Sample records for induces abnormal root

  1. Open bite as a risk factor for orthodontic root resorption.

    PubMed

    Motokawa, Masahide; Terao, Akiko; Kaku, Masato; Kawata, Toshitsugu; Gonzales, Carmen; Darendeliler, M Ali; Tanne, Kazuo

    2013-12-01

    The purpose of the present study was to clarify the prevalence and degree of root resorption induced by orthodontic treatment in patients with and without open bite. One hundred and eleven patients treated with multibracket appliances were retrospectively selected from the patients and divided into non-open bite (NOB) and open bite (OB) groups. The severity of root resorption and the root shape were classified into five groups on periapical radiographs before and after treatment. Moreover, only in the OB group, all teeth were sub-divided into functional and hypofunctional ones that are occluding and non-occluding. As the results of multiple linear regression analysis of patient characteristics and clinical variables with the number of overall root resorption, the independent variables that were found to contribute significantly to root resorption were bite and abnormal root shape. The prevalences of root resorption evaluated in the number of patients were significantly higher in OB group than in NOB group, and those in the number of teeth were significantly higher in OB group than in NOB group, in particular anterior and premolar teeth. The prevalence of resorbed teeth with abnormal root shapes was also significantly higher in OB group than in NOB group. On the other hand, in OB group, the prevalences of root resorption and teeth with abnormal root shape were significantly greater in hypofunctional teeth than in normal functional teeth. There are more teeth with root resorption and abnormal root shape in open bite cases than in normal bite cases, and more teeth with abnormal root shapes and root resorption in hypofunctional teeth than in functional teeth.

  2. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    PubMed Central

    Dong, Xian-hui; Bai, Jiang-tao; Kong, Wei-na; He, Xiao-ping; Yan, Peng; Shao, Tie-mei; Yu, Wen-guo; Chai, Xi-qing; Wu, Yan-hua; Liu, Cong

    2015-01-01

    Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer’s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease. PMID:26109953

  3. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice

    PubMed Central

    Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang

    2017-01-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice (Oryza sativa) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 (AIM1), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1, likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1. These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. PMID:28298519

  4. ABNORMAL INFLORESCENCE MERISTEM1 Functions in Salicylic Acid Biosynthesis to Maintain Proper Reactive Oxygen Species Levels for Root Meristem Activity in Rice.

    PubMed

    Xu, Lei; Zhao, Hongyu; Ruan, Wenyuan; Deng, Minjuan; Wang, Fang; Peng, Jinrong; Luo, Jie; Chen, Zhixiang; Yi, Keke

    2017-03-01

    Root meristem activity determines root growth and root architecture and consequently affects water and nutrient uptake in plants. However, our knowledge about the regulation of root meristem activity in crop plants is very limited. Here, we report the isolation and characterization of a short root mutant in rice ( Oryza sativa ) with reduced root meristem activity. This root growth defect is caused by a mutation in ABNORMAL INFLORESCENCE MERISTEM1 ( AIM1 ), which encodes a 3-hydroxyacyl-CoA dehydrogenase, an enzyme involved in β-oxidation. The reduced root meristem activity of aim1 results from reduced salicylic acid (SA) levels and can be rescued by SA application. Furthermore, reduced SA levels are associated with reduced levels of reactive oxygen species (ROS) in aim1 , likely due to increased expression of redox and ROS-scavenging-related genes, whose increased expression is (at least in part) caused by reduced expression of the SA-inducible transcriptional repressors WRKY62 and WRKY76. Like SA, ROS application substantially increased root length and root meristem activity in aim1 These results suggest that AIM1 is required for root growth in rice due to its critical role in SA biosynthesis: SA maintains root meristem activity through promoting ROS accumulation by inducing the activity of WRKY transcriptional repressors, which repress the expression of redox and ROS-scavenging genes. © 2017 American Society of Plant Biologists. All rights reserved.

  5. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection

    PubMed Central

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-01-01

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an “RRP domain” specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling. PMID:18621693

  6. The RPG gene of Medicago truncatula controls Rhizobium-directed polar growth during infection.

    PubMed

    Arrighi, Jean-François; Godfroy, Olivier; de Billy, Françoise; Saurat, Olivier; Jauneau, Alain; Gough, Clare

    2008-07-15

    Rhizobia can infect roots of host legume plants and induce new organs called nodules, in which they fix atmospheric nitrogen. Infection generally starts with root hair curling, then proceeds inside newly formed, intracellular tubular structures called infection threads. A successful symbiotic interaction relies on infection threads advancing rapidly at their tips by polar growth through successive cell layers of the root toward developing nodule primordia. To identify a plant component that controls this tip growth process, we characterized a symbiotic mutant of Medicago truncatula, called rpg for rhizobium-directed polar growth. In this mutant, nitrogen-fixing nodules were rarely formed due to abnormally thick and slowly progressing infection threads. Root hair curling was also abnormal, indicating that the RPG gene fulfils an essential function in the process whereby rhizobia manage to dominate the process of induced tip growth for root hair infection. Map-based cloning of RPG revealed a member of a previously unknown plant-specific gene family encoding putative long coiled-coil proteins we have called RRPs (RPG-related proteins) and characterized by an "RRP domain" specific to this family. RPG expression was strongly associated with rhizobial infection, and the RPG protein showed a nuclear localization, indicating that this symbiotic gene constitutes an important component of symbiotic signaling.

  7. Determination of stress responses induced by aluminum in maize (Zea mays).

    PubMed

    Vardar, Filiz; Ismailoğlu, Işil; Inan, Deniz; Unal, Meral

    2011-06-01

    To assess the alternative responses to aluminum toxicity, maize (Zea mays L. cv Karadeniz yıldızı) roots were exposed to different concentrations of AlCl3 (150, 300 and 450 μM). Aluminum reduced the root elongation by 39.6% in 150 μM, 44.1% in 300 μM, 50.1% in 450 μM AlCl3 after 96 h period. To correlate the root elongation with the alternative stress responses including aluminum accumulation, lipid peroxidation, mitotic abnormalities, reduction of starch content, intracellular Ca2+ accumulation, callose formation, lignin deposition and peroxidase activity, cytochemical and biochemical tests were performed. The results indicated that aluminum accumulation and lipid peroxidation were observed more densely on the root cap and the outer cortex cells. In addition to morphological deformations, cytochemical analysis displayed cellular deformations. Furthermore, mitotic abnormalities were observed such as c-mitosis, micronuclei, bi- and trinucleated cells in aluminum treated root tips. Aluminum treatment induced starch reduction, callose formation, lignin accumulation and intracellular Ca2+ increase. Moreover, the peroxidase activity increased significantly by 3, 4.4 and 7.7 times higher than in that of control after 96 h, respectively. In conclusion, aluminum is significantly stressful in maize culminating in morphological and cellular alterations.

  8. Landmark lecture: Perloff lecture: Tribute to Professor Joseph Kayle Perloff and lessons learned from him: aortopathy in adults with CHD.

    PubMed

    Niwa, Koichiro

    2017-12-01

    Marfan syndrome, bicuspid aortic valve, and/or coarctation of the aorta are associated with medial abnormalities of the ascending aortic or para-coarctation aorta. Medial abnormalities in the ascending aorta are prevalent in other type of patients with a variety of CHDs such as single ventricle, persistent truncus arteriosus, transposition of the great arteries, hypoplastic left heart syndrome, and tetralogy of Fallot, encompassing a wide age range and may predispose to dilatation, aneurysm, and rapture necessitating aortic valve and root surgery. These CHDs exhibit ongoing dilatation of the aortic root and reduced aortic elasticity and increased aortic stiffness that may relate to intrinsic properties of the aortic root. These aortic dilatation and increased stiffness can induce aortic aneurysm, rapture of the aorta, and aortic regurgitation, but also provoke left ventricular hypertrophy, reduced coronary artery flow, and left ventricular failure. Therefore, a new clinical entity can be used to call this association of aortic pathophysiological abnormality, aortic dilation, and aorto-left ventricular interaction - "aortopathy".

  9. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice.

    PubMed

    Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo

    2010-06-24

    Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.

  10. Effects of diabetes on tooth movement and root resorption after orthodontic force application in rats.

    PubMed

    Arita, K; Hotokezaka, H; Hashimoto, M; Nakano-Tajima, T; Kurohama, T; Kondo, T; Darendeliler, M A; Yoshida, N

    2016-05-01

    To investigate the effects of diabetes on orthodontic tooth movement and orthodontically induced root resorption in rats. Twenty-three 10-week-old male Sprague-Dawley rats divided into control (n = 7), diabetes (n = 9), and diabetes + insulin (n = 7) groups. Diabetes was induced by administering a single intraperitoneal injection of streptozotocin. Rats with a blood glucose level exceeding 250 mg/dl were assigned to the diabetes group. Insulin was administered daily to the diabetes + insulin group. A nickel-titanium closed-coil spring of 10 g was applied for 2 weeks to the maxillary left first molar in all rats to induce mesial tooth movement. Tooth movement was measured using microcomputed tomography images. To determine the quantity of root resorption, the mesial surfaces of the mesial and distal roots of the first molar were analyzed using both scanning electron microscopy and scanning laser microscopy. After 2 weeks, the amount of tooth movement in the diabetic rats was lower than that in the control rats. Root resorption was also significantly lower in the diabetic rats. These responses of the rats caused by diabetes were mostly diminished by insulin administration. Diabetes significantly reduced orthodontic tooth movement and orthodontically induced root resorption in rats. The regulation of blood glucose level through insulin administration largely reduced these abnormal responses to orthodontic force application. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    PubMed Central

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  12. ATG5 overexpression is neuroprotective and attenuates cytoskeletal and vesicle-trafficking alterations in axotomized motoneurons.

    PubMed

    Leiva-Rodríguez, Tatiana; Romeo-Guitart, David; Marmolejo-Martínez-Artesero, Sara; Herrando-Grabulosa, Mireia; Bosch, Assumpció; Forés, Joaquim; Casas, Caty

    2018-05-24

    Injured neurons should engage endogenous mechanisms of self-protection to limit neurodegeneration. Enhancing efficacy of these mechanisms or correcting dysfunctional pathways may be a successful strategy for inducing neuroprotection. Spinal motoneurons retrogradely degenerate after proximal axotomy due to mechanical detachment (avulsion) of the nerve roots, and this limits recovery of nervous system function in patients after this type of trauma. In a previously reported proteomic analysis, we demonstrated that autophagy is a key endogenous mechanism that may allow motoneuron survival and regeneration after distal axotomy and suture of the nerve. Herein, we show that autophagy flux is dysfunctional or blocked in degenerated motoneurons after root avulsion. We also found that there were abnormalities in anterograde/retrograde motor proteins, key secretory pathway factors, and lysosome function. Further, LAMP1 protein was missorted and underglycosylated as well as the proton pump v-ATPase. In vitro modeling revealed how sequential disruptions in these systems likely lead to neurodegeneration. In vivo, we observed that cytoskeletal alterations, induced by a single injection of nocodazole, were sufficient to promote neurodegeneration of avulsed motoneurons. Besides, only pre-treatment with rapamycin, but not post-treatment, neuroprotected after nerve root avulsion. In agreement, overexpressing ATG5 in injured motoneurons led to neuroprotection and attenuation of cytoskeletal and trafficking-related abnormalities. These discoveries serve as proof of concept for autophagy-target therapy to halting the progression of neurodegenerative processes.

  13. Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study.

    PubMed

    Shaymurat, Talgar; Gu, Jianxiu; Xu, Changshan; Yang, Zhikun; Zhao, Qing; Liu, Yuxue; Liu, Yichun

    2012-05-01

    The effects of zinc oxide nanoparticles (ZnO NPs) on the root growth, root apical meristem mitosis and mitotic aberrations of garlic (Allium sativum L.) were investigated. ZnO NPs caused a concentration-dependent inhibition of root length. When treated with 50 mg/L ZnO NPs for 24 h, the root growth of garlic was completely blocked. The 50% inhibitory concentration (IC(50)) was estimated to be 15 mg/L. The mitosis index was also decreased in a concentration- and time-dependent manner. ZnO NPs also induced several kinds of mitotic aberrations, mainly consisted of chromosome stickiness, bridges, breakages and laggings. The total percentage of abnormal cells increased with the increase of ZnO NPs concentration and the prolongation of treatment time. The investigation provided new information for the possible genotoxic effects of ZnO NPs on plants.

  14. Fiber type-specific afferent nerve activity induced by transient contractions of rat bladder smooth muscle in pathological states

    PubMed Central

    Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki

    2017-01-01

    Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380

  15. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.

  16. Detection of White Root Disease (Rigidoporus Microporus) in Various Soil Types in the Rubber Plantations Based on The Serological Reaction

    NASA Astrophysics Data System (ADS)

    Indriani Dalimunthe, Cici; Tistama, Radite; Wahyuni, Sri

    2017-12-01

    The Conventional detection of White Root Disease (Rigidoporus microporus, WRD) still uses the visual method based on an abnormal color of leaf or mycelium growth on the tap root neck. The method was less effective and less efficient. The serological technique uses yolk chicken antibodies induced by immunization with mycelium extract. The purpose of this research was to examine the consistency of selected antibodies in detecting root fungi at various soil types in the rubber plantations. This research used a Completely Randomized Design non-factorial with twelve (12) treatments and two (2) replications. The results showed that the antibodies could detect WRD in various soils types. The serological detection was higher precisely than visual observation. The development of WRD mycelium varies depending on the soil types and it was different in the each estate area. In addition, this research is expected to get a serology kit to detect early symptoms of WRD in the rubber plants.

  17. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings.

    PubMed

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2012-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth.

  18. Quantitative electroencephalography in a swine model of blast-induced brain injury.

    PubMed

    Chen, Chaoyang; Zhou, Chengpeng; Cavanaugh, John M; Kallakuri, Srinivasu; Desai, Alok; Zhang, Liying; King, Albert I

    2017-01-01

    Electroencephalography (EEG) was used to examine brain activity abnormalities earlier after blast exposure using a swine model to develop a qEEG data analysis protocol. Anaesthetized swine were exposed to 420-450 Kpa blast overpressure and survived for 3 days after blast. EEG recordings were performed at 15 minutes before the blast and 15 minutes, 30 minutes, 2 hours and 1, 2 and 3 days post-blast using surface recording electrodes and a Biopac 4-channel data acquisition system. Off-line quantitative EEG (qEEG) data analysis was performed to determine qEEG changes. Blast induced qEEG changes earlier after blast exposure, including a decrease of mean amplitude (MAMP), an increase of delta band power, a decrease of alpha band root mean square (RMS) and a decrease of 90% spectral edge frequency (SEF90). This study demonstrated that qEEG is sensitive for cerebral injury. The changes of qEEG earlier after the blast indicate the potential of utilization of multiple parameters of qEEG for diagnosis of blast-induced brain injury. Early detection of blast induced brain injury will allow early screening and assessment of brain abnormalities in soldiers to enable timely therapeutic intervention.

  19. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  20. 7 CFR 201.56-3 - Mustard family, Brassicaceae (Cruciferae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Germination habit: Epigeal dicot. (2) Food reserves: Cotyledons which expand and become thin, leaf-like and...) Root system: A long primary root. (b) Abnormal seedling description. (1) Cotyledons: (i) Decayed at... thickened. (iii) Watery. (4) Root: (i) Weak, stubby, or missing primary root. (Secondary roots will not...

  1. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings

    PubMed Central

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2011-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth. PMID:22423233

  2. Clinical findings and electrodiagnostic testing in 108 consecutive cases of lumbosacral radiculopathy due to herniated disc.

    PubMed

    Mondelli, M; Aretini, A; Arrigucci, U; Ginanneschi, F; Greco, G; Sicurelli, F

    2013-10-01

    This prospective study aim to examine whether clinical findings and electrodiagnostic testing (EDX) in patients with lumbosacral monoradiculopathy due to herniated disc (HD) differ as a function of root involvement level (L5 vs. S1) and HD zone (paramedian vs. intraforaminal). All patients with L4, L5 or S1 monoradiculopathy were prospectively enrolled at four electromyography (EMG) labs over a 2-year period. The diagnosis was based on a congruence between patient history and MRI evidence of HD. We compared the sensitivities of clinical findings and EDX with respect to both root involvement level and HD zone. Multivariate logistic regression was performed in order to verify the association between abnormal EMG, clinical, and neuroradiological findings. One hundred and eight patients (mean age 47.7 years, 55% men) were consecutively enrolled. Sensory loss in the painful dermatome was the most frequent finding at physical examination (56% of cases). EMG was abnormal in at least one muscle supplied by femoral and sciatic nerves in 45 cases (42%). Inclusion of paraspinal muscles increased sensitivity to only 49% and that of proximal muscles was useless. Motor and sensory neurography was seldom abnormal. The most frequent motor neurographic abnormalities were a delay of F-wave minimum latency and decrease in the compound muscle action potential amplitude from extensor digitorum brevis and abductor hallucis in L5 and S1 radiculopathies, respectively. Sensory neurography was usually normal, the amplitude of sensory nerve action potential was seldom reduced when HD injured dorsal root ganglion or postganglionic root fibres. Multivariate logistic regression analysis showed that EMG abnormalities could be predicted by myotomal muscular weakness, abnormal deep reflexes, and paraesthesiae. The only clinical and electrophysiological differences with respect to root involvement level concerned deep reflexes and motor neurography of deep peroneal and tibial nerves. Only some EDX parameters are helpful for the diagnosis of lumbosacral radiculopathy. EMG was abnormal in less than 50% of cases and its abnormalities could be predicted by some clinical findings. However, neurography is useful as a tool for differential diagnosis between radiculopathy and more diffuse disorders of the peripheral nervous system (polyneuropathy, plexopathy). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. 7 CFR 201.56-10 - Spurge family, Euphorbiaceae.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... dicot. (2) Food reserves: Cotyledons, which are thin and leaf-like; endosperm (fleshy food-storage... the cotyledons, endosperm, and epicotyl above the soil surface. (4) Root system: A primary root, with secondary roots usually developing within the test period. (b) Abnormal seedling description. (1) Cotyledons...

  4. 7 CFR 201.56-10 - Spurge family, Euphorbiaceae.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... dicot. (2) Food reserves: Cotyledons, which are thin and leaf-like; endosperm (fleshy food-storage... the cotyledons, endosperm, and epicotyl above the soil surface. (4) Root system: A primary root, with secondary roots usually developing within the test period. (b) Abnormal seedling description. (1) Cotyledons...

  5. DNA replication stress induces deregulation of the cell cycle events in root meristems of Allium cepa

    PubMed Central

    Żabka, Aneta; Polit, Justyna Teresa; Maszewski, Janusz

    2012-01-01

    Background and Aims Prolonged treatment of Allium cepa root meristems with changing concentrations of hydroxyurea (HU) results in either premature chromosome condensation or cell nuclei with an uncommon form of biphasic chromatin organization. The aim of the current study was to assess conditions that compromise cell cycle checkpoints and convert DNA replication stress into an abnormal course of mitosis. Methods Interphase-mitotic (IM) cells showing gradual changes of chromatin condensation were obtained following continuous 72 h treatment of seedlings with 0·75 mm HU (without renewal of the medium). HU-treated root meristems were analysed using histochemical stainings (DNA-DAPI/Feulgen; starch-iodide and DAB staining for H2O2 production), Western blotting [cyclin B-like (CBL) proteins] and immunochemistry (BrdU incorporation, detection of γ-H2AX and H3S10 phosphorylation). Key Results Continuous treatment of onion seedlings with a low concentration of HU results in shorter root meristems, enhanced production of H2O2, γ-phosphorylation of H2AX histones and accumulation of CBL proteins. HU-induced replication stress gives rise to axially elongated cells with half interphase/half mitotic structures (IM-cells) having both decondensed and condensed domains of chromatin. Long-term HU treatment results in cell nuclei resuming S phase with gradients of BrdU labelling. This suggests a polarized distribution of factors needed to re-initiate stalled replication forks. Furthermore, prolonged HU treatment extends both the relative time span and the spatial scale of H3S10 phosphorylation known in plants. Conclusions The minimum cell length and a threshold level of accumulated CBL proteins are both determining factors by which the nucleus attains commitment to induce an asynchronous course of chromosome condensation. Replication stress-induced alterations in an orderly route of the cell cycle events probably reflect a considerable reprogramming of metabolic functions of chromatin combined with gradients of morphological changes spread along the nucleus. PMID:23087128

  6. 7 CFR 201.56-4 - Cucurbit family, (Cucurbitaceae).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., squash, and watermelon. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves... does not show any development within the test period. (4) Root system: A long primary root with numerous secondary roots. (b) Abnormal seedling description. (1) Cotyledons: (i) Less than half of the...

  7. 7 CFR 201.56-4 - Cucurbit family, (Cucurbitaceae).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., squash, and watermelon. (a) General description. (1) Germination habit: Epigeal dicot. (2) Food reserves... does not show any development within the test period. (4) Root system: A long primary root with numerous secondary roots. (b) Abnormal seedling description. (1) Cotyledons: (i) Less than half of the...

  8. Induced chromosomal aberrations in somatic cells of Nigella sativa L. by mitomycin C.

    PubMed

    Kumar, P; Nizam, J

    1978-01-01

    A cytological study was carried out on root tips of Nigella sativa L. by treatment with Mitomycin C at 0.001% for six time intervals (10, 15, 20, 30, 40, and 50 min). The chromosomal abnormalities were increasingly proportionate to the increase in time of treatment. The seedlings treated with a 0.001% concentration of Mitomycin C for 10 min. did not show any significant effect. At other time intervals, the effect was observed to be quite significant. Beyond 40 min. treatment almost all the cells would become sticky. Thirty minutes' treatment showed significant effect, inducing various types of chromosomal aberrations in the anaphase, such as bridges and fragments of 34.13% and 48.07%, respectively.

  9. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - A biomarker based study.

    PubMed

    Verma, Sonam; Srivastava, Alka

    2018-04-30

    Pesticides have brought tremendous benefits to mankind by increasing food production and controlling various crop diseases. But their prolonged and extensive use has been reported to induce toxicity. Biological markers used for the evaluation of toxic effects of pesticides have increased these days. The aim of this study was to determine the morphotoxic and cytogenotoxic effects of pesticide pendimethalin applied to the soil by using morphological and genotoxic biomarkers in the test plant Allium cepa L. A pot experiment was set up in which pendimethalin was added to soil at the rate of 0, 0.033, 0.044, 0.055 and 0.066 g kg -1 soil. Similar sized onion bulbs were planted in each pot and 3 replicates were maintained for each dose of pendimethalin at 1, 7, 15, 30 and 45 days after treatment. Average root number (ARN) and average length of roots (ALR) of onion bulbs were recorded and on the day 3 of sowing roots were harvested and fixed for cytological analysis. Morphological biomarkers revealed significant concentration and duration dependent inhibition of ARN and ALR as compared to control which shows the morphotoxicity of pendimethalin. The results also showed inhibitory effect on the mitotic index (%) of A. cepa while relative abnormality rate (%) increased. Further, we observed aberrations in both the dividing and non-dividing cells along with spotting of few ring chromosomes. Reduced mitotic index, increased relative abnormality rate; various chromosomal and interphase nuclear aberrations all being mitosis endpoint markers reflect the cytogenotoxicity of pendimethalin, even at lower concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats.

    PubMed

    Becker, Maria; Benromano, Tali; Shahar, Abraham; Nevo, Zvi; Pick, Chaim G

    2014-12-01

    Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.

  11. Effects of 4-phenyl butyric acid on high glucose-induced alterations in dorsal root ganglion neurons.

    PubMed

    Sharma, Dilip; Singh, Jitendra Narain; Sharma, Shyam S

    2016-12-02

    Mechanisms and pathways involving in diabetic neuropathy are still not fully understood but can be unified by the process of overproduction of reactive oxygen species (ROS) such as superoxide, endoplasmic reticulum (ER) stress, downstream intracellular signaling pathways and their modulation. Susceptibility of dorsal root ganglion (DRG) to internal/external hyperglycemic environment stress contributes to the pathogenesis and progression of diabetic neuropathy. ER stress leads to abnormal ion channel function, gene expression, transcriptional regulation, metabolism and protein folding. 4-phenyl butyric acid (4-PBA) is a potent and selective chemical chaperone; which may inhibit ER stress. It may be hypothesized that 4-PBA could attenuate via channels in DRG in diabetic neuropathy. Effects of 4-PBA were determined by applying different parameters of oxidative stress, cell viability, apoptosis assays and channel expression in cultured DRG neurons. Hyperglycemia-induced apoptosis in the DRG neuron was inhibited by 4-PBA. Cell viability of DRG neurons was not altered by 4-PBA. Oxidative stress was significantly blocked by the 4-PBA. Sodium channel expression was not altered by the 4-PBA. Our data provide evidence that the hyperglycemia-induced alteration may be reduced by the 4-PBA without altering the sodium channel expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Aortic Root Biomechanics After Sleeve and David Sparing Techniques: A Finite Element Analysis.

    PubMed

    Tasca, Giordano; Selmi, Matteo; Votta, Emiliano; Redaelli, Paola; Sturla, Francesco; Redaelli, Alberto; Gamba, Amando

    2017-05-01

    Aortic root aneurysm can be treated with valve-sparing procedures. The David and Yacoub techniques have shown excellent long-term results but are technically demanding. Recently, a new and simpler procedure, the Sleeve technique, was proposed with encouraging results. We aimed to quantify the biomechanics of the initially aneurysmal aortic root (AR) after the Sleeve procedure to assess whether it induces abnormal stresses, potentially undermining its durability. Two finite element (FE) models of the physiologic and aneurysmal AR were built, accounting for the anatomical asymmetry and the nonlinear and anisotropic mechanical properties of human AR tissues. On the aneurysmal model, the Sleeve and David techniques were simulated based on the corresponding published technical features. Aortic root biomechanics throughout 2 consecutive cardiac cycles were computed in each simulated configuration. Both sparing techniques restored physiologic-like kinematics of aortic valve (AV) leaflets but induced different leaflets stresses. The time course averaged over the leaflets' bellies was 35% higher in the David model than in the Sleeve model. Commissural stresses, which were equal to 153 and 318 kPa in the physiologic and aneurysmal models, respectively, became 369 and 208 kPa in the David and Sleeve models, respectively. No intrinsic structural problems were detected in the Sleeve model that might jeopardize the durability of the procedure. If corroborated by long-term clinical outcomes, the results obtained suggest that using this new technique could successfully simplify the surgical repair of AR aneurysms and reduce intraoperative complications. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Dental and maxillofacial abnormalities in long-term survivors of childhood cancer: effects of treatment with chemotherapy and radiation to the head and neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, N.; Toth, B.B.; Hoar, R.E.

    1984-06-01

    Sixty-eight long-term survivors of childhood cancer were evaluated for dental and maxillofacial abnormalities. Forty-five patients had received maxillofacial radiation for lymphoma, leukemia, rhabdomyosarcoma, and miscellaneous tumors. Forty-three of the 45 patients and the remaining 23 who had not received maxillofacial radiation also received chemotherapy. Dental and maxillofacial abnormalities were detected in 37 of the 45 (82%) radiated patients. Dental abnormalities comprised foreshortening and blunting of roots, incomplete calcification, premature closure of apices, delayed or arrested tooth development, and caries. Maxillofacial abnormalities comprised trismus, abnormal occlusal relationships, and facial deformities. The abnormalities were more severe in those patients who received radiationmore » at an earlier age and at higher dosages. Possible chemotherapeutic effects in five of 23 patients who received treatment for tumors located outside the head and neck region comprised acquired amelogenesis imperfecta, microdontia of bicuspid teeth, and a tendency toward thinning of roots with an enlarged pulp chamber. Dental and maxillofacial abnormalities should be recognized as a major consequence of maxillofacial radiation in long-term survivors of childhood cancer, and attempts to minimize or eliminate such sequelae should involve an effective interaction between radiation therapists, and medical and dental oncologists.« less

  14. Computed tomography of cystic nerve root sleeve dilatation.

    PubMed

    Neave, V C; Wycoff, R R

    1983-10-01

    A case of cystic nerve root sleeve dilatation in the lumbar area associated with a chronic back pain syndrome is presented. Prominent computed tomography (CT) findings include: (a) rounded masses in the region of the foramina isodense with cerebrospinal fluid in the subarachnoid space; (b) associated asymmetry of epidural fat distribution; (c) enlargement of the neural foramina in axial sections with scalloped erosion of the adjacent posteriolateral vertebral body, pedicle, and pedicular-laminar junction with preservation of cortex and without bony sclerosis or infiltrative appearance; (d) prominent or ectatic dural sac with lack of usual epidural landmarks between the sac and vertebral body; and (e) multilevel abnormalities throughout the entire lumbar region. Myelographic and CT correlations are demonstrated with a review of the literature. A discussion of the various cystic abnormalities involving nerve root sheaths is undertaken in an attempt to clarify the confusing nomenclature applied to nerve root sleeve pathology.

  15. Use of a Novel High-Resolution Magnetic Resonance Neurography Protocol to Detect Abnormal Dorsal Root Ganglia in Sjögren Patients With Neuropathic Pain

    PubMed Central

    Birnbaum, Julius; Duncan, Trisha; Owoyemi, Kristie; Wang, Kenneth C.; Carrino, John; Chhabra, Avneesh

    2014-01-01

    Abstract The diagnosis and treatment of patients with Sjögren syndrome (SS) with neuropathic pain pose several challenges. Patients with SS may experience unorthodox patterns of burning pain not conforming to a traditional “stocking-and-glove” distribution, which can affect the face, torso, and proximal extremities. This distribution of neuropathic pain may reflect mechanisms targeting the proximal-most element of the peripheral nervous system—the dorsal root ganglia (DRG). Skin biopsy can diagnose such a small-fiber neuropathy and is a surrogate marker of DRG neuronal cell loss. However, SS patients have been reported who have similar patterns of proximal neuropathic pain, despite having normal skin biopsy studies. In such cases, DRGs may be targeted by mechanisms not associated with neuronal cell loss. Therefore, alternative approaches are warranted to help characterize abnormal DRGs in SS patients with proximal neuropathic pain. We performed a systematic review of the literature to define the frequency and spectrum of SS peripheral neuropathies, and to better understand the attribution of SS neuropathic pain to peripheral neuropathies. We found that the frequency of SS neuropathic pain exceeded the prevalence of peripheral neuropathies, and that painful peripheral neuropathies occurred less frequently than neuropathies not always associated with pain. We developed a novel magnetic resonance neurography (MRN) protocol to evaluate DRG abnormalities. Ten SS patients with proximal neuropathic pain were evaluated by this MRN protocol, as well as by punch skin biopsies evaluating for intraepidermal nerve fiber density (IENFD) of unmyelinated nerves. Five patients had radiographic evidence of DRG abnormalities. Patients with MRN DRG abnormalities had increased IENFD of unmyelinated nerves compared to patients without MRN DRG abnormalities (30.2 [interquartile range, 4.4] fibers/mm vs. 11.0 [4.1] fibers/mm, respectively; p = 0.03). Two of these 5 SS patients whose neuropathic pain resolved with intravenous immunoglobulin (IVIg) therapy had improvement of MRN DRG abnormalities. We have developed a novel MRN protocol that can detect DRG abnormalities in SS patients with neuropathic pain who do not have markers of peripheral neuropathy. We found that SS patients with MRN DRG abnormalities had statistically significant, increased IENFD on skin biopsy studies, which may suggest a relationship between trophic mediators and neuropathic pain. Given that our literature review has demonstrated that many SS neuropathic pain patients do not have a neuropathy, our findings suggest an important niche for this MRN DRG technique in the evaluation of broader subsets of SS neuropathic pain patients who may not have underlying neuropathies. The improvement of MRN DRG abnormalities in patients with IVIg-induced remission of neuropathic pain suggests that our MRN protocol may be capturing reversible, immune-mediated mechanisms targeting the DRG. PMID:24797167

  16. Abnormal flexor carpi radialis H-reflex as a specific indicator of C7 as compared with C6 radiculopathy.

    PubMed

    Zheng, Chaojun; Zhu, Yu; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Wang, Lixun; Jin, Xiang; Weber, Robert; Jiang, Jianyuan; Anuvat, Kevin

    2014-12-01

    The H-reflex of the flexor carpi radialis (FCR H-reflex) has not been commonly used for the diagnosis of cervical radiculopathy when compared with the routinely tested soleus H-reflex. Although both S1 and S2 roots innervate the soleus, the H-reflex is selectively related to S1 nerve root function clinically. Flexor carpi radialis is also innervated by two nerve roots which are C6 and C7. Although they are among the most common roots involved in cervical radiculopathy, few studies reported if the attenuation of the FCR H-reflex is caused by lesions affecting C7 or C6 nerve roots, or both. We aimed to identify whether an abnormal FCR H-reflex was attributed to the C7 or C6 nerve root lesion, or both. The sensitivities of needle electromyography, FCR H-reflex, and provocative tests in unilateral C7 or C6 radiculopathy were also compared in this study. A concentric needle electrode recorded bilateral FCR H-reflexes in 41 normal subjects (control group), 51 patients with C7 radiculopathy, and 54 patients with C6 radiculopathy. Clinical, radiological, and surgical approaches identified the precise single cervical nerve root involved in all patient groups. The H-reflex and M-wave latencies were measured and compared bilaterally. Abnormal FCR H-reflex was defined as the absence of the H-reflex or a side-to-side difference over 1.5 milliseconds which was based on the normal side-to-side difference of the H-reflex latency of 16.9 milliseconds (SD = 1.7 milliseconds) from the control group. We also determined standard median and ulnar conduction and needle electromyography. The provocative tests included bilateral determination of the Shoulder Abduction and Spurling's tests in all radiculopathy group patients. Abnormal FCR H-reflexes were recorded in 45 (88.2%) of C7 radiculopathy group patients, and 2 (3.7%) of C6 radiculopathy group patients (P < 0.05). Needle electromyography was abnormal in 41 (80.4%) of C7 radiculopathy patients and 43 (79.6%) of C6 radiculopathy patients. Provocative tests were positive in 15 (29.4%) of C7 radiculopathy patients and 25 (46.3%) of C6 radiculopathy patients. Flexor carpi radialis H-Reflex provides a sensitive assessment of evaluating the C7 spinal reflex pathway. Clinically, a combination of the FCR H-reflex with needle electromyography may yield the highest level of diagnostic information for evaluating clinical cases of C7 radiculopathy.

  17. Osthole, a herbal compound, alleviates nucleus pulposus-evoked nociceptive responses through the suppression of overexpression of acid-sensing ion channel 3 (ASIC3) in rat dorsal root ganglion

    PubMed Central

    He, Qiu-Lan; Chen, Yuling; Qin, Jian; Mo, Sui-Lin; Wei, Ming; Zhang, Jin-Jun; Li, Mei-Na; Zou, Xue-Nong; Zhou, Shu-Feng; Chen, Xiao-Wu; Sun, Lai-Bao

    2012-01-01

    Summary Background Osthole (Ost), a natural coumarin derivative, has been shown to inhibit many pro-inflammatory mediators and block voltage-gated Na+ channels. During inflammation, acidosis is an important pain inducer which activates nociceptors by gating depolarizing cationic channels, such as acid-sensing ion channel 3 (ASIC3). The aim of this study was to examine the effects of Ost on nucleus pulposus-evoked nociceptive responses and ASIC3 over-expression in the rat dorsal root ganglion, and to investigate the possible mechanism. Material/Methods Radicular pain was generated with application of nucleus pulposus (NP) to nerve root. Mechanical allodynia was evaluated using von Frey filaments with logarithmically incremental rigidity to calculate the 50% probability thresholds for mechanical paw withdrawal. ASIC3 protein expression in dorsal root ganglions (DRGs) was assessed with Western blot and immunohistochemistry. Membrane potential (MP) shift of DRG neurons induced by ASIC3-sensitive acid (pH6.5) was determined by DiBAC4 (3) fluorescence intensity (F.I.). Results The NP-evoked mechanical hyperalgesia model showed allodynia for 3 weeks, and ASIC3 expression was up-regulated in DRG neurons, reaching peak on Day 7. Epidural administration of Ost induced a remarkable and prolonged antinociceptive effect, accompanied by an inhibition of over-expressed ASIC3 protein and of abnormal shift of MP. Amiloride (Ami), an antagonist of ASIC3, strengthened the antinociceptive effect of Ost. Conclusions Up-regulation of ASIC3 expression may be associated with NP-evoked mechanical hyperalgesia. A single epidural injection of Ost decreased ASIC3 expression in DGR neurons and the pain in the NP-evoked mechanical hyperalgesia model. Osthole may be of great benefit for preventing chronic pain status often seen in lumbar disc herniation (LDH). PMID:22648244

  18. Characterization of root agravitropism induced by genetic, chemical, and developmental constraints

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; Marcum, H.

    1987-01-01

    The patterns and rates of organelle redistribution in columella (i.e., putative statocyte) cells of agravitropic agt mutants of Zea mays are not significantly different from those of columella cells in graviresponsive roots. Graviresponsive roots of Z. mays are characterized by a strongly polar movement of 45Ca2+ across the root tip from the upper to the lower side. Horizontally-oriented roots of agt mutants exhibit only a minimal polar transport of 45Ca2+. Exogenously-induced asymmetries of Ca result in curvature of agt roots toward the Ca source. A similar curvature can be induced by a Ca asymmetry in normally nongraviresponsive (i.e., lateral) roots of Phaseolus vulgaris. Similarly, root curvature can be induced by placing the roots perpendicular to an electric field. This electrotropism increased with 1) currents between 8-35 mA, and 2) time between 1-9 hr when the current is constant. Electrotropism is reduced significantly by treating roots with triiodobenzoic acid (TIBA), an inhibitor of auxin transport. These results suggest that 1) if graviperception occurs via the sedimentation of amyloplasts in columella cells, then nongraviresponsive roots apparently sense gravity as do graviresponsive roots, 2) exogenously-induced asymmetries of a gravitropic effector (i.e., Ca) can induce curvature of normally nongraviresponsive roots, 3) the gravity-induced downward movement of exogenously-applied 45Ca2+ across tips of graviresponsive roots does not occur in nongraviresponsive roots, 4) placing roots in an electrical field (i.e., one favoring the movement of ions such as Ca2+) induces root curvature, and 5) electrically-induced curvature is apparently dependent on auxin transport. These results are discussed relative to a model to account for the lack of graviresponsiveness by these roots.

  19. ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1) is required for cell production, patterning, and morphogenesis in root development

    PubMed Central

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G.

    2014-01-01

    ARABIDOPSIS HOMOLOG of TRITHORAX1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. PMID:25205583

  20. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba

    PubMed Central

    Rybaczek, Dorota; Musiałek, Marcelina Weronika; Balcerczyk, Aneta

    2015-01-01

    We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD. PMID:26545248

  1. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae).

    PubMed

    Pita-Barbosa, Alice; Gonçalves, Elton Carvalho; Azevedo, Aristéa Alves

    2015-08-01

    Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for bioindication of environmental contamination by As.

  2. Expression of the Beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana.

    PubMed

    Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David

    2011-06-01

    The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications.

  3. Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development

    PubMed Central

    Li, Yuge; Ouyang, Jie; Wang, Ya-Yun; Hu, Rui; Xia, Kuaifei; Duan, Jun; Wang, Yaqin; Tsay, Yi-Fang; Zhang, Mingyong

    2015-01-01

    Plants have evolved to express some members of the nitrate transporter 1/peptide transporter family (NPF) to uptake and transport nitrate. However, little is known of the physiological and functional roles of this family in rice (Oryza sativa L.). Here, we characterized the vascular specific transporter OsNPF2.2. Functional analysis using cDNA-injected Xenopus laevis oocytes revealed that OsNPF2.2 is a low-affinity, pH-dependent nitrate transporter. Use of a green fluorescent protein tagged OsNPF2.2 showed that the transporter is located in the plasma membrane in the rice protoplast. Expression analysis showed that OsNPF2.2 is nitrate inducible and is mainly expressed in parenchyma cells around the xylem. Disruption of OsNPF2.2 increased nitrate concentration in the shoot xylem exudate when nitrate was supplied after a deprivation period; this result suggests that OsNPF2.2 may participate in unloading nitrate from the xylem. Under steady-state nitrate supply, the osnpf2.2 mutants maintained high levels of nitrate in the roots and low shoot:root nitrate ratios; this observation suggests that OsNPF2.2 is involved in root-to-shoot nitrate transport. Mutation of OsNPF2.2 also caused abnormal vasculature and retarded plant growth and development. Our findings demonstrate that OsNPF2.2 can unload nitrate from the xylem to affect the root-to-shoot nitrate transport and plant development. PMID:25923512

  4. Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots

    PubMed Central

    Miyabayashi, Sachiko; Sugita, Tomoki; Kobayashi, Akie; Yamazaki, Chiaki; Miyazawa, Yutaka; Kamada, Motoshi; Kasahara, Haruo; Osada, Ikuko; Shimazu, Toru; Fusejima, Yasuo; Higashibata, Akira; Yamazaki, Takashi; Ishioka, Noriaki; Takahashi, Hideyuki

    2018-01-01

    In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots. PMID:29324818

  5. Inflammation in the Pathogenesis of Lyme Neuroborreliosis

    PubMed Central

    Ramesh, Geeta; Didier, Peter J.; England, John D.; Santana-Gould, Lenay; Doyle-Meyers, Lara A.; Martin, Dale S.; Jacobs, Mary B.; Philipp, Mario T.

    2016-01-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, affects both peripheral and central nervous systems. We assessed a causal role for inflammation in Lyme neuroborreliosis pathogenesis by evaluating the induced inflammatory changes in the central nervous system, spinal nerves, and dorsal root ganglia (DRG) of rhesus macaques that were inoculated intrathecally with live B. burgdorferi and either treated with dexamethasone or meloxicam (anti-inflammatory drugs) or left untreated. ELISA of cerebrospinal fluid showed significantly elevated levels of IL-6, IL-8, chemokine ligand 2, and CXCL13 and pleocytosis in all infected animals, except dexamethasone-treated animals. Cerebrospinal fluid and central nervous system tissues of infected animals were culture positive for B. burgdorferi regardless of treatment. B. burgdorferi antigen was detected in the DRG and dorsal roots by immunofluorescence staining and confocal microscopy. Histopathology revealed leptomeningitis, vasculitis, and focal inflammation in the central nervous system; necrotizing focal myelitis in the cervical spinal cord; radiculitis; neuritis and demyelination in the spinal roots; and inflammation with neurodegeneration in the DRG that was concomitant with significant neuronal and satellite glial cell apoptosis. These changes were absent in the dexamethasone-treated animals. Electromyography revealed persistent abnormalities in F-wave chronodispersion in nerve roots of a few infected animals; which were absent in dexamethasone-treated animals. These results suggest that inflammation has a causal role in the pathogenesis of acute Lyme neuroborreliosis. PMID:25892509

  6. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    PubMed

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  7. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis

    PubMed Central

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation. PMID:29868074

  8. Effects of Extremely Low Frequency Electric and Magnetic Fields on Roots of ’Vicia faba’.

    DTIC Science & Technology

    those near the Sanguine transmitter: growth rate, mitotic index , chromosomal abnormalities in dividing meristematic cells. The choice of Vicia faba ...Roots of Vicia faba were exposed to electric and magnetic fields comparable to but at levels higher than those associated with Project Sanguine...There were no differences among control and exposed roots for growth or mitotic index . Also, there were no chromosomal anomalies. Three indices are

  9. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices

    PubMed Central

    Yokawa, Ken; Kagenishi, Tomoko; Baluška, František

    2016-01-01

    UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism. PMID:26793199

  10. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  11. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  12. Influence of a parafunctional oral habit on root fracture development after trauma to an immature tooth.

    PubMed

    dos Santos, Cláudia Letícia Vendrame; Saito, Célia Tomiko Matida Hamata; Luvizzuto, Eloá Rodrigues; Poi, Wilson Roberto; Panzarini, Sônia Regina; Sonoda, Celso Koogi

    2011-07-01

    Root fractures in immature teeth are rare because the resilience of the alveolar bone is more favorable to the occurrence of luxation. This article reports a case of traumatic injury in an immature permanent tooth that progressed to root fracture, having a parafunctional oral habit as the possible modifying factor of case evolution. A 12-year-old boy presented for treatment complaining of a defective restoration and mild pain on the maxillary right central incisor. The patient had a history of crown fracture in this tooth due to trauma 2 years before. The clinical examination showed healthy gingival tissues and no abnormal tooth mobility, whereas radiographic projections revealed healthy periradicular tissues, incomplete root formation, and no visible root fracture. As pulp necrosis was diagnosed, calcium hydroxide therapy was started for canal disinfection and subsequent obturation. However, after 4 weeks of treatment, a horizontal fracture line was observed radiographically in the root's middle third. The patient denied a new traumatic injury, but revealed the habit of chewing on a pencil. Refraining from the deleterious oral habit was strongly advised, and root canal filling with mineral trioxide aggregate was performed to treat the root fracture. After 4 years of follow-up, the tooth has normal function and no abnormal mobility. Images suggestive of remodeling at the apical end of the coronal segment and replacement resorption of the apical segment are seen radiographically. This case demonstrates the need of following cases of dental trauma and the possible influence of parafunctional oral habits as modifying factors of case progression.

  13. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  14. Arabidopsis HIPP27 is a host susceptibility gene for the beet cyst nematode Heterodera schachtii.

    PubMed

    Radakovic, Zoran S; Anjam, Muhammad Shahzad; Escobar, Elizabeth; Chopra, Divykriti; Cabrera, Javier; Silva, Ana Cláudia; Escobar, Carolina; Sobczak, Miroslaw; Grundler, Florian M W; Siddique, Shahid

    2018-02-22

    Sedentary plant-parasitic cyst nematodes are obligate biotrophs that infect the roots of their host plant. Their parasitism is based on the modification of root cells to form a hypermetabolic syncytium from which the nematodes draw their nutrients. The aim of this study was to identify nematode susceptibility genes in Arabidopsis thaliana and to characterize their roles in supporting the parasitism of Heterodera schachtii. By selecting genes that were most strongly upregulated in response to cyst nematode infection, we identified HIPP27 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 27) as a host susceptibility factor required for beet cyst nematode infection and development. Detailed expression analysis revealed that HIPP27 is a cytoplasmic protein and that HIPP27 is strongly expressed in leaves, young roots and nematode-induced syncytia. Loss-of-function Arabidopsis hipp27 mutants exhibited severely reduced susceptibility to H. schachtii and abnormal starch accumulation in syncytial and peridermal plastids. Our results suggest that HIPP27 is a susceptibility gene in Arabidopsis whose loss of function reduces plant susceptibility to cyst nematode infection without increasing the susceptibility to other pathogens or negatively affecting the plant phenotype. © 2018 UNIVERSITY BONN. MOLECULAR PLANT PATHOLOGY © 2018 BSPP AND JOHN WILEY & SONS LTD.

  15. Root-infecting fungi associated with a decline of longleaf pine in the southeastern United States

    Treesearch

    William J. Otrosina; Diane Bannwart; Ronald W. Roncadori

    1999-01-01

    A 35-year-old longleaf pine stand exhibited trees in various stages of decline. A study was conducted to determine root-infecting fungi and other abnormalities associated with varying degrees of crown symptoms. A four-class crown symptom rating system was devised according to ascending symptom severity. Leptographium procerum and L....

  16. Value of the Signal-Averaged Electrocardiogram in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia

    PubMed Central

    Kamath, Ganesh S.; Zareba, Wojciech; Delaney, Jessica; Koneru, Jayanthi N.; McKenna, William; Gear, Kathleen; Polonsky, Slava; Sherrill, Duane; Bluemke, David; Marcus, Frank; Steinberg, Jonathan S.

    2011-01-01

    Background Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an inherited disease causing structural and functional abnormalities of the right ventricle (RV). The presence of late potentials as assessed by the signal averaged electrocardiogram (SAECG) is a minor Task Force criterion. Objective The purpose of this study was to examine the diagnostic and clinical value of the SAECG in a large population of genotyped ARVC/D probands. Methods We compared the SAECGs of 87 ARVC/D probands (age 37 ± 13 years, 47 males) diagnosed as affected or borderline by Task Force criteria without using the SAECG criterion with 103 control subjects. The association of SAECG abnormalities was also correlated with clinical presentation; surface ECG; VT inducibility at electrophysiologic testing; ICD therapy for VT; and RV abnormalities as assessed by cardiac magnetic resonance imaging (cMRI). Results When compared with controls, all 3 components of the SAECG were highly associated with the diagnosis of ARVC/D (p<0.001). These include the filtered QRS duration (fQRSD) (97.8 ± 8.7 msec vs. 119.6 ± 23.8 msec), low amplitude signal (LAS) (24.4 ± 9.2 msec vs. 46.2 ± 23.7 msec) and root mean square amplitude of the last 40 msec of late potentials (RMS-40) (50.4 ± 26.9 µV vs. 27.9 ± 36.3 µV). The sensitivity of using SAECG for diagnosis of ARVC/D was increased from 47% using the established 2 of 3 criteria (i.e. late potentials) to 69% by using a modified criterion of any 1 of the 3 criteria, while maintaining a high specificity of 95%. Abnormal SAECG as defined by this modified criteria was associated with a dilated RV volume and decreased RV ejection fraction detected by cMRI (p<0.05). SAECG abnormalities did not vary with clinical presentation or reliably predict spontaneous or inducible VT, and had limited correlation with ECG findings. Conclusion Using 1 of 3 SAECG criteria contributed to increased sensitivity and specificity for the diagnosis of ARVC/D. This finding is incorporated in the recent modification of the Task Force criteria. PMID:20933608

  17. Effect of 2,4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L.

    PubMed

    Kumar, Sanjay

    2010-01-01

    The widespread use of the herbicides for weed control and crop productivity in modern agriculture exert a threat on economically important crops by way of cytological damage to the cells of the crop plant or side effects, if any, induced by the herbicides. In the present communication, author describes the effects of 2,4-D and Isoproturon on chromosomal morphology in mitotic cells of Triticum aestivum L. The wheat seedlings were treated with range of concentrations (50-1200 ppm) of 2,4-D and Isoproturon for 72 h at room temperature. In the mitotic cells, twelve distinct chromosome structure abnormalities were observed over control. The observed irregularities were stickiness, c-mitosis, multipolar chromosomes with or without spindles, fragments and bridges, lagging chromosomes, unequal distribution of chromosomes, over contracted chromosomes, unoriented chromosomes, star shaped arrangement of the chromosomes, increased cell size and failure of cell plate formation. The abnormalities like stickiness, fragments, bridges, lagging or dysjunction, unequal distribution and over contracted chromosomes meet frequently.

  18. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L.

    PubMed

    Singh, Aradhana; Srivastava, Anjil Kumar; Singh, Ashok Kumar

    2013-12-01

    The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations. Copyright © 2011 Wiley Periodicals, Inc.

  19. The Infection of Cucumber (Cucumis sativus L.) Roots by Meloidogyne incognita Alters the Expression of Actin-Depolymerizing Factor (ADF) Genes, Particularly in Association with Giant Cell Formation

    PubMed Central

    Liu, Bin; Liu, Xingwang; Liu, Ying; Xue, Shudan; Cai, Yanling; Yang, Sen; Dong, Mingming; Zhang, Yaqi; Liu, Huiling; Zhao, Binyu; Qi, Changhong; Zhu, Ning; Ren, Huazhong

    2016-01-01

    Cucumber (Cucumis sativus L.) is threatened by substantial yield losses due to the south root-knot nematode (Meloidogyne incognita). However, understanding of the molecular mechanisms underlying the process of nematode infection is still limited. In this study, we found that M. incognita infection affected the structure of cells in cucumber roots and treatment of the cytoskeleton inhibitor (cytochalasin D) reduced root-knot nematode (RKN) parasitism. It is known that Actin-Depolymerizing Factor (ADF) affects cell structure, as well as the organization of the cytoskeleton. To address the hypothesis that nematode-induced abnormal cell structures and cytoskeletal rearrangements might be mediated by the ADF genes, we identified and characterized eight cucumber ADF (CsADF) genes. Phylogenetic analysis showed that the cucumber ADF gene family is grouped into four ancient subclasses. Expression analysis revealed that CsADF1, CsADF2-1, CsADF2-2, CsADF2-3 (Subclass I), and CsADF6 (Subclass III) have higher transcript levels than CsADF7-1, CsADF7-2 (Subclass II genes), and CsADF5 (Subclass IV) in roots. Members of subclass I genes (CsADF1, CsADF2-1, CsADF2-2, and CsADF2-3), with the exception of CsADF2-1, exhibited a induction of expression in roots 14 days after their inoculation (DAI) with nematodes. However, the expression of subclass II genes (CsADF7-1 and CsADF7-2) showed no significant change after inoculation. The transcript levels of CsADF6 (Subclass III) showed a specific induction at 21 DAI, while CsADF5 (Subclass IV) was weakly expressed in roots, but was strongly up-regulated as early as 7 DAI. In addition, treatment of roots with cytochalasin D caused an approximately 2-fold down-regulation of the CsADF genes in the treated plants. These results suggest that CsADF gene mediated actin dynamics are associated with structural changes in roots as a consequence of M. incognita infection. PMID:27695469

  20. Retrospective Study of Root Canal Configurations of Mandibular Third Molars Using CBCT- Part-II.

    PubMed

    Somasundaram, Pavithra; Rawtiya, Manjusha; Wadhwani, Shefali; Uthappa, Roshan; Shivagange, Vinay; Khan, Sheeba

    2017-06-01

    Abnormal root canal morphologies of third molars can be diagnostically and technically challenging during root canal treatment. The aim of this retrospective study was to investigate the root and canal morphology of mandibular third molars in Central India population by using Cone Beam Computed Tomography (CBCT) analysis. CBCT images of 171 mandibular third molars were observed and data regarding number of roots, number of canals, Vertucci's classification in each root, prevalence of C shaped canal, gender and topographical relation of morphology in mandibular third molar was statistically evaluated. Majority of mandibular third molars had two roots (84.2%) and three canals (64.3%). Most mesial root had Vertucci Type II (55.6%) and Vertucci Type IV (22.2%), distal root had Type I canals (87.5%). Over all prevalence of C shaped canals in mandibular third molars was 9.4%. There was a high prevalence of two rooted mandibular third molars with three canals.

  1. Retrospective Study of Root Canal Configurations of Mandibular Third Molars Using CBCT- Part-II

    PubMed Central

    Somasundaram, Pavithra; Wadhwani, Shefali; Uthappa, Roshan; Shivagange, Vinay; Khan, Sheeba

    2017-01-01

    Introduction Abnormal root canal morphologies of third molars can be diagnostically and technically challenging during root canal treatment. Aim The aim of this retrospective study was to investigate the root and canal morphology of mandibular third molars in Central India population by using Cone Beam Computed Tomography (CBCT) analysis. Materials and Methods CBCT images of 171 mandibular third molars were observed and data regarding number of roots, number of canals, Vertucci’s classification in each root, prevalence of C shaped canal, gender and topographical relation of morphology in mandibular third molar was statistically evaluated. Results Majority of mandibular third molars had two roots (84.2%) and three canals (64.3%). Most mesial root had Vertucci Type II (55.6%) and Vertucci Type IV (22.2%), distal root had Type I canals (87.5%). Over all prevalence of C shaped canals in mandibular third molars was 9.4%. Conclusion There was a high prevalence of two rooted mandibular third molars with three canals. PMID:28764294

  2. Role of dorsal root ganglion K2P1.1 in peripheral nerve injury-induced neuropathic pain

    PubMed Central

    Mao, Qingxiang; Yuan, Jingjing; Xiong, Ming; Wu, Shaogen; Chen, Liyong; Bekker, Alex; Yang, Tiande

    2017-01-01

    Peripheral nerve injury-caused hyperexcitability and abnormal ectopic discharges in the primary sensory neurons of dorsal root ganglion (DRG) play a key role in neuropathic pain development and maintenance. The two-pore domain background potassium (K2P) channels have been identified as key determinants of the resting membrane potential and neuronal excitability. However, whether K2P channels contribute to neuropathic pain is still elusive. We reported here that K2P1.1, the first identified mammalian K2P channel, was highly expressed in mouse DRG and distributed in small-, medium-, and large-sized DRG neurons. Unilateral lumbar (L) 4 spinal nerve ligation led to a significant and time-dependent reduction of K2P1.1 mRNA and protein in the ipsilateral L4 DRG, but not in the contralateral L4 or ipsilateral L3 DRG. Rescuing this reduction through microinjection of adeno-associated virus-DJ expressing full-length K2P1.1 mRNA into the ipsilateral L4 DRG blocked spinal nerve ligation-induced mechanical, thermal, and cold pain hypersensitivities during the development and maintenance periods. This DRG viral microinjection did not affect acute pain and locomotor function. Our findings suggest that K2P1.1 participates in neuropathic pain development and maintenance and may be a potential target in the management of this disorder. PMID:28326939

  3. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida.

    PubMed

    Reitz, M; Rudolph, K; Schröder, I; Hoffmann-Hergarten, S; Hallmann, J; Sikora, R A

    2000-08-01

    Recent studies have shown that living and heat-killed cells of the rhizobacterium Rhizobium etli strain G12 induce in potato roots systemic resistance to infection by the potato cyst nematode Globodera pallida. To better understand the mechanisms of induced resistance, we focused on identifying the inducing agent. Since heat-stable bacterial surface carbohydrates such as exopolysaccharides (EPS) and lipopolysaccharides (LPS) are essential for recognition in the symbiotic interaction between Rhizobium and legumes, their role in the R. etli-potato interaction was studied. EPS and LPS were extracted from bacterial cultures, applied to potato roots, and tested for activity as an inducer of plant resistance to the plant-parasitic nematode. Whereas EPS did not affect G. pallida infection, LPS reduced nematode infection significantly in concentrations as low as 1 and 0.1 mg ml(-1). Split-root experiments, guaranteeing a spatial separation of inducing agent and challenging pathogen, showed that soil treatments of one half of the root system with LPS resulted in a highly significant (up to 37%) systemic induced reduction of G. pallida infection of potato roots in the other half. The results clearly showed that LPS of R. etli G12 act as the inducing agent of systemic resistance in potato roots.

  4. Role for apyrases in polar auxin transport in Arabidopsis.

    PubMed

    Liu, Xing; Wu, Jian; Clark, Greg; Lundy, Stacey; Lim, Minhui; Arnold, David; Chan, Jing; Tang, Wenqiang; Muday, Gloria K; Gardner, Gary; Roux, Stanley J

    2012-12-01

    Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [(3)H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport.

  5. Glucose control of root growth direction in Arabidopsis thaliana.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2014-07-01

    Directional growth of roots is a complex process that is modulated by various environmental signals. This work shows that presence of glucose (Glc) in the medium also extensively modulated seedling root growth direction. Glc modulation of root growth direction was dramatically enhanced by simultaneous brassinosteroid (BR) application. Glc enhanced BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) endocytosis from plasma membrane to early endosomes. Glc-induced root deviation was highly enhanced in a PP2A-defective mutant, roots curl in naphthyl phthalamic acid 1-1 (rcn1-1) suggesting that there is a role of phosphatase in Glc-induced root-growth deviation. RCN1, therefore, acted as a link between Glc and the BR-signalling pathway. Polar auxin transport worked further downstream to BR in controlling Glc-induced root deviation response. Glc also affected other root directional responses such as root waving and coiling leading to altered root architecture. High light intensity mimicked the Glc-induced changes in root architecture that were highly reduced in Glc-signalling mutants. Thus, under natural environmental conditions, changing light flux in the environment may lead to enhanced Glc production/response and is a way to manipulate root architecture for optimized development via integrating several extrinsic and intrinsic signalling cues. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  7. Bilateral presence of two root canals in maxillary central incisors: A rare case study.

    PubMed

    Kavitha, M; Gokul, Kannan; Ramaprabha, B; Lakshmi, Amudha

    2014-04-01

    Success in root canal treatment is achieved after thorough cleaning and shaping followed by complete obturation of the canal system. Therefore, endodontic therapy requires specific and complete knowledge of the internal and external dental anatomy, and its variations in presentation. The internal anatomy of the maxillary central incisor is well-known and usually presents one root canal system. This case report describes an endodontic treatment of traumatized both maxillary central incisors with two canal systems. Knowledge of dental anatomy is fundamental for proper endodontic practice. When root canal treatment is performed, the clinician should be aware that both external and internal anatomy may be abnormal.

  8. In vitro induction of lipo-chitooligosaccharide production in Bradyrhizobium japonicum cultures by root extracts from non-leguminous plants.

    PubMed

    Lian, Bin; Souleimanov, Alfred; Zhou, Xiaomin; Smith, Donald L

    2002-01-01

    Bradyrhizobium japonicum can form a N2-fixing symbiosis with compatible leguminous plants. It can also act as a plant-growth promoting rhizobacterium (PGPR) for non-legume plants, possibly through production of lipo-chitooligosaccharides (LCOs), which should have the ability to induce disease resistance responses in plants. The objective of this work was to determine whether non-leguminous crop plants can induce LCO formation by B. japonicum cultures. Cultures treated with root extracts of soybean, corn, cotton or winter wheat were assayed for presence and level of LCO. Root extracts of soybean, corn and winter wheat all induced LCO production, with extracts of corn inducing the greatest amounts. Root washings of corn also induced LCO production, but less than the root extract. These results indicated that the stimulation of non-legume plant growth by B. japonicum could be through the production of LCOs, induced by materials excreted by the roots of non-legume plants.

  9. The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice1[C

    PubMed Central

    Nahar, Kamrun; Kyndt, Tina; De Vleesschauwer, David; Höfte, Monica; Gheysen, Godelieve

    2011-01-01

    Complex defense signaling pathways, controlled by different hormones, are involved in the reaction of plants to a wide range of biotic and abiotic stress factors. We studied the ability of salicylic acid, jasmonate (JA), and ethylene (ET) to induce systemic defense in rice (Oryza sativa) against the root knot nematode Meloidogyne graminicola. Exogenous ET (ethephon) and JA (methyl jasmonate) supply on the shoots induced a strong systemic defense response in the roots, exemplified by a major up-regulation of pathogenesis-related genes OsPR1a and OsPR1b, while the salicylic acid analog BTH (benzo-1,2,3-thiadiazole-7-carbothioic acid S-methyl ester) was a less potent systemic defense inducer from shoot to root. Experiments with JA biosynthesis mutants and ET-insensitive transgenics showed that ET-induced defense requires an intact JA pathway, while JA-induced defense was still functional when ET signaling was impaired. Pharmacological inhibition of JA and ET biosynthesis confirmed that JA biosynthesis is needed for ET-induced systemic defense, and quantitative real-time reverse transcription-polymerase chain reaction data revealed that ET application onto the shoots strongly activates JA biosynthesis and signaling genes in the roots. All data provided in this study point to the JA pathway to play a pivotal role in rice defense against root knot nematodes. The expression of defense-related genes was monitored in root galls caused by M. graminicola. Different analyzed defense genes were attenuated in root galls caused by the nematode at early time points after infection. However, when the exogenous defense inducers ethephon and methyl jasmonate were supplied to the plant, the nematode was less effective in counteracting root defense pathways, hence making the plant more resistant to nematode infection. PMID:21715672

  10. Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca(2+) pathways.

    PubMed

    Cui, Weiti; Qi, Fang; Zhang, Yihua; Cao, Hong; Zhang, Jing; Wang, Ren; Shen, Wenbiao

    2015-03-01

    Methane-rich water triggered adventitious rooting by regulating heme oxygenase1/carbon monoxide and calcium pathways in cucumber explants. Heme oxygenase1/carbon monoxide (HO1/CO) and calcium (Ca(2+)) were reported as the downstream signals in auxin-induced cucumber adventitious root (AR) formation. Here, we observed that application of methane-rich water (MRW; 80% saturation) obviously induced AR formation in IAA-depleted cucumber explants. To address the universality, we checked adventitious rooting in soybean and mung bean explants, and found that MRW (50 and 10% saturation, respectively) exhibited the similar inducing results. To further determine if the HO1/CO system participated in MRW-induced adventitious rooting, MRW, HO1 inducer hemin, its activity inhibitor zinc protoporphyrin IX (ZnPP), and its catalytic by-products CO, bilirubin, and Fe(2+) were used to detect their effects on cucumber adventitious rooting in IAA-depleted explants. Subsequent results showed that MRW-induced adventitious rooting was blocked by ZnPP and further reversed by 20% saturation CO aqueous solution. However, the other two by-products of HO1, bilirubin and Fe(2+), failed to induce AR formation. Above responses were consistent with the MRW-induced increases of HO1 transcript and corresponding protein level. Further molecular evidence indicted that expression of marker genes, including auxin signaling-related genes and cell cycle regulatory genes, were modulated by MRW alone but blocked by the cotreatment with ZnPP, the latter of which could be significantly rescued by the addition of CO. By using the Ca(2+)-channel blocker and Ca(2+) chelator, the involvement of Ca(2+) pathway in MRW-induced adventitious rooting was also suggested. Together, our results indicate that MRW might serve as a stimulator of adventitious rooting, which was partially mediated by HO1/CO and Ca(2+) pathways.

  11. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.).

    PubMed

    Zhang, Yunhong; Liu, Hang; Yin, Heng; Wang, Wenxia; Zhao, Xiaoming; Du, Yuguang

    2013-10-01

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg L(-1)) were found to induce the generation of nitric oxide (NO) in the root system of wheat (Triticum aestivum L.), which promoted the formation and elongation of wheat roots in a dose-dependent manner. NO inhibitors suggested that nitrate reductase (NR), rather than nitric oxide synthase (NOS), was essential for AOS-induced root development. Further studies confirmed that AOS-induced NO generation in wheat roots by up-regulating the gene expression and enzyme activity of NR at the post-transcriptional level. The anatomy and RT-PCR results showed that AOS accelerated the division and growth of stele cells, leading to an increase in the ratio of stele area to root transverse area. This could be inhibited by the NR inhibitor, sodium tungstate, which indicated that NO catalyzed by the NR was involved in AOS regulation of root development. Taken together, in the early stage of AOS-induced root development, NO generation was a novel mechanism by which AOS regulated plant growth. The results also showed that this marine resource could be widely used for crop development. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    PubMed

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  13. Root induced changes of effective 1D hydraulic properties in a soil column.

    PubMed

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  14. Orthodontic tooth movement and root resorption in ovariectomized rats treated by systemic administration of zoledronic acid.

    PubMed

    Sirisoontorn, Irin; Hotokezaka, Hitoshi; Hashimoto, Megumi; Gonzales, Carmen; Luppanapornlarp, Suwannee; Darendeliler, M Ali; Yoshida, Noriaki

    2012-05-01

    The effect of zoledronic acid, a potent and novel bisphosphonate, on tooth movement and orthodontically induced root resorption in osteoporotic animals systemically treated with zoledronic acid as similarly used in postmenopausal patients has not been elucidated. Therefore, this study was undertaken. Fifteen 10-week-old female Wistar rats were divided into 3 groups: ovariectomy, ovariectomy + zoledronic acid, and control. Only the ovariectomy and ovariectomy + zoledronic acid groups underwent ovariectomies. Two weeks after the ovariectomy, zoledronic acid was administered only to the ovariectomy + zoledronic acid group. Four weeks after the ovariectomy, 25-g nickel-titanium closed-coil springs were applied to observe tooth movement and orthodontically induced root resorption. There were significant differences in the amounts of tooth movement and orthodontically induced root resorption between the ovariectomy and the control groups, and also between the ovariectomy and the ovariectomy + zoledronic acid groups. There was no statistically significant difference in tooth movement and orthodontically induced root resorption between the ovariectomy + zoledronic acid and the control groups. Zoledronic acid inhibited significantly more tooth movement and significantly reduced the severity of orthodontically induced root resorption in the ovariectomized rats. The ovariectomy + zoledronic acid group showed almost the same results as did the control group in both tooth movement and orthodontically induced root resorption. Zoledronic acid inhibits excessive orthodontic tooth movement and also reduces the risk of severe orthodontically induced root resorption in ovariectomized rats. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. How roots perceive and respond to gravity

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.

    1986-01-01

    Graviperception by plant roots is believed to occur via the sedimentation of amyloplasts in columella cells of the root cap. This physical stimulus results in an accumulation of calcium on the lower side of the cap, which in turn induces gravicurvature. In this paper we present a model for root gravitropism integrating gravity-induced changes in electrical potential, cytochemical localization of calcium in cells of gravistimulated roots, and the interdependence of calcium and auxin movement. Key features of the model are that 1) gravity-induced redistribution of calcium is an early event in the transduction mechanism, and 2) apoplastic movement of calcium through the root-cap mucilage may be an important component of the pathway for calcium movement.

  16. Genetic and Phenotypic Analysis of Lateral Root Development in Arabidopsis thaliana.

    PubMed

    Napsucialy-Mendivil, Selene; Dubrovsky, Joseph G

    2018-01-01

    Root system formation to a great extent depends on lateral root (LR) formation. In Arabidopsis thaliana, LRs are initiated within a parent root in pericycle that is an external tissue of the stele. LR initiation takes place in a strictly acropetal pattern, whereas posterior lateral root primordium (LRP) formation is asynchronous. In this chapter, we focus on methods of genetic and phenotypic analysis of LR initiation, LRP morphogenesis, and LR emergence in Arabidopsis. We provide details on how to make cleared root preparations and how to identify the LRP stages. We also pay attention to the categorization of the LRP developmental stages and their variations and to the normalization of the number of LRs and LRPs formed, per length of the primary root, and per number of cells produced within a root. Hormonal misbalances and mutations affect LRP morphogenesis significantly, and the evaluation of LRP abnormalities is addressed as well. Finally, we deal with various molecular markers that can be used for genetic and phenotypic analyses of LR development.

  17. Automated electronic reminders to prevent miscommunication among primary medical, surgical and anaesthesia providers: a root cause analysis.

    PubMed

    Freundlich, Robert E; Grondin, Louise; Tremper, Kevin K; Saran, Kelly A; Kheterpal, Sachin

    2012-10-01

    In this case report, the authors present an adverse event possibly caused by miscommunication among three separate medical teams at their hospital. The authors then discuss the hospital's root cause analysis and its proposed solutions, focusing on the subsequent hospital-wide implementation of an automated electronic reminder for abnormal laboratory values that may have helped to prevent similar medical errors.

  18. Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.

  19. Comparative Effectivness of Metal Ions in Inducing Curvature of Primary Roots of Zea mays1

    PubMed Central

    Hasenstein, Karl Heinz; Evans, Michael L.; Stinemetz, Charles L.; Moore, Randy; Fondren, W. Mark; Koon, E. Colin; Higby, Mary A.; Smucker, Alvin J. M.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature. PMID:11538239

  20. Abnormalities of tooth development in pituitary dwarfism.

    PubMed

    Kosowicz, J; Rzymski, K

    1977-12-01

    Roentgenographic studies of the jaws and teeth in a group of forty-eight pituitary dwarfs showed the following abnormalities in the development of the teeth: 1. Delayed shedding of the deciduous teeth. 2. Absence of resorption of the roots of the deciduous teeth at the usual time. 3. Marked delay in eruption of the permanent teeth. 4. Retention of permanent teeth in the maxillary and mandibular shafts. 5. Development of the apical parts of roots of the retained permanent teeth and their growth toward the lower mandibular edge. 6. Displacement of the first molars from the mandibular shaft to rami. 7. Tilting of some of the retained teeth. 8. Small size of the maxilla and mandible with overcrowding of the teeth in these bones. 9. Complete absence of buds of the wisdom teeth, even in patients in the fourth decade of life. 10. Stimulation of development and eruption of the teeth after administration of anabolic drugs. These abnormalities when present in combination depend on growth hormone deficiency since they do not occur in other types of dwarfism.

  1. An NADPH Oxidase RBOH Functions in Rice Roots during Lysigenous Aerenchyma Formation under Oxygen-Deficient Conditions

    PubMed Central

    Yoshioka, Miki; Fukazawa, Aya; Nishizawa, Naoko K.

    2017-01-01

    Reactive oxygen species (ROS) produced by the NADPH oxidase, respiratory burst oxidase homolog (RBOH), trigger signal transduction in diverse biological processes in plants. However, the functions of RBOH homologs in rice (Oryza sativa) and other gramineous plants are poorly understood. Ethylene induces the formation of lysigenous aerenchyma, which consists of internal gas spaces created by programmed cell death of cortical cells, in roots of gramineous plants under oxygen-deficient conditions. Here, we report that, in rice, one RBOH isoform (RBOHH) has a role in ethylene-induced aerenchyma formation in roots. Induction of RBOHH expression under oxygen-deficient conditions was greater in cortical cells than in cells of other root tissues. In addition, genes encoding group I calcium-dependent protein kinases (CDPK5 and CDPK13) were strongly expressed in root cortical cells. Coexpression of RBOHH with CDPK5 or CDPK13 induced ROS production in Nicotiana benthamiana leaves. Inhibitors of RBOH activity or cytosolic calcium influx suppressed ethylene-induced aerenchyma formation. Moreover, knockout of RBOHH by CRISPR/Cas9 reduced ROS accumulation and inducible aerenchyma formation in rice roots. These results suggest that RBOHH-mediated ROS production, which is stimulated by CDPK5 and/or CDPK13, is essential for ethylene-induced aerenchyma formation in rice roots under oxygen-deficient conditions. PMID:28351990

  2. Alteration of cell-wall porosity is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.)

    PubMed Central

    Yang, Zhong-Bao; Eticha, Dejene; Rao, Idupulapati Madhusudana; Horst, Walter Johannes

    2010-01-01

    Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al3+, La3+, Sr2+, and Rb+ binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al3+ compared with other cations (Al3+ >> La3+ > Sr2+ > Rb+). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast. PMID:20511277

  3. Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus)

    PubMed Central

    Meng, Zhi Bin; Chen, Li Qian; Suo, Dong; Li, Gui Xin; Tang, Cai Xian; Zheng, Shao Jian

    2012-01-01

    Background and Aims Formation of cluster roots is one of the most specific root adaptations to nutrient deficiency. In white lupin (Lupinus albus), cluster roots can be induced by phosphorus (P) or iron (Fe) deficiency. The aim of the present work was to investigate the potential shared signalling pathway in P- and Fe-deficiency-induced cluster root formation. Methods Measurements were made of the internal concentration of nutrients, levels of nitric oxide (NO), citrate exudation and expression of some specific genes under four P × Fe combinations, namely (1) 50 µm P and 10 µm Fe (+P + Fe); (2) 0 P and 10 µm Fe (–P + Fe); (3) 50 µm P and 0 Fe (+P–Fe); and (4) 0 P and 0 Fe (–P–Fe), and these were examined in relation to the formation of cluster roots. Key Results The deficiency of P, Fe or both increased the cluster root number and cluster zones. It also enhanced NO accumulation in pericycle cells and rootlet primordia at various stages of cluster root development. The formation of cluster roots and rootlet primordia, together with the expression of LaSCR1 and LaSCR2 which is crucial in cluster root formation, were induced by the exogenous NO donor S-nitrosoglutathione (GSNO) under the +P + Fe condition, but were inhibited by the NO-specific endogenous scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl- 3-oxide (cPTIO) under –P + Fe, +P–Fe and –P–Fe conditions. However, cluster roots induced by an exogenous supply of the NO donor did not secrete citrate, unlike those formed under –P or –Fe conditions. Conclusions NO plays an important role in the shared signalling pathway of the P- and Fe-deficiency-induced formation of cluster roots in white lupin. PMID:22351487

  4. Proper PIN1 Distribution Is Needed for Root Negative Phototropism in Arabidopsis

    PubMed Central

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism. PMID:24465665

  5. Proper PIN1 distribution is needed for root negative phototropism in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Gong, Wen; Jin, Yan; Shi, Ya-Ya; Yuan, Ting-Ting; Li, Juan; Lu, Ying-Tang

    2014-01-01

    Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.

  6. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  7. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed Central

    Olmo, Rocío; Cabrera, Javier; Moreno-Risueno, Miguel A.; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN–plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19, slr, and alf4. Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent during normal LR development. PMID:28603536

  8. Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by Root-Knot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo Organogenesis Program?

    PubMed

    Olmo, Rocío; Cabrera, Javier; Moreno-Risueno, Miguel A; Fukaki, Hidehiro; Fenoll, Carmen; Escobar, Carolina

    2017-01-01

    Root-knot nematodes (RKNs; Meloidogyne spp.) induce feeding cells (giant cells; GCs) inside a pseudo-organ (gall) from still unknown root cells. Understanding GCs ontogeny is essential to the basic knowledge of RKN-plant interaction and to discover novel and effective control strategies. Hence, we report for the first time in a model plant, Arabidopsis, molecular, and cellular features concerning ectopic de novo organogenesis of RKNs GCs in leaves. RKNs induce GCs in leaves with irregular shape, a reticulated cytosol, and fragmented vacuoles as GCs from roots. Leaf cells around the nematode enter G2-M shown by ProCycB1;1:CycB1;1(NT)-GUS expression, consistent to multinucleated GCs. In addition, GCs nuclei present irregular and varied sizes. All these characteristics mentioned, being equivalent to GCs in root-galls. RKNs complete their life cycle forming a gall/callus-like structure in the leaf vascular tissues resembling auxin-induced callus with an auxin-response maxima, indicated by high expression of DR5::GUS that is dependent on leaf auxin-transport. Notably, induction of leaves calli/GCs requires molecular components from roots crucial for lateral roots (LRs), auxin-induced callus and root-gall formation, i.e., LBD16. Hence, LBD16 is a xylem pole pericycle specific and local marker in LR primordia unexpectedly induced locally in the vascular tissue of leaves after RKN infection. LBD16 is also fundamental for feeding site formation as RKNs could not stablish in 35S::LBD16-SRDX leaves, and likely it is also a conserved molecular hub between biotic and developmental signals in Arabidopsis either in roots or leaves. Moreover, RKNs induce the ectopic development of roots from leaf and root-galls, also formed in mutants compromised in LR formation, arf7/arf19 , slr , and alf4 . Therefore, nematodes must target molecular signatures to induce post-embryogenic de novo organogenesis through the LBD16 callus formation pathway partially different from those prevalent during normal LR development.

  9. Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance1

    PubMed Central

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-01-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. PMID:25627217

  10. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  11. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  12. Transcription coactivator Arabidopsis ANGUSTIFOLIA3 modulates anthocyanin accumulation and light-induced root elongation through transrepression of Constitutive Photomorphogenic1.

    PubMed

    Meng, Lai-Sheng

    2015-04-01

    ANGUSTIFOLIA3 (AN3), a transcription coactivator, is implicated in modulating cell proliferation. In this study, I found that AN3 is a novel regulator of anthocyanin biosynthesis and light-induced root elongation. Seedlings and seeds lacking AN3 activity presented significantly reduced anthocyanin accumulation and light-induced root elongation, whereas those of transgenic plants harbouring the 35S:AN3 construct exhibited increased anthocyanin accumulation. AN3 is required for the proper expression of other genes that affect anthocyanin accumulation and light-induced root elongation, Constitutive Photomorphogenic1 (COP1), encoding a RING motif - containing E3 ubiquitin ligase. AN3 was associated with COP1 promoter in vivo. Thus, AN3 may act with other proteins that bind to COP1 promoter to promote anthocyanin accumulation and inhibit light-induced root elongation. © 2014 John Wiley & Sons Ltd.

  13. Effect of pH and calcium on short-term NO3- fluxes in roots of barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Travis, R. L.; Huffaker, R. C.

    1995-01-01

    The effect of pH and Ca2+ on net NO3- uptake, influx, and efflux by intact roots of barley (Hordeum vulgare L.) seedlings was studied. Seedlings were induced with NO3- or NO2-. Net NO3- uptake and efflux, respectively, were determined by following its depletion from, and accumulation in, the external solution. Since roots of both uninduced and NO2(-)-induced seedlings contain little internal NO3- initial net uptake rates are equivalent to influx (M. Aslam, R.L. Travis, R.C. Huffaker [1994] Plant Physiol 106: 1293-1301). NO3-, uptake (influx) by these roots was little affected at acidic pH. In contrast, in NO3(-)-induced roots, which accumulate NO3-, net uptake rates decreased in response to acidic pH. Under these conditions, NO3- efflux was stimulated and was a function of root NO3- concentration. Conversely, at basic pH, NO3- uptake by NO3- and NO2(-)-induced and uninduced roots decreased, apparently because of the inhibition of influx. Calcium had little effect on NO3- uptake (influx) by NO2(-)-induced roots at either pH 3 or 6. However, in NO3(-)-induced roots, lack of Ca2+ at pH 3 significantly decreased net NO3- uptake and stimulated efflux. The results indicate that at acidic pH the decrease in net NO3- uptake is due to the stimulation of efflux, whereas at basic pH, it is due to the inhibition of influx.

  14. Simulating root-induced rhizosphere deformation and its effect on water flow

    NASA Astrophysics Data System (ADS)

    Aravena, J. E.; Ruiz, S.; Mandava, A.; Regentova, E. E.; Ghezzehei, T.; Berli, M.; Tyler, S. W.

    2011-12-01

    Soil structure in the rhizosphere is influenced by root activities, such as mucilage production, microbial activity and root growth. Root growth alters soil structure by moving and deforming soil aggregates, affecting water and nutrient flow from the bulk soil to the root surface. In this study, we utilized synchrotron X-ray micro-tomography (XMT) and finite element analysis to quantify the effect of root-induced compaction on water flow through the rhizosphere to the root surface. In a first step, finite element meshes of structured soil around the root were created by processing rhizosphere XMT images. Then, soil deformation by root expansion was simulated using COMSOL Multiphysics° (Version 4.2) considering the soil an elasto-plastic porous material. Finally, fluid flow simulations were carried out on the deformed mesh to quantify the effect of root-induced compaction on water flow to the root surface. We found a 31% increase in water flow from the bulk soil to the root due to a 56% increase in root diameter. Simulations also show that the increase of root-soil contact area was the dominating factor with respect to the calculated increase in water flow. Increase of inter-aggregate contacts in size and number were observed within a couple of root diameters away from the root surface. But their influence on water flow was, in this case, rather limited compared to the immediate soil-root contact.

  15. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis.

    PubMed

    Zhang, Kun-Xiao; Xu, Heng-Hao; Yuan, Ting-Ting; Zhang, Liang; Lu, Ying-Tang

    2013-10-01

    Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  16. Suppressive effect of formononetin on platelet-derived growth factor-BB-stimulated proliferation and migration of vascular smooth muscle cells

    PubMed Central

    Chen, Zhuo; Liu, Suixin; Cai, Ying; Xie, Kangling; Zhang, Wenliang; Dong, Lei; Liu, Yuan; Zheng, Fan; Dun, Yaoshan; Li, Ning

    2016-01-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) has been implicated in intimal hyperplasia, atherosclerosis and restenosis following percutaneous coronary intervention. Formononetin, a phytoestrogen extracted from the root of Astragalus membranaceus, has been widely used in Chinese tradition medicine due to its protective effects against certain symptoms of cancer, hypertension, inflammation, hypoxia-induced cytotoxicity and ovariectomy-induced bone loss. However, the effect of formononetin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs, as well as the underlying molecular mechanism, remains largely unclear. In the present study, treatment with formononetin significantly inhibited PDGF-BB-induced proliferation and migration of human VSMCs. Investigation into the underlying molecular mechanism revealed that the administration of formononetin suppressed PDGF-BB-stimulated switch of VSMCs to a proliferative phenotype. Furthermore, treatment with formononetin inhibited the PDGF-BB-induced upregulation of cell cycle-related proteins, matrix metalloproteinase (MMP2) and MMP9. In addition, the that administration of formononetin inhibited the phosphorylation of AKT induced by PDGF-BB in VSMCs. The present results suggest that formononetin has a suppressive effect on PDGF-BB-stimulated VSMCs proliferation and migration, which may occur partly via the inhibition of AKT signaling pathway. Therefore, formononetin may be useful for the treatment of intimal hyperplasia, atherosclerosis and restenosis. PMID:27588108

  17. Suppressive effect of formononetin on platelet-derived growth factor-BB-stimulated proliferation and migration of vascular smooth muscle cells.

    PubMed

    Chen, Zhuo; Liu, Suixin; Cai, Ying; Xie, Kangling; Zhang, Wenliang; Dong, Lei; Liu, Yuan; Zheng, Fan; Dun, Yaoshan; Li, Ning

    2016-09-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) has been implicated in intimal hyperplasia, atherosclerosis and restenosis following percutaneous coronary intervention. Formononetin, a phytoestrogen extracted from the root of Astragalus membranaceus , has been widely used in Chinese tradition medicine due to its protective effects against certain symptoms of cancer, hypertension, inflammation, hypoxia-induced cytotoxicity and ovariectomy-induced bone loss. However, the effect of formononetin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs, as well as the underlying molecular mechanism, remains largely unclear. In the present study, treatment with formononetin significantly inhibited PDGF-BB-induced proliferation and migration of human VSMCs. Investigation into the underlying molecular mechanism revealed that the administration of formononetin suppressed PDGF-BB-stimulated switch of VSMCs to a proliferative phenotype. Furthermore, treatment with formononetin inhibited the PDGF-BB-induced upregulation of cell cycle-related proteins, matrix metalloproteinase (MMP2) and MMP9. In addition, the that administration of formononetin inhibited the phosphorylation of AKT induced by PDGF-BB in VSMCs. The present results suggest that formononetin has a suppressive effect on PDGF-BB-stimulated VSMCs proliferation and migration, which may occur partly via the inhibition of AKT signaling pathway. Therefore, formononetin may be useful for the treatment of intimal hyperplasia, atherosclerosis and restenosis.

  18. Vacuolar H(+)-Pyrophosphatase AVP1 is Involved in Amine Fungicide Tolerance in Arabidopsis thaliana and Provides Tridemorph Resistance in Yeast.

    PubMed

    Hernández, Agustín; Herrera-Palau, Rosana; Madroñal, Juan M; Albi, Tomás; López-Lluch, Guillermo; Perez-Castiñeira, José R; Navas, Plácido; Valverde, Federico; Serrano, Aurelio

    2016-01-01

    Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.

  19. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  20. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord.

    PubMed

    Zhu, Guiqin; Dong, Yanbin; He, Xueming; Zhao, Ping; Yang, Aixing; Zhou, Rubing; Ma, Jianhua; Xie, Zhong; Song, Xue-Jun

    2016-01-01

    Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI) in rat tibia (TCI cancer pain model). Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy). Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG) was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  1. Sensory Symptom Profiles and Co-Morbidities in Painful Radiculopathy

    PubMed Central

    Gockel, Ulrich; Brosz, Mathias; Freynhagen, Rainer; Tölle, Thomas R.; Baron, Ralf

    2011-01-01

    Painful radiculopathies (RAD) and classical neuropathic pain syndromes (painful diabetic polyneuropathy, postherpetic neuralgia) show differences how the patients express their sensory perceptions. Furthermore, several clinical trials with neuropathic pain medications failed in painful radiculopathy. Epidemiological and clinical data of 2094 patients with painful radiculopathy were collected within a cross sectional survey (painDETECT) to describe demographic data and co-morbidities and to detect characteristic sensory abnormalities in patients with RAD and compare them with other neuropathic pain syndromes. Common co-morbidities in neuropathic pain (depression, sleep disturbance, anxiety) do not differ considerably between the three conditions. Compared to other neuropathic pain syndromes touch-evoked allodynia and thermal hyperalgesia are relatively uncommon in RAD. One distinct sensory symptom pattern (sensory profile), i.e., severe painful attacks and pressure induced pain in combination with mild spontaneous pain, mild mechanical allodynia and thermal hyperalgesia, was found to be characteristic for RAD. Despite similarities in sensory symptoms there are two important differences between RAD and other neuropathic pain disorders: (1) The paucity of mechanical allodynia and thermal hyperalgesia might be explained by the fact that the site of the nerve lesion in RAD is often located proximal to the dorsal root ganglion. (2) The distinct sensory profile found in RAD might be explained by compression-induced ectopic discharges from a dorsal root and not necessarily by nerve damage. These differences in pathogenesis might explain why medications effective in DPN and PHN failed to demonstrate efficacy in RAD. PMID:21573064

  2. F-18 FDG PET/CT findings of a case of sacral nerve root neurolymphomatosis that occurred during chemotherapy.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Matsunaga, Naofumi; Yujiri, Toshiaki; Nakazora, Tatsuki; Ariyoshi, Kouichi

    2011-01-01

    Neurolymphomatosis (NL) is a rare, unique subtype of lymphomatous infiltration of peripheral nerves. Clinical/radiologic diagnosis of NL is challenging. We report F-18 FDG PET/CT findings of a case of breast diffuse large B-cell lymphoma, in which NL developed regardless of regression of systemic lesions during induction chemotherapy. FDG PET/CT showed characteristic findings of well-demarcated, linear abnormal FDG uptake along a sacral vertebral foramen, leading to diagnosis of NL, with the finding of thickened nerve roots on magnetic resonance imaging. Altered chemotherapeutic regimen resulted in disappearance of these abnormal FDG uptake, with recovery of neurologic symptoms. Peripheral nerve NL may occur during chemotherapy, and FDG PET/CT can be a useful imaging modality in diagnosis and monitoring of therapeutic response of this disease.

  3. Endodontic management of an unusual maxillary first molar with a single buccal root.

    PubMed

    Nayak, Gurudutt; Dahiya, Surya; Singh, Inderpreet; Mohammad, Faiz Hasan

    2014-05-01

    The aim of this clinical article is to describe the unusual anatomy that was detected in a maxillary first molar during routine endodontic treatment. Variation in Root and Root canal morphology especially in multirooted teeth presents a constant challenge for a clinician in their detection and management. The literature is replete with cases that have extra canal or Root but cases with fused Root and fewer numbers of canals are sparse. This case report describes the endodontic management of one such unusual case of maxillary first molar presenting with a single fused buccal and a palatal Root. The confirmatory diagnosis of this morphologic aberration was done with the help of spiral computerized tomography, which revealed that the contralateral tooth also had a similar morphology. Dental practitioners should always be aware of the fact that abnormalities need not be in form of extra Roots or Root canals; anomalies can also be in form of fewer number of Roots or Root canals. A thorough knowledge of the complexities and variations of the Root canal system would help in avoiding some of the common iatrogenic access opening errors like perforations and excessive tooth removal caused during the search for the missing or extracanal.

  4. Oxaliplatin-Induced Peripheral Neuropathy via TRPA1 Stimulation in Mice Dorsal Root Ganglion Is Correlated with Aluminum Accumulation

    PubMed Central

    Roh, Kangsan; Kil, Eui-Joon; Lee, Minji; Auh, Chung-Kyun; Lee, Myung-Ah; Yeom, Chang-Hwan; Lee, Sukchan

    2015-01-01

    Oxaliplatin is a platinum-based anticancer drug used to treat metastatic colorectal, breast, and lung cancers. While oxaliplatin kills cancer cells effectively, it exhibits several side effects of varying severity. Neuropathic pain is commonly experienced during treatment with oxaliplatin. Patients describe symptoms of paresthesias or dysesthesias that are triggered by cold (acute neuropathy), or as abnormal sensory or motor function (chronic neuropathy). In particular, we found that aluminum levels were relatively high in some cancer patients suffering from neuropathic pain based on clinical observations. Based on these findings, we hypothesized that aluminum accumulation in the dorsal root ganglion (DRG) in the course of oxaliplatin treatment exacerbates neuropathic pain. In mice injected with oxaliplatin (three cycles of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest), we detected cold allodynia using the acetone test, but not heat hyperalgesia using a hot plate. However, co-treatment with aluminum chloride (AlCl3∙6H2O; 7 mg/kg i.p. for 14 days: equivalent 0.78 mg/kg of elemental Al) and oxaliplatin (1 cycle of 3 mg/kg i.p. daily for 5 days, followed by 5 days of rest) synergistically induced cold allodynia as well as increased TRPAl mRNA and protein expression. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis showed a significant increase in aluminum concentrations in the DRG of mice treated with aluminum chloride and oxaliplatin compared to aluminum chloride alone. Similarly, in a mouse induced-tumor model, aluminum concentrations were increased in DRG tissue and tumor cells after oxaliplatin treatment. Taken together, these findings suggest that aluminum accumulation in the DRG may exacerbate neuropathic pain in oxaliplatin-treated mice. PMID:25928068

  5. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition1[OPEN

    PubMed Central

    Yang, Zhong-Bao; Ma, Yanqi

    2017-01-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. PMID:27932419

  6. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    PubMed

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.

    PubMed

    Zhu, Changhua; Yang, Na; Guo, Zhengfei; Qian, Meng; Gan, Lijun

    2016-08-01

    Root hairs are plastic in response to nutrient supply, but relatively little is known about their development under low ammonium (NH4(+)) conditions. This study showed that reducing NH4(+) for 3 days in wild-type Arabidopsis seedlings resulted in drastic elongation of root hairs. To investigate the possible mediation of ethylene and auxin in this process, seedlings were treated with 2,3,5-triiodobenzoic acid (TIBA, auxin transport inhibitor), 1-naphthylphthalamic acid (NPA, auxin transport inhibitor), p-chlorophenoxy isobutyric acid (PCIB, auxin action inhibitor), aminoethoxyvinylglycine (AVG, chemical inhibitor of ethylene biosynthesis), or silver ions (Ag(+), ethylene perception antagonist) under low NH4(+) conditions. Our results showed that TIBA, NPA and PCIB did not inhibit root hair elongation under low NH4(+) conditions, while AVG and Ag(+) completely inhibited low NH4(+)-induced root hair elongation. This suggested that low NH4(+)-induced root hair elongation was dependent on the ethylene pathway, but not the auxin pathway. Further genetic studies revealed that root hair elongation in auxin-insensitive mutants was sensitive to low NH4(+) treatment, but elongation was less sensitive in ethylene-insensitive mutants than wild-type plants. In addition, low NH4(+)-induced root hair elongation was accompanied by reactive oxygen species (ROS) accumulation. Diphenylene iodonium (DPI, NADPH oxidase inhibitor) and dimethylthiourea (DMTU, ROS scavenger) inhibited low NH4(+)-induced root hair elongation, suggesting that ROS were involved in this process. Moreover, ethylene acted together with ROS to modulate root hair elongation under low NH4(+) conditions. These results demonstrate that a signaling pathway involving ethylene and ROS participates in regulation of root hair elongation when Arabidopsis seedlings are subjected to low NH4(+) conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed Central

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-01-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission. PMID:12226398

  9. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    PubMed

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation

    PubMed Central

    Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo

    2017-01-01

    Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051

  11. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    NASA Technical Reports Server (NTRS)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  12. Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance.

    PubMed

    Lu, Jing; Robert, Christelle Aurélie Maud; Riemann, Michael; Cosme, Marco; Mène-Saffrané, Laurent; Massana, Josep; Stout, Michael Joseph; Lou, Yonggen; Gershenzon, Jonathan; Erb, Matthias

    2015-03-01

    Induced defenses play a key role in plant resistance against leaf feeders. However, very little is known about the signals that are involved in defending plants against root feeders and how they are influenced by abiotic factors. We investigated these aspects for the interaction between rice (Oryza sativa) and two root-feeding insects: the generalist cucumber beetle (Diabrotica balteata) and the more specialized rice water weevil (Lissorhoptrus oryzophilus). Rice plants responded to root attack by increasing the production of jasmonic acid (JA) and abscisic acid, whereas in contrast to in herbivore-attacked leaves, salicylic acid and ethylene levels remained unchanged. The JA response was decoupled from flooding and remained constant over different soil moisture levels. Exogenous application of methyl JA to the roots markedly decreased the performance of both root herbivores, whereas abscisic acid and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid did not have any effect. JA-deficient antisense 13-lipoxygenase (asLOX) and mutant allene oxide cyclase hebiba plants lost more root biomass under attack from both root herbivores. Surprisingly, herbivore weight gain was decreased markedly in asLOX but not hebiba mutant plants, despite the higher root biomass removal. This effect was correlated with a herbivore-induced reduction of sucrose pools in asLOX roots. Taken together, our experiments show that jasmonates are induced signals that protect rice roots from herbivores under varying abiotic conditions and that boosting jasmonate responses can strongly enhance rice resistance against root pests. Furthermore, we show that a rice 13-lipoxygenase regulates root primary metabolites and specifically improves root herbivore growth. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Ethylene Promotes Cadmium-induced Root Growth Inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis.

    PubMed

    Kong, Xiangpei; Li, Cuiling; Zhang, Feng; Yu, Qianqian; Gao, Shan; Zhang, Maolin; Tian, Huiyu; Zhang, Jian; Yuan, Xianzheng; Ding, Zhaojun

    2018-06-05

    Cadmium (Cd) stress is one of the most serious heavy metal stresses limiting plant growth and development. However, the molecular mechanisms underlying Cd-induced root growth inhibition remain unclear. Here, we found that ethylene signaling positively regulates Cd-induced root growth inhibition. Arabidopsis seedlings pretreated with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid exhibited enhanced Cd-induced root growth inhibition; while the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine decreased Cd-induced root growth inhibition. Consistently, ethylene-insensitive mutants such as ein4-1, ein3-1 eil1-1 double mutant, and EBF1ox, displayed an increased tolerance to Cd. Furthermore, we also observed that Cd inhibited EIN3 protein degradation, a process which was regulated by ethylene signaling. Genetic and biochemical analyses showed that EIN3 enhanced root growth inhibition under Cd stress through direct binding to the promoters and regulating the expression of XTH33 and LSU1, which encode key regulators of cell wall extension and S metabolic process, respectively. Collectively, our study demonstrates that ethylene plays a positive role in Cd-regulated root growth inhibition through EIN3-mediated transcriptional regulation of XTH33 and LSU1, and provides a molecular framework for the integration of environmental signals and intrinsic regulators in modulating plant root growth. This article is protected by copyright. All rights reserved.

  14. Polyamines Interact with Hydroxyl Radicals in Activating Ca2+ and K+ Transport across the Root Epidermal Plasma Membranes1[W

    PubMed Central

    Zepeda-Jazo, Isaac; Velarde-Buendía, Ana María; Enríquez-Figueroa, René; Bose, Jayakumar; Shabala, Sergey; Muñiz-Murguía, Jesús; Pottosin, Igor I.

    2011-01-01

    Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca2+ dynamics by activating a range of nonselective Ca2+-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K+ and Ca2+ fluxes induced by hydroxyl radicals (OH•) in pea (Pisum sativum) roots. OH•, but not hydrogen peroxide, activated a rapid Ca2+ efflux and a more slowly developing net Ca2+ influx concurrent with a net K+ efflux. In isolated protoplasts, OH• evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K+ efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca2+. Active OH•-induced Ca2+ efflux in roots was suppressed by the PM Ca2+ pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH•-induced ionic currents in root protoplasts and K+ efflux and Ca2+ influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH•-induced cation fluxes. The net OH•-induced Ca2+ efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH•-induced net K+ efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca2+ homeostasis by modulating both Ca2+ influx and efflux transport systems at the root cell PM. PMID:21980172

  15. Ablation of XP-V gene causes adipose tissue senescence and metabolic abnormalities

    PubMed Central

    Chen, Yih-Wen; Harris, Robert A.; Hatahet, Zafer; Chou, Kai-ming

    2015-01-01

    Obesity and the metabolic syndrome have evolved to be major health issues throughout the world. Whether loss of genome integrity contributes to this epidemic is an open question. DNA polymerase η (pol η), encoded by the xeroderma pigmentosum (XP-V) gene, plays an essential role in preventing cutaneous cancer caused by UV radiation-induced DNA damage. Herein, we demonstrate that pol η deficiency in mice (pol η−/−) causes obesity with visceral fat accumulation, hepatic steatosis, hyperleptinemia, hyperinsulinemia, and glucose intolerance. In comparison to WT mice, adipose tissue from pol η−/− mice exhibits increased DNA damage and a greater DNA damage response, indicated by up-regulation and/or phosphorylation of ataxia telangiectasia mutated (ATM), phosphorylated H2AX (γH2AX), and poly[ADP-ribose] polymerase 1 (PARP-1). Concomitantly, increased cellular senescence in the adipose tissue from pol η−/− mice was observed and measured by up-regulation of senescence markers, including p53, p16Ink4a, p21, senescence-associated (SA) β-gal activity, and SA secretion of proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) as early as 4 wk of age. Treatment of pol η−/− mice with a p53 inhibitor, pifithrin-α, reduced adipocyte senescence and attenuated the metabolic abnormalities. Furthermore, elevation of adipocyte DNA damage with a high-fat diet or sodium arsenite exacerbated adipocyte senescence and metabolic abnormalities in pol η−/− mice. In contrast, reduction of adipose DNA damage with N-acetylcysteine or metformin ameliorated cellular senescence and metabolic abnormalities. These studies indicate that elevated DNA damage is a root cause of adipocyte senescence, which plays a determining role in the development of obesity and insulin resistance. PMID:26240351

  16. Nitric oxide enhances development of lateral roots in tomato (Solanum lycopersicum L.) under elevated carbon dioxide.

    PubMed

    Wang, Huan; Xiao, Wendan; Niu, Yaofang; Jin, Chongwei; Chai, Rushan; Tang, Caixian; Zhang, Yongsong

    2013-01-01

    Elevated carbon dioxide (CO₂) has been shown to enhance the growth and development of plants, especially of roots. Amongst them, lateral roots play an important role in nutrient uptake, and thus alleviate the nutrient limitation to plant growth under elevated CO₂. This paper examined the mechanism underlying CO₂ elevation-induced lateral root formation in tomato. The endogenous nitric oxide (NO) in roots was detected by the specific probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA). We suggest that CO₂ elevation-induced NO accumulation was important for lateral root formation. Elevated CO₂ significantly increased the activity of nitric oxide synthase in roots, but not nitrate reductase activity. Moreover, the pharmacological evidence showed that nitric oxide synthase rather than nitrate reductase was responsible for CO₂ elevation-induced NO accumulation. Elevated CO₂ enhanced the activity of nitric oxide synthase and promoted production of NO, which was involved in lateral root formation in tomato under elevated CO₂.

  17. Analysis of the dynamic avalanche of carrier stored trench bipolar transistor (CSTBT) during clamped inductive turn-off transient

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Fu, Guicui

    2017-03-01

    The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.

  18. Apical closure of mature molar roots with the use of calcium hydroxide.

    PubMed

    Rotstein, I; Friedman, S; Katz, J

    1990-11-01

    Calcium hydroxide may induce apical root closure in affected mature teeth as well as in immature teeth. Once an apical hard tissue barrier is formed, a permanent root canal filling can be safely condensed. Two cases are described in which calcium hydroxide induced apical root closure in mature molar teeth where the apical constriction was lost because of chronic inflammatory process.

  19. Ulinastatin attenuates neuropathic pain induced by L5-VRT via the calcineurin/IL-10 pathway.

    PubMed

    Ouyang, Handong; Nie, Bilin; Wang, Peizong; Li, Qiang; Huang, Wan; Xin, Wenjun; Zeng, Weian; Liu, Xianguo

    2016-01-01

    Previous studies have shown that ulinastatin, an effective inhibitor of the inflammatory response in clinical applications, can attenuate hyperalgesia in rodents. However, the underlying mechanism remains unclear. In the present study, we first examined the change in the calcineurin level, which plays an important role in regulating cytokine release in the nervous system, following lumbar 5 ventral root transection in the rat. Furthermore, we determined whether intraperitoneal (i.p.) injection of ulinastatin attenuated pain behavior via inhibition of the calcineurin-mediated inflammatory response induced by lumbar 5 ventral root transection. The results showed that the paw withdrawal threshold and paw withdrawal latency were significantly decreased following lumbar 5 ventral root transection compared to the sham group. Neuropathic pain induced by lumbar 5 ventral root transection significantly decreased the expression of calcineurin in the DRG, and calcineurin was mostly located with NF-200-positive cells, IB4-positive cells, and CGRP-positive cells and less with GFAP-positive satellite cells. Furthermore, intrathecal (i.t.) injection of exogenous calcineurin attenuated the pain behavior induced by lumbar 5 ventral root transection. Importantly, intraperitoneal injection of ulinastatin alleviated the pain behavior and calcineurin downregulation induced by lumbar 5 ventral root transection. Lastly, the cytokine IL-10 was significantly decreased following lumbar 5 ventral root transection, and application of calcineurin (intrathecal) or ulinastatin (intraperitoneal) inhibited the IL-10 downregulation induced by lumbar 5 ventral root transection. These results suggested that ulinastatin, by acting on the CN/IL-10 pathway, might be a novel and effective drug for the treatment of neuropathic pain. © The Author(s) 2016.

  20. Ulinastatin attenuates neuropathic pain induced by L5-VRT via the calcineurin/IL-10 pathway

    PubMed Central

    Ouyang, Handong; Nie, Bilin; Wang, Peizong; Li, Qiang; Huang, Wan; Xin, Wenjun; Liu, Xianguo

    2016-01-01

    Previous studies have shown that ulinastatin, an effective inhibitor of the inflammatory response in clinical applications, can attenuate hyperalgesia in rodents. However, the underlying mechanism remains unclear. In the present study, we first examined the change in the calcineurin level, which plays an important role in regulating cytokine release in the nervous system, following lumbar 5 ventral root transection in the rat. Furthermore, we determined whether intraperitoneal (i.p.) injection of ulinastatin attenuated pain behavior via inhibition of the calcineurin-mediated inflammatory response induced by lumbar 5 ventral root transection. The results showed that the paw withdrawal threshold and paw withdrawal latency were significantly decreased following lumbar 5 ventral root transection compared to the sham group. Neuropathic pain induced by lumbar 5 ventral root transection significantly decreased the expression of calcineurin in the DRG, and calcineurin was mostly located with NF-200-positive cells, IB4-positive cells, and CGRP-positive cells and less with GFAP-positive satellite cells. Furthermore, intrathecal (i.t.) injection of exogenous calcineurin attenuated the pain behavior induced by lumbar 5 ventral root transection. Importantly, intraperitoneal injection of ulinastatin alleviated the pain behavior and calcineurin downregulation induced by lumbar 5 ventral root transection. Lastly, the cytokine IL-10 was significantly decreased following lumbar 5 ventral root transection, and application of calcineurin (intrathecal) or ulinastatin (intraperitoneal) inhibited the IL-10 downregulation induced by lumbar 5 ventral root transection. These results suggested that ulinastatin, by acting on the CN/IL-10 pathway, might be a novel and effective drug for the treatment of neuropathic pain. PMID:27175013

  1. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0433 TITLE: Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced Pluripotent Cells...2015 - 31 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human -Induced...functions to normal in neurons derived from human pluripotent cells exposed to Gulf War toxins. 15. SUBJECT TERMS microtubule, neuron, Gulf War Illness

  2. Sunlight decreased genotoxicity of azadirachtin on root tip cells of Allium cepa and Eucrosia bicolor.

    PubMed

    Kwankua, W; Sengsai, S; Kuleung, C; Euawong, N

    2010-07-01

    Utilization of neem plant (Azadirachta indica A. Juss) extract for pest control in agriculture has raised concerns over contamination by the residues to the environment. Such residues, particularly azadirachtin (Aza), may cause deleterious effect to non-target organisms. This investigation was conducted to find out if Aza could be inactivated through exposures to sunlight. Activity of Aza was assessed as its ability to cause cytotoxic and genotoxic effects in the forms of nuclei abnormality and chromosome aberration as measured by mitotic index (MI) and mitotic aberration (MA). Varying concentrations of Aza were tested on Allium cepa and Eucrosia bicolor. It was found that the MI of all root tip meristematic cells of A. cepa and E. bicolor treated with 0.00005%, 0.00010%, 0.00015%, and 0.00020% (w/v) Aza-containing neem extract for 24h, were significantly lower than the controls. Complementary to the lower levels of MI, the Aza-treated groups showed higher MA levels in all cases investigated. Furthermore, the decreasing levels of MI and the increasing levels of MA related well with the increasing concentration of Aza. Microscopic examination of root tip meristematic cells revealed that the anomaly found most often were mitotic disturbances and chromosomal bridges. Exposures of 0.00020% (w/v) Aza to sunlight for 3 days and 7 days decreased Aza ability to induce cytotoxicity and genotoxicity, both in terms of MI and MA, to root tip meristematic cells in A. cepa and E. bicolor. Photodegradation of Aza upon exposure to direct sunlight was confirmed by HPLC. The study implicates that Aza would unlikely cause long term deleterious effects to the environment since it would be inactivated by sunlight. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  3. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  4. Light-regulated gravitropism in seedling roots of maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Briggs, W. R.

    1987-01-01

    Red light-induced changes in the gravitropism of roots of Zea mays variety Merit is a very low fluence response with a threshold of 10(-9) moles per square meter and is not reversible by far red light. Blue light also affects root gravitropism but the sensitivity of roots to blue is 50 to 100 times less than to an equal fluence of red. In Z. mays Merit we conclude that phytochrome is the sole pigment associated with light-induced changes in root gravitropism.

  5. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling.

    PubMed

    Zhang, Yunhong; Yin, Heng; Zhao, Xiaoming; Wang, Wenxia; Du, Yuguang; He, Ailing; Sun, Kegang

    2014-11-26

    Alginate oligosaccharides (AOS), which are marine oligosaccharides, are involved in regulating plant root growth, but the promotion mechanism for AOS remains unclear. Here, AOS (10-80 mg/L) induced the expression of auxin-related gene (OsYUCCA1, OsYUCCA5, OsIAA11 and OsPIN1) in rice (Oryza sativa L.) tissues to accelerate auxin biosynthesis and transport, and reduced indole-3-acetic acid (IAA) oxidase activity in rice roots. These changes resulted in the increase of 37.8% in IAA concentration in rice roots, thereby inducing the expression of root development-related genes, promoting root growth in a dose-dependent manner, which were inhibited by auxin transport inhibitor 2,3,5-triiodo benzoic acid (TIBA) and calcium-chelating agent ethylene glycol bis (2-aminoethyl) tetraacetic acid (EGTA). AOS also induced calcium signaling generation in rice roots. Those results indicated that auxin mediated AOS regulation of root development, and calcium signaling may act mainly in the upstream of auxin in the regulation of AOS on rice root development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate.

    PubMed

    Kape, R; Parniske, M; Brandt, S; Werner, D

    1992-05-01

    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms.

  7. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut (Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall

    PubMed Central

    Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei

    2017-01-01

    It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase (XTH-32) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW. PMID:29311970

  8. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut (Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall.

    PubMed

    Pan, Chun-Liu; Yao, Shao-Chang; Xiong, Wei-Jiao; Luo, Shu-Zhen; Wang, Ya-Lun; Wang, Ai-Qin; Xiao, Dong; Zhan, Jie; He, Long-Fei

    2017-01-01

    It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase ( XTH-32 ) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW.

  9. Clozapine-induced EEG abnormalities and clinical response to clozapine.

    PubMed

    Risby, E D; Epstein, C M; Jewart, R D; Nguyen, B V; Morgan, W N; Risch, S C; Thrivikraman, K V; Lewine, R L

    1995-01-01

    The authors hypothesized that patients who develop gross EEG abnormalities during clozapine treatment would have a less favorable outcome than patients who did not develop abnormal EEGs. The clinical EEGs and the Brief Psychiatric Rating Scale (BPRS) scores of 12 patients with schizophrenia and 4 patients with schizoaffective disorder were compared before and during treatment with clozapine. Eight patients developed significant EEG abnormalities on clozapine; 1 showed worsening of an abnormal pre-clozapine EEG; none of these subjects had clinical seizures. BPRS scores improved significantly in the group of patients who developed abnormal EEGs but not in the group who did not. Findings are consistent with previous reports of a high incidence of clozapine-induced EEG abnormalities and a positive association between these abnormalities and clinical improvement.

  10. Toxicity and genotoxicity of wastewater from gasoline stations

    PubMed Central

    2009-01-01

    The toxicity and genotoxicity of wastewater from eight gasoline stations in Brasília, Brazil's capital city, was studied by assessing chromosomal aberrations, chromosomal malsegregation and the mitotic index in Alliumcepa root cells, and the occurrence of micronucleus and nuclear abnormalities in peripheral erythrocytes of tilapia fish (Oreochromis niloticus). The content of gasoline station effluents was also analyzed based on several physico-chemical parameters. None of the wastewater samples was genotoxic to A. cepa root cells, although cell proliferation was significantly inhibited, especially at the highest concentrations. Likewise, no micronuclei were observed in O. niloticus peripheral erythrocytes, even after exposure to high concentrations, but there was an increase in the number of nuclear abnormalities and fish mortality. These results show that although the effluent from gasoline stations is processed by an oil/water separation system before being discharged into the main sewage system, the wastewater still contains toxic compounds. PMID:21637464

  11. Mitogen-activated protein kinase signal transduction and DNA repair network are involved in aluminum-induced DNA damage and adaptive response in root cells of Allium cepa L.

    PubMed Central

    Panda, Brahma B.; Achary, V. Mohan M.

    2014-01-01

    In the current study, we studied the role of signal transduction in aluminum (Al3+)-induced DNA damage and adaptive response in root cells of Allium cepa L. The root cells in planta were treated with Al3+ (800 μM) for 3 h without or with 2 h pre-treatment of inhibitors of mitogen-activated protein kinase (MAPK), and protein phosphatase. Also, root cells in planta were conditioned with Al3+ (10 μM) for 2 h and then subjected to genotoxic challenge of ethyl methane sulfonate (EMS; 5 mM) for 3 h without or with the pre-treatment of the aforementioned inhibitors as well as the inhibitors of translation, transcription, DNA replication and repair. At the end of treatments, roots cells were assayed for cell death and/or DNA damage. The results revealed that Al3+ (800 μM)-induced significant DNA damage and cell death. On the other hand, conditioning with low dose of Al3+ induced adaptive response conferring protection of root cells from genotoxic stress caused by EMS-challenge. Pre-treatment of roots cells with the chosen inhibitors prior to Al3+-conditioning prevented or reduced the adaptive response to EMS genotoxicity. The results of this study suggested the involvement of MAPK and DNA repair network underlying Al-induced DNA damage and adaptive response to genotoxic stress in root cells of A. cepa. PMID:24926302

  12. Cytogenotoxicity screening of source water, wastewater and treated water of drinking water treatment plants using two in vivo test systems: Allium cepa root based and Nile tilapia erythrocyte based tests.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2017-01-01

    Biological effect directed in vivo tests with model organisms are useful in assessing potential health risks associated with chemical contaminations in surface waters. This study examined the applicability of two in vivo test systems viz. plant, Allium cepa root based tests and fish, Oreochromis niloticus erythrocyte based tests for screening cytogenotoxic potential of raw source water, water treatment waste (effluents) and treated water of drinking water treatment plants (DWTPs) using two DWTPs associated with a major river in Sri Lanka. Measured physico-chemical parameters of the raw water, effluents and treated water samples complied with the respective Sri Lankan standards. In the in vivo tests, raw water induced statistically significant root growth retardation, mitodepression and chromosomal abnormalities in the root meristem of the plant and micronuclei/nuclear buds evolution and genetic damage (as reflected by comet scores) in the erythrocytes of the fish compared to the aged tap water controls signifying greater genotoxicity of the source water especially in the dry period. The effluents provoked relatively high cytogenotoxic effects on both test systems but the toxicity in most cases was considerably reduced to the raw water level with the effluent dilution (1:8). In vivo tests indicated reduction of cytogenotoxic potential in the tested drinking water samples. The results support the potential applications of practically feasible in vivo biological test systems such as A. cepa root based tests and the fish erythrocyte based tests as complementary tools for screening cytogenotoxicity potential of the source water and water treatment waste reaching downstream of aquatic ecosystems and for evaluating cytogenotoxicity eliminating efficacy of the DWTPs in different seasons in view of human and ecological safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Phytochromes A and B mediate red-light-induced positive phototropism in roots

    NASA Technical Reports Server (NTRS)

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  14. Phytochromes A and B mediate red-light-induced positive phototropism in roots.

    PubMed

    Kiss, John Z; Mullen, Jack L; Correll, Melanie J; Hangarter, Roger P

    2003-03-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.

  15. Diffusion tensor imaging with quantitative evaluation and fiber tractography of lumbar nerve roots in sciatica.

    PubMed

    Shi, Yin; Zong, Min; Xu, Xiaoquan; Zou, Yuefen; Feng, Yang; Liu, Wei; Wang, Chuanbing; Wang, Dehang

    2015-04-01

    To quantitatively evaluate nerve roots by measuring fractional anisotropy (FA) values in healthy volunteers and sciatica patients, visualize nerve roots by tractography, and compare the diagnostic efficacy between conventional magnetic resonance imaging (MRI) and DTI. Seventy-five sciatica patients and thirty-six healthy volunteers underwent MR imaging using DTI. FA values for L5-S1 lumbar nerve roots were calculated at three levels from DTI images. Tractography was performed on L3-S1 nerve roots. ROC analysis was performed for FA values. The lumbar nerve roots were visualized and FA values were calculated in all subjects. FA values decreased in compressed nerve roots and declined from proximal to distal along the compressed nerve tracts. Mean FA values were more sensitive and specific than MR imaging for differentiating compressed nerve roots, especially in the far lateral zone at distal nerves. DTI can quantitatively evaluate compressed nerve roots, and DTT enables visualization of abnormal nerve tracts, providing vivid anatomic information and localization of probable nerve compression. DTI has great potential utility for evaluating lumbar nerve compression in sciatica. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis.

    PubMed

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J P L; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior.

  17. Photosynthate Regulation of the Root System Architecture Mediated by the Heterotrimeric G Protein Complex in Arabidopsis

    PubMed Central

    Mudgil, Yashwanti; Karve, Abhijit; Teixeira, Paulo J. P. L.; Jiang, Kun; Tunc-Ozdemir, Meral; Jones, Alan M.

    2016-01-01

    Assimilate partitioning to the root system is a desirable developmental trait to control but little is known of the signaling pathway underlying partitioning. A null mutation in the gene encoding the Gβ subunit of the heterotrimeric G protein complex, a nexus for a variety of signaling pathways, confers altered sugar partitioning in roots. While fixed carbon rapidly reached the roots of wild type and agb1-2 mutant seedlings, agb1 roots had more of this fixed carbon in the form of glucose, fructose, and sucrose which manifested as a higher lateral root density. Upon glucose treatment, the agb1-2 mutant had abnormal gene expression in the root tip validated by transcriptome analysis. In addition, PIN2 membrane localization was altered in the agb1-2 mutant. The heterotrimeric G protein complex integrates photosynthesis-derived sugar signaling incorporating both membrane-and transcriptional-based mechanisms. The time constants for these signaling mechanisms are in the same range as photosynthate delivery to the root, raising the possibility that root cells are able to use changes in carbon fixation in real time to adjust growth behavior. PMID:27610112

  18. In vitro callus induction and plantlet regeneration of Achyranthes aspera L., a high value medicinal plant

    PubMed Central

    Sen, Monokesh Kumer; Nasrin, Shamima; Rahman, Shahedur; Jamal, Abu Hena Mostofa

    2014-01-01

    Objective To study callus induction from different explants (internode, leaf, root) and in vitro plantlets propagation from medicinally important plant Achyranthes aspera L. Methods Sterilized explants were prepared by using 0.1% HgCl2 and 0.5% Bavistin and callus was obtained when cultured onto Murashige Skoog's (MS) medium by using different concentrations and combination of 2,4-D, NAA, BAP, IAA, IBA with 3% sucrose and 0.8% agar. Induced callus was immediately transferred to MS medium containing at different concentrations of phytohormones for shootlets and rootlets induction respectively. Results Sterilization treatment of 0.1% HgCl2 for 2-3 min and Bavistin 0.5% for 10-12 min showed the highest percentage of asepsis and survival rate. Maximum induction of callus was obtained from a combination of 2.0 mg/L 2,4-D and 0.5 mg/L NAA from leaf. Highest shootlets number (4.83±0.17) and length (3.8±0.16) cm were observed on full strength MS medium when fortified with BAP 4.0 mg/L and KIN 0.5 mg/L. Concerted efforts of BAP 2.0 mg/L and NAA 0.5 mg/L on full strength MS medium showed highest leaf number (6.77±0.94). In vitro raised shoots were allowed to root on different strengths of MS medium fortified with IAA and IBA at different concentrations. Experimentally, 3.0 mg/L IBA was enabled to induce maximum rootlets number (10.0±9.82) on full strength MS medium. Afterwards, regenerated shoots with well developed roots were successfully subjected to hardening process and were acclimatized. The survived plantlets showed 66.67% survival frequency without any morphological abnormality. Conclusions The results demonstrated that different explants were good source of callus induction, morphology analysis as well as indirect plantlets regeneration. PMID:24144129

  19. The role of TRPM8 in the Guinea-pig bladder-cooling reflex investigated using a novel TRPM8 antagonist.

    PubMed

    Gardiner, Jennifer C; Kirkup, Anthony J; Curry, John; Humphreys, Sian; O'Regan, Paul; Postlethwaite, Michael; Young, Kimberley C; Kitching, Linda; Ethell, Brian T; Winpenny, David; McMurray, Gordon

    2014-10-05

    Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. Guinea-pig TRPM8 was cloned from L6 dorsal root ganglia (DRG) and expressed in HEK293 cells. Functional agonist- and cold-induced Ca2+ influx and electrophysiology assays were performed in these cells, and for comparison in HEK293 cells expressing human TRPM8, using a novel TRPM8 antagonist, the S-enantiomer of 1-phenylethyl 4-(benzyloxy)-3-methoxybenzyl (2-aminoethyl) carbamate hydrochloride (PBMC). Potency data from these assays was used to calculate intravenous infusion protocols for targeted plasma concentrations of PBMC in studies on micturition reflexes evoked by intravesical infusion of menthol or cold saline in anaesthetised guinea-pigs. Tissue expression of TRPM8 in guinea-pig bladder, urethra and in dorsal root ganglia neurones traced from the bladder was also investigated. TRPM8 mRNA and protein were detected in L6 dorsal root ganglia, bladder urothelium and smooth muscle. PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evaluation of cardiovascular anomalies in patients with asymptomatic turner syndrome using multidetector computed tomography.

    PubMed

    Lee, Sun Hee; Jung, Ji Mi; Song, Min Seob; Choi, Seok jin; Chung, Woo Yeong

    2013-08-01

    Turner syndrome is well known to be associated with significant cardiovascular abnormalities. This paper studied the incidence of cardiovascular abnormalities in asymptomatic adolescent patients with Turner syndrome using multidetector computed tomography (MDCT) instead of echocardiography. Twenty subjects diagnosed with Turner syndrome who had no cardiac symptoms were included. Blood pressure and electrocardiography (ECG) was checked. Cardiovascular abnormalities were checked by MDCT. According to the ECG results, 11 had a prolonged QTc interval, 5 had a posterior fascicular block, 3 had a ventricular conduction disorder. MDCT revealed vascular abnormalities in 13 patients (65%). Three patients had an aberrant right subclavian artery, 2 had dilatation of left subclavian artery, and others had an aortic root dilatation, aortic diverticulum, and abnormal left vertebral artery. As for venous abnormalities, 3 patients had partial anomalous pulmonary venous return and 2 had a persistent left superior vena cava. This study found cardiovascular abnormalities in 65% of asymptomatic Turner syndrome patients using MDCT. Even though, there are no cardiac symptoms in Turner syndrome patients, a complete evaluation of the heart with echocardiography or MDCT at transition period to adults must be performed.

  1. Polyamine-Induced Rapid Root Abscission in Azolla pinnata

    PubMed Central

    Gurung, Sushma; Cohen, Michael F.; Fukuto, Jon; Yamasaki, Hideo

    2012-01-01

    Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature whereas high light intensity increased the time lag and markedly lowered the rate of abscission. The oxidation products of polyamines, 1,3-diaminopropane, β-alanine and hydrogen peroxide all failed to initiate root abscission, and hydroxyethyl hydrazine, an inhibitor of polyamine oxidase, did not inhibit spermine-induced root abscission. Exposure of A. pinnata to the polyamines did not result in detectable release of NO and did not affect nitrite-dependent NO production. The finding of polyamine-induced rapid root abscission provides a facile assay for further study of the mode of action of polyamines in plant stress responses. PMID:22997568

  2. Polyamine-Induced Rapid Root Abscission in Azolla pinnata.

    PubMed

    Gurung, Sushma; Cohen, Michael F; Fukuto, Jon; Yamasaki, Hideo

    2012-01-01

    Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature whereas high light intensity increased the time lag and markedly lowered the rate of abscission. The oxidation products of polyamines, 1,3-diaminopropane, β-alanine and hydrogen peroxide all failed to initiate root abscission, and hydroxyethyl hydrazine, an inhibitor of polyamine oxidase, did not inhibit spermine-induced root abscission. Exposure of A. pinnata to the polyamines did not result in detectable release of NO and did not affect nitrite-dependent NO production. The finding of polyamine-induced rapid root abscission provides a facile assay for further study of the mode of action of polyamines in plant stress responses.

  3. Light-Regulated Gravitropism in Seedling Roots of Maize 1

    PubMed Central

    Feldman, Lewis J.; Briggs, Winslow R.

    1987-01-01

    Red light-induced changes in the gravitropism of roots of Zea mays variety Merit is a very low fluence response with a threshold of 10−9 moles per square meter and is not reversible by far red light. Blue light also affects root gravitropism but the sensitivity of roots to blue is 50 to 100 times less than to an equal fluence of red. In Z. mays Merit we conclude that phytochrome is the sole pigment associated with light-induced changes in root gravitropism. PMID:11539030

  4. Nitric oxide is involved in phosphorus deficiency-induced cluster root development and citrate exudation in white lupin

    USDA-ARS?s Scientific Manuscript database

    White lupin (Lupinus albus) forms specialized cluster roots characterized by exudation of organic anions under phosphorus (P) deficiency. Here, we evaluated the role of nitric oxide (NO) in P deficiency-induced cluster-root formation and citrate exudation in white lupin. Plants were treated with NO ...

  5. Rapid changes in protein phosphorylation associated with light-induced gravity perception in corn roots

    NASA Technical Reports Server (NTRS)

    McFadden, J. J.; Poovaiah, B. W.

    1988-01-01

    The effect of light and calcium depletion on in vivo protein phosphorylation was tested using dark-grown roots of Merit corn. Light caused rapid and specific promotion of phosphorylation of three polypeptides. Pretreatment of roots with ethylene glycol bis N,N,N',N' tetraacetic acid and A23187 prevented light-induced changes in protein phosphorylation. We postulate that these changes in protein phosphorylation are involved in the light-induced gravity response.

  6. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    PubMed

    Domec, J C; Scholz, F G; Bucci, S J; Meinzer, F C; Goldstein, G; Villalobos-Vega, R

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.

  7. Involvement of heme oxygenase-1 in β-cyclodextrin-hemin complex-induced cucumber adventitious rooting process.

    PubMed

    Lin, Yuting; Li, Meiyue; Huang, Liqin; Shen, Wenbiao; Ren, Yong

    2012-09-01

    Our previous results showed that β-cyclodextrin-hemin complex (CDH) exhibited a vital protective role against cadmium-induced oxidative damage and toxicity in alfalfa seedling roots by the regulation of heme oxygenase-1 (HO-1) gene expression. In this report, we further test whether CDH exhibited the hormonal-like response. The application of CDH and an inducer of HO-1, hemin, were able to induce the up-regulation of cucumber HO-1 gene (CsHO1) expression and thereafter the promotion of adventitious rooting in cucumber explants. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blocked the above responses triggered by CDH, and the inhibitory effects were reversed further when 30% saturation of CO aqueous solution was added together. Further, molecular evidence showed that CDH triggered the increases of the HO-1-mediated target genes responsible for adventitious rooting, including one DnaJ-like gene (CsDNAJ-1) and two calcium-dependent protein kinase (CDPK) genes (CsCDPK1 and CsCDPK5), and were inhibited by ZnPP and reversed by CO. The calcium (Ca2+) chelator ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and the Ca2+ channel blocker lanthanum chloride (LaCl3) not only compromised the induction of adventitious rooting induced by CDH but also decreased the transcripts of above three target genes. However, the application of ascorbic acid (AsA), a well-known antioxidant in plants, failed to exhibit similar inducible effect on adventitious root formation. In short, above results illustrated that the response of CDH in the induction of cucumber adventitious rooting might be through HO-1-dependent mechanism and calcium signaling. Physiological, pharmacological and molecular evidence showed that β-cyclodextrin-hemin complex (CDH) was able to induce cucumber adventitious rooting through heme oxygenase-1 (HO-1)-dependent mechanism and calcium signaling.

  8. Antidyslipidemic and Antioxidant Activities of Hibiscus rosa sinensis Root Extract in Alloxan Induced Diabetic Rats.

    PubMed

    Kumar, Vishnu; Mahdi, Farzana; Khanna, Ashok Kumar; Singh, Ranjana; Chander, Ramesh; Saxena, Jitendra Kumar; Mahdi, Abbas Ali; Singh, Raj Kumar

    2013-01-01

    The antidyslipidemic activity of Hibiscus rosa sinensis (Malvaceae) root extract has been studied in alloxan induced diabetic rats. In this model, oral administration of root extract (500 mg/kg bw. p.o.) for 15 days resulted in significant decreased in the levels of blood glucose, plasma lipids and reactivated post heparin lipoprotein lipase activity in alloxan induced diabetic rats. Furthermore, the root extract (50-500 μg) when tested for its antioxidant activity, inhibited the generation of super oxide anions and hydroxyl radicals, in both enzymic and non enzymic systems in vitro. The results of the present study demonstrated antidyslipidemic and antioxidant activities in root extract of H. rosa sinensis which could be used in prevention of diabetic-dyslipidemia and related complications.

  9. Phytochromes A and B Mediate Red-Light-Induced Positive Phototropism in Roots1

    PubMed Central

    Kiss, John Z.; Mullen, Jack L.; Correll, Melanie J.; Hangarter, Roger P.

    2003-01-01

    The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30° to 40°, compared with 5° to 10° without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants. PMID:12644690

  10. Isolation of bergenin from the root bark of Securinega virosa and evaluation of its potential sleep promoting effect.

    PubMed

    Magaji, Mohammed Garba; Musa, Aliyu Muhammad; Abdullahi, Musa Ismail; Ya'u, Jamilu; Hussaini, Isa Marte

    2015-01-01

    Securinega virosa Roxb (Ex Willd) Baill (Euphorbaiceae) root bark has been reportedly used in African traditional medicine in the management of mental illnesses. Previously, the sleep-inducing potential of the crude methanol root bark of Securinega virosa extract and its butanol fraction have been reported. The study aimed to isolate and characterize the bioactive constituent that may be responsible for the sleep inducing property of the root of the plant. The phytochemical investigation of the S. virosa root bark was carried out leading to the isolation of a compound from the butanol-soluble fraction of the methanol extract. The structure of the compound was elucidated on the basis of its spectral data, including IR, 1D and 2D NMR, mass spectrometry as well as X-ray diffraction analysis. The compound was investigated for sleep-inducing potential using diazepam-induced sleeping time test and beam walking assay in mice. This is the first report on the isolation of bergenin from the root of the plant. It significantly decreased the mean onset of sleep [F (2, 15) =7.167; p< 0.01] at the dose of 10 mg/kg, without significantly affecting the total sleep duration [F (2, 15) = 0.090, p=0.914]. Conversely, it did not significantly affect the number of foot slips at the doses of 5 and 10 mg/kg tested. Bergenin isolated from the root bark of S. virosa possesses sleep-inducing property and could be partly responsible for the sedative potential of the root of S. virosa.

  11. Specific limb abnormalities induced by hydrogen peroxide in tadpoles of Indian jumping frog, Polypedates maculatus.

    PubMed

    Mahapatra, P K; Mohanty-Hejmadi, P; Chainy, G B

    2001-11-01

    Hydrogen peroxide (H2O2), one of the reactive oxygen intermediates (ROI) and a potential inducer of nuclear transcription factors induces consistent type of abnormal limb development (truncated with bent skeletal elements) in the tadpoles of Indian jumping frog, Polypedates maculatus.

  12. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  13. Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment

    PubMed Central

    Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

    2010-01-01

    OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706

  14. Effects of phosphorus supply on growth, phosphate concentration and cluster-root formation in three Lupinus species

    PubMed Central

    Abdolzadeh, Ahmad; Wang, Xing; Veneklaas, Erik J.; Lambers, Hans

    2010-01-01

    Background and Aims In some lupin species, phosphate deficiency induces cluster-root formation, which enhances P uptake by increasing root surface area and, more importantly, the release of root exudates which enhances P availability. Methods Three species of Lupinus, L. albus, L. atlanticus and L. micranthus, with inherently different relative growth rates were cultivated under hydroponics in a greenhouse at four phosphate concentrations (1, 10, 50 and 150 µm) to compare the role of internal P in regulating cluster-root formation. Key Results The highest growth rate was observed in L. atlanticus, followed by L. albus and L. micranthus. At 1 µm P, cluster-root formation was markedly induced in all three species. The highest P uptake and accumulation was observed in L. micranthus, followed by L. atlanticus and then L. albus. Inhibition of cluster-root formation was severe at 10 µm P in L. atlanticus, but occurred stepwise with increasing P concentration in the root medium in L. albus. Conclusions In L. atlanticus and L. albus cluster-root formation was suppressed by P treatments above 10 µm, indicating a P-inducible regulating system for cluster-root formation, as expected. By contrast, production of cluster roots in L. micranthus, in spite of a high internal P concentration, indicated a lower sensitivity to P status, which allowed P-toxicity symptoms to develop. PMID:20037142

  15. Ammonium affects cell viability to inhibit root growth in Arabidopsis * #

    PubMed Central

    Qin, Cheng; Yi, Ke-ke; Wu, Ping

    2011-01-01

    Ammonium (NH4 +) is an important form of nitrogen nutrient for most plants, yet is also a stressor for many of them. However, the primary events of NH4 + toxicity at the cellular level are still unclear. Here, we showed that NH4 + toxicity can induce the root cell death in a temporal pattern which primarily occurs in the cells of root maturation and elongation zones, and then spreads to the cells in the meristem and root cap. The results from the NH4 +-hypersensitive mutant hsn1 further confirmed our findings. Taken together, NH4 + toxicity inhibits primary root growth by inhibiting cell elongation and division and inducing root cell death. PMID:21634041

  16. Drought-induced changes in root biomass largely result from altered root morphological traits: evidence from a synthesis of global field trials.

    PubMed

    Zhou, Guiyao; Zhou, Xuhui; Nie, Yuanyuan; Bai, Shahla Hosseini; Zhou, Lingyan; Shao, Junjiong; Cheng, Weisong; Wang, Jiawei; Hu, Fengqin; Fu, Yuling

    2018-06-07

    Extreme drought is likely to become more frequent and intense as a result of global climate change, which may significantly impact plant root traits and responses (i.e., morphology, production, turnover, and biomass). However, a comprehensive understanding of how drought affects root traits and responses remains elusive. Here, we synthesized data from 128 published studies under field conditions to examine the responses of 17 variables associated with root traits to drought. Our results showed that drought significantly decreased root length and root length density by 38.29% and 11.12%, respectively, but increased root diameter by 3.49%. However, drought significantly increased root: shoot mass ratio and root cortical aerenchyma by 13.54% and 90.7%, respectively. Our results suggest that drought significantly modified root morphological traits and increased root mortality, and the drought-induced decrease in root biomass was less than shoot biomass, causing higher root: shoot mass ratio. The cascading effects of drought on root traits and responses may need to be incorporated into terrestrial biosphere models to improve prediction of the climate-biosphere feedback. This article is protected by copyright. All rights reserved.

  17. Geoperception in primary and lateral roots of Phaseolus vulgaris (Fabaceae). III. A model to explain the differential georesponsiveness of primary and lateral roots

    NASA Technical Reports Server (NTRS)

    Ransom, J. S.; Moore, R.

    1985-01-01

    Half-tipped primary and lateral roots of Phaseolus vulgaris bend toward the side of the root on which the intact half tip remains. Therefore, tips of lateral and primary roots produce growth effectors capable of inducing gravicurvature. The asymmetrical placement of a tip of a lateral root onto a detipped primary root results in the root bending toward the side of the root onto which the tip was placed. That is, the lesser graviresponsiveness of lateral roots as compared with primary roots is not due to the inability of their caps to produce growth inhibitors. The more pronounced graviresponsiveness of primary roots is positively correlated with the presence of columella tissues that are 3.8 times longer, 1.7 times wider, and 10.5 times more voluminous than the columellas of lateral roots. We propose that the lack of graviresponsiveness exhibited by lateral roots is due to the fact that they (i) produce smaller amounts of the inhibitor than primary (i.e., strongly graviresponsive) roots and (ii) are unable to redistribute the inhibitor so as to be able to create a concentration gradient sufficient to induce a pronounced gravitropic response.

  18. Physical properties of root cementum: part 20. Effect of fluoride on orthodontically induced root resorption with light and heavy orthodontic forces for 4 weeks: a microcomputed tomography study.

    PubMed

    Karadeniz, Ersan Ilsay; Gonzales, Carmen; Nebioglu-Dalci, Oyku; Dwarte, Dennis; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali

    2011-11-01

    The major side effect of orthodontic treatment is orthodontically induced inflammatory root resorption. Fluoride was previously shown to reduce the volume of the root resorption craters in rats. However, the effect of fluoride on orthodontically induced inflammatory root resorption in humans has not yet been investigated. The aim of this study was to investigate the effect of high and low amounts of fluoride intake from birth on orthodontically induced inflammatory root resorption under light (25 g) and heavy (225 g) force applications. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from 2 cities in Turkey with high and low fluoride concentrations in the public water of ≥ 2 and ≤ 0.05 ppm, respectively. The patients were randomly separated into 4 groups of 12 each: group 1, high fluoride intake and heavy force; group 2, low fluoride intake and heavy force; group 3, high fluoride intake and light force; and group 4, low fluoride intake and light force. Light or heavy buccal tipping orthodontic forces were applied on the maxillary first premolars for 28 days. At day 28, the teeth were extracted, and the samples were analyzed with microcomputed tomography. Fluoride reduced the volume of root resorption craters in all groups; however, this effect was significantly different with high force application (P = 0.015). It was also found that light forces caused less root resorption than heavy forces. There was no statistical difference in the amount of root resorption observed on root surfaces (buccal, lingual, mesial, and distal) in all groups. However, the middle third of the roots showed the least root resorption. With high fluoride intake and heavy force application, less root resorption was found in all root surfaces and root thirds. Fluoride may reduce the volume of root resorption craters. This effect is significant with heavy force applications (P <0.05). The cervical and apical thirds of the root showed significantly greater root resorption after the application of buccal tipping force for 4 weeks. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  19. Rhodamine B induces long nucleoplasmic bridges and other nuclear anomalies in Allium cepa root tip cells.

    PubMed

    Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan

    2014-03-01

    The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.

  20. Induction of curvature in maize roots by calcium or by thigmostimulation: role of the postmitotic isodiametric growth zone

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1992-01-01

    We examined the response of primary roots of maize (Zea mays L. cv Merit) to unilateral application of calcium with particular attention to the site of application, the dependence on growth rate, and possible contributions of thigmotropic stimulation during application. Unilateral application of agar to the root cap induced negative curvature whether or not the agar contained calcium. This apparent thigmotropic response was enhanced by including calcium in the agar. Curvature away from objects applied unilaterally to the extreme root tip occurred both in intact and detipped roots. When agar containing calcium chloride was applied to one side of the postmitotic isodiametric growth zone ( a region between the apical meristem and the elongation zone), the root curved toward the side of application. This response could not be induced by plain agar. We conclude that curvature away from calcium applied to the root tip results from a thigmotropic response to stimulation during application. In contrast, curvature toward the calcium applied to the postmitotic isodiametric growth zone results from direct calcium-induced inhibition of growth.

  1. The effects of dan-shen root on cardiomyogenic differentiation of human placenta-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kun; Li, Shi-zheng, E-mail: ychozon@yahoo.com.cn; Zhang, Yun-li

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Conditional medium and dan-shen root were used for cardiomyogenic differentiation. Black-Right-Pointing-Pointer They all could induce hPDMSCs to differentiate into cardiomyocytes. Black-Right-Pointing-Pointer The induction effect of the latter was slightly higher compared to that of the former. Black-Right-Pointing-Pointer Dan-shen root could be a good inducer for cardiomyogenic differentiation. -- Abstract: The aim of this study was to search for a good inducer agent using for cardiomyogenic differentiation of stem cells. Human placenta-derived mesenchymal stem cells (hPDMSCs) were isolated and incubated in enriched medium. Fourth passaged cells were treated with 10 mg/L dan-shen root for 20 days. Morphologic characteristics weremore » analyzed by confocal and electron microscopy. Expression of {alpha}-sarcomeric actin was analyzed by immunohistochemistry. Expression of cardiac troponin-I (TnI) was analyzed by immunohistofluorescence. Atrial natriuretic factor (ANF) and beta-myocin heavy chain ({beta}-MHC) were detected by reverse transcriptase polymerase chain reaction (RT-PCR). hPDMSCs treated with dan-shen root gradually formed a stick-like morphology and connected with adjoining cells. On the 20th day, most of the induced cells stained positive with {alpha}-sarcomeric actin and TnI antibody. ANF and {beta}-MHC were also detected in the induced cells. Approximately 80% of the cells were successfully transdifferentiated into cardiomyocytes. In conclusion, dan-shen root is a good inducer agent used for cardiomyogenic differentiation of hPDMSCs.« less

  2. [Anesthesia for surgery of degenerative and abnormal cervical spine].

    PubMed

    Béal, J L; Lopin, M C; Binnert, M

    1993-01-01

    A feature common to all congenital or inflammatory abnormalities of the cervical spine is an actual or potential reduction in the lumen of the spinal canal. The spinal cord and nerve roots are at risk. During intubation, and positioning the patient on the table, all untoward movements of the cervical spine may lead to spinal cord compression. Abnormalities of the cervical spine carry the risk of a difficult intubation. If there is much debate as to what constitutes optimum management of the airway, there is no evidence that any one method is the best. Recognizing the possible instability and intubating with care, are probably much more important in preserving neurological function than any particular mode of intubation. During maintenance of anaesthesia, the main goal is to preserve adequate spinal cord perfusion in order to prevent further damage. Spinal cord blood flow seems to be regulated by the same factors as cerebral blood flow. Hypercapnia increases cord blood flow while hypocapnia decreases it. Therefore, normocapnia or mild hypocapnia is recommended. Induced hypotension is frequently used to decrease blood loss. However, in patients with a marginally perfused spinal cord, the reduction in blood flow may cause ischaemia of the spinal cord and may therefore be relatively contraindicated. In addition to standard intraoperative monitoring, spinal cord monitoring is almost mandatory. Monitoring somatosensory evoked potentials is used routinely. However, the major limitation is that this technique only monitors dorsal column function; theoretically, motor paralysis can occur despite a lack of change in recorded signals. Neurogenic motor evoked potentials may now be used to monitor anterior spinal cord integrity.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Natural Variation in Small Molecule–Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1- and PAD4-Complexed R Protein VICTR in Arabidopsis[C][W

    PubMed Central

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E.; Gassmann, Walter; Schroeder, Julian I.

    2012-01-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor–nucleotide binding–Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid–induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  4. nip, a Symbiotic Medicago truncatula Mutant That Forms Root Nodules with Aberrant Infection Threads and Plant Defense-Like Response1

    PubMed Central

    Veereshlingam, Harita; Haynes, Janine G.; Penmetsa, R. Varma; Cook, Douglas R.; Sherrier, D. Janine; Dickstein, Rebecca

    2004-01-01

    To investigate the legume-Rhizobium symbiosis, we isolated and studied a novel symbiotic mutant of the model legume Medicago truncatula, designated nip (numerous infections and polyphenolics). When grown on nitrogen-free media in the presence of the compatible bacterium Sinorhizobium meliloti, the nip mutant showed nitrogen deficiency symptoms. The mutant failed to form pink nitrogen-fixing nodules that occur in the wild-type symbiosis, but instead developed small bump-like nodules on its roots that were blocked at an early stage of development. Examination of the nip nodules by light microscopy after staining with X-Gal for S. meliloti expressing a constitutive GUS gene, by confocal microscopy following staining with SYTO-13, and by electron microscopy revealed that nip initiated symbiotic interactions and formed nodule primordia and infection threads. The infection threads in nip proliferated abnormally and very rarely deposited rhizobia into plant host cells; rhizobia failed to differentiate further in these cases. nip nodules contained autofluorescent cells and accumulated a brown pigment. Histochemical staining of nip nodules revealed this pigment to be polyphenolic accumulation. RNA blot analyses demonstrated that nip nodules expressed only a subset of genes associated with nodule organogenesis, as well as elevated expression of a host defense-associated phenylalanine ammonia lyase gene. nip plants were observed to have abnormal lateral roots. nip plant root growth and nodulation responded normally to ethylene inhibitors and precursors. Allelism tests showed that nip complements 14 other M. truncatula nodulation mutants but not latd, a mutant with a more severe nodulation phenotype as well as primary and lateral root defects. Thus, the nip mutant defines a new locus, NIP, required for appropriate infection thread development during invasion of the nascent nodule by rhizobia, normal lateral root elongation, and normal regulation of host defense-like responses during symbiotic interactions. PMID:15516506

  5. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, ‘Dongdao-4’ (moderately alkaline-tolerant) and ‘Jiudao-51’ (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan’s Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions (O2•-) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants. PMID:28943882

  6. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.).

    PubMed

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice ( Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na 2 CO 3 ). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1 , OsHsr203j , OsCP1 , and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1 , was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H 2 O 2 ) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants.

  7. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    DOE PAGES

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; ...

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less

  8. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata.

    PubMed

    Cohen, Michael F; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  9. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368

  10. Clinical characterization of cardiovascular abnormalities associated with feline mucopolysaccharidosis I and VI

    PubMed Central

    Sleeper, Meg M.; Kusiak, Catherine M.; Shofer, Frances S.; O’Donnell, Patricia; Bryan, Caroline; Ponder, Katherine P.; Haskins, Mark E.

    2009-01-01

    Summary Objective The purpose of this study was to define the cardiovascular abnormalities present in young and adult cats affected with the lysosomal storage diseases mucopolysaccharidosis (MPS) I and MPS VI. Method Eighteen cats affected with MPS I and fifteen cats affected with MPS VI were evaluated by physical examination, electrocardiography and echocardiography. Electrocardiograms were performed on all MPS I and all but 7 of the MPS VI cats. Ten unaffected cats underwent complete examinations for comparison purposes. Results No cardiovascular physical examination abnormalities were noted. ECG intervals were normal in affected cats; however, changes consistent with aberrant conduction were noted more frequently than in unaffected cats. Significant echocardiographic abnormalities included valve thickening and regurgitation (aortic and mitral) and aortic root dilation, particularly in the older cats. Conclusion As affected animals increased in age, more cardiac abnormalities were found with increasing severity. MPS I and MPS VI cats have similar cardiovascular findings to those seen in children and MPS VII dogs. PMID:18509743

  11. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    PubMed

    Mishra, Bhuwaneshwar S; Singh, Manjul; Aggrawal, Priyanka; Laxmi, Ashverya

    2009-01-01

    Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions.

  12. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    PubMed

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  13. N-MYC DOWN-REGULATED-LIKE Proteins Regulate Meristem Initiation by Modulating Auxin Transport and MAX2 Expression

    PubMed Central

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.

    2013-01-01

    Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735

  14. Hormonal regulation of gravitropic bending

    NASA Astrophysics Data System (ADS)

    Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.

    Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending

  15. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  16. A Physiological and Behavioral Mechanism for Leaf Herbivore-Induced Systemic Root Resistance1[OPEN

    PubMed Central

    Erb, Matthias; Robert, Christelle A.M.; Marti, Guillaume; Lu, Jing; Doyen, Gwladys R.; Villard, Neil; Barrière, Yves; Wolfender, Jean-Luc; Turlings, Ted C.J.

    2015-01-01

    Indirect plant-mediated interactions between herbivores are important drivers of community composition in terrestrial ecosystems. Among the most striking examples are the strong indirect interactions between spatially separated leaf- and root-feeding insects sharing a host plant. Although leaf feeders generally reduce the performance of root herbivores, little is known about the underlying systemic changes in root physiology and the associated behavioral responses of the root feeders. We investigated the consequences of maize (Zea mays) leaf infestation by Spodoptera littoralis caterpillars for the root-feeding larvae of the beetle Diabrotica virgifera virgifera, a major pest of maize. D. virgifera strongly avoided leaf-infested plants by recognizing systemic changes in soluble root components. The avoidance response occurred within 12 h and was induced by real and mimicked herbivory, but not wounding alone. Roots of leaf-infested plants showed altered patterns in soluble free and soluble conjugated phenolic acids. Biochemical inhibition and genetic manipulation of phenolic acid biosynthesis led to a complete disappearance of the avoidance response of D. virgifera. Furthermore, bioactivity-guided fractionation revealed a direct link between the avoidance response of D. virgifera and changes in soluble conjugated phenolic acids in the roots of leaf-attacked plants. Our study provides a physiological mechanism for a behavioral pattern that explains the negative effect of leaf attack on a root-feeding insect. Furthermore, it opens up the possibility to control D. virgifera in the field by genetically mimicking leaf herbivore-induced changes in root phenylpropanoid patterns. PMID:26430225

  17. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function.

    PubMed

    Yang, Yang; Luo, Lan; Cai, Xueting; Fang, Yuan; Wang, Jiaqi; Chen, Gang; Yang, Jie; Zhou, Qian; Sun, Xiaoyan; Cheng, Xiaolan; Yan, Huaijiang; Lu, Wuguang; Hu, Chunping; Cao, Peng

    2018-05-20

    Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2 -/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2 +/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Chemical Characterization, Free Radical Scavenging, and Cellular Antioxidant and Anti-Inflammatory Properties of a Stilbenoid-Rich Root Extract of Vitis vinifera

    PubMed Central

    Esatbeyoglu, Tuba; Ewald, Philipp; Yasui, Yoshiaki; Yokokawa, Haruka; Wagner, Anika E.; Matsugo, Seiichi; Winterhalter, Peter; Rimbach, Gerald

    2016-01-01

    Dietary stilbenoids are receiving increasing attention due to their potential health benefits. However, most studies concerning the bioactivity of stilbenoids were conducted with pure compounds, for example, resveratrol. The aim of this study was to characterize a complex root extract of Vitis vinifera in terms of its free radical scavenging and cellular antioxidant and anti-inflammatory properties. HPLC-ESI-MS/MS analyses of the root extract of Vitis vinifera identified seven stilbenoids including two monomeric (resveratrol and piceatannol), two dimeric (trans-ɛ-viniferin and ampelopsin A), one trimeric (miyabenol C), and two tetrameric (r-2-viniferin = vitisin A and r-viniferin = vitisin B) compounds which may mediate its biological activity. Electron spin resonance and spin trapping experiments indicate that the root extract scavenged 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, galvinoxyl, and superoxide free radicals. On a cellular level it was observed that the root extract of Vitis vinifera protects against hydrogen peroxide-induced DNA damage and induces Nrf2 and its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. Furthermore, the root extract could induce the antiatherogenic hepatic enzyme paraoxonase 1 and downregulate proinflammatory gene expression (interleukin 1β, inducible nitric oxide synthase) in macrophages. Collectively our data suggest that the root extract of Vitis vinifera exhibits free radical scavenging as well as cellular antioxidant and anti-inflammatory properties. PMID:26788254

  19. Shifting from priming of salicylic acid- to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita.

    PubMed

    Martínez-Medina, Ainhoa; Fernandez, Ivan; Lok, Gerrit B; Pozo, María J; Pieterse, Corné M J; Van Wees, Saskia C M

    2017-02-01

    Beneficial root endophytes such as Trichoderma spp. can reduce infections by parasitic nematodes through triggering host defences. Little is currently known about the complex hormone signalling underlying the induction of resistance. In this study, we investigated whether Trichoderma modulates the hormone signalling network in the host to induce resistance to nematodes. We investigated the role and the timing of the jasmonic acid (JA)- and salicylic acid (SA)-regulated defensive pathways in Trichoderma-induced resistance to the root knot nematode Meloidogyne incognita. A split-root system of tomato (Solanum lycopersicum) was used to study local and systemic induced defences by analysing nematode performance, defence gene expression, responsiveness to exogenous hormone application, and dependence on SA and JA signalling of Trichoderma-induced resistance. Root colonization by Trichoderma impeded nematode performance both locally and systemically at multiple stages of the parasitism, that is, invasion, galling and reproduction. First, Trichoderma primed SA-regulated defences, which limited nematode root invasion. Then, Trichoderma enhanced JA-regulated defences, thereby antagonizing the deregulation of JA-dependent immunity by the nematodes, which compromised galling and fecundity. Our results show that Trichoderma primes SA- and JA-dependent defences in roots, and that the priming of responsiveness to these hormones upon nematode attack is plastic and adaptive to the parasitism stage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Lancinating pain in post-laminectomy chronic sciatica.

    PubMed

    Baruah, J K

    1985-01-01

    Lancinating pain, as described in tabes dorsalis, was noted in four patients with chronic sciatica after several months of laminectomy. The pain responded well to carbamezapine therapy. Abnormal or ephaptic neural transmission of impulses in the roots was considered to be the cause of such pain.

  1. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice.

    PubMed

    Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok

    2007-03-01

    Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.

  2. Potential involvement of drought-induced Ran GTPase CLRan1 in root growth enhancement in a xerophyte wild watermelon.

    PubMed

    Akashi, Kinya; Yoshimura, Kazuya; Kajikawa, Masataka; Hanada, Kouhei; Kosaka, Rina; Kato, Atsushi; Katoh, Akira; Nanasato, Yoshihiko; Tsujimoto, Hisashi; Yokota, Akiho

    2016-10-01

    Enhanced root growth is known as the survival strategy of plants under drought. Previous proteome analysis in drought-resistant wild watermelon has shown that Ran GTPase, an essential regulator of cell division and proliferation, was induced in the roots under drought. In this study, two cDNAs were isolated from wild watermelon, CLRan1 and CLRan2, which showed a high degree of structural similarity with those of other plant Ran GTPases. Quantitative RT-PCR and promoter-GUS assays suggested that CLRan1 was expressed mainly in the root apex and lateral root primordia, whereas CLRan2 was more broadly expressed in other part of the roots. Immunoblotting analysis confirmed that the abundance of CLRan proteins was elevated in the root apex region under drought stress. Transgenic Arabidopsis overexpressing CLRan1 showed enhanced primary root growth, and the growth was maintained under osmotic stress, indicating that CLRan1 functions as a positive factor for maintaining root growth under stress conditions.

  3. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition

    PubMed Central

    Silva-Navas, Javier; Moreno-Risueno, Miguel A.; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan

    2016-01-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. PMID:26628743

  5. Genetic elicitation by inducible expression of β-cryptogein stimulates secretion of phenolics from Coleus blumei hairy roots.

    PubMed

    Vuković, Rosemary; Bauer, Nataša; Curković-Perica, Mirna

    2013-02-01

    The accumulation of phenolic compounds in plants is often part of the defense response against stress and pathogen attack, which can be triggered and activated by elicitors. Oomycetal proteinaceous elicitor, β-cryptogein, induces hypersensitive response and systemic acquired resistance against some pathogens. In order to test the effect of endogenously synthesized cryptogein protein on phenolic compounds accumulation in tissue, and secretion into the culture medium, Coleus blumei hairy roots were generated. Agrobacterium rhizogenes was employed to insert synthetic crypt gene, encoding β-cryptogein, under the control of alcohol-inducible promoter. The expression of β-cryptogein, in C. blumei hairy roots, was controlled by application of 1% and 2% ethanol, during 21 days induction period. Ethanol-induced expression of β-cryptogein caused significant decrease of soluble phenolics and rosmarinic acid (RA) in hairy root lines and increase of phenolics, RA and caffeic acid in culture medium. These data suggest that β-cryptogein might be a potential regulatory factor for phenolics secretion from the roots. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Retinal abnormalities in β-thalassemia major

    PubMed Central

    Bhoiwala, Devang L.; Dunaief, Joshua L.

    2015-01-01

    Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202

  7. Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide.

    PubMed

    Chen, Jian; Zhang, Hai-Qiang; Hu, Liang-Bin; Shi, Zhi-Qi

    2013-09-01

    Irrigation with cyanobacterial-blooming water containing microcystin-LR (MC-LR) poses threat to the growth of agricultural plants. Large amounts of rice (Oryza sativa) field in the middle part of China has been irrigating with cyanobacterial-blooming water. Nevertheless, the mechanism of MC-LR-induced phytotoxicity in the root of monocot rice remains unclear. In the present study, we demonstrate that MC-LR stress significantly inhibits the growth of rice root by impacting the morphogenesis rice crown root. MC-LR treatment results in the decrease in IAA (indole-3-acetic acid) concentration as well as the expression of CRL1 and WOX11 in rice roots. The application of NAA (1-naphthylacetic acid), an IAA homologue, is able to attenuate the inhibitory effect of MC-LR on rice root development. MC-LR treatment significantly inhibits OsNia1-dependent NO generation in rice roots. The application of NO donor SNP (sodium nitroprusside) is able to partially reverse the inhibitory effects of MC-LR on the growth of rice root and the expression of CRL1 and WOX11 by enhancing endogenous NO level in rice roots. The application of NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] eliminates the effects of SNP. Treatment with NAA stimulates the generation of endogenous NO in MC-LR-treated rice roots. Treatment with NO scavenger cPTIO abolishes the ameliorated effect of NAA on MC-LR-induced growth inhibition of rice root. Treatment with SNP enhanced IAA concentration in MC-LR-treated rice roots. Altogether, our data suggest that NO acts both downstream and upstream of auxin in regulating rice root morphogenesis under MC-LR stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Characterization of low phosphorus insensitive Mutants Reveals a Crosstalk between Low Phosphorus-Induced Determinate Root Development and the Activation of Genes Involved in the Adaptation of Arabidopsis to Phosphorus Deficiency1

    PubMed Central

    Sánchez-Calderón, Lenin; López-Bucio, José; Chacón-López, Alejandra; Gutiérrez-Ortega, Abel; Hernández-Abreu, Esmeralda; Herrera-Estrella, Luis

    2006-01-01

    Low phosphorus (P) availability is one of the most limiting factors for plant productivity in many natural and agricultural ecosystems. Plants display a wide range of adaptive responses to cope with low P stress, which generally serve to enhance P availability in the soil and to increase its uptake by roots. In Arabidopsis (Arabidopsis thaliana), primary root growth inhibition and increased lateral root formation have been reported to occur in response to P limitation. To gain knowledge of the genetic mechanisms that regulate root architectural responses to P availability, we designed a screen for identifying Arabidopsis mutants that fail to arrest primary root growth when grown under low P conditions. Eleven low phosphorus insensitive (lpi) mutants that define at least four different complementation groups involved in primary root growth responses to P availability were identified. The lpi mutants do not show the typical determinate developmental program induced by P stress in the primary root. Other root developmental aspects of the low P rescue system, including increased root hair elongation and anthocyanin accumulation, remained unaltered in lpi mutants. In addition to the insensitivity of primary root growth inhibition, when subjected to P deprivation, lpi mutants show a reduced induction in the expression of several genes involved in the P starvation rescue system (PHOSPHATE TRANSPORTER 1 and 2, PURPLE ACID PHOSPHATASE 1, ACID PHOSPHATASE 5, and INDUCED BY PHOSPHATE STARVATION 1). Our results provide genetic support for the role of P as an important signal for postembryonic root development and root meristem maintenance and show a crosstalk in developmental and biochemical responses to P deprivation. PMID:16443695

  9. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis.

    PubMed

    Liu, Miao; Liu, Xing Xing; He, Xiao Lin; Liu, Li Juan; Wu, Hao; Tang, Cai Xian; Zhang, Yong Song; Jin, Chong Wei

    2017-02-01

    Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  10. Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape

    NASA Astrophysics Data System (ADS)

    Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael

    2017-04-01

    The soil water uptake by crops is a key process in the hydrological cycle of agricultural ecosystems. In the arable hummocky ground moraines soil landscapes, an erosion-induced spatial differentiation of soil types has been established due to water and tillage erosion. Crop development may reflect soil landscape patterns and erosion-induced soil profile modifications, respectively, by increased or reduced plant and root growth. The objective was analyze field data of the root density and the root lengths of winter wheat for a non-eroded reference soil at the plateau (Albic Luvisol), an extremely eroded soil at steep midslope (Calcaric Regosol), and depositional soil at the footslope (Colluvic Regosol) using the minirhizotron technique. From 9/14 to 8/15 results indicate that root density values were highest for the Colluvic Regosol, followed by the Albic Luvisol and lowest for the Calcaric Regosol. In turn, the lowest maximum root penetration depth was found in the Colluvic Regosol because of the relatively high and fluctuating water table at this landscape position. The analyzed field root data revealed positive relations to above-ground plant parameters and corroborated the hypothesis that the crop root system was reflecting erosion-induced soil profile modifications. When accounting for the position-specific root development, the simulation of water and solute movement suggested differences in the balances as compared to assuming a spatially uniform development.

  11. The Basic Helix-Loop-Helix Transcription Factor MYC2 Directly Represses PLETHORA Expression during Jasmonate-Mediated Modulation of the Root Stem Cell Niche in Arabidopsis[W][OA

    PubMed Central

    Chen, Qian; Sun, Jiaqiang; Zhai, Qingzhe; Zhou, Wenkun; Qi, Linlin; Xu, Li; Wang, Bao; Chen, Rong; Jiang, Hongling; Qi, Jing; Li, Xugang; Palme, Klaus; Li, Chuanyou

    2011-01-01

    The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin. PMID:21954460

  12. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Niu, Lijuan; Wang, Meng; Ma, Zhanjun

    2016-06-28

    Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.

  13. A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage

    PubMed Central

    Harrison, Nicola; Harrison, Richard J.; Barber-Perez, Nuria; Cascant-Lopez, Emma; Cobo-Medina, Magdalena; Lipska, Marzena; Conde-Ruíz, Rebeca; Brain, Philip; Gregory, Peter J.; Fernández-Fernández, Felicidad

    2016-01-01

    Rootstock-induced dwarfing of apple scions revolutionized global apple production during the twentieth century, leading to the development of modern intensive orchards. A high root bark percentage (the percentage of the whole root area constituted by root cortex) has previously been associated with rootstock-induced dwarfing in apple. In this study, the root bark percentage was measured in a full-sib family of ungrafted apple rootstocks and found to be under the control of three loci. Two quantitative trait loci (QTLs) for root bark percentage were found to co-localize to the same genomic regions on chromosome 5 and chromosome 11 previously identified as controlling dwarfing, Dw1 and Dw2, respectively. A third QTL was identified on chromosome 13 in a region that has not been previously associated with dwarfing. The development of closely linked sequence-tagged site markers improved the resolution of allelic classes, thereby allowing the detection of dominance and epistatic interactions between loci, with high root bark percentage only occurring in specific allelic combinations. In addition, we report a significant negative correlation between root bark percentage and stem diameter (an indicator of tree vigour), measured on a clonally propagated grafted subset of the mapping population. The demonstrated link between root bark percentage and rootstock-induced dwarfing of the scion leads us to propose a three-locus model that is able to explain levels of dwarfing from the dwarf ‘M.27’ to the semi-invigorating rootstock ‘M.116’. Moreover, we suggest that the QTL on chromosome 13 (Rb3) might be analogous to a third dwarfing QTL, Dw3, which has not previously been identified. PMID:26826217

  14. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil.

    PubMed

    Yan, Dafang; Ma, Wei; Song, Xiaojing; Bao, Yanyu

    2017-03-01

    Although the role of iron plaque on rice root surface has been investigated in recent years, its effect on antibiotic uptake remains uncertain. In the study, pot experiment was conducted to investigate the effect of iron plaque on uptake and translocation of norfloxacin (adding 10 and 50 mg·kg -1 treatments) in rice seedlings grown in paddy soil. Iron plaque was induced by adding different amounts of Fe(II) in soil. The results showed that the presence of norfloxacin can decrease the amount of iron plaque induced. After rice with iron plaque induced, norfloxacin was mainly accumulated in iron plaque on root surface, followed by inside root, but its translocation from root to other rice tissues is not observed. Iron plaque played the role of a barrier for norfloxacin uptake into rice roots under high norfloxacin concentration of 50 mg·kg -1 , however not that under low concentration of 10 mg·kg -1 . And the barrier function was the most strongest with adding Fe(II) of 30 mg·kg -1 as combined action of iron plaque and rhizosphere effect. Fluorescence microscope analysis showed that norfloxacin mainly distributed in the outside of root cell, which showed its translocation as apoplastic pathway in rice. Comparing with non-rhizosphere, more norfloxacin was accumulated in rhizosphere soil. Maybe, strong root oxidization (high Eh values) induced more iron oxide formation in rhizosphere and on root surface, which led to norfloxacin's mobility towards to rhizosphere through its strong adsorption of iron oxides and then promoted its uptake by rice on root surface.

  15. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    PubMed

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H+-ATPase Activity in Roots

    PubMed Central

    Chen, Haifei; Zhang, Quan; Cai, Hongmei; Xu, Fangsen

    2017-01-01

    pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress. PMID:29114258

  17. Selecting Populus with different adventitious root types for environmental benefits, fiber, and energy

    Treesearch

    Ronald S., Jr. Zalesny; Jill A. Zalesny

    2009-01-01

    Primary roots from seeds, sucker roots in aspens, and adventitious roots (ARs) in poplars and their hybrids are prevalent within the genus Populus. Two AR types develop on hardwood cuttings: (i) lateral roots from either preformed or induced primordia along the length of the cutting and (ii) basal roots from callus at the base of the cutting in...

  18. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots

    PubMed Central

    Sun, Chengliang; Lu, Lingli; Yu, Yan; Liu, Lijuan; Hu, Yan; Ye, Yiquan; Jin, Chongwei; Lin, Xianyong

    2016-01-01

    Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat. PMID:26663393

  19. CYTOLOGICAL STUDIES OF ORGANOTYPIC CULTURES OF RAT DORSAL ROOT GANGLIA FOLLOWING X-IRRADIATION IN VITRO

    PubMed Central

    Masurovsky, Edmund B.; Bunge, Mary Bartlett; Bunge, Richard P.

    1967-01-01

    Long-term organotypic cultures of rat dorsal root ganglia were exposed to a single 40 kR dose of 184 kvp X-rays and studied in the living and fixed states by light or electron microscopy at 1–14 day intervals thereafter. Within the first 4 days following irradiation, over 30% of the neurons display chromatolytic reactions (eccentric nuclei, peripheral dispersal of Nissl substance, central granular zone) as well as abnormal nucleolar changes and dissociation of ribosomes from endoplasmic reticulum cisternae. Some satellite cells undergo retraction or acute degeneration, leaving only basement membrane to cover the neuron in these areas. 8 days after irradiation, neurons also exhibit (a) areas in which ribosomes are substantially reduced, (b) regions of cytoplasmic sequestration, (c) extensive vacuolization of granular endoplasmic reticulum and Golgi complex, and (d) diversely altered mitochondria (including the presence of ribosome-like particles or association with abnormal glycogen and lipid deposits). Nucleolar components become altered or reoriented and may form abnormal projections and ringlike configurations. Sizeable areas of the neuronal soma are now denuded of satellite cells; underlying these areas, nerve processes are found abnormally invaginated into the neuronal cytoplasm. By the 14th day following irradiation, most neurons display marked degenerative changes including extensive regions of ribosome depletion, sequestration, vacuolization, autolysis, and, in some areas, swirls of filaments, myelin figures, and heterogeneous dense bodies. These observations demonstrate that X-irradiation produces profound cytopathological changes in nervous tissue isolated from the host and that many of these changes resemble the effects of radiation on nervous tissue in vivo. PMID:10976234

  20. Orally active Epac inhibitor reverses mechanical allodynia and loss of intraepidermal nerve fibers in a mouse model of chemotherapy-induced peripheral neuropathy.

    PubMed

    Singhmar, Pooja; Huo, XiaoJiao; Li, Yan; Dougherty, Patrick M; Mei, Fang; Cheng, Xiaodong; Heijnen, Cobi J; Kavelaars, Annemieke

    2018-05-01

    Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect of cancer treatment that significantly compromises quality of life of cancer patients and survivors. Identification of targets for pharmacological intervention to prevent or reverse CIPN is needed. We investigated exchange protein regulated by cAMP (Epac) as a potential target. Epacs are cAMP-binding proteins known to play a pivotal role in mechanical allodynia induced by nerve injury and inflammation. We demonstrate that global Epac1-knockout (Epac1-/-) male and female mice are protected against paclitaxel-induced mechanical allodynia. In addition, spinal cord astrocyte activation and intraepidermal nerve fiber (IENF) loss are significantly reduced in Epac1-/- mice as compared to wild-type mice. Moreover, Epac1-/- mice do not develop the paclitaxel-induced deficits in mitochondrial bioenergetics in the sciatic nerve that are a hallmark of CIPN. Notably, mice with cell-specific deletion of Epac1 in Nav1.8-positive neurons (N-Epac1-/-) also show reduced paclitaxel-induced mechanical allodynia, astrocyte activation, and IENF loss, indicating that CIPN develops downstream of Epac1 activation in nociceptors. The Epac-inhibitor ESI-09 reversed established paclitaxel-induced mechanical allodynia in wild-type mice even when dosing started 10 days after completion of paclitaxel treatment. In addition, oral administration of ESI-09 suppressed spinal cord astrocyte activation in the spinal cord and protected against IENF loss. Ex vivo, ESI-09 blocked paclitaxel-induced abnormal spontaneous discharges in dorsal root ganglion neurons. Collectively, these findings implicate Epac1 in nociceptors as a novel target for treatment of CIPN. This is clinically relevant because ESI-09 has the potential to reverse a debilitating and long-lasting side effect of cancer treatment.

  1. Pollutant-induced cell death and reactive oxygen species accumulation in the aerial roots of Chinese banyan (Ficus microcarpa)

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Cao, Ce; Sun, Zhongyu; Lin, Zhifang; Deng, Rufang

    2016-11-01

    Industrial pollutants induce the production of toxic reactive oxygen species (ROS) such as O2.-, H2O2, and ·OH in plants, but they have not been well quantified or localized in tissues and cells. This study evaluated the pollutant- (HSO3-, NH4NO3, Al3+, Zn2+, and Fe2+) induced toxic effects of ROS on the aerial roots of Chinese banyan (Ficus microcarpa). Root cell viability was greatly reduced by treatment with 20 mM NaHSO3, 20 mM NH4NO3, 0.2 mM AlCl3, 0.2 mM ZnSO4, or 0.2 mM FeSO4. Biochemical assay and histochemical localization showed that O2.- accumulated in roots in response to pollutants, except that the staining of O2.- under NaHSO3 treatment was not detective. Cytochemical localization further indicated that the generated O2.- was present mainly in the root cortex, and pith cells, especially in NH4NO3- and FeSO4-treated roots. The pollutants also caused greatly accumulated H2O2 and ·OH in aerial roots, which finally resulted in lipid peroxidation as indicated by increased malondialdehyde contents. We conclude that the F. microcarpa aerial roots are sensitive to pollutant-induced ROS and that the histochemical localization of O2.- via nitrotetrazolium blue chloride staining is not effective for detecting the effects of HSO3- treatment because of the treatment’s bleaching effect.

  2. Nitric Oxide Is Associated with Long-Term Zinc Tolerance in Solanum nigrum1[W

    PubMed Central

    Xu, Jin; Yin, Hengxia; Li, Yulong; Liu, Xiaojing

    2010-01-01

    Nitric oxide (NO) has been identified as a signal molecule that interplays with reactive oxygen species in response to heavy metal stresses. Roles of NO in regulating cadmium toxicity and iron deficiency have been proposed; however, the function of NO in zinc (Zn) tolerance in plants remains unclear. Here, we investigated NO accumulation and its role in plant Zn tolerance. Zn-induced NO production promoted an increase in reactive oxygen species accumulation in Solanum nigrum roots by modulating the expression and activity of antioxidative enzymes. Subsequently, programmed cell death (PCD) was observed in primary root tips. Inhibiting NO accumulation by 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (a specific NO scavenger) or NG-nitro-l-arginine-methyl ester (a NO synthase inhibitor) prevented the increase of superoxide radical and hydrogen peroxide as well as the subsequent cell death in the root tips, supporting the role of NO in Zn-induced PCD in the root tips. Zn-induced NO production affected the length of primary roots, the number of lateral roots, and root hair growth and thereby modulated root system architecture and activity. Investigation of metal contents in Zn-treated roots suggests that NO is required for metal (especially iron) uptake and homeostasis in plants exposed to excess Zn. Taken together, our results indicate that NO production and the subsequent PCD in root tips exposed to excess Zn are favorable for the S. nigrum seedling response to long-term Zn toxicity by modulating root system architecture and subsequent adaptation to Zn stress. PMID:20855519

  3. Water Transport Properties of Roots and Root Cortical Cells in Proton- and Al-Stressed Maize Varieties.

    PubMed Central

    Gunse, B.; Poschenrieder, C.; Barcelo, J.

    1997-01-01

    Root and root cell pressure-probe techniques were used to investigate the possible relationship between Al- or H+-induced alterations of the hydraulic conductivity of root cells (LPc) and whole-root water conductivity (LPr) in maize (Zea mays L.) plants. To distinguish between H+ and Al effects two varieties that differ in H+ and Al tolerance were assayed. Based on root elongation rates after 24 h in nutrient solution of pH 6.0, pH 4.5, or pH 4.5 plus 50 [mu]M Al, the variety Adour 250 was found to be H+-sensitive and Al-tolerant, whereas the variety BR 201 F was found to be H+-tolerant but Al-sensitive. No Al-induced decrease of root pressure and root cell turgor was observed in Al-sensitive BR 201 F, indicating that Al toxicity did not cause a general breakdown of membrane integrity and that ion pumping to the stele was maintained. Al reduced LPc more than LPr in Al-sensitive BR 201 F. Proton toxicity in Adour 250 affected LPr more than LPc. In this Al-tolerant variety LPc was increased by Al. Nevertheless, this positive effect on LPc did not render higher LPr values. In conclusion, there were no direct relationships between Al- or H+-induced decreases of LPr and the effects on LPc. To our knowledge, this is the first time that the influence of H+ and Al on root and root cell water relations has been directly measured by pressure-probe techniques. PMID:12223628

  4. Clinical Applications of Wavefront Refraction

    PubMed Central

    Bruce, Adrian S.; Catania, Louis J.

    2014-01-01

    ABSTRACT Purpose To determine normative reference ranges for higher-order wavefront error (HO-WFE), compare these values with those in common ocular pathologies, and evaluate treatments. Methods A review of 17 major studies on HO-WFE was made, involving data for a total of 31,605 subjects. The upper limit of the 95% confidence interval (CI) for HO-WFE was calculated from the most comprehensive of these studies using normal healthy patients aged 20 to 80 years. There were no studies identified using the natural pupil size for subjects, and for this reason, the HO-WFE was tabulated for pupil diameters of 3 to 7 mm. Effects of keratoconus, pterygium, cataract, and dry eye on HO-WFE were reviewed and treatment efficacy was considered. Results The calculated upper limit of the 95% CI for HO-WFE in a healthy normal 35-year-old patient with a mesopic pupil diameter of 6 mm would be 0.471 μm (471 nm) root-mean-square or less. Although the normal HO-WFE increases with age for a given pupil size, it is not yet completely clear how the concurrent influence of age-related pupillary miosis affects these findings. Abnormal ocular conditions such as keratoconus can induce a large HO-WFE, often in excess of 3.0 μm, particularly attributed to coma. For pterygium or cortical cataract, a combination of coma and trefoil was more commonly induced. Nuclear cataract can induce a negative spherical HO-WFE, usually in excess of 1.0 μm. Conclusions The upper limit of the 95% CI for HO-WFE root-mean-square is about 0.5 μm with normal physiological pupil sizes. With ocular pathologies, HO-WFE can be in excess of 1.0 μm, although many devices and therapeutic and surgical treatments are reported to be highly effective at minimizing HO-WFE. More accurate normative reference ranges for HO-WFE will require future studies using the subjects’ natural pupil size. PMID:25216319

  5. Spectrum of Spinal Cord, Spinal Root, and Brain MRI Abnormalities in Congenital Zika Syndrome with and without Arthrogryposis.

    PubMed

    Aragao, M F V V; Brainer-Lima, A M; Holanda, A C; van der Linden, V; Vasco Aragão, L; Silva Júnior, M L M; Sarteschi, C; Petribu, N C L; Valença, M M

    2017-05-01

    Arthrogryposis is among the malformations of congenital Zika syndrome. Similar to the brain, there might exist a spectrum of spinal cord abnormalities. The purpose of this study was to explore and describe in detail the MR imaging features found in the spinal cords, nerve roots, and brains of children with congenital Zika syndrome with and without arthrogryposis. Twelve infants with congenital Zika syndrome (4 with arthrogryposis and 8 without) who had undergone brain and spinal cord MR imaging were retrospectively selected. Qualitative and quantitative analyses were performed and compared between groups. At visual inspection, both groups showed reduced thoracic spinal cord thickness: 75% (6/8) of the group without arthrogryposis and 100% (4/4) of the arthrogryposis group. However, the latter had the entire spinal cord reduced and more severely reduced conus medullaris anterior roots (respectively, P = .002 and .007). Quantitative differences were found for conus medullaris base and cervical and lumbar intumescences diameters (respectively, P = .008, .048, .008), with more prominent reduction in arthrogryposis. Periventricular calcifications were more frequent in infants with arthrogryposis ( P = .018). Most infants had some degree of spinal cord thickness reduction, predominant in the thoracic segment (without arthrogryposis) or in the entire spinal cord (with arthrogryposis). The conus medullaris anterior roots were reduced in both groups (thinner in arthrogryposis). A prominent anterior median fissure of the spinal cord was absent in infants without arthrogryposis. Brain stem hypoplasia was present in all infants with arthrogryposis, periventricular calcifications, in the majority, and polymicrogyria was absent. © 2017 by American Journal of Neuroradiology.

  6. Psoralen production in hairy roots and adventitious roots cultures of Psoralea coryfolia.

    PubMed

    Baskaran, P; Jayabalan, N

    2009-07-01

    Psoralea corylifolia is an endangered plant producing various compounds of medical importance. Adventitious roots and hairy roots were induced in cultures prepared from hypocotyl explants. Psoralen content was evaluated in both root types grown either in suspension cultures or on agar solidified medium. Psoralen content was approximately 3 mg g(-1) DW in suspension grown hairy roots being higher than in solid grown hairy roots and in solid and suspension-grown adventitious roots.

  7. Ammonium-induced loss of root gravitropism is related to auxin distribution and TRH1 function, and is uncoupled from the inhibition of root elongation in Arabidopsis.

    PubMed

    Zou, Na; Li, Baohai; Dong, Gangqiang; Kronzucker, Herbert J; Shi, Weiming

    2012-06-01

    Root gravitropism is affected by many environmental stresses, including salinity, drought, and nutrient deficiency. One significant environmental stress, excess ammonium (NH(4)(+)), is well documented to inhibit root elongation and lateral root formation, yet little is known about its effects on the direction of root growth. We show here that inhibition of root elongation upon elevation of external NH(4)(+) is accompanied by a loss in root gravitropism (agravitropism) in Arabidopsis. Addition of potassium (K(+)) to the treatment medium partially rescued the inhibition of root elongation by high NH(4)(+) but did not improve gravitropic root curvature. Expression analysis of the auxin-responsive reporter gene DR5::GUS revealed that NH(4)(+) treatment delayed the development of gravity-induced auxin gradients across the root cap but extended their duration once initiated. Moreover, the β-glucuronidase (GUS) signal intensity in root tip cells was significantly reduced under high NH(4)(+) treatment over time. The potassium carrier mutant trh1 displayed different patterns of root gravitropism and DR5::GUS signal intensity in root apex cells compared with the wild type in response to NH(4)(+). Together, the results demonstrate that the effects of NH(4)(+) on root gravitropism are related to delayed lateral auxin redistribution and the TRH1 pathway, and are largely independent of inhibitory effects on root elongation.

  8. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling.

    PubMed

    Konishi, Hirosato; Yamane, Hisakazu; Maeshima, Masayoshi; Komatsu, Setsuko

    2004-12-01

    Fructose-bisphosphate aldolase is a glycolytic enzyme whose activity increases in rice roots treated with gibberellin (GA). To investigate the relationship between aldolase and root growth, GA-induced root aldolase was characterized. GA3 promoted an increase in aldolase accumulation when 0.1 microM GA3 was added exogenously to rice roots. Aldolase accumulated abundantly in roots, especially in the apical region. To examine the effect of aldolase function on root growth, transgenic rice plants expressing antisense aldolase were constructed. Root growth of aldolase-antisense transgenic rice was repressed compared with that of the vector control transgenic rice. Although aldolase activity increased by 25% in vector control rice roots treated with 0.1 microM GA3, FBPA activity increased very little by 0.1 microM GA3 treatment in the root of aldolase-antisense transgenic rice. Furthermore, aldolase co-immunoprecipitated with antibodies against vacuolar H+ -ATPase in rice roots. In the root of OsCDPK13-antisense transgenic rice, aldolase did not accumulate even after treatment with GA3. These results suggest that the activation of glycolytic pathway function accelerates root growth and that GA3-induced root aldolase may be modulated through OsCDPK13. Aldolase physically associates with vacuolar H-ATPase in roots and may regulate the vacuolar H-ATPase mediated control of cell elongation that determines root length.

  9. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis

    PubMed Central

    Sahu, Binod B.; Baumbach, Jordan L.; Singh, Prashant; Srivastava, Subodh K.; Yi, Xiaoping

    2017-01-01

    Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, ‘Essex’, was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen. PMID:28095498

  10. Investigation of the Fusarium virguliforme Transcriptomes Induced during Infection of Soybean Roots Suggests that Enzymes with Hydrolytic Activities Could Play a Major Role in Root Necrosis.

    PubMed

    Sahu, Binod B; Baumbach, Jordan L; Singh, Prashant; Srivastava, Subodh K; Yi, Xiaoping; Bhattacharyya, Madan K

    2017-01-01

    Sudden death syndrome (SDS) is caused by the fungal pathogen, Fusarium virguliforme, and is a major threat to soybean production in North America. There are two major components of this disease: (i) root necrosis and (ii) foliar SDS. Root symptoms consist of root necrosis with vascular discoloration. Foliar SDS is characterized by interveinal chlorosis and leaf necrosis, and in severe cases by flower and pod abscission. A major toxin involved in initiating foliar SDS has been identified. Nothing is known about how root necrosis develops. In order to unravel the mechanisms used by the pathogen to cause root necrosis, the transcriptome of the pathogen in infected soybean root tissues of a susceptible cultivar, 'Essex', was investigated. The transcriptomes of the germinating conidia and mycelia were also examined. Of the 14,845 predicted F. virguliforme genes, we observed that 12,017 (81%) were expressed in germinating conidia and 12,208 (82%) in mycelia and 10,626 (72%) in infected soybean roots. Of the 10,626 genes induced in infected roots, 224 were transcribed only following infection. Expression of several infection-induced genes encoding enzymes with oxidation-reduction properties suggests that degradation of antimicrobial compounds such as the phytoalexin, glyceollin, could be important in early stages of the root tissue infection. Enzymes with hydrolytic and catalytic activities could play an important role in establishing the necrotrophic phase. The expression of a large number of genes encoding enzymes with catalytic and hydrolytic activities during the late infection stages suggests that cell wall degradation could be involved in root necrosis and the establishment of the necrotrophic phase in this pathogen.

  11. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    PubMed

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  12. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: impact on stomatal control of plant water status.

    Treesearch

    J-C. Domec; F.G. Scholz; S.J. Bucci; F.C. Meinzer; G. Goldstein; R. Villalobos-Vega

    2006-01-01

    Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occuring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (ψroot...

  13. Subterranean, Herbivore-Induced Plant Volatile Increases Biological Control Activity of Multiple Beneficial Nematode Species in Distinct Habitats

    PubMed Central

    Ali, Jared G.; Alborn, Hans T.; Campos-Herrera, Raquel; Kaplan, Fatma; Duncan, Larry W.; Rodriguez-Saona, Cesar; Koppenhöfer, Albrecht M.; Stelinski, Lukasz L.

    2012-01-01

    While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs). However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene) from citrus roots 9–12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus) compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis) again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests. PMID:22761668

  14. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  15. Antisense expression of an Arabidopsis ran binding protein renders transgenic roots hypersensitive to auxin and alters auxin-induced root growth and development by arresting mitotic progress

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Arnold, D.; Lloyd, A.; Roux, S. J.

    2001-01-01

    We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.

  16. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    PubMed Central

    Liu, Da-Lu; Lu, Na; Han, Wen-Juan; Chen, Rong-Gui; Cong, Rui; Xie, Rou-Gang; Zhang, Yu-Fei; Kong, Wei-Wei; Hu, San-Jue; Luo, Ceng

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy. PMID:26577374

  17. Foot orgasm syndrome: a case report in a woman.

    PubMed

    Waldinger, Marcel D; de Lint, Govert J; van Gils, Ad P G; Masir, Farhad; Lakke, Egbert; van Coevorden, Ruben S; Schweitzer, Dave H

    2013-08-01

    Spontaneous orgasm triggered from inside the foot has so far not been reported in medical literature. The study aims to report orgasmic feelings in the left foot of a woman. A woman presented with complaints of undesired orgasmic sensations originating in her left foot. In-depth interview, physical examination, sensory testing, magnetic resonance imaging (MRI-scan), electromyography (EMG), transcutaneous electrical nerve stimulation (TENS), and blockade of the left S1 dorsal root ganglion were performed. The main outcomes are description of this clinical syndrome, results of TENS application, and S1 dorsal root ganglion blockade. Subtle attenuation of sensory amplitudes of the left suralis, and the left medial and lateral plantar nerve tracts was found at EMG. MRI-scan disclosed no foot abnormalities. TENS at the left metatarso-phalangeal joint-III of the left foot elicited an instant orgasmic sensation that radiated from plantar toward the vagina. TENS applied to the left side of the vagina elicited an orgasm that radiated to the left foot. Diagnostic blockade of the left S1 dorsal root ganglion with 0.8 mL bupivacaine 0.25 mg attenuated the frequency and intensity of orgasmic sensation in the left foot with 50% and 80%, respectively. Additional therapeutic blockade of the same ganglion with 0.8 mL bupivacaine 0.50 mg combined with pulsed radiofrequency treatment resulted in a complete disappearance of the foot-induced orgasmic sensations. Foot orgasm syndrome (FOS) is descibed in a woman. Blockade of the left S1 dorsal root ganglion alleviated FOS. It is hypothesized that FOS, occurring 1.5 years after an intensive care emergency, was caused by partial nerve regeneration (axonotmesis), after which afferent (C-fiber) information from a small reinnervated skin area of the left foot and afferent somatic and autonomous (visceral) information from the vagina on at least S1 spinal level is misinterpreted by the brain as being solely information originating from the vagina. © 2013 International Society for Sexual Medicine.

  18. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury.

    PubMed

    Chang, Hsueh-Ling; Wang, Hung-Chen; Chunag, Yi-Ta; Chou, Chao-Wen; Lin, I-Ling; Lai, Chung-Sheng; Chang, Lin-Li; Cheng, Kuang-I

    2017-02-01

    The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague-Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.

  19. Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. [Medicago sativa L. ; Rhizobium meliloti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, C.A.; Phillips, D.A.

    Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4{prime},7-dihydroxyflavanone, 4{prime},7-dihydroxyflavone, and 4,4{prime}-dihydroxy-2{prime}-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with (U-{sup 14}C)-L-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor L-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained {sup 14}C. In the presence of AOPP, {sup 14}C labeling and releasemore » of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. The release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth.« less

  20. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants.

    PubMed

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.

  1. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin

    2015-08-24

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal.

  2. OsCSLD1, a Cellulose Synthase-Like D1 Gene, Is Required for Root Hair Morphogenesis in Rice1[C][W

    PubMed Central

    Kim, Chul Min; Park, Sung Han; Je, Byoung Il; Park, Su Hyun; Park, Soon Ju; Piao, Hai Long; Eun, Moo Young; Dolan, Liam; Han, Chang-deok

    2007-01-01

    Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice. PMID:17259288

  3. Stereomicroscopic evaluation of dentinal defects induced by new rotary system: "ProTaper NEXT".

    PubMed

    Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil

    2015-01-01

    The objective of this study was to evaluate dentinal defects formed by new rotary system - Protaper next™ (PTN). Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P < 0.05). All rotary files induced defects in root dentin, whereas the hand instruments induced minimal defects.

  4. Red-light-induced positive phototropism in Arabidopsis roots

    NASA Technical Reports Server (NTRS)

    Ruppel, N. J.; Hangarter, R. P.; Kiss, J. Z.

    2001-01-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  5. Red-light-induced positive phototropism in Arabidopsis roots.

    PubMed

    Ruppel, N J; Hangarter, R P; Kiss, J Z

    2001-02-01

    The interaction between light and gravity is critical in determining the final form of a plant. For example, the competing activities of gravitropism and phototropism can determine the final orientation of a stem or root. The results reported here indicate that, in addition to the previously described blue-light-dependent negative phototropic response in roots, roots of Arahidopsis thaliana (L.) Heynh. display a previously unknown red-light-dependent positive phototropic response. Both phototropic responses in roots are considerably weaker than the graviresponse, which often masks phototropic curvature. However, through the use of mutant strains with impaired gravitropism, we were able to identify a red-light-dependent positive phototropic response in Arabidopsis roots. The red-induced positive phototropic response is considerably weaker than the blue-light response and is barely detectable in plants with a normal gravitropic response.

  6. AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting.

    PubMed

    Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, Cláudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, Hélia

    2018-02-17

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.

  7. The anatomy and development of normal and abnormal coronary arteries.

    PubMed

    Spicer, Diane E; Henderson, Deborah J; Chaudhry, Bill; Mohun, Timothy J; Anderson, Robert H

    2015-12-01

    At present, there is significant interest in the morphology of the coronary arteries, not least due to the increasingly well-recognised association between anomalous origin of the arteries and sudden cardiac death. Much has also been learnt over the last decade regarding the embryology of the arteries. In this review, therefore, we provide a brief introduction into the recent findings regarding their development. In particular, we emphasise that new evidence, derived using the developing murine heart, points to the arterial stems growing out from the adjacent sinuses of the aortic root, rather than the arteries growing in, as is currently assumed. As we show, the concept of outgrowth provides an excellent explanation for several of the abnormal arrangements encountered in the clinical setting. Before summarising these abnormal features, we draw attention to the need to describe the heart in an attitudinally appropriate manner, following the basic rule of human anatomy, rather than describing the cardiac components with the heart in the "Valentine" orientation. We then show how the major abnormalities involving the coronary arteries in humans can be summarised in terms of abnormal origin from the pulmonary circulation, abnormal aortic origin, or fistulous communications between the coronary arteries and the cardiac cavities. In the case of abnormal aortic origin, we highlight those malformations known to be associated with sudden cardiac death.

  8. The Cyclic Nucleotide-Gated Channel CNGC14 Regulates Root Gravitropism in Arabidopsis thaliana.

    PubMed

    Shih, Han-Wei; DePew, Cody L; Miller, Nathan D; Monshausen, Gabriele B

    2015-12-07

    In plant roots, auxin inhibits cell expansion, and an increase in cellular auxin levels on the lower flanks of gravistimulated roots suppresses growth and thereby causes downward bending. These fundamental features of root growth responses to auxin were first described over 80 years ago, but our understanding of the underlying molecular mechanisms has remained scant. Here, we report that CYCLIC NUCLEOTIDE-GATED CHANNEL 14 (CNGC14) is essential for the earliest phase of auxin-induced ion signaling and growth inhibition in Arabidopsis roots. Using a fluorescence-imaging-based genetic screen, we found that cngc14 mutants exhibit a complete loss of rapid Ca(2+) and pH signaling in response to auxin treatment. Similarly impaired ion signaling was observed upon gravistimulation. We further developed a kinematic analysis approach to study dynamic root growth responses to auxin at high spatiotemporal resolution. These analyses revealed that auxin-induced growth inhibition and gravitropic bending are significantly delayed in cngc14 compared to wild-type roots, where auxin suppresses cell expansion within 1 min of treatment. Finally, we demonstrate that auxin-induced cytosolic Ca(2+) changes are required for rapid growth inhibition. Our results support a direct role for CNGC14-dependent Ca(2+) signaling in regulating the early posttranscriptional phase of auxin growth responses in Arabidopsis roots. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mineral trioxide aggregate repair of a perforating internal resorption in a mandibular molar.

    PubMed

    Meire, Maarten; De Moor, Roeland

    2008-02-01

    Internal resorption is a rare condition in permanent teeth that poses difficulties for treatment. The challenge is complicated further if the resorption extends beyond the confines of the root. This article describes treatment of a perforating internal resorption in the mesial root of a second lower molar, with adjacent destruction of the alveolar bone. After cleaning the root canal space and the resorption lacuna by mechanical instrumentation, irrigation, and interim calcium hydroxide dressing, the defect was filled with mineral trioxide aggregate, and the canals were obturated conventionally with gutta percha and epoxy resin sealer. At a 2-year follow-up examination, no clinical abnormalities were found, and complete resolution of the alveolar bone lesion and establishment of a new periodontal ligament were observed.

  10. The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.

    PubMed

    Sakai, Tatsuya; Mochizuki, Susumu; Haga, Ken; Uehara, Yukiko; Suzuki, Akane; Harada, Akiko; Wada, Takuji; Ishiguro, Sumie; Okada, Kiyotaka

    2012-04-01

    Regulation of the root growth pattern is an important control mechanism during plant growth and propagation. To better understand alterations in root growth direction in response to environmental stimuli, we have characterized an Arabidopsis thaliana mutant, wavy growth 3 (wav3), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The wav3 mutant shows a greater curvature of root bending in response to gravity, but a smaller curvature in response to light, suggesting that it is a root gravitropism-enhancing mutation. This wav3 phenotype also suggests that enhancement of the gravitropic response in roots strengthens root tip impedance after contact with the agar surface and/or causes an increase in subsequent root bending in response to obstacle-touching stimulus in these mutants. WAV3 encodes a protein with a RING finger domain, and is mainly expressed in root tips. RING-containing proteins often function as an E3 ubiquitin ligase, and the WAV3 protein shows such activity in vitro. There are three genes homologous to WAV3 in the Arabidopsis genome [EMBRYO SAC DEVELOPMENT ARREST 40 (EDA40), WAVH1 and WAVH2 ], and wav3 wavh1 wavh2 triple mutants show marked root gravitropism abnormalities. This genetic study indicates that WAV3 functions positively rather than negatively in root gravitropism, and that enhancement of the gravitropic response in wav3 roots is dependent upon the function of WAVH2 in the absence of WAV3. Hence, our results demonstrate that the WAV3 family of proteins are E3 ligases that are required for root gravitropism in Arabidopsis. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  11. Gentiolactone, a Secoiridoid Dilactone from Gentiana triflora, Inhibits TNF-α, iNOS and Cox-2 mRNA Expression and Blocks NF-κB Promoter Activity in Murine Macrophages

    PubMed Central

    Yamada, Hidetoshi; Kikuchi, Sayaka; Inui, Tomoki; Takahashi, Hideyuki; Kimura, Ken-ichi

    2014-01-01

    Background Gentian roots have been used as a herbal medicine because of their anti-inflammatory activities. However, the molecular mechanisms of these anti-inflammatory effects remain to be completely explained. Methods and Findings Here, we investigated anti-inflammatory effects of gentian roots and showed that root extracts from Gentiana triflora inhibited lipopolysaccharide (LPS)-induced expression of TNF-α in RAW264.7 cells. The extracts also contained swertiamarin and gentiopicroside, which are the major active compounds of gentian roots; however, neither compound had any effect on LPS-induced TNF-α production in our test system. We isolated gentiolactone as an inhibitor of TNF-α production from the extracts. Gentiolactone also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) expression at the mRNA level. Moreover, gentiolactone suppressed NF-κB transcriptional activity without inhibition of IκB degradation or NF-κB nuclear transport. Conclusions Our results indicate that inhibition of TNF-α, iNOS and Cox-2 expression by gentiolactone is one of the mechanisms of the anti-inflammatory properties of gentian roots. PMID:25423092

  12. Clinical characterization of cardiovascular abnormalities associated with feline mucopolysaccharidosis I and VI.

    PubMed

    Sleeper, M M; Kusiak, C M; Shofer, F S; O'Donnell, P; Bryan, C; Ponder, K P; Haskins, M E

    2008-06-01

    The purpose of this study was to define the cardiovascular abnormalities present in young and adult cats affected with the lysosomal storage diseases mucopolysaccharidosis (MPS) I and MPS VI. Eighteen cats affected with MPS I and 10 cats affected with MPS VI were evaluated by physical examination, electrocardiography and echocardiography. Electrocardiography (ECG) was performed on all MPS I and 9 of the MPS VI cats. Twelve unaffected cats underwent complete examinations for comparison purposes. No cardiovascular abnormalities were noted on physical examination. Measured ECG intervals were normal in affected cats; however, sinus arrhythmia was noted more frequently than in the unaffected cats. Significant echocardiographic abnormalities included aortic valve thickening, regurgitation and aortic root dilation. Significant mitral valve thickening was also noted. The severity of changes increased in older affected cats. As affected animals increased in age, more cardiac abnormalities were found with increasing severity. Significant lesions included the mitral and aortic valves and ascending aorta, but myocardial changes were not recognized. MPS I and MPS VI cats have similar cardiovascular findings to those seen in children and constitute important models for testing new MPS therapies.

  13. The effect of acetylshikonin isolated from Lithospermum canescens roots on tumor-induced cutaneous angiogenesis.

    PubMed

    Pietrosiuk, Agnieszka; Furmanowa, Mirosława; Skopińiska-Rózewska, Ewa; Sommer, Ewa; Skurzak, Henryk; Bany, Janusz

    2004-01-01

    This study has demonstrated that acetylshikonin (ACS), the isolated ingredient from Lithospermum canescens Lehm. roots, in a daily dose of 200 microg for 3 days, inhibited cutaneous angiogenesis induced by L-1 sarcoma cells in Balb/c mice.

  14. Sending mixed messages: a trophic cascade produced by a belowground herbivore-induced cue

    USDA-ARS?s Scientific Manuscript database

    Plants defend themselves against herbivores both directly (chemical toxins and physical barriers) and indirectly (attracting natural enemies of their herbivores). Previous work has shown that roots of citrus defend themselves against root herbivores by releasing an herbivore induced plant volatile (...

  15. Characterization of LeMir, a Root-Knot Nematode-Induced Gene in Tomato with an Encoded Product Secreted from the Root1

    PubMed Central

    Brenner, Eric D.; Lambert, Kris N.; Kaloshian, Isgouhi; Williamson, Valerie M.

    1998-01-01

    A tomato gene that is induced early after infection of tomato (Lycopersicon esculentum Mill.) with root-knot nematodes (Meloidogyne javanica) encodes a protein with 54% amino acid identity to miraculin, a flavorless protein that causes sour substances to be perceived as sweet. This gene was therefore named LeMir (L. esculentum miraculin). Sequence similarity places the encoded protein in the soybean trypsin-inhibitor family (Kunitz). LeMir mRNA is found in root, hypocotyl, and flower tissues, with the highest expression in the root. Rapid induction of expression upon nematode infection is localized to root tips. In situ hybridization shows that LeMir is expressed constitutively in the root-cap and root-tip epidermis. The LeMir protein product (LeMir) was produced in the yeast Pichia pastoris for generation of antibodies. Western-blot analysis showed that LeMir expression is up-regulated by nematode infection and by wounding. LeMir is also expressed in tomato callus tissue. Immunoprint analysis revealed that LeMir is expressed throughout the seedling root, but that levels are highest at the root/shoot junction. Analysis of seedling root exudates revealed that LeMir is secreted from the root into the surrounding environment, suggesting that it may interact with soil-borne microorganisms. PMID:9733543

  16. Jasmonate signaling is activated in the very early stages of iron deficiency responses in rice roots.

    PubMed

    Kobayashi, Takanori; Itai, Reiko Nakanishi; Senoura, Takeshi; Oikawa, Takaya; Ishimaru, Yasuhiro; Ueda, Minoru; Nakanishi, Hiromi; Nishizawa, Naoko K

    2016-07-01

    Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.

  17. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  18. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-03-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  19. Platelet inhibitory effects of juices from Pachyrhizus erosus L. root and Psidium guajava L. fruit: a randomized controlled trial in healthy volunteers.

    PubMed

    Thaptimthong, Thitiporn; Kasemsuk, Thitima; Sibmooh, Nathawut; Unchern, Supeenun

    2016-08-03

    The purpose of this study is to investigate cardiovascular benefits of juices obtained from two commonly consumed fruits in Thailand, Pachyrhizus erosus, L. (yam bean) and Psidium guajava, L. (guava), by examining their acute cardiovascular effects in healthy volunteers. Possible involvements of the dietary nitrate on their effects were investigated as well. Thirty healthy volunteers were randomly divided into three groups of 10 subjects per group and each group was allocated to drink 500 ml of freshly prepared yam bean root juice, guava fruit juice, or water. Systemic nitrate and nitrite concentrations, heart rate, systolic and diastolic blood pressure, serum K(+) concentrations, ex vivo platelet aggregation, and plasma cGMP concentrations were monitored at the baseline and at various time points after the intake of juices or water. Data were compared by repeated measures ANOVA. Following the ingestion of both yam bean root juice and guava fruit juice, collagen-induced but not ADP-induced platelet aggregation was attenuated. Ingestion of yam bean root juice increased systemic nitrate and nitrite concentrations whereby elevated nitrite concentrations correlated with the extent of inhibiting collagen-induced platelet aggregation. In addition, positive correlation between systemic nitrite and plasma cGMP concentrations and negative correlation between plasma cGMP concentrations and the extent of collagen-induced platelet aggregation were revealed. Nevertheless, yam bean root juice reduced only diastolic blood pressure while guava fruit juice reduced heart rate, systolic and diastolic blood pressure. The present study has illustrated, for the first time, acute inhibitory effects of yam bean root juice and guava fruit juice on ex vivo collagen-induced platelet aggregation in healthy subjects. Dietary nitrate was shown to underlie the effect of yam bean root juice but not that of guava fruit juice. Following yam bean root juice ingestion, systemic nitrate apparently converts to nitrite and further to NO which may attenuate platelet responses to collagen stimulation. Cardiovascular benefits of juices from yam bean root and guava fruit are noteworthy in term of the cardiovascular health-promoting approach. Randomized controlled trial TCTR20150228001 .

  20. The Nitrification Inhibitor Methyl 3-(4-Hydroxyphenyl)Propionate Modulates Root Development by Interfering with Auxin Signaling via the NO/ROS Pathway1

    PubMed Central

    Liu, Yangyang; Wang, Ruling; Zhang, Ping

    2016-01-01

    Methyl 3-(4-hydroxyphenyl)propionate (MHPP) is a root exudate that functions as a nitrification inhibitor and as a modulator of the root system architecture (RSA) by inhibiting primary root (PR) elongation and promoting lateral root formation. However, the mechanism underlying MHPP-mediated modulation of the RSA remains unclear. Here, we report that MHPP inhibits PR elongation in Arabidopsis (Arabidopsis thaliana) by elevating the levels of auxin expression and signaling. MHPP induces an increase in auxin levels by up-regulating auxin biosynthesis, altering the expression of auxin carriers, and promoting the degradation of the auxin/indole-3-acetic acid family of transcriptional repressors. We found that MHPP-induced nitric oxide (NO) production promoted reactive oxygen species (ROS) accumulation in root tips. Suppressing the accumulation of NO or ROS alleviated the inhibitory effect of MHPP on PR elongation by weakening auxin responses and perception and by affecting meristematic cell division potential. Genetic analysis supported the phenotype described above. Taken together, our results indicate that MHPP modulates RSA remodeling via the NO/ROS-mediated auxin response pathway in Arabidopsis. Our study also revealed that MHPP significantly induced the accumulation of glucosinolates in roots, suggesting the diverse functions of MHPP in modulating plant growth, development, and stress tolerance in plants. PMID:27217493

  1. The inhibiting effects of Urtica dioica root extracts on experimentally induced prostatic hyperplasia in the mouse.

    PubMed

    Lichius, J J; Muth, C

    1997-08-01

    Extracts of stinging nettle roots (Urtica dioica L. Urticaceae) are used in the treatment of benign prostatic hyperplasia (BPH). We established a BPH-model by directly implanting an urogenital sinus (UGS) into the ventral prostate gland of an adult mouse. Five differently prepared stinging nettle root extracts were tested in this model. The 20% methanolic extract was the most effective with a 51.4% inhibition of induced growth.

  2. Shoot phytochrome B modulates reactive oxygen species homeostasis in roots via abscisic acid signaling in Arabidopsis.

    PubMed

    Ha, Jun-Ho; Kim, Ju-Heon; Kim, Sang-Gyu; Sim, Hee-Jung; Lee, Gisuk; Halitschke, Rayko; Baldwin, Ian T; Kim, Jeong-Il; Park, Chung-Mo

    2018-06-01

    Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS-induced growth promotion facilitates rapid escape of the roots from non-natural light. Meanwhile, long-term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far-red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot-derived ABA signals induce a peroxidase-mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark-grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot-to-root ABA signaling links shoot phyB-mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA-mediated shoot-to-root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  3. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-11-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant.

  4. NaCl regulation of plasma membrane H(+)-ATPase gene expression in a glycophyte and a halophyte.

    PubMed Central

    Niu, X; Narasimhan, M L; Salzman, R A; Bressan, R A; Hasegawa, P M

    1993-01-01

    NaCl regulation of plasma membrane H(+)-ATPase gene expression in the glycophyte tobacco (Nicotiana tabacum L. var Wisconsin 38) and the halophyte Atriplex nummularia L. was evaluated by comparison of organ-specific mRNA abundance using homologous cDNA probes encoding the ATPases of the respective plants. Accumulation of mRNA was induced by NaCl in fully expanded leaves and in roots but not in expanding leaves or stems. The NaCl responsiveness of the halophyte to accumulate plasma membrane H(+)-ATPase mRNA in roots was substantially greater than that of the glycophyte. Salt-induced transcript accumulation in A. nummularia roots was localized by in situ hybridization predominantly to the elongation zone, but mRNA levels also increased in the zone of differentiation. Increased message accumulation in A. nummularia roots could be detected within 8 h after NaCl (400 mM) treatment, and maximal levels were severalfold greater than in roots of untreated control plants. NaCl-induced plasma membrane H(+)-ATPase gene expression in expanded leaves and roots presumably indicates that these organs require increased H(+)-electrochemical potential gradients for the maintenance of plant ion homeostasis for salt adaptation. The greater capacity of the halophyte to induce plasma membrane H(+)-ATPase gene expression in response to NaCl may be a salt-tolerance determinant. PMID:8022933

  5. The Separability of Morphological Processes from Semantic Meaning and Syntactic Class in Production of Single Words: Evidence from the Hebrew Root Morpheme.

    PubMed

    Deutsch, Avital

    2016-02-01

    In the present study we investigated to what extent the morphological facilitation effect induced by the derivational root morpheme in Hebrew is independent of semantic meaning and grammatical information of the part of speech involved. Using the picture-word interference paradigm with auditorily presented distractors, Experiment 1 compared the facilitation effect induced by semantically transparent versus semantically opaque morphologically related distractor words (i.e., a shared root) on the production latency of bare nouns. The results revealed almost the same amount of facilitation for both relatedness conditions. These findings accord with the results of the few studies that have addressed this issue in production in Indo-European languages, as well as previous studies in written word perception in Hebrew. Experiment 2 compared the root's facilitation effect, induced by morphologically related nominal versus verbal distractors, on the production latency of bare nouns. The results revealed a facilitation effect of similar size induced by the shared root, regardless of the distractor's part of speech. It is suggested that the principle that governs lexical organization at the level of morphology, at least for Hebrew roots, is form-driven and independent of semantic meaning. This principle of organization crosses the linguistic domains of production and written word perception, as well as grammatical organization according to part of speech.

  6. Expression of animal anti-apoptotic gene Ced-9 enhances tolerance during Glycine max L.-Bradyrhizobium japonicum interaction under saline stress but reduces nodule formation.

    PubMed

    Robert, Germán; Muñoz, Nacira; Melchiorre, Mariana; Sánchez, Federico; Lascano, Ramiro

    2014-01-01

    The mechanisms by which the expression of animal cell death suppressors in economically important plants conferred enhanced stress tolerance are not fully understood. In the present work, the effect of expression of animal antiapoptotic gene Ced-9 in soybean hairy roots was evaluated under root hairs and hairy roots death-inducing stress conditions given by i) Bradyrhizobium japonicum inoculation in presence of 50 mM NaCl, and ii) severe salt stress (150 mM NaCl), for 30 min and 3 h, respectively. We have determined that root hairs death induced by inoculation in presence of 50 mM NaCl showed characteristics of ordered process, with increased ROS generation, MDA and ATP levels, whereas the cell death induced by 150 mM NaCl treatment showed non-ordered or necrotic-like characteristics. The expression of Ced-9 inhibited or at least delayed root hairs death under these treatments. Hairy roots expressing Ced-9 had better homeostasis maintenance, preventing potassium release; increasing the ATP levels and controlling the oxidative damage avoiding the increase of reactive oxygen species production. Even when our results demonstrate a positive effect of animal cell death suppressors in plant cell ionic and redox homeostasis under cell death-inducing conditions, its expression, contrary to expectations, drastically inhibited nodule formation even under control conditions.

  7. Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.).

    PubMed

    Duan, Jianfeng; Tian, Hui; Drijber, Rhae A; Gao, Yajun

    2015-11-01

    Previous studies have reported that the expression of phosphate (Pi) or nitrogen (N) transporter genes in roots of plants could be regulated by arbuscular mycorrhizal (AM) fungi, but little is known whether the regulation is systemic or not. The present study investigated the systemic and local regulation of multiple phosphate and nitrogen transporter genes by four AM fungal species belonging to four genera in the roots of winter wheat. A split-root culture system with AM inoculated (MR) and non-inoculated root compartments (NR) was used to investigate the systemic or local responses of phosphate and nitrogen transporter genes to colonization by four AM fungi in the roots of wheat. The expression of four Pi transporter, five nitrate transporter, and three ammonium transporter genes was quantified using real-time PCR. Of the four AM fungi tested, all locally increased expression of the AM-inducible Pi transporter genes, and most locally decreased expression of a Pi-starvation inducible Pi transporter gene. The addition of N in soil increased the expression of either Pi starvation inducible Pi transporters or AM inducible Pi transporters. Inoculation with AM fungi either had no effect, or could locally or systemically down-regulate expression of nitrogen transporter genes depending on gene type and AM fungal species. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Abnormal neurofilament inclusions and segregations in dorsal root ganglia of a Charcot-Marie-Tooth type 2E mouse model.

    PubMed

    Zhao, Jian; Brown, Kristy; Liem, Ronald K H

    2017-01-01

    Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy is the most prevalent inherited peripheral neuropathy and is associated with over 90 causative genes. Mutations in neurofilament light polypeptide gene, NEFL cause CMT2E, an axonal form of CMT that results in abnormal structures and/or functions of peripheral axons in spinal cord motor neurons and dorsal root ganglion neurons. We have previously generated and characterized a knock-in mouse model of CMT2E with the N98S mutation in Nefl that presented with multiple inclusions in spinal cord neurons. In this report, we conduct immunofluorescence studies of cultured dorsal root ganglia (DRG) from NeflN98S/+ mice, and show that inclusions found in DRG neurites can occur in embryonic stages. Ultrastructural analyses reveal that the inclusions are disordered neurofilaments packed in high density, segregated from other organelles. Immunochemical studies show decreased NFL protein levels in DRG, cerebellum and spinal cord in NeflN98S/+ mice, and total NFL protein pool is shifted toward the triton-insoluble fraction. Our findings reveal the nature of the inclusions in NeflN98S/+ mice, provide useful information to understand mechanisms of CMT2E disease, and identify DRG from NeflN98S/+ mice as a useful cell line model for therapeutic discoveries.

  9. Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants.

    PubMed

    Zdravković-Korać, S; Muhovski, Y; Druart, P; Calić, D; Radojević, L

    2004-04-01

    Hairy roots were induced from androgenic embryos of horse chestnut (Aesculus hippocastanum L.) by infection with Agrobacterium rhizogenes strain A4GUS. Single roots were selected according to their morphology in the absence of antibiotic or herbicide resistance markers. Seventy-one putative transformed hairy root lines from independent transformation events were established. Regeneration was induced in MS liquid medium supplemented with 30 microM 6-benzylaminopurine (BA), and the regenerants were multiplied on MS solid medium containing 10 microM BA. Following elongation on MS medium supplemented with 1 microM BA and 500 mg/l polyvinylpyrrolidone, the shoots were subjected to a root-inducing treatment. Stable integration of TL-DNA within the horse chestnut genome was confirmed by Southern hybridization. The copy number of transgenes was estimated to be from two to four.

  10. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone

    Treesearch

    M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky

    1996-01-01

    We studied root growth and respiration of potted plants and field-grown aspen trees (Populus tremuloides Michx.) exposed to ambient or twice-ambient ozone. Root dry weight of potted plants decreased up to 45% after 12 weeks of ozone treatment, and root system respiration decreased by 27%. The ozone-induced decrease in root system respiration of...

  11. Halogenated auxins affect microtubules and root elongation in Lactuca sativa

    NASA Technical Reports Server (NTRS)

    Zhang, N.; Hasenstein, K. H.

    2000-01-01

    We studied the effect of 4,4,4-trifluoro-3-(indole-3-)butyric acid (TFIBA), a recently described root growth stimulator, and 5,6-dichloro-indole-3-acetic acid (DCIAA) on growth and microtubule (MT) organization in roots of Lactuca sativa L. DCIAA and indole-3-butyric acid (IBA) inhibited root elongation and depolymerized MTs in the cortex of the elongation zone, inhibited the elongation of stele cells, and promoted xylem maturation. Both auxins caused the plane of cell division to shift from anticlinal to periclinal. In contrast, TFIBA (100 micromolar) promoted elongation of primary roots by 40% and stimulated the elongation of lateral roots, even in the presence of IBA, the microtubular inhibitors oryzalin and taxol, or the auxin transport inhibitor naphthylphthalamic acid. However, TFIBA inhibited the formation of lateral root primordia. Immunostaining showed that TFIBA stabilized MTs orientation perpendicular to the root axis, doubled the cortical cell length, but delayed xylem maturation. The data indicate that the auxin-induced inhibition of elongation and swelling of roots results from reoriented phragmoplasts, the destabilization of MTs in elongating cells, and promotion of vessel formation. In contrast, TFIBA induced promotion of root elongation by enhancing cell length, prolonging transverse MT orientation, delaying cell and xylem maturation.

  12. SOCIAL MARKETING : A NEW APPROACH IN MENTAL HEALTH RESEARCH

    PubMed Central

    Tiwari, S.C.

    1998-01-01

    Social marketing has a proven role in marketing and many manufacturing establishments/ organizations have been marketing their products incorporating social marketing research. Social marketing has its root in the ground fact that the perceptions and expectations of the consumers are important in influencing buying behaviour. The principles of social marketing, therefore, have been extensively utilized in the areas of consumer products. These are also used in several other fields for modifying behaviours such as civil administration, public establishments etc. In health sector social marketing has not found appropriate application whereas it could be utilized in an effective way for creating awareness, formulating health related policies, their implementation and for preventing a variety of illnesses/abnormal behaviours etc. With this background knowledge about social marketing, the author hypothesized that abnormal behaviours could be modified, health education packages could be developed to make more acceptable and effective and desired behaviours could be induced if perceptions and expectations of the community (consumers) are known a prioriori and their expectations are incorporated in programmes and policies. Thus, the author utilizing the concepts of social marketing for understanding community′s perceptions and expectations regarding issues of health, and for incorporating the same in health related programmes and policies, introduced this research concept in medical field in this country. The important findings of three research projects based on the concepts of social marketing research and their implications have been discussed. PMID:21494494

  13. Social marketing : a new approach in mental health research.

    PubMed

    Tiwari, S C

    1998-10-01

    Social marketing has a proven role in marketing and many manufacturing establishments/ organizations have been marketing their products incorporating social marketing research. Social marketing has its root in the ground fact that the perceptions and expectations of the consumers are important in influencing buying behaviour. The principles of social marketing, therefore, have been extensively utilized in the areas of consumer products. These are also used in several other fields for modifying behaviours such as civil administration, public establishments etc. In health sector social marketing has not found appropriate application whereas it could be utilized in an effective way for creating awareness, formulating health related policies, their implementation and for preventing a variety of illnesses/abnormal behaviours etc.With this background knowledge about social marketing, the author hypothesized that abnormal behaviours could be modified, health education packages could be developed to make more acceptable and effective and desired behaviours could be induced if perceptions and expectations of the community (consumers) are known a prioriori and their expectations are incorporated in programmes and policies. Thus, the author utilizing the concepts of social marketing for understanding community's perceptions and expectations regarding issues of health, and for incorporating the same in health related programmes and policies, introduced this research concept in medical field in this country.The important findings of three research projects based on the concepts of social marketing research and their implications have been discussed.

  14. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification

    PubMed Central

    Qu, Lianghuan; Wu, Chunyan; Zhang, Fei; Wu, Yangyang; Fang, Chuanying; Jin, Cheng; Liu, Xianqing; Luo, Jie

    2016-01-01

    Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin’s function in regional cell extension/division in a zone-dependent manner. PMID:27497286

  15. Retinal abnormalities in β-thalassemia major.

    PubMed

    Bhoiwala, Devang L; Dunaief, Joshua L

    2016-01-01

    Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Marshmallow for investigating functional disturbances of the esophageal body].

    PubMed

    Keren, S; Argaman, E

    1992-09-01

    Manometric studies using water boluses do not always demonstrate disturbances in esophageal motility. We tested the use of a marshmallow bolus to induce abnormal manometric patterns in patients with dysphagia in whom manometric studies using water boluses were normal or nearly so. The study group included 12 normal volunteers and 22 patients with dysphagia and nearly normal manometric studies. Pressure was recorded along the esophageal body using 10 "wet" swallows followed by 10 "solid" swallows of marshmallow. In normal subjects there were fewer abnormal contractions after solid swallows than after wet swallows. In 15 patients solid swallows induced abnormal motility patterns which were not observed after wet swallows. The probability of inducing abnormal contractions in patients after solid swallows is significantly greater than after wet swallows (p < 0.0001). Solid swallowing is therefore useful in evaluating functional disturbances of the esophagus in patients with dysphagia.

  17. Root Adaptive Responses to Aluminum-Treatment Revealed by RNA-Seq in Two Citrus Species With Different Aluminum-Tolerance

    PubMed Central

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Lai, Ning-Wei; Ye, Xin; Yang, Yi; Chen, Li-Song

    2017-01-01

    Seedlings of aluminum (Al)-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated daily with nutrient solution containing 0 and 1.0 mM AlCl3●6H2O for 18 weeks. The Al-induced decreases of biomass and root total soluble proteins only occurred in C. grandis, demonstrating that C. sinensis had higher Al-tolerance than C. grandis. Under Al-treatment, C. sinensis roots secreted more citrate and malate than C. grandis ones; less Al was accumulated in C. sinenis than in C. grandis leaves. The Al-induced reduction of phosphorus was lesser in C. sinensis roots and leaves than in C. grandis ones, whereas the Al-induced increase of sulfur was greater in C. sinensis roots and leaves. Using RNA-seq, we isolated 1905 and 2670 differentially expressed genes (DEGs) from Al-treated C. sinensis than C. grandis roots, respectively. Among these DEGs, only 649 DEGs were shared by the two species. Further analysis suggested that the following several aspects conferred C. sinensis higher Al-tolerance: (a) Al-treated C. sinensis seedlings had a higher external Al detoxification capacity via enhanced Al-induced secretion of organic acid anions, a higher antioxidant capacity and a more efficient chelation system in roots; (b) Al-treated C. sinensis seedlings displayed a higher level of sulfur in roots and leaves possibly due to increased uptake and decreased export of sulfur and a higher capacity to maintain the cellular phosphorus homeostasis by enhancing phosphorus acquisition and utilization; (c) Cell wall and cytoskeleton metabolism, energy and carbohydrate metabolism and signal transduction displayed higher adaptative responses to Al in C. sinensis than in C. grandis roots; (d) More upregulated than downregulated genes related to fatty acid and amino acid metabolisms were isolated from Al-treated C. sinensis roots, but the reverse was the case for Al-treated C. grandis roots. These results provide a platform for further investigating the roles of genes possibly responsible for citrus Al-tolerance. PMID:28337215

  18. Characterization of stress induced by copper and zinc on cucumber (Cucumis sativus L.) seedlings by means of molecular and population parameters.

    PubMed

    Soydam Aydin, Semra; Gökçe, Esra; Büyük, Ilker; Aras, Sümer

    2012-07-04

    Contamination of plants with heavy metals could result in damage in DNA, such as mutations and cross-links with proteins. These altered DNA profiles may become visible in changes such as the appearance of a new band, or loss of an existing band, in the random amplified polymorphic DNA (RAPD) assay. In this study, various concentrations of copper and zinc salts were applied to cucumber seedlings during germination. Results displayed abnormalities in germination and also changes in root elongation, dry weight and total soluble protein level. All treatment concentrations (40, 80, 160, 240, 320, and 640mg/L) used in the study caused a decrease/delay in germination of the cucumbers to different extents. Inhibition or activation of root elongation was considered to be the first effect of metal toxicity in the tested plants. Application of the metal salts and the combined solutions on cucumber (Cucumis sativus L.) seedlings revealed similar consequences for total soluble protein level, dry weight and ultimately in inhibitory rates as well. The data obtained from RAPD band-profiles and genomic template stability (GTS) showed results that were consistent with the population parameters. In this regard, we conclude that molecular marker assays can be applied in combination with population parameters to measure genotoxic effects of heavy metals on plants. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.).

    PubMed

    Rasmann, Sergio; Agrawal, Anurag A; Cook, Susan C; Erwin, Alexis C

    2009-09-01

    Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically alter the defensive phenotype of plants, we concur with recent calls for a whole-plant perspective in testing models of plant defense allocation.

  20. Usefulness of simultaneous and sequential monitoring of glucose level and electrocardiogram in monkeys treated with gatifloxacin under conscious and nonrestricted conditions.

    PubMed

    Yoshimatsu, Yu; Ishizaka, Tomomichi; Chiba, Katsuyoshi; Mori, Kazuhiko

    2018-05-10

    Drug-induced cardiac electrophysiological abnormalities accompanied by hypoglycemia or hyperglycemia increase the risk for life-threatening arrhythmia. To assess the drug-induced cardiotoxic potential associated with extraordinary blood glucose (GLU) levels, the effect of gatifloxacin (GFLX) which was frequently associated with GLU abnormality and QT/QTc prolongations in the clinic on blood GLU and electrocardiogram (ECG) parameters was investigated in cynomolgus monkeys (n=4) given GFLX orally in an ascending dose regimen (10, 30, 60 and 100 mg/kg). Simultaneous and sequential GLU and ECG monitoring with a continuous GLU monitoring system and Holter ECG, respectively, were conducted for 24 h under free-moving conditions. Consequently, GFLX at 30 and 60 mg/kg dose-dependently induced a transient decrease in GLU without any ECG abnormality 2-4 h postdose. Highest dose of 100 mg/kg caused severe hypoglycemia with a mean GLU of <30 mg/dL, accompanied by remarkable QT/QTc prolongations by 20-30% in all animals. In contrast, hyperglycemia without QT/QTc prolongations was noted 24 h after dosing in one animal. A close correlation between GLU and QTc values was observed in animals treated with 100 mg/kg, suggesting that GFLX-induced hypoglycemia enhanced QT/QTc prolongations. Furthermore, the 24-h sequential GLU monitoring data clearly distinguished between GFLX-induced GLU abnormality and physiological GLU changes influenced by feeding throughout the day. In conclusion, the combined assessment of continuous GLU and ECG monitoring is valuable in predicting the drug-induced cardio-electrophysiological risk associated with both GLU and ECG abnormalities.

  1. Ashwagandha (Withania somnifera) Reverses β-Amyloid1-42 Induced Toxicity in Human Neuronal Cells: Implications in HIV-Associated Neurocognitive Disorders (HAND)

    PubMed Central

    Kurapati, Kesava Rao Venkata; Atluri, Venkata Subba Rao; Samikkannu, Thangavel; Nair, Madhavan P. N.

    2013-01-01

    Alzheimer’s disease (AD) is characterized by progressive dysfunction of memory and higher cognitive functions with abnormal accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles throughout cortical and limbic brain regions. At present no curative treatment is available, and research focuses on drugs for slowing disease progression or providing prophylaxis. Withania somnifera (WS) also known as ‘ashwagandha’ is used widely in Ayurvedic medicine as a nerve tonic and memory enhancer. However, there is a paucity of data on the potential neuroprotective effects of W.somnifera against β-Amyloid (1–42)-induced neuropathogenesis. In the present study, we have tested the neuroprotective effects of methanol:Chloroform (3:1) extract of ashwagandha against β-amyloid induced toxicity and HIV-1Ba-L (clade B) infection using a human neuronal SK-N-MC cell line. Our results showed that β-amyloid induced cytotoxic effects in SK-N-MC cells as shown by decreased cell growth when tested individually. Also, confocal microscopic analysis showed decreased spine density, loss of spines and decreased dendrite diameter, total dendrite and spine area in clade B infected SK-N-MC cells compared to uninfected cells. However, when ashwagandha was added to β-amyloid treated and HIV-1 infected samples, the toxic effects were neutralized. Further, the MTT cell viability assays and the peroxisome proliferator-activated receptor-γ (PPARγ) levels supported these observations indicating the neuroprotective effect of WS root extract against β-amyloid and HIV-1Ba-L (clade B) induced neuro-pathogenesis. PMID:24147038

  2. Induction of synapse associated protein 102 expression in cyclosporin A-stimulated hair growth.

    PubMed

    Kim, Chang Deok; Lee, Min-Ho; Sohn, Kyung-Cheol; Kim, Jin-Man; Li, Sheng Jin; Rang, Moon-Jeong; Roh, Seok-Seon; Oh, Young-Seon; Yoon, Tae-Jin; Im, Myung; Seo, Young-Joon; Lee, Jeung-Hoon; Park, Jang-Kyu

    2008-08-01

    Cyclosporin A (CsA) has been used as a potent immunosuppressive agent for inhibiting the graft rejection after organ transplantation. However, CsA provokes lots of side effects including hirsutism, the phenomenon of abnormal hair growth in the body. In the present study, we investigated the hair growth stimulating effect of CsA using in vivo and in vitro test models. When topically applied on the back skin of mice, CsA induced fast telogen to anagen transition. In contrast, CsA had no effect on the growth of human hair follicle tissues cultured in vitro, indicating that it might not have the mitogenic effect on hair follicles. To identify the genes related with CsA-induced hair growth, we performed differential display RT-PCR. Among the genes obtained, the expression of synapse associated protein 102 (SAP102) was verified using competitive RT-PCR. The result showed that the expression of SAP102 was significantly induced by CsA treatment in the back skin of C57BL/6 mice. However, the increase of SAP102 mRNA was also seen in spontaneous anagen mice, suggesting that induction of SAP102 is one event of the anagen hair growth response regardless of how the growth state was induced. SAP102 was not expressed in cultured human hair outer root sheath and dermal papilla cells. Immunohistochemistry analysis showed that CsA induced the expression of SAP102 in perifollicular region of mouse anagen hair. Together, these results suggest that SAP102 is one of hair-cycle-dependent genes, whose expression is related with the anagen progression.

  3. Light Requirement for Shoot Regeneration in Horseradish Hairy Roots 1

    PubMed Central

    Saitou, Tsutomu; Kamada, Hiroshi; Harada, Hiroshi

    1992-01-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions. PMID:16669041

  4. Light requirement for shoot regeneration in horseradish hairy roots.

    PubMed

    Saitou, T; Kamada, H; Harada, H

    1992-08-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions.

  5. Functional Tooth Restoration by Allogeneic Mesenchymal Stem Cell-Based Bio-Root Regeneration in Swine

    PubMed Central

    Wei, Fulan; Song, Tieli; Ding, Gang; Xu, Junji; Liu, Yi; Liu, Dayong; Fan, Zhipeng; Zhang, Chunmei

    2013-01-01

    Our previous proof-of-concept study showed the feasibility of regenerating the dental stem cell-based bioengineered tooth root (bio-root) structure in a large animal model. Here, we used allogeneic dental mesenchymal stem cells to regenerate bio-root, and then installed a crown on the bio-root to restore tooth function. A root shape hydroxyapatite tricalcium phosphate scaffold containing dental pulp stem cells was covered by a Vc-induced periodontal ligament stem cell sheet and implanted into a newly generated jaw bone implant socket. Six months after implantation, a prefabricated porcelain crown was cemented to the implant and subjected to tooth function. Clinical, radiological, histological, ultrastructural, systemic immunological evaluations and mechanical properties were analyzed for dynamic changes in the bio-root structure. The regenerated bio-root exhibited characteristics of a normal tooth after 6 months of use, including dentinal tubule-like and functional periodontal ligament-like structures. No immunological response to the bio-roots was observed. We developed a standard stem cell procedure for bio-root regeneration to restore adult tooth function. This study is the first to successfully regenerate a functional bio-root structure for artificial crown restoration by using allogeneic dental stem cells and Vc-induced cell sheet, and assess the recipient immune response in a preclinical model. PMID:23363023

  6. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Dental anomalies in children submitted to antineoplastic therapy.

    PubMed

    Carrillo, Camila Merida; Corrêa, Fernanda Nahás Pires; Lopes, Nilza Nelly Fontana; Fava, Marcelo; Odone Filho, Vicente

    2014-06-01

    Cancer is the third most frequent cause of death in children in Brazil. Early diagnosis and medical advances have significantly improved treatment outcomes, which has resulted in higher survival rates and the management of late side effects has become increasingly important in caring for these patients. Dental abnormalities are commonly observed as late effects of antineoplastic therapy in the oral cavity. The incidence and severity of the dental abnormalities depend on the child's age at diagnosis and the type of chemotherapeutic agent used, as well as the irradiation dose and area. The treatment duration and aggressivity should also be considered. Disturbances in dental development are characterized by changes in shape, number and root development. Enamel anomalies, such as discoloration, opacities and hypoplasia are also observed in these patients. When severe, these abnormalities can cause functional and esthetic sequelae that have an impact on the children's and adolescents' quality of life. General dentists and pediatric dentists should understand these dental abnormalities and how to identify them aiming for early diagnosis and appropriate treatment.

  8. Bone mesenchymal stem cells attenuate radicular pain by inhibiting microglial activation in a rat noncompressive disk herniation model.

    PubMed

    Huang, Xiaodong; Wang, Weiheng; Liu, Xilin; Xi, Yanhai; Yu, Jiangming; Yang, Xiangqun; Ye, Xiaojian

    2018-06-01

    Spinal disk herniation can induce radicular pain through chemical irritation caused by proinflammatory and immune responses. Bone marrow mesenchymal stem cells (BMSCs) are a unique type of adult stem cell with the functions of suppressing inflammation and modulating immune responses. This study was undertaken to observe the effect of intrathecal BMSCs on the treatment of mechanical allodynia and the suppression of microglial activation in a rat noncompressive disk herniation model. The model was induced by the application of nucleus pulposus (NP) to the L5 dorsal root ganglion (DRG). The study found that the use of NP in the DRG can induce abnormal mechanical pain, increase the contents of the proinflammatory factors TNF-α and IL-1β, decrease the content of the anti-inflammatory cytokine TGF-β1 and activate microglia in the spinal dorsal horns (L5) (P < 0.05). BMSC administration could increase the mechanical withdrawal thresholds dramatically, decrease the contents of IL-1β and TNF-α, increase the content of TGF-β1 significantly (P < 0.05) and inhibit microglial activation in the bilateral spinal dorsal horn. Our results indicate that BMSC administration can reduce mechanical allodynia and downregulate the expression of proinflammatory cytokines by inhibiting microglial activation in the spinal dorsal horn in a rat noncompressive disk herniation model.

  9. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    PubMed

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  10. Clonal variation in lateral and basal rooting of Populus irrigated with landfill leachate

    Treesearch

    R.S. Zalesny Jr.; J.A. Zalesny

    2011-01-01

    Successful establishment and productivity of Populus depends upon adventitious rooting from: 1) lateral roots that develop from either preformed or induced primordia and 2) basal roots that differentiate from callus at the base of the cutting in response to wounding. Information is needed for phytotechnologies about the degree to which ...

  11. Subcutaneous emphysema during root canal therapy: endodontic accident by sodium hypoclorite.

    PubMed

    Tenore, Gianluca; Palaia, Gaspare; Ciolfi, Chiara; Mohsen, Mohamed; Battisti, Andrea; Romeo, Umberto

    2017-01-01

    Cervicofacial subcutaneous emphysema is defined as the abnormal introduction of air in the subcutaneous tissues of the head and neck. It is mainly caused by trauma, head and neck surgery, general anesthesia, and coughing or habitual performance of Valsalva manoeuvre. The occurrence of subcutaneous emphysema after dental treatment is rare, and diffusion of gas into the mediastinum is much rarer, especially when the procedure is a nonsurgical treatment. Presented here is a case of subcutaneous emphysema that occurred after sodium hypochlorite irrigation during endodontic treatment, and the description of its etiologies and prevention during nonsurgical endodontic treatment. Endodontic success can be essentially achieved via good debridement of a root canal, and an ideal endodontic irrigant is effective in removing the smear layer, opening the dentinal tubules, and producing a clean surface for closer obturation. A 60-years-old woman had an abnormal swelling and pain during an endodontic treatment accompanied by her dentist to the emergency room and was referred to our observation for complaining of severe pain, ecchymosis and severe swelling on the left side of her face. The aforementioned symptoms appeared after sodium hypochlorite irrigation and aggressive use of air spray for drying the root canal during the endodontic treatment of the upper left lateral incisor. An extrusion during an inappropriate endodontic treatment may occasionally be reported and can cause tissue damage. NaOCl is one of the best and most commonly used irrigating solutions because of its efficacy, but it can also negatively affect the periapical tissues. Determining the correct working length, even when performing an intraoperative periapical radiograph and confirming the root canal integrity, could help avoid these kinds of accidents.

  12. Aortic Cross-Sectional Area/Height Ratio and Outcomes in Patients With a Trileaflet Aortic Valve and a Dilated Aorta.

    PubMed

    Masri, Ahmad; Kalahasti, Vidyasagar; Svensson, Lars G; Roselli, Eric E; Johnston, Douglas; Hammer, Donald; Schoenhagen, Paul; Griffin, Brian P; Desai, Milind Y

    2016-11-29

    In patients with a dilated proximal ascending aorta and trileaflet aortic valve, we aimed to assess (1) factors independently associated with increased long-term mortality and (2) the incremental prognostic utility of indexing aortic root to patient height. We studied consecutive patients with a dilated aortic root (≥4 cm) that underwent echocardiography and gated contrast-enhanced thoracic aortic computed tomography or magnetic resonance angiography between 2003 and 2007. A ratio of aortic root area over height was calculated (cm 2 /m) on tomography, and a cutoff of 10 cm 2 /m was chosen as abnormal, on the basis of previous reports. All-cause death was recorded. The cohort comprised 771 patients (63 years [interquartile range, 53-71], 87% men, 85% hypertension, 51% hyperlipidemia, 56% smokers). Inherited aortopathies, moderate to severe aortic regurgitation, and severe aortic stenosis were seen in 7%, 18%, and 2%, whereas 91% and 54% were on β-blockers and angiotensin-converting enzyme inhibitors, respectively. Aortic root area/height ratio was ≥10 cm 2 /m in 24%. The Society of Thoracic Surgeons score and right ventricular systolic pressure were 3.3±3 and 31±7 mm Hg, respectively. At 7.8 years (interquartile range, 6.6-8.9), 280 (36%) patients underwent aortic surgery (76% within 1 year) and 130 (17%) died (1% in-hospital postoperative mortality). A lower proportion of patients in the surgical (versus nonsurgical) group died (13% versus 19%, P<0.01). On multivariable Cox proportional hazard analysis, aortic root area/height ratio (hazard ratio, 4.04; 95% confidence interval [CI], 2.69-6.231) was associated with death, whereas aortic surgery (hazard ratio, 0.47; 95% CI, 0.27-0.81) was associated with improved survival (both P<0.01). For longer-term mortality, the addition of aortic root area/height ratio ≥10 cm 2 /m to a clinical model (Society of Thoracic Surgeons score, inherited aortopathies, hypertension, hyperlipidemia, medications, aortic regurgitation, and right ventricular systolic pressure), increased the c-statistic from 0.57 (95% CI, 0.35-0.77) to 0.65 (95% CI, 0.52-0.73) and net reclassification index from 0.17 (95% CI, 0.02-0.31) to 0.23 (95% CI, 0.04-0.34), both P<0.01. Of the 327 patients with aortic root diameter between 4.5 and 5.5 cm, 44% had an abnormal aortic root area/height ratio, of which 78% died. In patients with dilated aortic root and trileaflet aortic valve, a ratio of aortic root area to height provides independent and improved stratification for prediction of death. © 2016 American Heart Association, Inc.

  13. Infant Face Preferences after Binocular Visual Deprivation

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Lewis, Terri L.; Levin, Alex V.; Maurer, Daphne

    2013-01-01

    Early visual deprivation impairs some, but not all, aspects of face perception. We investigated the possible developmental roots of later abnormalities by using a face detection task to test infants treated for bilateral congenital cataract within 1 hour of their first focused visual input. The seven patients were between 5 and 12 weeks old…

  14. Glucose and phytohormone interplay in controlling root directional growth in Arabidopsis.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2014-01-01

    Sensing and responding toward gravity vector is a complicated and multistep process. Gravity is a constant factor feeding plants with reliable information for the spatial orientation of their organs. Auxin, cytokinin, ethylene and BRs have been the most explored hormones in relation to gravitropism. We have previously shown that glucose (Glc) could promote brassinosteroid (BR) signaling thereby inducing changes in root directional growth. Auxin signaling and polar transport components are also involved in Glc induced changes in root directional growth. Here, we provide evidence for involvement of cytokinin and ethylene signaling components in regulation of root directional growth downstream to Glc and BR. Altogether, Glc mediated change in root direction is an adaptive feature which is a result of a collaborative effort integrating phytohormonal signaling cues.

  15. Accident diagnosis system based on real-time decision tree expert system

    NASA Astrophysics Data System (ADS)

    Nicolau, Andressa dos S.; Augusto, João P. da S. C.; Schirru, Roberto

    2017-06-01

    Safety is one of the most studied topics when referring to power stations. For that reason, sensors and alarms develop an important role in environmental and human protection. When abnormal event happens, it triggers a chain of alarms that must be, somehow, checked by the control room operators. In this case, diagnosis support system can help operators to accurately identify the possible root-cause of the problem in short time. In this article, we present a computational model of a generic diagnose support system based on artificial intelligence, that was applied on the dataset of two real power stations: Angra1 Nuclear Power Plant and Santo Antônio Hydroelectric Plant. The proposed system processes all the information logged in the sequence of events before a shutdown signal using the expert's knowledge inputted into an expert system indicating the chain of events, from the shutdown signal to its root-cause. The results of both applications showed that the support system is a potential tool to help the control room operators identify abnormal events, as accidents and consequently increase the safety.

  16. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance

    PubMed Central

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra ‘NTAS’ and A. stolonifera ‘Penncross’ plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2 -) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2 - and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2 - accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress. PMID:26382960

  17. Root Antioxidant Mechanisms in Relation to Root Thermotolerance in Perennial Grass Species Contrasting in Heat Tolerance.

    PubMed

    Xu, Yi; Burgess, Patrick; Huang, Bingru

    2015-01-01

    Mechanisms of plant root tolerance to high temperatures through antioxidant defense are not well understood. The objective of this study was to investigate whether superior root thermotolerance of heat-tolerant Agrostis scabra relative to its congeneric heat-sensitive Agrostis stolonifera was associated with differential accumulation of reactive oxygen species and antioxidant scavenging systems. A. scabra 'NTAS' and A. stolonifera 'Penncross' plants were exposed to heat stress (35/30°C, day/night) in growth chambers for 24 d. Superoxide (O2(-)) content increased in both A. stolonifera and A. scabra roots under heat stress but to a far lesser extent in A. scabra than in A. stolonifera. Hydrogen peroxide (H2O2) content increased significantly in A. stolonifera roots but not in A. scabra roots responding to heat stress. The content of antioxidant compounds (ascorbate and glutathione) did not differ between A. stolonifera and A. scabra under heat stress. Enzymatic activity of superoxide dismutase was less suppressed in A. scabra than that in A. stolonifera under heat stress, while peroxidase and catalase were more induced in A. scabra than in A. stolonifera. Similarly, their encoded transcript levels were either less suppressed, or more induced in A. scabra roots than those in A. stolonifera during heat stress. Roots of A. scabra exhibited greater alternative respiration rate and lower cytochrome respiration rate under heat stress, which was associated with suppression of O2(-) and H2O2 production as shown by respiration inhibitors. Superior root thermotolerance of A. scabra was related to decreases in H2O2 and O2(-) accumulation facilitated by active enzymatic antioxidant defense systems and the maintenance of alternative respiration, alleviating cellular damages by heat-induced oxidative stress.

  18. SIZ1 Regulation of Phosphate Starvation-Induced Root Architecture Remodeling Involves the Control of Auxin Accumulation1[C][W][OA

    PubMed Central

    Miura, Kenji; Lee, Jiyoung; Gong, Qingqiu; Ma, Shisong; Jin, Jing Bo; Yoo, Chan Yul; Miura, Tomoko; Sato, Aiko; Bohnert, Hans J.; Hasegawa, Paul M.

    2011-01-01

    Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning. PMID:21156857

  19. AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”—Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting

    PubMed Central

    Lousa, Diana; M. Soares, Cláudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit

    2018-01-01

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998

  20. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    PubMed

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus).

    PubMed

    Meng, Zhi Bin; You, Xue Di; Suo, Dong; Chen, Yun Long; Tang, Caixian; Yang, Jian Li; Zheng, Shao Jian

    2013-08-01

    Formation of cluster roots is a typical morphological response to phosphorus (P) deficiency in white lupin (Lupinus albus), but its physiological and molecular mechanisms are still unclear. We investigated the role of auxin in the initiation of cluster roots by distinguishing the sources of auxin, measuring the longitudinal distribution patterns of free indole-3-acetic acid (IAA) along the root and the related gene expressions responsible for polar auxin transport (PAT) in different developmental stages of cluster roots. We found that removal of shoot apex or primary root apex and application of auxin-influx or -efflux transport inhibitors, 3-chloro-4-hydroxyphenylacetic acid, N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid, to the stem did not affect the number of cluster roots and the free-IAA concentration in the roots of P-deficient plants, but when these inhibitors were applied directly to the growth media, the cluster-root formation was greatly suppressed, suggesting the fundamental role of root-derived IAA in cluster-root formation. The concentration of free IAA in the roots was higher in P-deficient plants than in P-adequate ones, and the highest in the lateral-root apex and the lowest in the mature cluster roots. Meanwhile the expression patterns of LaAUX1, LaPIN1 and LaPIN3 transcripts related to PAT was consistent with concentrations of free IAA along the lateral root, indicating the contribution of IAA redistribution in the cluster-root development. We proposed that root-derived IAA plays a direct and important role in the P-deficiency-induced formation of cluster roots. Copyright © Physiologia Plantarum 2012.

  2. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    PubMed

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem

    NASA Astrophysics Data System (ADS)

    Yu, Qing-Xiang; Ahammed, Golam Jalal; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Yu, Yunlong; Yu, Jing-Quan; Xia, Xiao-Jian

    2017-02-01

    Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.

  4. [Effects of Ca2+ on nitric oxide-induced adventitious rooting in cucumber under drought stress].

    PubMed

    Li, Chun Lan; Niu, Li Juan; Hu, Lin Li; Liao, Wei Biao; Chen, Yue

    2017-11-01

    Cucumber (Cucumis sativus L. 'Xinchun 4') was used to explore the relationship between nitric oxide (NO) and calcium (Ca 2+ ) during adventitious rooting under drought stress. Rooting parameters, endogenous Ca 2+ fluorescent intensity and the antioxidant enzymes activity (SOD, CAT and APX) in cucumber explants under drought stress were investigated. The results showed that treatment with 200 μmol·L -1 CaCl 2 and 0.05% PEG significantly improved the number and length of adventitious root in cucumber explants under drought stress, while the application of Ca 2+ chelating agent (EGTA) and channel inhibitor (BAPTA/AM) significantly decreased NO-induced number and length of adventitious root under drought stress. Under drought stress, the fluorescence intensity of Ca 2+ in hypocotyls treated with NO and CaCl 2 was improved, however, the Ca 2+ fluorescence intensity in the hypocotyls treated with NO scavenger (cPTIO) was significantly lower than that in the hypocotyls treated with NO. Under drought stress, the activities of antioxidant enzymes in the cucumber explants were significantly promoted by the treatments with NO and CaCl 2 , however, Ca 2+ chelating agent and channel inhibitor significantly decreased the activity of antioxidant enzymes induced by NO. In conclusion, Ca 2+ might be involved in the process of NO-adjusted antioxidant enzymes activity during adventitious rooting under drought stress, which alleviated the negative effects of drought on the adventitious rooting and promoted the formation of adventitious roots.

  5. The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism.

    PubMed

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-02-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H 2O 2 significantly diminishing the responsiveness to 2 mM NaNO 2, and 10 mM H 2O 2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H 2O 2, dramatically stimulated root abscission of A. pinnata in response tomore » nitrite, especially for plants previously cultivated in medium containing 5 mM KNO 3 compared to plants cultivated under N 2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H 2O 2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less

  7. Effect of carbon monoxide on plants. [Mimosa pudica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerman, P.W.; Crocker, W.; Hitchcock, A.E.

    Of 108 species of plants treated with one per cent carbon monoxide, 45 showed epinastic growth of leaves. Several species showed hyponasty which caused upward curling of leaves. Other effects included: retarded stem elongation; abnormally small new leaves; abnormal yellowing of the leaves, beginning with the oldest; abscission of leaves usually associated with yellowing; and hypertrophied tissues on stems and roots. During recovery an abnormally large number of side shoots arose from latent buds of many species. Motion pictures of Mimosa pudica showed a loss of correlation, normal equilibrium position to gravity, and sensitiveness to contact or heat stimuli; however,more » the leaves moved about more rapidly than those of controls. Since carbon monoxide causes growth rigor and loss of sensitiveness to external stimuli, it is here considered as an anesthetic.« less

  8. The induction of chromosomal abnormalities by inhalational anaesthetics.

    PubMed

    Grant, C J; Powell, J N; Radford, S G

    1977-06-01

    When Vicia faba root tips are exposed for 2 h to clinically useful concentrations of halothane or methoxyflurane in air, or to halothane in 80% nitrous oxide/20% oxygen, there is a transient increase in mitotic index and then abnormal interphase cells are produced in proportion to the anaesthetic concentrations. After exposure there is a period of mitotic inhibition during which the cells become partially synchronised. When colchicine-metaphase cells collected 28 h after exposure are compared with controls and with metaphases collected only 4 h after exposure, they show a significant increase in the incidence of aneuploidy, tetraploidy and the results of chromosome breakage. It is suggested that all the abnormalities seen can be accounted for by the effects of the anaesthetics on spindle movements, and that at the concentrations used the anaesthetics have no mutagenic effects on chromosomes in interphase.

  9. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants.

    PubMed

    Zhou, Jie; Jia, Feifei; Shao, Shujun; Zhang, Huan; Li, Guiping; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants' susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants.

  10. Involvement of nitric oxide in the jasmonate-dependent basal defense against root-knot nematode in tomato plants

    PubMed Central

    Zhou, Jie; Jia, Feifei; Shao, Shujun; Zhang, Huan; Li, Guiping; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Shi, Kai

    2015-01-01

    Jasmonic acid (JA) and nitric oxide (NO) are well-characterized signaling molecules in plant defense responses. However, their roles in plant defense against root-knot nematode (RKN, Meloidogyne incognita) infection are largely unknown. In this study, we found that the transcript levels of the JA- and NO-related biosynthetic and signaling component genes were induced after RKN infection. Application of exogenous JA and sodium nitroprusside (SNP; a NO donor) significantly decreased the number of egg masses in tomato roots after RKN infection and partially alleviated RKN-induced decreases in plant fresh weight and net photosynthetic rate. These molecules also alleviated RKN-induced increases in root electrolyte leakage and membrane peroxidation. Importantly, NO scavenger partially inhibited JA-induced RKN defense. The pharmacological inhibition of JA biosynthesis significantly increased the plants’ susceptibility to RKNs, which was effectively alleviated by SNP application, showing that NO may be involved in the JA-dependent RKN defense pathway. Furthermore, both JA and SNP induced increases in protease inhibitor 2 (PI2) gene expression after RKN infestation. Silencing of PI2 compromised both JA- and SNP-induced RKN defense responses, suggesting that the PI2 gene mediates JA- and NO-induced defense against RKNs. This work will be important for deepening the understanding of the mechanisms involved in basal defense against RKN attack in plants. PMID:25914698

  11. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  12. Effect of microcystins on root growth, oxidative response, and exudation of rice (Oryza sativa).

    PubMed

    Cao, Qing; Rediske, Richard R; Yao, Lei; Xie, Liqiang

    2018-03-01

    A 30 days indoor hydroponic experiment was carried out to evaluate the effect of microcystins (MCs) on rice root morphology and exudation, as well as bioaccumulation of MCs in rice. MCs were bioaccumulated in rice with the greatest concentrations being observed in the leaves (113.68μgg -1 Fresh weight (FW)) when exposed to 500μgL -1 MCs. Root activity at 500μgL -1 decreased 37%, compared to the control. MCs also induced disruption of the antioxidant system and lipid peroxidation in rice roots. Root growth was significantly inhibited by MCs. Root weight, length; surface area and volume were significantly decreased, as well as crown root number and lateral root number. After 30 days exposure to MCs, an increase was found in tartaric acid and malic acid while the other organic acids were not affected. Glycine, tyrosine, and glutamate were the only amino acids stimulated at MCs concentrations of 500μgL -1 . Similarly, dissolved organic carbon (DOC) and carbohydrate at 50 and 500μgL -1 treatments were significantly increased. The increase of DOC and carbohydrate in root exudates was due to rice root membrane permeability changes induced by MCs. Overall, this study indicated that MCs significantly inhibited rice root growth and affected root exudation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Stereomicroscopic evaluation of dentinal defects induced by new rotary system: “ProTaper NEXT”

    PubMed Central

    Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil

    2015-01-01

    Introduction: The objective of this study was to evaluate dentinal defects formed by new rotary system — Protaper next™ (PTN). Materials and Methods: Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. Results: In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P < 0.05). Conclusion: All rotary files induced defects in root dentin, whereas the hand instruments induced minimal defects. PMID:26069406

  14. Interplant Aboveground Signaling Prompts Upregulation of Auxin Promoter and Malate Transporter as Part of Defensive Response in the Neighboring Plants.

    PubMed

    Sweeney, Connor; Lakshmanan, Venkatachalam; Bais, Harsh P

    2017-01-01

    When disrupted by stimuli such as herbivory, pathogenic infection, or mechanical wounding, plants secrete signals such as root exudates and volatile organic compounds (VOCs). The emission of VOCs induces a response in the neighboring plant communities and can improve plant fitness by alerting nearby plants of an impending threat and prompting them to alter their physiology for defensive purposes. In this study, we investigated the role of plant-derived signals, released as a result of mechanical wounding, that may play a role in intraspecific communication between Arabidopsis thaliana communities. Plant-derived signals released by the wounded plant resulted in more elaborate root development in the neighboring, unwounded plants. Such plant-derived signals also upregulated the Aluminum-activated malate transporter ( ALMT1 ) responsible for the secretion of malic acid (MA) and the DR5 promoter, an auxin responsive promoter concentrated in root apex of the neighboring plants. We speculate that plant-derived signal-induced upregulation of root-specific ALMT1 in the undamaged neighboring plants sharing the environment with stressed plants may associate more with the benign microbes belowground. We also observed increased association of beneficial bacterium Bacillus subtilis UD1022 on roots of the neighboring plants sharing environment with the damaged plants. Wounding-induced plant-derived signals therefore induce defense mechanisms in the undamaged, local plants, eliciting a two-pronged preemptive response of more rapid root growth and up-regulation of ALMT1 , resulting in increased association with beneficial microbiome.

  15. Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis.

    PubMed

    Wu, Ting; Zhang, Heng-Tao; Wang, Yi; Jia, Wen-Suo; Xu, Xue-Feng; Zhang, Xin-Zhong; Han, Zhen Hai

    2012-01-01

    Iron is a critical cofactor for a number of metalloenzymes involved in respiration and photosynthesis, but plants often suffer from iron deficiency due to limited supplies of soluble iron in the soil. Iron deficiency induces a series of adaptive responses in various plant species, but the mechanisms by which they are triggered remain largely unknown. Using pH imaging and hormone localization techniques, it has been demonstrated here that root Fe(III) reductase activity and proton extrusion upon iron deficiency are up-regulated by systemic auxin signalling in a Fe-efficient woody plant, Malus xiaojinensis. Split-root experiments demonstrated that Fe-deprivation in a portion of the root system induced a dramatic increase in Fe(III) reductase activity and proton extrusion in the Fe-supplied portion, suggesting that the iron deficiency responses were mediated by a systemic signalling. Reciprocal grafting experiments of M. xiaojinensis with Malus baccata, a plant with no capability to produce the corresponding responses, indicate that the initiation of the systemic signalling is likely to be determined by roots rather than shoots. Iron deficiency induced a substantial increase in the IAA content in the shoot apex and supplying exogenous IAA analogues (NAA) to the shoot apex could mimic the iron deficiency to trigger the corresponding responses. Conversely, preventing IAA transport from shoot to roots blocked the iron deficiency responses. These results strongly indicate that the iron deficiency-induced physiological responses are mediated by systemic auxin signalling.

  16. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels.

    PubMed

    Wegner, Lars H; Stefano, Giovanni; Shabala, Lana; Rossi, Marika; Mancuso, Stefano; Shabala, Sergey

    2011-05-01

    Early events in NaCl-induced root ion and water transport were investigated in maize (Zea mays L) roots using a range of microelectrode and imaging techniques. Addition of 100 mm NaCl to the bath resulted in an exponential drop in root xylem pressure, rapid depolarization of trans-root potential and a transient drop in xylem K(+) activity (A(K+) ) within ∼1 min after stress onset. At this time, no detectable amounts of Na(+) were released into the xylem vessels. The observed drop in A(K+) was unexpected, given the fact that application of the physiologically relevant concentrations of Na(+) to isolated stele has caused rapid plasma membrane depolarization and a subsequent K(+) efflux from the stelar tissues. This controversy was explained by the difference in kinetics of NaCl-induced depolarization between cortical and stelar cells. As root cortical cells are first to be depolarized and lose K(+) to the environment, this is associated with some K(+) shift from the stelar symplast to the cortex, resulting in K(+) being transiently removed from the xylem. Once Na(+) is loaded into the xylem (between 1 and 5 min of root exposure to NaCl), stelar cells become more depolarized, and a gradual recovery in A(K+) occurs. © 2011 Blackwell Publishing Ltd.

  17. Effect of gingival fibroblasts and ultrasound on dogs' root resorption during orthodontic treatment.

    PubMed

    Crossman, Jacqueline; Hassan, Ali H; Saleem, Ali; Felemban, Nayef; Aldaghreer, Saleh; Fawzi, Elham; Farid, Mamdouh; Abdel-Ghaffar, Khaled; Gargoum, Ausama; El-Bialy, Tarek

    2017-01-01

    To investigate the effect of using osteogenic induced gingival fibroblasts (OIGFs) and low intensity pulsed ultrasound (LIPUS) on root resorption lacunae volume and cementum thickness in beagle dogs that received orthodontic tooth movement. Seven beagle dogs were used, from which gingival cells (GCs) were obtained and were induced osteogenically to produce OIGFs. Each third and fourth premolar was randomly assigned to one of the five groups, namely, LIPUS, OIGFs, bone morphogenetic protein-2 (BMP-2), OIGFs + LIPUS, and control. All groups received 4 weeks of bodily tooth movement, then LIPUS-treated groups received LIPUS for 20 min/day for 4 weeks, and OIGFs groups received an injection of OIGFs near the root apex. Microcomputed tomography analysis was used to calculate root resorption lacunae volume and histomorphometric analysis was performed to measure the cementum thickness of each root at 3 root levels on compression and tension sides. There was no significant difference in resorption volume between the treatment groups. OIGFs + LIPUS increased cementum thickness ( P > 0.05) in third premolars near the apex, and LIPUS increased cementum thickness ( P > 0.05) in fourth premolars near the apex. Furthermore, BMP2 increased cementum thickness at the coronal third at the compression side. OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities.

  18. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide.

    PubMed

    Schlicht, Markus; Ludwig-Müller, Jutta; Burbach, Christian; Volkmann, Dieter; Baluska, Frantisek

    2013-10-01

    Controlled plant growth requires regulation through a variety of signaling molecules, including steroids, peptides, radicals of oxygen and nitrogen, as well as the 'classical' phytohormone groups. Auxin is critical for the control of plant growth and also orchestrates many developmental processes, such as the formation of new roots. It modulates root architecture both slowly, through actions at the transcriptional level and, more rapidly, by mechanisms targeting primarily plasma membrane sensory systems and intracellular signaling pathways. The latter reactions use several second messengers, including Ca(2+) , nitric oxide (NO) and reactive oxygen species (ROS). Here, we investigated the different roles of two auxins, the major auxin indole-3-acetic acid (IAA) and another endogenous auxin indole-3-butyric acid (IBA), in the lateral root formation process of Arabidopsis and maize. This was mainly analyzed by different types of fluorescence microscopy and inhibitors of NO production. This study revealed that peroxisomal IBA to IAA conversion is followed by peroxisomal NO, which is important for IBA-induced lateral root formation. We conclude that peroxisomal NO emerges as a new player in auxin-induced root organogenesis. In particular, the spatially and temporally coordinated release of NO and IAA from peroxisomes is behind the strong promotion of lateral root formation via IBA. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Effects of Trans-Resveratrol on hyperglycemia-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase signaling in rat testis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelali, Ala

    Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional proteinmore » 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers diabetes-induced DNA damage in testis and spermatozoa • Resveratrol does not normalize diabetes-induced increase in total PARP • Resveratrol does not modulate diabetes-induced decrease in PARP1 • Resveratrol normalizes diabetes-induced decrease in SirT1 levels in testis.« less

  20. Transient abnormal Q waves during exercise electrocardiography

    PubMed Central

    Alameddine, F F; Zafari, A M

    2004-01-01

    Myocardial ischaemia during exercise electrocardiography is usually manifested by ST segment depression or elevation. Transient abnormal Q waves are rare, as Q waves indicate an old myocardial infarction. The case of a patient with exercise induced transient abnormal Q waves is reported. The potential mechanisms involved in the development of such an abnormality and its clinical implications are discussed. PMID:14676264

  1. Hydrogen Peroxide-Induced Root Ca2+ and K+ Fluxes Correlate with Salt Tolerance in Cereals: Towards the Cell-Based Phenotyping

    PubMed Central

    Zhou, Meixue; Shabala, Sergey

    2018-01-01

    Salinity stress-induced production of reactive oxygen species (ROS) and associated oxidative damage is one of the major factors limiting crop production in saline soils. However, the causal link between ROS production and stress tolerance is not as straightforward as one may expect, as ROS may also play an important signaling role in plant adaptive responses. In this study, the causal relationship between salinity and oxidative stress tolerance in two cereal crops—barley (Hordeum vulgare) and wheat (Triticum aestivum)—was investigated by measuring the magnitude of ROS-induced net K+ and Ca2+ fluxes from various root tissues and correlating them with overall whole-plant responses to salinity. We have found that the association between flux responses to oxidative stress and salinity stress tolerance was highly tissue specific, and was also dependent on the type of ROS applied. No correlation was found between root responses to hydroxyl radicals and the salinity tolerance. However, when oxidative stress was administered via H2O2 treatment, a significant positive correlation was found for the magnitude of ROS-induced K+ efflux and Ca2+ uptake in barley and the overall salinity stress tolerance, but only for mature zone and not the root apex. The same trends were found for wheat. These results indicate high tissue specificity of root ion fluxes response to ROS and suggest that measuring the magnitude of H2O2-induced net K+ and Ca2+ fluxes from mature root zone may be used as a tool for cell-based phenotyping in breeding programs aimed to improve salinity stress tolerance in cereals. PMID:29494514

  2. [Morphogenesis in formative process in vitro from Rehmannia glutinosa].

    PubMed

    Xue, Jian-ping; Zhang, Ai-min; Liu, Jun; Xu, Xue-feng

    2004-01-01

    To study the morphogenesis in formative process of tuberous root in vitro from Rehmannia glutinosa and compare the anatomical shape of tuberous root with nature term R. glutinosa. Tuberous roots of different vegetal phase were cut and dyed, then made into paraffin cuts and observed microscope. In anatomical shape, nature R. glutinosa and tuberous root were the same, which showed that no structural variation occurred in tuberous root induced process.

  3. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis.

    PubMed

    Yang, Zhong-Bao; Geng, Xiaoyu; He, Chunmei; Zhang, Feng; Wang, Rong; Horst, Walter J; Ding, Zhaojun

    2014-07-01

    The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling. © 2014 American Society of Plant Biologists. All rights reserved.

  4. Rice Genotype Differences in Tolerance of Zinc-Deficient Soils: Evidence for the Importance of Root-Induced Changes in the Rhizosphere

    PubMed Central

    Mori, Asako; Kirk, Guy J. D.; Lee, Jae-Sung; Morete, Mark J.; Nanda, Amrit K.; Johnson-Beebout, Sarah E.; Wissuwa, Matthias

    2016-01-01

    Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly HCO3− or Fe2+), or both. Traits for these and crown root number are potential breeding targets. PMID:26793198

  5. Rice Genotype Differences in Tolerance of Zinc-Deficient Soils: Evidence for the Importance of Root-Induced Changes in the Rhizosphere.

    PubMed

    Mori, Asako; Kirk, Guy J D; Lee, Jae-Sung; Morete, Mark J; Nanda, Amrit K; Johnson-Beebout, Sarah E; Wissuwa, Matthias

    2015-01-01

    Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly [Formula: see text] or Fe(2+)), or both. Traits for these and crown root number are potential breeding targets.

  6. Actin Turnover-Mediated Gravity Response in Maize Root Apices

    PubMed Central

    Mancuso, Stefano; Barlow, Peter W; Volkmann, Dieter

    2006-01-01

    The dynamic actin cytoskeleton has been proposed to be linked to gravity sensing in plants but the mechanistic understanding of these processes remains unknown. We have performed detailed pharmacological analyses of the role of the dynamic actin cytoskeleton in gravibending of maize (Zea mays) root apices. Depolymerization of actin filaments with two drugs having different mode of their actions, cytochalasin D and latrunculin B, stimulated root gravibending. By contrast, drug-induced stimulation of actin polymerization and inhibition of actin turnover, using two different agents phalloidin and jasplakinolide, compromised the root gravibending. Importantly, all these actin drugs inhibited root growth to similar extents suggesting that high actin turnover is essential for the gravity-related growth responses rather than for the general growth process. Both latrunculin B and cytochalasin D treatments inhibited root growth but restored gravibending of the decapped root apices, indicating that there is a strong potential for effective actin-mediated gravity sensing outside the cap. This elusive gravity sensing outside the root cap is dependent not only on the high rate of actin turnover but also on weakening of myosin activities, as general inhibition of myosin ATPases induced stimulation of gravibending of the decapped root apices. Collectively, these data provide evidence for the actin turnover-mediated gravity sensing outside the root cap. PMID:19521476

  7. Identification of genes induced in proteoid roots of white lupin under nitrogen and phosphorus deprivation, with functional characterization of a formamidase

    USDA-ARS?s Scientific Manuscript database

    White lupin (Lupinus albus L.) is considered a model system for understanding plant acclimation to nutrient deficiency. It acclimates to phosphorus (P) and iron (Fe) deficiency by the development of short, densely clustered lateral roots called proteoid (or cluster) roots; proteoid-root development ...

  8. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  9. Hair Follicle Miniaturization in a Woolly Hair Nevus: A Novel "Root" Perspective for a Mosaic Hair Disorder.

    PubMed

    Veraitch, Ophelia; Perez, Alfonso; Hoque, Shamali R; Vizcay-Barrena, Gema; Fleck, Roland A; Fenton, David A; Stefanato, Catherine M

    2016-03-01

    Woolly hair nevus is a mosaic disorder characterized by unruly, tightly curled hair in a circumscribed area of the scalp. This condition may be associated with epidermal nevi. We describe an 11-year-old boy who initially presented with multiple patches of woolly hair and with epidermal nevi on his left cheek and back. He had no nail, teeth, eye, or cardiac abnormalities. Analysis of plucked hairs from patches of woolly hair showed twisting of the hair shaft and an abnormal hair cuticle. Histopathology of a woolly hair patch showed diffuse hair follicle miniaturization with increased vellus hairs.

  10. Fault detection and diagnosis in an industrial fed-batch cell culture process.

    PubMed

    Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E

    2007-01-01

    A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.

  11. Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.

    PubMed

    Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo

    2013-02-01

    Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. An auxin-induced β-type endo-1,4-β-glucanase in poplar is involved in cell expansion and lateral root formation.

    PubMed

    Yu, Liangliang; Li, Qiong; Zhu, Yingying; Afzal, Muhammad Saddique; Li, Laigeng

    2018-05-01

    PtrGH9A7, a poplar β-type endo-1,4-β-glucanase gene induced by auxin, promotes both plant growth and lateral root development by enhancing cell expansion. Endo-1,4-β-glucanase (EGase) family genes function in multiple aspects of plant growth and development. Our previous study found that PtrCel9A6, a poplar EGase gene of the β subfamily, is specifically expressed in xylem tissue and is involved in the cellulose biosynthesis required for secondary cell wall formation (Yu et al. in Mol Plant 6:1904-1917, 2013). To further explore the functions and regulatory mechanism of β-subfamily EGases, we cloned and characterized another poplar β-type EGase gene PtrGH9A7, a close homolog of PtrCel9A6. In contrast to PtrCel9A6, PtrGH9A7 is predominantly expressed in parenchyma tissues of the above-ground part; in roots, PtrGH9A7 expression is specifically restricted to lateral root primordia at all stages from initiation to emergence and is strongly induced by auxin application. Heterologous overexpression of PtrGH9A7 promotes plant growth by enhancing cell expansion, suggesting a conserved role for β-type EGases in 1,4-β-glucan chains remodeling, which is required for cell wall loosening. Moreover, the overexpression of PtrGH9A7 significantly increases lateral root number, which might result from improved lateral root primordium development due to enhanced cell expansion. Taken together, these results demonstrate that this β-type EGase induced by auxin signaling has a novel role in promoting lateral root formation as well as in enhancing plant growth.

  13. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.

    PubMed

    Pérez-Tienda, Jacob; Corrêa, Ana; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2014-02-01

    Arbuscular mycorrhizal (AM) fungi play a key role in the nutrition of many land plants. AM roots have two pathways for nutrient uptake, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. Recent studies demonstrated that the AM symbiosis modifies the expression of plant transporter genes and that NH₄⁺ is the main form of N transported in the symbiosis. The aim of the present work was to get insights into the mycorrhizal N uptake pathway in Oryza sativa by analysing the expression of genes encoding ammonium transporters (AMTs), glutamine synthase (GS) and glutamate synthase (GOGAT) in roots colonized by the AM fungus Rhizophagus irregularis and grown under two N regimes. We found that the AM symbiosis down-regulated OsAMT1;1 and OsAMT1;3 expression at low-N, but not at high-N conditions, and induced, independently of the N status of the plant, a strong up-regulation of OsAMT3;1 expression. The AM-inducible NH₄⁺ transporter OsAMT3;1 belongs to the family 2 of plant AMTs and is phylogenetically related to the AM-inducible AMTs of other plant species. Moreover, for the first time we provide evidence of the specific induction of a GOGAT gene upon colonization with an AM fungus. These data suggest that OsAMT3;1 is likely involved in the mycorrhizal N uptake pathway in rice roots and that OsGOGAT2 plays a role in the assimilation of the NH₄⁺ supplied via the OsAMT3;1 AM-inducible transporter. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana

    PubMed Central

    Luschnig, Christian; Gaxiola, Roberto A.; Grisafi, Paula; Fink, Gerald R.

    1998-01-01

    The EIR1 gene of Arabidopsis is a member of a family of plant genes with similarities to bacterial membrane transporters. This gene is expressed only in the root, which is consistent with the phenotypes of the eir1 mutants—the roots are agravitropic and have a reduced sensitivity to ethylene. The roots of eir1 mutants are also insensitive to the excess auxin produced by alf1-1 and fail to induce an auxin-inducible gene in the expansion zone. Although they fail to respond to internally generated auxin, they respond normally to externally applied auxin. Expression of the EIR1 gene in Saccharomyces cerevisiae confers resistance to fluorinated indolic compounds. Taken together, these data suggest that the EIR1 protein has a root-specific role in the transport of auxin. PMID:9679062

  15. Risperidone and aripiprazole alleviate prenatal valproic acid-induced abnormalities in behaviors and dendritic spine density in mice.

    PubMed

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Hasebe, Shigeru; Kawase, Haruki; Tanabe, Wataru; Tsukada, Shinji; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients. In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD. Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density. These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.

  16. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Travis, R. L.; Huffaker, R. C.

    1992-01-01

    Nitrate and NO2- transport by roots of 8-day-old uninduced and induced intact barley (Hordeum vulgare L. var CM 72) seedlings were compared to kinetic patterns, reciprocal inhibition of the transport systems, and the effect of the inhibitor, p-hydroxymercuribenzoate. Net uptake of NO3- and NO2- was measured by following the depletion of the ions from the uptake solutions. The roots of uninduced seedlings possessed a low concentration, saturable, low Km, possibly a constitutive uptake system, and a linear system for both NO3- and NO2-. The low Km system followed Michaelis-Menten kinetics and approached saturation between 40 and 100 micromolar, whereas the linear system was detected between 100 and 500 micromolar. In roots of induced seedlings, rates for both NO3- and NO2- uptake followed Michaelis-Menten kinetics and approached saturation at about 200 micromolar. In induced roots, two kinetically identifiable transport systems were resolved for each anion. At the lower substrate concentrations, less than 10 micromolar, the apparent low Kms of NO3- and NO2- uptake were 7 and 9 micromolar, respectively, and were similar to those of the low Km system in uninduced roots. At substrate concentrations between 10 and 200 micromolar, the apparent high Km values of NO3- uptake ranged from 34 to 36 micromolar and of NO2- uptake ranged from 41 to 49 micromolar. A linear system was also found in induced seedlings at concentrations above 500 micromolar. Double reciprocal plots indicated that NO3- and NO2- inhibited the uptake of each other competitively in both uninduced and induced seedlings; however, Ki values showed that NO3- was a more effective inhibitor than NO2-. Nitrate and NO2- transport by both the low and high Km systems were greatly inhibited by p-hydroxymercuribenzoate, whereas the linear system was only slightly inhibited.

  17. Effect of phorbol derivatives and staurosporine on gravitropic response of primary root of maize

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulkey, T.J.; Kim, S.Y.; Lee, J.S.

    1991-05-01

    Time-lapse videography and computer-based, video image digitization were used to examine the effects of phorbol derivatives (phorbol 12-myristate 13-acetate, TPA; phorbol 12-myristate 13-acetate 4-O-methyl ether, mTPA) and staurosporine on the kinetics of gravicurvature of primary roots of maize (Zea mays L., Pioneer 3343 and Golden Cross Bantam). Pretreatment of roots with TPA (3 hr, 1 {mu}M) decreases the time lag prior to induction of positive gravicurvature in horizontally-oriented roots by > 60%. The rate of curvature is not significantly different than the rate observed in control roots. Wrongway curvature which is observed in 30-40% of control roots is not observedmore » in TPA-pretreated roots. Oscillatory movements observed in control roots after completion of gravitropic reorientation is completely dampened in TPA-pretreated roots. Pretreatment of roots with mTPA(3hr,1{mu}M), the inactive analog of TPA, does not significantly alter the kinetics of gravicurvature of primary roots of maize. Staurosporine (10{sup {minus}8}M), a microbial alkaloid which has been reported to have antifungal activity and to inhibit phospholipid/Ca{sup ++} dependent protein kinase, completely inhibits TPA-induced alteration of the kinetics of gravitropism. DAG (1-oleoyl-2-acetyl-rac-glycerol), a synthetic diglyceride activator of protein kinase C, exhibits similar activity to TPA. TPA-induced alterations in tissue response to auxin are presented.« less

  18. [Role of NO signal in ABA-induced phenolic acids accumulation in Salvia miltiorrhiza hairy roots].

    PubMed

    Shen, Lihong; Ren, Jiahui; Jin, Wenfang; Wang, Ruijie; Ni, Chunhong; Tong, Mengjiao; Liang, Zongsuo; Yang, Dongfeng

    2016-02-01

    To investigate roles of nitric oxide (NO) signal in accumulations of phenolic acids in abscisic.acid (ABA)-induced Salvia miltiorrhiza hairy roots, S. miltiorrhiza hairy roots were treated with different concentrations of sodium nitroprusside (SNP)-an exogenous NO donor, for 6 days, and contents of phenolic acids in the hairy roots are determined. Then with treatment of ABA and NO scavenger (2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide, c-PTIO) or NO synthase inhibitor (NG-nitro-L-arginine methyl ester, L-NAME), contents of phenolic acids and expression levels of three key genes involved in phenolic acids biosynthesis were detected. Phenolic acids production in S. miltiorrhiza hairy roots was most significantly improved by 100 µmoL/L SNP. Contents of RA and salvianolic acid B increased by 3 and 4 folds. ABA significantly improved transcript levels of PAL (phenylalanine ammonia lyase), TAT (tyrosine aminotransferase) and RAS (rosmarinic acid synthase), and increased phenolic acids accumulations. However, with treatments of ABA+c-PTIO or ABA+L-NAME, accumulations of phenolic acids and expression levels of the three key genes were significantly inhibited. Both NO and ABA can increase accumulations of phenolic acids in S. miltiorrhiza hairy roots. NO signal probably mediates the ABA-induced phenolic acids production.

  19. Boron reduces aluminum-induced growth inhibition, oxidative damage and alterations in the cell wall components in the roots of trifoliate orange.

    PubMed

    Riaz, Muhammad; Yan, Lei; Wu, Xiuwen; Hussain, Saddam; Aziz, Omar; Imran, Muhammad; Rana, Muhammad Shoaib; Jiang, Cuncang

    2018-05-30

    Aluminum (Al) toxicity is a major restriction for crops production on acidic soils. The primary symptom of aluminum toxicity is visible in the roots of plants. Recently, several studies reported the alleviation of Al toxicity by the application of Boron (B), however, the information how B alleviates Al toxicity is not well understood. Thus, we investigated the ameliorative response of B on Al-induced growth inhibition, oxidative damages, and variations in the cell wall components in trifoliate orange roots. The results indicated that plants under Al stress experienced a substantial decrement in root length and overall plant growth. The supply of B improved the root elongation by eliminating oxidative stress, membrane peroxidation, membrane leakage, and cell death produced under Al toxicity. Moreover, accumulation of Al on the cell wall and alteration in the cell wall components might be one of the causes resulting in the quick inhibition of root elongation under B-starvation circumstances by providing susceptible negative charges on pectin matrix for binding of Al. The results provide a useful understanding of the insight into mechanisms of B-induced mitigation of Al toxicity especially in the trifoliate orange that might be helpful in the production of crops on acidic soils. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum.

    PubMed

    Chen, Shih-Cheng; Liu, Hui-Wen; Lee, Kung-Ta; Yamakawa, Takashi

    2007-01-01

    The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 microM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42 degrees C heat treatment, and the expressed GUS specific activity was 7-26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.

  1. The Molecular Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate Starvation

    PubMed Central

    Song, Li; Yu, Haopeng; Dong, Jinsong; Liu, Dong

    2016-01-01

    Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress and non-stress conditions. PMID:27427911

  2. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer.

    PubMed

    Chang, Seok-Woo; Lee, So-Youn; Kang, Soo-Kyung; Kum, Kee-Yeon; Kim, Eun-Cheol

    2014-10-01

    The objective of this study was to compare the cytotoxicity, inflammatory response, osteogenic effect, and the signaling mechanism of these biologic activities of 4 calcium compound-based root canal sealers (ie, Sealapex [Sybron Kerr, WA], apatite root sealer [ARS; Dentsply Sankin, Tokyo, Japan], MTA Fillapex [Angelus Indústria de Produtos Odontológicos S/A, Londrina, PR, Brazil], and iRoot SP [Innovative BioCreamix Inc, Vancouver, Canada]) in human periodontal ligament cells. Cytotoxicity was assessed using the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide assay. Levels of inflammatory mediators were measured by enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction, and Western blot analysis. Osteogenic potential was evaluated by alkaline phosphatase activity, alizarin red staining, and marker genes by reverse-transcription polymerase chain reaction. The signal transduction pathways were examined by Western blotting. None of the sealers were cytotoxic. ARS, MTA Fillapex, and iRoot SP induced a lower expression of proinflammatory mediators than Sealapex. All sealers increased ALP activity and the formation of mineralized nodules and up-regulated the expression of osteoblastic marker messenger RNA. ARS, MTA Fillapex, and iRoot SP showed superior osteogenic potential compared with Sealapex. The expression and/or activation of integrin receptors and downstream signaling molecules, including focal adhesion kinase, paxillin, Akt, mitogen-activated protein kinase, and nuclear factor κB, was induced by ARS, MTA Fillapex, and iRoot SP treatment but not by Sealapex treatment. We show for the first time that ARS, MTA Fillapex, and iRoot SP induce a lower expression of inflammatory mediators and enhance osteoblastic differentiation of PDLCs via the integrin-mediated signaling pathway compared with Sealapex. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene VCH3.

    PubMed

    Li, Hai-Yan; Yang, Guo-Dong; Shu, Huai-Rui; Yang, Yu-Tao; Ye, Bao-Xing; Nishida, Ikuo; Zheng, Cheng-Chao

    2006-01-01

    Inoculation of the grapevine (Vitis amurensis Rupr.) with the arbuscular mycorrhizal (AM) fungus Glomus versiforme significantly increased resistance against the root-knot nematode (RKN) Meloidogyne incognita. Studies using relative quantitative reverse transcription-PCR (RQRT-PCR) analysis of grapevine root inoculation with the AM fungus revealed an up-regulation of VCH3 transcripts. This increase was greater than that observed following infection with RKN. However, inoculation of the mycorrhizal grapevine roots with RKN was able to enhance VCH3 transcript expression further. Moreover, the increase in VCH3 transcripts appeared to result in a higher level of resistance against subsequent RKN infection. Constitutive expression of VCH3 cDNA in transgenic tobacco under the control of the cauliflower mosaic virus 35S promoter also conferred resistance against RKN, but had no significant effect on the growth of the AM fungus. We analyzed beta-glucuronidase (GUS) activity directed by a 1,216 bp VCH3 promoter in transgenic tobacco following inoculation with both the AM fungus and RKN. GUS activity was negligible in the root tissues before inoculation, and was more effectively induced after inoculation with the AM fungus than with RKN. Moreover, GUS staining in the mycorrhizal transgenic tobacco roots was enhanced by subsequent RKN infection, and was found ubiquitously throughout the whole root tissue. Together, these results suggest that AM fungus induced a defense response against RKN in the mycorrhizal grapevine roots, which appeared to involve transcriptional control of VCH3 expression throughout the whole root tissue.

  4. Characterization of Rubia cordifolia L. root extract and its evaluation of cardioprotective effect in Wistar rat model

    PubMed Central

    Chandrashekar, BS; Prabhakara, S; Mohan, T; Shabeer, D; Bhandare, Basavaraj; Nalini, M; Sharmila, PS; Meghana, DL; Reddy, Basanth Kumar; Hanumantha Rao, HM; Sahajananda, H; Anbazhagan, K

    2018-01-01

    OBJECTIVES: Rubia cordifolia L. (RC) is a well-known and highly valuable medicinal plant in the Ayurvedic system. The present study involves evaluating antioxidant and cardioprotective property of RC root extract. MATERIALS AND METHODS: The characterization of RC root extract was carried out using standard phytochemical and biochemical analysis. The functional groups were analyzed by Fourier transform infrared (FTIR) spectroscopy and phytotherapeutic compounds were identified using high-resolution mass spectrometry (HR-MS). Cardioprotective activity of RC root extract was investigated against cyclophosphamide (CP; 100 mg/kg, i.p)-induced cardiotoxicity in male albino Wistar rats. RC (100, 200, and 400 mg/kg, p.o) or silymarin (100 mg/kg, p.o) was administered immediately after CP on the 1st day and the next consecutive 10 days. Biochemical and histopathological analysis was performed to observe the cardioprotective effects of RC root extract. RESULTS: Phytochemical analysis revealed the presence of secondary metabolites that include alkaloids, flavonoids, saponins, and anthraquinones in RC root extract. FTIR analysis revealed the presence of several functional groups. Based on HR-MS analysis, eight major phytotherapeutic compounds were identified in methanol root extract of RC. Biochemical analysis in CP-induced rat model administered with RC extract revealed significantly enhanced levels of antioxidant markers such as superoxide dismutase, catalase, and glutathione S-transferase. Histopathological study showed that the rat model treated with the root extract had reduced the cardiac injury. CONCLUSION: Our results have shown that the RC extract contains various antioxidant compounds with cardioprotective effect. Treatment with RC root extract could significantly protect CP-induced rats from cardiac tissue injury by restoring the antioxidant markers. PMID:29861523

  5. Interactions Between Pinus taeda (loblolly) Fine Roots and Soil Fungi: Impacts of Elevated CO2, N Availability, and Spatial Distribution of Fungi on Fine Root Persistence and Turnover

    NASA Astrophysics Data System (ADS)

    Strand, A.; Beidler, K.; McGlinn, D.; Pritchard, S. G.

    2016-12-01

    Fine root turnover represents the most significant mode of flux from plants into soil C pools. Unfortunately fine root senescence and decomposition, processes critical in turnover, are particularly understudied. For example, little is known about either the factors that influence fine-root decomposition or the fate of compounds they contain during root death. Better understanding fine root senescence and decomposition should reduce uncertainty associated with global climate models; including re-uptake of materials in dying leaves into these models has already been shown to increase their accuracy. Over 4400 individual fine-roots and 4734 rhizomorphs were tracked from initiation until disintegration over 12 years using minirhizotrons at the Duke FACE site. Image-based approaches such as minirhizotrons cannot directly assess fine-root physiological status. To assess fine-root function directly, we are now conducting manipulative experiments in P. taeda in which fine-root senescence is induced through two treatments, steam- and direct hand-girdling. Physiological status is then assessed by examining gene-expression, root anatomy and chemical composition of manipulated roots. Changing [CO2] did not change persistence times for roots, but did impact rhizomorph persistence. Both roots and rhizomorphs showed interactions between effects of N and CO2 on persistence. Most interesting is the interaction between fine-roots and rhizomorphs: fine root persistence times are reduced in the presence of rhizomorphs, but this effect depends on the amount of N available. Finally, we found experimentally inducing senescence via steam girdling to be very effective relative to hand-girdling. These results provide evidence of the importance of priming on function of soil fungi and the role of N availability on fine-root turnover. The ability to stimulate fine-root senescence provides a powerful experimental tool to examine the fates of resources contained in fine-root pools as these roots turn over.

  6. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification.

    PubMed

    Qu, Lianghuan; Wu, Chunyan; Zhang, Fei; Wu, Yangyang; Fang, Chuanying; Jin, Cheng; Liu, Xianqing; Luo, Jie

    2016-10-01

    Pectin synthesis and modification are vital for plant development, although the underlying mechanisms are still not well understood. Here, we report the functional characterization of the OsTSD2 gene, which encodes a putative methyltransferase in rice. All three independent T-DNA insertion lines of OsTSD2 displayed dwarf phenotypes and serial alterations in different zones of the root. These alterations included abnormal cellular adhesion and schizogenous aerenchyma formation in the meristematic zone, inhibited root elongation in the elongation zone, and higher lateral root density in the mature zone. Immunofluorescence (with LM19) and Ruthenium Red staining of the roots showed that unesterified homogalacturonan (HG) was increased in Ostsd2 mutants. Biochemical analysis of cell wall pectin polysaccharides revealed that both the monosaccharide composition and the uronic acid content were decreased in Ostsd2 mutants. Increased endogenous ABA content and opposite roles performed by ABA and IAA in regulating cellular adhesion in the Ostsd2 mutants suggested that OsTSD2 is required for root development in rice through a pathway involving pectin synthesis/modification. A hypothesis to explain the relationship among OsTSD2, pectin methylesterification, and root development is proposed, based on pectin's function in regional cell extension/division in a zone-dependent manner. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Stretching of roots contributes to the pathophysiology of radiculopathies.

    PubMed

    Berthelot, Jean-Marie; Laredo, Jean-Denis; Darrieutort-Laffite, Christelle; Maugars, Yves

    2018-01-01

    To perform a synthesis of articles addressing the role of stretching on roots in the pathophysiology of radiculopathy. Review of relevant articles on this topic available in the PubMed database. An intraoperative microscopy study of patients with sciatica showed that in all patients the hernia was adherent to the dura mater of nerve roots. During the SLR (Lasègue's) test, the limitation of nerve root movement occurs by periradicular adhesive tissue, and temporary ischemic changes in the nerve root induced by the root stretching cause transient conduction disturbances. Spinal roots are more frail than peripheral nerves, and other mechanical stresses than root compression can also induce radiculopathy, especially if they also impair intraradicular blood flow, or the function of the arachnoid villi intimately related to radicular veins. For instance arachnoiditis, the lack of peridural fat around the thecal sac, and epidural fibrosis following surgery, can all promote sciatica, especially in patients whose sciatic trunks also stick to piriformis or internus obturator muscles. Indeed, stretching of roots is greatly increased by adherence at two levels. As excessive traction of nerve roots is not shown by imaging, many physicians have unlearned to think in terms of microscopic and physiologic changes, although nerve root compression in the lumbar MRI is lacking in more than 10% of patients with sciatica. It should be reminded that, while compression of a spinal nerve root implies stretching of this root, the reverse is not true: stretching of some roots can occur without any visible compression. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  8. Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization

    PubMed Central

    Xiao, Shimeng; Liang, Kunneng; Weir, Michael D.; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H. K.

    2017-01-01

    Objectives. The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods. Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results. Mechanical properties of BMC were similar to commercial control composites (p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin (p = 0.521). Significance. The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures. PMID:28772450

  9. Combining Bioactive Multifunctional Dental Composite with PAMAM for Root Dentin Remineralization.

    PubMed

    Xiao, Shimeng; Liang, Kunneng; Weir, Michael D; Cheng, Lei; Liu, Huaibing; Zhou, Xuedong; Ding, Yi; Xu, Hockin H K

    2017-01-22

    Objectives . The objectives of this study were to: (1) develop a bioactive multifunctional composite (BMC) via nanoparticles of amorphous calcium phosphate (NACP), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of silver (NAg); and (2) investigate the effects of combined BMC + poly (amido amine) (PAMAM) on remineralization of demineralized root dentin in a cyclic artificial saliva/lactic acid environment for the first time. Methods . Root dentin specimens were prepared and demineralized with 37% phosphoric acid for 15 s. Four groups were prepared: (1) root dentin control; (2) root dentin with BMC; (3) root dentin with PAMAM; (4) root dentin with BMC + PAMAM. Specimens were treated with a cyclic artificial saliva/lactic acid regimen for 21 days. Calcium (Ca) and phosphate (P) ion concentrations and acid neutralization were determined. The remineralized root dentin specimens were examined via hardness testing and scanning electron microscopy (SEM). Results . Mechanical properties of BMC were similar to commercial control composites ( p = 0.913). BMC had excellent Ca and P ion release and acid-neutralization capability. BMC or PAMAM alone each achieved slight mineral regeneration in demineralized root dentin. The combined BMC + PAMAM induced the greatest root dentin remineralization, and increased the hardness of pre-demineralized root dentin to match that of healthy root dentin ( p = 0.521). Significance . The excellent root dentin remineralization effects of BMC + PAMAM were demonstrated for the first time. BMC + PAMAM induced effective and complete root dentin remineralization in an acid challenge environment. The novel BMC + PAMAM method is promising for Class V and other restorations to remineralize and protect tooth structures.

  10. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis.

    PubMed

    Sun, Feifei; Zhang, Wensheng; Hu, Haizhou; Li, Bao; Wang, Youning; Zhao, Yankun; Li, Kexue; Liu, Mengyu; Li, Xia

    2008-01-01

    Plant root architecture is highly plastic during development and can adapt to many environmental stresses. The proper distribution of roots within the soil under various conditions such as salinity, water deficit, and nutrient deficiency greatly affects plant survival. Salinity profoundly affects the root system architecture of Arabidopsis (Arabidopsis thaliana). However, despite the inhibitory effects of salinity on root length and the number of roots, very little is known concerning influence of salinity on root growth direction and the underlying mechanisms. Here we show that salt modulates root growth direction by reducing the gravity response. Exposure to salt stress causes rapid degradation of amyloplasts in root columella cells of Arabidopsis. The altered root growth direction in response to salt was found to be correlated with PIN-FORMED2 (PIN2) messenger RNA abundance and expression and localization of the protein. Furthermore, responsiveness to gravity of salt overly sensitive (sos) mutants is substantially reduced, indicating that salt-induced altered gravitropism of root growth is mediated by ion disequilibrium. Mutation of SOS genes also leads to reduced amyloplast degradation in root tip columella cells and the defects in PIN2 gene expression in response to salt stress. These results indicate that the SOS pathway may mediate the decrease of PIN2 messenger RNA in salinity-induced modification of gravitropic response in Arabidopsis roots. Our findings provide new insights into the development of a root system necessary for plant adaptation to high salinity and implicate an important role of the SOS signaling pathway in this process.

  11. An Auxin Transport Independent Pathway Is Involved in Phosphate Stress-Induced Root Architectural Alterations in Arabidopsis. Identification of BIG as a Mediator of Auxin in Pericycle Cell Activation1

    PubMed Central

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Pérez-Torres, Anahí; Rampey, Rebekah A.; Bartel, Bonnie; Herrera-Estrella, Luis

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) plants display a number of root developmental responses to low phosphate availability, including primary root growth inhibition, greater formation of lateral roots, and increased root hair elongation. To gain insight into the regulatory mechanisms by which phosphorus (P) availability alters postembryonic root development, we performed a mutant screen to identify genetic determinants involved in the response to P deprivation. Three low phosphate-resistant root lines (lpr1-1 to lpr1-3) were isolated because of their reduced lateral root formation in low P conditions. Genetic and molecular analyses revealed that all lpr1 mutants were allelic to BIG, which is required for normal auxin transport in Arabidopsis. Detailed characterization of lateral root primordia (LRP) development in wild-type and lpr1 mutants revealed that BIG is required for pericycle cell activation to form LRP in both high (1 mm) and low (1 μm) P conditions, but not for the low P-induced alterations in primary root growth, lateral root emergence, and root hair elongation. Exogenously supplied auxin restored normal lateral root formation in lpr1 mutants in the two P treatments. Treatment of wild-type Arabidopsis seedlings with brefeldin A, a fungal metabolite that blocks auxin transport, phenocopies the root developmental alterations observed in lpr1 mutants in both high and low P conditions, suggesting that BIG participates in vesicular targeting of auxin transporters. Taken together, our results show that auxin transport and BIG function have fundamental roles in pericycle cell activation to form LRP and promote root hair elongation. The mechanism that activates root system architectural alterations in response to P deprivation, however, seems to be independent of auxin transport and BIG. PMID:15681664

  12. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  13. Diversity and dynamics of plant genome size: an example of polysomaty from a cytogenetic study of Tahitian vanilla (Vanilla xtahitensis, Orchidaceae).

    PubMed

    Lepers-Andrzejewski, Sandra; Siljak-Yakovlev, Sonja; Brown, Spencer C; Wong, Maurice; Dron, Michel

    2011-06-01

    Abnormal mitotic behavior with somatic aneuploidy and partial endoreplication were previously reported for the first time in the plant kingdom in Vanilla planifolia. Because vanilla plants are vegetatively propagated, such abnormalities have been transmitted. This study aimed to determine whether mitotic abnormalities also occur in Vanilla hybrid or are suppressed by sexual reproduction. Twenty-eight accessions of Vanilla ×tahitensis, one V. planifolia, and hybrid V. planifolia × V. ×tahitensis were analyzed by chromosome counts, cytometry, and fluorescent in situ hybridization of 18S-5.8S-26S rDNA. In a single root meristem of V. ×tahitensis, chromosome number varied from 22 to 31 in diploids (mean 2C = 5.23 pg), 31 to 41 in triploids (2C = 7.82 pg) and 43 to 60 in tetraploids (2C = 10.27 pg). Morphological diversity is apparently related to ploidy changes. Aneuploidy and partial (asymmetrical) endoreduplication were observed in root meristems of both V. ×tahitensis and the hybrid V. planifolia × V. ×tahitensis, but pollen grains had the euploid chromosome number (n = 15 in diploids). Genome irregularities may be transmitted not only during vegetative propagation but also by sexual reproduction in Vanilla. However, there must be a complex regulation of genome size and organization between the aneuploidy in somatic tissues and subsequently euploid gametic tissue. This is a novel example of polysomaty with developmentally regulated partial endoreplication.

  14. Advanced Microscopic Imaging Methods to Investigate Cortical Development and the Etiology of Mental Retardation

    ERIC Educational Resources Information Center

    Haydar, Tarik F.

    2005-01-01

    Studies on human patients and animal models of disease have shown that disruptions in prenatal and early postnatal brain development are a root cause of mental retardation. Since proper brain development is achieved by a strict spatiotemporal control of neurogenesis, cell migration, and patterning of synapses, abnormalities in one or more of these…

  15. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.

    PubMed

    Zafar, Hira; Ali, Attarad; Zia, Muhammad

    2017-01-01

    Interests associated with nanoparticles (NPs) are budding due to their toxicity to living species. The lethal effect of NPs depends on their nature, size, shape, and concentration. Present investigation reports that CuO NPs badly affected Brassica nigra seed germination and seedling growth parameters. However, variation in antioxidative activities and nonenzymatic oxidants is observed in plantlets. Culturing the leaf and stem explants on MS medium in presence of low concentration of CuO NPs (1-20 mg l -1 ) produces white thin roots with thick root hairs. These roots also show an increase in DPPH radical scavenging activity (up to 80 % at 10 mg l -1 ), total antioxidant, and reducing power potential (maximum in presence of 10 mg l -1 CuO NPs in the media). Nonenzymatic antioxidative molecules, phenolics and flavonoids, are observed elevated but NPs concentration dependent. We can conclude that CuO NPs can induce rooting from plant explants cultured on appropriate medium. These roots can be explored for the production of active chemical constituents.

  16. Wound healing and anti-inflammatory activity of some Ononis taxons.

    PubMed

    Ergene Öz, Burçin; Saltan İşcan, Gülçin; Küpeli Akkol, Esra; Süntar, İpek; Keleş, Hikmet; Bahadır Acıkara, Özlem

    2017-07-01

    Ononis species are used for their laxative, diuretic, analgesic, anti-inflammatory, antiviral, cytotoxic and antifungal effects as well as against skin diseases for wound healing activity. In the light of this information n-hexane, ethylacetate and methanol extracts prepared from Ononis spinosa L. subsp. leiosperma (Boiss.) Sirj., Ononis variegata L., Ononis viscosa L. subsp. brevifolia (DC) Nym. and Ononis natrix L. subsp. natrix L. were tested for their wound healing, anti-inflammatory and antioxidant activities. Linear incision and circular excision wound models and hydroxypyroline estimation assay were used for the wound healing activity. For the assessment of chronic inflammation FCA-induced arthritis and for acute inflammation carrageenan-induced hind paw edema, TPA-induced ear edema and acetic acid-induced increase in capillary permeability tests were conducted. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) scavenging activity assay, reducing power assay and hydroxyl radical (OH - ) scavenging assay were used for determining antioxidant activities of the extracts. Results showed that O. spinosa subsp. leiosperma roots ethyl acetate extract exhibited remarkable wound healing activity with the 42.6% tensile strength value on the linear incision wound model and 60.1% reduction of the wound area at the day 12 on the circular excision wound model. Hydroxyproline content of the tissue treated by O. spinosa subsp. leiosperma roots ethyl acetate extract was found to be 41.3μg/mg. Acetic acid induced increase in capillary permeability test results revealed that O. spinosa subsp. leiosperma roots ethyl acetate extract and O. spinosa subsp. leiosperma roots methanol extract inhibited inflammation by 40.4% and 35.4% values respectively. O. spinosa subsp. leiosperma roots ethyl acetate extract showed 21.2-27.2% inhibition in carrageenan-induced hind paw edema test while did not posses activity on TPA-induced ear edema and FCA-induced arthritis models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Expanding the clinical spectrum of chromosome 15q26 terminal deletions associated with IGF-1 resistance.

    PubMed

    O'Riordan, Aisling M; McGrath, Niamh; Sharif, Farhana; Murphy, Nuala P; Franklin, Orla; Lynch, Sally Ann; O'Grady, Michael J

    2017-01-01

    Haploinsufficiency of the insulin-like growth factor-1 receptor (IGF1R) gene on chromosome 15q26.3 is associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. Terminal deletions of chromosome 15q26 arising more proximally may also be associated with congenital heart disease, epilepsy, diaphragmatic hernia and renal anomalies. We report three additional cases of 15q26 terminal deletions with novel features which may further expand the spectrum of this rarely reported contiguous gene syndrome. Phenotypic features including neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been reported previously. Similarly, laboratory features of insulin-like growth factor 1 (IGF-1) resistance are described, including markedly elevated IGF-1 of up to +4.7 SDS. In one patient, the elevated IGF-1 declined over time and this coincided with a period of spontaneous growth acceleration. Deletions of 15q26 are a potential risk factor for aortic root dilatation, neonatal lymphedema and aplasia cutis in addition to causing growth restriction. What is Known: • Terminal deletions of chromosome 15q26 are associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. What is New: • Neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been previously described in 15q26 terminal deletions and may represent novel features. • IGF-1 levels may be increased up to 4.7 SDS.

  18. Live Oaks, New Hosts for Odontocynips Nebulosa Kieffer (Hymenoptera: Cynipidae) in North America

    Treesearch

    A. Dan Wilson; D.G. Lester; R.E. Edmonson

    2000-01-01

    A study of root-feeding insects as potential vectors of the oak wilt fungus Ceratocystis figaceurum (T. W. Bretz) J. Hunt in live oaks, revealed root galls induced by the cynipid gall wasp Odontocynips nebulosa Kieffer. The incidence of the wasp on roots of four oak species and natural live oak hybrids at 14 root excavation sites...

  19. The Signal Transducer NPH3 Integrates the Phototropin1 Photosensor with PIN2-Based Polar Auxin Transport in Arabidopsis Root Phototropism[C][W

    PubMed Central

    Wan, Yinglang; Jasik, Jan; Wang, Li; Hao, Huaiqing; Volkmann, Dieter; Menzel, Diedrik; Mancuso, Stefano; Baluška, František; Lin, Jinxing

    2012-01-01

    Under blue light (BL) illumination, Arabidopsis thaliana roots grow away from the light source, showing a negative phototropic response. However, the mechanism of root phototropism is still unclear. Using a noninvasive microelectrode system, we showed that the BL sensor phototropin1 (phot1), the signal transducer NONPHOTOTROPIC HYPOCOTYL3 (NPH3), and the auxin efflux transporter PIN2 were essential for BL-induced auxin flux in the root apex transition zone. We also found that PIN2-green fluorescent protein (GFP) localized to vacuole-like compartments (VLCs) in dark-grown root epidermal and cortical cells, and phot1/NPH3 mediated a BL-initiated pathway that caused PIN2 redistribution to the plasma membrane. When dark-grown roots were exposed to brefeldin A (BFA), PIN2-GFP remained in VLCs in darkness, and BL caused PIN2-GFP disappearance from VLCs and induced PIN2-GFP-FM4-64 colocalization within enlarged compartments. In the nph3 mutant, both dark and BL BFA treatments caused the disappearance of PIN2-GFP from VLCs. However, in the phot1 mutant, PIN2-GFP remained within VLCs under both dark and BL BFA treatments, suggesting that phot1 and NPH3 play different roles in PIN2 localization. In conclusion, BL-induced root phototropism is based on the phot1/NPH3 signaling pathway, which stimulates the shootward auxin flux by modifying the subcellular targeting of PIN2 in the root apex transition zone. PMID:22374399

  20. Morphological, anatomical, and ultrastructural changes (visualized through scanning electron microscopy) induced in Triticum aestivum by Pb²⁺ treatment.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2014-11-01

    Lead (Pb) causes severe damage to crops, ecosystems, and humans, and alters the physiology and biochemistry of various plant species. It is hypothesized that Pb-induced metabolic alterations could manifest as structural variations in the roots of plants. In light of this, the morphological, anatomical, and ultrastructural variations (through scanning electron microscopy, SEM) were studied in 4-day-old seedlings of Triticum aestivum grown under Pb stress (0, 8, 16, 40, and 80 mg Pb(2+) l(-1); mild to highly toxic). The toxic effect was more pronounced in radicle growth than on the plumule growth. The SEM of the root of T. aestivum depicted morphological alterations and surface ultrastructural changes. Compared to intact and uniform surface cells in the control roots, cells were irregular and desiccated in Pb(2+)-treated roots. In Pb(2+)-treated roots, the number of root hairs increased manifold, showing dense growth, and these were apparently longer. Apart from the deformity in surface morphology and anatomy of the roots in response to Pb(2+) toxicity, considerable anatomical alterations were also observed. Pb(2+)-treated root exhibited signs of injury in the form of cell distortion, particularly in the cortical cells. The endodermis and pericycle region showed loss of uniformity post Pb(2+) exposure (at 80 mg l(-1) Pb(2+)). The cells appeared to be squeezed with greater depositions observed all over the tissue. The study concludes that Pb(2+) treatment caused structural anomalies and induced anatomical and surface ultrastructural changes in T. aestivum.

  1. Identification of a core set of rhizobial infection genes using data from single cell-types.

    PubMed

    Chen, Da-Song; Liu, Cheng-Wu; Roy, Sonali; Cousins, Donna; Stacey, Nicola; Murray, Jeremy D

    2015-01-01

    Genome-wide expression studies on nodulation have varied in their scale from entire root systems to dissected nodules or root sections containing nodule primordia (NP). More recently efforts have focused on developing methods for isolation of root hairs from infected plants and the application of laser-capture microdissection technology to nodules. Here we analyze two published data sets to identify a core set of infection genes that are expressed in the nodule and in root hairs during infection. Among the genes identified were those encoding phenylpropanoid biosynthesis enzymes including Chalcone-O-Methyltransferase which is required for the production of the potent Nod gene inducer 4',4-dihydroxy-2-methoxychalcone. A promoter-GUS analysis in transgenic hairy roots for two genes encoding Chalcone-O-Methyltransferase isoforms revealed their expression in rhizobially infected root hairs and the nodule infection zone but not in the nitrogen fixation zone. We also describe a group of Rhizobially Induced Peroxidases whose expression overlaps with the production of superoxide in rhizobially infected root hairs and in nodules and roots. Finally, we identify a cohort of co-regulated transcription factors as candidate regulators of these processes.

  2. The site of water stress governs the pattern of ABA synthesis and transport in peanut

    PubMed Central

    Hu, Bo; Cao, Jiajia; Ge, Kui; Li, Ling

    2016-01-01

    Abscisic acid (ABA) is one of the most important phytohormones involved in stress responses in plants. However, knowledge of the effect on ABA distribution and transport of water stress at different sites on the plant is limited. In this study, water stress imposed on peanut leaves or roots by treatment with PEG 6000 is termed “leaf stress” or “root stress”, respectively. Immunoenzyme localization technolony was first used to detect ABA distribution in peanut. Under root stress, ABA biosynthesis and distribution level were all more pronounced in root than in leaf. However, ABA transport and the ability to induce stomatal closure were still better in leaf than in root during root stress; However, ABA biosynthesis initially increased in leaf, then rapidly accumulated in the vascular cambium of leaves and induced stomatal closure under leaf stress; ABA produced in root tissues was also transported to leaf tissues to maintain stomatal closure. The vascular system was involved in the coordination and integration of this complex regulatory mechanism for ABA signal accumulation. Water stress subject to root or leaf results in different of ABA biosynthesis and transport ability that trigger stoma close in peanut. PMID:27694957

  3. Graviresponsiveness of surgically altered primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  4. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice.

    PubMed

    Chiu, Chai Hao; Choi, Jeongmin; Paszkowski, Uta

    2018-01-01

    Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Protein synthesis in geostimulated root caps

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.

    1982-01-01

    A study is presented of the processes occurring in the root cap of corn which are requisite for the formation of root cap inhibitor and which can be triggered or modulated by both light and gravity. The results of this study indicate the importance of protein synthesis for light-induced gravitropic bending in roots. Root caps in which protein synthesis is prevented are unable to induce downward bending. This suggests that light acts by stimulating proteins which are necessary for the translation of the gravitropic stimulus into a growth response (downward bending). The turnover of protein with time was also examined in order to determine whether light acts by stimulating the synthesis of unique proteins required for downward growth. It is found that auxin in combination with light allows for the translation of the gravitropic stimulus into a growth response at least in part through the modification of protein synthesis. It is concluded that unique proteins are stimulated by light and are involved in promoting the downward growth in roots which are responding to gravity.

  6. Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae).

    PubMed

    Gomes, A; Saha, Archita; Chatterjee, Ipshita; Chakravarty, A K

    2007-09-01

    We reported previously that the methanolic root extract of the Indian medicinal plant Pluchea indica Less. (Asteraceae) could neutralize viper venom-induced action [Alam, M.I., Auddy, B., Gomes, A., 1996. Viper venom neutralization by Indian medicinal plant (Hemidesmus indicus and P. indica) root extracts. Phytother. Res. 10, 58-61]. The present study reports the neutralization of viper and cobra venom by beta-sitosterol and stigmasterol isolated from the root extract of P. indica Less. (Asteraceae). The active fraction (containing the major compound beta-sitosterol and the minor compound stigmasterol) was isolated and purified by silica gel column chromatography and the structure was determined using spectroscopic analysis (EIMS, (1)H NMR, (13)C NMR). Anti-snake venom activity was studied in experimental animals. The active fraction was found to significantly neutralize viper venom-induced lethal, hemorrhagic, defibrinogenation, edema and PLA(2) activity. Cobra venom-induced lethality, cardiotoxicity, neurotoxicity, respiratory changes and PLA(2) activity were also antagonized by the active component. It potentiated commercial snake venom antiserum action against venom-induced lethality in male albino mice. The active fraction could antagonize venom-induced changes in lipid peroxidation and superoxide dismutase activity. This study suggests that beta-sitosterol and stigmasterol may play an important role, along with antiserum, in neutralizing snake venom-induced actions.

  7. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola.

    PubMed

    Cardoso, Juan Andrés; Jiménez, Juan de la Cruz; Rao, Idupulapati M

    2014-04-08

    Waterlogging is one of the major factors limiting the productivity of pastures in the humid tropics. Brachiaria humidicola is a forage grass commonly used in zones prone to temporary waterlogging. Brachiaria humidicola accessions adapt to waterlogging by increasing aerenchyma in nodal roots above constitutive levels to improve oxygenation of root tissues. In some accessions, waterlogging reduces the number of lateral roots developed from main root axes. Waterlogging-induced reduction of lateral roots could be of adaptive value as lateral roots consume oxygen supplied from above ground via their parent root. However, a reduction in lateral root development could also be detrimental by decreasing the surface area for nutrient and water absorption. To examine the impact of waterlogging on lateral root development, an outdoor study was conducted to test differences in vertical root distribution (in terms of dry mass and length) and the proportion of lateral roots to the total root system (sum of nodal and lateral roots) down the soil profile under drained or waterlogged soil conditions. Plant material consisted of 12 B. humidicola accessions from the gene bank of the International Center for Tropical Agriculture, Colombia. Rooting depth was restricted by 21 days of waterlogging and confined to the first 30 cm below the soil surface. Although waterlogging reduced the overall proportion of lateral roots, its proportion significantly increased in the top 10 cm of the soil. This suggests that soil flooding increases lateral root proliferation of B. humidicola in the upper soil layers. This may compensate for the reduction of root surface area brought about by the restriction of root growth at depths below 30 cm. Further work is needed to test the relative efficiency of nodal and lateral roots for nutrient and water uptake under waterlogged soil conditions. Published by Oxford University Press on behalf of the Annals of Botany Company.

  8. Germinaton performance of selected local soybean (Glycine max (L.) Merrills) cultivars during drought stress induced by Polyethylene Glycol (PEG)

    NASA Astrophysics Data System (ADS)

    Pane, R. F.; Damanik, R. I.; Khardinata, E. H.

    2018-02-01

    Drought stress is one of the factors that can decreased growth and production, so that required a variety that has the ability to sustain cellular metabolism, and growth during the stress. This research was aimed to investigated the involvement of germination performance invitro of five local soybean cultivars, Grobogan, Kaba, Anjasmoro, Argomulyo, and Dering to drought stress induced by polyethylene glycol (PEG) 6000 (0%, 2%, 4%, and 6%). The measurable seedling traits as the day appearance of shoots and roots, total of leaves, shoot length, root length, fresh plant weight, dry plant weight, fresh root weight, and dry root weight under control as well as water stress condition were recorded. The experiment units were arranged in factorial completely randomized design with four replications. The result showed that the value for most parameters was recorded highest for Argomulyo cultivar compared with Dering cultivar which is known to be tolerant to drought. In terms of roots performance, Grobogan and Argomulyo cultivars produced the longest and heaviest of roots, while Grobogan cultivar had no significant different for root length compared with control. In conclusion, the root length and fresh weight root parameters can be used as quick criteria for drought tolerance.

  9. Copper-induced alteration in sucrose partitioning and its relationship to the root growth of two Elsholtzia haichowensis Sun populations.

    PubMed

    Li, Min-Jing; Xiong, Zhi-Ting; Liu, Hui; Kuo, Yi-Ming; Tong, Lei

    2016-10-02

    Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.

  10. SCAR Mediates Light-Induced Root Elongation in Arabidopsis through Photoreceptors and Proteasomes[W][OA

    PubMed Central

    Dyachok, Julia; Zhu, Ling; Liao, Fuqi; He, Ji; Huq, Enamul; Blancaflor, Elison B.

    2011-01-01

    The ARP2/3 complex, a highly conserved nucleator of F-actin, and its activator, the SCAR complex, are essential for growth in plants and animals. In this article, we present a pathway through which roots of Arabidopsis thaliana directly perceive light to promote their elongation. The ARP2/3-SCAR complex and the maintenance of longitudinally aligned F-actin arrays are crucial components of this pathway. The involvement of the ARP2/3-SCAR complex in light-regulated root growth is supported by our finding that mutants of the SCAR complex subunit BRK1/HSPC300, or other individual subunits of the ARP2/3-SCAR complex, showed a dramatic inhibition of root elongation in the light, which mirrored reduced growth of wild-type roots in the dark. SCAR1 degradation in dark-grown wild-type roots by constitutive photomorphogenic 1 (COP1) E3 ligase and 26S proteasome accompanied the loss of longitudinal F-actin and reduced root growth. Light perceived by the root photoreceptors, cryptochrome and phytochrome, suppressed COP1-mediated SCAR1 degradation. Taken together, our data provide a biochemical explanation for light-induced promotion of root elongation by the ARP2/3-SCAR complex. PMID:21972261

  11. Cyclic lipopeptide biosurfactant from Bacillus tequilensis exhibits multifarious activity.

    PubMed

    Pradhan, Arun Kumar; Rath, Animesha; Pradhan, Nilotpala; Hazra, Rupenangshu Kumar; Nayak, Rati Ranjan; Kanjilal, Sanjit

    2018-06-01

    Bacillus tequilensis strain CH had been previously shown to produce a biosurfactant. In this study, chemical structure of the purified biosurfactant was determined by using high performance liquid chromatography and liquid chromatography-mass spectroscopy as a 10 amino acid cyclic lipopeptide (CL). The cyclic lipopeptide was found to be active against Anopheles culicifacies larvae with a LC 50 of 110 µg/ml in 2 days. 1 ppm cadmium (Cd) which had a profound mutagenic effect on the cell division of onion ( Allium cepa ) root tip cell resulting in abnormal metaphase, abnormal anaphase and nuclei elongation was partially reversed in the presence of 0.1 mg/ml of CL (52% cells dividing normally and 8% with abnormal division) and was comparable to control experiment where no Cd was present. Thus, the CL described in this report may have applications in eliminating larvae from water repository systems and in reversing the effects of cadmium pollution.

  12. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.

    PubMed

    Liu, Guangchao; Gao, Shan; Tian, Huiyu; Wu, Wenwen; Robert, Hélène S; Ding, Zhaojun

    2016-10-01

    Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.

  13. Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development.

    PubMed

    Nan, Wenbin; Wang, Xiaomin; Yang, Lei; Hu, Yanfeng; Wei, Yuantao; Liang, Xiaolei; Mao, Lina; Bi, Yurong

    2014-04-01

    The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays an important role in plant development and responses to stress. Recent studies indicated that cGMP is a secondary signal generated in response to auxin stimulation. cGMP also mediates auxin-induced adventitious root formation in mung bean and gravitropic bending in soybean. Nonetheless, the mechanism of the participation of cGMP in auxin signalling to affect these growth and developmental processes is largely unknown. In this report we provide evidence that indole-3-acetic acid (IAA) induces cGMP accumulation in Arabidopsis roots through modulation of the guanylate cyclase activity. Application of 8-bromo-cGMP (a cell-permeable cGMP derivative) increases auxin-dependent lateral root formation, root hair development, primary root growth, and gene expression. In contrast, inhibitors of endogenous cGMP synthesis block these processes induced by auxin. Data also showed that 8-bromo-cGMP enhances auxin-induced degradation of Aux/IAA protein modulated by the SCF(TIR1) ubiquitin-proteasome pathway. Furthermore, it was found that 8-bromo-cGMP is unable to directly influence the auxin-dependent TIR1-Aux/IAA interaction as evidenced by pull-down and yeast two-hybrid assays. In addition, we provide evidence for cGMP-mediated modulation of auxin signalling through cGMP-dependent protein kinase (PKG). Our results suggest that cGMP acts as a mediator to participate in auxin signalling and may govern this process by PKG activity via its influence on auxin-regulated gene expression and auxin/IAA degradation.

  14. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    PubMed

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots.

  15. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum).

    PubMed

    Sun, Chengliang; Lu, Lingli; Liu, Lijuan; Liu, Wenjing; Yu, Yan; Liu, Xiaoxia; Hu, Yan; Jin, Chongwei; Lin, Xianyong

    2014-03-01

    • Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    PubMed

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. The effect of ovalbumin on orthodontic induced root resorption.

    PubMed

    Aghili, Hosseinagha; Ardekani, Mohammad Danesh; Meybodi, Seyed Amir Reza Fatahi; Toodehzaeim, Mohammad Hossein; Modaresi, Jalil; Mansouri, Reza; Momeni, Ehsan

    2013-09-01

    This randomized trial was undertaken to investigate the effect of experimentally induced allergy on orthodontic induced root resorption. A total of 30 Wistar rats were divided randomly into test and control groups. Starting from the first 3 days, the rats in the test group were injected intra-peritoneally by 2 mg ovalbumin as allergen and 0.5 mg Alume as adjuvant. Afterward only allergen was injected once a week. The control group was injected by normal saline. After 21 days, Wistar immunoglobulin E was measured and peripheral matured eosinophil was counted. A total of 50 g nickel-titanium closed coil spring was ligated between right incisor and first molar. All animals were sacrificed after 14 days. The mesial root of the right and left first molar was dissected in a horizontal plane. The specimens were divided into four groups considering whether force and/or ovalbumin was applied or not. Root resorption was measured and compared among these groups. Repeated measures analysis of variance (ANOVA), and Bonferoni tests were used to analyze the data. The level of significance was determined at 0.05. In general, the differences were insignificant (P < 0.05). As the only exception, the group in which both ovalbumin and force were applied had significantly more root resorption than the group in which neither force nor ovalbumin was applied (P > 0.001). Allergy may increase the susceptibility to root resorption. Application of light force, periodical monitoring of root resorption and control of allergy are advisable.

  18. Effect of gingival fibroblasts and ultrasound on dogs' root resorption during orthodontic treatment

    PubMed Central

    Crossman, Jacqueline; Hassan, Ali H; Saleem, Ali; Felemban, Nayef; Aldaghreer, Saleh; Fawzi, Elham; Farid, Mamdouh; Abdel-Ghaffar, Khaled; Gargoum, Ausama; El-Bialy, Tarek

    2017-01-01

    Objectives: To investigate the effect of using osteogenic induced gingival fibroblasts (OIGFs) and low intensity pulsed ultrasound (LIPUS) on root resorption lacunae volume and cementum thickness in beagle dogs that received orthodontic tooth movement. Materials and Methods: Seven beagle dogs were used, from which gingival cells (GCs) were obtained and were induced osteogenically to produce OIGFs. Each third and fourth premolar was randomly assigned to one of the five groups, namely, LIPUS, OIGFs, bone morphogenetic protein-2 (BMP-2), OIGFs + LIPUS, and control. All groups received 4 weeks of bodily tooth movement, then LIPUS-treated groups received LIPUS for 20 min/day for 4 weeks, and OIGFs groups received an injection of OIGFs near the root apex. Microcomputed tomography analysis was used to calculate root resorption lacunae volume and histomorphometric analysis was performed to measure the cementum thickness of each root at 3 root levels on compression and tension sides. Results: There was no significant difference in resorption volume between the treatment groups. OIGFs + LIPUS increased cementum thickness (P > 0.05) in third premolars near the apex, and LIPUS increased cementum thickness (P > 0.05) in fourth premolars near the apex. Furthermore, BMP2 increased cementum thickness at the coronal third at the compression side. Conclusion: OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities. PMID:28197400

  19. A distinct role of pectate lyases in the formation of feeding structures induced by cyst and root-knot nematodes.

    PubMed

    Wieczorek, K; Elashry, A; Quentin, M; Grundler, F M W; Favery, B; Seifert, G J; Bohlmann, H

    2014-09-01

    Pectin in the primary plant cell wall is thought to be responsible for its porosity, charge density, and microfibril spacing and is the main component of the middle lamella. Plant-parasitic nematodes secrete cell wall-degrading enzymes that macerate the plant tissue, facilitating the penetration and migration within the roots. In sedentary endoparasitic nematodes, these enzymes are released only during the migration of infective juveniles through the root. Later, nematodes manipulate the expression of host plant genes, including various cell wall enzymes, in order to induce specific feeding sites. In this study, we investigated expression of two Arabidopsis pectate lyase-like genes (PLL), PLL18 (At3g27400) and PLL19 (At4g24780), together with pectic epitopes with different degrees of methylesterification in both syncytia induced by the cyst nematode Heterodera schachtii and giant cells induced by the root-knot nematode Meloidogyne incognita. We confirmed upregulation of PLL18 and PLL19 in both types of feeding sites with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ RT-PCR. Furthermore, the functional analysis of mutants demonstrated the important role of both PLL genes in the development and maintenance of syncytia but not giant cells. Our results show that both enzymes play distinct roles in different infected root tissues as well as during parasitism of different nematodes.

  20. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms

    USDA-ARS?s Scientific Manuscript database

    Upon attack by leaf-herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated this aspect in maize seedlings infested by the specialist root herbivore Diabrotica virgifera. By using...

  1. Causes and prevention of herb-induced aconite poisonings in Asia.

    PubMed

    Chan, Thomas Y K

    2011-12-01

    The recent reports from Hong Kong, Taiwan, China and Korea were reviewed to determine the causes and prospects for prevention of herb-induced aconite poisonings. The contributory factors included overdose (use of greater than the recommended doses), faulty processing (after harvest and during decoction), use of tincture (herbal medicinal wine), use of crude aconite roots (for preparing decoction, proprietary medicines and tincture), lack of standardisation in processing of aconite roots and preparation of tincture and proprietary medicines, unsupervised use of aconite roots and contamination or mix-up with aconite roots. As tincture (herbal medicinal wine) made from aconite roots contains a much larger amount of Aconitum alkaloids, the public should be strongly discouraged from making their own and taking it by mouth. Aconite roots should only be used after post-harvest processing and proper decoction. The public should be educated on the hazards from unsupervised use and improper decoction of processed aconite roots. There should be regular publicity measures to promote awareness among the herbalists and to publicise the risk of serious cardiotoxicity if the recommended doses of processed aconite roots are exceeded. The processing of aconite roots and their proprietary preparations should be standardised. Quality control of processed aconite roots and their proprietary preparations should be strengthened. National reporting or monitoring systems can be used to identify the causes of aconite poisonings and assess the impact of preventive measures.

  2. Nicotine promotes rooting in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby.

    PubMed

    Bamel, Kiran; Gupta, Rajendra; Gupta, Shrish C

    2015-11-01

    Nicotine promotes rooting in leaf explants of tomato (Lycopersicon esculentum Miller var. Pusa Ruby). Nicotine at 10(-9) to 10(-3) M concentrations was added to the MS basal medium. The optimum response (three-fold increase in rooting) was obtained at 10(-7) M nicotine-enriched MS medium. At the same level i.e. 10(-7) M Nicotine induced dramatic increase (11-fold) in the number of secondary roots per root. We have shown earlier that exogenous acetylcholine induces a similar response in tomato leaves. Since nicotine is an agonist of one of the two acetylcholine receptors in animals, its ability to simulate ACh action in a plant system suggests the presence of the same molecular mechanism operative in both, animal and plant cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  4. Boosted Regeneration and Reduced Denervated Muscle Atrophy by NeuroHeal in a Pre-clinical Model of Lumbar Root Avulsion with Delayed Reimplantation.

    PubMed

    Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty

    2017-09-20

    The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.

  5. SHR overexpression induces the formation of supernumerary cell layers with cortex cell identity in rice.

    PubMed

    Henry, S; Dievart, A; Divol, F; Pauluzzi, G; Meynard, D; Swarup, R; Wu, S; Gallagher, K L; Périn, C

    2017-05-01

    The number of root cortex cell layers varies among plants, and many species have several cortical cell layers. We recently demonstrated that the two rice orthologs of the Arabidopsis SHR gene, OsSHR1 and OsSHR2, could complement the A. thaliana shr mutant. Moreover, OsSHR1 and OsSHR2 expression in A. thaliana roots induced the formation of extra root cortical cell layers. In this article, we demonstrate that the overexpression of AtSHR and OsSHR2 in rice roots leads to plants with wide and short roots that contain a high number of extra cortical cell layers. We hypothesize that SHR genes share a conserved function in the control of cortical cell layer division and the number of ground tissue cell layers in land plants. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. [Calcitonin as an alternative treatment for root resorption].

    PubMed

    Pierce, A; Berg, J O; Lindskog, S

    1989-01-01

    Inflammatory root resorption is a common finding following trauma and will cause eventual destruction of the tooth root if left untreated. This study examined the effects of intrapulpal application of calcitonin, a hormone known to inhibit osteoclastic bone resorption, on experimental inflammatory root resorption induced in monkeys. Results were histologically evaluated using a morphometric technique and revealed that calcitonin was an effective medicament for the treatment of inflammatory root resorption. It was concluded that this hormone could be a useful therapeutic adjunct in difficult cases of external root resorption.

  7. Evaluation of in-vitro antibacterial activity and anti-inflammatory activity for different extracts of Rauvolfia tetraphylla L. root bark.

    PubMed

    Ganga Rao, B; Umamaheswara Rao, P; Sambasiva Rao, E; Mallikarjuna Rao, T; Praneeth D, V S

    2012-10-01

    To assess the in-vitro antibacterial activity and anti-inflammatory activity of orally administered different extracts (Hydro-alcoholic, methanolic, ethyl acetate and hexane) of Rauvolfia tetraphylla (R. tetraphylla) root bark in Carrageenan induced acute inflammation in rats. In-vitro antibacterial activity was evaluated for extracts against four Gram positive and four Gram negative bacteria by using cylinder plate assay. Hydro-alcoholic extract (70% v/v ethanol) at 200, 400 and 800 mg/kg doses and methanolic, ethyl acetate and hexane extracts at doses 100, 200 and 400 mg/kg were tested for anti-inflammatory activity in Carrageenan induced rat paw oedema model and paw thickness was measured every one hour up to 6 hrs. All extracts of R. tetraphylla root bark showed good zone of inhibition against tested bacterial strains. In Carrageenan induced inflammation model, hydro-alcoholic and methanolic extract of R. tetraphylla root bark at three different doses produced significant (P<0.001) reduction when compared to vehicle treated control group and hexane, ethyl acetate extracts. In the present study extracts of R. tetraphylla root bark shows good in-vitro antibacterial activity and in-vivo anti-inflammatory activity in rats.

  8. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive Never ripe tomato mutants

    PubMed Central

    Poór, Péter; Gémes, Katalin

    2011-01-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive Never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of ROS and a higher NO content in the apical root cells. In wild-type plants NO production seems to be ROS(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant ROS accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10−3 M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA. PMID:21847015

  9. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana

    PubMed Central

    Mei, Yuzhen; Yang, Xiuling; Huang, Changjun

    2018-01-01

    The whitefly-transmitted geminiviruses induce severe developmental abnormalities in plants. Geminivirus-encoded C4 protein functions as one of viral symptom determinants that could induce abnormal cell division. However, the molecular mechanism by which C4 contributes to cell division induction remains unclear. Here we report that tomato leaf curl Yunnan virus (TLCYnV) C4 interacts with a glycogen synthase kinase 3 (GSK3)/SHAGGY-like kinase, designed NbSKη, in Nicotiana benthamiana. Pro32, Asn34 and Thr35 of TLCYnV C4 are critical for its interaction with NbSKη and required for C4-induced typical symptoms. Interestingly, TLCYnV C4 directs NbSKη to the membrane and reduces the nuclear-accumulation of NbSKη. The relocalization of NbSKη impairs phosphorylation dependent degradation on its substrate-Cyclin D1.1 (NbCycD1;1), thereby increasing the accumulation level of NbCycD1;1 and inducing the cell division. Moreover, NbSKη-RNAi, 35S::NbCycD1;1 transgenic N. benthamiana plants have the similar phenotype as 35S::C4 transgenic N. benthamiana plants on callus-like tissue formation resulted from abnormal cell division induction. Thus, this study provides new insights into mechanism of how a viral protein hijacks NbSKη to induce abnormal cell division in plants. PMID:29293689

  10. Expression of Arabidopsis class 1 phytoglobin (AtPgb1) delays death and degradation of the root apical meristem during severe PEG-induced water deficit.

    PubMed

    Mira, Mohamed M; Huang, Shuanglong; Kapoor, Karuna; Hammond, Cassandra; Hill, Robert D; Stasolla, Claudio

    2017-11-28

    Maintenance of a functional root is fundamental to plant survival in response to some abiotic stresses, such as water deficit. In this study, we found that overexpression of Arabidopsis class 1 phytoglobin (AtPgb1) alleviated the growth retardation of polyethylene glycol (PEG)-induced water stress by reducing programmed cell death (PCD) associated with protein folding in the endoplasmic reticulum (ER). This was in contrast to PEG-stressed roots down-regulating AtPgb1 that exhibited extensive PCD and reduced expression of several attenuators of ER stress, including BAX Inhibitor-1 (BI-1). The death program experienced by the suppression of AtPgb1 in stressed roots was mediated by reactive oxygen species (ROS) and ethylene. Suppression of ROS synthesis or ethylene perception reduced PCD and partially restored root growth. The PEG-induced cessation of root growth was preceded by structural changes in the root apical meristem (RAM), including the loss of cell and tissue specification, possibly as a result of alterations in PIN1- and PIN4-mediated auxin accumulation at the root pole. These events were attenuated by the overexpression of AtPgb1 and aggravated when AtPgb1 was suppressed. Specifically, suppression of AtPgb1 compromised the functionality of the WOX5-expressing quiescent cells (QCs), leading to the early and premature differentiation of the adjacent columella stem cells and to a rapid reduction in meristem size. The expression and localization of other root domain markers, such as SCARECROW (SCR), which demarks the endodermis and QCs, and WEREWOLF (WER), which specifies the lateral root cap, were also most affected in PEG-treated roots with suppressed AtPgb1. Collectively, the results demonstrate that AtPgb1 exercises a protective role in roots exposed to lethal levels of PEG, and suggest a novel function of this gene in ensuring meristem functionality through the retention of cell fate specification. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine.

    PubMed

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Li, Xiaolin; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-06-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity.

  12. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats

    PubMed Central

    Barik, Rakesh; Jain, Sanjay; Qwatra, Deep; Joshi, Amit; Tripathi, Girraj Sharan; Goyal, Ravi

    2008-01-01

    Objective: To evaluate the antidiabetic activity of aqueous extract of roots of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats. Materials and Methods: Streptozotocin-nicotinamide induced type-II diabetic rats (n = 6) were administered aqueous root extract (250 and 500 mg/kg, p.o.) of Ichnocarpus frutescens or vehicle (gum acacia solution) or standard drug glibenclamide (0.25 mg/kg) for 15 days. Blood samples were collected by retro-orbital puncture and were analyzed for serum glucose on days 0, 5, 10, and 15 by using glucose oxidase-peroxidase reactive strips and a glucometer. For oral glucose tolerance test, glucose (2 g/kg, p.o.) was administered to nondiabetic control rats and the rats treated with glibenclamide (10 mg/kg, p.o.) and aqueous root extract of Ichnocarpus frutescens. The serum glucose levels were analyzed at 0, 30, 60, and 120 min after drug administration. The effect of the extract on the body weight of the diabetic rats was also observed. Results: The aqueous root extract of Ichnocarpus frutescens (250 and 500 mg/kg, p.o.) induced significant reduction (P < 0.05) of fasting blood glucose levels in streptozotocin-nicotinamide induced type-II diabetic rats on the 10th and 15th days. In the oral glucose tolerance test, the extract increased the glucose tolerance. It also brought about an increase in the body weight of diabetic rats. Conclusion: It is concluded that Ichnocarpus frutescens has significant antidiabetic activity as it lowers the fasting blood sugar level in diabetic rats and increases the glucose tolerance. PMID:21264156

  13. Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats.

    PubMed

    Barik, Rakesh; Jain, Sanjay; Qwatra, Deep; Joshi, Amit; Tripathi, Girraj Sharan; Goyal, Ravi

    2008-01-01

    To evaluate the antidiabetic activity of aqueous extract of roots of Ichnocarpus frutescens in streptozotocin-nicotinamide induced type-II diabetes in rats. Streptozotocin-nicotinamide induced type-II diabetic rats (n = 6) were administered aqueous root extract (250 and 500 mg/kg, p.o.) of Ichnocarpus frutescens or vehicle (gum acacia solution) or standard drug glibenclamide (0.25 mg/kg) for 15 days. Blood samples were collected by retro-orbital puncture and were analyzed for serum glucose on days 0, 5, 10, and 15 by using glucose oxidase-peroxidase reactive strips and a glucometer. For oral glucose tolerance test, glucose (2 g/kg, p.o.) was administered to nondiabetic control rats and the rats treated with glibenclamide (10 mg/kg, p.o.) and aqueous root extract of Ichnocarpus frutescens. The serum glucose levels were analyzed at 0, 30, 60, and 120 min after drug administration. The effect of the extract on the body weight of the diabetic rats was also observed. The aqueous root extract of Ichnocarpus frutescens (250 and 500 mg/kg, p.o.) induced significant reduction (P < 0.05) of fasting blood glucose levels in streptozotocin-nicotinamide induced type-II diabetic rats on the 10(th) and 15(th) days. In the oral glucose tolerance test, the extract increased the glucose tolerance. It also brought about an increase in the body weight of diabetic rats. It is concluded that Ichnocarpus frutescens has significant antidiabetic activity as it lowers the fasting blood sugar level in diabetic rats and increases the glucose tolerance.

  14. Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats.

    PubMed

    Donertas, Basak; Cengelli Unel, Cigdem; Aydin, Sule; Ulupinar, Emel; Ozatik, Orhan; Kaygisiz, Bilgin; Yildirim, Engin; Erol, Kevser

    2018-06-01

    Cisplatin is a widely used antineoplastic agent in the treatment of various cancers. Peripheral neuropathy is a well-known side effect of cisplatin and has potential to result in limiting and/or reducing the dose, decreasing the quality of life. Thus, effective treatments are needed. Agmatine is an endogenous neuromodulator that has been shown to exert antiallodynic effects in various animal studies. The first aim of this study was to investigate the in vitro effects of agmatine on cisplatin-induced neurotoxicity. Primary cultures of dorsal root ganglia (DRG) which are the primary target of drug injury were prepared. DRG cells were incubated with cisplatin (100, 200, 500 μm). Then, agmatine (10, 100, 500 μm) was administered with the submaximal concentration of cisplatin. Cisplatin caused concentration-dependent neurotoxicity, and agmatine did not alter this effect. The second aim was to investigate the effects of agmatine on cisplatin-induced peripheral neuropathy in rats and the influence of nitric oxide synthase (NOS) inhibitor, L-NAME, in this effect. Female Sprague Dawley rats received intraperitoneal saline (control), cisplatin (3 mg/kg), cisplatin+agmatine (100 mg/kg), or cisplatin+agmatine+L-NAME (10 mg/kg) once a week for 5 weeks. The mechanical allodynia, hot plate, and tail clip tests were performed, and DRG cells and sciatic nerves were analyzed. Agmatine and agmatine+L-NAME combination attenuated CIS-induced mechanical allodynia and degeneration in DRG cells and sciatic nerves. However, L-NAME did not potentiate the antiallodynic or neuroprotective effect of agmatine. These findings indicate that agmatine co-administration ameliorates cisplatin-induced neuropathy and may be a therapeutic alternative. © 2018 Société Française de Pharmacologie et de Thérapeutique.

  15. The Pea Seedling as a Model of Normal and Abnormal Morphogenesis

    ERIC Educational Resources Information Center

    Kurkdjian, Armen; And Others

    1974-01-01

    Describes several simple and inexpensive experiments designed to facilitate the study of normal and abnormal morphogenesis in the biology laboratory. Seedlings of the common garden pea are used in the experiments, and abnormal morphogenesis (tumors) are induced by a virulent strain of the crown-gall organism, Agrobacterium tumefaciens. (JR)

  16. A Role for Hypocretin/Orexin in Metabolic and Sleep Abnormalities in a Mouse Model of Non-metastatic Breast Cancer.

    PubMed

    Borniger, Jeremy C; Walker Ii, William H; Surbhi; Emmer, Kathryn M; Zhang, Ning; Zalenski, Abigail A; Muscarella, Stevie L; Fitzgerald, Julie A; Smith, Alexandra N; Braam, Cornelius J; TinKai, Tial; Magalang, Ulysses J; Lustberg, Maryam B; Nelson, Randy J; DeVries, A Courtney

    2018-05-14

    We investigated relationships among immune, metabolic, and sleep abnormalities in mice with non-metastatic mammary cancer. Tumor-bearing mice displayed interleukin-6 (IL-6)-mediated peripheral inflammation, coincident with altered hepatic glucose processing and sleep. Tumor-bearing mice were hyperphagic, had reduced serum leptin concentrations, and enhanced sensitivity to exogenous ghrelin. We tested whether these phenotypes were driven by inflammation using neutralizing monoclonal antibodies against IL-6; despite the reduction in IL-6 signaling, metabolic and sleep abnormalities persisted. We next investigated neural populations coupling metabolism and sleep, and observed altered activity within lateral-hypothalamic hypocretin/orexin (HO) neurons. We used a dual HO-receptor antagonist to test whether increased HO signaling was causing metabolic abnormalities. This approach rescued metabolic abnormalities and enhanced sleep quality in tumor-bearing mice. Peripheral sympathetic denervation prevented tumor-induced increases in serum glucose. Our results link metabolic and sleep abnormalities via the HO system, and provide evidence that central neuromodulators contribute to tumor-induced changes in metabolism. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Effects of Crown Scorch on Longleaf Pine Fine Roots

    Treesearch

    Mary Anne Sword; James D. Haywood

    1999-01-01

    Photosynthate production is reduced by foliage loss. Thus, scorch-induced decreases in the leaf area of longleaf pine (Pinus palustris Mill.) may reduce photosynthate allocation to roots. In this investigation the root carbohydrate concentrations and dynamics of longleaf pine after two intensities of prescribed burning were monitored. In...

  18. Molecular mechanisms responsible for interaction or differentiation between hydrotropism and gravitropism in roots

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Morohashi, Keita; Kobayashi, Akie; Miyazawa, Yutaka; Fujii, Nobuharu

    Roots display hydrotropism in response to moisture gradient, but it is often interfered by gravitropic response on Earth. We demonstrated that roots of cucumber seedlings showed positive hydrotropism when exposed to moisture gradient and rotated on a two-axis clinostat. Under stationary conditions, however, gravitropic response overcame hydrotropic response. Using this experimental system, we examined the role of auxin in hydrotropism. Cucumber roots showed severely reduced hydrotropic response when treated with inhibitors of auxin transport (efflux) or auxin action. mRNA accumulation of auxin-inducible gene, CsIAA1, became more abundant in the concave side of the hydrotropically responding roots, compared with that of the convex side. To understand the auxin dynamics in cucumber roots, we isolated cDNAs of auxin efflux carriers, CsPINs, and examined the localization of their mRNAs and proteins. Of these CsPINs, CsPIN5 was localized peripherally in the region between lateral root cap and elongation zone of cucumber roots. In hydrotropically responding roots, CsPIN5 proteins decreased in the convex side while it was maintained in the concave side. These results suggest that auxin dynamics and action play important roles in inducing hydrotropism, similarly to the case of gravitropism in roots. In cucumber roots, therefore, hydrotropism interacts with gravitropism, possibly by competitive manner in auxin dynamics. We are currently preparing spaceflight experiment for separating the hydrotropic response mechanism from that of gravitropism to understand the regulatory mechanisms of root growth orientation and determine whether hydrotropic response can be used for controlling growth orientation of roots in microgravity. On the other hand, we identified MIZ1 gene essential for hydrotropism but not gravitropism in Arabidopsis roots. Thus, there exist molecular mechanisms shared and differed in the two tropisms.

  19. Production and analysis of organic acids in hairy-root cultures of Isatis indigotica Fort. (indigo woad).

    PubMed

    Xu, Tiefeng; Zhang, Lei; Sun, Xiaofen; Zhang, Hanming; Tang, Kexuan

    2004-02-01

    Hairy roots were induced from both cotyledon and hypocotyl explants of Isatis indigotica Fort. (indigo woad) through transformation with Agrobaterium rhizogenes strain A4, R1601 and ATCC15834. The results showed that the cotyledons were the preferred explants to hypocotyls and A4 was the most suitable A. rhizogenes strain for the transformation and induction of hairy roots of I. indigotica. High-voltage paper electrophoresis (HVPE) analysis demonstrated the production of mannopine in hairy roots and confirmed the successful transfer of Ri T-DNA (root-inducing transferred DNA) of A. rhizogenes into the I. indigotica genome. Five organic acids, namely CPQ [3-(2-carboxyphenol)-4(3 H )-quinazolinone], syringic acid, salicylic acid, benzoic acid and 2-aminobenzoic acid, which were considered as main antiviral components of I. indigotica, were detected in natural roots, hairy roots and liquid media with high-performance capillary electrophoresis. The results showed CPQ production in hairy roots was significantly higher than that in natural roots. Our results also revealed that all the five organic acids could be excreted from hairy roots into liquid media, and the concentrations of organic acids in the liquid media paralleled those in hairy roots. The hairy roots of I. indigotica grew fast and showed an S-shaped growth curve that reached its apex on the day 24 of culture with a 20-fold increase in fresh weight compared with the starting inoculums. The accumulation of the two organic acids CPQ and syringic acid in liquid media paralleled the growth of hairy roots. MS [Murashige, T. and Skoog, F. (1962) Physiol. Plant. 15, 473-497] medium or half-strength MS medium supplemented with 30 g/l maltose was found to be best for hairy-root culture and accumulation of CPQ.

  20. The inhibiting effects of components of stinging nettle roots on experimentally induced prostatic hyperplasia in mice.

    PubMed

    Lichius, J J; Renneberg, H; Blaschek, W; Aumüller, G; Muth, C

    1999-10-01

    Direct implanting of fetal urogenital sinus (UGS) tissue into the ventral prostate gland of adult mice led to a 4-fold weight increase of the manipulated prostatic lobe. The induced growth could be reduced by the polysaccharide fraction (POLY-M) of the 20% methanolic extract of stinging nettle roots by 33.8%.

  1. The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs

    PubMed Central

    Nitsche, Michael A; Müller-Dahlhaus, Florian; Paulus, Walter; Ziemann, Ulf

    2012-01-01

    The term neuroplasticity encompasses structural and functional modifications of neuronal connectivity. Abnormal neuroplasticity is involved in various neuropsychiatric diseases, such as dystonia, epilepsy, migraine, Alzheimer's disease, fronto-temporal degeneration, schizophrenia, and post cerebral stroke. Drugs affecting neuroplasticity are increasingly used as therapeutics in these conditions. Neuroplasticity was first discovered and explored in animal experimentation. However, non-invasive brain stimulation (NIBS) has enabled researchers recently to induce and study similar processes in the intact human brain. Plasticity induced by NIBS can be modulated by pharmacological interventions, targeting ion channels, or neurotransmitters. Importantly, abnormalities of plasticity as studied by NIBS are directly related to clinical symptoms in neuropsychiatric diseases. Therefore, a core theme of this review is the hypothesis that NIBS-induced plasticity can explore and potentially predict the therapeutic efficacy of CNS-acting drugs in neuropsychiatric diseases. We will (a) review the basics of neuroplasticity, as explored in animal experimentation, and relate these to our knowledge about neuroplasticity induced in humans by NIBS techniques. We will then (b) discuss pharmacological modulation of plasticity in animals and humans. Finally, we will (c) review abnormalities of plasticity in neuropsychiatric diseases, and discuss how the combination of NIBS with pharmacological intervention may improve our understanding of the pathophysiology of abnormal plasticity in these diseases and their purposeful pharmacological treatment. PMID:22869014

  2. Bcr-Abl induces abnormal cytoskeleton remodeling, beta1 integrin clustering and increased cell adhesion to fibronectin through the Abl interactor 1 pathway.

    PubMed

    Li, Yingzhu; Clough, Nancy; Sun, Xiaolin; Yu, Weidong; Abbott, Brian L; Hogan, Christopher J; Dai, Zonghan

    2007-04-15

    Hematopoietic cells isolated from patients with Bcr-Abl-positive leukemia exhibit multiple abnormalities of cytoskeletal and integrin function. These abnormalities are thought to play a role in the pathogenesis of leukemia; however, the molecular events leading to these abnormalities are not fully understood. We show here that the Abi1 pathway is required for Bcr-Abl to stimulate actin cytoskeleton remodeling, integrin clustering and cell adhesion. Expression of Bcr-Abl induces tyrosine phosphorylation of Abi1. This is accompanied by a subcellular translocation of Abi1/WAVE2 to a site adjacent to membrane, where an F-actin-enriched structure containing the adhesion molecules such as beta1-integrin, paxillin and vinculin is assembled. Bcr-Abl-induced membrane translocation of Abi1/WAVE2 requires direct interaction between Abi1 and Bcr-Abl, but is independent of the phosphoinositide 3-kinase pathway. Formation of the F-actin-rich complex correlates with an increased cell adhesion to fibronectin. More importantly, disruption of the interaction between Bcr-Abl and Abi1 by mutations either in Bcr-Abl or Abi1 not only abolished tyrosine phosphorylation of Abi1 and membrane translocation of Abi1/WAVE2, but also inhibited Bcr-Abl-stimulated actin cytoskeleton remodeling, integrin clustering and cell adhesion to fibronectin. Together, these data define Abi1/WAVE2 as a downstream pathway that contributes to Bcr-Abl-induced abnormalities of cytoskeletal and integrin function.

  3. Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption.

    PubMed

    Eleftheriou, Eleftherios P; Michalopoulou, Vasiliki A; Adamakis, Ioannis-Dimosthenis S

    2015-05-01

    Because the detrimental effects of chromium (Cr) to higher plants have been poorly investigated, the present study was undertaken to verify the toxic attributes of hexavalent chromium [Cr(VI)] to plant mitotic microtubules (MTs), to determine any differential disruption of MTs during mitosis of taxonomically related species and to clarify the relationship between the visualized chromosomal aberrations and the Cr(VI)-induced MT disturbance. For this purpose, 5-day-old uniform seedlings of Vicia faba, Pisum sativum, Vigna sinensis and Vigna angularis, all belonging to the Fabaceae family, were exposed to 250 μM Cr(VI) supplied as potassium dichromate (K₂Cr₂O₇) for 24, 72 and 120 h and others in distilled water serving as controls. Root tip samples were processed for tubulin immunolabelling (for MT visualization) and DNA fluorescent staining (for chromosomal visualization). Microscopic preparations of cell squashes were then examined and photographed by confocal laser scanning microscopy (CLSM). Cr(VI) halted seedling growth turning roots brown and necrotic. Severe chromosomal abnormalities and differential disturbance of the corresponding MT arrays were found in all mitotic phases. In particular, in V. faba MTs were primarily depolymerized and replaced by atypical tubulin conformations, whereas in P. sativum, V. sinensis and V. angularis they became bundled in a time-dependent manner. In P. sativum, the effects were milder compared to those of the other species, but in all cases MT disturbance adversely affected the proper aggregation of chromosomes on the metaphase plate, their segregation at anaphase and organization of the new nuclei at telophase. Cr(VI) is very toxic to seedling growth. The particular effect depends on the exact stage the cell is found at the time of Cr(VI) entrance and is species-specific. Mitotic MT arrays are differentially deranged by Cr(VI) in the different species examined, even if they are taxonomically related, while their disturbance underlies chromosomal abnormalities. Results furthermore support the view that MTs may constitute a reliable, sensitive and universal subcellular marker for monitoring heavy metal toxicity.

  4. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa.

    PubMed

    Żabka, Aneta; Trzaskoma, Paweł; Winnicki, Konrad; Polit, Justyna Teresa; Chmielnicka, Agnieszka; Maszewski, Janusz

    2015-02-01

    Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. P2X₇ receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia.

    PubMed

    Liu, Shuangmei; Shi, Qingming; Zhu, Qicheng; Zou, Ting; Li, Guilin; Huang, An; Wu, Bing; Peng, Lichao; Song, Miaomiao; Wu, Qin; Xie, Qiuyu; Lin, Weijian; Xie, Wei; Wen, Shiyao; Zhang, Zhedong; Lv, Qiulan; Zou, Lifang; Zhang, Xi; Ying, Mofeng; Li, Guodong; Liang, Shangdong

    2015-06-01

    Irritable bowel syndrome (IBS) and inflammatory bowel disease often display visceral hypersensitivity. Visceral nociceptors after inflammatory stimulation generate afferent nerve impulses through dorsal root ganglia (DRG) transmitting to the central nervous system. ATP and its activated-purinergic 2X7 (P2X7) receptor play an important role in the transmission of nociceptive signal. Purinergic signaling is involved in the sensory transmission of visceral pain. Moxibustion is a therapy applying ignited mugwort directly or indirectly at acupuncture points or other specific parts of the body to treat diseases. Heat-sensitive acupoints are the corresponding points extremely sensitive to moxa heat in disease conditions. In this study, we aimed to investigate the relationship between the analgesic effect of moxibustion on a heat-sensitive acupoint "Dachangshu" and the expression levels of P2X7 receptor in rat DRG after chronic inflammatory stimulation of colorectal distension. Heat-sensitive moxibustion at Dachangshu acupoint inhibited the nociceptive signal transmission by decreasing the upregulated expression levels of P2X7 mRNA and protein in DRG induced by visceral pain, and reversed the abnormal expression of glial fibrillary acidic protein (GFAP, a marker of satellite glial cells) in DRG. Consequently, abdominal withdrawal reflex (AWR) score in a visceral pain model was reduced, and the pain threshold was elevated. Therefore, heat-sensitive moxibustion at Dachangshu acupoint can produce a therapeutic effect on IBS via inhibiting the nociceptive transmission mediated by upregulated P2X7 receptor.

  6. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    PubMed

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 129-133, 2004.

  7. Bacterial stimulation of adventitious rooting on in vitro cultured slash pine (Pinus elliottii Engelm.) seedling explants.

    PubMed

    Burns, J A; Schwarz, O J

    1996-02-01

    A bacterium has been isolated that initiates adventitious rooting when co-cultured under in vitro conditions with seedling-produced hypocotylary explants of slash pine (Pinus elliottii). Rooting efficiencies produced through bacterial-explant co-culture range from approximately 15% to greater than 90% over non-treated controls. Explant exposure to the root inducing bacterium has produced no obvious pathology in the regenerated plantlets. Seedling explants rooted by bacterial-explant co-culture have been successfully transitioned to ambient greenhouse conditions.

  8. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat.

    PubMed

    Sun, Chengliang; Liu, Lijuan; Yu, Yan; Liu, Wenjing; Lu, Lingli; Jin, Chongwei; Lin, Xianyong

    2015-06-01

    The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently alleviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat genotypes. γ-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle. © 2014 Institute of Botany, Chinese Academy of Sciences.

  9. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi.

    PubMed

    Lindahl, Björn D; de Boer, Wietse; Finlay, Roger D

    2010-07-01

    Ectomycorrhizal fungi dominate the humus layers of boreal forests. They depend on carbohydrates that are translocated through roots, via fungal mycelium to microsites in the soil, wherein they forage for nutrients. Mycorrhizal fungi are therefore sensitive to disruptive disturbances that may restrict their carbon supply. By disrupting root connections, we induced a sudden decline in mycorrhizal mycelial abundance and studied the consequent effects on growth and activity of free living, saprotrophic fungi and bacteria in pine forest humus, using molecular community analyses in combination with enzyme activity measurements. Ectomycorrhizal fungi had decreased in abundance 14 days after root severing, but the abundance of certain free-living ascomycetes was three times higher within 5 days of the disturbance compared with undisturbed controls. Root disruption also increased laccase production by an order of magnitude and cellulase production by a factor of 5. In contrast, bacterial populations seemed little affected. The results indicate that access to an external carbon source enables mycorrhizal fungi to monopolise the humus, but disturbances may induce rapid growth of opportunistic saprotrophic fungi that presumably use the dying mycorrhizal mycelium. Studies of such functional shifts in fungal communities, induced by disturbance, may shed light on mechanisms behind nutrient retention and release in boreal forests. The results also highlight the fundamental problems associated with methods that study microbial processes in soil samples that have been isolated from living roots.

  10. Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris.

    PubMed

    Hosseini, Sayed Mehdi; Bahramnejad, Bahman; Douleti Baneh, Hamed; Emamifar, Aryo; Goodwin, Paul H

    2017-04-01

    Resveratrol is a polyphenolic compound produced in very low levels in grapes. To achieve high yield of resveratrol in wild grape, three Agrobacterium rhizogenes strains, Ar318, ArA4 and LBA9402, were used to induce hairy roots following infection of internodes, nodes or petioles of in vitro grown Vitis vinifera subsp. sylvesteris accessions W2 and W16, and cultivar Rasha. The effects of inoculation time, age of explants, bacterial concentration and co-cultivation times were examined on the efficiency of the production of hairy roots. Strains Ar318, ArA4 and LBA9402 all induced hairy roots in the tested genotypes, but the efficiency of ArA4 strain was higher than the other strains. The highest hairy root production was with using internodes as explants. The transformation of hairy roots lines was confirmed by PCR detection of rolB gene. Half Murashige and Skoog (MS) medium was better for biomass production compared with MS medium. HPLC analysis of resveratrol production in the hairy root cultures showed that all the genotypes produced higher amounts of resveratrol than control roots. The highest amount of resveratrol was produced from W16 internode cultures, which was 31-fold higher than that of control root. Furthermore, TLC analysis showed that treatments of hairy roots with sodium acetate and jasmonate elevated resveratrol levels both in hairy root tissue and excreted into the half MS medium. These results demonstrate that endogenous and exogenous factors can affect resveratrol production in hairy root culture of grape, and this strategy could be used to increase low resveratrol production in grapes.

  11. Oxidative Stress Induced in Sunflower Seedling Roots by Aqueous Dry Olive-Mill Residues

    PubMed Central

    Garrido, Inmaculada; García-Sánchez, Mercedes; Casimiro, Ilda; Casero, Pedro Joaquin; García-Romera, Inmaculada; Ocampo, Juan Antonio; Espinosa, Francisco

    2012-01-01

    The contamination of soils with dry olive-mill residue can represent a serious problem as being an environmental stressor in plants. It has been demonstrated that inoculation of aqueous extract of olive oil-mill residue (ADOR) with saprobe fungi removes some phenolic compounds. In this paper we studied the effect of ADOR uninoculated or inoculated with saprobe fungi in sunflower seedling roots. The germination and root growth, O2·- generation, superoxide dismutase (SOD) and extracellular peroxidases (EC-POXs) activities, and the content of some metabolites involved in the tolerance of stress were tested. The roots germinated in ADOR uninoculated show a decrease in meristem size, resulting in a reduction of the root length and fresh weight, and in the number of layers forming the cortex, but did not alter the dry weight, protein and soluble amino acid content. ADOR caused the decreases in O2·- generation and EC-POX′s activities and protein oxidation, but enhanced SOD activity, lipid peroxidation and proline content. Fluorescence imaging showed that ADOR induced O2·- and H2O2 accumulation in the roots. The increase in SOD and the decrease in EC-POX′s activities might be involved in the enhancement of H2O2 content and lipid peroxidation. Control roots treated with ADOR for 10 min show an oxidative burst. Roots germinated in ADOR inoculated with saprobe fungi partially recovered normal levels of ROS, morphological characteristics and antioxidant activities. These results suggested that treatment with ADOR caused a phytotoxic effect during germination inducing an oxidative stress. The inoculation of ADOR with saprobe fungi limited the stress. PMID:23049960

  12. Thrombin impairs human endometrial endothelial angiogenesis; implications for progestin-only contraceptive-induced abnormal uterine bleeding.

    PubMed

    Shapiro, John P; Guzeloglu-Kayisli, Ozlem; Kayisli, Umit A; Semerci, Nihan; Huang, S Joseph; Arlier, Sefa; Larsen, Kellie; Fadda, Paolo; Schatz, Frederick; Lockwood, Charles J

    2017-06-01

    Progestin-only contraceptives induce abnormal uterine bleeding, accompanied by prothrombin leakage from dilated endometrial microvessels and increased thrombin generation by human endometrial stromal cell (HESC)-expressed tissue factor. Initial studies of the thrombin-treated HESC secretome identified elevated levels of cleaved chondroitin sulfate proteoglycan 4 (CSPG4), impairing pericyte-endothelial interactions. Thus, we investigated direct and CSPG4-mediated effects of thrombin in eliciting abnormal uterine bleeding by disrupting endometrial angiogenesis. Liquid chromatography/tandem mass spectrometry, enzyme-linked immunosorbent assay (ELISA) and quantitative real-time-polymerase chain reaction (PCR) evaluated conditioned medium supernatant and cell lysates from control versus thrombin-treated HESCs. Pre- and post-Depo medroxyprogesterone acetate (DMPA)-administered endometria were immunostained for CSPG4. Proliferation, apoptosis and tube formation were assessed in human endometrial endothelial cells (HEECs) incubated with recombinant human (rh)-CSPG4 or thrombin or both. Thrombin induced CSPG4 protein expression in cultured HESCs as detected by mass spectrometry and ELISA (p<.02, n=3). Compared to pre-DMPA endometria (n=5), stromal cells in post-DMPA endometria (n=5) displayed stronger CSPG4 immunostaining. In HEEC cultures (n=3), total tube-formed mesh area was significantly higher in rh-CSPG4 versus control (p<.05). However, thrombin disrupted HEEC tube formation by a concentration- and time-dependent reduction of angiogenic parameters (p<.05), whereas CSPG4 co-treatment did not reverse these thrombin-mediated effects. These results suggest that disruption of HEEC tube formation by thrombin induces aberrant angiogenesis and abnormal uterine bleeding in DMPA users. Mass spectrometry analysis identified several HESC-secreted proteins regulated by thrombin. Therapeutic agents blocking angiogenic effects of thrombin in HESCs can prevent or minimize progestin-only contraceptive-induced abnormal uterine bleeding. Copyright © 2017. Published by Elsevier Inc.

  13. Dynamics of Aerenchyma Distribution in the Cortex of Sulfate-deprived Adventitious Roots of Maize

    PubMed Central

    BOURANIS, DIMITRIS L.; CHORIANOPOULOU, STYLIANI N.; KOLLIAS, CHARALAMBOS; MANIOU, PHILIPPA; PROTONOTARIOS, VASSILIS E.; SIYIANNIS, VASSILIS F.; HAWKESFORD, MALCOLM J.

    2006-01-01

    • Background and Aims Aerenchyma formation in maize adventitious roots is induced in nutrient solution by the deprivation of sulfate (S) under well-oxygenated conditions. The aim of this research was to examine the extent of aerenchyma formation in the cortex of sulfate-deprived adventitious roots along the root axis, in correlation with the presence of reactive oxygen species (ROS), calcium levels and pH of cortex cells and root lignification. • Methods The morphometry of the second whorl of adventitious (W2) roots, subject to S-deprivation conditions throughout development, was recorded in terms of root length and lateral root length and distribution. W2 roots divided into sectors according to the mean length of lateral roots, and cross-sections of each were examined for aerenchyma. In-situ detection of alterations in ROS presence, calcium levels and pH were performed by means of fluorescence microscopy using H2DCF-DA, fluo-3AM and BCECF, respectively. Lignification was detected using the Wiesner test. • Key Results S-deprivation reduced shoot growth and enhanced root proliferation. Aerenchyma was found in the cortex of 77 % of the root length, particularly in the region of emerging or developing lateral roots. The basal and apical sectors had no aerenchyma and no aerenchyma connection was found with the shoot. S-deprivation resulted in alterations of ROS, calcium levels and pH in aerenchymatous sectors compared with the basal non-aerenchymatous region. Lignified epidermal layers were located at the basal and the proximal sectors. S-deprivation resulted in shorter lateral roots in the upper sectors and in a limited extension of the lignified layers towards the next lateral root carrying sector. • Conclusions Lateral root proliferation is accompanied by spatially localized induced cell death in the cortex of developing young maize adventitious roots during S-deprivation. PMID:16481362

  14. The protective effect of 18β-Glycyrrhetinic acid against UV irradiation induced photoaging in mice.

    PubMed

    Kong, Song-Zhi; Chen, Hai-Ming; Yu, Xiu-Ting; Zhang, Xie; Feng, Xue-Xuan; Kang, Xin-Huang; Li, Wen-Jie; Huang, Na; Luo, Hui; Su, Zi-Ren

    2015-01-01

    It has been confirmed that repeated exposure of skin to ultraviolet (UV) radiation results in cutaneous oxidative stress and inflammation, which act in concert to cause premature skin aging, well known as photoaging. 18β-Glycyrrhetinic acid (GA), widely used to treat various tissue inflammations, is the main active component of licorice root, and has also been shown to possess favorable anti-oxidative property and modulating immunity function. In the present study, we investigated the potential protective effect of GA on UV-induced skin photoaging in a mouse model. During the experimental period of ten consecutive weeks, the dorsal depilated skin of mice was treated with topical GA for 2 hours prior to UV irradiation. The results showed that GA pretreatment significantly alleviated the macroscopic and histopathological damages in mice skin caused by UV. Meanwhile, the data also indicated that GA markedly up-regulated the activities of the antioxidant enzymes (SOD, GSH-Px), and increased the content of skin collagen, while obviously decreased malonaldehyde level and inhibited high expressions of matrix metalloproteinase-1 (MMP-1) and -3 (MMP-3), as well as down-regulated the expression of inflammatory cytokines such as IL-6, TNF-α and IL-10. Taken together, these findings amply demonstrate that GA observably attenuates UV-induced skin photoaging mainly by virtue of its antioxidative and anti-inflammatory properties, as well as regulating the abnormal expression of MMP-1 and MMP-3. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Role of Auxin-Induced Reactive Oxygen Species in Root Gravitropism1

    PubMed Central

    Joo, Jung Hee; Bae, Yun Soo; Lee, June Seung

    2001-01-01

    We report our studies on root gravitropism indicating that reactive oxygen species (ROS) may function as a downstream component in auxin-mediated signal transduction. A transient increase in the intracellular concentration of ROS in the convex endodermis resulted from either gravistimulation or unilateral application of auxin to vertical roots. Root bending was also brought about by unilateral application of ROS to vertical roots pretreated with the auxin transport inhibitor N-1-naphthylphthalamic acid. Furthermore, the scavenging of ROS by antioxidants (N-acetylcysteine, ascorbic acid, and Trolox) inhibited root gravitropism. These results indicate that the generation of ROS plays a role in root gravitropism. PMID:11457956

  16. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    PubMed

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  17. Abnormal pupillary light reflex with chromatic pupillometry in Gaucher disease

    PubMed Central

    Narita, Aya; Shirai, Kentarou; Kubota, Norika; Takayama, Rumiko; Takahashi, Yukitoshi; Onuki, Takanori; Numakura, Chikahiko; Kato, Mitsuhiro; Hamada, Yusuke; Sakai, Norio; Ohno, Atsuko; Asami, Maya; Matsushita, Shoko; Hayashi, Anri; Kumada, Tomohiro; Fujii, Tatsuya; Horino, Asako; Inoue, Takeshi; Kuki, Ichiro; Asakawa, Ken; Ishikawa, Hitoshi; Ohno, Koyo; Nishimura, Yoko; Tamasaki, Akiko; Maegaki, Yoshihiro; Ohno, Kousaku

    2014-01-01

    The hallmark of neuronopathic Gaucher disease (GD) is oculomotor abnormalities, but ophthalmological assessment is difficult in uncooperative patients. Chromatic pupillometry is a quantitative method to assess the pupillary light reflex (PLR) with minimal patient cooperation. Thus, we investigated whether chromatic pupillometry could be useful for neurological evaluations in GD. In our neuronopathic GD patients, red light-induced PLR was markedly impaired, whereas blue light-induced PLR was relatively spared. In addition, patients with non-neuronopathic GD showed no abnormalities. These novel findings show that chromatic pupillometry is a convenient method to detect neurological signs and monitor the course of disease in neuronopathic GD. PMID:25356393

  18. Abnormal pupillary light reflex with chromatic pupillometry in Gaucher disease.

    PubMed

    Narita, Aya; Shirai, Kentarou; Kubota, Norika; Takayama, Rumiko; Takahashi, Yukitoshi; Onuki, Takanori; Numakura, Chikahiko; Kato, Mitsuhiro; Hamada, Yusuke; Sakai, Norio; Ohno, Atsuko; Asami, Maya; Matsushita, Shoko; Hayashi, Anri; Kumada, Tomohiro; Fujii, Tatsuya; Horino, Asako; Inoue, Takeshi; Kuki, Ichiro; Asakawa, Ken; Ishikawa, Hitoshi; Ohno, Koyo; Nishimura, Yoko; Tamasaki, Akiko; Maegaki, Yoshihiro; Ohno, Kousaku

    2014-02-01

    The hallmark of neuronopathic Gaucher disease (GD) is oculomotor abnormalities, but ophthalmological assessment is difficult in uncooperative patients. Chromatic pupillometry is a quantitative method to assess the pupillary light reflex (PLR) with minimal patient cooperation. Thus, we investigated whether chromatic pupillometry could be useful for neurological evaluations in GD. In our neuronopathic GD patients, red light-induced PLR was markedly impaired, whereas blue light-induced PLR was relatively spared. In addition, patients with non-neuronopathic GD showed no abnormalities. These novel findings show that chromatic pupillometry is a convenient method to detect neurological signs and monitor the course of disease in neuronopathic GD.

  19. Suppressive Potential of Paenibacillus Strains Isolated from the Tomato Phyllosphere against Fusarium Crown and Root Rot of Tomato

    PubMed Central

    Sato, Ikuo; Yoshida, Shigenobu; Iwamoto, Yutaka; Aino, Masataka; Hyakumachi, Mitsuro; Shimizu, Masafumi; Takahashi, Hideki; Ando, Sugihiro; Tsushima, Seiya

    2014-01-01

    The suppressive potentials of Bacillus and Paenibacillus strains isolated from the tomato phyllosphere were investigated to obtain new biocontrol candidates against Fusarium crown and root rot of tomato. The suppressive activities of 20 bacterial strains belonging to these genera were examined using seedlings and potted tomato plants, and two Paenibacillus strains (12HD2 and 42NP7) were selected as biocontrol candidates against the disease. These two strains suppressed the disease in the field experiment. Scanning electron microscopy revealed that the treated bacterial cells colonized the root surface, and when the roots of the seedlings were treated with strain 42NP7 cells, the cell population was maintained on the roots for at least for 4 weeks. Although the bacterial strains had no direct antifungal activity against the causal pathogen in vitro, an increase was observed in the antifungal activities of acetone extracts from tomato roots treated with the cells of both bacterial strains. Furthermore, RT-PCR analysis verified that the expression of defense-related genes was induced in both the roots and leaves of seedlings treated with the bacterial cells. Thus, the root-colonized cells of the two Paenibacillus strains were considered to induce resistance in tomato plants, which resulted in the suppression of the disease. PMID:24920171

  20. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations

    PubMed Central

    Curnow, Alison; Owen, Sara J.

    2016-01-01

    As lifetime exposure to ultraviolet (UV) radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay) was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow) and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB) was employed (data not shown), indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations. PMID:26953144

  1. An Evaluation of Root Phytochemicals Derived from Althea officinalis (Marshmallow) and Astragalus membranaceus as Potential Natural Components of UV Protecting Dermatological Formulations.

    PubMed

    Curnow, Alison; Owen, Sara J

    2016-01-01

    As lifetime exposure to ultraviolet (UV) radiation has risen, the deleterious effects have also become more apparent. Numerous sunscreen and skincare products have therefore been developed to help reduce the occurrence of sunburn, photoageing, and skin carcinogenesis. This has stimulated research into identifying new natural sources of effective skin protecting compounds. Alkaline single-cell gel electrophoresis (comet assay) was employed to assess aqueous extracts derived from soil or hydroponically glasshouse-grown roots of Althea officinalis (Marshmallow) and Astragalus membranaceus, compared with commercial, field-grown roots. Hydroponically grown root extracts from both plant species were found to significantly reduce UVA-induced DNA damage in cultured human lung and skin fibroblasts, although initial Astragalus experimentation detected some genotoxic effects, indicating that Althea root extracts may be better suited as potential constituents of dermatological formulations. Glasshouse-grown soil and hydroponic Althea root extracts afforded lung fibroblasts with statistically significant protection against UVA irradiation for a greater period of time than the commercial field-grown roots. No significant reduction in DNA damage was observed when total ultraviolet irradiation (including UVB) was employed (data not shown), indicating that the extracted phytochemicals predominantly protected against indirect UVA-induced oxidative stress. Althea phytochemical root extracts may therefore be useful components in dermatological formulations.

  2. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation

    PubMed Central

    2011-01-01

    Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals. PMID:21356101

  3. Characteristics of a root hair-less line of Arabidopsis thaliana under physiological stresses.

    PubMed

    Tanaka, Natsuki; Kato, Mariko; Tomioka, Rie; Kurata, Rie; Fukao, Yoichiro; Aoyama, Takashi; Maeshima, Masayoshi

    2014-04-01

    The plasma membrane-associated Ca(2+)-binding protein-2 of Arabidopsis thaliana is involved in the growth of root hair tips. Several transgenic lines that overexpress the 23 residue N-terminal domain of this protein under the control of the root hair-specific EXPANSIN A7 promoter lack root hairs completely. The role of root hairs under normal and stress conditions was examined in one of these root hair-less lines (NR23). Compared with the wild type, NR23 showed a 47% reduction in water absorption, decreased drought tolerance, and a lower ability to adapt to heat. Growth of NR23 was suppressed in media deficient in phosphorus, iron, calcium, zinc, copper, or potassium. Also, the content of an individual mineral in NR23 grown in normal medium, or in medium lacking a specific mineral, was relatively low. In wild-type plants, the primary and lateral roots produce numerous root hairs that become elongated under phosphate-deficient conditions; NR23 did not produce root hairs. Although several isoforms of the plasma membrane phosphate transporters including PHT1;1-PHT1;6 were markedly induced after growth in phosphate-deficient medium, the levels induced in NR23 were less than half those observed in the wild type. In phosphate-deficient medium, the amounts of acid phosphatase, malate, and citrate secreted from NR23 roots were 38, 9, and 16% of the levels secreted from wild-type roots. The present results suggest that root hairs play significant roles in the absorption of water and several minerals, secretion of acid phosphatase(s) and organic acids, and in penetration of the primary roots into gels.

  4. The influence of arbuscular mycorrhizae on root precision nutrient foraging of two pioneer plant species during early reclamation

    NASA Astrophysics Data System (ADS)

    Boldt-Burisch, Katja; Naeth, M. Anne

    2017-04-01

    On many post mining sites in the Lusatian Mining District (East Germany) soil heterogeneity consists of sandy soil with embedded clay-silt fragments. Those clays silt fragments might act as nutrient hotspots. Arbuscular mycorrhizal fungi in an infertile ecosystem could enhance a plant's ability to selectively forage for those nutrients and thus to improve plants nutrient supply. In our study we investigated whether silt-clay fragments within a sandy soil matrix induced preferential root growth of Lotus corniculatus and Calamagrostis epigeios, whether arbuscular mycorrhizae influenced root foraging patterns, and to what extent selective rooting in clay silt fragments influenced plant growth were addressed in this research. Soil types were sterile and non-sterile sandy soil and clay-silt fragments. Treatments were with and without arbuscular mycorrhizae, with and without soil solution, and soil solution and mycorrhizal inoculum combined. Root biomass, root density and intraradical fungal alkaline phosphatase activity and frequency were determined in fragments relative to sandy soil. Furthermore, temporal relationship of number of roots in fragments and plant height was assessed. Lotus corniculatus showed strong selective rooting into fragments especially with those plants treated with commercial cultivated arbuscular mycorrhizae; Calamagrostis epigeios did not. Without arbuscular mycorrhizae, L. corniculatus growth was significantly reduced and selective rooting did not occur. Selective rooting induced significant growth spurts of L. corniculatus. Roots in fragments had higher fungal alkaline phosphatase activity suggesting that mycorrhizal efficiency and related plants phosphorus supply is enhanced in roots in fragments. The application of cultivated arbuscular mycorrhizal fungi significantly and quickly influenced root foraging patterns, especially those of L. corniculatus, suggesting mycorrhizae may also enhance the ability of other plants to selectively forage for nutrients and could therefore play an important role in early plant establishment on infertile reclamation sites.

  5. Longxuetongluo Capsule Improves Erythrocyte Function against Lipid Peroxidation and Abnormal Hemorheological Parameters in High Fat Diet-Induced ApoE−/− Mice

    PubMed Central

    Zheng, Jiao; Liu, Binglin; Lun, Qixing; Yao, Weijuan; Zhao, Yunfang; Xiao, Wei; Huang, Wenzhe; Wang, Yonghua; Li, Jun; Tu, Pengfei

    2016-01-01

    Chinese dragon's blood, the red resin of Dracaena cochinchinensis, one of the renowned traditional medicines, has been used to facilitate blood circulation and disperse blood stasis for thousands of years. Phenolic compounds are considered to be responsible for its main biological activities. In this study, total phenolic compounds of Chinese dragon's blood were made into capsule (Longxuetongluo Capsule, LTC) and their effects on the abnormal hemorheological properties were examined by high fat diet (HFD) induced ApoE−/− mice. Compared to the model group, LTC recovered the abnormal hemorheological parameters in HFD-induced ApoE−/− mice by reducing whole blood viscosity (WBV) at high rate and improving erythrocyte function. In conclusion, LTC could ameliorate erythrocyte deformability and osmotic fragility through the reduction of lipid peroxidation on plasma and erythrocyte membranes in HFD-induced ApoE−/− mice, which supported the traditional uses of Chinese dragon's blood as an effective agent for improving blood microcirculation in hypercholesterolemia. PMID:26649134

  6. Tualang Honey Protects against BPA-Induced Morphological Abnormalities and Disruption of ERα, ERβ, and C3 mRNA and Protein Expressions in the Uterus of Rats

    PubMed Central

    Mohamad Zaid, Siti Sarah; Kassim, Normadiah M.; Othman, Shatrah

    2015-01-01

    Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties. PMID:26788107

  7. Abnormal stress echocardiography findings in cardiac amyloidosis.

    PubMed

    Ong, Kevin C; Askew, J Wells; Dispenzieri, Angela; Maleszewski, Joseph J; Klarich, Kyle W; Anavekar, Nandan S; Mulvagh, Sharon L; Grogan, Martha

    2016-06-01

    Cardiac involvement in immunoglobulin light chain (amyloid light chain, AL) amyloidosis is characterized by myocardial interstitial deposition but can also cause obstructive deposits in the coronary microvasculature. We retrospectively identified 20 patients who underwent stress echocardiography within 1 year prior to the histologic diagnosis of AL amyloidosis. Only patients with cardiac amyloidosis and no known obstructive coronary disease were included. Stress echocardiograms (13 exercise; 7 dobutamine) were performed for evaluation of dyspnea and/or chest pain. Stress-induced wall motion abnormalities (WMAs) occurred in 11 patients (55%), 4 of whom had normal left ventricular wall thickness. Coronary angiogram was performed in 9 of 11 patients and demonstrated no or mild epicardial coronary artery disease. Seven (54%) patients had an abnormal exercise blood pressure which occurred with similar likelihood between those with and without stress-induced WMAs. Stress-induced WMAs and abnormal exercise blood pressure may occur in patients with cardiac AL amyloidosis despite the absence of significant epicardial coronary artery disease. This finding should raise the possibility of cardiac amyloidosis even in the absence of significant myocardial thickening.

  8. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.

    PubMed

    Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi

    2011-06-01

    Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Root-Knot and Cyst Nematodes Activate Procambium-Associated Genes in Arabidopsis Roots.

    PubMed

    Yamaguchi, Yasuka L; Suzuki, Reira; Cabrera, Javier; Nakagami, Satoru; Sagara, Tomomi; Ejima, Chika; Sano, Ryosuke; Aoki, Yuichi; Olmo, Rocio; Kurata, Tetsuya; Obayashi, Takeshi; Demura, Taku; Ishida, Takashi; Escobar, Carolina; Sawa, Shinichiro

    2017-01-01

    Developmental plasticity is one of the most striking features of plant morphogenesis, as plants are able to vary their shapes in response to environmental cues. Biotic or abiotic stimuli often promote organogenesis events in plants not observed under normal growth conditions. Root-knot nematodes (RKNs) are known to parasitize multiple species of rooting plants and to induce characteristic tissue expansion called galls or root-knots on the roots of their hosts by perturbing the plant cellular machinery. Galls contain giant cells (GCs) and neighboring cells, and the GCs are a source of nutrients for the parasitizing nematode. Highly active cell proliferation was observed in galls. However, the underlying mechanisms that regulate the symptoms triggered by the plant-nematode interaction have not yet been elucidated. In this study, we deciphered the molecular mechanism of gall formation with an in vitro infection assay system using RKN Meloidogyne incognita , and the model plant Arabidopsis thaliana. By taking advantages of this system, we performed next-generation sequencing-based transcriptome profiling, and found that the expression of procambium identity-associated genes were enriched during gall formation. Clustering analyses with artificial xylogenic systems, together with the results of expression analyses of the candidate genes, showed a significant correlation between the induction of gall cells and procambium-associated cells. Furthermore, the promoters of several procambial marker genes such as ATHB8 , TDR and WOX4 were activated not only in M. incognita -induced galls, but similarly in M. javanica induced-galls and Heterodera schachtii -induced syncytia. Our findings suggest that phytoparasitic nematodes modulate the host's developmental regulation of the vascular stem cells during gall formation.

  10. Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).

    PubMed

    Tian, Hui; Drijber, Rhae A; Li, Xiaolin; Miller, Daniel N; Wienhold, Brian J

    2013-08-01

    Previous studies have found that some phosphate (Pi) starvation inducible transporter genes are downregulated and arbuscular mycorrhizal (AM) inducible Pi transporter genes are upregulated in maize roots associated with the fungus Glomus intraradices. However, little is known about the functional diversity of different AM fungal species in influencing the expression of Pi transporters in maize roots. Here, we studied the expression of two Pi transporter genes ZEAma:Pht1;3 (Pi starvation inducible) and ZEAma:Pht1;6 (AM inducible) in maize root colonized by different AM fungal inoculants. Non-mycorrhizal maize, maize colonized by Glomus deserticola (CA113), Glomus intraradices (IA506), Glomus mosseae (CA201), Gigaspora gigantea (MN922A) and the co-inoculation of all four species were established. The expression patterns of the two genes were quantified using real-time, reverse transcription polymerase chain reaction. The expression level of ZEAma:Pht1;6 was 26-135 times higher in AM plants than in non-mycorrhizal maize roots, whereas the expression level of ZEAma:Pht1;3 was five to 44 times lower in AM plants than in non-mycorrhizal plants. Expression of the two genes differed with inoculation treatment, and increasing the diversity of AM fungi in maize roots led to greater expression of ZEAma:Pht1;6 as well as Pi uptake in shoots. The expression of ZEAma:Pht1;6 was significantly positively correlated with AM colonization rate, concentration of AM biomarkers in maize roots, Pi uptake and dry weight of shoot, but negatively correlated with the expression of ZEAma:Pht1;3. Addition of Pi fertilizer at a low concentration significantly increased the expression of ZEAma:Pht1;6 but had no effect on the expression of ZEAma:Pht1;3.

  11. Fluorescence Resonance Energy Transfer-Sensitized Emission of Yellow Cameleon 3.60 Reveals Root Zone-Specific Calcium Signatures in Arabidopsis in Response to Aluminum and Other Trivalent Cations1[W][OA

    PubMed Central

    Rincón-Zachary, Magaly; Teaster, Neal D.; Sparks, J. Alan; Valster, Aline H.; Motes, Christy M.; Blancaflor, Elison B.

    2010-01-01

    Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca2+]cyt) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca2+]cyt were observed in response to glutamic acid (Glu), ATP, and aluminum (Al3+). Each chemical induced a [Ca2+]cyt signature that differed among the three treatments in regard to the onset, duration, and shape of the response. Glu and ATP triggered patterns of [Ca2+]cyt increases that were similar among the different root zones, whereas Al3+ evoked [Ca2+]cyt transients that had monophasic and biphasic shapes, most notably in the root transition zone. The Al3+-induced [Ca2+]cyt increases generally started in the maturation zone and propagated toward the cap, while the earliest [Ca2+]cyt response after Glu or ATP treatment occurred in an area that encompassed the meristem and elongation zone. The biphasic [Ca2+]cyt signature resulting from Al3+ treatment originated mostly from cortical cells located at 300 to 500 μ m from the root tip, which could be triggered in part through ligand-gated Glu receptors. Lanthanum and gadolinium, cations commonly used as Ca2+ channel blockers, elicited [Ca2+]cyt responses similar to those induced by Al3+. The trivalent ion-induced [Ca2+]cyt signatures in roots of an Al3+-resistant and an Al3+-sensitive mutant were similar to those of wild-type plants, indicating that the early [Ca2+]cyt changes we report here may not be tightly linked to Al3+ toxicity but rather to a general response to trivalent cations. PMID:20053711

  12. Fluorescence resonance energy transfer-sensitized emission of yellow cameleon 3.60 reveals root zone-specific calcium signatures in Arabidopsis in response to aluminum and other trivalent cations.

    PubMed

    Rincón-Zachary, Magaly; Teaster, Neal D; Sparks, J Alan; Valster, Aline H; Motes, Christy M; Blancaflor, Elison B

    2010-03-01

    Fluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca(2+)](cyt)) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca(2+)](cyt) were observed in response to glutamic acid (Glu), ATP, and aluminum (Al(3+)). Each chemical induced a [Ca(2+)](cyt) signature that differed among the three treatments in regard to the onset, duration, and shape of the response. Glu and ATP triggered patterns of [Ca(2+)](cyt) increases that were similar among the different root zones, whereas Al(3+) evoked [Ca(2+)](cyt) transients that had monophasic and biphasic shapes, most notably in the root transition zone. The Al(3+)-induced [Ca(2+)](cyt) increases generally started in the maturation zone and propagated toward the cap, while the earliest [Ca(2+)](cyt) response after Glu or ATP treatment occurred in an area that encompassed the meristem and elongation zone. The biphasic [Ca(2+)](cyt) signature resulting from Al(3+) treatment originated mostly from cortical cells located at 300 to 500 mu m from the root tip, which could be triggered in part through ligand-gated Glu receptors. Lanthanum and gadolinium, cations commonly used as Ca(2+) channel blockers, elicited [Ca(2+)](cyt) responses similar to those induced by Al(3+). The trivalent ion-induced [Ca(2+)](cyt) signatures in roots of an Al(3+)-resistant and an Al(3+)-sensitive mutant were similar to those of wild-type plants, indicating that the early [Ca(2+)](cyt) changes we report here may not be tightly linked to Al(3+) toxicity but rather to a general response to trivalent cations.

  13. Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa

    PubMed Central

    Wang, Chuang; Li, Shuai; Ng, Sophia; Zhang, Baocai; Zhou, Yihua; Whelan, James; Wu, Ping; Shou, Huixia

    2014-01-01

    Root hairs are important for nutrient uptake, anchorage, and plant–microbe interactions. From a population of rice (Oryza sativa) mutagenized by ethyl methanesulfonate (EMS), a short root hair2 (srh2) mutant was identified. In hydroponic culture, srh2 seedlings were significantly reduced in root hair length. Bubble-like extrusions and irregular epidermal cells were observed at the tips of srh2 root hairs when grown under acidic conditions, suggesting the possible reduction of the tensile strength of the cell wall in this mutant. Map-based cloning identified a mutation in the gene encoding xyloglucan (XyG) 6-xylosyltransferase (OsXXT1). OsXXT1 displays more than 70% amino acid sequence identity with the previously characterized Arabidopsis thaliana XYG XYLOSYL TRANSFERASE 1 (AtXXT1) and XYG XYLOSYL TRANSFERASE 2 (AtXXT2), which catalyse the transfer of xylose onto β-1,4-glucan chains. Furthermore, expression of the full-length coding sequence of OsXXT1 could complement the root hair defect, and slow growth and XyG synthesis in the Arabidopsis xxt1 xxt2 double mutant. Transgenic plants expressing the β-glucuronidase (GUS) reporter under the control of the OsXXT1 promoter displayed GUS expression in multiple tissues, most prominently in root epidermal cells. These results demonstrate the importance of OsXXT1 in maintaining cell wall structure and tensile strength in rice, a typical grass species that contains relatively low XyG content in cell walls. PMID:24834920

  14. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum

    PubMed Central

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-del Castillo, Virginia; Thon, Michael R.; Benito, Ernesto P.; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  15. Araloside A, an antiulcer constituent from the root bark of Aralia elata.

    PubMed

    Lee, Eun Bang; Kim, Oon Ja; Kang, Sam Sik; Jeong, Choonsik

    2005-03-01

    Araloside A, a potent inhibitor of gastric lesion and ulcer formation in rats, was isolated from the root bark of Aralia elata through a bioassay-guided separation procedure. The compound exhibited significant reduction of HCl.ethanol-induced gastric lesions and aspirin-induced gastric ulcers at oral doses of 50 and 100 mg/kg, respectively. These activities are comparable to those of cimetidine.

  16. Comparing methods for inducing root rot of Rhododendron with Phytophthora cinnamomi and P. plurivora

    USDA-ARS?s Scientific Manuscript database

    Root rot, caused by Phytophthora cinnamomi and P. plurivora in containerized Rhododendron, can cause significant losses in the nursery industry. Studies commonly use a 48 h flooding event to stimulate root infection. While flooding rarely occurs in container nurseries, plants may sit in a shallow pu...

  17. Association of proteomics changes with Al-sensitive root zones in switchgrass

    USDA-ARS?s Scientific Manuscript database

    In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 uM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cmlong root ti...

  18. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    PubMed

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  19. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  20. [Research of mechanism of secondary metabolites of phenolic acids in Salvia miltiorrhiza hairy root induced by jasmonate].

    PubMed

    Li, Wenyuan; Gao, Wei; Zhao, Jing; Cui, Guanghong; Shao, Aijuan; Huang, Luqi

    2012-01-01

    To study the mechanism of secondary metabolites of some phenolic acids in the hairy roots of Salvia miltiorrhiza induced by methyl jasmonate. The hairy roots of S. miltiorrhiza were induced with methyl jasmonate (100 micromol x L(-1)) and collected at 0, 12, 24, 36 h after treatment. Real-time quantitative PCR was used for detecting the mRNA expression level of the key enzyme genes on the secondary metabolites pathway of rosmarinic acid, while a LC-MS method was developed to determine the content of rosmarinic acid, caffeic acid and salvianolic acid B. The concentration of phenolic acids grew up and accumulated quickly in the hairy roots with exogenous signal molecule MJ induced, and it was showed that the content of CA and RA reached the maximum after 24 h and the content of LAB reached the maximum in 36 h by MJ induced. The induction mechanism may be activated with different levels of RA synthesis in PAL, 4CL, C4H genes on the key enzyme phenylalanine pathway and TAT, HPPR genes on tyrosine pathway. The time of gene expression was different, among them, 4CL and PAL genes were more important. In a word, the result can provide some basis data about the mechanism of secondary metabolites of phenolic acids for further research.

  1. Inducing gravitropic curvature of primary roots of Zea mays cv Ageotropic

    NASA Technical Reports Server (NTRS)

    Moore, R.; Evans, M. L.; Fondren, W. M.

    1990-01-01

    Primary roots of the mutant 'Ageotropic' cultivar of Zea mays are nonresponsive to gravity. Their root caps secrete little or no mucilage and touch the root only at the extreme apex. A gap separates the cap and root at the periphery of the cap. Applying mucilage from normal roots or substances with a consistency similar to that of mucilage to tips of mutant roots causes these roots to become strongly graviresponsive. Gravicurvature stops when these substances are removed. Caps of some mutants secrete small amounts of mucilage and are graviresponsive. These results indicate that (a) the lack of graviresponsiveness in the mutant results from disrupting the transport pathway between the cap and root, (b) movement of the growth-modifying signal from the cap to the root occurs via an apoplastic pathway, and (c) mucilage is necessary for normal communication between the root cap and root in Zea mays cv Ageotropic.

  2. Cytotoxic effects of cylindrospermopsin in mitotic and non-mitotic Vicia faba cells.

    PubMed

    Garda, Tamás; Riba, Milán; Vasas, Gábor; Beyer, Dániel; M-Hamvas, Márta; Hajdu, Gréta; Tándor, Ildikó; Máthé, Csaba

    2015-02-01

    Cylindrospermopsin (CYN) is a cyanobacterial toxin known as a eukaryotic protein synthesis inhibitor. We aimed to study its effects on growth, stress responses and mitosis of a eukaryotic model, Vicia faba (broad bean). Growth responses depended on exposure time (3 or 6d), cyanotoxin concentration, culture conditions (dark or continuous light) and V. faba cultivar ("Standard" or "ARC Egypt Cross"). At 6d of exposure, CYN had a transient stimulatory effect on root system growth, roots being possibly capable of detoxification. The toxin induced nucleus fragmentation, blebbing and chromosomal breaks indicating double stranded DNA breaks and programmed cell death. Root necrotic tissue was observed at 0.1-20 μg mL(-1) CYN that probably impeded toxin uptake into vascular tissue. Growth and cell death processes observed were general stress responses. In lateral root tip meristems, lower CYN concentrations (0.01-0.1 μg mL(-1)) induced the stimulation of mitosis and distinct mitotic phases, irrespective of culture conditions or the cultivar used. Higher cyanotoxin concentrations inhibited mitosis. Short-term exposure of hydroxylurea-synchronized roots to 5 μg mL(-1) CYN induced delay of mitosis that might have been related to a delay of de novo protein synthesis. CYN induced the formation of double, split and asymmetric preprophase bands (PPBs), in parallel with the alteration of cell division planes, related to the interference of cyanotoxin with protein synthesis, thus it was a plant- and CYN specific alteration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Epigenetic regulation of dorsal raphe GABA(B1a) associated with isolation-induced abnormal responses to social stimulation in mice.

    PubMed

    Araki, Ryota; Hiraki, Yosuke; Nishida, Shoji; Kuramoto, Nobuyuki; Matsumoto, Kinzo; Yabe, Takeshi

    2016-02-01

    In isolation-reared mice, social encounter stimulation induces locomotor hyperactivity and activation of the dorsal raphe nucleus (DRN), suggesting that dysregulation of dorsal raphe function may be involved in abnormal behaviors. In this study, we examined the involvement of dorsal raphe GABAergic dysregulation in the abnormal behaviors of isolation-reared mice. We also studied an epigenetic mechanism underlying abnormalities of the dorsal raphe GABAergic system. Both mRNA and protein levels of GABA(B1a), a GABA(B) receptor subunit, were increased in the DRN of isolation-reared mice, compared with these levels in group-reared mice. In contrast, mRNA levels for other GABAergic system-related genes (GABA(A) receptor α1, β2 and γ2 subunits, GABA(B) receptor 1b and 2 subunits, and glutamate decarboxylase 67 and 65) were unchanged. Intra-DRN microinjection of 0.06 nmol baclofen (a GABA(B) receptor agonist) exacerbated encounter-induced hyperactivity and aggressive behavior, while microinjection of 0.3 nmol phaclofen (a GABA(B) receptor antagonist) attenuated encounter-induced hyperactivity and aggressive behavior in isolation-reared mice. Furthermore, microinjection of 0.06 nmol baclofen elicited encounter-induced hyperactivity in group-reared mice. Neither baclofen nor phaclofen affected immobility time in the forced swim test and hyperactivity in a novel environment of isolation reared mice. Bisulfite sequence analyses revealed that the DNA methylation level of the CpG island around the transcription start site (TSS) of GABA(B1a) was decreased in the DRN of isolation-reared mice. Chromatin immunoprecipitation analysis showed that histone H3 was hyperacetylated around the TSS of GABA(B1a) in the DRN of isolation-reared mice. These findings indicate that an increase in dorsal raphe GABA(B1a) expression via epigenetic regulation is associated with abnormal responses to social stimulation such as encounter-induced hyperactivity and aggressive behavior in isolation-reared mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism

    PubMed Central

    Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie

    2016-01-01

    Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. PMID:27473572

  5. The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism.

    PubMed

    Zou, Jun-Jie; Zheng, Zhong-Yu; Xue, Shan; Li, Han-Hai; Wang, Yu-Ren; Le, Jie

    2016-10-01

    Gravitropism is vital for shaping directional plant growth in response to the forces of gravity. Signals perceived in the gravity-sensing cells can be converted into biochemical signals and transmitted. Sedimentation of amyloplasts in the columella cells triggers asymmetric auxin redistribution in root tips, leading to downward root growth. The actin cytoskeleton is thought to play an important role in root gravitropism, although the molecular mechanism has not been resolved. DISTORTED1 (DIS1) encodes the ARP3 subunit of the Arabidopsis Actin-Related Protein 2/3 (ARP2/3) complex, and the ARP3/DIS1 mutant dis1-1 showed delayed root curvature after gravity stimulation. Microrheological analysis revealed that the high apparent viscosity within dis1-1 central columella cells is closely associated with abnormal movement trajectories of amyloplasts. Analysis using a sensitive auxin input reporter DII-VENUS showed that asymmetric auxin redistribution was reduced in the root tips of dis1-1, and the actin-disrupting drug Latrunculin B increased the asymmetric auxin redistribution. An uptake assay using the membrane-selective dye FM4-64 indicated that endocytosis was decelerated in dis1-1 root epidermal cells. Treatment and wash-out with Brefeldin A, which inhibits protein transport from the endoplasmic reticulum to the Golgi apparatus, showed that cycling of the auxin-transporter PIN-FORMED (PIN) proteins to the plasma membrane was also suppressed in dis1-1 roots. The results reveal that ARP3/DIS1 acts in root gravitropism by affecting amyloplast sedimentation and PIN-mediated polar auxin transport through regulation of PIN protein trafficking. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Molecular Genetics of Root Thigmoresponsiveness in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Masson, Patrick H.

    2002-01-01

    The molecular mechanisms that allow plant roots to use gravity and touch as growth guides are investigated. We are using a molecular genetic strategy in Arabidopsis thaliana to study these processes. When Arabidopsis thaliana seedlings grow on tilted hard-agar surfaces, their roots develop a wavy pattern of growth which appears to derive from a succession of left-handed and right-handed circumnutation-like processes triggered by gravity and touch stimulation (Okada and Shimura, 1990; Rutherford et al., 1998; Rutherford and Masson, 1996). Interestingly, mutations that affect root waving on tilted hard-agar surfaces can be identified and characterized. Some of these mutations affect root gravitropism, while others appear to be responsible for the production of abnormal waves (no waves, compressed or square waves, coils) without affecting gravitropism. The specific objectives of this project were to functionally characterize two genes (WVD2 and WVD6) which are required for root waving on tilted agar surfaces, but not for root gravitropism. Specific objectives included a physiological and cytological analysis of the mutants, and molecular cloning and characterization of the corresponding genes. As summarized in this paper, we have reached these objectives. We have also identified and partially characterized other mutations that affect root skewing on hard-agar surfaces (sku5-1 and ago1), and have completed our work on the root-wave phenotype associated with mutations in genes of the tryptophan biosynthesis pathway (Lynn et al., 1999; Rutherford et al., 1998; Sedbrook et al., 2000, 2002). We briefly describe our progress on the cloning and characterization of WVD6, WVD2 and SKU5, and provide a list of papers (published, or in preparation) that derived from this grant. We also discuss the biological implications of our findings, with special emphasis on the analysis of WVD2.

  7. Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in Arabidopsis Root Thigmomorphogenesis[C][W

    PubMed Central

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H. Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M.

    2009-01-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane–localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gβ subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism. PMID:19602625

  8. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    PubMed

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  9. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress

    PubMed Central

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M.

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca2+) on the process of adventitious rooting in cucumber (Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca2+. The application of Ca2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca2+/CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na2WO4) and sodium azide (NaN3). This gives an indication that Ca2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca2+/CaM may act as a downstream signaling molecule in NO-induced development of adventitious root under simulated osmotic stress through improving the photosynthetic performance of leaves and activating antioxidative system in plants. PMID:29021804

  10. Calcium and Calmodulin Are Involved in Nitric Oxide-Induced Adventitious Rooting of Cucumber under Simulated Osmotic Stress.

    PubMed

    Niu, Lijuan; Yu, Jian; Liao, Weibiao; Yu, Jihua; Zhang, Meiling; Dawuda, Mohammed M

    2017-01-01

    Osmotic stress is a major form of abiotic stress that adversely affects growth and development of plants and subsequently reduces yield and quality of crops. In this study, the effect of nitric oxide (NO) and calcium (Ca 2+ ) on the process of adventitious rooting in cucumber ( Cucumis sativus L.) under simulated osmotic stress was investigated. The results revealed that the effect of exogenous NO and Ca 2+ in promoting the development of adventitious roots in cucumber seedlings under simulated osmotic stress was dose-dependent, with a maximal biological response at 10 μM NO donor nitroprusside (SNP) or 200 μM Ca 2+ . The application of Ca 2+ chelators or channel inhibitors and calmodulin (CaM) antagonists significantly reversed NO-induced adventitious rooting, implying that endogenous Ca 2+ /CaM might be involved in NO-induced adventitious rooting under osmotic stress. Moreover, intracellular Ca amount was also increased by NO in cucumber hypocotyls during the development of adventitious roots under osmotic stress. This increase of endogenous Ca 2+ was inhibited by NO specific scavenger 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), nitrate reductase inhibitors tungstate (Na 2 WO 4 ) and sodium azide (NaN 3 ) . This gives an indication that Ca 2+ might be a downstream signaling molecule in the adventitious root development by NO under osmotic condition. The results also show that NO or Ca 2+ play a positive role in improving plant water status and photosynthetic system by increasing chlorophyll content and photochemical activity in leaves. Furthermore, NO and Ca 2+ treatment might alleviate the negative effects of osmotic stress by decreasing membrane damage and reactive oxygen species (ROS) production by enhancing the activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX). Therefore, Ca 2+ /CaM may act as a downstream signaling molecule in NO-induced development of adventitious root under simulated osmotic stress through improving the photosynthetic performance of leaves and activating antioxidative system in plants.

  11. Soybean NADP-Malic Enzyme Functions in Malate and Citrate Metabolism and Contributes to Their Efflux under Al Stress.

    PubMed

    Zhou, Ying; Yang, Zhenming; Xu, Yuezi; Sun, Haoran; Sun, Zhitao; Lin, Bao; Sun, Wenjing; You, Jiangfeng

    2017-01-01

    Malate accumulation has been suggested to balance Al-induced citrate synthesis and efflux in soybean roots. To test this hypothesis, characteristics of Al-induced accumulation and efflux of citrate and malate were compared between two soybean genotypes combining a functional analysis of GmME1 putatively encode a cytosolic NADP-malic enzyme. Similar amounts of citrate were released, and root elongation was equally inhibited before 8 h of Al treatment of Jiyu 70 and Jiyu 62 cultivars. Jiyu 70 began to secrete more citrate and exhibited higher Al resistance than did Jiyu 62 at 12 h. A sustained increase in internal malate and citrate concentrations was observed in Jiyu 70 at 24 h of Al treatment. However, Jiyu 62 decreased its malate concentration at 12 h and its citrate concentration at 24 h of Al treatment. GmME1 localized to the cytoplast and clustered closely with cytosolic malic enzymes AtME2 and SgME1 and was constitutively expressed in the roots. Al treatment induced higher NADP-malic enzyme activities and GmME1 expression levels in Jiyu 70 than in Jiyu 62 within 24 h. Compared with wild-type hairy roots, over-expressing GmME1 in hairy roots ( GmME1 -OE) produced higher expression levels of GmME1 but did not change the expression patterns of either of the putative citrate transporter genes GmAACT1 and GmFRDL or the malate transporter gene GmALMT1 , with or without Al treatment. GmME1 -OE showed a higher internal concentration and external efflux of both citrate and malate at 4 h of Al stress. Lighter hematoxylin staining and lower Al contents in root apices of GmME1 -OE hairy roots indicated greater Al resistance. Comprehensive experimental results suggest that sustaining Al-induced citrate efflux depends on the malate pool in soybean root apices. GmME1 encodes a cytosolic malic enzyme that contributes to increased internal malate and citrate concentrations and their external efflux to confer higher Al resistance.

  12. Examining the Relationship Between Edaphic Variables and the Rooting System of Abies concolor in the southern Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Jackson, R. B.; Tumber-Davila, S. J.

    2017-12-01

    An increase in the frequency and severity of droughts has been associated with the changing climate. These events have the potential to alter the composition and biogeography of forests, as well as increase tree mortality related to climate-induced stress. Already, an increase in tree mortality has been observed throughout the US. The recent drought in California led to millions of tree mortalities in the southern Sierra Nevada alone. In order to assess the potential impacts of these events on forest systems, it is imperative to understand what factors contribute to tree mortality. As plants become water-stressed, they may invest carbon more heavily belowground to reach a bigger pool of water, but their ability to adapt may be limited by the characteristics of the soil. In the Southern Sierra Critical Zone Observatory, a high tree mortality zone, we have selected both dead and living trees to examine the factors that contribute to root zone variability and belowground biomass investment by individual plants. A series of 15 cores surrounding the tree were taken to collect root and soil samples. These were then used to compare belowground rooting distributions with soil characteristics (texture, water holding capacity, pH, electric conductivity). Abies concolor is heavily affected by drought-induced mortality, therefore the rooting systems of dead Abies concolor trees were examined to determine the relationship between their rooting systems and environmental conditions. Examining the relationship between soil characteristics and rooting systems of trees may shed light on the plasticity of rooting systems and how trees adapt based on the characteristics of its environment. A better understanding of the factors that contribute to tree mortality can improve our ability to predict how forest systems may be impacted by climate-induced stress. Key words: Root systems, soil characteristics, drought, adaptation, terrestrial carbon, forest ecology

  13. Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation

    PubMed Central

    Moura, Daniel S.

    2014-01-01

    Rapid alkalinization factor (RALF) is a peptide signal that plays a basic role in cell biology and most likely regulates cell expansion. In this study, transgenic Arabidopsis thaliana lines with high and low levels of AtRALF1 transcripts were used to investigate this peptide’s mechanism of action. Overexpression of the root-specific isoform AtRALF1 resulted in reduced cell size. Conversely, AtRALF1 silencing increased root length by increasing the size of root cells. AtRALF1-silenced plants also showed an increase in the number of lateral roots, whereas AtRALF1 overexpression produced the opposite effect. In addition, four AtRALF1-inducible genes were identified: two genes encoding proline-rich proteins (AtPRP1 and AtPRP3), one encoding a hydroxyproline-rich glycoprotein (AtHRPG2), and one encoding a xyloglucan endotransglucosylase (TCH4). These genes were expressed in roots and involved in cell-wall rearrangement, and their induction was concentration dependent. Furthermore, AtRALF1-overexpressing plants were less sensitive to exogenous brassinolide (BL); upon BL treatment, the plants showed no increase in root length and a compromised increase in hypocotyl elongation. In addition, the treatment had no effect on the number of emerged lateral roots. AtRALF1 also induces two brassinosteroid (BR)-downregulated genes involved in the BR biosynthetic pathway: the cytochrome P450 monooxygenases CONSTITUTIVE PHOTOMORPHISM AND DWARFISM (CPD) and DWARF4 (DWF4). Simultaneous treatment with both AtRALF1 and BL caused a reduction in AtRALF1-inducible gene expression levels, suggesting that these signals may compete for components shared by both pathways. Taken together, these results indicate an opposing effect of AtRALF1 and BL, and suggest that RALF’s mechanism of action could be to interfere with the BR signalling pathway. PMID:24620000

  14. Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    PubMed Central

    Hao, Zhipeng; Fayolle, Léon; van Tuinen, Diederik; Chatagnier, Odile; Gianinazzi, Silvio; Gianinazzi-Pearson, Vivienne

    2012-01-01

    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity. PMID:22407649

  15. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition.

    PubMed

    Wang, Y H; Garvin, D F; Kochian, L V

    2001-09-01

    A subtractive tomato (Lycopersicon esculentum) root cDNA library enriched in genes up-regulated by changes in plant mineral status was screened with labeled mRNA from roots of both nitrate-induced and mineral nutrient-deficient (-nitrogen [N], -phosphorus, -potassium [K], -sulfur, -magnesium, -calcium, -iron, -zinc, and -copper) tomato plants. A subset of cDNAs was selected from this library based on mineral nutrient-related changes in expression. Additional cDNAs were selected from a second mineral-deficient tomato root library based on sequence homology to known genes. These selection processes yielded a set of 1,280 mineral nutrition-related cDNAs that were arrayed on nylon membranes for further analysis. These high-density arrays were hybridized with mRNA from tomato plants exposed to nitrate at different time points after N was withheld for 48 h, for plants that were grown on nitrate/ammonium for 5 weeks prior to the withholding of N. One hundred-fifteen genes were found to be up-regulated by nitrate resupply. Among these genes were several previously identified as nitrate responsive, including nitrate transporters, nitrate and nitrite reductase, and metabolic enzymes such as transaldolase, transketolase, malate dehydrogenase, asparagine synthetase, and histidine decarboxylase. We also identified 14 novel nitrate-inducible genes, including: (a) water channels, (b) root phosphate and K(+) transporters, (c) genes potentially involved in transcriptional regulation, (d) stress response genes, and (e) ribosomal protein genes. In addition, both families of nitrate transporters were also found to be inducible by phosphate, K, and iron deficiencies. The identification of these novel nitrate-inducible genes is providing avenues of research that will yield new insights into the molecular basis of plant N nutrition, as well as possible networking between the regulation of N, phosphorus, and K nutrition.

  16. Gamma-tubulin-containing abnormal centrioles are induced by insufficient Plk4 in human HCT116 colorectal cancer cells.

    PubMed

    Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa

    2009-06-15

    Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.

  17. Drug-Induced Urinary Calculi

    PubMed Central

    Matlaga, Brian R; Shah, Ojas D; Assimos, Dean G

    2003-01-01

    Urinary calculi may be induced by a number of medications used to treat a variety of conditions. These medications may lead to metabolic abnormalities that facilitate the formation of stones. Drugs that induce metabolic calculi include loop diuretics; carbonic anhydrase inhibitors; and laxatives, when abused. Correcting the metabolic abnormality may eliminate or dramatically attenuate stone activity. Urinary calculi can also be induced by medications when the drugs crystallize and become the primary component of the stones. In this case, urinary supersaturation of the agent may promote formation of the calculi. Drugs that induce calculi via this process include magnesium trisilicate; ciprofloxacin; sulfa medications; triamterene; indinavir; and ephedrine, alone or in combination with guaifenesin. When this situation occurs, discontinuation of the medication is usually necessary. PMID:16985842

  18. Cassava root diet induces low pyruvate levels.

    PubMed

    Golay, Van K

    2010-01-01

    The high cyanogenic-glucoside carbohydrate of the cassava root (Manihot esculenta) has special properties that make it an ideal therapeutic food for lowering nicotinamide adenine dinucleotide reduced form (NADH) and inducing Sirtuin (Sirt) gene overexpression when eaten in an exclusive mono-food diet regime. The author, using himself as the sole test subject, repeatedly induced low pyruvate levels (reflective of NADH levels) after being on the diet for 1-2 weeks at a time. The possible influences of exclusive cassava dieting on redox control and Sirtuin activation will be discussed.

  19. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses.

    PubMed

    Mousavi Kouhi, Seyed Mousa; Lahouti, Mehrdad; Ganjeali, Ali; Entezari, Mohammad H

    2015-07-01

    Rapid development of nanotechnology in recent years has raised concerns about nanoparticle (NPs) release into the environment and its adverse effects on living organisms. The present study is the first comprehensive report on the anatomical and ultrastructural changes of a variety of cells after long-term exposure of plant to NPs or bulk material particles (BPs). Light and electron microscopy revealed some anatomical and ultrastructural modifications of the different types of cell in the root and leaf, induced by both types of treatment. Zinc oxide (ZnO) BPs-induced modifications were surprisingly more than those induced by ZnO NPs. The modifications induced by ZnO BPs or ZnO NPs were almost similar to those induced by excess Zn. Zn content of the root and leaf of both ZnO NPs- and ZnO BPs-treated plants was severely increased, where the increase was greater in the plants treated with ZnO BPs. Overall, these results indicate that the modifications induced by ZnO particles can be attributed, at least partly, to the Zn(2+) dissolution by ZnO particles rather than their absorption by root and their subsequent effects.

  20. Regeneration of Solanum nigrum by somatic embryogenesis, involving frog egg-like body, a novel structure.

    PubMed

    Xu, Kedong; Chang, Yunxia; Liu, Kun; Wang, Feige; Liu, Zhongyuan; Zhang, Ting; Li, Tong; Zhang, Yi; Zhang, Fuli; Zhang, Ju; Wang, Yan; Niu, Wei; Jia, Shuzhao; Xie, Hengchang; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    A new protocol was established for the regeneration of Solanum nigrum by frog egg-like bodies (FELBs), which are novel somatic embryogenesis (SE) structures induced from the root, stem, and leaf explants. The root, stem, and leaf explants (93.33%, 85.10%, and 100.00%, respectively) were induced to form special embryonic calli on Murashige and Skoog (MS) medium containing 1.0 mg/L 2,4-dichlorophenoxyacetic acid, under dark condition. Further, special embryonic calli from the root, stem, and leaf explants (86.97%, 83.30%, and 99.47%, respectively) were developed into FELBs. Plantlets of FELBs from the three explants were induced in vitro on MS medium supplemented with 5.0 mg/L 6-benzylaminopurine and 0.1 mg/L gibberellic acid, and 100.00% plantlet induction rates were noted. However, plantlet induction in vivo on MS medium supplemented with 20 mg/L thidiazuron showed rates of 38.63%, 15.63%, and 61.30% for the root, stem, and leaf explants, respectively, which were lower than those of the in vitro culture. Morphological and histological analyses of FELBs at different development stages revealed that they are a novel type of SE structure that developed from the mesophyll (leaf) or cortex (stem and root) cells of S. nigrum.

  1. Evaluation of in-vitro antibacterial activity and anti-inflammatory activity for different extracts of Rauvolfia tetraphylla L. root bark

    PubMed Central

    Ganga Rao, B.; Umamaheswara Rao, P.; Sambasiva Rao, E.; Mallikarjuna Rao, T.; Praneeth. D, V. S.

    2012-01-01

    Objective To assess the in-vitro antibacterial activity and anti-inflammatory activity of orally administered different extracts (Hydro-alcoholic, methanolic, ethyl acetate and hexane) of Rauvolfia tetraphylla (R. tetraphylla) root bark in Carrageenan induced acute inflammation in rats. Methods In-vitro antibacterial activity was evaluated for extracts against four Gram positive and four Gram negative bacteria by using cylinder plate assay. Hydro-alcoholic extract (70% v/v ethanol) at 200, 400 and 800 mg/kg doses and methanolic, ethyl acetate and hexane extracts at doses 100, 200 and 400 mg/kg were tested for anti-inflammatory activity in Carrageenan induced rat paw oedema model and paw thickness was measured every one hour up to 6 hrs. Results All extracts of R. tetraphylla root bark showed good zone of inhibition against tested bacterial strains. In Carrageenan induced inflammation model, hydro-alcoholic and methanolic extract of R. tetraphylla root bark at three different doses produced significant (P<0.001) reduction when compared to vehicle treated control group and hexane, ethyl acetate extracts. Conclusions In the present study extracts of R. tetraphylla root bark shows good in-vitro antibacterial activity and in-vivo anti-inflammatory activity in rats. PMID:23569853

  2. Contributory factors in herb-induced fatal aconite poisoning.

    PubMed

    Chan, Thomas Y K

    2012-11-30

    Detailed investigations of all reported cases of herb-induced aconite poisoning are necessary to identify the major contributory causes so that preventive measures can be formulated. In the present review of 12 fatal cases that were published in the medical journals during 1992 and 2011, the available clinical data and forensic toxicological analyses indicated that poor post-harvest processing of aconite roots, use of greater than the recommended doses and inadequate boiling of processed aconite roots during decoction preparation were important contributory factors in herb-induced aconite poisoning. Under such circumstances, the actual amount of Aconitum alkaloids ingested was much larger than intended. Good manufacturing practice to ensure adequate processing of aconite roots, use of the recommended doses, clear instructions for the patients and their compliance during decoction preparation are important preventive measures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1990-01-01

    Gravity-induced changes in intracellular potentials in primary roots of 2-day-old mung bean (Vigna mungo L. cv. black matpe) seedlings were investigated using glass microelectrodes held by 3-dimensional hydraulic micro-drives. The electrodes were inserted into outer cortical cells within the elongation zone. Intracellular potentials, angle of root orientation with respect to gravity, and position within the root of the impaled cortical cell were measured simultaneously. Gravistimulation caused intracellular potential changes in cortical cells of the elongation zone. When the roots were oriented vertically, the intracellular potentials of the outer cortical cells (2 mm behind the root apex) were approximately - 115 mV. When the roots were placed horizontally cortical cells on the upper side hyperpolarized to - 154 mV within 30 s while cortical cells on the lower side depolarized to about - 62 mV. This electrical asymmetry did not occur in cells of the maturation zone. Because attempts to insert the electrode into cells of the root cap were unsuccessful, these cells were not measured. The hyperpolarization of cortical cells on the upper side was greatly reduced upon application of N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of respiratory energy coupling. When stimulated roots were returned to the vertical, the degree of hyperpolarization of cortical cells on the previous upper side decreased within 30 s and approached that of cortical cells in non-stimulated roots. This cycle of hyperpolarization/loss of hyperpolarization was repeatable at least ten times by alternately turning the root from the vertical to the horizontal and back again. The very short (<30 s) lag period of these electrical changes indicates that they may result from stimulus-perception and transduction within the elongation zone rather than from transmission of a signal from the root cap.

  4. Polyamines induce adaptive responses in water deficit stressed cucumber roots.

    PubMed

    Kubiś, Jan; Floryszak-Wieczorek, Jolanta; Arasimowicz-Jelonek, Magdalena

    2014-01-01

    The aim of this study was to investigate the effect of exogenous polyamines (PAs) on the membrane status and proline level in roots of water stressed cucumber (Cucumis sativus cv. Dar) seedlings. It was found that water shortage resulted in an increase of membrane injury, lipoxygenase (LOX) activity, lipid peroxidation and proline concentration in cucumber roots during progressive dehydration. PA pretreatment resulted in a distinct reduction of the injury index, and this effect was reflected by a lower stress-evoked LOX activity increase and lipid peroxide levels at the end of the stress period. In contrast, PA-supplied stressed roots displayed a higher proline accumulation. The presented results suggest that exogenous PAs are able to alleviate water deficit-induced membrane permeability and diminish LOX activity. Observed changes were accompanied by an accumulation of proline, suggesting that the accumulation of this osmolyte might be another possible mode of action for PAs to attain higher membrane stability, and in this way mitigate water deficit effects in roots of cucumber seedlings.

  5. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots

    PubMed Central

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R.; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0–8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure. PMID:26402793

  6. Ntann12 annexin expression is induced by auxin in tobacco roots

    PubMed Central

    Baucher, Marie; Oukouomi Lowe, Yves; Vandeputte, Olivier M.; Mukoko Bopopi, Johnny; Moussawi, Jihad; Vermeersch, Marjorie; Mol, Adeline; El Jaziri, Mondher; Homblé, Fabrice; Pérez-Morga, David

    2011-01-01

    Ntann12, encoding a polypeptide homologous to annexins, was found previously to be induced upon infection of tobacco with the bacterium Rhodococcus fascians. In this study, Ntann12 is shown to bind negatively charged phospholipids in a Ca2+-dependent manner. In plants growing in light conditions, Ntann12 is principally expressed in roots and the corresponding protein was mainly immunolocalized in the nucleus. Ntann12 expression was inhibited following plant transfer to darkness and in plants lacking the aerial part. However, an auxin (indole-3-acetic acid) treatment restored the expression of Ntann12 in the root system in dark conditions. Conversely, polar auxin transport inhibitors such as 1-naphthylphthalamic acid (NPA) or 2,3,5-triiodobenzoic acid (TIBA) inhibited Ntann12 expression in light condition. These results indicate that the expression of Ntann12 in the root is linked to the perception of a signal in the aerial part of the plant that is transmitted to the root via polar auxin transport. PMID:21543519

  7. Suppression of asymmetric acid efflux and gravitropism in maize roots treated with auxin transport inhibitors of sodium orthovanadate

    NASA Technical Reports Server (NTRS)

    Mulkey, T. J.; Evans, M. L.

    1982-01-01

    In gravitropically stimulated roots of maize (Zea mays L., hybrid WF9 x 38MS), there is more acid efflux on the rapidly growing upper side than on the slowly growing lower side. In light of the Cholodny/Went hypothesis of gravitropism which states that gravitropic curvature results from lateral redistribution of auxin, the effects of auxin transport inhibitors on the development of acid efflux asymmetry and curvature in gravistimulated roots were examined. All the transport inhibitors tested prevented both gravitropism and the development of asymmetric acid efflux in gravistimulated roots. The results indicate that auxin redistribution may cause the asymmetry of acid efflux, a finding consistent with the Cholodny/Went hypothesis of gravitropism. As further evidence that auxin-induced acid efflux asymmetry may mediate gravitropic curvature, sodium orthovanadate, an inhibitor of auxin-induced H+ efflux was found to prevent both gravitropism and the development of asymmetric acid efflux in gravistimulated roots.

  8. Gestational lead exposure induces developmental abnormalities and up-regulates apoptosis of fetal cerebellar cells in rats.

    PubMed

    Mousa, Alyaa M; Al-Fadhli, Ameera S; Rao, Muddanna S; Kilarkaje, Narayana

    2015-01-01

    Lead (Pb), a known environmental toxicant, adversely affects almost all organ systems. In this study, we investigated the effects of maternal lead exposure on fetal rat cerebellum. Female Sprague-Dawley rats were given lead nitrate in drinking water (0, 0.5, and 1%) for two weeks before conception, and during pregnancy. Fetuses were collected by caesarian section on gestational day 21 and observed for developmental abnormalities. The fetal cerebellar sections from control and 1% lead group were stained with cresyl violet. Immunohistochemical expressions of p53, Bax, Bcl-2, and caspase 3 were quantified by AnalySIS image analyzer (Life Science, Germany). Lead exposure induced developmental abnormalities of eyes, ear, limbs, neck and ventral abdominal wall; however, these abnormalities were commonly seen in the 1% lead-treated group. In addition, lead also caused fetal mortality and reduced body growth in both dose groups and reduced brain weight in the 1% lead-treated group. The fetal cerebella from the 1% lead-treated group showed unorganized cerebellar cortical layers, and degenerative changes in granule and Purkinje cells such as the formation of clumps of Nissl granules. An increase in Bax and caspase 3, and a decrease in Bcl-2 (p < 0.05), but not in p53, showed apoptosis of the neurons. In conclusion, gestational lead exposure in rats induces fetal toxicity and developmental abnormalities. The lead exposure also impairs development of cerebellar layers, induces structural changes, and apoptosis in the fetal cerebellar cortex. These results suggest that lead exposure during gestation is extremely toxic to developing cerebellum in rats.

  9. The nature of neuroendocrine abnormalities in depression: a controversial issue in contemporary psychiatry.

    PubMed

    von Zerssen, D; Berger, M; Dose, M; Doerr, P; Krieg, C; Bossert, S; Riemann, D; Pirke, K M; Dolhofer, R; Müller, O A

    1986-01-01

    Neuroendocrine abnormalities in depression have been regarded, by many authors, as relatively specific markers of nosological subtypes of the disorder, e.g. primary vs. secondary, endogenous vs. non-endogenous or unipolar vs. bipolar depression. They should reflect the same changes in central neurotransmitters (e.g. noradrenergic insufficiency and/or cholinergic hyperactivity) that were hypothesized as the cause of clinical symptoms. This view is challenged on the basis of our own neuroendocrine investigations in 317 psychiatric patients and 103 normal controls. According to these studies the abnormalities are nosologically rather unspecific. They are induced by a large variety of factors, e.g. emotional stress associated with the clinical symptomatology, weight loss due to malnutrition as a consequence of reduced appetite, medication and drug withdrawal. Stress-induced hypercortisolism appears to be the most common abnormality that may trigger other neuroendocrine dysfunctions, such as a blunted TSH response to TRH. Differences in neuroendocrine abnormalities of depressives are probably due to variations in the manifold factors influencing the hormonal axes involved, to temporal changes in hormonal patterns (e.g. one abnormality triggering another) and to individual differences in the basic activity and the responsiveness of the various axes.

  10. Reactive oxygen species initiate a protective response in plant roots to stress induced by environmental bisphenol A.

    PubMed

    Zhang, Jiazhi; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2018-06-15

    Bisphenol A (BPA), a contaminant of emerging concern, can affect plant growth and development at high concentrations. Reactive oxygen species (ROS) production is a general primary response in plants to stress. Here, the aim is to investigate whether ROS in plants play protective roles for stress induced by BPA exposure at environmental concentrations. In this study, soybean roots (seedling, flowering and podding stages) were exposed to 1.5 and 3.0 mg L -1 BPA, and ROS response was measured. The relationship between ROS levels and residual BPA content in soybean roots was evaluated. The results showed that exposure (9 h) to 1.5 mg L -1 BPA elicited changes in ROS production. ROS then gradually accumulated in soybean roots (seedling stage). Exposure to 3.0 mg L -1 BPA elicited a stronger and earlier ROS responses at the flowering and podding stage, but did not lead to membrane lipid peroxidation. Residual BPA content in soybean roots reached peak concentrations after 9 h of exposure, and then gradually decreased at the flowering and podding stage. These results indicate that ROS in soybean roots might be involved in the oxidative metabolism of BPA, which could prevent BPA from damaging exposed plants. In conclusion, the observed ROS metabolic effects may be self-protection responses of plants to stress induced by BPA exposure. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus.

    PubMed

    Houben, David; Sonnet, Philippe

    2015-11-01

    Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride.

    PubMed

    Medeiros, Hugo Agripino de; Araújo Filho, Jerônimo Vieira de; Freitas, Leandro Grassi de; Castillo, Pablo; Rubio, María Belén; Hermosa, Rosa; Monte, Enrique

    2017-01-10

    Root-knot nematodes (RKN) are major crop pathogens worldwide. Trichoderma genus fungi are recognized biocontrol agents and a direct activity of Trichoderma atroviride (Ta) against the RKN Meloidogyne javanica (Mj), in terms of 42% reduction of number of galls (NG), 60% of number of egg masses and 90% of number of adult nematodes inside the roots, has been observed in tomato grown under greenhouse conditions. An in vivo split-root designed experiment served to demonstrate that Ta induces systemic resistance towards Mj, without the need for the organisms to be in direct contact, and significantly reduces NG (20%) and adult nematodes inside tomato roots (87%). The first generation (F1) of Ta-primed tomato plants inherited resistance to RKN; although, the induction of defenses occurred through different mechanisms, and in varying degrees, depending on the Ta-Mj interaction. Plant growth promotion induced by Ta was inherited without compromising the level of resistance to Mj, as the progeny of Ta-primed plants displayed increased size and resistance to Mj without fitness costs. Gene expression results from the defense inductions in the offspring of Ta-primed plants, suggested that an auxin-induced reactive oxygen species production promoted by Ta may act as a major defense strategy during plant growth.

  13. Root and stem partitioning of Pinus taeda

    Treesearch

    Timothy J. Albaugh; H. Lee Allen; Lance W. Kress

    2006-01-01

    We measured root and stem mass at three sites (Piedmont (P), Coastal Plain (C), and Sandhills (S)) in the southeastern United States. Stand density, soil texture and drainage, genetic makeup and environmental conditions varied with site while differences in tree size at each site were induced with fertilizer additions. Across sites, root mass was about one half of stem...

  14. A soil-plate based pipeline for assessing cereal root growth in response to polyethylene glycol (PEG)-induced water deficit stress

    USDA-ARS?s Scientific Manuscript database

    Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on ar...

  15. Morphological abnormalities in the cladoceran Ilyocryptus spinifer (Apipucos Reservoir, Pernambuco State, Brazil).

    PubMed

    Elmoor-Loureiro, L M

    2004-02-01

    In a sample taken from Apipucos Reservoir (Recife, PE, Brazil) for taxonomic study, a high percentage (40%) was found of cladoceran Ilyocryptus spinifer individuals with morphological abnormalities on their postabdomen. There was not a fixed pattern of the malformations, which varied in gravity, and could affect the postanal spines or terminal claws. The postabdominal abnormalities are described and compared to the ones described in the literature. The hypothesis of the morphological abnormalities being induced by an occasional environmental toxicant is discussed.

  16. Abnormal electron-heating mode and formation of secondary-energetic electrons in pulsed microwave-frequency atmospheric microplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, H. C.; Research and Development Division, SK Hynix Semiconductor Inc., Icheon 467-701; Jung, S. Y.

    2014-03-15

    The formation of secondary energetic electrons induced by an abnormal electron-heating mode in pulsed microwave-frequency atmospheric microplasmas was investigated using particle-in-cell simulation. We found that additional high electron heating only occurs during the first period of the ignition phase after the start of a second pulse at sub-millimeter dimensions. During this period, the electrons are unable to follow the abruptly retreating sheath through diffusion alone. Thus, a self-consistent electric field is induced to drive the electrons toward the electrode. These behaviors result in an abnormal electron-heating mode that produces high-energy electrons at the electrode with energies greater than 50 eV.

  17. Proteolytic activities in cortex of apical parts of Vicia faba ssp. minor seedling roots during kinetin-induced programmed cell death.

    PubMed

    Kaźmierczak, Andrzej; Doniak, Magdalena; Kunikowska, Anita

    2017-11-01

    Programmed cell death (PCD) is a crucial process in plant development. In this paper, proteolytically related aspects of kinetin-induced PCD in cortex cells of Vicia faba ssp. minor seedlings were examined using morphological, fluorometric, spectrophotometric, and fluorescence microscopic analyses. Cell viability estimation after 46 μM kinetin treatment of seedling roots showed that the number of dying cortex cells increased with treatment duration, reaching maximum after 72 h. Weight of the apical root segments increased with time and was about 2.5-fold greater after 96 h, while the protein content remained unchanged, compared to the control. The total and cysteine-dependent proteolytic activities fluctuated during 1-96-h treatment, which was not accompanied by the changes in the protein amount, indicating that the absolute protein amounts decreased during kinetin-induced PCD. N-ethylmaleimide (NEM), phenylmethylsulfonyl fluoride (PMSF), and Z-Leu-Leu-Nva-H (MG115), the respective cysteine, serine, and proteasome inhibitors, suppressed kinetin-induced PCD. PMSF significantly decreased serine-dependent proteolytic activities without changing the amount of proteins, unlike NEM and MG115. More pronounced effect of PMSF over NEM indicated that in the root apical segments, the most important proteolytic activity during kinetin-induced PCD was that of serine proteases, while that of cysteine proteases may be important for protein degradation in the last phase of the process. Both NEM and PMSF inhibited apoptotic-like structure formation during kinetin-induced PCD. The level of caspase-3-like activity of β1 proteasome subunit increased after kinetin treatment. Addition of proteasome inhibitor MG-115 reduced the number of dying cells, suggesting that proteasomes might play an important role during kinetin-induced PCD.

  18. Natural history of echocardiographic abnormalities in mucopolysaccharidosis III.

    PubMed

    Wilhelm, Carolyn M; Truxal, Kristen V; McBride, Kim L; Kovalchin, John P; Flanigan, Kevin M

    2018-06-01

    Mucopolysaccharidosis (MPS) type III, Sanfilippo Syndrome, is an autosomal recessive lysosomal storage disorder. MPS I and II patients often develop cardiac involvement leading to early mortality, however there are limited data in MPS III. The objective of this study is to describe cardiac abnormalities in a large group of MPS III patients followed in a longitudinal natural history study designed to determine outcome measures for gene transfer trials. A single center study of MPS III patients who were enrolled in the Nationwide Children's Hospital natural history study in 2014. Two cardiologists reviewed all patient echocardiograms for anatomic, valvular, and functional abnormalities. Valve abnormalities were defined as abnormal morphology, trivial mitral regurgitation (MR) with abnormal morphology or at least mild MR, and any aortic regurgitation (AR). Abnormal left ventricular (LV) function was defined as ejection fraction < 50%. Group comparisons were assessed using two-sample t-tests or Wilcoxon rank sum tests for continuous variables and chi-square or Fisher's exact tests for categorical variables. Twenty-five patients, 15 Type A and 10 Type B MPS III, underwent 45 echocardiograms. Fifteen patients (60%) demonstrated an abnormal echocardiographic finding with age at first abnormal echocardiogram within the study being 6.8 ± 2.8 years. Left-sided valve abnormalities were common over time: 7 mitral valve thickening, 2 mitral valve prolapse, 16 MR (8 mild, 8 trivial), 3 aortic valve thickening, and 9 AR (7 mild, 2 trivial). Two patients had asymmetric LV septal hypertrophy. No valvular stenosis or ventricular function abnormalities were noted. Incidental findings included: mild aortic root dilation (2), bicommissural aortic valve (1), and mild tricuspid regurgitation (3). Individuals with Sanfilippo A and B demonstrate a natural history of cardiac involvement with valvular abnormalities most common. In short-term follow up, patients demonstrated only mild progression of abnormalities, none requiring intervention. Valvular disease prevalence is similar to MPS I and II, but appears less severe. These findings raise no specific concerns for gene transfer trials in patients in this age range. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6

    PubMed Central

    Yuan, Jun; Zhang, Nan; Huang, Qiwei; Raza, Waseem; Li, Rong; Vivanco, Jorge M.; Shen, Qirong

    2015-01-01

    The successful colonization of plant growth promoting rhizobacteria (PGPR) in the rhizosphere is an initial and compulsory step in the protection of plants from soil-borne pathogens. Therefore, it is necessary to evaluate the role of root exudates in the colonization of PGPR. Banana root exudates were analyzed by high pressure liquid chromatography (HPLC) which revealed exudates contained several organic acids (OAs) including oxalic, malic and fumaric acid. The chemotactic response and biofilm formation of Bacillus amyloliquefaciens NJN-6 were investigated in response to OA’s found in banana root exudates. Furthermore, the transcriptional levels of genes involved in biofilm formation, yqxM and epsD, were evaluated in response to OAs via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results suggested that root exudates containing the OAs both induced the chemotaxis and biofilm formation in NJN-6. In fact, the strongest chemotactic and biofilm response was found when 50 μM of OAs were applied. More specifically, malic acid showed the greatest chemotactic response whereas fumaric acid significantly induced biofilm formation by a 20.7–27.3% increase and therefore biofilm formation genes expression. The results showed banana root exudates, in particular the OAs released, play a crucial role in attracting and initiating PGPR colonization on the host roots. PMID:26299781

  20. Copper regulates primary root elongation through PIN1-mediated auxin redistribution.

    PubMed

    Yuan, Hong-Mei; Xu, Heng-Hao; Liu, Wen-Cheng; Lu, Ying-Tang

    2013-05-01

    The heavy metal copper (Cu) is an essential microelement required for normal plant growth and development, but it inhibits primary root growth when in excess. The mechanism underlying how excess Cu functions in this process remains to be further elucidated. Here, we report that a higher concentration of CuSO4 inhibited primary root elongation of Arabidopsis seedlings by affecting both the elongation and meristem zones. In the meristem zone, meristematic cell division potential was reduced by excess Cu. Further experiments showed that Cu can modulate auxin distribution, resulting in higher auxin activities in both the elongation and meristem zones of Cu-treated roots based on DR5::GUS expression patterns. This Cu-mediated auxin redistribution was shown to be responsible for Cu-mediated inhibition of primary root elongation. Additional genetic and physiological data demonstrated that it was PINFORMED1 (PIN1), but not PIN2 or AUXIN1 (AUX1), that regulated this process. However, Cu-induced hydrogen peroxide accumulation did not contribute to Cu-induced auxin redistribution for inhibition of root elongation. When the possible role of ethylene in this process was analyzed, Cu had a similar impact on the root elongation of both the wild type and the ein2-1 mutant, implying that Cu-mediated inhibition of primary root elongation was not due to the ethylene signaling pathway.

  1. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  2. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  3. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.

    PubMed

    Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain

    2009-12-01

    Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.

  4. Long-term boron-deficiency-responsive genes revealed by cDNA-AFLP differ between Citrus sinensis roots and leaves

    PubMed Central

    Lu, Yi-Bin; Qi, Yi-Ping; Yang, Lin-Tong; Lee, Jinwook; Guo, Peng; Ye, Xin; Jia, Meng-Yang; Li, Mei-Li; Chen, Li-Song

    2015-01-01

    Seedlings of Citrus sinensis (L.) Osbeck were supplied with boron (B)-deficient (without H3BO3) or -sufficient (10 μM H3BO3) nutrient solution for 15 weeks. We identified 54 (38) and 38 (45) up (down)-regulated cDNA-AFLP bands (transcript-derived fragments, TDFs) from B-deficient leaves and roots, respectively. These TDFs were mainly involved in protein and amino acid metabolism, carbohydrate and energy metabolism, nucleic acid metabolism, cell transport, signal transduction, and stress response and defense. The majority of the differentially expressed TDFs were isolated only from B-deficient roots or leaves, only seven TDFs with the same GenBank ID were isolated from the both. In addition, ATP biosynthesis-related TDFs were induced in B-deficient roots, but unaffected in B-deficient leaves. Most of the differentially expressed TDFs associated with signal transduction and stress defense were down-regulated in roots, but up-regulated in leaves. TDFs related to protein ubiquitination and proteolysis were induced in B-deficient leaves except for one TDF, while only two down-regulated TDFs associated with ubiquitination were detected in B-deficient roots. Thus, many differences existed in long-term B-deficiency-responsive genes between roots and leaves. In conclusion, our findings provided a global picture of the differential responses occurring in B-deficient roots and leaves and revealed new insight into the different adaptive mechanisms of C. sinensis roots and leaves to B-deficiency at the transcriptional level. PMID:26284101

  5. Alterations of physiology and gene expression due to long-term magnesium-deficiency differ between leaves and roots of Citrus reticulata.

    PubMed

    Jin, Xiao-Lin; Ma, Cui-Lan; Yang, Lin-Tong; Chen, Li-Song

    2016-07-01

    Seedlings of Ponkan (Citrus reticulata) were irrigated with nutrient solution containing 0 (Mg-deficiency) or 1mM MgSO4 (control) every two day for 16 weeks. Thereafter, we examined magnesium (Mg)-deficiency-induced changes in leaf and root gas exchange, total soluble proteins and gene expression. Mg-deficiency lowered leaf CO2 assimilation, and increased leaf dark respiration. However, Mg-deficient roots had lower respiration. Total soluble protein level was not significantly altered by Mg-deficiency in roots, but was lower in Mg-deficient leaves than in controls. Using cDNA-AFLP, we obtained 70 and 71 differentially expressed genes from leaves and roots. These genes mainly functioned in signal transduction, stress response, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, nucleic acid, and protein metabolisms. Lipid metabolism (Ca(2+) signals)-related Mg-deficiency-responsive genes were isolated only from roots (leaves). Although little difference existed in the number of Mg-deficiency-responsive genes between them both, most of these genes only presented in Mg-deficient leaves or roots, and only four genes were shared by them both. Our data clearly demonstrated that Mg-deficiency-induced alterations of physiology and gene expression greatly differed between leaves and roots. In addition, we focused our discussion on the causes for photosynthetic decline in Mg-deficient leaves and the responses of roots to Mg-deficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Computerized scheme for detection of diffuse lung diseases on CR chest images

    NASA Astrophysics Data System (ADS)

    Pereira, Roberto R., Jr.; Shiraishi, Junji; Li, Feng; Li, Qiang; Doi, Kunio

    2008-03-01

    We have developed a new computer-aided diagnostic (CAD) scheme for detection of diffuse lung disease in computed radiographic (CR) chest images. One hundred ninety-four chest images (56 normals and 138 abnormals with diffuse lung diseases) were used. The 138 abnormal cases were classified into three levels of severity (34 mild, 60 moderate, and 44 severe) by an experienced chest radiologist with use of five different patterns, i.e., reticular, reticulonodular, nodular, air-space opacity, and emphysema. In our computerized scheme, the first moment of the power spectrum, the root-mean-square variation, and the average pixel value were determined for each region of interest (ROI), which was selected automatically in the lung fields. The average pixel value and its dependence on the location of the ROI were employed for identifying abnormal patterns due to air-space opacity or emphysema. A rule-based method was used for determining three levels of abnormality for each ROI (0: normal, 1: mild, 2: moderate, and 3: severe). The distinction between normal lungs and abnormal lungs with diffuse lung disease was determined based on the fractional number of abnormal ROIs by taking into account the severity of abnormalities. Preliminary results indicated that the area under the ROC curve was 0.889 for the 44 severe cases, 0.825 for the 104 severe and moderate cases, and 0.794 for all cases. We have identified a number of problems and reasons causing false positives on normal cases, and also false negatives on abnormal cases. In addition, we have discussed potential approaches for improvement of our CAD scheme. In conclusion, the CAD scheme for detection of diffuse lung diseases based on texture features extracted from CR chest images has the potential to assist radiologists in their interpretation of diffuse lung diseases.

  7. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots.

    PubMed

    Ranathunge, Kosala; Schreiber, Lukas; Bi, Yong-Mei; Rothstein, Steven J

    2016-01-01

    Non-optimal ammonium levels significantly alter root architecture, anatomy and root permeabilities for water and nutrient ions. Higher ammonium levels induced strong apoplastic barriers whereas it was opposite for lower levels. Application of nitrogen fertilizer increases crop productivity. However, non-optimal applications can have negative effects on plant growth and development. In this study, we investigated how different levels of ammonium (NH4 (+)) [low (30 or 100 μM) or optimum (300 μM) or high (1000 or 3000 μM)] affect physio-chemical properties of 1-month-old, hydroponically grown rice roots. Different NH4 (+) treatments markedly altered the root architecture and anatomy. Plants grown in low NH4 (+) had the longest roots with a weak deposition of suberised and lignified apoplastic barriers, and it was opposite for plants grown in high NH4 (+). The relative expression levels of selected suberin and lignin biosynthesis candidate genes, determined using qRT-PCR, were lowest in the roots from low NH4 (+), whereas, they were highest for those grown in high NH4 (+). This was reflected by the suberin and lignin contents, and was significantly lower in roots from low NH4 (+) resulting in greater hydraulic conductivity (Lp r) and solute permeability (P sr) than roots from optimum NH4 (+). In contrast, roots grown at high NH4 (+) had markedly greater suberin and lignin contents, which were reflected by strong barriers. These barriers significantly decreased the P sr of roots but failed to reduce the Lp r below those of roots grown in optimum NH4 (+), which can be explained in terms of the physical properties of the molecules used and the size of pores in the apoplast. It is concluded that, in rice, non-optimal NH4 (+) levels differentially affected root properties including Lp r and P sr to successfully adapt to the changing root environment.

  8. Psychotherapeutics and the problematic origins of clinical psychology in America.

    PubMed

    Taylor, E

    2000-09-01

    The problematic place of psychotherapy within the larger history of scientific psychology is reviewed, especially in the absence of any definitive history of clinical psychology yet written. Although standard histories of psychology imply that psychotherapy was somehow derived from the tradition of German laboratory science, modern historiography reveals a dramatically different story. Personality, abnormal, social, and clinical psychology have their roots in an international psychotherapeutic alliance related more to French neurophysiology, and this alliance flourished for several decades before psychoanalysis. Reconstruction of the American contribution to this alliance, the so-called Boston school of abnormal psychology, suggests an era of medical psychology in advance of today. Note is also made of the possible misattribution of Lightner Witmer as the father of clinical psychology.

  9. Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    PubMed

    Lendzemo, V; Kuyper, T W; Vierheilig, H

    2009-06-01

    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.

  10. Temperature changes accompanying near infrared diode laser endodontic treatment of wet canals.

    PubMed

    Hmud, Raghad; Kahler, William A; Walsh, Laurence J

    2010-05-01

    Diode laser endodontic treatments such as disinfection or the generation of cavitations should not cause deleterious thermal changes in radicular dentin. This study assessed thermal changes in the root canal and on the root surface when using 940 and 980 nm lasers at settings of 4 W/10 Hz and 2.5 W/25 Hz, respectively, delivered into 2000-mum fibers to generate cavitations in water. The root surface temperature in the apical third was recorded, as was the water temperature in coronal, middle, and apical third regions, by using thermocouples placed inside the canal. Lasing was undertaken with either rest periods or rinsing between 5-second laser exposures. Both diode lasers induced only modest temperature changes on the external root surface at the settings used. Even though the temperature of the water within the canal increased during lasing by as much as 30 degrees C, the external root surface temperature increased by only a maximum of 4 degrees C. Irrigation between laser exposures was highly effective in minimizing thermal changes within the root canal and on the root surface. Diode laser parameters that induce cavitation do not result in adverse thermal changes in radicular dentin. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Assessment of arsenic toxicity using Allium/Vicia root tip micronucleus assays.

    PubMed

    Wu, Lihua; Yi, Huilan; Yi, Min

    2010-04-15

    Arsenic is ubiquitous in the environment and is a potential human carcinogen. Its carcinogenicity has been demonstrated in several models. In this study, broad bean (Vicia faba L.) and common onion (Allium cepa L.), two plant species which are commonly used for detecting the genotoxic effects of environmental pollutants, were used to measure possible genotoxic effect of arsenite (0.3-30 mg/l). Present results showed that arsenite (As(III)) induced micronuclei (MN) formation in both Allium and Vicia root tips. MN frequency significantly increased in Vicia root cells exposed to 0.3-10 mg/l arsenite and in Allium root cells exposed to 1-30 mg/l arsenite, which indicated that Vicia root tip cells are more sensitive to arsenite than Allium. Mitotic index (MI) decreased in a concentration-dependent manner and showed significant differences in Vicia/Allium roots among treatments and the control, after exposure to 1-30 mg/l arsenite for at least 4 h. In the present study, MN frequency was positively associated with lipid peroxidation, which indicated that arsenite exposure can induce oxidative stress, cytotoxicity and genotoxicity in plant cells. The results also suggested that Vicia/Allium root micronucleus (MN) assays are simple, efficient and reproducible methods for the genotoxicity monitoring of arsenic water contamination. 2009 Elsevier B.V. All rights reserved.

  12. Transduction of the Root Gravitropic Stimulus: Can Apical Calcium Regulate Auxin Distribution?

    NASA Technical Reports Server (NTRS)

    Edwards, K. L.

    1985-01-01

    The hypothesis was tested that calcium, asymmetrically distributes in the root cap upon reorientation to gravity, affects auxin transport and thereby auxin distribution at the elongation zone. It is assumed that calcium exists in the root cap and is asymmetrically transported in root caps altered from a vertical to a horizontal position and that the meristem, the tissue immediately adjacent to the root cap and lying between the site of gravity perception and the site of gravity response, is essential for mediation of gravitropism. Tip calcium in root gravicurvature was implicated. The capstone evidence is that the root cap has the capacity to polarly translocate exogenous calcium downward when tissue is oriented horizontally, and that exogenous calcium, when supplied asymmetrically at the root tip, induces curvature and dictates the direction of curvature in both vertical and horizontal corn roots.

  13. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  14. Endodontic management of maxillary third molar with MB2 (Vertucci type IV) canal configuration diagnosed with Cone Beam Computed Tomography - a case report.

    PubMed

    Jain, Pradeep; Patni, Pallav; Yogesh, Pant; Anup, Vyas

    2017-01-01

    The endodontic treatment of maxillary third molar often poses a challenge even to an experienced endodontist because of their most posterior location in the dental arch, aberrant occlusal anatomy, abnormal root canal configuration and eruption patterns. Owing to these anatomical limitations, their extraction remains the treatment of choice for many clinicians. As we know, retaining every functional component of the dental arch is of prime importance in contemporary dental practice. This clinical case report aims to discuss the endodontic treatment of maxillary third molar with MB2 root canal separated throughout the length and exit at two separate apical foramina (Vertucci type IV) diagnosed with Cone Beam Computed Tomography (CBCT)..

  15. Field-based Evaluation of a Novel SPME-GC-MS Method for Investigation of Below-ground Interaction between Brassica Roots and Larvae of Cabbage Root Fly, Delia radicum L.

    PubMed

    Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew

    2016-11-01

    Collection of volatiles from plant roots poses technical challenges due to difficulties accessing the soil environment without damaging the roots. To validate a new non-invasive method for passive sampling of root volatiles in situ, from plants grown under field conditions, using solid phase micro-extraction (SPME). SPME fibres were inserted into perforated polytetrafluoroethene (PTFE) tubes positioned in the soil next to broccoli plants for collection of root volatiles pre- and post-infestation with Delia radicum larvae. After sample analysis by gas chromatography-mass spectrometry (GC-MS), principal component analysis (PCA) was applied to determine differences in the profiles of volatiles between samples. GC-MS analysis revealed that this method can detect temporal changes in root volatiles emitted before and after Delia radicum damage. PCA showed that samples collected pre- and post-infestation were compositionally different due to the presence of root volatiles induced by D. radicum feeding. Sulphur containing compounds, in particular, accounted for the differences observed. Root volatiles emission patterns post-infestation are thought to follow the feeding and developmental progress of larvae. This study shows that volatiles released by broccoli roots can be collected in situ using SPME fibres within perforated PTFE tubes under field conditions. Plants damaged by Delia radicum larvae could be distinguished from plants sampled pre-infestation and soil controls on the basis of larval feeding-induced sulphur-containing volatiles. These results show that this new method is a powerful tool for non-invasive sampling of root volatiles below-ground. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Novel software for analysis of root gravitropism: comparative response patterns of Arabidopsis wild-type and axr1 seedlings

    NASA Technical Reports Server (NTRS)

    Ishikawa, H.; Evans, M. L.

    1997-01-01

    In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.

  17. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings.

    PubMed

    Fu, Youqiang; Yang, Xujian; Shen, Hong

    2018-06-18

    Iron plaque (IP) on root surface can enhance the tolerance of plants to environmental stresses. However, it remains unclear the impact of Fe 2+ on cadmium (Cd) toxicity to rice (Oryza sativa) seedlings. In this study, the effects of different Fe 2+ and Cd 2+ concentration combinations on rice growth were examined hydroponically. Results indicated that Fe 2+ concentration up to 3.2 mM did not damage rice roots while induced IP formation obviously. Cd 2+ of 10 μM repressed rice growth significantly, while the addition of 0.2 mM Fe 2+ to 10 μM Cd 2+ solution (Cd+Fe) did not damage rice roots, indicating that Fe 2+ could ameliorate Cd toxicity to rice seedlings. Microstructure analysis showed Cd+Fe treatment induced the formation of IP with dense and intricate network structure, Cd adsorption on the root surface was reduced significantly. Cd concentration of rice roots and shoots and Cd translocation from roots to shoots with Fe+Cd treatment were reduced by 34.1%, 36.0% and 20.1%, respectively, in comparison to a single Cd treatment. Noteworthy, the removal of IP resulted in a larger loss of root biomass under Cd treatment. In addition, Cd+Fe treatment increased the activities of root superoxide dismutase and catalase by 105.5% and 177.4%, and decreased H 2 O 2 and O 2 · - accumulation of rice roots by 56.9% and 35.9%, and recovered Cd-triggered electrolyte leakage obviously, when compared with a single Cd treatment. The results from this experiment indicated that the formed dense IP on rice roots decreased Cd absorption and reactive oxygen species accumulation, and Fe 2+ supply alleviated Cd toxicity to rice seedlings. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination.

    PubMed

    Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying

    2012-04-01

    During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum)

    PubMed Central

    Li, Xuewen; Li, Yalin; Qu, Mei; Xiao, Hongdong; Feng, Yingming; Liu, Jiayou; Wu, Lishu; Yu, Min

    2016-01-01

    The initial response of plants to aluminum (Al) is the inhibition of root elongation, while the transition zone is the most Al sensitive zone in the root apex, which may sense the presence of Al and regulate the responses of root to Al toxicity. In the present study, the effect of Al treatment (30 μM, 24 h) on root growth, Al accumulation, and properties of cell wall of two pea (Pisum sativum L.) cultivars, cv Onward (Al-resistant) and cv Sima (Al-sensitive), were studied to disclose whether the response of root transition zone to Al toxicity determines Al resistance in pea cultivars. The lower relative root elongation (RRE) and higher Al content were founded in cv Sima compared with cv Onward, which were related to Al-induced the increase of pectin in root segments of both cultivars. The increase of pectin is more prominent in Al-sensitive cultivar than in Al-resistant cultivar. Aluminum toxicity also induced the increase of pectin methylesterases (PME), which is 2.2 times in root transition zone in Al-sensitive cv Sima to that of Al resistant cv Onward, thus led to higher demethylesterified pectin content in root transition zone of Al-sensitive cv Sima. The higher demethylesterified pectin content in root transition zone resulted in more Al accumulation in the cell wall and cytosol in Al-sensitive cv Sima. Our results provide evidence that the increase of pectin content and PME activity under Al toxicity cooperates to determine Al sensitivity in root transition zone that confers Al resistance in cultivars of pea (Pisum sativum). PMID:26870060

  20. Comparison between gradient-dependent hydraulic conductivities of roots using the root pressure probe: the role of pressure propagations and implications for the relative roles of parallel radial pathways.

    PubMed

    Bramley, Helen; Turner, Neil C; Turner, David W; Tyerman, Stephen D

    2007-07-01

    Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.

  1. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    PubMed

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  2. Brainstem abnormalities and vestibular nerve enhancement in acute neuroborreliosis.

    PubMed

    Farshad-Amacker, Nadja A; Scheffel, Hans; Frauenfelder, Thomas; Alkadhi, Hatem

    2013-12-21

    Borreliosis is a widely distributed disease. Neuroborreliosis may present with unspecific symptoms and signs and often remains difficult to diagnose in patients with central nervous system symptoms, particularly if the pathognomonic erythema chronica migrans does not develop or is missed. Thus, vigilance is mandatory in cases with atypical presentation of the disease and with potentially severe consequences if not recognized early. We present a patient with neuroborreliosis demonstrating brain stem and vestibular nerve abnormalities on magnetic resonance imaging. A 28-year-old Caucasian female presented with headaches, neck stiffness, weight loss, nausea, tremor, and gait disturbance. Magnetic resonance imaging showed T2-weighted hyperintense signal alterations in the pons and in the vestibular nerves as well as bilateral post-contrast enhancement of the vestibular nerves. Serologic testing of the cerebrospinal fluid revealed the diagnosis of neuroborreliosis. Patients infected with neuroborreliosis may present with unspecific neurologic symptoms and magnetic resonance imaging as a noninvasive imaging tool showing signal abnormalities in the brain stem and nerve root enhancement may help in establishing the diagnosis.

  3. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum.

    PubMed

    Mandeel, Qaher A

    2006-03-01

    In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48-96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.

  4. Xylem vulnerability to cavitation in Pseudotsuga menziesii and Pinus ponderosa from contrasting habitats.

    PubMed

    Stout, Deborah H; Sala, Anna

    2003-01-01

    In the Rocky Mountains, ponderosa pine (Pinus ponderosa (ssp.) ponderosa Dougl. ex P. Laws. & C. Laws) often co-occurs with Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco). Despite previous reports showing higher shoot vulnerability to water-stress-induced cavitation in ponderosa pine, this species extends into drier habitats than Douglas-fir. We examined: (1) whether roots and shoots of ponderosa pine in riparian and slope habitats are more vulnerable to water-stress-induced cavitation than those of Douglas-fir; (2) whether species-specific differences in vulnerability translate into differences in specific conductivity in the field; and (3) whether the ability of ponderosa pine to extend into drier sites is a result of (a) greater plasticity in hydraulic properties or (b) functional or structural adjustments. Roots and shoots of ponderosa pine were significantly more vulnerable to water-stress-induced cavitation (overall mean cavitation pressure, Psi(50%) +/- SE = -3.11 +/- 0.32 MPa for shoots and -0.99 +/- 0.16 MPa for roots) than those of Douglas-fir (Psi(50%) +/- SE = -4.83 +/- 0.40 MPa for shoots and -2.12 +/- 0.35 MPa for roots). However, shoot specific conductivity did not differ between species in the field. For both species, roots were more vulnerable to cavitation than shoots. Overall, changes in vulnerability from riparian to slope habitats were small for both species. Greater declines in stomatal conductance as the summer proceeded, combined with higher allocation to sapwood and greater sapwood water storage, appeared to contribute to the ability of ponderosa pine to thrive in dry habitats despite relatively high vulnerability to water-stress-induced cavitation.

  5. Abnormal Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Partially Mimicked Development of TSC2 Neurological Abnormalities.

    PubMed

    Li, Yaqin; Cao, Jiqing; Chen, Menglong; Li, Jing; Sun, Yiming; Zhang, Yu; Zhu, Yuling; Wang, Liang; Zhang, Cheng

    2017-04-11

    Tuberous sclerosis complex (TSC) is a disease featuring devastating and therapeutically challenging neurological abnormalities. However, there is a lack of specific neural progenitor cell models for TSC. Here, the pathology of TSC was studied using primitive neural stem cells (pNSCs) from a patient presenting a c.1444-2A>C mutation in TSC2. We found that TSC2 pNSCs had higher proliferative activity and increased PAX6 expression compared with those of control pNSCs. Neurons differentiated from TSC2 pNSCs showed enlargement of the soma, perturbed neurite outgrowth, and abnormal connections among cells. TSC2 astrocytes had increased saturation density and higher proliferative activity. Moreover, the activity of the mTOR pathway was enhanced in pNSCs and induced in neurons and astrocytes. Thus, our results suggested that TSC2 heterozygosity caused neurological malformations in pNSCs, indicating that its heterozygosity might be sufficient for the development of neurological abnormalities in patients. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Killing of preimplantation mouse embryos by main ingredients of cleansers AS and LAS.

    PubMed

    Nomura, T; Hata, S; Shibata, K; Kusafuka, T

    1987-01-01

    When main ingredients of cleansers, alcohol sulfate (AS) and linear alkylbenzene sulfonate (LAS), were applied to the dorsal skin of pregnant JCL:ICR mice during preimplantation period (days 0-2), significant numbers of embryos collected from the oviducts and uteri on day 3 showed severe deformity or remained at the morula stage. Most of abnormal embryos were fragmented or remained at the 1-8 cell stages, and they were either dead or dying. Even when these abnormal embryos were cultivated in the detergent-free medium, they were not recovered, while most growth-retarded embryos (morula) could grow and hatch with one or two days lag by the further in vitro cultivation. Similar results were observed with commercially obtained kitchen detergent and hair shampoo, although such embryocidal effects were not detected with natural soap and distilled water. Fertilized eggs may be specifically sensitive to synthetic detergents. Very low doses of X-rays also induced significant yields of abnormal embryos. Major difference between X-rays and detergents was that X-ray-induced abnormality appeared at the morula or blastocyst stage, while detergent-induced one did at the earlier stages.

  7. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    PubMed

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  8. Inactivation of Tgfbr2 in Osterix-Cre expressing Dental Mesenchyme Disrupts Molar Root Formation

    PubMed Central

    Coricor, George; MacDougall, Mary; Serra, Rosa

    2013-01-01

    It has been difficult to examine the role of TGF-ß in post-natal tooth development due to perinatal lethality in many of the signaling deficient mouse models. To address the role of Tgfbr2 in postnatal tooth development, we generated a mouse in which Tgfbr2 was deleted in odontoblast-and bone-producing mesenchyme. Osx-Cre;Tgfbr2fl/fl mice were generated (Tgfbr2cko) and postnatal tooth development was compared in Tgfbr2cko and control littermates. X-ray and μCT analysis showed that in Tgfbr2cko mice radicular dentin matrix density was reduced in the molars. Molar shape was abnormal and molar eruption was delayed in the mutant mice. Most significantly, defects in root formation, including failure of the root to elongate, were observed by postnatal day 10. Immunostaining for Keratin-14 (K14) was used to delineate Hertwig's epithelial root sheath (HERS). The results showed a delay in elongation and disorganization of the HERS in Tgfbr2cko mice. In addition, the HERS was maintained and the break up into epithelial rests was attenuated suggesting that Tgfbr2 acts on dental mesenchyme to indirectly regulate the formation and maintenance of the HERS. Altered odontoblast organization and reduced Dspp expression indicated that odontoblast differentiation was disrupted in the mutant mice likely contributing to the defect in root formation. Nevertheless, expression of Nfic, a key mesenchymal regulator of root development, was similar in Tgfbr2cko mice and controls. The number of osteoclasts in the bone surrounding the tooth was reduced and osteoblast differentiation was disrupted likely contributing to both root and eruption defects. We conclude that Tgfbr2 in dental mesenchyme and bone is required for tooth development particularly root formation. PMID:23933490

  9. Constituent and induced tannin accumulations in roots of loblolly pines

    Treesearch

    Charles H. Walkinshaw

    1999-01-01

    Loblolly pine (Pinus taeda L [L.]) has become the most important source of wood fiber in the Southern United States. This tree is an excellent competitor and recovers well from a variety of adverse conditions. The author presents a histological study of tannin in pine roots to measure tannin abundance as a primary trait to evaluate root health at the...

  10. The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons.

    PubMed

    Stummann, Tina C; Salvati, Patricia; Fariello, Ruggero G; Faravelli, Laura

    2005-03-14

    Tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ channels contribute to the abnormal spontaneous firing in dorsal root ganglion neurons associated with neuropathic pain. Effects of the anti-nociceptive agent ralfinamide on tetrodotoxin-resistant and tetrodotoxin-sensitive currents in rat dorsal root ganglion neurons were therefore investigated by patch clamp experiments. Ralfinamide inhibition was voltage-dependent showing highest potency towards inactivated channels. IC50 values for tonic block of half-maximal inactivated tetrodotoxin-resistant and tetrodotoxin-sensitive currents were 10 microM and 22 microM. Carbamazepine, an anticonvulsant used in the treatment of pain, showed significantly lower potency. Ralfinamide produced a hyperpolarising shift in the steady-state inactivation curves of both currents confirming the preferential interaction with inactivated channels. Additionally, ralfinamide use and frequency dependently inhibited both currents and significantly delayed repriming from inactivation. All effects were more pronounced for tetrodotoxin-resistant than tetrodotoxin-sensitive currents. The potency and mechanisms of actions of ralfinamide provide a hypothesis for the anti-nociceptive properties found in animal models.

  11. Motor root conduction block in the Lewis-Sumner syndrome.

    PubMed

    Lo, Yew Long; Dan, Yang-Fang; Tan, Yam-Eng; Leoh, Teng-Hee

    2011-03-01

    The Lewis-Sumner syndrome (LSS) is a rare immune-mediated peripheral nerve disorder presenting with asymmetric upper limb sensory complaints and motor weakness. Asian patients with LSS have not been reported in the English literature. Three Asian patients with features of LSS were prospectively studied. Our patients tended to older, female, and have involvement of the upper limbs exclusively than those in the West. They have a markedly longer disease duration before a diagnosis was made, which could also be the result of difficulty in eliciting motor root conduction block as a sign of proximal demyelination as observed in every patient. Pain is a universal feature as is sensory nerve conduction abnormality. None responded to immunotherapy, but disease stabilization was observed over the chronic course. Although rare, these unique observations in Asian patients with LSS differ from those reported in Western literature. The presence of motor root conduction block demonstrated for the first time is instrumental in establishing a diagnosis.

  12. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    PubMed

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  13. [Anti-cholinergic effect of Pluchea ovalis (pers.) Dc. (asteraceae) root extract on isolated Wistar rat tracheae].

    PubMed

    Agbonon, A; Aklikokou, K; Kwashie, E-G; Gbéassor, M

    2004-09-01

    Ethanolic extract of Pluchea ovalis roots inhibit acetylcholine-induced bronchoconstriction observed in asthma. To understand the mechanism of P. ovalis root extract on airway smooth muscle contraction, we investigated the anti-cholinergic effect of the ethanolic extract on isolated isolated tracheae of the Wistar rat. For this purpose, three experimental conditions of incubation were used: idomethacin, indomethacin+propranolol or indomethacin+propranolo+ promethazine. The extract was applied in all three conditions at 0.25 mg/ml for 10 minutes prior to cumulative doses of acetylcholine (10(-8) to 5.10(-4) g/ml). The extract reduced acetylcholine-induced contraction and could have an antagonistic effect on muscarinic receptors of the rat trachea.

  14. Infection Assay of Cyst Nematodes on Arabidopsis Roots.

    PubMed

    Bohlmann, Holger; Wieczorek, Krzysztof

    2015-09-20

    Plant parasitic nematodes are devastating pests on many crops. Juveniles (J2) of cyst nematodes invade the roots to induce a syncytium. This feeding site is their only source of nutrients. Male nematodes leave the roots after the fourth molt to mate with females. The females stay attached to their syncytia throughout their life and produce hundreds of eggs, which are contained in their bodies. When the females die their bodies form the cysts, which protect the eggs. Cysts can survive for many years in the soil until favorable conditions induce hatching of the juveniles. The beet cyst nematode Heterodera schachtii ( H. schachtii )is a pathogen of sugar beet ( Beta vulgaris ) but can also complete its life cycle on Arabidopsis roots growing on agar plates under sterile conditions. We present here protocols for a stock culture of H. schachtii and an infection assay on agar plates.

  15. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.

    PubMed

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.

  16. Inhibition of fucosylation of cell wall components by 2-fluoro 2-deoxy-L-fucose induces defects in root cell elongation.

    PubMed

    Dumont, Marie; Lehner, Arnaud; Bardor, Muriel; Burel, Carole; Vauzeilles, Boris; Lerouxel, Olivier; Anderson, Charles T; Mollet, Jean-Claude; Lerouge, Patrice

    2015-12-01

    Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    PubMed Central

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers. PMID:25628626

  18. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    PubMed

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  19. The promotive effect of latrunculin B on maize root gravitropism is concentration dependent

    NASA Technical Reports Server (NTRS)

    Blancaflor, E. B.; Hou, G-C; Mohamalawari, D. R.

    2003-01-01

    The cytoskeleton has been proposed to be a key player in the gravitropic response of higher plants. A major approach to determine the role of the cytoskeleton in gravitropism has been to use inhibitors to disrupt the cytoskeleton and then to observe the effect that such disruption has on organ bending. Several investigators have reported that actin or microtubule inhibitors do not prevent root gravitropism, leading to the conclusion that the cytoskeleton is not involved in this process. However, there are recent reports showing that disruption of the actin cytoskeleton with the actin inhibitor, latrunculin B, promotes the gravitropic response of both roots and shoots. In roots, curvature is sustained during prolonged periods of clinorotation despite short periods of gravistimulation. These results indicate that an early gravity-induced signal continues to persist despite withdrawal of the constant gravity stimulus. To investigate further the mechanisms underlying the promotive effect of actin disruption on root gravitropism, we treated maize roots with varying concentrations of latrunculin B in order to determine the lowest concentration of latrunculin B that has an effect on root bending. After a 10-minute gravistimulus, treated roots were axially rotated on a one rpm clinostat and curvature was measured after 15 hours. Our results show that 100 nM latrunculin B induced the strongest promotive effect on the curvature of maize roots grown on a clinostat. Moreover, continuously gravistimulated roots treated with 100 nM latrunculin B exhibited stronger curvature responses while decapped roots treated with this concentration of latrunculin B did not bend during continuous gravistimulation. The stronger promotive effect of low concentrations of latrunculin B on the curvature of both clinorotated and continuously gravistimulated roots suggests that disruption of the finer, more dynamic component of the actin cytoskeleton could be the cause of the enhanced tropic responses of roots to gravity. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  20. The promotive effect of latrunculin B on maize root gravitropism is concentration dependent

    NASA Astrophysics Data System (ADS)

    Blancaflor, E. B.; Hou, G.-c.; Mohamalawari, D. R.

    2003-05-01

    The cytoskeleton has been proposed to be a key player in the gravitropic response of higher plants. A major approach to determine the role of the cytoskeleton in gravitropism has been to use inhibitors to disrupt the cytoskeleton and then to observe the effect that such disruption has on organ bending. Several investigators have reported that actin or microtubule inhibitors do not prevent root gravitropism, leading to the conclusion that the cytoskeleton is not involved in this process. However, there are recent reports showing that disruption of the actin cytoskeleton with the actin inhibitor, latrunculin B, promotes the gravitropic response of both roots and shoots. In roots, curvature is sustained during prolonged periods of clinorotation despite short periods of gravistimulation. These results indicate that an early gravity-induced signal continues to persist despite withdrawal of the constant gravity stimulus. To investigate further the mechanisms underlying the promotive effect of actin disruption on root gravitropism, we treated maize roots with varying concentrations of latrunculin B in order to determine the lowest concentration of latrunculin B that has an effect on root bending. After a 10-minute gravistimulus, treated roots were axially rotated on a one rpm clinostat and curvature was measured after 15 hours. Our results show that 100 nM latrunculin B induced the strongest promotive effect on the curvature of maize roots grown on a clinostat. Moreover, continuously gravistimulated roots treated with 100 nM latrunculin B exhibited stronger curvature responses while decapped roots treated with this concentration of latrunculin B did not bend during continuous gravistimulation. The stronger promotive effect of low concentrations of latrunculin B on the curvature of both clinorotated and continuously gravistimulated roots suggests that disruption of the fmer, more dynamic component of the actin cytoskeleton could be the cause of the enhanced tropic responses of roots to gravity.

Top