns in half-wavelength of the flexural vibrations are observed, which agree well with the theory. However, acoustic streaming velocities obtained from CFD simulation, based on the incompressible flow assumption, exceed the theoretically estimated velocity by a factor ranging from 10 to 100, depending upon the location along the beam. Both CFD simulation and analytical analysis reveal that the acoustic streaming velocity is proportional to the square of the vibration amplitude and the wavelength of the vibrating beam that decreases with the excitation frequency. It is observed that the streaming velocity decreases with the excitation frequency. Also, with an open-ended channel, a substantial increase in streaming velocity is observed from CFD simulations. Using acoustic streaming, a temperature drop of 40 degrees C with a vibration amplitude of 25 microm at 28.4 kHz is experimentally achieved.

  13. Ice water submersion for rapid cooling in severe drug-induced hyperthermia

    PubMed Central

    Laskowski, Larissa K.; Landry, Adaira; Vassallo, Susi U.; Hoffman, Robert S.

    2015-01-01

    Context The optimal method of cooling hyperthermic patients is controversial. Although controlled data support ice water submersion, many authorities recommend a mist and fan technique. We report two patients with drug-induced hyperthermia, to demonstrate the rapid cooing rates of ice water submersion. Case details Case 1. A 27-year-old man presented with a sympathomimetic toxic syndrome and a core temperature of 41.4°C after ingesting 4-fluoroamphetamine. He was submerged in ice water and his core temperature fell to 38°C within 18 minutes (a mean cooling rate of 0.18°C/min). His vital signs stabilized, his mental status improved and he left on hospital day 2. Case 2. A 32-year-old man with a sympathomimetic toxic syndrome after cocaine use was transported in a body bag and arrived with a core temperature of 44.4°C. He was intubated, sedated with IV benzodiazepines, and submerged in ice water. After 20 minutes his temperature fell to 38.8°C (a cooling rate of 0.28°C/min). He was extubated the following day, and discharged on day 10. Discussion In these two cases, cooling rates exceeded those reported for mist and fan technique. Since the priority in hyperthermia is rapid cooling, clinical data need to be collected to reaffirm the optimal approach. PMID:25695144

  14. Enhanced photothermal cooling of nanowires

    NASA Astrophysics Data System (ADS)

    Guccione, G.; Hosseini, M.; Mirzaei, A.; Slatyer, H. J.; Buchler, B. C.; Lam, P. K.

    2017-09-01

    We investigate the optomechanical interaction between light and metallic nanowires through the action of bolometric forces. We show that the response time of the photothermal forces induced on the nanowire is fast and the strength of the interaction can overcome the radiation pressure force. Furthermore, we suggest the photothermal forces can be enhanced by surface plasmon excitation to cool the sub-megahertz vibrational modes of the nanowires close to its quantum limit.

  15. Coupling thin-layer chromatography with vibrational cooling matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the analysis of ganglioside mixtures.

    PubMed

    Ivleva, Vera B; Elkin, Yuri N; Budnik, Bogdan A; Moyer, Susanne C; O'Connor, Peter B; Costello, Catherine E

    2004-11-01

    Thin-layer chromatography (TLC), which is widely used for separation of glycolipids, oligosaccharides, lipids, and compounds of environmental and pharmaceutical interest, can be readily coupled to matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometers, but this arrangement usually compromises mass spectral resolution due to the irregularity of the TLC surface. However, TLC can be coupled to an external ion source MALDI-Fourier transform (FT) MS instrument without compromising mass accuracy and resolution of the spectra. Furthermore, when the FTMS has a vibrationally cooled MALDI ion source, fragile glycolipids can be desorbed from TLC plates without fragmentation, even to the point that desorption of intact molecules from "hot"matrixes such as alpha-cyano-4-hydroxycinnamic acid is possible. In this work, whole brain gangliosides are separated using TLC; the TLC plates are attached directly to the MALDI target, where the gangliosides are desorbed, ionized, and detected in the FTMS with >70 000 resolving power.

  16. Sensor-controlled scalp cooling to prevent chemotherapy-induced alopecia in female cancer patients

    PubMed Central

    Fehr, M.K.; Welter, J.; Sell, W.; Jung, R.; Felberbaum, R.

    2016-01-01

    Background Scalp cooling has been used since the 1970s to prevent chemotherapy-induced alopecia, one of the most common and psychologically troubling side effects of chemotherapy. Currently available scalp cooling systems demonstrate varying results in terms of effectiveness and tolerability. Methods For the present prospective study, 55 women receiving neoadjuvant, adjuvant, or palliative chemotherapy were enrolled. The aim was to assess the effectiveness of a sensor-controlled scalp cooling system (DigniCap: Sysmex Europe GmbH, Norderstedt, Germany) to prevent chemotherapy-induced alopecia in breast or gynecologic cancer patients receiving 1 of 7 regimens. Clinical assessments, satisfaction questionnaires, and alopecia evaluations [World Health Organization (who) grading for toxicity] were completed at baseline, at each cycle, and at completion of chemotherapy. Results Of the 55 patients, 78% underwent scalp cooling until completion of chemotherapy. In multivariate analysis, younger women and those receiving paclitaxel weekly or paclitaxel–carboplatin experienced less alopecia. The compound successful outcome (“no head covering” plus “who grade 0/1”) was observed in all patients 50 years of age and younger receiving 4 cycles of docetaxel–cyclophosphamide or 6 cycles of paclitaxel–carboplatin. Conversely, alopecia was experienced by all women receiving triplet polychemotherapy (6 cycles of docetaxel–doxorubicin–cyclophosphamide). For women receiving sequential polychemotherapy regimens (3 cycles of fluorouracil–epirubicin–cyclophosphamide followed by 3 cycles of docetaxel or 4 cycles of doxorubicin–cyclophosphamide followed by 4 cycles of docetaxel), the subgroup 50 years of age and younger experienced a 43% success rate compared with a 10% rate for the subgroup pf older women receiving the same regimens. Conclusions The ability of scalp cooling to prevent chemotherapy-induced alopecia varies with the chemotherapy regimen and the age of the

  17. Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers

    SciTech Connect

    Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

    2004-03-26

    OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by

  18. Flow-Induced Vibrations of Prismatic Bodies and Grids of Prisms

    NASA Astrophysics Data System (ADS)

    Naudascher, E.; Wang, Y.

    1993-05-01

    Flow-induced transverse, torsional, streamwise, and plunging vibrations of prismatic bodies and grids composed of prisms are reviewed for a wide range of cross-sectional shapes and angles of incidence. For flow at zero incidence, rectangular prisms are susceptible to three kinds of vortex-induced excitation, in addition to galloping and wake breathing, depending on their chord-to-thickness ratio. These include leading-edge vortex shedding (LEVS), impinging leading-edge vortices (ILEV), and trailing-edge vortex shedding (TEVS). A prism with elongated cross-section typical of elements of a trashrack or a headlight screen, which is free to vibrate in the transverse direction, may be excited by different harmonics of ILEV for incidence angles up to 13° and by alternate-edge vortex shedding (AEVS) for larger angles. Excitation by ILEV diminishes drastically with increases of the degree of turbulence in the approach flow. If a rectangular prism of elongated section has a degree of freedom in the longitudinal direction, on the other hand, it may undergo violent plunging vibrations, excited by AEVS, for incidence angles of about 13° and larger. Rounding the leading and trailing edges amplifies this excitation. As demonstrated by a practical example, serious vibrations can be avoided if the grid or trashrack is stiff enough, so that the maximum reduced velocity stays below the critical values marking the onsets of all the possible sources of excitation.

  19. Concorde noise-induced building vibrations, Sully Plantation - Report no. 2, Chantilly, Virginia

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Noise-induced building vibrations associated with Concorde operations were studied. The approach is to record the levels of induced vibrations and associated indoor/outdoor noise levels in selected homes, historic and other buildings near Dulles International Airport. Representative data are presented which were recorded at Sully Plantation, Chantilly, Virginia during the periods of May 20 through May 28, 1976, and June 14 through June 17, 1976. Recorded data provide relationships between the vibration levels of windows, walls, floors, and the noise associated with Concorde operations, other aircraft, and nonaircraft events. The results presented are drawn from the combined May-June data base which is considerably larger than the May data base covered. The levels of window, wall and floor vibratory response resulting from Concorde operations are higher than the vibratory levels associated with conventional aircraft. Furthermore, the vibratory responses of the windows are considerably higher than those of the walls and floors. The window response is higher for aircraft than recorded nonaircraft events and exhibits a linear response relationship with the overall sound pressure level. For a given sound pressure level, the Concorde may cause more vibration than a conventional aircraft due to spectral or other differences. However, the responses associated with Concorde appear to be much more dependent upon sound pressure level than spectral or other characteristics of the noise.

  20. Low frequency vibration induced streaming in a Hele-Shaw cell

    SciTech Connect

    Costalonga, M.; Brunet, P.; Peerhossaini, H.

    2015-01-15

    When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenon can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.

  1. Cooling and Laser-Induced Fluorescence of Electronically-Excited He2 in a Supersonic Microcavity Plasma Jet

    NASA Astrophysics Data System (ADS)

    Su, Rui; Mironov, Andrey; Houlahan, Thomas, Jr.; Eden, J. Gary; LaboratoryOptical Physics; Engineering Team

    2016-09-01

    Laser-induced fluorescence (LIF) resulting from transitions between different electronic states of helium dimers generated within a microcavity plasma jet was studied with rotational resolution. In particular, the d3Σu+ , e3Πg and f3Σu+ states, all having electronic energies above 24 eV, are populated by a microplasma in 4 bar of helium gas and rotationally cooled through supersonic expansion. Analysis of two dimensional maps (spectrograms) of dimer emission spectra as a function of distance from the nozzle orifice indicates collisional coupling during the expansion between the lowest rotational levels of the e3Πg , f3Σu+ states and high rotational levels (around N=11) of the d3Σu+ state (all of which are in the v = 0 vibrational state). In an attempt to verify the coupling, a scanning dye laser (centered near 596 nm) pumps the b3Πg -> f3Σu+ transition of the molecule several hundred micrometers downstream of the nozzle. As a result, the emission intensities of relevant rotational lines are observed to be enhanced. This research shows the potential of utilizing microcavity plasma jets as a tool to study and manipulate the collisional dynamics of highly-excited diatomic molecules.

  2. Flow-induced vibration testing of replacement thermowell designs

    NASA Astrophysics Data System (ADS)

    Haslinger, K. H.

    2003-09-01

    Inconel 600 Primary Water Stress Corrosion Cracking (PWSCC) in Nuclear Pressurized Water Reactors (PWRs) has necessitated the repair/replacement of various small bore nozzles. These repairs/replacements must be designed to avoid unwanted vibrations. So, to this end, new RTD-Thermowell-Nozzle replacement designs were developed and subjected to flow testing over a velocity range from 9.14 to 33.53m/s (30-110ft/s), and temperatures ranging from 121°C to 316°C (250-600°F). The replacement nozzles are welded on the pipe OD, rather than on the pipe ID. A split, tapered ferrule is used to support the nozzle tip inside the pipe bore. This maintains high thermowell tip-resonance frequencies with the objective of avoiding self-excitation from vortex shedding that is believed to have caused failures in an earlier design during initial, precritical plant startup testing. The flow testing was complicated by the small size of the thermowell tips (5.08mm or 0.2in ID), which necessitated use of a complement of low temperature and high temperature instrumentation. Since the high temperature device had an internal resonance (750Hz) within the frequency range of interest (0-2500Hz), adequate sensor correlations had to be derived from low temperature tests. The current nozzle/thermowell design was tested concurrently with two slight variations of the replacement design. The acceleration signals were acquired during incremental and continuous flow sweeps, nominally at 5kHz sampling rates and for time domain processing as high as 25kHz. Whereas vortex-shedding frequencies were predicted to prevail between 400 and 1500Hz, no such response was observed at these frequencies. Rather, the thermowell tips responded due to turbulent buffeting with a peak response that was related directly to flow velocity. Lift direction response was always larger than drag direction response. The thermowell tips also responded at their natural tip frequencies in a narrow band random fashion. At the higher

  3. Increased efficiency of rf-induced evaporative cooling by utilizing gravity

    NASA Astrophysics Data System (ADS)

    Klinner, Julian; Wolke, Matthias; Hemmerich, Andreas

    2010-04-01

    We report on an efficient rf-induced forced evaporative cooling of an ensemble of Rb87 atoms in state |F=2,mF=2> magnetically trapped in a quadrupole-Ioffe configuration trap. The cigar-shaped trap is oriented with its weak confining axis along the direction of gravity leading to, first, a significant separation of the trapping positions for low-field-seeking atoms with different mF value and, second, a reduced resonance volume for rf-induced evaporation confined to a small region around the lower tip of the cigar-shaped ensemble. This results in an enhancement of the evaporation efficiency α≡dlnT/(dlnN) due to either reduced or completely vanishing scattering events between cooled and evaporated atoms. We present data illustrating this effect.

  4. Soft Computing Approach to Evaluate and Predict Blast-Induced Ground Vibration

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2010-05-01

    Drilling and blasting is still one of the major economical operations to excavate a rock mass. The consumption of explosive has been increased many folds in recent years. These explosives are mainly used for the exploitation of minerals in mining industry or the removal of undesirable rockmass for community development. The amount of chemical energy converted into mechanical energy to fragment and displace the rockmass is minimal. Only 20 to 30% of this explosive energy is utilized for the actual fragmentation and displacement of rockmass and rest of the energy is wasted in undesirable ill effects, like, ground vibration, air over pressure, fly rock, back break, noise, etc. Ground vibration induced due to blasting is very crucial and critical as compared to other ill effects due to involvement of public residing in the close vicinity of mining sites, regulating and ground vibration standards setting agencies together with mine owners and environmentalists and ecologists. Also, with the emphasis shifting towards eco-friendly, sustainable and geo-environmental activities, the field of ground vibration have now become an important and imperative parameter for safe and smooth running of any mining and civil project. The ground vibration is a wave motion, spreading outward from the blast like ripples spreading outwards due to impact of a stone dropped into a pond of water. As the vibration passes through the surface structures, it induces vibrations in those structures also. Sometimes, due to high ground vibration level, dwellings may get damaged and there is always confrontation between mine management and the people residing in the surroundings of the mine area. There is number of vibration predictors available suggested by different researchers. All the predictors estimate the PPV based on mainly two parameters (maximum charge used per delay and distance between blast face to monitoring point). However, few predictors considered attenuation/damping factor too. For

  5. Scalp cooling by cold air for the prevention of chemotherapy-induced alopecia.

    PubMed

    Hillen, H F; Breed, W P; Botman, C J

    1990-12-01

    A new system is described for cooling the scalp with cold air in order to prevent chemotherapy-induced alopecia. Compressed air was cooled by means of a vortex tube built into a hair-drier cap. This system reduced the blood flow in the scalp to 35%, the surface temperature to 14.2 degrees C and the intradermal temperature at hair follicle level to 29.2 degrees C. The low temperature could be kept constant for at least one hour of cooling. By means of comparison, with cryogel packs the lowest epidermal temperature attained was 17.9 degrees C; moreover, once this was reached after 10 min, it rapidly rose again to 20.6 degrees C after 40 min. Forty-eight patients receiving cytostatic treatment for breast cancer were subjected to scalp cooling with the cold air system, starting 15 min before chemotherapy and lasting for 90 min. With the system set at an air temperature of -12 degrees C, the treatment was well tolerated. Of the 13 patients treated with 40 mg/m2 doxorubicin in combination with other cytostatics, 6 had hair loss less than WHO grade 3, in contrast to 1 of 4 patients given cryogel packs. However, patients treated with epirubicin at 75 mg/m2 all showed grade 3 hair loss in spite of air cooling. In view of the possibility of achieving and maintaining low scalp temperatures, the cold air system is to be preferred to cryogel packs. Whether better clinical results may be obtained with cooling for longer periods and/or to lower temperatures remains to be determined.

  6. Noise-induced hearing loss and combined noise and vibration exposure.

    PubMed

    Turcot, A; Girard, S A; Courteau, M; Baril, J; Larocque, R

    2015-04-01

    While there is a wide body of literature addressing noise-induced hearing loss (NIHL) and hand-arm vibration syndrome (HAVS) independently, relatively few studies have considered the combined effects of noise and vibration. These studies have suggested an increased risk of NIHL in workers with vibration white finger (VWF), though the relationship remains poorly understood. To determine whether hearing impairment is worse in noise-exposed workers with VWF than in workers with similar noise exposures but without VWF. The Quebec National Institute of Public Health audiometric database was used in conjunction with work-related accident and occupational diseases data from the Quebec workers' compensation board to analyse differences in audiometry results between vibration-exposed workers in the mining and forestry industries and the overall source population, and between mining and forestry workers with documented VWF and those without VWF. The International Organization for Standardization (ISO) 7029 standards were used to calculate hearing loss not attributable to age. 15751 vibration-exposed workers were identified in an overall source population of 59339. Workers with VWF (n = 96) had significantly worse hearing at every frequency studied (500, 1000, 2000 4000 Hz) compared with other mining and forestry workers without VWF. This study confirms previous findings of greater hearing loss at higher frequencies in workers with VWF, but also found a significant difference in hearing loss at low frequencies. It therefore supports the association between combined noise and hand-arm vibration (HAV) exposure and NIHL. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Acute exposure to vibration is an apoptosis-inducing stimulus in the vocal fold epithelium.

    PubMed

    Novaleski, Carolyn K; Kimball, Emily E; Mizuta, Masanobu; Rousseau, Bernard

    2016-10-01

    Clinical voice disorders pose significant communication-related challenges to patients. The purpose of this study was to quantify the rate of apoptosis and tumor necrosis factor-alpha (TNF-α) signaling in vocal fold epithelial cells in response to increasing time-doses and cycle-doses of vibration. 20 New Zealand white breeder rabbits were randomized to three groups of time-doses of vibration exposure (30, 60, 120min) or a control group (120min of vocal fold adduction and abduction). Estimated cycle-doses of vocal fold vibration were extrapolated based on mean fundamental frequency. Laryngeal tissue specimens were evaluated for apoptosis and gene transcript and protein levels of TNF-α. Results revealed that terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was significantly higher after 120min of vibration compared to the control. Transmission electron microscopy (TEM) revealed no significant effect of time-dose on the mean area of epithelial cell nuclei. Extrapolated cycle-doses of vibration exposure were closely related to experimental time-dose conditions, although no significant correlations were observed with TUNEL staining or mean area of epithelial cell nuclei. TUNEL staining was positively correlated with TNF-α protein expression. Our findings suggest that apoptosis can be induced in the vocal fold epithelium after 120min of modal intensity phonation. In contrast, shorter durations of vibration exposure do not result in apoptosis signaling. However, morphological features of apoptosis are not observed using TEM. Future studies are necessary to examine the contribution of abnormal apoptosis to vocal fold diseases.

  8. Impact of scalp cooling on chemotherapy-induced alopecia, wig use and hair growth of patients with cancer.

    PubMed

    van den Hurk, C J G; van den Akker-van Marle, M E; Breed, W P M; van de Poll-Franse, L V; Nortier, J W R; Coebergh, J W W

    2013-10-01

    Cytotoxic therapy for patients with cancer frequently induces reversible, but long-lasting alopecia which might be prevented by scalp cooling. This study evaluates the effectiveness of scalp cooling with respect to the severity of chemotherapy-induced alopecia (CIA) and the purchase and use of wigs and head covers. In this observational study, scalp-cooled patients (n = 160) were compared with non scalp-cooled patients (n = 86) with several types of cancer. Patients were enrolled in 15, mostly general hospitals prior to taxane and/or anthracycline-based chemotherapy. Patients completed four questionnaires between the start and one year after the last chemotherapy. Severity of CIA, and purchasing and actually wearing wigs and head covers were significantly lower among scalp-cooled than non scalp-cooled patients. Overall, scalp cooling reduced the use of wigs and head covers by 40%. Among 84 scalp-cooled patients who purchased a wig (53%), only 52 patients actually wore it (62%), and they just wore it intensively (86% daily) for less than six months (80%). Especially young patients camouflaged CIA with a head cover instead of a wig. The relatively long duration of CIA, the wish of many patients to camouflage or rather prevent it and the 40% reduction for head covering by scalp cooling, makes it a worthwhile supportive intervention. However, (cost-) effectiveness can be improved. Many scalp-cooled patients purchased a wig unnecessarily. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Tracking Ultrafast Vibrational Cooling during Excited-State Proton Transfer Reaction with Anti-Stokes and Stokes Femtosecond Stimulated Raman Spectroscopy.

    PubMed

    Liu, Weimin; Tang, Longteng; Oscar, Breland G; Wang, Yanli; Chen, Cheng; Fang, Chong

    2017-03-02

    Energy dissipation following photoexcitation is foundational to photophysics and chemistry. Consequently, understanding such processes on molecular time scales holds paramount importance. Femtosecond stimulated Raman spectroscopy (FSRS) has been used to study the molecular structure-function relationships but usually on the Stokes side. Here, we perform both Stokes and anti-Stokes FSRS to track energy dissipation and excited-state proton transfer (ESPT) for the photoacid pyranine in aqueous solution. We reveal biphasic vibrational cooling on fs-ps time scales during ESPT. Characteristic low-frequency motions (<800 cm(-1)) exhibit initial energy dissipation (∼2 ps) that correlates with functional events of forming contact ion pairs via H-bonds between photoacid and water, which lengthens to ∼9 ps in methanol where ESPT is inhibited. The interplay between photoinduced dissipative and reactive channels is implied. Thermal cooling to bulk solvent occurs on the ∼50 ps time scale. These results demonstrate the combined Stokes and anti-Stokes FSRS as a powerful toolset to elucidate structural dynamics.

  10. Hybrid predictions of railway induced ground vibration using a combination of experimental measurements and numerical modelling

    NASA Astrophysics Data System (ADS)

    Kuo, K. A.; Verbraken, H.; Degrande, G.; Lombaert, G.

    2016-07-01

    Along with the rapid expansion of urban rail networks comes the need for accurate predictions of railway induced vibration levels at grade and in buildings. Current computational methods for making predictions of railway induced ground vibration rely on simplifying modelling assumptions and require detailed parameter inputs, which lead to high levels of uncertainty. It is possible to mitigate against these issues using a combination of field measurements and state-of-the-art numerical methods, known as a hybrid model. In this paper, two hybrid models are developed, based on the use of separate source and propagation terms that are quantified using in situ measurements or modelling results. These models are implemented using term definitions proposed by the Federal Railroad Administration and assessed using the specific illustration of a surface railway. It is shown that the limitations of numerical and empirical methods can be addressed in a hybrid procedure without compromising prediction accuracy.

  11. Determination of the effects of wind-induced vibration on cylindrical beams

    NASA Technical Reports Server (NTRS)

    Artusa, E. A.

    1991-01-01

    The objective of the analysis was to determine the critical length to diameter ratio (L/Do) of a hollow, cylindrical beam subjected to wind-induced vibration. The sizes of beams ranged from 4 to 24 inches and were composed of ASTM grade A and grade B and American Petroleum Institute grade X42 steels. Calculations used maximum steady-state wind speeds of 130 mph associated with hurricane conditions possible at the Kennedy Space Center. The study examined the effect that different end support and load conditions have on the natural frequencies of the beams. Finally, methods of changing the frequency of the wind-induced vibration were examined. The conclusions drawn were that the greatest possible L/Do is achieved using welded supports and limiting the maximum applied axial and bending loads to less than 50 percent.

  12. Wind-induced vibration of a brace on a 530 foot high chimney

    SciTech Connect

    Hubalik, T.M.

    1997-09-01

    A double-angle diagonal brace was used to support an exterior trolley beam on the Unit 3 chimney at Fayette Power Project (FPP). The brace was located approximately 460 feet above grade. Shortly after installation, severe wind-induced vibration of the brace was observed. The member developed cracks that led to failure of the brace. This paper describes the assessment of the phenomenon and presents the innovative repair details that were evaluated. Also, guidelines are presented to avoid this phenomenon.

  13. Long-term daily vibration exposure alters current perception threshold (CPT) sensitivity and myelinated axons in a rat-tail model of vibration-induced injury.

    PubMed

    Krajnak, Kristine; Raju, Sandya G; Miller, G Roger; Johnson, Claud; Waugh, Stacey; Kashon, Michael L; Riley, Danny A

    2016-01-01

    Repeated exposure to hand-transmitted vibration through the use of powered hand tools may result in pain and progressive reductions in tactile sensitivity. The goal of the present study was to use an established animal model of vibration-induced injury to characterize changes in sensory nerve function and cellular mechanisms associated with these alterations. Sensory nerve function was assessed weekly using the current perception threshold test and tail-flick analgesia test in male Sprague-Dawley rats exposed to 28 d of tail vibration. After 28 d of exposure, Aβ fiber sensitivity was reduced. This reduction in sensitivity was partly attributed to structural disruption of myelin. In addition, the decrease in sensitivity was also associated with a reduction in myelin basic protein and 2',3'- cyclic nucleotide phosphodiasterase (CNPase) staining in tail nerves, and an increase in circulating calcitonin gene-related peptide (CGRP) concentrations. Changes in Aβ fiber sensitivity and CGRP concentrations may serve as early markers of vibration-induced injury in peripheral nerves. It is conceivable that these markers may be utilized to monitor sensorineural alterations in workers exposed to vibration to potentially prevent additional injury.

  14. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans.

    PubMed

    Courtine, Grégoire; De Nunzio, Alessandro Marco; Schmid, Micaela; Beretta, Maria Vittoria; Schieppati, Marco

    2007-01-01

    We performed a whole-body mapping study of the effect of unilateral muscle vibration, eliciting spindle Ia firing, on the control of standing and walking in humans. During quiet stance, vibration applied to various muscles of the trunk-neck system and of the lower limb elicited a significant tilt in whole body postural orientation. The direction of vibration-induced postural tilt was consistent with a response compensatory for the illusory lengthening of the stimulated muscles. During walking, trunk-neck muscle vibration induced ample deviations of the locomotor trajectory toward the side opposite to the stimulation site. In contrast, no significant modifications of the locomotor trajectory could be detected when vibrating various muscles of the lower as well as upper limb. The absence of correlation between the effects of muscle vibration during walking and standing dismisses the possibility that vibration-induced postural changes can account for the observed deviations of the locomotor trajectory during walking. We conclude that the dissimilar effects of trunk-neck and lower limb muscle vibration during walking and standing reflect a general sensory-motor plan, whereby muscle Ia input is processed according to both the performed task and the body segment from which the sensory inflow arises.

  15. Tactile Perception and Friction-Induced Vibrations: Discrimination of Similarly Patterned Wood-Like Surfaces.

    PubMed

    Dacleu Ndengue, Jessica; Cesini, B Ilaria; Faucheu, C Jenny; Chatelet, D Eric; Zahouani, E Hassan; Delafosse, F David; Massi, G Francesco

    2016-12-22

    The tactile perception of a surface texture is mediated by factors such as material, topography and vibrations induced by the sliding contact. In this paper, sensory characterizations are developed together with topographical and tribo-tactile characterizations to relate perceived features with objective measurements of tribological and dynamic signals. Two sets of surface samples are used in this study: the first set is made of a commercial floor covering tiles that aim at counter-typing natural wood flooring, with both a visual and a tactile texture mimicking wood. A second set is custom-made by replicating the first set using a plain purple polyurethane resin. The comparison between tribo-tactile signals and sensory analysis allowed the identification of objective indices for textures with slight topographical differences. Even though the topography of the replicated samples is the same as their corresponding commercial products, the fact that the material is different, induces differences in the contact and vibrational parameters. This in turn modifies the discrimination performances during the sensory experiment. Tactile characteristics collected during sensory procedures are found to be in agreement with objective indices such as friction coefficients and induced vibrations.

  16. System for measurement of small vibrations at material interfaces induced by electrostrictive forces

    SciTech Connect

    Ali, J.S.; Joines, W.T.

    1985-10-01

    The mechanisms of interaction of ELF and ELF-modulated RF fields with biological systems is presently an active area of research. Some models propose that field-induced forces may influence certain observed biological effects such as RF hearing and calcium ion efflux. To investigate the validity of the field-induced force model for the calcium-ion efflux effect, a system is needed which is capable of exposing samples to ELF fields or to ELF-modulated RF fields. At the same time the induced vibration caused by the forces of electrostriction must be monitored preferably by a noncontacting method. A microwave phase-sensitive receiver was designed to sense the small vibrations. Limitations on the receiver sensitivity imposed by phase noise is discussed. Phase noise measurement systems were designed and used to characterize the key receiver components. A limiting amplifier in the IF section of the receiver eliminates the need for knowledge of the reflection coefficient of the object of interest for quantitative vibration measurements.

  17. Non-linear system identification in flow-induced vibration

    SciTech Connect

    Spanos, P.D.; Zeldin, B.A.; Lu, R.

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  18. Radar detection of pedestrian-induced vibrations on Michelangelo's David.

    PubMed

    Pieraccini, Massimiliano; Betti, Michele; Forcellini, Davide; Dei, Devis; Papi, Federico; Bartoli, Gianni; Facchini, Luca; Corazzi, Riccardo; Kovacevic, Vladimir Cerisano

    2017-01-01

    This paper summarizes the results of a two-day dynamic monitoring of Michelangelo's David subject to environmental loads (city traffic and pedestrian loading induced by tourists visiting the Accademia Gallery). The monitoring was carried out by a no-contact technique using an interferometric radar, whose effectiveness in measuring the resonant frequencies of structures and historic monuments has proved over the last years through numerous monitoring activities. Owing to the dynamic behavior of the measurement system (radar and tripod), an accelerometer has been installed on the radar head to filter out the movement component of the measuring instrument from the measurement of the David's displacement. Measurements were carried out in the presence and absence of visitors, to assess their influence on the dynamic behavior of the statue. A numerical model of the statue was employed to evaluate the experimental results.

  19. Ameliorative effect of Phytocee™ Cool against carbon tetrachloride-induced oxidative stress.

    PubMed

    Joseph, Joshua Allan; Ayyappan, Usha Parackal Thachappully; Sasidharan, Suja Rani; Mutyala, Sridhar; Goudar, Krishnagouda Shankargouda; Agarwal, Amit

    2014-10-01

    Antioxidants from natural sources have a major role in reversing the effects of oxidative stress and promoting health, growth and productivity in animals. This study was undertaken to investigate the possible antioxidant activity and hepatoprotective effects of Phytocee™ Cool on carbon tetrachloride (CCl4) induced oxidative stress and liver damage in rats. Animals were pretreated with Phytocee™ Cool for 10 days and were challenged with CCl4 (1:1 v/v) in olive oil on the 10(th) day. After 24 h of CCl4 administration blood was collected and markers of hepatocellular damage aspartate aminotransferase (AST), alanine aminotransferase (ALT) were evaluated. Rats were sacrificed and oxidative stress in liver was estimated using malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase. CCl4 caused a significant increase in serum AST, ALT, hepatic MDA and GSH levels, whereas the SOD and catalase activities were decreased. Phytocee™ Cool pretreatment attenuated the MDA, AST ALT levels and increased the activities of SOD and catalase. Phytocee™ Cool demonstrated antioxidant potential and hepatoprotective effects and plausibly be used in the amelioration of oxidative stress.

  20. Ameliorative effect of Phytocee™ Cool against carbon tetrachloride-induced oxidative stress

    PubMed Central

    Joseph, Joshua Allan; Ayyappan, Usha Parackal Thachappully; Sasidharan, Suja Rani; Mutyala, Sridhar; Goudar, Krishnagouda Shankargouda; Agarwal, Amit

    2014-01-01

    Background: Antioxidants from natural sources have a major role in reversing the effects of oxidative stress and promoting health, growth and productivity in animals. Objective: This study was undertaken to investigate the possible antioxidant activity and hepatoprotective effects of Phytocee™ Cool on carbon tetrachloride (CCl4) induced oxidative stress and liver damage in rats. Materials and Methods: Animals were pretreated with Phytocee™ Cool for 10 days and were challenged with CCl4 (1:1 v/v) in olive oil on the 10th day. After 24 h of CCl4 administration blood was collected and markers of hepatocellular damage aspartate aminotransferase (AST), alanine aminotransferase (ALT) were evaluated. Rats were sacrificed and oxidative stress in liver was estimated using malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase. Results: CCl4 caused a significant increase in serum AST, ALT, hepatic MDA and GSH levels, whereas the SOD and catalase activities were decreased. Phytocee™ Cool pretreatment attenuated the MDA, AST ALT levels and increased the activities of SOD and catalase. Conclusion: Phytocee™ Cool demonstrated antioxidant potential and hepatoprotective effects and plausibly be used in the amelioration of oxidative stress. PMID:25276070

  1. Response of upper ocean and impact of barrier layer on Sidr cyclone induced sea surface cooling

    NASA Astrophysics Data System (ADS)

    Vissa, Naresh Krishna; Satyanarayana, A. N. V.; Kumar, B. Prasad

    2013-09-01

    In the present study an attempt has been made to investigate the impact of salinity stratification on the SST during the tropical cyclone (TC) passage. In this context, a severe post monsoon cyclone, Sidr, (Category 4) that developed over the south-eastern Bay of Bengal (BoB) during 11-16 November, 2007 was chosen as a case study. Pre-existence of a thick barrier layer (BL), temperature inversions and a higher effective oceanic layer for cyclogenesis (EOLC) were noticed along the path of the Sidr cyclone. The analysis of available Argo floats along the Sidr cyclone track also revealed less cooling during as well as after its passage as was reported from satellite derived SST. The role of BL on Sidr induced sea surface cooling was investigated using a diagnostic mixed layer model. Model results also depict the reduced sea surface cooling during the passage of Sidr. This is attributed to the presence of BL which results in the inhibition of the entrainment of cool thermocline water into the shallow mixed layer. Climatological as well as in situ observations of tropical cyclone heat potential (TCHP) and EOLC shows that the Sidr cyclone propagated towards the regions of higher EOLC.

  2. Active control of panel vibrations induced by boundary-layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1991-01-01

    Some problems in active control of panel vibration excited by a boundary layer flow over a flat plate are studied. In the first phase of the study, the optimal control problem of vibrating elastic panel induced by a fluid dynamical loading was studied. For a simply supported rectangular plate, the vibration control problem can be analyzed by a modal analysis. The control objective is to minimize the total cost functional, which is the sum of a vibrational energy and the control cost. By means of the modal expansion, the dynamical equation for the plate and the cost functional are reduced to a system of ordinary differential equations and the cost functions for the modes. For the linear elastic plate, the modes become uncoupled. The control of each modal amplitude reduces to the so-called linear regulator problem in control theory. Such problems can then be solved by the method of adjoint state. The optimality system of equations was solved numerically by a shooting method. The results are summarized.

  3. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model.

    PubMed

    Smith, Simeon L; Thomson, Scott L

    2013-04-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully-coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.

  4. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model

    NASA Astrophysics Data System (ADS)

    Smith, Simeon L.; Thomson, Scott L.

    2013-04-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed.

  5. Vortex-induced vibrations of a flexible cylinder at large inclination angle.

    PubMed

    Bourguet, Rémi; Triantafyllou, Michael S

    2015-01-28

    The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow-body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity.

  6. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model

    PubMed Central

    Smith, Simeon L.; Thomson, Scott L.

    2012-01-01

    The effect of subglottic stenosis on vocal fold vibration is investigated. An idealized stenosis is defined, parameterized, and incorporated into a two-dimensional, fully-coupled finite element model of the vocal folds and laryngeal airway. Flow-induced responses of the vocal fold model to varying severities of stenosis are compared. The model vibration was not appreciably affected by stenosis severities of up to 60% occlusion. Model vibration was altered by stenosis severities of 90% or greater, evidenced by decreased superior model displacement, glottal width amplitude, and flow rate amplitude. Predictions of vibration frequency and maximum flow declination rate were also altered by high stenosis severities. The observed changes became more pronounced with increasing stenosis severity and inlet pressure, and the trends correlated well with flow resistance calculations. Flow visualization was used to characterize subglottal flow patterns in the space between the stenosis and the vocal folds. Underlying mechanisms for the observed changes, possible implications for human voice production, and suggestions for future work are discussed. PMID:23503699

  7. Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors.

    PubMed

    Bilad, Muhammad R; Mezohegyi, Gergo; Declerck, Priscilla; Vankelecom, Ivo F J

    2012-01-01

    Conventional submerged membrane bioreactors (MBRs) rely on the coarse bubbles aeration to generate shear at the liquid-membrane interface to limit membrane fouling. Unfortunately, it is a very energy consuming method, still often resulting in a rapid decrease of membrane permeability and consequently in higher expenses. In this paper, the feasibility of a novel magnetically induced membrane vibration (MMV) system was studied in a lab-scale MBR treating synthetic wastewater. The effects on membrane fouling of applied electrical power of different operation strategies, of membrane flux and of the presence of multiple membranes on one vibrating engine on membrane fouling were investigated. The filtration performance was evaluated by determining the filtration resistance profiles and critical flux. The results showed clear advantages of the vibrating system over conventional MBR processes by ensuring higher fluxes at lower fouling rates. Intermittent vibration was found a promising strategy for both efficient fouling control and significant energy saving. The optimised MMV system is presumed to lead to significant energy and cost reduction in up-scaled MBR operations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Vortex-induced vibrations of a flexible cylinder at large inclination angle

    PubMed Central

    Bourguet, Rémi; Triantafyllou, Michael S.

    2015-01-01

    The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow–body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity. PMID:25512586

  9. Predictions of experimentally observed stochastic ground vibrations induced by blasting.

    PubMed

    Kostić, Srđan; Perc, Matjaž; Vasović, Nebojša; Trajković, Slobodan

    2013-01-01

    In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry "Suva Vrela" near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions.

  10. Effects of hydration levels on the bandwidth of microwave resonant absorption induced by confined acoustic vibrations

    NASA Astrophysics Data System (ADS)

    Liu, Tzu-Ming; Chen, Hung-Pin; Yeh, Shih-Chia; Wu, Chih-Yu; Wang, Chung-Hsiung; Luo, Tang-Nian; Chen, Yi-Jan; Liu, Shen-Iuan; Sun, Chi-Kuang

    2009-10-01

    We found the hydration levels on the capsid surface of viruses can affect the bandwidth of microwave resonant absorption (MRA) induced by the confined acoustic vibrations (CAV). By decreasing the pH value of solution down to 5.2 or inactivating the capsid proteins, we enhanced the surface hydrophilicity and increased the magnitude of surface potentials. Both of these surface manipulations raised the surface affinity to water molecules and narrowed the bandwidths of CAV-induced MRA. Our results validate the viscoelastic transition of hydration shells.

  11. Do cool water or physiologic saline compresses enhance resolution of experimentally-induced irritant contact dermatitis?

    PubMed

    Levin, C Y; Maibach, H I

    2001-09-01

    Acute irritant contact dermatitis (ICD) is frequently treated with cool water or saline compresses. While presumed effective, little quantitative evaluation documents the treatment's benefit. This study sought to determine the efficacy of both distilled water and physiologic saline compresses on experimentally-induced ICD. 24-h application of both the lipophilic nonanoic acid (NAA) and the hydrophilic sodium lauryl sulfate (SLS) were used to induce irritant contact dermatitis in 9 healthy volunteers. Following irritation, compresses were applied 0.5 h 2x daily for 4 consecutive days. Transepidermal water loss (TEWL), laser Doppler flowmetry (LDF), chromametry and visual scoring were used to quantify results. Cool compresses of both water and saline significantly reduced TEWL and LDF, with no statistically significant difference between the efficacy of the saline or water compresses. Chromametry and visual scoring did not detect a significant effect with either the water or saline compresses. The results suggest an improvement with 2x-daily application of either water or physiologic saline compresses in the treatment of acute ICD, though true clinical benefit will be elucidated through further experimentation. Certainly, the current recommendation regarding the use of cool compresses for treating ICD should not be discarded.

  12. Collision-induced vibrational absorption in molecular hydrogens

    SciTech Connect

    Reddy, S.P.

    1993-05-01

    Collision induced absorption (CIA) spectra of the first overtone bands of H{sub 2}, D{sub 2}, and HD have been recorded for gas densities up to 500 amagat at 77-300 K. Analyses of these spectra reveal that (1) contrary to the observations in the fundamental bands, the contribution of the isotropic overlap interaction to the first overtone bands is negligible, (2) the squares of the matrix elements B{sub 32}(R)/ea{sub o} [= {lambda}{sub 32} exp(-(R-{sigma})/{rho}{sub 32}) + 3 (R/a{sub o}){sup -4}] where the subscripts 3 and 2 represent L and {lambda}, respectively, account for the absorption intensity of the bands and (3) the mixed term, 2,3 {lambda}{sub 32} exp (-(R-{sigma})/{rho}{sub 32}) <{vert_bar}Q{vert_bar}> <{alpha}> (R/a){sup -4}, gives a negative contribution. In the CIA spectra of H{sub 2} in its second overtone region recorded at 77, 201 and 298 K for gas densities up to 1000 amagat, a dip in the Q branch with characteristic Q{sub p} and Q{sub R} components has been observed. The analysis of the absorption profiles reveals, in addition to the previously known effects, the occurrence of the triple-collision transitions of H{sub 2} of the type Q{sub 1}(J) + Q{sub 1}(J) + Q{sub 1}(J) for the first time. From the profile analysis the absorption coefficient of these transitions is obtained.

  13. Predictions of Experimentally Observed Stochastic Ground Vibrations Induced by Blasting

    PubMed Central

    Kostić, Srđan; Perc, Matjaž; Vasović, Nebojša; Trajković, Slobodan

    2013-01-01

    In the present paper, we investigate the blast induced ground motion recorded at the limestone quarry “Suva Vrela” near Kosjerić, which is located in the western part of Serbia. We examine the recorded signals by means of surrogate data methods and a determinism test, in order to determine whether the recorded ground velocity is stochastic or deterministic in nature. Longitudinal, transversal and the vertical ground motion component are analyzed at three monitoring points that are located at different distances from the blasting source. The analysis reveals that the recordings belong to a class of stationary linear stochastic processes with Gaussian inputs, which could be distorted by a monotonic, instantaneous, time-independent nonlinear function. Low determinism factors obtained with the determinism test further confirm the stochastic nature of the recordings. Guided by the outcome of time series analysis, we propose an improved prediction model for the peak particle velocity based on a neural network. We show that, while conventional predictors fail to provide acceptable prediction accuracy, the neural network model with four main blast parameters as input, namely total charge, maximum charge per delay, distance from the blasting source to the measuring point, and hole depth, delivers significantly more accurate predictions that may be applicable on site. We also perform a sensitivity analysis, which reveals that the distance from the blasting source has the strongest influence on the final value of the peak particle velocity. This is in full agreement with previous observations and theory, thus additionally validating our methodology and main conclusions. PMID:24358140

  14. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units

    PubMed Central

    Khoshnevis, Sepideh; Craik, Natalie K.

    2015-01-01

    Purpose Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. Methods Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. Results Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10−8), Polar Care 300 (PC300, p = 1.1 × 10−3), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). Conclusions The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI. PMID:24562697

  15. Cold-induced vasoconstriction may persist long after cooling ends: an evaluation of multiple cryotherapy units.

    PubMed

    Khoshnevis, Sepideh; Craik, Natalie K; Diller, Kenneth R

    2015-09-01

    Localized cooling is widely used in treating soft tissue injuries by modulating swelling, pain, and inflammation. One of the primary outcomes of localized cooling is vasoconstriction within the underlying skin. It is thought that in some instances, cryotherapy may be causative of tissue necrosis and neuropathy via cold-induced ischaemia leading to nonfreezing cold injury (NFCI). The purpose of this study is to quantify the magnitude and persistence of vasoconstriction associated with cryotherapy. Data are presented from testing with four different FDA approved cryotherapy devices. Blood perfusion and skin temperature were measured at multiple anatomical sites during baseline, active cooling, and passive rewarming periods. Local cutaneous blood perfusion was depressed in response to cooling the skin surface with all devices, including the DonJoy (DJO, p = 2.6 × 10(-8)), Polar Care 300 (PC300, p = 1.1 × 10(-3)), Polar Care 500 Lite (PC500L, p = 0.010), and DeRoyal T505 (DR505, p = 0.016). During the rewarming period, parasitic heat gain from the underlying tissues and the environment resulted in increased temperatures of the skin and pad for all devices, but blood perfusion did not change significantly, DJO (n.s.), PC300 (n.s.), PC500L (n.s.), and DR505 (n.s.). The results demonstrate that cryotherapy can create a deep state of vasoconstriction in the local area of treatment. In the absence of independent stimulation, the condition of reduced blood flow persists long after cooling is stopped and local temperatures have rewarmed towards the normal range, indicating that the maintenance of vasoconstriction is not directly dependent on the continuing existence of a cold state. The depressed blood flow may dispose tissue to NFCI.

  16. Numerical investigation of film cooling flow induced by cylindrical and shaped holes.

    PubMed

    Barthet, S; Kulisa, P

    2001-05-01

    The present study is the second half of a two part work carried out in collaboration with SNECMA which tends to investigate a shaped hole film cooling experimentally and numerically. The aim of this paper is the numerical study of 3D phenomena induced by cylindrical and shaped hole film cooling on a flat wall. The two calculations show up classical structures such as horseshoe or kidney vortices and their differences according to the shape configuration. A detailed study demonstrates their influence on the jet behaviour. Comparing both cases reveals the impact of shaping on the velocity field and vortex motions. The calculations were performed by resolving the 3D Navier-Stokes equations associated with a k-epsilon turbulence model. The solver is the CANARI code developed by ONERA.

  17. Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point

    PubMed Central

    Wolf, Bernd; Tsui, Yeekin; Jaiswal-Nagar, Deepshikha; Tutsch, Ulrich; Honecker, Andreas; Remović-Langer, Katarina; Hofmann, Georg; Prokofiev, Andrey; Assmus, Wolf; Donath, Guido; Lang, Michael

    2011-01-01

    The presence of a quantum-critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T,r) in the vicinity of a QCP, yielding particularly strong variations for varying the tuning parameter r such as pressure or magnetic field B. Here we report on the determination of the critical enhancement of ∂S/∂B near a B-induced QCP via absolute measurements of the magnetocaloric effect (MCE), (∂T/∂B)S and demonstrate that the accumulation of entropy around the QCP can be used for efficient low-temperature magnetic cooling. Our proof of principle is based on measurements and theoretical calculations of the MCE and the cooling performance for a Cu2+-containing coordination polymer, which is a very good realization of a spin-½ antiferromagnetic Heisenberg chain—one of the simplest quantum-critical systems.

  18. Dorsal neck muscle vibration induces upward shifts in the endpoints of memory-guided saccades in monkeys.

    PubMed

    Corneil, Brian D; Andersen, Richard A

    2004-07-01

    Producing a movement in response to a sensory stimulus requires knowledge of the body's current configuration, and spindle organs embedded within muscles are a primary source of such kinesthetic information. Here, we sought to develop an animal model of kinesthetic illusions induced by mechanically vibrating muscles as a first step toward a mechanistic understanding of how kinesthesia is integrated into neural plans for action. We elected to examine the effects of mechanical vibration of dorsal neck muscles in head-restrained monkeys performing memory-guided saccades requiring them to look to the remembered location of a flashed target only after an imposed delay. During the delay on one-half of all trials, mechanical vibration (usually 1,500 ms in duration, 200 microm in amplitude, 100 Hz in frequency) was applied to the dorsal aspect on one side of the monkey's neck. We compared the metrics of such vibration saccades to control saccades without vibration during the delay interval. Relative to control saccades, the endpoints of vibration saccades were shifted consistently upward, even though the variability in saccadic endpoints was unaltered. Although the stability of the eye was compromised during the delay interval of vibration trials, as evidenced by an increased incidence of upward drifts and downward microsaccades, vibration saccades displayed different metrics than control saccades, including an upwardly deviated radial direction and increased vertical amplitude. The influence of variations in the duration (500-2,500 ms), amplitude (100-300 microm), or frequency (75-125 Hz) of vibration scaled well with the presumed change in spindle activity entrained by vibration. Comparisons of the profile of these results are made to the human literature. We conclude that neck muscle vibration induces alterations in oculomotor performance in monkeys consistent with a central interpretation of illusory neck flexion and downward gaze deviation due to increased activation

  19. Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers.

    PubMed

    Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo

    2016-03-01

    In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees.

  20. Localized cooling of stems induces latewood formation and cambial dormancy during seasons of active cambium in conifers

    PubMed Central

    Begum, Shahanara; Kudo, Kayo; Matsuoka, Yugo; Nakaba, Satoshi; Yamagishi, Yusuke; Nabeshima, Eri; Rahman, Md Hasnat; Nugroho, Widyanto Dwi; Oribe, Yuichiro; Jin, Hyun-O; Funada, Ryo

    2016-01-01

    Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of

  1. Physiologic and Perceptual Responses to Cold-Shower Cooling After Exercise-Induced Hyperthermia

    PubMed Central

    Butts, Cory L.; McDermott, Brendon P.; Buening, Brian J.; Bonacci, Jeffrey A.; Ganio, Matthew S.; Adams, J. D.; Tucker, Matthew A.; Kavouras, Stavros A.

    2016-01-01

    Context:  Exercise conducted in hot, humid environments increases the risk for exertional heat stroke (EHS). The current recommended treatment of EHS is cold-water immersion; however, limitations may require the use of alternative resources such as a cold shower (CS) or dousing with a hose to cool EHS patients. Objective:  To investigate the cooling effectiveness of a CS after exercise-induced hyperthermia. Design:  Randomized, crossover controlled study. Setting:  Environmental chamber (temperature = 33.4°C ± 2.1°C; relative humidity = 27.1% ± 1.4%). Patients or Other Participants:  Seventeen participants (10 male, 7 female; height = 1.75 ± 0.07 m, body mass = 70.4 ± 8.7 kg, body surface area = 1.85 ± 0.13 m2, age range = 19–35 years) volunteered. Intervention(s):  On 2 occasions, participants completed matched-intensity volitional exercise on an ergometer or treadmill to elevate rectal temperature to ≥39°C or until participant fatigue prevented continuation (reaching at least 38.5°C). They were then either treated with a CS (20.8°C ± 0.80°C) or seated in the chamber (control [CON] condition) for 15 minutes. Main Outcome Measure(s):  Rectal temperature, calculated cooling rate, heart rate, and perceptual measures (thermal sensation and perceived muscle pain). Results:  The rectal temperature (P = .98), heart rate (P = .85), thermal sensation (P = .69), and muscle pain (P = .31) were not different during exercise for the CS and CON trials (P > .05). Overall, the cooling rate was faster during CS (0.07°C/min ± 0.03°C/min) than during CON (0.04°C/min ± 0.03°C/min; t16 = 2.77, P = .01). Heart-rate changes were greater during CS (45 ± 20 beats per minute) compared with CON (27 ± 10 beats per minute; t16 = 3.32, P = .004). Thermal sensation was reduced to a greater extent with CS than with CON (F3,45 = 41.12, P < .001). Conclusions:  Although the CS facilitated cooling rates faster than no treatment, clinicians should continue

  2. Physiologic and Perceptual Responses to Cold-Shower Cooling After Exercise-Induced Hyperthermia.

    PubMed

    Butts, Cory L; McDermott, Brendon P; Buening, Brian J; Bonacci, Jeffrey A; Ganio, Matthew S; Adams, J D; Tucker, Matthew A; Kavouras, Stavros A

    2016-03-01

    Exercise conducted in hot, humid environments increases the risk for exertional heat stroke (EHS). The current recommended treatment of EHS is cold-water immersion; however, limitations may require the use of alternative resources such as a cold shower (CS) or dousing with a hose to cool EHS patients. To investigate the cooling effectiveness of a CS after exercise-induced hyperthermia. Randomized, crossover controlled study. Environmental chamber (temperature = 33.4°C ± 2.1°C; relative humidity = 27.1% ± 1.4%). Seventeen participants (10 male, 7 female; height = 1.75 ± 0.07 m, body mass = 70.4 ± 8.7 kg, body surface area = 1.85 ± 0.13 m(2), age range = 19-35 years) volunteered. On 2 occasions, participants completed matched-intensity volitional exercise on an ergometer or treadmill to elevate rectal temperature to ≥39°C or until participant fatigue prevented continuation (reaching at least 38.5°C). They were then either treated with a CS (20.8°C ± 0.80°C) or seated in the chamber (control [CON] condition) for 15 minutes. Rectal temperature, calculated cooling rate, heart rate, and perceptual measures (thermal sensation and perceived muscle pain). The rectal temperature (P = .98), heart rate (P = .85), thermal sensation (P = .69), and muscle pain (P = .31) were not different during exercise for the CS and CON trials (P > .05). Overall, the cooling rate was faster during CS (0.07°C/min ± 0.03°C/min) than during CON (0.04°C/min ± 0.03°C/min; t16 = 2.77, P = .01). Heart-rate changes were greater during CS (45 ± 20 beats per minute) compared with CON (27 ± 10 beats per minute; t16 = 3.32, P = .004). Thermal sensation was reduced to a greater extent with CS than with CON (F3,45 = 41.12, P < .001). Although the CS facilitated cooling rates faster than no treatment, clinicians should continue to advocate for accepted cooling modalities and use CS only if no other validated means of cooling are available.

  3. How to perform the skull vibration-induced nystagmus test (SVINT).

    PubMed

    Dumas, G; Perrin, P; Ouedraogo, E; Schmerber, S

    2016-11-01

    The skull vibration-induced nystagmus test is a robust, nonintrusive and easy to perform test. This test acts as a vestibular Weber test and is performed as a bedside examination. It usually instantaneously reveals vibration-induced nystagmus (VIN) even in long standing or chronic compensated unilateral vestibular lesions. The test requires stimulation at 30, 60 or more efficiently at 100Hz. The vibrator is applied perpendicularly to the skin on a subject sitting up straight on the right and then the left mastoid (level with external acoustic meatus) and vertex. The VIN can be observed under videonystagmoscopy or Frenzel goggles. Either the direct tracing or the VIN slow phase velocity can be recorded on a 2D or 3D videonystagmograph. The patients should be relaxed and not treated by strong sedative medications. This rapid first-line test is not influenced by vestibular compensation and usefully complements other tests in the multifrequency evaluation of the vestibule. It acts as a global vestibular test by stimulating both canal and otolithic structures at 100Hz. It is useful in case of external acoustic meatus or middle ear disease as a substitute for the water caloric test and is preferable in elderly patients with vascular disease or arthritis of the neck to the head-shaking-test or head-impulse-test. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Nonlinear characteristics analysis of vortex-induced vibration for a three-dimensional flexible tube

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Jiang, Naibin; Zang, Fenggang; Zhang, Yixiong; Huang, Xuan; Wu, Wanjun

    2016-05-01

    Vortex-induced vibration of a three-dimensional flexible tube is one of the key problems to be considered in many engineering situations. This paper aims to investigate the nonlinear dynamic behaviors and response characteristics of a three-dimensional tube under turbulent flow. The three-dimensional unsteady, viscous, incompressible Navier-Stokes equation and LES turbulence model are solved with the finite volume approach, and the dynamic equilibrium equations are discretized by the finite element theory. A three-dimensional fully coupled numerical model for vortex-induced vibration of flexible tube is proposed. The model realized the fluid-structure interaction with solving the fluid flow and the structure vibration simultaneously. Based on this model, Response regimes, trajectory, phase difference, fluid force coefficient and vortex shedding frequency are obtained. The nonlinear phenomena of lock-in, phase-switch are captured successfully. Meanwhile, the limit cycle, bifurcation of lift coefficient and displacement are analyzed using phase portrait and Poincare section. The results reveal that, a quasi-upper branch occurs in the present fluid-flexible tube coupling system with high mass-damping and low mass ratio. There is no bifurcation of lift coefficient and lateral displacement occurred in the three-dimensional flexible tube submitted to uniform turbulent flow.

  5. Measurement of pump-induced transient lensing in a cryogenically-cooled high average power Ti:sapphire amplifier.

    PubMed

    Planchon, Thomas A; Amir, Wafa; Childress, Colby; Squier, Jeff A; Durfee, Charles G

    2008-11-10

    The transient thermal lensing in a liquid-nitrogren cooled kilohertz multipass amplifier is quantitatively measured with spatially-resolved Fourier transform spectral interferometry. A pump-probe arrangement allows the observation of a polarization-dependent non-thermal component following the fluorescence timescale: additional cooling would not suppress this residual lensing. We also observe a time-dependent thermal component that has a timescale sufficiently fast to indicate that there is cooling between shots even at a repetition rate of 1 kHz. The value of pump-induced lensing would be underestimated when performing time-averaged measurements of pump-induced phase shifts.

  6. Planarizing cytosine: The S1 state structure, vibrations, and nonradiative dynamics of jet-cooled 5,6-trimethylenecytosine

    NASA Astrophysics Data System (ADS)

    Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Blancafort, Lluís; Leutwyler, Samuel

    2017-06-01

    We measure the S0 → S1 spectrum and time-resolved S1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning, and ns time-resolved pump/delayed ionization. The experiments are complemented with spin-component scaled second-order approximate coupled cluster (SCS-CC2), time-dependent density functional theory, and multi-state second-order perturbation-theory (MS-CASPT2) ab initio calculations. While the R2PI spectrum of cytosine breaks off ˜500 cm-1 above its 000 band, that of TMCyt extends up to +4400 cm-1 higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C5-C6 bond allows us to explore the S1 state vibrations and S0 → S1 geometry changes in detail. The TMCyt S1 state out-of-plane vibrations ν1', ν3', and ν5' lie below 420 cm-1, and the in-plane ν11', ν12', and ν23' vibrational fundamentals appear at 450, 470, and 944 cm-1. S0 → S1 vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν1', ν3', and ν5' frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type S1 ⇝ S0 conical intersection (CI) increases from +366 cm-1 in cytosine to >6000 cm-1 in TMCyt, explaining the long lifetime and extended S0 → S1 spectrum. The lowest-energy S1 ⇝ S0 CI of TMCyt is the "amino out-of-plane" (OPX) intersection, calculated at +4190 cm-1. The experimental S1 ⇝ S0 internal conversion rate constant at the S1(v'=0 ) level is kI C=0.98 -2.2 ṡ1 08 s-1, which is ˜10 times smaller than in 1-methylcytosine and cytosine. The S1(v'=0 ) level relaxes into the T1(3π π *) state by intersystem crossing with kI S C=0.41 -1.6 ṡ1 08 s-1. The T1 state energy is measured to lie 24 580 ±560 cm-1 above the S0 state. The S1(v'=0 ) lifetime is τ =2.9 ns, resulting in an estimated fluorescence quantum yield of Φf l=24 %. Intense

  7. Planarizing cytosine: The S1 state structure, vibrations, and nonradiative dynamics of jet-cooled 5,6-trimethylenecytosine.

    PubMed

    Trachsel, Maria A; Lobsiger, Simon; Schär, Tobias; Blancafort, Lluís; Leutwyler, Samuel

    2017-06-28

    We measure the S0 → S1 spectrum and time-resolved S1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning, and ns time-resolved pump/delayed ionization. The experiments are complemented with spin-component scaled second-order approximate coupled cluster (SCS-CC2), time-dependent density functional theory, and multi-state second-order perturbation-theory (MS-CASPT2) ab initio calculations. While the R2PI spectrum of cytosine breaks off ∼500 cm(-1) above its 00(0) band, that of TMCyt extends up to +4400 cm(-1) higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C(5)-C(6) bond allows us to explore the S1 state vibrations and S0 → S1 geometry changes in detail. The TMCyt S1 state out-of-plane vibrations ν1('), ν3('), and ν5(') lie below 420 cm(-1), and the in-plane ν11('), ν12('), and ν23(') vibrational fundamentals appear at 450, 470, and 944 cm(-1). S0  →  S1 vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν1('), ν3('), and ν5(') frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type S1 ⇝ S0 conical intersection (CI) increases from +366 cm(-1) in cytosine to >6000 cm(-1) in TMCyt, explaining the long lifetime and extended S0 → S1 spectrum. The lowest-energy S1 ⇝ S0 CI of TMCyt is the "amino out-of-plane" (OPX) intersection, calculated at +4190 cm(-1). The experimental S1 ⇝ S0 internal conversion rate constant at the S1(v(')=0) level is kIC=0.98-2.2⋅10(8) s(-1), which is ∼10 times smaller than in 1-methylcytosine and cytosine. The S1(v(')=0) level relaxes into the T1((3)ππ*) state by intersystem crossing with kISC=0.41-1.6⋅10(8) s(-1). The T1 state energy is measured to lie 24 580±560 cm(-1) above the S0 state. The S1(v(')=0) lifetime is τ=2.9 ns

  8. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow

    PubMed Central

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system. PMID:23378921

  9. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    PubMed

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  10. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  11. Modeling and control of flow-induced vibrations of a flexible hydrofoil in viscous flow

    NASA Astrophysics Data System (ADS)

    Caverly, Ryan James; Li, Chenyang; Chae, Eun Jung; Forbes, James Richard; Young, Yin Lu

    2016-06-01

    In this paper, a reduced-order model (ROM) of the flow-induced vibrations of a flexible cantilevered hydrofoil is developed and used to design an active feedback controller. The ROM is developed using data from high-fidelity viscous fluid-structure interaction (FSI) simulations and includes nonlinear terms to accurately capture the effect of lock-in. An active linear quadratic Gaussian (LQG) controller is designed based on a linearization of the ROM and is implemented in simulation with the ROM and the high-fidelity viscous FSI model. A controller saturation method is also presented that ensures that the control force applied to the system remains within a prescribed range. Simulation results demonstrate that the LQG controller successfully suppresses vibrations in both the ROM and viscous FSI simulations using a reasonable amount of control force.

  12. Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.

    PubMed

    Jus, Y; Longatte, E; Chassaing, J-C; Sagaut, P

    2014-10-01

    The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier-Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.

  13. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    SciTech Connect

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  14. Determination of vibrational polarizabilities and hyperpolarizabilities using field-induced coordinates

    NASA Astrophysics Data System (ADS)

    Luis, Josep M.; Duran, Miquel; Champagne, Benoît; Kirtman, Bernard

    2000-10-01

    An analytical set of field-induced coordinates (FICs) is defined. It is shown that, instead of 3N-6 normal coordinates, a relatively small number of FICs is sufficient to describe the vibrational polarizability and hyperpolarizabilities due to nuclear relaxation. The fact that the number of FICs does not depend upon the size of the molecule leads to computational advantages. A method is provided for separating anharmonic contributions from harmonic contributions as well as effective mechanical from electrical anharmonicity. Hartree-Fock calculations on a dozen representative conjugated molecules illustrate the procedures and indicate that anharmonicity can be very important. Other potential applications including the determination of zero-point vibrational averaging corrections are noted.

  15. On the Computation of Structural Vibrations Induced by a Low-speed Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Hwang, Y. F.

    1985-01-01

    A method for numerical evaluation of the vibrations of a cylindrical shell structure induced by a low speed external turbulent flow is discussed. The direction of flow is along the axis of revolution of the shell, and the source of excitation is the pressure fluctuations in the turbulent boundary layer. For the investigation of vibration and noise problems it is usually more desirable to utilize the modal expansion approach. The axisymmetric shell structure can be modeled by the assemblage of conical-shell finite-elements. This modeling allows the eigenfunction psi sub mn (x,theta) to be represented in a rectangular product of a longitudinal modal function f sub mn (x) and a circular harmonic function cos m theta (or sin m theta).

  16. Review of leakage-flow-induced vibrations of reactor components. [LMFBR

    SciTech Connect

    Mulcahy, T.M.

    1983-05-01

    The primary-coolant flow paths of a reactor system are usually subject to close scrutiny in a design review to identify potential flow-induced vibration sources. However, secondary-flow paths through narrow gaps in component supports, which parallel the primary-flow path, occasionally are the excitation source for significant vibrations even though the secondary-flow rates are orders of magnitude smaller than the primary-flow rate. These so-called leakage flow problems are reviewed here to identify design features and excitation sources that should be avoided. Also, design rules of thumb are formulated that can be employed to guide a design, but quantitative prediction of component response is found to require scale-model testing.

  17. Numerical and experimental investigation of natural flow-induced vibrations of flexible hydrofoils

    NASA Astrophysics Data System (ADS)

    Chae, Eun Jung; Akcabay, Deniz Tolga; Lelong, Alexandra; Astolfi, Jacques Andre; Young, Yin Lu

    2016-07-01

    The objective of this work is to present combined numerical and experimental studies of natural flow-induced vibrations of flexible hydrofoils. The focus is on identifying the dependence of the foil's vibration frequencies and damping characteristics on the inflow velocity, angle of attack, and solid-to-fluid added mass ratio. Experimental results are shown for a cantilevered polyacetate (POM) hydrofoil tested in the cavitation tunnel at the French Naval Academy Research Institute (IRENav). The foil is observed to primarily behave as a chordwise rigid body and undergoes spanwise bending and twisting deformations, and the flow is observed to be effectively two-dimensional (2D) because of the strong lift retention at the free tip caused by a small gap with a thickness less than the wall boundary layer. Hence, the viscous fluid-structure interaction (FSI) model is formulated by coupling a 2D unsteady Reynolds-averaged Navier-Stokes (URANS) model with a two degree-of-freedom (2-DOF) model representing the spanwise tip bending and twisting deformations. Good agreements were observed between viscous FSI predictions and experimental measurements of natural flow-induced vibrations in fully turbulent and attached flow conditions. The foil vibrations were found to be dominated by the natural frequencies in absence of large scale vortex shedding due to flow separation. The natural frequencies and fluid damping coefficients were found to vary with velocity, angle of attack, and solid-to-fluid added mass ratio. In addition, the numerical results showed that the in-water to in-air natural frequency ratios decreased rapidly, and the fluid damping coefficients increased rapidly, as the solid-to-fluid added mass ratio decreases. Uncoupled mode (UM) linear potential theory was found to significantly over-predict the fluid damping for cases of lightweight flexible hydrofoils, and this over-prediction increased with higher velocity and lower solid-to-fluid added mass ratio.

  18. Suppression of vortex-induced vibration using the rotary oscillation of a cylinder

    NASA Astrophysics Data System (ADS)

    Du, Lin; Sun, Xiaofeng

    2015-02-01

    An active control method for suppressing the response of an elastically mounted cylinder by forcing rotary oscillation is presented. Vortex-induced vibration (VIV) of structures is related to the interaction between body and shedding vortex. In the synchronization/lock-in regime, when the vortex shedding frequency fs matches the natural frequency fN of the spring-mass system, large displacement amplitude in the transverse direction is observed. The effect of rotary oscillation on unsteady laminar flow past a freely vibrating cylinder has been investigated. In this study, the cylinder has two degrees of freedom: forced rotary oscillation and vortex induced vibration. The investigation is based on the solutions of flow equations by using the immersed boundary method at moderate Reynolds number. The present computational results indicate the rotary oscillation control can be implemented to suppress the response amplitude of VIV by locking the vortex shedding frequency fs at the forcing frequency fr in the "lock-on" region. The "lock-on" phenomenon occurs in the wake of a rotationally oscillating cylinder, which is free to vibrate in the transverse direction. The essence of the present active control method is to change the frequency of the vortex shedding, rather than suppress it. The response of an elastically mounted cylinder is drastically suppressed to less than 1% of the cylinder diameter, when proper frequency ratio fr/fN and rotational velocity are imposed. Detailed analyses of aerodynamic performance are given to interpret the mechanism of the suppression of response caused by forced rotary oscillation. The effects of mass ratio and velocity rate of rotary oscillation are also found to play an important role in the spring-mass system. The efficiency of the present method increases with Reynolds number.

  19. Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure.

    PubMed

    Pettersson, Hans; Burström, Lage; Nilsson, Tohr

    2014-01-01

    Raynaud's phenomenon is characterized by constriction in blood supply to the fingers causing finger blanching, of white fingers (WF) and is triggered by cold. Earlier studies found that workers using vibrating hand-held tools and who had vibration-induced white fingers (VWF) had an increased risk for hearing loss compared with workers without VWF. This study examined the occurrence of Raynaud's phenomenon among men and women with noise-induced hearing loss in relation to vibration exposure. All 342 participants had a confirmed noise-induced hearing loss medico legally accepted as work-related by AFA Insurance. Each subject answered a questionnaire concerning their health status and the kinds of exposures they had at the time when their hearing loss was first discovered. The questionnaire covered types of exposures, discomforts in the hands or fingers, diseases and medications affecting the blood circulation, the use of alcohol and tobacco and for women, the use of hormones and whether they had been pregnant. The participation rate was 41% (n = 133) with 38% (n = 94) for men and 50% (n = 39) for women. 84 men and 36 women specified if they had Raynaud's phenomenon and also if they had used hand-held vibrating machines. Nearly 41% of them had used hand-held vibrating machines and 18% had used vibrating machines at least 2 h each workday. There were 23 men/6 women with Raynaud's phenomenon. 37% reported WF among those participants who were exposed to hand-arm vibration (HAV) and 15% among those not exposed to HAV. Among the participants with hearing loss with daily use of vibrating hand-held tools more than twice as many reports WF compared with participants that did not use vibrating hand-held tools. This could be interpreted as Raynaud's phenomenon could be associated with an increased risk for noise-induced hearing loss. However, the low participation rate limits the generalization of the results from this study.

  20. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua

    2017-06-01

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.

  1. Empirical evidence for a recent slowdown in irrigation-induced cooling

    SciTech Connect

    Bonfils, C; Lobell, D

    2007-01-19

    Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (-0.15 to -0.25 C.decade{sup -1}), which corresponds to a cooling estimated at -2.0 - -3.3 C since the introduction of irrigation practice. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (-0.06 to -0.19 C.decade{sup -1}). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for most irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broadscale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide roughly 40% of global food production.

  2. Atom-membrane cooling and entanglement using cavity electromagnetically induced transparency

    SciTech Connect

    Genes, Claudiu; Ritsch, Helmut; Drewsen, Michael; Dantan, Aurelien

    2011-11-15

    We investigate a hybrid optomechanical system composed of a micromechanical oscillator as a movable membrane and an atomic three-level ensemble within an optical cavity. We show that a suitably tailored cavity field response via electromagnetically induced transparency (EIT) in the atomic medium allows for strong coupling of the membrane's mechanical oscillations to the collective atomic ground-state spin. This facilitates ground-state cooling of the membrane motion, quantum state mapping, and robust atom-membrane entanglement even for cavity widths larger than the mechanical resonance frequency.

  3. Immunological response induced by alternated cooling and heating of breast tumor.

    PubMed

    Dong, Jiaxiang; Liu, Ping; Zhang, Aili; Xu, Lisa X

    2007-01-01

    A new in-situ thermal physical method combining both cryosurgery and local hyperthermia was used to treat mice bearing 4T1 murine mammary carcinoma. The induced anti-tumor immune response was investigated. The cryo/heat treatment resulted in stimulation of CTL response and attraction of immunocytes into the tumor debris, which correlated well to the tumor rejection in re-implantation. The results suggested that alternated cooling and heating had synergistic effect and might be developed into an alternative modality for tumor therapy.

  4. Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures

    NASA Technical Reports Server (NTRS)

    Radousky, H. B.; Nellis, W. J.; Ross, M.; Hamilton, D. C.; Mitchell, A. C.

    1986-01-01

    Radiative temperatures and electrical conductivities were measured for fluid nitrogen compressed dynamically to pressures of 18-90 GPa, temperatures of 4000-14,000 K, and densities of 2-3 g/cu cm. The data show a continuous phase transition above 30 GPa shock pressure and confirm that (delta-P/delta-T)v is less than 0, as indicated previously by Hugoniot equation-of-state experiments. The first observation of shock-induced cooling is also reported. The data are interpreted in terms of molecular dissociation, and the concentration of dissociated molecules is calculated as a function of density and temperature.

  5. Recent Southern Ocean surface cooling induced by sea-ice freshwater flux changes

    NASA Astrophysics Data System (ADS)

    Haumann, F. Alexander; Münnich, Matthias; Gruber, Nicolas

    2017-04-01

    Despite global warming, large areas of the Southern Ocean surface waters between the sea-ice edge and the Subantarctic Front have been cooling over recent decades. Yet, most global climate models simulate a warming of this region over this period. Here, we investigate the potential sources of the surface cooling by forcing a newly developed regional configuration of the Regional Ocean Modeling System (ROMS) for the Southern Ocean with atmospheric reanalysis data and with recent observation-based estimates of surface fluxes from sea ice and land ice for the period 1982 to 2008. We perform factorial sensitivity experiments in which we perturb either the surface freshwater fluxes or the surface wind stress according to the observed changes. We find that most of the surface cooling could be explained by increased northward freshwater transport by sea ice that freshens the open-ocean around the sea-ice edge in the model. The freshening increases the surface density stratification between the sea-ice edge and the Subantarctic Front that reduces mixing of warmer deep waters into the surface layer in winter. As a result, the surface ocean cools and the subsurface ocean warms significantly, especially in the Pacific sector where the largest sea-ice changes occurred. The spatial pattern of these simulated temperature changes agrees well with the satellite-observed trends and trends derived from ocean in-situ data, suggesting that the observed surface cooling occurs primarily due to an increased sea-ice freshwater flux. In contrast, the surface temperature weakly increases in response to the increased surface wind stress over this period. Overall, we find opposing tendencies induced by the surface wind stress changes and freshwater flux changes in the ocean hydrography. We conclude that the upwelling of deep waters in the Southern Ocean is highly sensitive to the freshwater transport to the sea-ice edge and that this process is a major driver of the observed recent cooling in

  6. The effect of heating and cooling on time course of voluntary and electrically induced muscle force variation.

    PubMed

    Brazaitis, Marius; Skurvydas, Albertas; Vadopalas, Kazys; Daniusevičiūtė, Laura; Senikienė, Zibuoklė

    2011-01-01

    The aim of this study was to investigate the effect of heating and cooling on time course of voluntary and electrically induced muscle force variation. Ten volunteers performed 50 maximal voluntary and electrically induced contractions of the knee extensors at an angle of 120 degrees under the control conditions and after passive lower body heating and cooling in the control, heating, and cooling experiments. Peak torque, torque variation, and half-relaxation time were assessed during the exercise. Passive lower body heating increased muscle and core temperatures, while cooling lowered muscle temperature, but did not affect core temperature. We observed significantly lower muscle fatigue during voluntary contraction compared with electrically induced contractions. Body heating (opposite to cooling) increased involuntarily induced muscle force, but caused greater electrically induced muscle fatigue. In the middle of the exercise, the coefficient of correlation for electrically induced muscle torque decreased significantly as compared with the beginning of the exercise, while during maximal voluntary contractions, this relation for torque remained significant until the end of the exercise. It was shown that time course of voluntary contraction was more stable than in electrically induced contractions.

  7. Effects of cooling on histamine-induced contractions of human umbilical artery: the role of ion channels.

    PubMed

    Atalik, K E; Kiliç, M; Nurullahoğlu, Z U; Doğan, N

    2007-11-01

    The effects of cooling (to 28 degrees C) on histamine (10(-9) - 3 x 10(-4) M)-induced contractions and the role of calcium (Ca(2+)), potassium (K(Ca) (2+)) and sodium (Na(+)) channel blockers in the cooling-induced responses were investigated in the endothelium-denuded human umbilical artery. Concentration-response curves to histamine were isometrically recorded at 37 and 28 degrees C (control). The same procedure was repeated at 28 degrees C in the presence of tetraethylammonium (TEA, 10(-3) M), pilsicainide (10(-6) M), ouabain (10(-6) M), caffeine (3 x 10(-4) M), verapamil (10(-6) M) and also in Ca(2+)-free medium with ethylene glycol bis-(beta-aminoethyl ether) N,N,N(1),N(1)-tetraacetic acid (EGTA). During cooling, the sensitivity, but not the maximal response, was significantly higher than 37 degrees C. Cooling to 28 degrees C after treatment with verapamil or pilsicainide decreased the sensitivity, whereas treatment with TEA and ouabain significantly increased sensitivity. Treatment with caffeine did not modify the effect of cooling. Furthermore, cooling to 28 degrees C after incubation in Ca(2+)-free solution with EGTA decreased the sensitivity to histamine. The results of this study suggest the role of Ca(2+), K(Ca) (2+) and Na(+)-ion channels in the cooling-induced changes of human umbilical arteries treated with histamine.

  8. Role of Vibration-Induced Streaming in Float-Zone Crystal Growth

    NASA Technical Reports Server (NTRS)

    Anilkumar, A. V.; Grugel, R. N.; Lee, C. P.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    This presentation will examine in detail the role of vibration-induced streaming flow in the context of float-zone crystal growth. It is very well known that during float-zone materials processing, the naturally occurring temperature gradients along the zone surface impose a thermocapillary flow in the zone. Under certain processing conditions, the thermocapillary flow can also become nonsteady (oscillatory). The presence of thermocapillary flow is detrimental to crystal quality, for it can promote non-uniform dopant distribution and crystal striations. To null this effect we have imposed a counter streaming flow in the zone, via end-wall vibration. This technique has been adapted to float-zone processing of Sodium Nitrate-Barium Nitrate eutectic alloys, under both steady and nonsteady thermocapillary flow conditions. The beneficial effects of counter streaming flow have been clearly brought out through the before and after comparisons of the crystal microstructure. In addition, we are also examining the theoretical underpinnings of the balancing of thermocapillary flows with vibration-driven counter flows in float-zones.

  9. Role of Vibration-Induced Streaming in Float-Zone Crystal Growth

    NASA Technical Reports Server (NTRS)

    Anikumar, A. V.; Grugel, R. N.; Lee, C. P.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    This presentation will examine in detail the role of vibration-induced streaming flow in the context of float-zone crystal growth. It is very well known that during float-zone materials processing, the naturally occurring temperature gradients along the zone surface impose a thermocapillary flow in the zone. Under certain processing conditions, the thermocapillary flow can also become nonsteady (oscillatory). The presence of thermocapillary flow is detrimental to crystal quality, for it can promote non-uniform dopant distribution and crystal striations. To null this effect we have imposed a counter streaming flow in the zone, via end-wall vibration. This technique has been adapted to float-zone processing of Sodium Nitrate-Barium Nitrate eutectic alloys, under both steady and nonsteady thermocapillary flow conditions. The beneficial effects of counter streaming flow have been clearly brought out through the before and after comparisons of the crystal microstructure. In addition, we are also examining the theoretical underpinnings of the balancing of thermocapillary flows with vibration-driven counter flows in float-zones.

  10. An increase in the threshold of citric acid-induced cough during chest wall vibration in healthy humans.

    PubMed

    Kondo, T; Kobayashi, I; Hayama, N; Ohta, Y

    1998-10-01

    This study tested the hypothesis that the afferent input from the respiratory muscles may be involved in the neural mechanisms inducing cough responses. Coughing was evoked in conscious healthy humans by the inhalation of citric acid aerosol of several concentrations either during or not during chest wall vibration (100 Hz) at the right second intercostal space or during vibration of the right thigh. The mean threshold citric acid concentration to induce coughing was significantly higher during chest wall vibration (geometric mean, 131.8 mg/ml) than without vibration (75.9 mg/ml). Vibration after topical anesthesia of the chest wall skin did not significantly change the threshold concentration of citric acid. The threshold citric acid concentration during vibration of the right thigh did not significantly differ from that without vibration. We concluded that inputs from the chest wall afferent, presumably from the intercostal muscle or costovertebral joint, may have an inhibitory effect on the initiation of coughing at the higher neural structure in conscious humans.

  11. Wind tunnel balance system for determination of wind-induced vibrations of a rigid shuttle model in the launch configuration

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A wind tunnel balance system was designed to determine the wind-induced vibrations of a space shuttle model. The balance utilizes a flexible sting mounting in conjunction with a geometrically scaled rigid model. Bending and torsional displacements are determined through strain-gauge-instrumented spring bar mechanisms. The natural frequency of the string-model system can be varied continuously throughout the expected scaled frequency range of the shuttle vehicle while a test is in progress by the use of moveable riders on the spring bar mechanism. Through the use of a frequency analyzer, the output can be used to determine troublesome vibrational frequencies. A dimensional analysis of the wind-induced vibration problem is also presented which suggests a test procedure. In addition a computer program for analytical studies of the forced vibration problem is presented.

  12. C-130J Human Vibration

    DTIC Science & Technology

    2005-08-01

    Organisation DSTO-TR-1756 ABSTRACT Human exposure to whole - body vibration (WBV) has been associated with a variety of changes in health...1.2.1 Whole - body Vibration (WBV) ................................................................... 3 1.2.2 Local vibration ...amplitude transmissibility VDV vibration dose value VWF vibration -induced white finger WBV whole body vibration DSTO-TR-1756 1 1. Introduction

  13. The influence of source-receiver interaction on the numerical prediction of railway induced vibrations

    NASA Astrophysics Data System (ADS)

    Coulier, P.; Lombaert, G.; Degrande, G.

    2014-06-01

    The numerical prediction of vibrations in buildings due to railway traffic is a complicated problem where wave propagation in the soil couples the source (railway tunnel or track) and the receiver (building). This through-soil coupling is often neglected in state-of-the-art numerical models in order to reduce the computational cost. In this paper, the effect of this simplifying assumption on the accuracy of numerical predictions is investigated. A coupled finite element-boundary element methodology is employed to analyze the interaction between a building and a railway tunnel at depth or a ballasted track at the surface of a homogeneous halfspace, respectively. Three different soil types are considered. It is demonstrated that the dynamic axle loads can be calculated with reasonable accuracy using an uncoupled strategy in which through-soil coupling is disregarded. If the transfer functions from source to receiver are considered, however, large local variations in terms of vibration insertion gain are induced by source-receiver interaction, reaching up to 10 dB and higher, although the overall wave field is only moderately affected. A global quantification of the significance of through-soil coupling is made, based on the mean vibrational energy entering a building. This approach allows assessing the common assumption in seismic engineering that source-receiver interaction can be neglected if the distance between source and receiver is sufficiently large compared to the wavelength of waves in the soil. It is observed that the interaction between a source at depth and a receiver mainly affects the power flow distribution if the distance between source and receiver is smaller than the dilatational wavelength in the soil. Interaction effects for a railway track at grade are observed if the source-receiver distance is smaller than six Rayleigh wavelengths. A similar trend is revealed if the passage of a freight train is considered. The overall influence of dynamic

  14. The effect of spacing on the vortex-induced vibrations of two tandem flexible cylinders

    NASA Astrophysics Data System (ADS)

    Wang, Enhao; Xiao, Qing; Zhu, Qiang; Incecik, Atilla

    2017-07-01

    Vortex-induced vibrations (VIVs) of two flexible cylinders arranged in tandem are studied using a two-way fluid-structure interaction (FSI) method with different spacing ratios (Sx/D) at Reynolds number Re = 500 using a two-way fluid-structure interaction (FSI) method. The main objective of this study is to investigate the effect of spacing on the hydrodynamic interactions and the VIV responses of these cylinders. The responses of the two flexible cylinders are found to be similar to the classical VIV responses at small Sx/D. Once Sx/D is large enough for the vortices to become detached from the upstream cylinder, the response of the upstream cylinder is similar to the typical VIV response whereas the downstream cylinder undergoes wake-induced vibration. The characteristics of the response of the downstream cylinder in the present study are similar to those of the first two response regimes classified by previous researchers. The third regime is not observed for the flexible downstream cylinder with both ends fixed. The two changes in the phase relation between the cross-flow displacements of the two tandem flexible cylinders are discovered to be linked with the initial-upper branch transition and the upper-lower branch transition, respectively. The correlation lengths of the two flexible cylinders decrease significantly in the transition range between the upper and lower branches. Three modes of vortex shedding (2S, P + S, and 2P) have been identified in the present study. The upper-branch 2P mode is found to be associated with large-amplitude vibration of the upstream cylinder and the P + S mode is observed to be related to large-amplitude vibration of the downstream cylinder for Sx/D = 3.5 and 5. On the other hand, the lower-branch 2P mode leads to small-amplitude vibration of the downstream cylinder in the post-lock-in range at Sx/D = 2.5. The relative phase shifts of the sectional lift coefficients on different spanwise cross sections can be attributed to the

  15. Nystagmus induced by high frequency vibrations of the skull in total unilateral peripheral vestibular lesions.

    PubMed

    Dumas, Georges; Perrin, Philippe; Schmerber, Sebastien

    2008-03-01

    The skull vibration-induced nystagmus test (SVINT) is a useful complementary test to the caloric test, which evaluates very low frequencies, and the head shaking test (HST), which explores medium range frequencies. These three tests are fully correlated in total unilateral vestibular lesions (tUVL) with a sensitivity of 98% and a specificity of 94% for the SVINT. The results of the interference of the SVINT with the cold caloric test on the intact ear suggest that different vestibular sensory cells are involved in these two tests. The stimulus location optimization suggests that vibrations directly stimulate the inner ear on the intact side. The aim of this study was to establish the effectiveness of a rapid, non-invasive test used to detect vestibular asymmetry at 30, 60 and 100 Hz stimulation in tUVL. The high frequency vibration test applied to the skull using the SVINT was compared to the results of HST and caloric test in 134 patients and 95 normal subjects: 131 patients had a total unilateral vestibular dysfunction and 3 had a bilateral total lesion (tBVL). The effects of stimulus frequency, topography and head position were studied using a video-nystagmograph. In tUVL, the SVINT always revealed a lesional nystagmus beating toward the healthy side at all frequencies. The mastoid site was more efficient than the cervical and vertex sites (p0.005). The mean skull vibratory nystagmus (SVN) slow phase velocity (SPV) is 10.7 degrees (SD =7.5; n=20). Mastoid stimulation efficiency was not correlated with the side of stimulation. SVN SPV was correlated with the total caloric efficiency on the healthy ear (p=0.03). The interference of the SVINT during the cold caloric test on the intact ear demonstrated a reversal of the caloric nystagmus at each application of the vibrator. In tBVL, SVINT revealed no nystagmus.

  16. Piezoelectrochemical effect: Mechanical energy induced redox reaction in aqueous solutions through vibrating piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Hong, Kuang-Sheng

    We propose a phenomenon of piezoelectrochemical (PZEC) effect for the direct conversion of mechanical energy to chemical energy. This phenomenon is further applied for generating hydrogen and oxygen via direct water decomposition by means of as-synthesized piezoelectric quartz (SiO2) nano-rods, ZnO microfibers, and BaTiO3 microdendrites. The materials are vibrated with ultrasonic waves leading to a strain-induced electric charge development on their surface. With sufficient electric potential, the strained piezoelectric materials in water triggered the redox reaction of water to produce hydrogen and oxygen gases. All materials have indicated a well response to the external mechanical vibration to drive the desired chemical reactions. ZnO fibers under ultrasonic vibrations showed a stoichiometric ratio of H 2/O2 (2:1) initial gas production from pure water. The efficiency of the piezoelectrochemical effect was calculated by ratio of the chemical energy output over the mechanical energy input of the system. The study of piezoelectrochemical effect is further applied to the environmental cleaning technology. Accordingly, a dissolved orange dye (AO7) was decomposed via mechanical driving force by using BaTiO3 microdendrites. Kinetic details of the dye decomposition through piezoelectrochemical effect were investigated. In addition, the piezoelectrochemical effect was proposed to the implication of tectonic hydrogen in geological systems providing insights of hydrogen generation in active fault zones. The tectonic hydrogen produced through PZEC effect could be a sustainable energy source for subsurface microbial community. This study provides a simple and cost-effective technology for generating hydrogen fuels as well as environmental cleaning by scavenging energy wastes such as noise or stray vibrations from the environment. This new piezoelectrochemical effect may have potential implications in solving the challenging energy and environmental issues that we are facing

  17. Vibration-induced Kondo tunneling through metal-organic complexes with even electron occupation number.

    PubMed

    Kikoin, K; Kiselev, M N; Wegewijs, M R

    2006-05-05

    We investigate transport through a mononuclear transition-metal complex with strong tunnel coupling to two electrodes. The ground state of this molecule is a singlet, while the first excited state is a triplet. We show that a modulation of the tunnel-barrier due to a molecular distortion which couples to the tunneling induces a Kondo-effect, provided the discrete vibrational energy compensates the singlet-triplet gap. We discuss the single-phonon and two-phonon-assisted cotunneling and possible experimental realization of the theory.

  18. Comparative assessment of different treatment modalities in miners with vibration- and noise-induced disease

    SciTech Connect

    Velskaya, M.L.; Nekhorosheva, M.A.; Konovalova, S.I.; Kukhtina, G.V.; Gonchar, I.G.; Terentyeva, D.P.; Grishchenko, L.A.; Soboleva, N.P.; Kharitonov, S.A.; Priklonskiy, I.V.

    1985-02-01

    A group of 71 miners with vibration sickness and noise-induced pathology were managed either by standard methods, or in combination with acupuncture and/or hyperbaric oxygenation for a comparative assessment of the effectiveness of the different therapeutic approaches. Analysis of subjective factors as well as standard physiological parameters (EKG, rheoencephalography, peripheral rheography, EEG, neuropsychological tests) demonstrate that both acupuncture and hyperbaric oxygenation are effective modalities in the majority of the subjects. Nevertheless, the lack of improvement in certain criteria, or even what could be regarded as adverse sequelae, suggest that the use of hyperbaric oxygenation in the management of such disorders be approached with considerable care.

  19. Flow-induced vibration for light-water reactors. Progress report, April 1978-December 1979

    SciTech Connect

    Schardt, J. F.

    1980-03-01

    Flow-Induced vibration for Light Water Reactors (FIV for LWRs) is a four-year program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, general scaling laws to improve the accuracy of reduced-scale tests, and the identification of high FIV risk areas. The program commenced December 1, 1976, but was suspended on September 30, 1978, due to a shift in Department of Energy (DOE) priorities away from LWR productivity/availability. It was reinitiated as of August 1, 1979. This progress report summarizes the accomplishments achieved during the period from April 1978 to December 1979.

  20. Electron-induced excitation of vibrations of Ce atoms inside a C80 cage

    NASA Astrophysics Data System (ADS)

    Stróżecka, A.; Muthukumar, K.; Larsson, J. A.; Dybek, A.; Dennis, T. J. S.; Mysliveček, J.; Voigtländer, B.

    2011-04-01

    Inelastic electron tunneling spectroscopy of Ce2@C80 dimetallofullerenes reveals a low-energy inelastic excitation that is interpreted using ab initio calculations and associated with the movements of encapsulated Ce atoms inside the C80 cage. The electron-vibration interaction in Ce2@C80 is unusually high, inducing a pronounced zero-bias anomaly in differential conductance of Ce2@C80. Our observations show that the atoms encapsulated in fullerene cages can actively participate in determining the properties of molecular junctions.

  1. [Occupational therapy for work-related damage induced by mechanical vibration].

    PubMed

    Foti, C; Ciocchetti, E; Antignani, E; Pitruzzella, M; Laurini, A

    2010-01-01

    Vibrations are defined as repeated oscillatory movements of a body; they can be transmitted by contact to humans. From the point of view of physics, vibrations can be differentiated on the basis of frequency, wavelength, amplitude of the oscillation, velocity and acceleration. As far as concerns occupational hazards, two risk factors have been identified: the first involves low frequency vibrations (vehicle drivers), while the second involves high frequency vibrations (manual percussion tools). The transmission of vibration energy can be localized or generalized. Tertiary prevention of exposure to vibrations is based on the use of anti-vibration gloves (for vibrations of the hand and arm) and on anti-vibration shoes (for vibrations of the whole body). The damage caused by vibrations is due to reduced blood circulation and mechanical stimulation in the joints exposed.

  2. Laser Induced Fluorescence Spectroscopy of Jet Cooled SiCN : Rotational Analysis of the Hot Bands

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Ishiwata, Takashi

    2013-06-01

    We have generated SiCN in supersonic free jet expansions, and observed the laser induced fluorescence ( LIF ) of the vibrationally hot bands of the ˜{A} ^2Δ - ˜{X} ^2Π transition. We have measured dispersed fluorescence ( DF ) spectra from the single vibronic levels ( SVL's ), ˜{A} (01^10) ^2Φ and ^2Π, and rotationally resolved LIF excitation spectra of the two hot bands, ˜{A} (01^10) ^2Φ - ˜{X} (01^10) ^2Δ and ˜{A} (01^10) ^2Π - ˜{X} (01^10) ^2Σ^{(-)}. The rotational energy levels were reasonably analyzed as those of the ^2K' - ^2K'' transitions, but their line intensities calculated from the Hönl-London factors derived in the intermediate case between Hund's case (a) and (b) could not reproduce the observed spectra. The Hönl-London factors derived in the ^2Λ' - ^2Λ'' ( ^2Δ - ^2Π ) transition reasonably reproduced the spectra. It indicates that coupling between the electronic orbital and vibrational angular momenta is weak in the SiCN ^2Δ - ^2Π system, and a basis set of |Λ v_2 l Σ; J P M_Jrangle, so-called ''l-basis", better describes the system than that of |Λ v_2 K Σ; J P M_Jrangle.

  3. Quantitative probing of tip-induced local cooling with a resistive nanoheater/thermometer

    NASA Astrophysics Data System (ADS)

    Hamian, Sina; Yun, Jeonghoon; Park, Inkyu; Park, Keunhan

    2016-12-01

    This article reports the investigation of tip-induced local cooling when an atomic force microscope (AFM) cantilever tip scans over a joule-heated Pt nanowire. We fabricated four-point-probe Pt resistive nanothermometers having a sensing area of 250 nm × 350 nm by combining electron-beam lithography and photolithography. The electrical resistance of a fabricated nanothermometer is ˜27.8 Ω at room temperature and is linearly proportional to the temperature increase up to 350 K. The equivalent temperature coefficient of resistance is estimated to be (7.0 ±0.1 )×10-4 K-1. We also joule-heated a nanothermometer to increase its sensing area temperature up to 338.5 ± 0.2 K, demonstrating that the same device can be used as a nanoheater. An AFM probe tip scanning over a heated nanoheater/thermometer's sensing area induces local cooling due to heat conduction through solid-solid contact, water meniscus, and surrounding air. The effective contact thermal conductance is 32.5 ± 0.8 nW/K. These results contribute to the better understanding of tip-substrate thermal interactions, which is the fundamental subject in tip-based thermal engineering applications.

  4. Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques.

    PubMed

    Hu, Junhui; Xia, Lan; Yang, Li; Quan, Wenwen; Zhang, Xuping

    2016-06-13

    A BOTDA sensing scheme combined frequency sweeping and slope-assisted techniques is proposed and experimentally demonstrated for simultaneously temperature and strain-induced vibration sensing. In this scheme, during sweeping Brillouin gain spectrum (BGS) for temperature measurement, we simultaneously perform FFT to the time-domain traces whose probe-pump frequency difference (PPFD) is within the FWHM of the BGS at each position of fiber, and the location and the frequency of the strain-induced vibration event can be acquired based on SA-BOTDA technique. In this way, the vibration can be continuously measured at each selected working frequency point during the BGS scanning process and multiple measurements of vibration event can be completed in one whole BGS scanning process. Meanwhile, double sidebands probe method is employed to reduce the nonlocal effects. In our experiment, a temperature event and two vibration events with the frequency of 7.00Hz or 10.00Hz are simultaneously measured near the end of 10.6km long sensing fiber in a traditional BOTDA system. The system shows 1.2°C temperature accuracy and 0.67Hz frequency resolution, as well as a 3m spatial resolution. The proposed method may find some potential applications where both the strain-induced vibration frequency and temperature are the diagnostic objects.

  5. Ca2+ release induced by rapid cooling and caffeine in ferret ventricular muscles.

    PubMed

    Tanaka, E

    1997-06-01

    The Ca2+ release induced by rapid cooling (RC) and caffeine in ferret ventricular muscles was investigated. For this purpose, the author measured the intracellular Ca2+ concentration ([Ca2+]i) using aequorin. Rapid lowering of the temperature of the bathing solution from 30 degrees C to low temperatures after the cessation of electrical stimulation transiently increased [Ca2+]i. The peak of [Ca2+]i was altered depending upon the temperature in RC. [Ca2+]i reached 1.59 microM when the temperature was lowered from 30 to 4 degrees C. Caffeine (15 mM) applied during cooling after the decline of RC-induced intracellular Ca2+ signal caused an increase in [Ca2+]i. The author assumed that the total Ca2+ content in the SR was the sum of the peaks of [Ca2+]i increased by RC (Ca(RC)) and caffeine application (Ca(caf)). The fractional Ca2+ release induced by RC [Ca(RC)/"assumed" total released Ca2+ from the SR(%)] was 63.7% at 4 degrees C. The peak of Ca2+ increased by RC was proportional to the "assumed" total released Ca2+ from the SR. No significant correlation was observed between RC-induced [Ca2+]i change and the [Ca2+]i before RC. However, in Na+-deficient solutions (Li+ or TMA+ replacement), the fractional Ca2+ release induced by RC was decreased; this inhibition shows a dependence upon extracellular Na+ concentration. In contrast, the fractional Ca2+ release by caffeine application after RC was enhanced. These results suggest that: 1) RC releases a fraction of the Ca2+ accumulated in the SR and 2) the mechanism of RC-induced Ca2+ release in mammalian cardiac muscle is different from that of RC-induced Ca2+ release in frog skeletal muscles, which requires an increase in [Ca2+]i before RC. Extracellular Na+ might modify RC-induced Ca2+ release through a change in [Na+]i.

  6. Use of in vitro human keratinocyte models to study the effect of cooling on chemotherapy drug-induced cytotoxicity.

    PubMed

    Al-Tameemi, Wafaa; Dunnill, Christopher; Hussain, Omar; Komen, Manon M; van den Hurk, Corina J; Collett, Andrew; Georgopoulos, Nikolaos T

    2014-12-01

    A highly distressing side-effect of cancer chemotherapy is chemotherapy-induced alopecia (CIA). Scalp cooling remains the only treatment for CIA, yet there is no experimental evidence to support the cytoprotective capacity of cooling. We have established a series of in vitro models for the culture of human keratinocytes under conditions where they adopt a basal, highly-proliferative phenotype thus resembling the rapidly-dividing sub-population of native hair-matrix keratinocytes. Using a panel of chemotherapy drugs routinely used clinically (docetaxel, doxorubicin and the active metabolite of cyclophosphamide 4-OH-CP), we demonstrate that although these drugs are highly-cytotoxic, cooling can markedly reduce or completely inhibit drug cytotoxicity, in agreement with clinical observations. By contrast, we show that cytotoxicity caused by specific combinatorial drug treatments cannot be adequately attenuated by cooling, supporting data showing that such treatments do not always respond well to cooling clinically. Importantly, we provide evidence that the choice of temperature may be critical in determining the efficacy of cooling in rescuing cells from drug-mediated toxicity. Therefore, despite their reductive nature, these in vitro models have provided experimental evidence for the clinically-reported cytoprotective role of cooling and represent useful tools for future studies on the molecular mechanisms of cooling-mediated cytoprotection.

  7. Simulation of Human-induced Vibrations Based on the Characterized In-field Pedestrian Behavior.

    PubMed

    Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-04-13

    For slender and lightweight structures, vibration serviceability is a matter of growing concern, often constituting the critical design requirement. With designs governed by the dynamic performance under human-induced loads, a strong demand exists for the verification and refinement of currently available load models. The present contribution uses a 3D inertial motion tracking technique for the characterization of the in-field pedestrian behavior. The technique is first tested in laboratory experiments with simultaneous registration of the corresponding ground reaction forces. The experiments include walking persons as well as rhythmical human activities such as jumping and bobbing. It is shown that the registered motion allows for the identification of the time variant pacing rate of the activity. Together with the weight of the person and the application of generalized force models available in literature, the identified time-variant pacing rate allows to characterize the human-induced loads. In addition, time synchronization among the wireless motion trackers allows identifying the synchronization rate among the participants. Subsequently, the technique is used on a real footbridge where both the motion of the persons and the induced structural vibrations are registered. It is shown how the characterized in-field pedestrian behavior can be applied to simulate the induced structural response. It is demonstrated that the in situ identified pacing rate and synchronization rate constitute an essential input for the simulation and verification of the human-induced loads. The main potential applications of the proposed methodology are the estimation of human-structure interaction phenomena and the development of suitable models for the correlation among pedestrians in real traffic conditions.

  8. The Skull Vibration-Induced Nystagmus Test of Vestibular Function—A Review

    PubMed Central

    Dumas, Georges; Curthoys, Ian S.; Lion, Alexis; Perrin, Philippe; Schmerber, Sébastien

    2017-01-01

    A 100-Hz bone-conducted vibration applied to either mastoid induces instantaneously a predominantly horizontal nystagmus, with quick phases beating away from the affected side in patients with a unilateral vestibular loss (UVL). The same stimulus in healthy asymptomatic subjects has little or no effect. This is skull vibration-induced nystagmus (SVIN), and it is a useful, simple, non-invasive, robust indicator of asymmetry of vestibular function and the side of the vestibular loss. The nystagmus is precisely stimulus-locked: it starts with stimulation onset and stops at stimulation offset, with no post-stimulation reversal. It is sustained during long stimulus durations; it is reproducible; it beats in the same direction irrespective of which mastoid is stimulated; it shows little or no habituation; and it is permanent—even well-compensated UVL patients show SVIN. A SVIN is observed under Frenzel goggles or videonystagmoscopy and recorded under videonystagmography in absence of visual-fixation and strong sedative drugs. Stimulus frequency, location, and intensity modify the results, and a large variability in skull morphology between people can modify the stimulus. SVIN to 100 Hz mastoid stimulation is a robust response. We describe the optimum method of stimulation on the basis of the literature data and testing more than 18,500 patients. Recent neural evidence clarifies which vestibular receptors are stimulated, how they cause the nystagmus, and why the same vibration in patients with semicircular canal dehiscence (SCD) causes a nystagmus beating toward the affected ear. This review focuses not only on the optimal parameters of the stimulus and response of UVL and SCD patients but also shows how other vestibular dysfunctions affect SVIN. We conclude that the presence of SVIN is a useful indicator of the asymmetry of vestibular function between the two ears, but in order to identify which is the affected ear, other information and careful clinical judgment are

  9. The Skull Vibration-Induced Nystagmus Test of Vestibular Function-A Review.

    PubMed

    Dumas, Georges; Curthoys, Ian S; Lion, Alexis; Perrin, Philippe; Schmerber, Sébastien

    2017-01-01

    A 100-Hz bone-conducted vibration applied to either mastoid induces instantaneously a predominantly horizontal nystagmus, with quick phases beating away from the affected side in patients with a unilateral vestibular loss (UVL). The same stimulus in healthy asymptomatic subjects has little or no effect. This is skull vibration-induced nystagmus (SVIN), and it is a useful, simple, non-invasive, robust indicator of asymmetry of vestibular function and the side of the vestibular loss. The nystagmus is precisely stimulus-locked: it starts with stimulation onset and stops at stimulation offset, with no post-stimulation reversal. It is sustained during long stimulus durations; it is reproducible; it beats in the same direction irrespective of which mastoid is stimulated; it shows little or no habituation; and it is permanent-even well-compensated UVL patients show SVIN. A SVIN is observed under Frenzel goggles or videonystagmoscopy and recorded under videonystagmography in absence of visual-fixation and strong sedative drugs. Stimulus frequency, location, and intensity modify the results, and a large variability in skull morphology between people can modify the stimulus. SVIN to 100 Hz mastoid stimulation is a robust response. We describe the optimum method of stimulation on the basis of the literature data and testing more than 18,500 patients. Recent neural evidence clarifies which vestibular receptors are stimulated, how they cause the nystagmus, and why the same vibration in patients with semicircular canal dehiscence (SCD) causes a nystagmus beating toward the affected ear. This review focuses not only on the optimal parameters of the stimulus and response of UVL and SCD patients but also shows how other vestibular dysfunctions affect SVIN. We conclude that the presence of SVIN is a useful indicator of the asymmetry of vestibular function between the two ears, but in order to identify which is the affected ear, other information and careful clinical judgment are

  10. Vortex-Induced Vibration of a Circular Cylinder Fitted with a Single Spanwise Tripwire

    NASA Astrophysics Data System (ADS)

    Vaziri, Ehsan; Ekmekci, Alis

    2016-11-01

    A spanwise tripwire can be used to alter the coherence and strength of the vortex shedding from cylindrical structures. While this has been well-documented for cylinders in stationary state, there exists a lack of understanding regarding the control induced by spanwise tripwires for cylinders undergoing vortex-induced vibration (VIV). The current experimental research investigates the consequences of spanwise tripping on VIV of a cylinder. Experiments are conducted in a recirculating water tunnel at a Reynolds number of 10,000. The test setup allows the rigid test cylinder to have one-degree-of-freedom vibration in the cross-flow direction as a result of fluid forcing. To measure the cylinder motion, a high-resolution laser displacement sensor is used. The tripwire diameter to cylinder diameter ratio is fixed at 6.1%. Various angular positions of tripwire are studied ranging from 40 to 90 degrees. It is shown that the tripwire location controls the pattern, amplitude, frequency, and mid-position of oscillations significantly. Different oscillation modes are classified based on the observed oscillation pattern, amplitude and frequency. Oscillation amplitude can be reduced by 61% with respect to the amplitude of a clean cylinder undergoing VIV under the same flow condition.

  11. A new method for predicting nonlinear structural vibrations induced by ground impact loading

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Zhang, Yu; Yun, Bin

    2012-04-01

    Based on nonlinear theory and field measurements, a hybrid method for modeling the time history of structural vibrations resulting from impact loading in the vicinity of a structure is presented in this paper. The characteristics of the medium present between the impact source and a measured location inside of a structure are depicted by a nonlinear system that can be modeled by a Volterra functional series. The nonlinear system can be identified by the inputs and the corresponding output signals, which can be obtained by performing in situ experiments. Then, the predicted signal induced by a known impact loading at the measured location can be calculated using the identified Volterra functional series. Moreover, the structural vibration under a known impulse train can be controlled by adjusting the delay period according to the predicted results. In addition, the method has been verified by applying it in two practical applications: the cases of impact loading induced by either the impact of a hammer or blasting. The results show that the method features convenient application, high precision and extensive applicability for various types of impact loadings.

  12. Suppression of vortex-induced vibration of a circular cylinder using thermal effects

    NASA Astrophysics Data System (ADS)

    Wan, Hui; Patnaik, Soumya S.

    2016-12-01

    Transverse vortex-induced vibration (VIV) of a cylinder with various body-to-fluid density ratio and stiffness is studied. The cylinder is elastically mounted and heated, and the flow direction is aligned with the direction of the thermal induced buoyancy force. Amplitude of VIV can be reduced as the thermal control parameter Richardson number (Ri) increases, or even be fully suppressed when Ri is above a critical value. This critical Richardson number depends on both body-to-fluid density and structural stiffness. A higher critical Richardson is required to fully suppress the VIV of a structure with smaller density ratio. With the same density or mass, a structure with intermediate stiffness vibrating in lock-in regime needs higher critical Ri to suppress VIV than either rigid or flexible structures. Drag experienced by the body is also studied. It is found that for a flexible body, drag gradually increases with the Richardson number. For a body with intermediate stiffness, both drag and amplitude of VIV can be reduced until the Richardson number reaches the critical value, after which drag builds up if the Richardson number is further increased. A drag reduction of 30%-40% can be obtained at the critical Richardson number.

  13. Hydrodynamic mechanism behind the suppression of vortex-induced vibration with permeable meshes

    NASA Astrophysics Data System (ADS)

    Assi, Gustavo R. S.; Cicolin, Murilo M.; Freire, Cesar M.

    2016-11-01

    Vortex-induced vibration (VIV) induces resonant vibrations on elastic bluff bodies when exposed to a flow. A VIV suppressor called "ventilated trousers" (VT) - consisting of a flexible net with tens of bobbins fitted every other node - has been developed as a commercial solution. Only a few experiments in the literature have evaluated the effectiveness of the VT, but very little is know about the underlying mechanism behind the suppression. Experiments have been carried out in a water channel with models of circular cylinders fitted with three different permeable meshes. VIV response and drag were obtained for models free to oscillate in the cross-flow direction with low mass and damping (Re = 5 , 000 to 25,000). All meshes achieved an average 50% reduction of the peak amplitude and reduced the mean drag when compared to that of a bare cylinder. PIV visualization of the wake revealed that the VT produced a much longer vortex-formation length, thus explaining its enhanced efficiency in suppressing VIV and reducing drag. The geometry and distribution of the bobbins proved to be important parameters. PIV also revealed the rich three-dimensional flow structures created by the bobbins that disrupt the formation of a coherent vortex wake. FAPESP 11/00205-6, 14/50279-4; CNPq 306917/2015-7.

  14. Vortex-induced vibrations of a neutrally buoyant circular cylinder near a plane wall

    NASA Astrophysics Data System (ADS)

    Wang, X. K.; Hao, Z.; Tan, S. K.

    2013-05-01

    This paper presents an experimental study of the motions, drag force and vortex shedding patterns of an elastically mounted circular cylinder, which is held at various heights above a plane wall and is subject to vortex-induced vibration (VIV) in the transverse direction. The cylinder is neutrally buoyant with a mass ratio m=1.0 and has a low damping ratio ζ=0.0173. Effects of the gap ratio (S/D) ranged from 0.05 to 2.5 and the free-stream velocity (U) ranged from 0.15 to 0.65m/s (corresponding to 3000≤Re≤13 000, and 1.53≤U≤6.62) are examined. The flow around the cylinder has been measured using particle image velocimetry (PIV), in conjunction with direct measurements of the dynamic drag force on the cylinder using a piezoelectric load cell. Results of the vibrating cylinder under unbounded (or free-standing) condition, as well as those of a near-wall stationary cylinder at the same gap ratios, are also provided. For the free-standing cylinder, the transition from the initial branch to the upper branch is characterized by a switch of vortex pattern from the classical 2S mode to the newly-discovered 2PO mode by Morse and Williamson (2009). The nearby wall not only affects the amplitude and frequency of vibration, but also leads to non-linearities in the cylinder response as evidenced by the presence of super-harmonics in the drag force spectrum. In contrast to the case of a stationary cylinder that vortex shedding is suppressed below a critical gap ratio (S/D≈0.3), the elastically mounted cylinder always vibrates even at the smallest gap ratio S/D=0.05. Due to the proximity of the plane wall, the vortices shed from the vibrating cylinder that would otherwise be in a double-sided vortex street pattern (either 2S or 2PO mode) under free-standing condition are arranged into a single-sided pattern.

  15. Vibration energy harvesting based on stress-induced polarization switching: a phase field approach

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2017-06-01

    Different from the traditional piezoelectric vibration energy harvesting, a new strategy based on stress-induced polarization switching has been proposed in the current paper. Two related prototypes are presented and the associated advantages and drawbacks have been discussed in detail. It has been demonstrated that, with the assistance of a bias electric field, the robustness of the energy harvesters is improved. Furthermore, the real-space phase-field model has been employed to study the nonlinear hysteretic behavior involved in the proposed energy harvesting process. A substantially larger electric current associated with the stress-induced polarization switching has been demonstrated when compared with that with piezoelectric effect. In addition, the effects of bias electric potential, bias resistance, mechanical boundary conditions, charge leakage and electrodes arrangements have also been investigated by the phase-field simulation, which provides a guidance for future real implementations.

  16. Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect.

    PubMed

    Zhang, Jian-Qi; Zhang, Shuo; Zou, Jin-Hua; Chen, Liang; Yang, Wen; Li, Yong; Feng, Mang

    2013-12-02

    We propose an efficient optical electromagnetically induced transparency (EIT) cooling scheme for a cantilever with a nitrogen-vacancy center attached in a non-uniform magnetic field using dynamical Zeeman effect. In our scheme, the Zeeman effect combined with the quantum interference effect enhances the desired cooling transition and suppresses the undesired heating transitions. As a result, the cantilever can be cooled down to nearly the vibrational ground state under realistic experimental conditions within a short time. This efficient optical EIT cooling scheme can be reduced to the typical EIT cooling scheme under special conditions.

  17. Empirical evidence for a recent slowdown in irrigation-induced cooling

    PubMed Central

    Bonfils, Céline; Lobell, David

    2007-01-01

    Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (−0.14°C to −0.25°C per decade), which corresponds to an estimated cooling of −1.8°C to −3.2°C since the introduction of irrigation practices. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (−0.06°C to −0.19°C per decade). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for many irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broad-scale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide ≈40% of global food production. PMID:17698963

  18. Application of least mean square algorithm to suppression of maglev track-induced self-excited vibration

    NASA Astrophysics Data System (ADS)

    Zhou, D. F.; Li, J.; Hansen, C. H.

    2011-11-01

    Track-induced self-excited vibration is commonly encountered in EMS (electromagnetic suspension) maglev systems, and a solution to this problem is important in enabling the commercial widespread implementation of maglev systems. Here, the coupled model of the steel track and the magnetic levitation system is developed, and its stability is investigated using the Nyquist criterion. The harmonic balance method is employed to investigate the stability and amplitude of the self-excited vibration, which provides an explanation of the phenomenon that track-induced self-excited vibration generally occurs at a specified amplitude and frequency. To eliminate the self-excited vibration, an improved LMS (Least Mean Square) cancellation algorithm with phase correction (C-LMS) is employed. The harmonic balance analysis shows that the C-LMS cancellation algorithm can completely suppress the self-excited vibration. To achieve adaptive cancellation, a frequency estimator similar to the tuner of a TV receiver is employed to provide the C-LMS algorithm with a roughly estimated reference frequency. Numerical simulation and experiments undertaken on the CMS-04 vehicle show that the proposed adaptive C-LMS algorithm can effectively eliminate the self-excited vibration over a wide frequency range, and that the robustness of the algorithm suggests excellent potential for application to EMS maglev systems.

  19. SiO rotation-vibration bands in cool giants II. The behaviour of SiO bands in AGB stars

    NASA Astrophysics Data System (ADS)

    Aringer, B.; Höfner, S.; Wiedemann, G.; Hron, J.; Jørgensen, U. G.; Käufl, H. U.; Windsteig, W.

    1999-02-01

    The first overtone rotation-vibration transitions of SiO give rise to prominent bandheads in the wavelength range between 4.0 and 4.5 mu m. In order to study the behaviour of these features in AGB stars we observed the 3.94 to 4.12 mu m spectra for a sample of 23 oxygen-rich late-type variables. In contrast to the SRb objects, the Miras show a very large scatter of the equivalent widths of the SiO bands. Despite their cool temperatures some of them have only weak or no SiO absorption, which seems to be related to their strong pulsations producing a large variability of the features. When comparing the band intensities with photometric data, we found a general decrease with bluer IRAS (12-25) colors. However, this trend may only reflect the different behaviour of the Miras and SRb stars in our sample. We did not discover any correlation of the equivalent widths with the effective temperatures derived from (J-K), or with the (K-12) color and the IRAS-LRS class, both of which can be regarded as a rough measure for the thickness of the circumstellar shell. In Paper I of this series (Aringer et al. \\cite{siop}) we have shown that synthetic spectra calculated from hydrostatic MARCS atmospheres are successful in reproducing the observed band intensities of giants with spectral types earlier than about M5 III and M2 II\\@. However, they generally predict too strong features for very cool and extended objects, as they are discussed in this work. And they fail completely when it comes to Miras with weak or no SiO absorption. These stars are dominated by dynamical phenomena and, not surprisingly, they can therefore not be described by hydrostatic structures. Thus, we have also computed synthetic spectra based on experimental dynamical models. Although they still have some shortcomings, we demonstrate that, in principle, they are able to explain the whole range of equivalent widths of the observed SiO bandheads and their variations. Based on observations made at the European

  20. Wall-Thickness Dependence of Cooling-Induced Deformation of Polystyrene Spherical Shells

    SciTech Connect

    Endo, T.; Kobayashi, N.; Goto, K.; Yasuda, M.; Fujima, Y.

    2003-05-15

    Experiments on the wall-thickness dependence of the cooling-induced deformation (CID) of polystyrene (PS) spherical shells were carried out. For the experiments, the PS shells were fabricated by the density-matched emulsion method using the hand-shaken microencapsulation technique. The number-averaged and weight-averaged molecular weights of the PS were M{sub n} 1.1 x 10{sup 5} and M{sub w} = 4.0 x 10{sup 5}, respectively. The diameter of the PS shells was {approx}400-550 {mu}m. To investigate the wall-thickness dependence of the CID, the wall thickness of the PS shells was varied between 5 and 60 {mu}m. In the experiments, the PS shells were cooled by using liquid nitrogen, and their images were captured at 0 and -190 deg. C. For the investigation of the CID, two shapes of each shell that were measured at 0 and -190 deg. C were compared. The thinner PS shells showed larger CID. The maximum deformation was almost 1% of the outer radius when the shell aspect ratio (outer radius)/(wall thickness) was higher than 20. The repeatability of the CID was studied, and the results implied that residual stress in the PS shells had an influence on the CID.

  1. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    SciTech Connect

    Chyu, M.K.

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  2. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    SciTech Connect

    Chyu, M.K.

    1996-04-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:Eu{sup +3}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  3. Current-Induced Cooling Phenomenon in a Two-Dimensional Electron Gas Under a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Endo, Akira; Fujita, Kazuhiro; Hasegawa, Yasuhiro; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryōen; Yonemitsu, Kenji

    2013-07-01

    We investigate the spatial distribution of temperature induced by a dc current in a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We numerically calculate the distributions of the electrostatic potential ϕ and the temperature T in a 2DEG enclosed in a square area surrounded by insulated-adiabatic (top and bottom) and isopotential-isothermal (left and right) boundaries (with ϕ left< ϕ right and T left= T right), using a pair of nonlinear Poisson equations (for ϕ and T) that fully take into account thermoelectric and thermomagnetic phenomena, including the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. We find that, in the vicinity of the left-bottom corner, the temperature becomes lower than the fixed boundary temperature, contrary to the naive expectation that the temperature is raised by the prevalent Joule heating effect. The cooling is attributed to the Ettingshausen effect at the bottom adiabatic boundary, which pumps up the heat away from the bottom boundary. In order to keep the adiabatic condition, downward temperature gradient, hence the cooled area, is developed near the boundary, with the resulting thermal diffusion compensating the upward heat current due to the Ettingshausen effect.

  4. Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Yasir, Kashif Ammar; Zhuang, Lin; Liu, Wu-Ming

    2017-01-01

    We report a spin-orbit-coupling-induced backaction cooling in an optomechanical system, composed of a spin-orbit-coupled Bose-Einstein condensate trapped in an optical cavity with one movable end mirror, by suppressing heating effects of quantum noises. The collective density excitations of the spin-orbit-coupling-mediated hyperfine states—serving as atomic oscillators equally coupled to the cavity field—trigger strongly driven atomic backaction. We find that the backaction not only revamps low-temperature dynamics of its own but also provides an opportunity to cool the mechanical mirror to its quantum-mechanical ground state. Further, we demonstrate that the strength of spin-orbit coupling also superintends dynamic structure factor and squeezes nonlinear quantum noises, like thermomechanical and photon shot noise, which enhances optomechanical features of the hybrid cavity beyond previous investigations. Our findings are testable in a realistic setup and enhance the functionality of cavity optomechanics with spin-orbit-coupled hyperfine states in the field of quantum optics and quantum computation.

  5. Sensitivity analysis and regularization for damage detection of a bridge based on vibration induced by moving vehicles

    NASA Astrophysics Data System (ADS)

    Udaka, Yudai; Yoshida, Ikumasa; Kim, Chul-Woo; Kawatani, Mitsuo

    Damage detection of a bridge based on vibration induced by moving vehicles is proposed. Accuracy of damage detection depends on observation and damage points. In this research, sensitivity of observation or damage points is estimated by using posterior covariance matrix of estimation error and information entropy. The estimation is not reliable where the sensitivity is low because it is strongly affected by prior information. New type of prior information is proposed and applied to a simple numerical problem for illustration of usefulness. The method is applied to the damage detection of experiment model with vehicle-induced vibration.

  6. Vibration mitigation for wind-induced jitter for the Giant Magellan Telescope

    NASA Astrophysics Data System (ADS)

    Glaese, Roger M.; Sheehan, Michael

    2012-09-01

    The Giant Magellan Telescope (GMT) is a planned large terrestrial telescope with a segmented primary mirror with a 24.5 meter overall diameter. Like most terrestrial telescopes, the GMT resides within an enclosure designed to protect the telescope from the elements and to reduce the effects of wind on the optical performance of the telescope. Wind impingement on the telescope causes static deformation and vibration in the telescope structure that affects the alignment and image jitter performance of the telescope. Actively controlled primary mirror segments and a secondary mirror can correct for the static and low frequency portions of the wind effects, but typically the actuators do not have the bandwidth to address higher frequency components of the wind environment. Preliminary analyses on the GMT indicate that the image jitter associated with wind effects meets budgeted allowances but without much margin. Preliminary models show that the bulk of the residual jitter arises from excitation of a small number of modes in the 9 to 12 Hz range. Therefore, as a risk mitigation effort to increase the margin on the wind induced jitter, passive and active vibration mitigation approaches have been examined for the GMT, which will be the focus of this paper. Using a finite element model of the GMT along with wind loading load cases, several passive and active vibration mitigation approaches were analyzed. These approaches include passive approaches such as tuned mass dampers targeting the worst offending modes, and constrained layer damping targeting all of the modes within the troublesome frequency range. Active approaches evaluated include two active damping approaches, one using several reaction mass actuators and the other using active strut type actuators. The results of the study show that although all approaches are successful in reducing the jitter, the active damping approach using reaction mass actuators offers the lightest weight, least implementation impact

  7. Pyrene measurements in sooting low pressure methane flames by jet-cooled laser-induced fluorescence.

    PubMed

    Wartel, M; Pauwels, J-F; Desgroux, P; Mercier, X

    2011-12-15

    This paper presents in detail the study we carried out concerning the pyrene measurement by jet-cooled laser-induced fluorescence (JCLIF) in different sooting low pressure methane flames. The aim of this paper is both to demonstrate the potentialities of this technique for the measurement of such moderately sized polycyclic aromatic hydrocarbons under sooting flame conditions and to provide new experimental data for the understanding and the development of chemical models of the soot formation processes. Several concentration profiles of pyrene measured in different sooting flame (various pressure and equivalence ratio) are presented. The validation of the JCLIF method for pyrene measurements is explained in detail as well as the calibration procedure, based on the standard addition method, which has been implemented for the quantification of the concentration profiles. Sensitivity lower than 1 ppb was obtained for the measurement of this species under sooting flame conditions.

  8. Disorder-induced metal-insulator transition in cooled silver and copper nanoparticles: A statistical study

    NASA Astrophysics Data System (ADS)

    Medrano Sandonas, Leonardo; Landauro, Carlos V.

    2017-08-01

    The existence of a disorder-induced metal-insulator transition (MIT) has been proved in cooled silver and copper nanoparticles by using level spacing statistics. Nanoparticles are obtained by employing molecular dynamics simulations. Results show that structural disorder is not strong enough to affect their electronic character, and it remains in the metallic regime. Whereas, electronic properties cross to the insulating regime after increasing the chemical disorder strength, W / t . Then, based on scaling theory, we have found that the critical chemical disorder WC / t in which MIT happens for silver and copper nanoparticles are 24.0 ± 1.1 and 22.3 ± 0.9 , respectively. Its universality has also been studied.

  9. Development and modelisation of a hydro-power conversion system based on vortex induced vibration

    NASA Astrophysics Data System (ADS)

    Lefebure, David; Dellinger, Nicolas; François, Pierre; Mosé, Robert

    2016-11-01

    The Vortex Induced Vibration (VIV) phenomenon leads to mechanical issues concerning bluff bodies immerged in fluid flows and have therefore been studied by numerous authors. Moreover, an increasing demand for energy implies the development of alternative, complementary and renewable energy solutions. The main idea of EauVIV project consists in the use of VIV rather than its deletion. When rounded objects are immerged in a fluid flow, vortices are formed and shed on their downstream side, creating a pressure imbalance resulting in an oscillatory lift. A convertor modulus consists of an elastically mounted, rigid cylinder on end-springs, undergoing flow- induced motion when exposed to transverse fluid-flow. These vortices induce cyclic lift forces in opposite directions on the circular bar and cause the cylinder to vibrate up and down. An experimental prototype was developed and tested in a free-surface water channel and is already able to recover energy from free-stream velocity between 0.5 and 1 m.s -1. However, the large number of parameters (stiffness, damping coefficient, velocity of fluid flow, etc.) associated with its performances requires optimization and we choose to develop a complete tridimensionnal numerical model solution. A 3D numerical model has been developed in order to represent the real system behavior and improve it through, for example, the addition of parallel cylinders. The numerical model build up was carried out in three phases. The first phase consists in establishing a 2D model to choose the turbulence model and quantify the dependence of the oscillations amplitudes on the mesh size. The second corresponds to a 3D simulation with cylinder at rest in first time and with vertical oscillation in a second time. The third and final phase consists in a comparison between the experimental system dynamic behavior and its numerical model.

  10. Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations

    NASA Astrophysics Data System (ADS)

    Wada, Akiyoshi; Uehara, Tomohiro; Ishizaki, Shiro

    2014-12-01

    Understanding oceanic responses to typhoons and the impacts those responses have on the typhoons themselves is important so that typhoon predictions performed using numerical models and typhoon forecasts can be improved. However, in situ oceanic observations underneath typhoons are still limited. To gain a deep understanding of the oceanic response and estimate the magnitude of its impact, three profiling floats were deployed in the western North Pacific during the 2011 and 2012 typhoon seasons. The daily observations showed that the sea surface cooled by more than 2°C in typhoons Ma-on and Muifa in 2011, and typhoons Bolaven and Parapiroon in 2012. The response was different at different float locations relative to the typhoon center, that is, the response within 100 km of the typhoon center was different to the response more than 100 km from the center on the right- or left-hand sides of the typhoon track, even though the response was affected by pre-existing oceanic conditions, precipitation, and the typhoon intensity. The salinity and temperature profiles were also considerably different before, during, and after the passage of a typhoon. To determine the impacts of typhoon-induced sea surface cooling on typhoon predictions, the impacts of the four typhoons were numerically evaluated using an atmosphere-wave-ocean coupled model. The coupled model simulated sea surface cooling and the resultant increases in the central pressures caused by the passages of the typhoons reasonably well. When axisymmetrically simulated, the mean sea surface cooling beneath a typhoon decreased the latent heat fluxes by 24% to 47%. A larger cooling effect gave a larger decrease in the latent heat flux only during the intensification phase. The decrease in the latent heat flux affected the inner core structure, particularly in the inflow boundary layer and around the eyewall. The cooling effect significantly affected the track simulation only for Typhoon Muifa, which had the weakest

  11. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes.

    PubMed

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-25

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the CO bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  12. Wake reconfiguration downstream of an inclined flexible cylinder at the onset of vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Bourguet, Remi; Triantafyllou, Michael

    2016-11-01

    Slender flexible cylinders immersed in flow are common in nature (e.g. plants and trees in wind) and in engineering applications, for example in the domain of offshore engineering, where risers and mooring lines are exposed to ocean currents. Vortex-induced vibrations (VIV) naturally develop when the cylinder is placed at normal incidence but they also appear when the body is inclined in the current, including at large angles. In a previous work concerning a flexible cylinder inclined at 80 degrees, we found that the occurrence of VIV is associated with a profound alteration of the flow dynamics: the wake exhibits a slanted vortex shedding pattern in the absence of vibration, while the vortices are shed parallel to the body once the large-amplitude VIV regime is reached. The present study aims at bridging the gap between these two extreme configurations. On the basis of direct numerical simulations, we explore the intermediate states of the flow-structure system. We identify two dominant components of the flow: a high-frequency component that relates to the stationary body wake and a low-frequency component synchronized with body motion. We show that the scenario of flow reconfiguration is driven by the opposite trends of these two component contributions.

  13. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  14. Exact analytical solution of shear-induced flexural vibration of functionally graded piezoelectric beam

    SciTech Connect

    Sharma, Pankaj Parashar, Sandeep Kumar

    2016-05-06

    The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d{sub 15} effect. In piezoelectric actuators, the potential use of d{sub 15} effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d{sub 31} and d{sub 33}. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton's principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.

  15. Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic

    NASA Astrophysics Data System (ADS)

    Kouroussis, G.; Verlinden, O.; Conti, C.

    2012-04-01

    A study is performed on the influence of some typical railway vehicle and track parameters on the level of ground vibrations induced in the neighbourhood. The results are obtained from a previously validated simulation framework considering in a first step the vehicle/track subsystem and, in a second step, the response of the soil to the forces resulting from the first analysis. The vehicle is reduced to a simple vertical 3-dof model, corresponding to the superposition of the wheelset, the bogie and the car body. The rail is modelled as a succession of beam elements elastically supported by the sleepers, lying themselves on a flexible foundation representing the ballast and the subgrade. The connection between the wheels and the rails is realised through a non-linear Hertzian contact. The soil motion is obtained from a finite/infinite element model. The investigated vehicle parameters are its type (urban, high speed, freight, etc.) and its speed. For the track, the rail flexural stiffness, the railpad stiffness, the spacing between sleepers and the rail and sleeper masses are considered. In all cases, the parameter value range is defined from a bibliographic browsing. At the end, the paper proposes a table summarising the influence of each studied parameter on three indicators: the vehicle acceleration, the rail velocity and the soil velocity. It namely turns out that the vehicle has a serious influence on the vibration level and should be considered in prediction models.

  16. Electronic, structural and vibrational induced effects upon ionization of 2-quinolinone

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Pan, Y.; Al Mogren, M. M.; Lau, K. C.; Hochlaf, M.

    2016-07-01

    Using first principle methodologies, we characterize the lowest electronic states of 2-quinolinone+ cation. The ground state of this ion is of X˜2A″ nature. We deduce the adiabatic ionization energy of 2-quinolinone to be equal 8.249 eV using the explicitly correlated coupled cluster level and where zero point vibrational energy, core-valence and scalar relativistic effects are taken into account. We examine also the ionization induced structural changes and vibrational shifts and analyze the electron density differences between the neutral and ionic species. These data show that the formation of 2-quinolinone+X˜2A″ from 2-quinolinone affects strongly the HNCO group, whereas the carbon skeletal is perturbed when the upper electronic cationic states are populated. The comparison to 2-pyridone allows the elucidation of the effect of benzene ring fused with this heterocyclic ring. Since quinolones and pyridones are both model systems of DNA bases, these findings might help in understanding the charge redistribution in these biological entities upon ionization.

  17. Frequency weighting for vibration-induced white finger compatible with exposure-response models.

    PubMed

    Brammer, Anthony J; Pitts, Paul M

    2012-01-01

    An analysis has been performed to derive a frequency weighting for the development of vibration-induced white finger (VWF). It employs a model to compare health risks for pairs of population groups that are selected to have similar health outcomes from operating power tools or machines with markedly different acceleration spectra (rock drills, chain saws, pavement breakers and motorcycles). The model defines the Relative Risk, RR(f(trial)), which is constructed from the ratio of daily exposures and includes a trial frequency weighting that is applied to the acceleration spectra. The trial frequency weighting consists of a frequency-independent primary frequency range, and subordinate frequency ranges in which the response to vibration diminishes, with cut-off frequencies that are changed to influence the magnitude of RR(f(trial)). The frequency weighting so derived when RR(f(trial)) = 1 is similar to those obtained by other methods (W(hf), W(hT)). It consists of a frequency independent range from about 25 Hz to 500 Hz (-3 dB frequencies), with an amplitude cut-off rate of 12 dB/octave below 25 Hz and above 500 Hz. The range is compatible with studies of vasoconstriction in persons with VWF. The results provide further evidence that the ISO frequency weighting may be inappropriate for assessing the risk of developing VWF.

  18. Artificial piezoelectric grass for energy harvesting from turbulence-induced vibration

    NASA Astrophysics Data System (ADS)

    Hobeck, J. D.; Inman, D. J.

    2012-10-01

    The primary objective of this research is to develop a deploy-and-forget energy harvesting device for use in low-velocity, highly turbulent fluid flow environments i.e. streams or ventilation systems. The work presented here focuses on a novel, lightweight, highly robust, energy harvester design referred to as piezoelectric grass. This biologically inspired design consists of an array of cantilevers, each constructed with piezoelectric material. When exposed to proper turbulent flow conditions, these cantilevers experience vigorous vibrations. Preliminary results have shown that a small array of piezoelectric grass was able to produce up to 1.0 mW per cantilever in high-intensity turbulent flow having a mean velocity of 11.5 m s-1. According to the literature, this is among the highest output achieved using similar harvesting methods. A distributed parameter model for energy harvesting from turbulence-induced vibration will be introduced and experimentally validated. This model is generalized for the case of a single cantilever in turbulent cross-flow. Two high-sensitivity pressure probes were needed to perform spectral measurements within various turbulent flows. The design and performance of these probes along with calibration and measurement techniques will be discussed.

  19. Hummingbird feather sounds are produced by aeroelastic flutter, not vortex-induced vibration.

    PubMed

    Clark, Christopher J; Elias, Damian O; Prum, Richard O

    2013-09-15

    Males in the 'bee' hummingbird clade produce distinctive, species-specific sounds with fluttering tail feathers during courtship displays. Flutter may be the result of vortex shedding or aeroelastic interactions. We investigated the underlying mechanics of flutter and sound production of a series of different feathers in a wind tunnel. All feathers tested were capable of fluttering at frequencies varying from 0.3 to 10 kHz. At low airspeeds (Uair) feather flutter was highly damped, but at a threshold airspeed (U*) the feathers abruptly entered a limit-cycle vibration and produced sound. Loudness increased with airspeed in most but not all feathers. Reduced frequency of flutter varied by an order of magnitude, and declined with increasing Uair in all feathers. This, along with the presence of strong harmonics, multiple modes of flutter and several other non-linear effects indicates that flutter is not simply a vortex-induced vibration, and that the accompanying sounds are not vortex whistles. Flutter is instead aeroelastic, in which structural (inertial/elastic) properties of the feather interact variably with aerodynamic forces, producing diverse acoustic results.

  20. Exact analytical solution of shear-induced flexural vibration of functionally graded piezoelectric beam

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Parashar, Sandeep Kumar

    2016-05-01

    The priority of this paper is to obtain the exact analytical solution for free flexural vibration of FGPM beam actuated using the d15 effect. In piezoelectric actuators, the potential use of d15 effect has been of particular interest for engineering applications since shear piezoelectric coefficient d15 is much higher than the other piezoelectric coupling constants d31 and d33. The applications of shear actuators are to induce and control the flexural vibrations of beams and plates. In this study, a modified Timoshenko beam theory is used where electric potential is assumed to vary sinusoidaly along the thickness direction. The material properties are assumed to be graded across the thickness in accordance with power law distribution. Hamilton`s principle is employed to obtain the equations of motion along with the associated boundary conditions for FGPM beams. Exact analytical solution is derived thus obtained equations of motion. Results for clamped-clamped and clamped-free boundary conditions are presented. The presented result and method shell serve as benchmark for comparing the results obtained from the other approximate methods.

  1. Flow-induced vibration characteristics of the BWR/5-201 jet pump

    SciTech Connect

    LaCroix, L.V.

    1982-09-01

    A General Electric boiling water reactor BWR/5-201 jet pump was tested for flow-induced vibration (FIV) characteristics in the Large Steam Water Test Facility at Moss Landing, CA, during the period June-July 1978. High level periodic FIV were observed at reactor operating conditions (1027 psia, 532/sup 0/F and prototypical flow rates) for the specific single jet pump assembly tested. High level FIV of similar amplitude and character have been shown capable of damaging jet pump components and associated support hardware if allowed to continue unchecked. High level FIV were effectively suppressed in two special cases tested: (1) lateral load (>500 lb) at the mixer to diffuser slip joint; and (2) a labyrinth seal (5 small, circumferential grooves) on the mixer at the slip joint. Stability criteria for the particular jet pump tested were developed from test data. A cause-effect relationship between the dynamic pressure within the slip joint and the jet pump vibration was established.

  2. Role of alpha2C-adrenoceptors in the reduction of skin blood flow induced by local cooling in mice.

    PubMed

    Honda, M; Suzuki, M; Nakayama, K; Ishikawa, T

    2007-09-01

    The reduction of skin blood flow induced by local cooling results from a reflex increase in sympathetic output and an enhanced vasoconstrictor activity of cutaneous vessels. The present study investigated the latter local response in vivo in tetrodotoxin-treated mice, in which the sympathetic nerve tone was abolished. Male ddY mice, anaesthetized with pentobarbitone, were treated with tetrodotoxin and artificially ventilated. The plantar skin blood flow (PSBF) was measured by laser Doppler flowmetry. Cooling the air temperature around the left foot from 25 to 10 degrees C decreased the PSBF of the left foot. Bunazosin, an alpha (1)-adrenoceptor antagonist, RS79948, an alpha (2)-adrenoceptor antagonist, and MK-912, an alpha (2C)-adrenoceptor antagonist, all significantly inhibited the cooling-induced reduction of PSBF; the inhibition by bunazosin was relatively small compared with that by RS79948 and MK-912. The response was not affected by guanethidine or bretylium, but was diminished in adrenalectomized mice. An intra-arterial injection of clonidine, an alpha (2)-adrenoceptor agonist, to the left iliac artery of adrenalectomized mice caused a transient decrease in PSBF, which was significantly augmented at 10 degrees C. MK-912 suppressed only the augmented portion at 10 degrees C. Y-27632, H-1152 and fasudil, Rho kinase inhibitors, also inhibited the cooling-induced reduction of PSBF. RS79948 caused no further reduction of the cooling-induced response after the inhibition by Y-27632. Local cooling-induced reduction of skin blood flow in mice primarily results from increased reactivity of alpha (2C)-adrenoceptors to circulating catecholamines, in which the Rho/Rho kinase pathway is involved.

  3. Parallel simulations of vortex-induced vibrations in turbulent flow: Linear and nonlinear models

    NASA Astrophysics Data System (ADS)

    Evangelinos, Constantinos

    1999-11-01

    In this work unstructured spectral/hp element based direct numerical simulation (DNS) techniques are used to simulate vortex-induced vibrations (VIV) of flexible cylinders. Linear structural models are employed for tension- dominated structures (cables) and bending stiffness- dominated structures (beams). Flow-structure interactions are studied in transitional (200-300) and turbulent (1000) Reynolds numbers. Structural responses as well as hydrodynamic forces are analyzed and their relationship with the near wake flow structures is examined. The following conclusions were reached: (1)A Reynolds number effect exists for the observed oscillation amplitude. (2)The phase relationship between cross- flow displacement and coefficient of lift is correlated with both the magnitudes of lift forces and displacement. (3)Cables enhance transition to turbulent flow, while beams (and rigidly vibrating cylinders) delay it. In the transition regime beams oscillate with 70% of the amplitude of cables. (4)Oblique and parallel shedding appear to coexist in the turbulent wake of cables and beams with a traveling wave structural response. The corresponding wake structure behind a cylinder with pinned ends vibrating as a standing wave, displays lambda-type vortices similar to those seen at lower (laminar) Reynolds numbers. (5)Cables and beams at a Reynolds number of 1000 give: (a)extremely similar velocity spectra, (b)differing autocorrelation profiles and large flow structures, and (c)differing structural responses. (6)The empirical formula for the coefficient of drag due to Skop et al. (1977) is shown to be in disagreement with the experimental data; a modified formula fits the results much better. A non-linear set of equations for the finite amplitude vibrations of a string are also derived and investigated. It is combined with an Arbitrary Lagrangian-Eulerian (ALE) flow solver and applied to model simulations of low Reynolds number (100) flow past flexible cylinders with pinned ends

  4. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review

    NASA Astrophysics Data System (ADS)

    Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2017-01-01

    The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.

  5. Effects of tension on vortex-induced vibration (VIV) responses of a long tensioned cylinder in uniform flows

    NASA Astrophysics Data System (ADS)

    Kang, Ling; Ge, Fei; Wu, Xiaodong; Hong, Youshi

    2017-02-01

    The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.

  6. A study on the relationship between subjective unpleasantness and body surface vibrations induced by high-level low-frequency pure tones.

    PubMed

    Takahashi, Yukio; Kanada, Kazuo; Yonekawa, Yoshiharu; Harada, Noriaki

    2005-07-01

    Human body surface vibrations induced by high-level low-frequency pure tones were measured at the chest and the abdomen. At the same time, the subject rated the unpleasantness that he had just perceived during the exposure to low-frequency noise stimulus. Examining the relationship between the measured vibration and the rating score of the unpleasantness revealed that the unpleasantness was in close correlation with the vibration acceleration level (VAL) of the vibration measured. Taking previous results into account, this finding suggests that noise-induced vibrations primarily induce vibratory sensations and through the vibratory sensation or together with some other factors, secondarily contribute to the unpleasantness. The present results suggest that in evaluating high-level low-frequency noise, the effect of vibration should be taken into account.

  7. Suppression of two-dimensional vortex-induced vibration with active velocity feedback controller

    NASA Astrophysics Data System (ADS)

    Ma, B.; Srinil, N.

    2016-09-01

    Vortex-induced vibrations (VIV) establish key design parameters for offshore and subsea structures subject to current flows. Understanding and predicting VIV phenomena have been improved in recent years. Further, there is a need to determine how to effectively and economically mitigate VIV effects. In this study, linear and nonlinear velocity feedback controllers are applied to actively suppress the combined cross-flow and in-line VIV of an elastically-mounted rigid circular cylinder. The strongly coupled fluid-structure interactions are numerically modelled and investigated using a calibrated reduced-order wake oscillator derived from the vortex strength concept. The importance of structural geometrical nonlinearities is studied which highlights the model ability in matching experimental results. The effectiveness of linear vs nonlinear controllers are analysed with regard to the control direction, gain and power. Parametric studies are carried out which allow us to choose the linear vs nonlinear control, depending on the target controlled amplitudes and associated power requirements.

  8. Analysis of vibration induced error in turbulence velocity measurements from an aircraft wing tip boom

    NASA Technical Reports Server (NTRS)

    Akkari, S. H.; Frost, W.

    1982-01-01

    The effect of rolling motion of a wing on the magnitude of error induced due to the wing vibration when measuring atmospheric turbulence with a wind probe mounted on the wing tip was investigated. The wing considered had characteristics similar to that of a B-57 Cambera aircraft, and Von Karman's cross spectrum function was used to estimate the cross-correlation of atmospheric turbulence. Although the error calculated was found to be less than that calculated when only elastic bendings and vertical motions of the wing are considered, it is still relatively large in the frequency's range close to the natural frequencies of the wing. Therefore, it is concluded that accelerometers mounted on the wing tip are needed to correct for this error, or the atmospheric velocity data must be appropriately filtered.

  9. An experimental investigation of vortex-induced vibration with nonlinear restoring forces

    NASA Astrophysics Data System (ADS)

    Mackowski, A. W.; Williamson, C. H. K.

    2013-08-01

    We experimentally examine the amplitude of a bluff body undergoing vortex-induced vibration (VIV) supported by linear and various nonlinear structural forces. This investigation is made possible by our Cyber-Physical Fluid Dynamics force-feedback technique; using it, we can impose arbitrary nonlinear restoring forces on a circular cylinder in our water channel. For the range of nonlinearities examined, detailed analysis allows one to understand and predict the response of the nonlinear structural system using knowledge of a standard, linear VIV system. We also present a case study examining the potential of nonlinear springs to aid in a VIV-based energy harvesting device. Appropriate choices of the spring's nonlinearity allow the hypothetical energy harvester to operate at high performance over a much larger range of Reynolds number than a standard system.

  10. Water induced relaxation of a degenerate vibration of guanidinium using 2D IR echo spectroscopy

    PubMed Central

    Vorobyev, Dmitriy Yu.; Kuo, Chun-Hung; Kuroda, Daniel G.; Scott, J. Nathan; Vanderkooi, Jane M.; Hochstrasser, Robin M.

    2010-01-01

    The nearly degenerate asymmetric stretch vibrations near 1600 cm−1 of the guanidinium cation in D-glycerol/D2O mixtures having different viscosity were studied by 2D IR photon echo spectroscopy. The polarization dependent photon echo signal shows two separate frequency distributions in the 2D spectrum in D2O, even though only one band is evident from inspection of the linear FTIR spectrum. The split components are more clearly seen at higher viscosity. The interactions with solvent induce energy transfer between the degenerate component modes on the time scale of 0.5 ps. The energy transfer between modes is directly observed in 2D IR and distinguished by the waiting time dependence of the cross peaks from the transfers between threefold symmetric configurations of the distorted ion and solvent. The 2D IR analysis carried out for various polarization conditions required specification of frequency-frequency auto- and cross- correlation functions for the degenerate components. PMID:20143800

  11. CFD simulation of flow-induced vibration of an elastically supported airfoil

    NASA Astrophysics Data System (ADS)

    Šidlof, Petr

    2016-03-01

    Flow-induced vibration of lifting or control surfaces in aircraft may lead to catastrophic consequences. Under certain circumstances, the interaction between the airflow and the elastic structure may lead to instability with energy transferred from the airflow to the structure and with exponentially increasing amplitudes of the structure. In the current work, a CFD simulation of an elastically supported NACA0015 airfoil with two degrees of freedom (pitch and plunge) coupled with 2D incompressible airflow is presented. The geometry of the airfoil, mass, moment of inertia, location of the centroid, linear and torsional stiffness was matched to properties of a physical airfoil model used for wind-tunnel measurements. The simulations were run within the OpenFOAM computational package. The results of the CFD simulations were compared with the experimental data.

  12. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    NASA Astrophysics Data System (ADS)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  13. Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: filtration performance and energy consumption.

    PubMed

    Bilad, M R; Discart, V; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, Ivo F J

    2013-06-01

    This study was performed to investigate the effectiveness of submerged microfiltration to harvest both a marine diatom Phaeodactylum tricornutum and a Chlorella vulgaris in a recently developed magnetically induced membrane vibrating (MMV) system. We assess the filtration performance by conducting the improved flux step method (IFM), fed-batch concentration filtrations and membrane fouling autopsy using two lab-made membranes with different porosity. The full-scale energy consumption was also estimated. Overall results suggest that the MMV offers a good fouling control and the process was proven to be economically attractive. By combining the membrane filtration (15× concentration) with centrifugation to reach a final concentration of 25% w/v, the energy consumption to harvest P. tricornutum and C. vulgaris was, respectively, as low as 0.84 and 0.77kWh/m(3), corresponding to 1.46 and 1.39 kWh/kg of the harvested biomass.

  14. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations

    SciTech Connect

    Dai, H. L.; Abdelkefi, A.; Yang, Y.; Wang, L.

    2016-02-01

    The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s)

  15. A global strategy for the stability analysis of friction induced vibration problem with parameter variations

    NASA Astrophysics Data System (ADS)

    Do, H. Q.; Massa, F.; Tison, T.; Lallemand, B.

    2017-02-01

    This paper presents a numerical strategy to reanalyze the modified frequency stability analysis of friction induced vibration problem. The stability analysis of a mechanical system relies on several coupling steps, namely a non-linear static analysis followed by linear and complex eigenvalue problems. We thus propose a numerical strategy to perform more rapidly multiple complex eigenvalue analyses. This strategy couples three methods namely, Fuzzy Logic Controllers to manage frictional contact problem, homotopy developments and projection techniques to reanalyze the projection matrices and component mode synthesis to calculate the modified eigensolutions. A numerical application is performed to highlight the efficiency of the strategy and a discussion is proposed in terms of precision and computational time.

  16. Flow-induced vibration for light-water reactors. Progress report, April-June 1981

    SciTech Connect

    Torres, M. R.

    1981-10-01

    Flow-Induced Vibration for Light Water Reactors (FIV for LWRs) is a program designed to improve the FIV performance of light water reactors through the development of design criteria, analytical models for predicting behavior of components, and general scaling laws to improve the accuracy of reduced-scale tests, and through the identification of high FIV risk areas. The program is managed by the General Electric Nuclear Power Systems Engineering Department and has three major contributors: General Electric Nuclear Power Systems Engineering Department (NPSED), General Electric Corporate Research and Development (CR and D) and Argonne National Laboratory (ANL). The program commenced December 1, 1976. This progress report summarizes the accomplishments achieved during the period from April 1981 to June 1981.

  17. Research and design of underwater flow-induced vibration energy harvester based on Karman vortex street

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Wang, Hai; Yang, Chunlai; Wen, Li

    2017-03-01

    With the increasing development of wireless sensor network (WSN), power supply for WSN nodes had attracted increasing attention, and the energy harvesting system based on Karman vortex street has been widely used in underwater WSN. But the research of the influences of affecting factors towards the energy harvesting system is yet to be completed. So, in this paper, an underwater flow-induced vibration energy harvesting system based on Karman vortex street was proposed and tested. The influence of bluff body geometry and flow velocity towards the performance of the energy harvesting has been researched. The results showed that the output voltage increased as the diameter of bluff body and the water velocity increase. The power generation efficiency was the best when the shape of bluff body was circular.

  18. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    SciTech Connect

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-05-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  19. A distributed parameter electromechanical and statistical model for energy harvesting from turbulence-induced vibration

    NASA Astrophysics Data System (ADS)

    Hobeck, J. D.; Inman, D. J.

    2014-11-01

    Extensive research has been done on the topics of both turbulence-induced vibration and vibration based energy harvesting; however, little effort has been put into bringing these two topics together. Preliminary experimental studies have shown that piezoelectric structures excited by turbulent flow can produce significant amounts of useful power. This research could serve to benefit applications such as powering remote, self-sustained sensors in small rivers or air ventilation systems where turbulent fluid flow is a primary source of ambient energy. A novel solution for harvesting energy in these unpredictable fluid flow environments was explored by the authors in previous work, and a harvester prototype was developed. This prototype, called piezoelectric grass, has been the focus of many experimental studies. In this paper the authors present a theoretical analysis of the piezoelectric grass harvester modeled as a single unimorph cantilever beam exposed to turbulent cross-flow. This distributed parameter model was developed using a combination of both analytical and statistical techniques. The analytical portion uses a Rayleigh-Ritz approximation method to describe the beam dynamics, and utilizes piezoelectric constitutive relationships to define the electromechanical coupling effects. The statistical portion of the model defines the turbulence-induced forcing function distributed across the beam surface. The model presented in this paper was validated using results from several experimental case studies. Preliminary results show that the model agrees quite well with experimental data. A parameter optimization study was performed with the proposed model. This study demonstrated how a new harvester could be designed to achieve maximum power output in a given turbulent fluid flow environment.

  20. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss.

    PubMed

    Helbig, Manuel; Wischnewski, Karoline; Kljun, Natascha; Chasmer, Laura E; Quinton, William L; Detto, Matteo; Sonnentag, Oliver

    2016-12-01

    In the sporadic permafrost zone of North America, thaw-induced boreal forest loss is leading to permafrost-free wetland expansion. These land cover changes alter landscape-scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco-physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw-induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present-day boreal forest-wetland to a hypothetical homogeneous wetland landscape could induce a near-surface cooling effect on regional air temperatures of up to 3-4 °C in late winter and 1-2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol(-1) . At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw-induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends. © 2016 John Wiley

  1. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    NASA Technical Reports Server (NTRS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  2. An Intensity-Based Demodulation Approach for the Measurement of Strains Induced by Structural Vibrations using Bragg Gratings

    DTIC Science & Technology

    2011-02-01

    gratings for response measurement. DSTO’s involvement in this program is to develop the distributed Bragg grating in- terrogation system and conduct... Calibration 29 E System Operation Documentation 30 E.1 Configuration Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 E.2 Scan Screen...challenges associated with this type of distributed response measurement using Bragg gratings is that the strains induced by structural vibrations tend

  3. Oximetry: a new non-invasive method to detect metabolic effects induced by a local application of mechanical vibration

    NASA Astrophysics Data System (ADS)

    Felici, A.; Trombetta, C.; Abundo, P.; Foti, C.; Rosato, N.

    2012-10-01

    Mechanical vibrations application is increasingly common in clinical practice due to the effectiveness induced by these stimuli on the human body. Local vibration (LV) application allows to apply and act only where needed, focusing the treatment on the selected body segment. An experimental device for LV application was used to generate the vibrations. The aim of this study was to detect and analyze the metabolic effects induced by LV on the brachial bicep muscle by means of an oximeter. This device monitors tissue and muscle oxygenation using NIRS (Near Infrared Spectroscopy) and is able to determine the concentration of haemoglobin and oxygen saturation in the tissue. In a preliminary stage we also investigated the effects induced by LV application, by measuring blood pressure, heart rate, oxygen saturation and temperature. These data confirmed that the effects induced by LV application are actually localized. The results of the measurements obtained using the oximeter during the vibration application, have shown a variation of the concentrations. In particular an increase of oxygenate haemoglobin was shown, probably caused by an increased muscle activity and/or a rise in local temperature detected during the application.

  4. Pulsed UV Laser-Induced Stationary Capillary Vibration for Highly Sensitive and Direct Detection of Capillary Electrophoresis.

    PubMed

    Odake, T; Kitamori, T; Sawada, T

    1997-07-01

    A stationary wave of the capillary vibration effect was successfully induced by a series of short laser pulses. This wave could be applied to highly sensitive detection of capillary electrophoresis as well as the already reported capillary vibration induced by an intensity-modulated CW laser (CVL effect). Generally, pulses with much shorter width than the period of the natural frequency of the vibrating system cannot induce a standing vibration. However, utilizing the time constant of CVL determined by heat dissipation time, we found conditions which could induce a stable stationary wave of the capillary by a series of nanosecond light pulses. We used the KrF excimer laser operated at 248 nm with a pulse width of 60 ns and output of ∼10 μJ/pulse as the CVL excitation source and applied it to highly sensitive detection of nonderivatized amino acids at the femtomole level. The sensitivity was at least 2 orders of magnitude superior to that of a commercially available UV absorbance detector. This technique extends the CVL's spectral regions. For example, in the UV region, where many biological materials have significant absorption bands, this technique will extend analytical applications in capillary electrophoresis by eliminating the need for a derivatization process.

  5. Oral cooling (cryotherapy), an effective treatment for the prevention of 5-fluorouracil-induced stomatitis.

    PubMed

    Cascinu, S; Fedeli, A; Fedeli, S L; Catalano, G

    1994-07-01

    Recently, a randomised study demonstrated the utility of oral cooling (cryotherapy) in the prevention of 5-fluorouracil (5FU)-induced stomatitis. In order to verify these results a confirmatory study, using identical treatment regimen, was initiated. 84 patients treated with a 5-FU-containing regimen were randomised to a control arm or to receive oral cryotherapy. End point evaluation was obtained by a global assessment of the physician's judgement and patients' description of mucositis severity graded 0-4. Mucositis was significantly reduced by cryotherapy considering both the first cycle of therapy (the mean toxicity score for cryotherapy was 0.59 and it was 1.1 for the control group, P < or = 0.05) and all the chemotherapeutic courses (the mean toxicity score for cryotherapy was 0.36 when it was 0.69 for the control group, P < or = 0.05). In conclusion, the present study confirms that cryotherapy can decrease 5FU-induced stomatitis and should be recommended for patients receiving bolus 5FU-containing regimens.

  6. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  7. Synergetic analysis and possible control of vortex-induced vibrations in a fluid-conveying steel catenary riser

    NASA Astrophysics Data System (ADS)

    Meng, Dan; Zhu, Chongji

    2015-04-01

    This work aimed to demonstrate possibilities for both active and passive control of the vortex-induced vibration and fatigue life of steel catenary risers via an analysis of the self-organization and evolution of the structural vibration based on synergetic theory. An analysis of the complex interrelated and synergistic relationship between the order parameter and the fast variable was performed, and the master equation of the nodal displacements was established as the order parameter for the evolution of the riser's structural vibration. Passive control methods include modifying the structure's elastic modulus, the internal fluid velocity, the top tension and the structural damping ratio, while an active control involves adjusting the external flow rate. Optimized parameters were obtained by analyzing the non-steady state solution of the master equation. The results show that the fatigue life greatly increases as the riser's elastic modulus decreases. In contrast, the fatigue life decreases with an increase of the internal fluid velocity. With an increase of the top tension, the vibration amplitudes and the number of modes may decrease, resulting in fewer bending stress cycles and a longer fatigue life. Furthermore, the structural damping ratio should be as large as possible. Finally, an active and passive control of the riser structure's response to vortex-induced vibration and its fatigue life can be achieved by carefully modifying the parameters mentioned above. The results may provide a theoretical framework for engineering practice concerning the design and control of steel catenary riser structures which are affected by vortex-induced vibration.

  8. Ground-state cooling of a suspended nanowire through inelastic macroscopic quantum tunneling in a current-biased Josephson junction.

    PubMed

    Sonne, Gustav; Gorelik, Leonid Y

    2011-04-22

    We demonstrate that a suspended nanowire forming a weak link between two superconductors can be cooled to its motional ground state by a supercurrent flow. The predicted cooling mechanism has its origins in magnetic field induced inelastic tunneling of the macroscopic superconducting phase associated with the junction. Furthermore, we show that the voltage drop over the junction is proportional to the average population of the vibrational modes in the stationary regime, a phenomenon which can be used to probe the level of cooling.

  9. Concorde noise-induced building vibrations: John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.

  10. Amplitude control of the track-induced self-excited vibration for a maglev system.

    PubMed

    Zhou, Danfeng; Li, Jie; Zhang, Kun

    2014-09-01

    The Electromagnet Suspension (EMS) maglev train uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. In this article, the harmonic balance method is applied to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this observation, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A PI controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method shows a good prospect for its application to commercial maglev systems. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical

    NASA Astrophysics Data System (ADS)

    Reilly, Neil J.; Nakajima, Masakazu; Gibson, Bligh A.; Schmidt, Timothy W.; Kable, Scott H.

    2009-04-01

    The D1(A2″)-D0(A2″) electronic transition of the resonance-stabilized 1-phenylpropargyl radicalooled discharge of 3-phenyl-1-propyne, has been investigated in detail by laser-induced fluorescence excitation and dispersed single vibronic level fluorescence (SVLF) spectroscopy. The transition is dominated by the origin band at 21 007 cm-1, with weaker Franck-Condon activity observed in a' fundamentals and even overtones and combinations of a″ symmetry. Ab initio and density functional theory calculations of the D0 and D1 geometries and frequencies were performed to support and guide the experimental assignments throughout. Analysis of SVLF spectra from 16 D1 vibronic levels has led to the assignment of 15 fundamental frequencies in the excited state and 19 fundamental frequencies in the ground state; assignments for many more normal modes not probed directly by fluorescence spectroscopy are also suggested. Duschinsky mixing, in which the excited state normal modes are rotated with respect to the ground state modes, is prevalent throughout, in vibrations of both a' and a″ symmetry.

  12. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies.

    PubMed

    McDonald, M; Bayliss, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-08-16

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

  13. Parameterization of typhoon-induced ocean cooling using temperature equation and machine learning algorithms: an example of typhoon Soulik (2013)

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Jiang, Guo-Qing; Liu, Xin

    2017-09-01

    This study proposed three algorithms that can potentially be used to provide sea surface temperature (SST) conditions for typhoon prediction models. Different from traditional data assimilation approaches, which provide prescribed initial/boundary conditions, our proposed algorithms aim to resolve a flow-dependent SST feedback between growing typhoons and oceans in the future time. Two of these algorithms are based on linear temperature equations (TE-based), and the other is based on an innovative technique involving machine learning (ML-based). The algorithms are then implemented into a Weather Research and Forecasting model for the simulation of typhoon to assess their effectiveness, and the results show significant improvement in simulated storm intensities by including ocean cooling feedback. The TE-based algorithm I considers wind-induced ocean vertical mixing and upwelling processes only, and thus obtained a synoptic and relatively smooth sea surface temperature cooling. The TE-based algorithm II incorporates not only typhoon winds but also ocean information, and thus resolves more cooling features. The ML-based algorithm is based on a neural network, consisting of multiple layers of input variables and neurons, and produces the best estimate of the cooling structure, in terms of its amplitude and position. Sensitivity analysis indicated that the typhoon-induced ocean cooling is a nonlinear process involving interactions of multiple atmospheric and oceanic variables. Therefore, with an appropriate selection of input variables and neuron sizes, the ML-based algorithm appears to be more efficient in prognosing the typhoon-induced ocean cooling and in predicting typhoon intensity than those algorithms based on linear regression methods.

  14. Change in intracellular calcium ion concentration induced by caffeine and rapid cooling in frog skeletal muscle fibres.

    PubMed Central

    Konishi, M; Kurihara, S; Sakai, T

    1985-01-01

    In a single skeletal muscle fibre treated with concentrations of caffeine below threshold for caffeine contracture, rapid lowering of the temperature of the bathing solution from 18 degrees C to below 5 degrees C induced a contracture (rapid cooling contracture). Intracellular Ca2+ concentration ([Ca2+]i) was recorded during rapid cooling contracture using aequorin. Low concentrations of caffeine often caused a slight elevation of the light signal in resting muscle without detectable tension. During rapid cooling contracture, the change in light signal occurred in three phases. The first phase was a transient change of [Ca2+]i accompanying slight tension. During the second phase, the light signal slowly increased as cooling produced maximum tension development. The third phase was an additional light signal induced after the second phase, even though the tension was saturated. The second and third phases were more sensitive to low concentrations of procaine (0.2-0.5 mM) than the first phase. Synchronous oscillations of light and tension were often observed during the second phase. The light signal during rapid cooling contracture was only slightly affected by long incubation in Ca-free or Ca-rich solutions. These results are interpreted as follows. A low concentration of caffeine elevates cytoplasmic resting Ca2+ level without tension development. The oscillations of light and tension often observed in the second phase might represent a cyclic release of Ca2+ from the sarcoplasmic reticulum (s.r.). The third phase is considered to be due to a massive Ca2+ release by a Ca-induced Ca-release mechanism which might be similar to that in skinned fibres. The second phase is probably essential for generation of rapid cooling contracture tension and the third phase represents an excess Ca2+ for tension development. PMID:3875711

  15. Effect of supplemental vibrational force on orthodontically induced inflammatory root resorption: A multicenter randomized clinical trial.

    PubMed

    DiBiase, Andrew T; Woodhouse, Neil R; Papageorgiou, Spyridon N; Johnson, Nicola; Slipper, Carmel; Grant, James; Alsaleh, Maryam; Cobourne, Martyn T

    2016-12-01

    A multicenter parallel 3-arm randomized clinical trial was carried out in 1 university and 2 district hospitals in the United Kingdom to investigate the effect of supplemental vibrational force on orthodontically induced inflammatory root resorption (OIIRR) during the alignment phase of fixed appliance therapy. Eighty-one subjects less than 20 years old with mandibular incisor irregularity undergoing extraction-based fixed-appliance treatment were randomly allocated to supplementary (20 minutes a day) use of an intraoral vibrational device (AcceleDent; OrthoAccel Technologies, Houston, Tex) (n = 29), an identical nonfunctional (sham) device (n = 25), or fixed appliances only (n = 27). OIIRR was measured blindly from long-cone periapical radiographs of the maxillary right central incisor taken at the start of treatment and the end of alignment when a 0.019 × 0.025-in stainless steel archwire was placed (mean follow-up, 201.6 days; 95% confidence interval [CI], 188.6-214.6 days). Data were analyzed blindly on a per-protocol basis because losses to follow-up were minimal, with descriptive statistics, 1-way analysis of variance, and univariable and multivariable regression modeling. Nine patients were excluded from the analysis; they were evenly distributed across the groups. Mean overall OIIRR measured among the 72 patients was 1.08 mm (95% CI, 0.89-1.27 mm). Multivariable regression indicated no significant difference in OIIRR for the AcceleDent (difference, 0.22 mm; 95% CI, -0.14-0.72; P = 0.184) and AcceleDent sham groups (difference, 0.29 mm; 95% CI, -0.15-0.99; P = 0.147) compared with the fixed-appliance-only group, after accounting for patient sex, age, malocclusion, extraction pattern, alignment time, maximum pain experienced, history of dentoalveolar trauma, and initial root length of the maxillary right central incisor. No other side-effects were recorded apart from pain and OIIRR. The use of supplemental vibrational force during the

  16. Vortex-induced vibrations of three staggered circular cylinders at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Behara, Suresh; Ravikanth, B.; Chandra, Venu

    2017-08-01

    Vortex-induced vibrations of three staggered circular cylinders are investigated via two-dimensional finite element computations. All the cylinders are of equal diameter (D) and are mounted on elastic supports in both streamwise (x -) and transverse (y -) directions. The two downstream cylinders are placed symmetrically on either side of the upstream body at a streamwise gap of 5D, with the vertical distance between them being 3D. Flow simulations are carried out for Reynolds numbers (Re) in the range of Re = 60-160. Reduced mass (m*) of 10 is considered and the damping is set to zero value. The present investigations show that the upstream cylinder exhibits initial and lower synchronization response modes like an isolated cylinder does at low Re. Whereas for both the downstream cylinders, the upper lock-in branch also appears. The initial and the upper modes are characterized by periodic oscillations, while the lower lock-in branch is associated with nonperiodic vibrations. The 2S mode of vortex shedding is observed in the near wake of all the cylinders for all Re, except for the upper branch corresponding to the downstream bodies. In the upper branch, both the downstream cylinders shed the primary vortices of the P+S mode. For the upstream cylinder, the phase between lift and the transverse displacement exhibits a 18 0° jump at certain Re in the lower branch. On the other hand, the downstream bodies undergo transverse oscillations in phase with lift in all lock-in modes, while the phase jumps by 18 0° as the oscillation response reaches the desynchronization regime.

  17. Flow-induced vein-wall vibration in an arteriovenous graft

    NASA Astrophysics Data System (ADS)

    Lee, S.-W.; Fischer, P. F.; Loth, F.; Royston, T. J.; Grogan, J. K.; Bassiouny, H. S.

    2005-08-01

    The hemodynamic environment of an arteriovenous (AV) graft differs from that of arterial grafts because mean flow rates are typically 10 times greater. This increased flow rate can create a weakly turbulent state, which alters the biomechanical environment greatly and may play a role in AV graft failure. A canine animal study was conducted to simulate the hemodynamic environment of a human AV graft. In vivo measurements were obtained for vein-wall vibration (VWV), graft geometry, and blood flow rate. In order to investigate the complex flow structure at the venous anastomosis of an AV graft, which is thought to induce these vibrations, a computational fluid dynamics study was conducted by direct numerical simulation under pulsatile flow and geometry conditions based on the animal study. The simulation technique employs the spectral element method, which is a high-order discretization ideally suited to the simulation of transitional flows in complex domains. The minimum and maximum Reynolds numbers entering the graft, based on average velocities, were 875 and 1235, respectively. While velocity and pressure fluctuations are clearly present in the numerical simulations, their magnitude and frequency do not correlate well with the in vivo VWV measurements. Potential reasons for this discrepancy are threefold. First, a quiescent inflow condition was used in the present computations; a more realistic inflow condition might alter the velocity fluctuations significantly. Second, simulations were conducted with a rigid geometry; compliance may play an important role in flow stability within an AV graft. Third, the flow split between the graft and vein inlet may also play an important role in the stability of the flow structures.

  18. An excitation spectrum criterion for the vibration-induced fatigue of small bore pipes

    NASA Astrophysics Data System (ADS)

    Moussou, P.

    2003-09-01

    The purpose of the study is to determine an easy-to-use criterion to evaluate the risk of vibration-induced fatigue of small bore pipes. The failure mechanism considered is the resonant amplification of a stationary broadband excitation by the main pipe, leading to bending stresses above the fatigue limit of the steel. Based on the Euler beam theory, a simple model is built up for the natural mode shapes of the small bore pipe close to its root. It is shown that the velocity spectrum at the root of the small bore pipe is equal to the r.m.s. value of the bending stress multiplied by a function of the natural frequency, the damping coefficient, the speed of elastic waves in the steel, Young's modulus and a nondimensional factor weakly depending on the geometry of the small bore pipe. A maximum velocity spectrum can then be deduced, assuming that a small bore pipe vibrates mainly on its natural mode shapes. The maximum excitation spectrum is defined for each frequency f as the one which would generate a maximum bending stress equal to the endurance limit of the steel, would the small bore pipe have a natural frequency equal to f. Using envelope values of the nondimensional factor, the stress intensification factor, the peak factor and the endurance limit of the steel, one obtains the following maximum velocity spectrum for the stainless steel: v<6mm/s/sqrt(f), and the following maximum velocity spectrum for the ferritic steel: v<2.7mm/s/sqrt(f). The velocity spectrum criterion appears less penalizing than the 12mm/s criterion and more conservative than the strict enforcement of the ANSI-OM3 standard. Comparisons with former plant studies show that the velocity spectrum criterion leads to the correct fatigue diagnosis.

  19. Vortex-induced vibrations of a square cylinder under linear shear flow

    NASA Astrophysics Data System (ADS)

    Sun, Wenjuan; Zhou, Dai; Tu, Jiahuang; Han, Zhaolong

    2017-04-01

    This paper investigates the numerical vortex-induced vibration (VIV) of a square cylinder which is connected to a 2-DOF mass-spring system and is immersed in the planar shear flow by employing a characteristic-based split (CBS) finite element method (FEM). The reduced mass of the square cylinder is M r = 2, while the reduced velocity, U r, is changed from 3 to 12 with an increment of ΔU r = 1. The effects of some key parameters on the cylinder dynamic responses, vibrating frequencies, the flow patterns as well as the energy transferred between the fluid and cylinder are revealed. In this study, the key parameters are selected as follows: shear ratio (k = 0, 0.05 and 0.1) and Reynolds numbers (Re = 80 and 160). Numerical results demonstrate that the X-Y trajectories of the cylinder mainly appear as a symmetrical figure ‘8’ in uniform flow (k = 0) and an unsymmetrical figure ‘8’ and ‘O’ in shear flows (k = 0.05 and 0.1). The maximum oscillation amplitudes of the square cylinder in both the inline and transverse directions have distinct characteristics compared to that of a circular cylinder. Two kinds of flow patterns, ‘2S’ and ‘P + S’, are mainly observed under the shear flow. Also, the mean values of the energy of the cylinder system increase with the reduced velocity, while the root mean square (rms) of the energy reaches its peak value at reduced velocity U r = 5.

  20. "Beating speckles" via electrically-induced vibrations of Au nanorods embedded in sol-gel.

    PubMed

    Ritenberg, Margarita; Beilis, Edith; Ilovitsh, Asaf; Barkai, Zehava; Shahmoon, Asaf; Richter, Shachar; Zalevsky, Zeev; Jelinek, Raz

    2014-01-13

    Generation of macroscopic phenomena through manipulating nano-scale properties of materials is among the most fundamental goals of nanotechnology research. We demonstrate cooperative "speckle beats" induced through electric-field modulation of gold (Au) nanorods embedded in a transparent sol-gel host. Specifically, we show that placing the Au nanorod/sol-gel matrix in an alternating current (AC) field gives rise to dramatic modulation of incident light scattered from the material. The speckle light patterns take form of "beats", for which the amplitude and frequency are directly correlated with the voltage and frequency, respectively, of the applied AC field. The data indicate that the speckle beats arise from localized vibrations of the gel-embedded Au nanorods, induced through the interactions between the AC field and the electrostatically-charged nanorods. This phenomenon opens the way for new means of investigating nanoparticles in constrained environments. Applications in electro-optical devices, such as optical modulators, movable lenses, and others are also envisaged.

  1. Wind- and Rain-Induced Vibrations Impose Different Selection Pressures on Multimodal Signaling.

    PubMed

    Halfwerk, Wouter; Ryan, Michael J; Wilson, Preston S

    2016-09-01

    The world is a noisy place, and animals have evolved a myriad of strategies to communicate in it. Animal communication signals are, however, often multimodal; their components can be processed by multiple sensory systems, and noise can thus affect signal components across different modalities. We studied the effect of environmental noise on multimodal communication in the túngara frog (Physalaemus pustulosus). Males communicate with rivals using airborne sounds combined with call-induced water ripples. We tested males under control as well as noisy conditions in which we mimicked rain- and wind-induced vibrations on the water surface. Males responded more strongly to a multimodal playback in which sound and ripples were combined, compared to a unimodal sound-only playback, but only in the absence of rain and wind. Under windy conditions, males decreased their response to the multimodal playback, suggesting that wind noise interferes with the detection of rival ripples. Under rainy conditions, males increased their response, irrespective of signal playback, suggesting that different noise sources can have different impacts on communication. Our findings show that noise in an additional sensory channel can affect multimodal signal perception and thereby drive signal evolution, but not always in the expected direction.

  2. Modeling and simulation of vortex induced vibration on the subsea riser/pipeline (GRP pipe)

    NASA Astrophysics Data System (ADS)

    Raja Adli, Raja Nor Fauziah bt; Ibrahim, Idris

    2012-06-01

    This paper presents the research work conducted to investigate the dynamics characteristics of the offshore riser pipeline due to vortex flow and to develop a model that could predict its vortex induced responses. Glass-fiber reinforced plastic (GRP) pipe is used for this study which has smaller density from the steel. A two-dimensional finite element computational method is implemented to describe the dynamic behavior of the riser. The governing equation of motion was based on Hamilton's principle, consists of the strain energy due to bending and axial deformation, kinetic energy due to both riser and internal fluid movement and also external force from currents and waves. A direct integration method namely Newmark integration scheme is proposed to solve the equation of motion. A MATLAB program code was developed to obtain the simulation results. The natural frequency and damping ratio are presented for each mode. Dynamic response of riser is shown in time-domain and the numerical results are discussed. Several parameter effects are used to investigate dynamic responses and the results show an agreement with the theory. Vortex shedding phenomenon also has been discussed in this paper. As a conclusion, the simulation results have successfully shown the vortex induced vibration responses for GRP pipeline.

  3. Whole body vibration induces forepaw and hind paw behavioral sensitivity in the rat.

    PubMed

    Baig, Hassam A; Guarino, Benjamin B; Lipschutz, Daniel; Winkelstein, Beth A

    2013-11-01

    Whole body vibration (WBV) has been linked to neck and back pain, but the biomechanical and physiological mechanisms responsible for its development and maintenance are unknown. A rodent model of WBV was developed in which rats were exposed to different WBV paradigms, either daily for 7 consecutive days (repeated WBV) or two single exposures at Day 0 and 7 (intermittent WBV). Each WBV session lasted for 30 min and was imposed at a frequency of 15 Hz and RMS platform acceleration of 0.56 ± 0.07 g. Changes in the withdrawal response of the forepaw and hind paw were measured, and were used to characterize the onset and maintenance of behavioral sensitivity. Accelerations and displacements of the rat and deformations in the cervical and lumbar spines were measured during WBV to provide mechanical context for the exposures. A decrease in withdrawal threshold was induced at 1 day after the first exposure in both the hind paw and forepaw. Repeated WBV exhibited a sustained reduction in withdrawal threshold in both paws and intermittent WBV induced a sustained response only in the forepaw. Cervical deformations were significantly elevated which may explain the more robust forepaw response. Findings suggest that a WBV exposure leads to behavioral sensitivity. © 2013 Orthopaedic Research Society.

  4. Buzz pollination in eight bumblebee-pollinated Pedicularis species: does it involve vibration-induced triboelectric charging of pollen grains?

    PubMed

    Corbet, Sarah A; Huang, Shuang-Quan

    2014-12-01

    Buzz pollination involves explosive pollen release in response to vibration, usually by bees. The mechanism of pollen release is poorly understood, and it is not clear which component of vibration (acceleration, frequency, displacement or velocity) is critical; the role of buzz frequency has been particularly controversial. This study proposes a novel hypothesis that explosive pollen release results from vibration-induced triboelectric charging. If it does, pollen release is expected to depend on achievement of a critical threshold velocity. Eight sympatric buzz-pollinated species of Pedicularis that share bumblebee pollinator species were studied, giving a rare opportunity to compare sonication behaviour of a shared pollinator on different plant species. Reconsidering previous experimental studies, it is argued that they establish the critical role of the velocity component of vibration in pollen release, and that when displacement is constrained by body size bees can achieve the critical velocity by adjusting frequency. It was shown that workers of Bombus friseanus assorted themselves among Pedicularis species by body size, and that bees adjusted their buzz/wingbeat frequency ratio, which is taken as an index of the velocity component, to a value that corresponds with the galea length and pollen grain volume of each species of Pedicularis. Sonication behaviour of B. friseanus differs among Pedicularis species, not only because worker bees assort themselves among plant species by body size, but also because bees of a given size adjust the buzz frequency to achieve a vibration velocity corresponding to the floral traits of each plant species. These findings, and the floral traits that characterize these and other buzz-pollinated species, are compatible with the hypothesis of vibration-induced triboelectric charging of pollen grains. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  5. Buzz pollination in eight bumblebee-pollinated Pedicularis species: does it involve vibration-induced triboelectric charging of pollen grains?

    PubMed Central

    Corbet, Sarah A.; Huang, Shuang-Quan

    2014-01-01

    Background and Aims Buzz pollination involves explosive pollen release in response to vibration, usually by bees. The mechanism of pollen release is poorly understood, and it is not clear which component of vibration (acceleration, frequency, displacement or velocity) is critical; the role of buzz frequency has been particularly controversial. This study proposes a novel hypothesis that explosive pollen release results from vibration-induced triboelectric charging. If it does, pollen release is expected to depend on achievement of a critical threshold velocity. Methods Eight sympatric buzz-pollinated species of Pedicularis that share bumblebee pollinator species were studied, giving a rare opportunity to compare sonication behaviour of a shared pollinator on different plant species. Key Results Reconsidering previous experimental studies, it is argued that they establish the critical role of the velocity component of vibration in pollen release, and that when displacement is constrained by body size bees can achieve the critical velocity by adjusting frequency. It was shown that workers of Bombus friseanus assorted themselves among Pedicularis species by body size, and that bees adjusted their buzz/wingbeat frequency ratio, which is taken as an index of the velocity component, to a value that corresponds with the galea length and pollen grain volume of each species of Pedicularis. Conclusions Sonication behaviour of B. friseanus differs among Pedicularis species, not only because worker bees assort themselves among plant species by body size, but also because bees of a given size adjust the buzz frequency to achieve a vibration velocity corresponding to the floral traits of each plant species. These findings, and the floral traits that characterize these and other buzz-pollinated species, are compatible with the hypothesis of vibration-induced triboelectric charging of pollen grains. PMID:25274550

  6. Laser Induced Fluorescence Spectroscopy of Jet-Cooled CaOCa

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael N.; Frohman, Daniel J.; Heaven, Michael; Fawzy, Wafaa M.

    2016-06-01

    The group IIA metals have stable hypermetallic oxides of the general form MOM. Theoretical interest in these species is associated with the multi-reference character of the ground states. It is now established that the ground states can be formally assigned to the M+O^{2-M+} configuration, which leaves two electrons in orbitals that are primarily metal-centered ns orbitals. Hence the MOM species are diradicals with very small energy spacings between the lowest energy singlet and triplet states. Previously, we have characterized the lowest energy singlet transition (1Σ^{+u← X1Σ+g}) of BeOBe. In this study we obtained the first electronic spectrum of CaOCa. Jet-cooled laser induced fluorescence spectra were recorded for multiple bands that occured within the 14,800 - 15,900 cm-1 region. Most of the bands exhibited simple P/R branch rotational line patterns that were blue-shaded. Only even rotational levels were observed, consistent with the expected X 1Σ^{+g} symmetry of the ground state (40Ca has zero nuclear spin). A progression of excited bending modes was evident in the spectrum, indicating that the transition is to an upper state that has a bent equilibrium geometry. Molecular constants were extracted from the rovibronic bands using PGOPHER. The experimental results and interpretation of the spectrum, which was guided by the predictions of electronic structure calculation, will be presented.

  7. Laser Induced Fluorescence Spectroscopy of Jet-Cooled MgOMg

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael N.; Frohman, Daniel J.; Heaven, Michael; Fawzy, Wafaa M.

    2017-06-01

    The group IIA metals have stable hypermetallic oxides of the general form MOM. Theoretical interest in these species is associated with the multi-reference character of the ground states. It is now established that the ground states can be formally assigned to the M^{+O^{2-}M^{+}} configuration, which leaves two electrons in orbitals that are primarily metal-centered ns orbitals. Hence the MOM species are diradicals with very small energy spacings between the lowest energy singlet and triplet states. Previously, we have characterized the lowest energy singlet transition (^{1Σ^{+}_{u}← ^{1}Σ^{+}_{g}}) of BeOBe. Preliminary data for the first electronic transition of the isovalent species, CaOCa, was presented previously (71^{st} ISMS, talk RI10). We now report the first electronic spectrum of MgOMg. Jet-cooled laser induced fluorescence spectra were recorded for multiple bands that occurred within the 21,000 - 24,000 cm^{-1} range. Most of the bands exhibited simple P/R branch rotational line patterns that were blue-shaded. Only even rotational levels were observed, consistent with the expected X ^{1Σ^{+}_{g}} symmetry of the ground state (^{24Mg} has zero nuclear spin). Molecular constants were extracted from the rovibronic bands using PGOPHER. The experimental results and interpretation of the spectrum, which was guided by the predictions of electronic structure calculation, will be presented.

  8. Prevention of chemotherapy-induced alopecia using an effective scalp cooling system.

    PubMed

    Katsimbri, P; Bamias, A; Pavlidis, N

    2000-04-01

    Alopecia is a distressing side-effect of cancer treatment. Taxanes (TX), anthracyclines (ANR) and etoposide (ET) have been consistently associated with significant alopecia. We studied an effective scalp cooling system, the Penguin Cold Cap system, for the prevention of chemotherapy-induced alopecia in 70 patients receiving chemotherapy, including one of the following major alopecia-causing agents: Group A, TX-based regimes (without ANR); Group B, TX+ANR; Group C, ANR-based regimes (without TX); Group D, ET-based regimes. Protection from hair loss was achieved by maintaining scalp temperatures below 15 degrees C before, during and after chemotherapy by frequent changing of the caps. Assessment was carried out using a grading system from 0 to 4. Grades 0-2 were considered as satisfactory hair protection, whilst Grades 3-4 were considered failures. 57 patients were evaluable for assessment. An overall 81% protection was achieved. In groups C and D 11 of 12 patients (92%) had no alopecia, whilst 30 of 34 patients (88%) treated with taxanes had adequate hair protection. In Group B, 4 of 11 patients (36%) had adequate hair protection. The system was well tolerated and is a very effective method for protection from hair loss caused by TX, ANR and ET. Our results are comparable with and, in most cases, better than those reported in other studies using various alopecia preventive methods.

  9. QT interval heterogeneities induced through local epicardial warming/cooling. An experimental study.

    PubMed

    Guill, Antonio; Tormos, Alvaro; Millet, José; Roses, Eduardo J; Cebrián, Antonio; Such-Miquel, Luis; Such, Luis; Zarzoso, Manuel; Alberola, Antonio; Chorro, Francisco J

    2014-12-01

    Abnormal QT interval durations and dispersions have been associated with increased risk of ventricular arrhythmias. The present study examines the possible arrhythmogenic effect of inducing QT interval variations through local epicardial cooling and warming. In 10 isolated rabbit hearts, the temperatures of epicardial regions of the left ventricle were modified in a stepwise manner (from 22°C to 42°C) with simultaneous electrogram recording in these regions and in others of the same ventricle. QT and activation-recovery intervals were determined during sinus rhythm, whereas conduction velocity and ventricular arrhythmia induction were determined during programmed stimulation. In the area modified from baseline temperature (37°C), the QT (standard deviation) was prolonged with maximum hypothermia (195 [47] vs 149 [12] ms; P<.05) and shortened with hyperthermia (143 [18] vs 152 [27] ms; P<.05). The same behavior was displayed for the activation-recovery interval. The conduction velocity decreased with hypothermia and increased with hyperthermia. No changes were seen in the other unmodified area. Repetitive responses were seen in 5 experiments, but no relationship was found between their occurrence and hypothermia or hyperthermia (P>.34). In the experimental model employed, local variations in the epicardial temperature modulate the QT interval, activation-recovery interval, and conduction velocity. Induction of heterogeneities did not promote ventricular arrhythmia occurrence. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  10. Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents.

    PubMed

    Robbins, Ashlee; Kurose, Masayuki; Winterson, Barbara J; Meng, Ian D

    2012-10-09

    Stimulation to the cornea via noxious chemical and mechanical means evokes tearing, blinking, and pain. In contrast, mild cooling of the ocular surface has been reported to increase lacrimation via activation of corneal cool primary afferent neurons. The purpose of our study was to determine whether menthol induces corneal cool cell activity and lacrimation via the transient receptor potential melastatin-8 (TRPM8) channel without evoking nociceptive responses. Tear measurements were made using a cotton thread in TRPM8 wild type and knockout mice after application of menthol (0.05-50 mM) to the cornea. In additional studies, nocifensive responses (eye swiping and lid closure) were quantified following cornea menthol application. Trigeminal ganglion electrophysiologic single unit recordings were performed in rats to determine the effect of low and high concentrations of menthol on corneal cool cells. At low concentrations, menthol increased tear production in TRPM8 wild type and heterozygous animals, but had no effect in TRPM8 knockout mice, while nocifensive responses remained unaffected. At the highest concentration, menthol (50 mM) increased tearing and nocifensive responses in TRPM8 wild type and knockout animals. A low concentration of menthol (0.1 mM) increased cool cell activity, yet a high concentration of menthol (50 mM) had no effect. These studies indicated that low concentrations of menthol can increase lacrimation via TRPM8 channels without evoking nocifensive behaviors. At high concentrations, menthol can induce lacrimation and nocifensive behaviors in a TRPM8 independent mechanism. The increase in lacrimation is likely due to an increase in cool cell activity.

  11. Concorde noise-induced building vibrations, John F. Kennedy International Airport

    NASA Technical Reports Server (NTRS)

    Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Miller, W. T.; Ward, D. W.

    1978-01-01

    The outdoor/indoor noise levels and associated vibration levels resulting from aircraft and nonaircraft events were recorded at eight homesites and a school. In addition, limited subjective tests were conducted to examine the human detection/annoyance thresholds for building vibration and rattle caused by aircraft noise. Presented herein are the majority of the window and wall vibration data recorded during Concorde and subsonic aircraft overflights.

  12. Novel method for inducing rapid, controllable therapeutic hypothermia in rats using a perivascular implanted closed-loop cooling circuit.

    PubMed

    Lamb, Jessica A; Rajput, Padmesh S; Lyden, Patrick D

    2016-07-15

    Hypothermia is the most potent protective therapy available for cerebral ischemia. In experimental models, cooling the brain even a single degree Celsius alters outcome after global and focal ischemia. Difficulties translating therapeutic hypothermia to patients with stroke or after cardiac arrest include: uncertainty as to the optimal treatment duration; best target-depth temperature; and longest time delay after which therapeutic hypothermia won't benefit. Recent results from human clinical trials suggest that cooling with surface methods provides insufficient cooling speed or control over target temperature. Available animal models incorporate surface cooling methods that are slow, and do not allow for precise control of the target temperature. To address this need, we developed a rapid, simple, inexpensive model for inducing hypothermia using a perivascular implanted closed-loop cooling circuit. The method allows precise control of the target temperature. Using this method, target temperature for therapeutic hypothermia was reached within 13±1.07min (Mean±SE). Once at target, the temperature was maintained within 0.09°C for 4h. This method will allow future experiments to determine under what conditions therapeutic hypothermia is effective, determine the optimal relationship among delay, duration, and depth, and provide the research community with a new model for conducting further research into mechanistic questions underlying the efficacy of therapeutic hypothermia. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Performance of a microwave induced plasma (MIP) operated in a liquid-cooled discharge tube for atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Mierzwa, J.; Brandt, R.; Broekaert, J. A. C.; Tschöpel, P.; Tölg, G.

    1996-01-01

    Different types of microwave induced plasma (MIP) discharge operated in liquid-cooled tubes, namely a glass tube of Duran ®, a quartz tube of Herasil ®, and a very simple demountable discharge tube made of glass and quartz have been investigated. The last tube leads to the best analytical properties and the longest lifetime. The intensities of silicon lines and of the continuum spectral background, together with the signal-to-background ratios for B, Ca, Cd, Co and Zn in the case of the pneumatic nebulization of solutions have been measured and used as an indicator for the cooling efficiency. The MIP torch was cooled with a thermostated silicon oil. The decrease of the temperature of the cooling medium causes a measurable decrease of the spectral background intensity. Diagnostic measurements of the plasma include radial profiles of spectral line intensities and excitation temperatures with the lines of Fe I; values of 5000-6000 K are found. The influence of different plasma parameters, e.g. microwave power and helium flow rate, is investigated. The preliminary analytical characterization of a helium MIP maintained with the liquid-cooled demountable discharge tube is presented. Limits of detection for Al, B, Ca, Co, Fe, P, Sb and Zn (between 0.002 and 1.2 μg ml -1) are comparable with or better than those reported for low power helium MIPs with sample introduction in the form of a wet aerosol.

  14. Evaluation of human response to structural vibrations induced by sonic booms

    NASA Technical Reports Server (NTRS)

    Sutherland, Louis C.; Czech, J.

    1992-01-01

    The topic is addressed of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. An attempt is made to reexamine some of the issues addressed previously and to offer fresh insight that may assist in reassessing the potential impact of sonic boom over populated areas. Human response to vibration is reviewed first and a new human vibration response criterion curve is developed as a function of frequency. The difference between response to steady state versus impulsive vibration is addressed and a 'vibration exposure' or 'vibration energy' descriptor is suggested as one possible way to evaluate duration effects on response to transient vibration from sonic booms. New data on the acoustic signature of rattling objects are presented along with a review of existing data on the occurrence of rattle. Structural response to sonic boom is reviewed and a new descriptor, 'Acceleration Exposure Level' is suggested which can be easily determined from the Fourier Spectrum of a sonic boom. A preliminary assessment of potential impact from sonic booms is provided in terms of human response to vibration and detection of rattle based on a synthesis of the preceding material.

  15. Over-vibration induced blood perfusion and vascular permeability changes may lead to vocal edema.

    PubMed

    Wang, Jiajia; Devine, Erin; Fang, Rui; Jiang, Jack J

    2017-01-01

    To observe blood perfusion and vascular permeability changes under varying vibration frequency exposures. Animal model. Blood perfusion was measured using laser Doppler flowmetry in eight rabbit auricular vessels (four rabbits) under nonvibration, and 62.5-Hz/1-mm, 125-Hz/1-mm, and 250-Hz/0.5-mm vibration frequency/amplitude exposures. Another 12 rabbits were randomly divided into vibration only and vibration with histamine groups. After 3 hours of continuous 125-Hz, 1-mm amplitude vibration of the auricle, vascular permeability was analyzed by absorbance of Evans blue-albumin complex. Significantly lower blood perfusion was observed in the vibration group, compared with no vibration exposure controls. Blood perfusion decreased 29 ± 16% as the vibration frequency was increased from 62.5 Hz to 125 Hz with the vibration amplitude constant at 1 mm. When the frequency was increased from 125 Hz to 250 Hz, while the amplitude was decreased from 1 mm to 0.5 mm, blood flow perfusion further decreased 29 ± 29%, and the decline tendency in blood perfusion showed no significant difference (P = .992). Meanwhile, in the vibration with histamine group, vascular permeability of the vibrated ears increased significantly compared to the nonvibrated ears (P = .005). Overvibration of the vocal folds due to voice overuse or abuse may significantly reduce blood perfusion, and increase vascular permeability in the vocal fold in inflammatory situations, which may lead to the formation of vocal edema. NA Laryngoscope, 127:148-152, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Discussion of "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140

    NASA Astrophysics Data System (ADS)

    Svinkin, Mark R.

    2016-12-01

    The authors suggested a hybrid method for modeling the time history of structural vibrations triggered by impact dynamic loads from construction equipment and blasting, and they stated, "In this work, a hybrid method has been proposed to calculate the theoretical seismograms of structural vibrations. The word "hybrid" denotes a combination of field measurements and computer simulations. Then, based on nonlinear system theory, a novel method is proposed to predict the signal induced by impact loading".

  17. Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever

    NASA Astrophysics Data System (ADS)

    Zhang, Dongdong; Tan, Jianguo; Lv, Liang

    2015-12-01

    The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.

  18. Analysis of muscle fatigue induced by isometric vibration exercise at varying frequencies.

    PubMed

    Mischi, M; Rabotti, C; Cardinale, M

    2012-01-01

    An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training device is used to perform vibration exercise at varying frequency and force, therefore enabling the analysis of the relationship between vibration frequency and muscle fatigue. Fatigue is estimated by maximum voluntary contraction measurement, as well as by EMG mean-frequency and conduction-velocity analysis. Seven volunteers performed five isometric contractions of the biceps brachii with a load consisting of a baseline of 80% of their maximum voluntary contraction (MVC), with no vibration and with a superimposed 20, 30, 40, and 50 Hz vibrational force of 40 N. Myoelectric and mechanical fatigue were estimated by EMG analysis and by assessment of the MVC decay, respectively. A dedicated motion artifact canceler, making use of accelerometry, is proposed to enable accurate EMG analysis. Use of this canceler leads to better interpolation of myoelectric fatigue trends and to better correlation between mechanical and myoelectric fatigue. In general, our results suggest vibration at 30 Hz to be the most fatiguing exercise. These results contribute to the analysis of vibration exercise and motivate further research aiming at improved training protocols.

  19. Reconfiguration and the reduction of vortex-induced vibrations in broad leaves.

    PubMed

    Miller, Laura A; Santhanakrishnan, Arvind; Jones, Shannon; Hamlet, Christina; Mertens, Keith; Zhu, Luoding

    2012-08-01

    Flexible plants, fungi and sessile animals reconfigure in wind and water to reduce the drag acting upon them. In strong winds and flood waters, for example, leaves roll up into cone shapes that reduce drag compared with rigid objects of similar surface area. Less understood is how a leaf attached to a flexible leaf stalk will roll up stably in an unsteady flow. Previous mathematical and physical models have only considered the case of a flexible sheet attached to a rigid tether in steady flow. In this paper, the dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia and the wild violet Viola papilionacea are described using particle image velocimetry. The flows around the leaves are compared with those of simplified physical and numerical models of flexible sheets attached to both rigid and flexible beams. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In the physical model, a similar recirculation zone is observed within sheets constructed to roll up into cones with both rigid and flexible tethers. Numerical simulations and experiments show that flexible rectangular sheets that reconfigure into U-shapes, however, are less stable when attached to flexible tethers. In these cases, larger forces and oscillations due to strong vortex shedding are measured. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.

  20. Vortex-Induced Vibrations of a Flexibly-Mounted Cyber-Physical Rectangular Plate

    NASA Astrophysics Data System (ADS)

    Onoue, Kyohei; Strom, Benjamin; Song, Arnold; Breuer, Kenneth

    2013-11-01

    We have developed a cyber-physical system to explore the vortex-induced vibration (VIV) behavior of a flat plate mounted on a virtual spring damper support. The plate is allowed to oscillate about its mid-chord and the measured angular position, velocity, and torque are used as inputs to a feedback control system that provides a restoring torque and can simulate a wide range of structural dynamic behavior. A series of experiments were carried out using different sized plates, and over a range of freestream velocities, equilibrium angles of attack, and simulated stiffness and damping. We observe a synchronization phenomenon over a wide range of parameter space, wherein the plate oscillates at moderate to large amplitude with a frequency dictated by the natural structural frequency of the system. Additionally, the existence of bistable states is reflected in the hysteretic response of the system. The cyber-physical damping extracts energy from the flow and the efficiency of this harvesting mechanism is characterized over a range of dimensionless stiffness and damping parameters. This research is funded by the Air Force Office of Scientific Research (AFOSR).

  1. Stress wave propagation analysis on vortex-induced vibration of marine risers

    NASA Astrophysics Data System (ADS)

    Li, Hua-jun; Wang, Chao; Liu, Fu-shun; Hu, Sau-Lon James

    2017-03-01

    To analyze the stress wave propagation associated with the vortex-induced vibration (VIV) of a marine riser, this paper employed a multi-signal complex exponential method. This method is an extension of the classical Prony's method which decomposes a complicated signal into a number of complex exponential components. Because the proposed method processes multiple signals simultaneously, it can estimate the "global" dominating frequencies (poles) shared by those signals. The complex amplitude (residues) corresponding to the estimated frequencies for those signals is also obtained in the process. As the signals were collected at different locations along the axial direction of a marine riser, the phenomena of the stress wave propagation could be analyzed through the obtained residues of those signals. The Norwegian Deepwater Program (NDP) high mode test data were utilized in the numerical studies, including data sets in both the in-line (IL) and cross-flow (CF) directions. It was found that the most dominant component in the IL direction has its stress wave propagation along the riser being dominated by a standing wave, while that in the CF direction dominated by a traveling wave.

  2. Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti.

    PubMed

    Göpfert, M C; Briegel, H; Robert, D

    1999-10-01

    Male mosquitoes are attracted by the flight sounds of conspecific females. In males only, the antennal flagellum bears a large number of long hairs and is therefore said to be plumose. As early as 1855, it was proposed that this remarkable antennal anatomy served as a sound-receiving structure. In the present study, the sound-induced vibrations of the antennal flagellum in male and female Aedes aegypti were compared, and the functional significance of the flagellar hairs for audition was examined. In both males and females, the antennae are resonantly tuned mechanical systems that move as simple forced damped harmonic oscillators when acoustically stimulated. The best frequency of the female antenna is around 230 Hz; that of the male is around 380 Hz, which corresponds approximately to the fundamental frequency of female flight sounds. The antennal hairs of males are resonantly tuned to frequencies between approximately 2600 and 3100 Hz and are therefore stiffly coupled to, and move together with, the flagellar shaft when stimulated at biologically relevant frequencies around 380 Hz. Because of this stiff coupling, forces acting on the hairs can be transmitted to the shaft and thus to the auditory sensory organ at the base of the flagellum, a process that is proposed to improve acoustic sensitivity. Indeed, the mechanical sensitivity of the male antenna not only exceeds the sensitivity of the female antenna but also those of all other arthropod movement receivers studied so far.

  3. Experimental investigation on vortex-induced vibration of steel catenary riser

    NASA Astrophysics Data System (ADS)

    Fan, Yu-ting; Mao, Hai-ying; Guo, Hai-yan; Liu, Qing-hai; Li, Xiao-min

    2015-10-01

    Steel catenary riser (SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration (VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow (CF) and in-line (IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.

  4. Tension and drag forces of flexible risers undergoing vortex-induced vibration

    NASA Astrophysics Data System (ADS)

    Song, Lei-jian; Fu, Shi-xiao; Li, Man; Gao, Yun; Ma, Lei-xin

    2017-03-01

    This paper presents the results of an experimental investigation on the variation in the tension and the distribution of drag force coefficients along flexible risers under vortex-induced vibration (VIV) in a uniform flow for Reynolds numbers ( Re) up to 2.2×105. The results show that the mean tension is proportional to the square of the incoming current speed, and the tension coefficient of a flexible riser undergoing VIV can be up to 12. The mean drag force is uniformly and symmetrically distributed along the axes of the risers undergoing VIV. The corresponding drag coefficient can vary between 1.6 and 2.4 but is not a constant value of 1.2, as it is for a fixed cylinder in the absence of VIV. These experimental results are used to develop a new empirical prediction model to estimate the drag force coefficient for flexible risers undergoing VIV for Reynolds number on the order of 105, which accounts for the effects of the incoming current speed, the VIV dominant modal number and the frequency.

  5. Effects of whole body vibration on muscle contractile properties in exercise induced muscle damaged females.

    PubMed

    Dabbs, Nicole C; Black, Christopher D; Garner, John C

    2016-10-01

    Determining muscle contractile properties following exercise is critical in understanding neuromuscular function. Following high intensity training, individuals often experience exercise induced muscle damage (EIMD). The purpose of this investigation was to determine the effect of whole-body vibration (WBV) on muscle contractile properties following EIMD. Twenty-seven females volunteered for 7 sessions and were randomly assigned to a treatment or control group. Muscle contractile properties were assessed via voluntary torque (VT), peak twitch torque (TT), time to reach peak torque, half relaxation time of twitch torque, percent activation (%ACT), rate of rise (RR), rate of decline (RD), mean and peak electromyography during maximum voluntary isometric contraction. Two testing sets were collected each day, consisting of pre measures followed by WBV or control and post measures. A mixed factor analysis of variance was conducted for each variable. %ACT measures found baseline being less than day 1 in both measures in the control group. TT was found to be greater in the control group compared to WBV group. TT and VT baseline measures were greater than all other time points. RR showed control group had higher values than WBV group. These results indicate that WBV following EIMD had some positive effects on muscle contractile properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Vortex-induced vibration of a collinear array of bottom fixed flexible cylinders

    NASA Astrophysics Data System (ADS)

    Oviedo-Tolentino, F.; Romero-Méndez, R.; Hernández-Guerrero, A.; Pérez-Gutiérrez, F. G.

    2013-05-01

    An experimental study of vortex-induced vibrations of a collinear array of 10 identical flexible cylinders was conducted between 140

  7. Examination of hydrodynamic force acting on a circular cylinder in vortex-induced vibrations in synchronization

    NASA Astrophysics Data System (ADS)

    Shen, Linwei; Chan, Eng-Soon; Sun, Zhilin

    2017-04-01

    An immersed boundary method is employed to simulate vortex-induced vibrations (VIV) of a circular cylinder in two dimensions. The Reynolds number is 150, and the cylinder mass ratios of 2 and 10 are considered. The synchronization regions for these two mass ratios are determined by the simulations. It is found that the cycle-averaged added mass is about zero at the reduced velocity of 6.1. The instantaneous frequency, which is obtained by Hilbert transformation of the cylinder oscillating displacement, exhibits an important feature whereby the cylinder oscillation in the VIV synchronization region is modulated with a frequency twice the displacement prevailing frequency. The cylinder displacement could still be well approximated by a sine function with a constant frequency and amplitude. However, the lift force acting on the cylinder cannot be estimated in the same manner. In fact, both the lift force amplitude and frequency are modulated. The suggested expression provides a better approximation of the lift force. Moreover, it reveals that the presence of the higher harmonics in the lift force is the result of the amplitude and frequency modulation.

  8. Dynamic characteristics of an inclined flexible cylinder undergoing vortex-induced vibrations

    NASA Astrophysics Data System (ADS)

    Han, Qinghua; Ma, Yexuan; Xu, Wanhai; Lu, Yan; Cheng, Ankang

    2017-04-01

    A series of experimental tests were conducted on vortex-induced vibrations (VIV) of a flexible inclined cylinder with a yaw angle equals 45° for investigating the response characteristics in a towing tank. The flexible cylinder model was 5.6 m in length and 16 mm in diameter with an aspect ratio of 350 and a mass ratio of 1.9. The Reynolds numbers ranged from about 800 to 16,000.The strain responses were measured directly in both cross-flow (CF) and in-line (IL) directions and corresponding displacements were obtained using a modal approach. The dynamic response characteristics of the inclined flexible cylinder excited by vortex shedding was examined from the aspect of strain response, displacement amplitudes, dominant modes, response frequencies and drag force coefficients. The experimental results indicated that the CF response amplitude could be up to a value of 3.0D and the IL one more than 1.1D. The dominant modes were from 1 to 3 in CF direction and 1 to 5 in IL direction. And it was found that dominant frequencies increased linearly with the reduced velocity. The multi-modal response of the flexible inclined cylinder model excited by VIV was observed and analyzed. Moreover, the values of drag coefficients were in the range of 0.9-2.6.

  9. Dynamic characteristics of a cable-stayed bridge measured from traffic-induced vibrations

    NASA Astrophysics Data System (ADS)

    Wang, Yun-Che; Chen, Chern-Hwa

    2012-09-01

    This paper studies the dynamic characteristics of the Kao-Ping-Hsi cable-stayed bridge under daily traffic conditions. Experimental data were measured from a structural monitoring system, and system-identification techniques, such as the random decrement (RD) technique and Ibrahim time-domain (ITD) method, were adopted. The first five modes of the bridge were identified for their natural frequencies and damping ratios under different traffic loading conditions, in terms of root-mean-square (RMS) deck velocities. The magnitude of the torsion mode of the Kao-Ping-Hsi cable-stayed bridge is found to be one order-of-magnitude less than the transfer mode, and two orders-of-magnitude less than the vertical modes. Out results indicated that vibrations induced by traffic flow can be used as an indicator to monitor the health of the bridge due to their insensitivity to the natural frequencies of the cable-stayed bridge. Furthermore, the damping ratios may be used as a more sensitive indicator to describe the condition of the bridge.

  10. The Modeling of Vibration Damping in SMA Wires

    SciTech Connect

    Reynolds, D R; Kloucek, P; Seidman, T I

    2003-09-16

    Through a mathematical and computational model of the physical behavior of shape memory alloy wires, this study shows that localized heating and cooling of such materials provides an effective means of damping vibrational energy. The thermally induced pseudo-elastic behavior of a shape memory wire is modeled using a continuum thermodynamic model and solved computationally as described by the authors in [23]. Computational experiments confirm that up to 80% of an initial shock of vibrational energy can be eliminated at the onset of a thermally-induced phase transformation through the use of spatially-distributed transformation regions along the length of a shape memory alloy wire.