Science.gov

Sample records for induces adipocyte differentiation

  1. Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development

    PubMed Central

    Daquinag, A C; Tseng, C; Salameh, A; Zhang, Y; Amaya-Manzanares, F; Dadbin, A; Florez, F; Xu, Y; Tong, Q; Kolonin, M G

    2015-01-01

    Overgrowth of white adipose tissue (WAT) in obesity occurs as a result of adipocyte hypertrophy and hyperplasia. Expansion and renewal of adipocytes relies on proliferation and differentiation of white adipocyte progenitors (WAP); however, the requirement of WAP for obesity development has not been proven. Here, we investigate whether depletion of WAP can be used to prevent WAT expansion. We test this approach by using a hunter-killer peptide designed to induce apoptosis selectively in WAP. We show that targeted WAP cytoablation results in a long-term WAT growth suppression despite increased caloric intake in a mouse diet-induced obesity model. Our data indicate that WAP depletion results in a compensatory population of adipose tissue with beige adipocytes. Consistent with reported thermogenic capacity of beige adipose tissue, WAP-depleted mice display increased energy expenditure. We conclude that targeting of white adipocyte progenitors could be developed as a strategy to sustained modulation of WAT metabolic activity. PMID:25342467

  2. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation.

    PubMed

    Song, No-Joon; Kim, Suji; Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  3. Small Molecule-Induced Complement Factor D (Adipsin) Promotes Lipid Accumulation and Adipocyte Differentiation

    PubMed Central

    Jang, Byung-Hyun; Chang, Seo-Hyuk; Yun, Ui Jeong; Park, Ki-Moon; Waki, Hironori; Li, Dean Y.; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Adipocytes are differentiated by various transcriptional cascades integrated on the master regulator, Pparγ. To discover new genes involved in adipocyte differentiation, preadipocytes were treated with three newly identified pro-adipogenic small molecules and GW7845 (a Pparγ agonist) for 24 hours and transcriptional profiling was analyzed. Four genes, Peroxisome proliferator-activated receptor γ (Pparγ), human complement factor D homolog (Cfd), Chemokine (C-C motif) ligand 9 (Ccl9), and GIPC PDZ Domain Containing Family Member 2 (Gipc2) were induced by at least two different small molecules but not by GW7845. Cfd and Ccl9 expressions were specific to adipocytes and they were altered in obese mice. Small hairpin RNA (shRNA) mediated knockdown of Cfd in preadipocytes inhibited lipid accumulation and expression of adipocyte markers during adipocyte differentiation. Overexpression of Cfd promoted adipocyte differentiation, increased C3a production, and led to induction of C3a receptor (C3aR) target gene expression. Similarly, treatments with C3a or C3aR agonist (C4494) also promoted adipogenesis. C3aR knockdown suppressed adipogenesis and impaired the pro-adipogenic effects of Cfd, further suggesting the necessity for C3aR signaling in Cfd-mediated pro-adipogenic axis. Together, these data show the action of Cfd in adipogenesis and underscore the application of small molecules to identify genes in adipocytes. PMID:27611793

  4. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes.

    PubMed

    Penfornis, P; Viengchareun, S; Le Menuet, D; Cluzeaud, F; Zennaro, M C; Lombès, M

    2000-08-01

    By use of targeted oncogenesis, a brown adipocyte cell line was derived from a hibernoma of a transgenic mouse carrying the proximal promoter of the human mineralocorticoid receptor (MR) linked to the SV40 large T antigen. T37i cells remain capable of differentiating into brown adipocytes upon insulin and triiodothyronine treatment as judged by their ability to express uncoupling protein 1 and maintain MR expression. Aldosterone treatment of undifferentiated cells induced accumulation of intracytoplasmic lipid droplets and mitochondria. This effect was accompanied by a significant and dose-dependent increase in intracellular triglyceride content (half-maximally effective dose 10(-9) M) and involved MR, because it was unaffected by RU-38486 treatment but was totally abolished in the presence of aldosterone antagonists (spironolactone, RU-26752). The expression of early adipogenic gene markers, such as lipoprotein lipase, peroxisome proliferator-activated receptor-gamma, and adipocyte-specific fatty acid binding protein 2, was enhanced by aldosterone, confirming activation of the differentiation process. We demonstrate that, in the T37i cell line, aldosterone participates in the very early induction of brown adipocyte differentiation. Our findings may have a broader biological significance and suggest that MR is not only implicated in maintaining electrolyte homeostasis but could also play a role in metabolism and energy balance.

  5. Inhibitory effect of leptin on rosiglitazone-induced differentiation of primary adipocytes prepared from TallyHO/Jng mice

    SciTech Connect

    Kim, Ki Young; Kim, Joo Young; Sung, Yoon-Young; Jung, Won Hoon; Kim, Hee-Youn; Park, Ji Seon; Cheon, Hyae Gyeong; Rhee, Sang Dal

    2011-03-25

    Research highlights: {yields} In this study, we investigated the effects of leptin on adipocyte differentiation prepared from subcutaneous fat of TallyHo mice. {yields} Leptin inhibited the adipocytes differentiation at physiological concentration via inhibition of PPAR{gamma} expression. {yields} Inhibitors of ERK and STAT1 restored the leptin's inhibitory activity both in vitro and in vivo. -- Abstract: The effects of leptin on rosiglitazone-induced adipocyte differentiation were investigated in the primary adipocytes prepared from subcutaneous fat of TallyHO/Jng (TallyHO) mouse, a recently developed model animal for type 2 diabetes mellitus (T2DM). The treatment of leptin inhibited the rosiglitazone-induced adipocyte differentiation with a decreased expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) a key adipogenic transcription factor, both in mRNA and protein levels. Leptin (10 nM) was sufficient to inhibit the adipocyte differentiation, which seemed to come from increased expression of leptin receptor genes in the fat of TallyHO mice. The inhibition of adipogenesis by leptin was restored by the treatment of inhibitors for extracellular-signal-regulated kinase (ERK) (PD98059) and signal transducer and activator of transcription-1 (STAT1) (fludarabine). Furthermore, in vivo intraperitoneal administration of PD98059 and fludarabine increased the PPAR{gamma} expression in the subcutaneous fat of TallyHO mice. These data suggest that leptin could inhibit the PPAR{gamma} expression and adipocyte differentiation in its physiological concentration in TallyHO mice.

  6. Human milk and infant formula can induce in vitro adipocyte differentiation in murine 3T3-L1 preadipocytes.

    PubMed

    Lyle, R E; Corley, J D; McGehee, R E

    1998-11-01

    The potential of infant diet to influence fat cell development has largely been examined in clinical studies with conflicting results. In this study, the direct effects of two standard infant formulas, Enfamil and Similac, as well as human milk were examined using a well characterized model of adipocyte differentiation, the 3T3-L1 murine preadipocyte cell line. After exposure to a hormonal regimen of insulin, dexamethasone, and 1-methyl-3-isobutylmethylxanthine, these cells undergo a mitotic expansion phase followed by terminal differentiation. On d 4 of hormonal exposure, greater than 95% of 3T3-L1 cells exhibit the morphologic and biochemical characteristics of mature adipocytes. In this study, cells were exposed to control medium, or control medium supplemented with either 10% Enfamil, 10% Similac, 10% human milk (skim or whole), or the standard hormonal regimen. Oil Red O-detectable lipid accumulation, immunocytochemical cell proliferation assays, and activated expression of adipocyte differentiation-specific mRNAs by Northern blot analysis were used to assess the effects of treatment on adipocyte differentiation. Results from each level of assessment revealed that both Enfamil and human milk were as effective as the standard hormonal regimen at stimulating adipocyte differentiation. In contrast, results from treatment with Similac or human skim milk were indistinguishable from control unstimulated cells. This study, demonstrating that Enfamil and human milk are capable of independently inducing in vitro adipocyte differentiation, suggests that diet during infancy could influence body fat development.

  7. Adipocyte differentiation induced using nonspecific siRNA controls in cultured human mesenchymal stem cells

    PubMed Central

    Xu, Yunhe; Mirmalek-Sani, Sayed-Hadi; Lin, Feng; Zhang, Junlong; Oreffo, Richard O.C.

    2007-01-01

    RNA interference (RNAi) is gene silencing induced by double-stranded RNA of 21–23 nucleotides in length, termed small interfering RNA, or siRNA. RNAi-based techniques have been widely applied to elucidate gene function, identify drug targets, and used in trials as a promising adjunct to silence disease-causing genes. However, emerging evidence suggests unexpected changes in expression of untargeted genes as a consequence of an off-target effect by RNAi in mammalian cells. To date, our understanding of such effects on stem cells is limited. We transfected human fetal femur-derived mesenchymal stem cells using commercially available nonspecific siRNA controls and examined adipocyte differentiation in the cells using morphology, histochemistry, and quantitative real-time PCR to examine the expression of key genes for adipogenic or osteogenic differentiation. We report here the induction of adipocyte differentiation in human mesenchymal stem cells using nonspecific siRNAs raising concerns as to the specificity of RNAi in stem cells and, critically, a need to understand and delineate the rules governing the specificity of RNAi. PMID:17556710

  8. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    SciTech Connect

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  9. The endocrine disruptor diethylstilbestrol induces adipocyte differentiation and promotes obesity in mice

    SciTech Connect

    Hao, Chan-Juan; Cheng, Xue-Jia; Xia, Hong-Fei Ma, Xu

    2012-08-15

    Epidemiology studies indicate that exposure to endocrine disruptors during developmental “window” contributes to adipogenesis and the development of obesity. Implication of endocrine disruptor such as diethylstilbestrol (DES) on adipose tissue development has been poorly investigated. Here we evaluated the effects of DES on adipocyte differentiation in vitro and in vivo, and explored potential mechanism involved in its action. DES induced 3T3-L1 preadipocyte differentiation in a dose-dependent manner, and activated the expression of estrogen receptor (ER) and peroxisome proliferator-acivated receptor (PPAR) γ as well as its target genes required for adipogenesis in vitro. ER mediated the enhancement of DES-induced PPARγ activity. Moreover, DES perturbed key regulators of adipogenesis and lipogenic pathway in vivo. In utero exposure to low dose of DES significantly increased body weight, liver weight and fat mass in female offspring at postnatal day (PND) 60. In addition, serum triglyceride and glucose levels were also significantly elevated. These results suggest that perinatal exposure to DES may be expected to increase the incidence of obesity in a sex-dependent manner and can act as a potential chemical stressor for obesity and obesity-related disorders. -- Highlights: ► DES induced adipocyte differentiation in a dose-dependent manner in 3T3-L1 cells. ► DES activated adipogenic critical regulators and markers in vitro and in vivo. ► Perinatal exposure to DES led to the obese phenotype in female offspring. ► DES might be a potential chemical stressor for obesity and obesity-related disorders.

  10. Biochemical correlates of thiazolidinedione-induced adipocyte differentiation by high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Chen, Jin-Hong; Enloe, Brian M; Weybright, Patrick; Campbell, Natalee; Dorfman, David; Fletcher, Christopher D; Cory, D G; Singer, Samuel

    2002-10-01

    Thiazolidinediones, a class of synthetic ligands to the peroxisome proliferator-activated receptor-gamma, induce terminal adipocyte differentiation of 3T3 F442A cells, and have already been used as alternative therapeutic agents for the treatment of liposarcoma in clinical trials. The biochemical changes occurring in the 3T3 F442A cell line and well-differentiated liposarcoma following induction of adipocyte differentiation with the thiazolidinedione troglitazone were measured using high-resolution magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. 3T3 F442A cell differentiation was characterized by a large accumulation of intracellular triglyceride and withdrawal from the cell cycle. Phosphatidylcholine (PTC), phosphocholine (PC), myo-inositol, and glycerol were found to be possible biochemical markers for adipocyte differentiation induced by thiazolidenediones. The molar ratio of PTC to PC increased fourfold in differentiated 3T3 F442A cells compared to undifferentiated cells, suggesting a substantial increase in CTP:phosphocholine cytidylyltransferase activity with differentiation. A 2.8-fold increase in the PTC:PC ratio was observed in the lipoma-like well-differentiated liposarcoma of three patients who were treated with troglitazone when compared to liposarcoma from patients not treated with this drug. Thus, this ratio may be an NMR-detectable marker of troglitazone efficacy and response to differentiation therapy for liposarcoma.

  11. Purple Sweet Potato Leaf Extract Induces Apoptosis and Reduces Inflammatory Adipokine Expression in 3T3-L1 Differentiated Adipocytes.

    PubMed

    Lee, Shou-Lun; Chin, Ting-Yu; Tu, Ssu-Chieh; Wang, Yu-Jie; Hsu, Ya-Ting; Kao, Ming-Ching; Wu, Yang-Chang

    2015-01-01

    Background. Purple sweet potato leaves (PSPL) are widely grown and are considered a healthy vegetable in Taiwan. PSPL contain a high content of flavonoids, and the boiling water-extracted PSPL (PSPLE) is believed to prevent metabolic syndrome. However, its efficacy has not yet been verified. Therefore, we investigated the effect of PSPLE on adipocytes. Methods. The differentiated 3T3-L1 cells used in this study were derived from preadipocytes that were differentiated into adipocytes using an adipogenic agent (insulin, dexamethasone, and 3-isobutyl-1-methylxanthine); approximately 90% of the cells were differentiated using this method. Results. Treating the differentiated 3T3-L1 cells with PSPLE caused a dose-dependent decrease in the number of adipocytes rather than preadipocytes. In addition, treatment with PSPLE resulted in apoptosis of the differentiated 3T3-L1 cells as determined by DAPI analysis and flow cytometry. PSPLE also increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP). Furthermore, PSPLE induced downregulation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) gene expression in the differentiated 3T3-L1 cells. Conclusions. These results suggest that PSPLE not only induced apoptosis but also downregulated inflammation-associated genes in the differentiated 3T3-L1 cells. PMID:26170870

  12. Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes

    SciTech Connect

    Lasrich, Dorothee; Bartelt, Alexander; Grewal, Thomas; Heeren, Joerg

    2015-09-10

    Several studies in mice indicate a role for apolipoprotein E (APOE) in lipid accumulation and adipogenic differentiation in adipose tissue. However, little is yet known if APOE functions in a similar manner in human adipocytes. This prompted us to compare lipid loading and expression of adipocyte differentiation markers in APOE-deficient and control adipocytes using the differentiated human mesenchymal stem cell line hMSC-Tert as well as primary human and mouse adipocytes as model systems. Differentiated hMSC-Tert were stably transduced with or without siRNA targeting APOE while murine adipocytes were isolated from wild type and Apoe knockout mice. Human APOE knockdown hMSC-Tert adipocytes accumulated markedly less triglycerides compared to control cells. This correlated with strongly decreased gene expression levels of adipocyte markers such as adiponectin (ADIPOQ) and fatty acid binding protein 4 (FABP4) as well as the key transcription factor driving adipocyte differentiation, peroxisome proliferator activator receptor gamma (PPARG), in particular the PPARG2 isoform. Similarly, differentiation of murine Apoe-deficient adipocytes was characterized by reduced gene expression of Adipoq, Fabp4 and Pparg. Interestingly, incubation of APOE-deficient hMSC-Tert adipocytes with conditioned media from APOE3-overexpressing adipocytes or APOE-containing Very Low Density Lipoprotein (VLDL) partially restored triglyceride accumulation, but were unable to induce adipocyte differentiation, as judged by expression of adipocyte markers. Taken together, depletion of endogenous APOE in human adipocytes severely impairs lipid accumulation, which is associated with an inability to initiate differentiation. - Highlights: • Immortalized human mesenchymal stem cells were used to study adipocyte development. • Knockdown of endogenous APOE lead to impaired lipid accumulation and adipogenesis. • APOE supplementation partially restored lipid accumulation but not differentiation.

  13. CTSK inhibitor exert its anti-obesity effects through regulating adipocyte differentiation in high-fat diet induced obese mice.

    PubMed

    Han, Junfeng; Wei, Li; Xu, Weibin; Lu, Junxi; Wang, Chen; Bao, Yuqian; Jia, Weiping

    2015-01-01

    Obesity is associated with increased risk of developing numerous adverse health conditions. Cathepsin k (CTSK) is highly expressed in adipose tissues of obese patients and animal models. Although CTSK has been demonstrated to promote adipocyte differentiation in 3T3-L1 cells, the effects of CTSK selective inhibitor (CKSI) on weight gain and insulin resistance have not been well examined. High-fat diet (HFD) induced obese male C57BL/6 mice were fed a diet with or without CKSI for 8 weeks. The HFD induced increase in adipose tissue weight gain, increase in homeostasis model assessment (HOMA) index as well as accumulation of large adipocytes. After CKSI treatment, all these effects were blunted compared with the HFD control group. A study of the mechanism demonstrated a role for CKSI in significantly down-regulating the expression of two key transcription factors, peroxisome proliferators-activated receptor-γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), which are markers of adipogenic differentiation. These results indicated that the CKSI possesses an anti-obesity effect, possibly involving the inhibition of adipocyte differentiation. CTSK is likely to be a new target of therapeutic intervention for the treatment of obesity.

  14. Adipocyte induced arterial calcification is prevented with sodium thiosulfate

    SciTech Connect

    Chen, Neal X.; O’Neill, Kalisha; Akl, Nader Kassis; Moe, Sharon M.

    2014-06-20

    Highlights: • High phosphorus can induce calcification of adipocytes, even when fully differentiated. • Adipocytes can induce vascular calcification in an autocrine manner. • Sodium thiosulfate inhibits adipocyte calcification. - Abstract: Background: Calcification can occur in fat in multiple clinical conditions including in the dermis, breasts and in the abdomen in calciphylaxis. All of these are more common in patients with advanced kidney disease. Clinically, hyperphosphatemia and obesity are risk factors. Thus we tested the hypothesis that adipocytes can calcify in the presence of elevated phosphorus and/or that adipocytes exposed to phosphorus can induce vascular smooth muscle cell (VSMC) calcification. Methods: 3T3-L1 preadipocytes were induced into mature adipocytes and then treated with media containing high phosphorus. Calcification was assessed biochemically and PCR performed to determine the expression of genes for osteoblast and adipocyte differentiation. Adipocytes were also co-cultured with bovine VSMC to determine paracrine effects, and the efficacy of sodium thiosulfate was determined. Results: The results demonstrated that high phosphorus induced the calcification of differentiated adipocytes with increased expression of osteopontin, the osteoblast transcription factor Runx2 and decreased expression of adipocyte transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (CEBPα), indicating that high phosphorus led to a phenotypic switch of adipocytes to an osteoblast like phenotype. Sodium thiosulfate, dose dependently decreased adipocyte calcification and inhibited adipocyte induced increase of VSMC calcification. Co-culture studies demonstrated that adipocytes facilitated VSMC calcification partially mediated by changes of secretion of leptin and vascular endothelial growth factor (VEGF) from adipocytes. Conclusion: High phosphorus induced calcification of mature adipocytes, and

  15. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    SciTech Connect

    Inadera, Hidekuni Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein {delta} expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor {gamma} expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-{alpha} did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  16. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation.

    PubMed

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-02-20

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein delta expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor gamma expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-alpha did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  17. The increasingly complex regulation of adipocyte differentiation

    PubMed Central

    Poulos, Sylvia P; Dodson, Michael V; Culver, Melinda F

    2015-01-01

    Adipose (AD) tissue development and function relies on the ability of adipocytes to proliferate and differentiate into lipid-containing cells that also have endocrine function. Research suggests that certain conditions can induce AD tissue stem cells to differentiate into various cell types and that the microenvironment of the cell, including the extracellular matrix (ECM), is essential in maintaining cell and tissue function. This review provides an overview of factors involved in the proliferation and differentiation of adipocytes. A brief review of the numerous factors that influence PPARγ, the transcription factor thought to be the master regulator of adipocyte differentiation, provides context of established pathways that regulate adipogenesis. Thought provoking findings from research with hypoxia that is supported by earlier research that vascular development is related to adipogenesis are reviewed. Finally, our understanding of the critical role of the ECM and environment in adipogenesis is discussed and compared with studies that suggest that adipocytes may dedifferentiate and can convert into other cell types. PMID:26645953

  18. Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation

    PubMed Central

    Torabi, Sheida

    2015-01-01

    Based on our finding that depletion of mevalonate-derived metabolites inhibits adipocyte differentiation, we hypothesize that trans, trans-farnesol (farnesol), a mevalonate-derived sesquiterpene, induces adipocyte differentiation. Farnesol dose-dependently (25–75 μmol/L) increased intracellular triglyceride content of murine 3T3-F442A pre-adipocytes measured by AdipoRed™ Assay and Oil Red-O staining. Concomitantly, farnesol dose-dependently increased glucose uptake and glucose transport protein 4 (GLUT4) expression without affecting cell viability. Furthermore, quantitative real-time polymerase chain reaction and Western blot showed that farnesol increased the mRNA and protein levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, and the mRNA levels of PPARγ-regulated fatty acid-binding protein 4 and adiponectin; in contrast, farnesol downregulated Pref-1 gene, a marker of pre-adipocytes. GW9662 (10 µmol/L), an antagonist of PPARγ, reversed the effects of farnesol on cellular lipid content, suggesting that PPARγ signaling pathway may mediate the farnesol effect. Farnesol (25–75 μmol/L) did not affect the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in the mevalonate pathway. Farnesol may be the mevalonate-derived inducer of adipocyte differentiation and potentially an insulin sensitizer via activation of PPARγ and upregulation of glucose uptake. PMID:26660152

  19. Factor for adipocyte differentiation 158 gene disruption prevents the body weight gain and insulin resistance induced by a high-fat diet.

    PubMed

    Hayashi, Takahiro; Nozaki, Yuriko; Nishizuka, Makoto; Ikawa, Masahito; Osada, Shigehiro; Imagawa, Masayoshi

    2011-01-01

    To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.

  20. Dynamics of protein secretion during adipocyte differentiation.

    PubMed

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Muroya, Susumu; Nishimura, Takanori

    2016-08-01

    The major functions of adipocytes include both lipid storage and the production of secretory factors. However, the type of proteins released from mouse 3T3-L1 cells during adipocyte differentiation remains poorly understood. We examined the dynamics of secreted proteins during adipocyte differentiation using mass spectrometry (MS) combined with an iTRAQ (®) labeling method that enables the simultaneous analysis of relative protein expression levels. A total of 215 proteins were identified and quantified from approximately 10 000 MS/MS spectra. Of these, approximately 38% were categorized as secreted proteins based on gene ontology classification. Adipokine secretion levels were increased with the progression of differentiation. By contrast, levels of fibril collagen components, such as subunits of type I and III collagens, were decreased during differentiation. Basement membrane components attained their peak levels at day 4 when small lipid droplets accumulated in differentiated 3T3-L1 cells. Simultaneously, peak levels of collagen microfibril components that comprise type V and VI collagen subunits were also observed. Our data demonstrated that extracellular matrix components were predominantly released during the early and middle stages of adipocyte differentiation, with a subsequent increase in the secretion of adipokines. This suggests that 3T3-L1 cells secrete adipokines after their ECM is constructed during adipocyte differentiation. PMID:27516960

  1. Amber Light (590 nm) Induces the Breakdown of Lipid Droplets through Autophagy-Related Lysosomal Degradation in Differentiated Adipocytes.

    PubMed

    Choi, Min Sik; Kim, Hyoung-June; Ham, Mira; Choi, Dong-Hwa; Lee, Tae Ryong; Shin, Dong Wook

    2016-01-01

    Lipolysis in the adipocytes provides free fatty acids for other tissues in response to the energy demand. With the rapid increase in obesity-related diseases, finding novel stimuli or mechanisms that regulate lipid metabolism becomes important. We examined the effects of visible light (410, 457, 505, 530, 590, and 660 nm) irradiation on lipolysis regulation in adipocytes differentiated from human adipose-derived stem cells (ADSCs). Interestingly, 590 nm (amber) light irradiation significantly reduced the concentration of lipid droplets (LDs). We further investigated the lipolytic signaling pathways that are involved in 590 nm light irradiation-induced breakdown of LDs. Immunoblot analysis revealed that 590 nm light irradiation-induced phosphorylation of hormone-sensitive lipase (HSL) was insufficient to promote reduction of LDs. We observed that 590 nm light irradiation decreased the expression of perilipin 1. We found that 590 nm light irradiation, but not 505 nm, induced conversion of LC3 I to LC3 II, a representative autophagic marker. We further demonstrated that the lysosomal inhibitors leupeptin/NH4Cl inhibited 590 nm light irradiation-induced reduction of LDs in differentiated adipocytes. Our data suggest that 590 nm light irradiation-induced LD breakdown is partially mediated by autophagy-related lysosomal degradation, and can be applied in clinical settings to reduce obesity. PMID:27346059

  2. Amber Light (590 nm) Induces the Breakdown of Lipid Droplets through Autophagy-Related Lysosomal Degradation in Differentiated Adipocytes

    PubMed Central

    Choi, Min Sik; Kim, Hyoung-June; Ham, Mira; Choi, Dong-Hwa; Lee, Tae Ryong; Shin, Dong Wook

    2016-01-01

    Lipolysis in the adipocytes provides free fatty acids for other tissues in response to the energy demand. With the rapid increase in obesity-related diseases, finding novel stimuli or mechanisms that regulate lipid metabolism becomes important. We examined the effects of visible light (410, 457, 505, 530, 590, and 660 nm) irradiation on lipolysis regulation in adipocytes differentiated from human adipose-derived stem cells (ADSCs). Interestingly, 590 nm (amber) light irradiation significantly reduced the concentration of lipid droplets (LDs). We further investigated the lipolytic signaling pathways that are involved in 590 nm light irradiation-induced breakdown of LDs. Immunoblot analysis revealed that 590 nm light irradiation-induced phosphorylation of hormone-sensitive lipase (HSL) was insufficient to promote reduction of LDs. We observed that 590 nm light irradiation decreased the expression of perilipin 1. We found that 590 nm light irradiation, but not 505 nm, induced conversion of LC3 I to LC3 II, a representative autophagic marker. We further demonstrated that the lysosomal inhibitors leupeptin/NH4Cl inhibited 590 nm light irradiation-induced reduction of LDs in differentiated adipocytes. Our data suggest that 590 nm light irradiation-induced LD breakdown is partially mediated by autophagy-related lysosomal degradation, and can be applied in clinical settings to reduce obesity. PMID:27346059

  3. Regulation of human subcutaneous adipocyte differentiation by EID1.

    PubMed

    Vargas, Diana; Shimokawa, Noriaki; Kaneko, Ryosuke; Rosales, Wendy; Parra, Adriana; Castellanos, Ángela; Koibuchi, Noriyuki; Lizcano, Fernando

    2016-02-01

    Increasing thermogenesis in white adipose tissues can be used to treat individuals at high risk for obesity and cardiovascular disease. The objective of this study was to determine the function of EP300-interacting inhibitor of differentiation (EID1), an inhibitor of muscle differentiation, in the induction of beige adipocytes from adipose mesenchymal stem cells (ADMSCs). Subcutaneous adipose tissue was obtained from healthy women undergoing abdominoplasty. ADMSCs were isolated in vitro, grown, and transfected with EID1 or EID1 siRNA, and differentiation was induced after 48 h by administering rosiglitazone. The effects of EID1 expression under the control of the aP2 promoter (aP2-EID1) were also evaluated in mature adipocytes that were differentiated from ADMSCs. Transfection of EID1 into ADMSCs reduced triglyceride accumulation while increasing levels of thermogenic proteins, such as PGC1α, TFAM, and mitochondrial uncoupling protein 1 (UCP1), all of which are markers of energy expenditure and mitochondrial activity. Furthermore, increased expression of the beige phenotype markers CITED1 and CD137 was observed. Transfection of aP2-EID1 transfection induced the conversion of mature white adipocytes to beige adipocytes, as evidenced by increased expression of PGC1α, UCP1, TFAM, and CITED1. These results indicate that EID1 can modulate ADMSCs, inducing a brown/beige lineage. EID1 may also activate beiging in white adipocytes obtained from subcutaneous human adipose tissue. PMID:26643909

  4. Structure-specific adipogenic capacity of novel, well-defined ternary Zn(II)-Schiff base materials. Biomolecular correlations in zinc-induced differentiation of 3T3-L1 pre-adipocytes to adipocytes.

    PubMed

    Tsave, O; Halevas, E; Yavropoulou, M P; Kosmidis Papadimitriou, A; Yovos, J G; Hatzidimitriou, A; Gabriel, C; Psycharis, V; Salifoglou, A

    2015-11-01

    Among the various roles of zinc discovered to date, its exogenous activity as an insulin mimetic agent stands as a contemporary challenge currently under investigation and a goal to pursue in the form of a metallodrug against type 2 Diabetes Mellitus. Poised to investigate the adipogenic potential of Zn(II) and appropriately configure its coordination sphere into well-defined anti-diabetic forms, (a) a series of new well-defined ternary dinuclear Zn(II)-L (L=Schiff base ligands with a variable number of alcoholic moieties) compounds were synthesized and physicochemically characterized, (b) their cytotoxicity and migration effect(s) in both pre- and mature adipocytes were assessed, (c) their ability to effectively induce cell differentiation of 3T3-L1 pre-adipocytes into mature adipocytes was established, and (d) closely linked molecular targets involving or influenced by the specific Zn(II) forms were perused through molecular biological techniques, cumulatively delineating factors involved in Zn(II)-induced adipogenesis. Collectively, the results (a) reveal the significance of key structural features of Schiff ligands coordinated to Zn(II), thereby influencing its (a)toxicity behavior and insulin-like activity, (b) project molecular targets influenced by the specific forms of Zn(II) formulating its adipogenic potential, and (c) exemplify the interwoven relationship between Zn(II)-L structural speciation and insulin mimetic biological activity, thereby suggesting ways of fine tuning structure-specific zinc-induced adipogenicity in future efficient antidiabetic drugs.

  5. Depot-specific and hypercaloric diet-induced effects on the osteoblast and adipocyte differentiation potential of adipose-derived stromal cells.

    PubMed

    Sadie-Van Gijsen, Hanel; Smith, Wayne; du Toit, Eugene Francois; Michie, John; Hough, F S; Ferris, William Frank

    2012-01-01

    Adipose-derived stromal cells (ADSCs) can be differentiated in vitro into several mesenchyme-derived cell types. We had previously described depot-specific differences in the adipocyte differentiation of ADSCs, and consequently we hypothesized that there may also be depot-specific differences in osteoblast differentiation of ADSCs. For this study, the osteoblast differentiation potential of rat subcutaneous ADSCs (scADSCs) and perirenal visceral ADSCs (pvADSCs) was compared. Osteoblast differentiation media (OM) induced markers of the osteoblastic phenotype in scADSCs, but not in pvADSCs. ADSCs harvested from rats with diet-induced visceral obesity (DIO) exhibited reduced osteoinduction, compared to lean controls, but adipocyte differentiation was not affected. Expression of the pro-osteogenic transcription factor Msx2 was significantly higher in naïve scADSCs from lean and DIO rats than in pvADSCs. Our findings indicate that ADSCs from different anatomical sites are uniquely pre-programmed in vivo in a depot-specific manner, and that diet-induced metabolic disturbances translate into reduced osteoblast differentiation of ADSCs.

  6. Follistatin promotes adipocyte differentiation, browning, and energy metabolism.

    PubMed

    Braga, Melissa; Reddy, Srinivasa T; Vergnes, Laurent; Pervin, Shehla; Grijalva, Victor; Stout, David; David, John; Li, Xinmin; Tomasian, Venina; Reid, Christopher B; Norris, Keith C; Devaskar, Sherin U; Reue, Karen; Singh, Rajan

    2014-03-01

    Follistatin (Fst) functions to bind and neutralize the activity of members of the transforming growth factor-β superfamily. Fst has a well-established role in skeletal muscle, but we detected significant Fst expression levels in interscapular brown and subcutaneous white adipose tissue, and further investigated its role in adipocyte biology. Fst expression was induced during adipogenic differentiation of mouse brown preadipocytes and mouse embryonic fibroblasts (MEFs) as well as in cold-induced brown adipose tissue from mice. In differentiated MEFs from Fst KO mice, the induction of brown adipocyte proteins including uncoupling protein 1, PR domain containing 16, and PPAR gamma coactivator-1α was attenuated, but could be rescued by treatment with recombinant FST. Furthermore, Fst enhanced thermogenic gene expression in differentiated mouse brown adipocytes and MEF cultures from both WT and Fst KO groups, suggesting that Fst produced by adipocytes may act in a paracrine manner. Our microarray gene expression profiling of WT and Fst KO MEFs during adipogenic differentiation identified several genes implicated in lipid and energy metabolism that were significantly downregulated in Fst KO MEFs. Furthermore, Fst treatment significantly increases cellular respiration in Fst-deficient cells. Our results implicate a novel role of Fst in the induction of brown adipocyte character and regulation of energy metabolism. PMID:24443561

  7. Rosiglitazone Induces Mitochondrial Biogenesis in Differentiated Murine 3T3-L1 and C3H/10T1/2 Adipocytes.

    PubMed

    Rong, James X; Klein, Jean-Louis D; Qiu, Yang; Xie, Mi; Johnson, Jennifer H; Waters, K Michelle; Zhang, Vivian; Kashatus, Jennifer A; Remlinger, Katja S; Bing, Nan; Crosby, Renae M; Jackson, Tymissha K; Witherspoon, Sam M; Moore, John T; Ryan, Terence E; Neill, Sue D; Strum, Jay C

    2011-01-01

    Growing evidence indicates that PPARγ agonists, including rosiglitazone (RSG), induce adipose mitochondrial biogenesis. By systematically analyzing mitochondrial gene expression in two common murine adipocyte models, the current study aimed to further establish the direct role of RSG and capture temporal changes in gene transcription. Microarray profiling revealed that in fully differentiated 3T3-L1 and C3H/10T1/2 adipocytes treated with RSG or DMSO vehicle for 1, 2, 4, 7, 24, and 48 hrs, RSG overwhelmingly increased mitochondrial gene transcripts time dependently. The timing of the increases was consistent with the cascade of organelle biogenesis, that is, initiated by induction of transcription factor(s), followed by increases in the biosynthesis machinery, and then by increases in functional components. The transcriptional increases were further validated by increased mitochondrial staining, citrate synthase activity, and O(2) consumption, and were found to be associated with increased adiponectin secretion. The work provided further insight on the mechanism of PPARγ-induced mitochondrial biogenesis in differentiated adipocytes.

  8. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    PubMed Central

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α, and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS, and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodeling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα, and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes. PMID:26834634

  9. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation. PMID:27498007

  10. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation.

  11. Involvement of JNK/NFκB Signaling Pathways in the Lipopolysaccharide-Induced Modulation of Aquaglyceroporin Expression in 3T3-L1 Cells Differentiated into Adipocytes

    PubMed Central

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Gregoire, Francoise; Bolaky, Nargis; Delforge, Valerie; Perret, Jason; Delporte, Christine

    2016-01-01

    Aquaglyceroporins, belonging to the family of aquaporins (AQPs), are integral plasma membrane proteins permeable to water and glycerol that have emerged as key players in obesity. The aim of this study was to investigate the expression profile of AQPs in undifferentiated and differentiated 3T3-L1 cells and to investigate the changes in expression of aquaglyceroporins in 3T3-L1 cells differentiated into adipocytes and subjected to lipopolysaccharide (LPS) mimicking inflammation occurring during obesity. Furthermore, the study aimed at identifying the signaling cascade involved in the regulation of aquaglyceroporins expression upon LPS stimulation. 3T3-L1 cells were grown as undifferentiated cells (UDC; preadipocytes) or cells differentiated into adipocytes (DC, adipocytes). DC were incubated in the presence or absence of LPS with or without inhibitors of various protein kinases. AQPs mRNA expression levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR). AQP1, AQP2, AQP3, AQP9 and AQP11 mRNA were expressed in both UDC and DC, whereas AQP4, AQP7 and AQP8 mRNA were expressed only in DC. In DC, LPS up-regulated AQP3 mRNA levels (p < 0.05) compared to control; these effects were inhibited by CLI095, SP600125 and BAY11-7082 (p < 0.05). LPS decreased both AQP7 and AQP11 mRNA levels (p < 0.01) in DC as compared to control; this decrease was inhibited by CLI095 and BAY11-7082 (p < 0.05) and additionally by SP00125 for AQP7 (p < 0.05). SB203580 had no effect on LPS-induced AQP3, AQP7 and AQP11 mRNA levels modulations. In conclusion, our results clearly show that many AQPs are expressed in murine 3T3-L1 adipocytes. Moreover, in DCs, LPS led to decreased AQP7 and AQP11 mRNA levels but to increased AQP3 mRNA levels, resulting from the Toll-like receptor 4 (TLR4)-induced activation of JNK and/or NFκB pathway. PMID:27763558

  12. Effects of Parabens on Adipocyte Differentiation

    PubMed Central

    Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose–derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further. PMID:22956630

  13. Effects of parabens on adipocyte differentiation.

    PubMed

    Hu, Pan; Chen, Xin; Whitener, Rick J; Boder, Eric T; Jones, Jeremy O; Porollo, Aleksey; Chen, Jiangang; Zhao, Ling

    2013-01-01

    Parabens are a group of alkyl esters of p-hydroxybenzoic acid that include methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. Paraben esters and their salts are widely used as preservatives in cosmetics, toiletries, food, and pharmaceuticals. Humans are exposed to parabens through the use of such products from dermal contact, ingestion, and inhalation. However, research on the effects of parabens on health is limited, and the effects of parabens on adipogenesis have not been systematically studied. Here, we report that (1) parabens promote adipogenesis (or adipocyte differentiation) in murine 3T3-L1 cells, as revealed by adipocyte morphology, lipid accumulation, and mRNA expression of adipocyte-specific markers; (2) the adipogenic potency of parabens is increased with increasing length of the linear alkyl chain in the following potency ranking order: methyl- < ethyl- < propyl- < butylparaben. The extension of the linear alkyl chain with an aromatic ring in benzylparaben further augments the adipogenic ability, whereas 4-hydroxybenzoic acid, the common metabolite of all parabens, and the structurally related benzoic acid (without the OH group) are inactive in promoting 3T3-L1 adipocyte differentiation; (3) parabens activate glucocorticoid receptor and/or peroxisome proliferator-activated receptor γ in 3T3-L1 preadipocytes; however, no direct binding to, or modulation of, the ligand binding domain of the glucocorticoid receptor by parabens was detected by glucocorticoid receptor competitor assays; and lastly, (4) parabens, butyl- and benzylparaben in particular, also promote adipose conversion of human adipose-derived multipotent stromal cells. Our results suggest that parabens may contribute to obesity epidemic, and the role of parabens in adipogenesis in vivo needs to be examined further.

  14. Mechanism of Regulation of Adipocyte Numbers in Adult Organisms Through Differentiation and Apoptosis Homeostasis

    PubMed Central

    Bozec, Aline; Hannemann, Nicole

    2016-01-01

    Considering that adipose tissue (AT) is an endocrine organ, it can influence whole body metabolism. Excessive energy storage leads to the dysregulation of adipocytes, which in turn induces abnormal secretion of adipokines, triggering metabolic syndromes such as obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, insulin resistance and type 2 diabetes. Therefore, investigating the molecular mechanisms behind adipocyte dysregulation could help to develop novel therapeutic strategies. Our protocol describes methods for evaluating the molecular mechanism affected by hypoxic conditions of the AT, which correlates with adipocyte apoptosis in adult mice. This protocol describes how to analyze AT in vivo through gene expression profiling as well as histological analysis of adipocyte differentiation, proliferation and apoptosis during hypoxia exposure, ascertained through staining of hypoxic cells or HIF-1α protein. Furthermore, in vitro analysis of adipocyte differentiation and its responses to various stimuli completes the characterization of the molecular pathways behind possible adipocyte dysfunction leading to metabolic syndromes. PMID:27284940

  15. Interaction between HMGA1 and retinoblastoma protein is required for adipocyte differentiation.

    PubMed

    Esposito, Francesco; Pierantoni, Giovanna Maria; Battista, Sabrina; Melillo, Rosa Marina; Scala, Stefania; Chieffi, Paolo; Fedele, Monica; Fusco, Alfredo

    2009-09-18

    It is generally accepted that the regulation of adipogenesis prevents obesity. However, the mechanisms controlling adipogenesis have not been completely defined. We have previously demonstrated that HMGA1 proteins play a critical role in adipogenesis. In fact, suppression of HMGA1 protein synthesis by antisense technology dramatically increased growth rate and impaired adipocyte differentiation in 3T3-L1 cells. Furthermore, we showed that HMGA1 strongly potentiates the capacity of the CCAAT/enhancer-binding protein beta (C/EBPbeta) transcriptional factor to transactivate the leptin promoter, an adipocytic-specific promoter. In this study we demonstrate that HMGA1 physically interacts with retinoblastoma protein (RB), which is also required in adipocyte differentiation. Moreover, we show that RB, C/EBPbeta, and HMGA1 proteins all cooperate in controlling both Id1 and leptin gene transcriptions, which are down- and up-regulated during adipocyte differentiation, respectively. We also demonstrate that HMGA1/RB interaction regulates CDC25A and CDC6 promoter activities, which are induced by E2F-1 protein during early adipocyte differentiation, by displacing HDAC1 from the RB-E2F1 complex. Furthermore, by using Hmga1(-/-) embryonic stem cells, which failed to undergo adipocyte differentiation, we show the crucial role of HMGA1 proteins in adipocyte differentiation due to its pivotal involvement in the formation of the RB-C/EBPbeta complex. Altogether these data demonstrate a key role of the interaction between HMGA1 and RB in adipocyte differentiation. PMID:19633359

  16. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    PubMed

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  17. Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors

    PubMed Central

    Donati, Giacomo; Proserpio, Valentina; Lichtenberger, Beate Maria; Natsuga, Ken; Sinclair, Rodney; Fujiwara, Hironobu; Watt, Fiona M.

    2014-01-01

    It has long been recognized that the hair follicle growth cycle and oscillation in the thickness of the underlying adipocyte layer are synchronized. Although factors secreted by adipocytes are known to regulate the hair growth cycle, it is unclear whether the epidermis can regulate adipogenesis. We show that inhibition of epidermal Wnt/β-catenin signaling reduced adipocyte differentiation in developing and adult mouse dermis. Conversely, ectopic activation of epidermal Wnt signaling promoted adipocyte differentiation and hair growth. When the Wnt pathway was activated in the embryonic epidermis, there was a dramatic and premature increase in adipocytes in the absence of hair follicle formation, demonstrating that Wnt activation, rather than mature hair follicles, is required for adipocyte generation. Epidermal and dermal gene expression profiling identified keratinocyte-derived adipogenic factors that are induced by β-catenin activation. Wnt/β-catenin signaling-dependent secreted factors from keratinocytes promoted adipocyte differentiation in vitro, and we identified ligands for the bone morphogenetic protein and insulin pathways as proadipogenic factors. Our results indicate epidermal Wnt/β-catenin as a critical initiator of a signaling cascade that induces adipogenesis and highlight the role of epidermal Wnt signaling in synchronizing adipocyte differentiation with the hair growth cycle. PMID:24706781

  18. ATF3 represses PPARγ expression and inhibits adipocyte differentiation

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2014-11-07

    Highlights: • ATF3 decrease the expression of PPARγ and its target gene in 3T3-L1 adipocytes. • ATF3 represses the promoter activity of PPARγ2 gene. • ATF/CRE (−1537/−1530) is critical for ATF3-mediated downregulation of PPARγ. • ATF3 binds to the promoter region containing the ATF/CRE. • ER stress inhibits adipocyte differentiation through downregulation of PPARγ by ATF3. - Abstract: Activating transcription factor 3 (ATF3) is a stress-adaptive transcription factor that mediates cellular stress response signaling. We previously reported that ATF3 represses CCAAT/enhancer binding protein α (C/EBPα) expression and inhibits 3T3-L1 adipocyte differentiation. In this study, we explored potential role of ATF3 in negatively regulating peroxisome proliferator activated receptor-γ (PPARγ). ATF3 decreased the expression of PPARγ and its target gene in 3T3-L1 adipocytes. ATF3 also repressed the activity of −2.6 Kb promoter of mouse PPARγ2. Overexpression of PPARγ significantly prevented the ATF3-mediated inhibition of 3T3-L1 differentiation. Transfection studies with 5′ deleted-reporters showed that ATF3 repressed the activity of −2037 bp promoter, whereas it did not affect the activity of −1458 bp promoter, suggesting that ATF3 responsive element is located between the −2037 and −1458. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 binds to ATF/CRE site (5′-TGACGTTT-3′) between −1537 and −1530. Mutation of the ATF/CRE site abrogated ATF3-mediated transrepression of the PPARγ2 promoter. Treatment with thapsigargin, endoplasmic reticulum (ER) stress inducer, increased ATF3 expression, whereas it decreased PPARγ expression. ATF3 knockdown significantly blocked the thapsigargin-mediated downregulation of PPARγ expression. Furthermore, overexpression of PPARγ prevented inhibition of 3T3-L1 differentiation by thapsigargin. Collectively, these results suggest that ATF3-mediated

  19. The effect of dehydroleucodine in adipocyte differentiation.

    PubMed Central

    Galvis, Adriana; Marcano, Adriana; Stefancin, Chad; Villaverde, Nicole; Priestap, Horacio A.; Tonn, Carlos E.; Lopez, Luis A.; Barbieri, Manuel A.

    2012-01-01

    Dehydroleucodine (DhL) is a sesquiterpene lactone of the guaianolide group with gastric citoprotective activity. Recent studies have also demonstrated that DhL inhibits the proliferation of vascular smooth muscle cells. In this study we examined the effect of DhL in the differentiation 3T3-L1 preadipocytes. The addition of DhL significantly inhibited the differentiation 3T3-L1 preadipocytes along with significant decrease in the accumulation of lipid content by a dramatic down regulation of the expression of adipogenic-specific transcriptional factors PPARγ and C-EBPα. However, phosphorylation of AMPKα, Erk1/2 and Akt1 was not inhibited by DhL treatment. Interestingly, we also found that 11,13-dihydro-dehydroleucodine, a derivative of DhL with inactivated α-methylene-γ-lactone function, also inhibited the differentiation 3T3-L1 preadipocytes. Taken together, these data suggest DhL has an important inhibitory effect in cellular pathways regulating adipocyte differentiation by modulating the PPARγ expression, which is known to play a pivotal role during adipogenesis. PMID:21963454

  20. Adipocyte-Like Differentiation in a Posttreatment Embryonal Rhabdomyosarcoma

    PubMed Central

    Balitzer, Dana; McCalmont, Timothy H.; Horvai, Andrew E.

    2015-01-01

    We describe a 16-year-old boy with rhabdomyosarcoma, consistent with embryonal subtype, of the lower extremity who received systemic neoadjuvant chemotherapy and subsequent excision. Microscopic sections of the postchemotherapy excision demonstrated diffuse, prominent, and immature adipocyte-like differentiation, in addition to skeletal muscle differentiation. Adipocyte-like differentiation was confirmed by a combination of positive Oil Red O and adipophilin immunohistochemical staining. To our knowledge, this represents the first report of an unusual phenomenon of differentiation of a soft tissue rhabdomyosarcoma into adipocyte-like cells after chemotherapy. PMID:26783483

  1. Methyltransferase and demethylase profiling studies during brown adipocyte differentiation

    PubMed Central

    Son, Min Jeong; Kim, Won Kon; Oh, Kyoung-Jin; Park, Anna; Lee, Da Som; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-01-01

    Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393] PMID:27157542

  2. Differentiation of preadipocytes and mature adipocytes requires PSMB8

    PubMed Central

    Arimochi, Hideki; Sasaki, Yuki; Kitamura, Akiko; Yasutomo, Koji

    2016-01-01

    The differentiation of adipocytes is tightly regulated by a variety of intrinsic molecules and also by extrinsic molecules produced by adjacent cells. Dysfunction of adipocyte differentiation causes lipodystrophy, which impairs glucose and lipid homeostasis. Although dysfunction of immunoproteasomes causes partial lipodystrophy, the detailed molecular mechanisms remain to be determined. Here, we demonstrate that Psmb8, a catalytic subunit for immunoproteasomes, directly regulates the differentiation of preadipocytes and additionally the differentiation of preadipocytes to mature adipocytes. Psmb8−/− mice exhibited slower weight gain than wild-type mice, and this was accompanied by reduced adipose tissue volume and smaller size of mature adipocytes compared with controls. Blockade of Psmb8 activity in 3T3-L1 cells disturbed the differentiation to mature adipocytes. Psmb8−/− mice had fewer preadipocyte precursors, fewer preadipocytes and a reduced ability to differentiate preadipocytes toward mature adipocytes. Our data demonstrate that Psmb8-mediated immunoproteasome activity is a direct regulator of the differentiation of preadipocytes and their ultimate maturation. PMID:27225296

  3. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    SciTech Connect

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha; Beisiegel, Ulrike; Heeren, Joerg

    2008-02-15

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPAR{gamma} agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPAR{gamma}-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake.

  4. Branched chain amino acid catabolism fuels adipocyte differentiation and lipogenesis

    PubMed Central

    Green, Courtney R.; Wallace, Martina; Divakaruni, Ajit S.; Phillips, Susan A.; Murphy, Anne N.; Ciaraldi, Theodore P.; Metallo, Christian M.

    2015-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, though less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre–adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid metabolism and lipogenesis. In contrast to proliferating cells that use glucose and glutamine for acetyl–coenzyme A (AcCoA) generation, differentiated adipocytes increased branched chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from media and/or protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd–chain fatty acid synthesis. B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism plays a functional role in adipocyte differentiation. PMID:26571352

  5. Phytanic acid, a novel activator of uncoupling protein-1 gene transcription and brown adipocyte differentiation.

    PubMed Central

    Schlüter, Agatha; Barberá, Maria José; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2002-01-01

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a phytol-derived branched-chain fatty acid present in dietary products. Phytanic acid increased uncoupling protein-1 (UCP1) mRNA expression in brown adipocytes differentiated in culture. Phytanic acid induced the expression of the UCP1 gene promoter, which was enhanced by co-transfection with a retinoid X receptor (RXR) expression vector but not with other expression vectors driving peroxisome proliferator-activated receptor (PPAR)alpha, PPARgamma or a form of RXR devoid of ligand-dependent sensitivity. The effect of phytanic acid on the UCP1 gene required the 5' enhancer region of the gene and the effects of phytanic acid were mediated in an additive manner by three binding sites for RXR. Moreover, phytanic acid activates brown adipocyte differentiation: long-term exposure of brown preadipocytes to phytanic acid promoted the acquisition of the brown adipocyte morphology and caused a co-ordinate induction of the mRNAs for gene markers of brown adipocyte differentiation, such as UCP1, adipocyte lipid-binding protein aP2, lipoprotein lipase, the glucose transporter GLUT4 or subunit II of cytochrome c oxidase. In conclusion, phytanic acid is a natural product of phytol metabolism that activates brown adipocyte thermogenic function. It constitutes a potential nutritional signal linking dietary status to adaptive thermogenesis. PMID:11829740

  6. Protein kinase C isoforms play differential roles in the regulation of adipocyte differentiation.

    PubMed Central

    Fleming, I; MacKenzie, S J; Vernon, R G; Anderson, N G; Houslay, M D; Kilgour, E

    1998-01-01

    In this study we first established, by immunoblotting with specific antibodies, the temporal changes in cellular levels of protein kinase C (PKC) isoforms during differentiation of 3T3-F442A pre-adipocytes. Both pre-adipocyte and adipocyte 3T3-F442A cells were found to express PKC-alpha, -gamma, -delta, -epsilon, -zeta and -mu. However we were unable to detect PKC-beta, -eta or -theta. The same PKC isoform expression profile was found in rat adipocytes. The alpha, delta and gamma isoforms displayed similar temporal patterns of expression during differentiation of 3T3-F442A cells; all increased rapidly, peaking at day 2 of differentiation. Subsequently, the expression of these isoforms decreased, resulting in lower levels in fully differentiated adipocytes than in pre-adipocytes. The expression of PKC-epsilon increased steadily during differentiation, resulting in markedly elevated levels in adipocytes. Although expression of PKC-mu increased during differentiation, this was attributable to prolonged confluence rather than to the differentiation process itself. No change was observed in PKC-zeta levels during adipocyte development. Anti-sense oligodeoxynucleotides (ODNs) were used to deplete selectively the individual PKC subtypes. Each of the ODNs used effectively depleted the specific isoforms to undetectable levels and did not affect expression of the other PKC subtypes. This approach indicated that pre-adipocyte differentiation is not dependent upon PKC-zeta but that PKC-alpha,-delta and -mu each exert an inhibitory influence upon differentiation. Use of anti-sense ODNs to deplete PKC-epsilon and -gamma revealed that pre-adipocyte differentiation is dependent upon each of these isoforms. However, PKC-gamma, but not PKC-epsilon, appeared to be necessary for the clonal expansion of differentiating cells, suggesting that PKC-epsilon is required at a later phase in the differentiation process, when its expression is elevated, for the attainment and maintenance of

  7. Differentiation-dependent expression of retinoid-binding proteins in BFC-1 beta adipocytes.

    PubMed

    Zovich, D C; Orologa, A; Okuno, M; Kong, L W; Talmage, D A; Piantedosi, R; Goodman, D S; Blaner, W S

    1992-07-15

    Recently, we demonstrated that adipose tissue plays an important role in retinol storage and retinol-binding protein (RBP) synthesis. Our data suggested that RBP expression in adipose tissue is dependent on the state of adipocyte differentiation. To examine this possibility, we explored the differentiation-dependent expression of RBP using BFC-1 beta preadipocytes, which can be stimulated to undergo adipose differentiation. Total RNA was isolated from undifferentiated (preadipocytes) and differentiated (adipocytes) BFC-1 beta cells and analyzed by Northern blotting. RBP mRNA was not detected in the preadipocytes, but considerable RBP mRNA was present in differentiated BFC-1 beta cells. In BFC-1 beta cells, induced to differentiate with insulin and thyroid hormone, RBP mRNA was first detected after 4 days, reached a maximum level by day 10, and remained at this maximum level for at least 2 more days. Cellular retinol-binding protein was expressed at low levels in the BFC-1 beta preadipocytes and the level of expression increased for 6 days after induction to differentiate and slowly declined on later days. Neither the maximum level of RBP expression nor the day on which this level was reached was influenced by the level of retinol provided in the BFC-1 beta culture medium. BFC-1 beta cells secreted newly synthesized RBP into the culture medium at a rate of 43 +/- 14 ng RBP/24 h/10(6) adipocytes. When the BFC-1 beta adipocytes were provided 1.0 microM retinol in the medium, they accumulated the retinol and synthesized retinyl esters. These studies with BFC-1 beta cells confirm that RBP synthesis and secretion and retinol accumulation are intrinsic properties of differentiated adipocytes. Furthermore, they suggest that RBP and cellular retinol-binding protein gene expression are regulated as part of a package of genes which are modulated during adipocyte differentiation.

  8. Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex

    PubMed Central

    Liang, Chia-Hua; Chan, Leong-Perng; Chou, Tzung-Han; Chiang, Feng-Yu; Yen, Chuan-Min; Chen, Pin-Ju; Ding, Hsiou-Yu

    2013-01-01

    Brazilein, a natural, biologically active compound from Caesalpinia sappan L., has been shown to exhibit anti-inflammatory and antioxidant properties and to inhibit the growth of several cancer cells. This study verifies the antioxidant and antitumor characteristics of brazilein in skin cancer cells and is the first time to elucidate the inhibition mechanism of adipocyte differentiation, cestocidal activities against Hymenolepis nana, and reduction of spontaneous movement in Anisakis simplex. Brazilein exhibits an antioxidant capacity as well as the ability to scavenge DPPH• and ABTS•+ free radicals and to inhibit lipid peroxidation. Brazilein inhibited intracellular lipid accumulation during adipocyte differentiation in 3T3-L1 cells and suppressed the induction of peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, suggesting that brazilein presents the antiobesity effects. The toxic effects of brazilein were evaluated in terms of cell viability, induction of apoptosis, and the activity of caspase-3 in BCC cells. The inhibition of the growth of skin cancer cells (A431, BCC, and SCC25) by brazilein is greater than that of human skin malignant melanoma (A375) cells, mouse leukemic monocyte macrophage (RAW 264.7 cells), and noncancerous cells (HaCaT and BNLCL2 cells). The anthelmintic activities of brazilein against Hymenolepis nana are better than those of Anisakis simplex. PMID:23554834

  9. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  10. Gallic Acid, the Active Ingredient of Terminalia bellirica, Enhances Adipocyte Differentiation and Adiponectin Secretion.

    PubMed

    Makihara, Hiroko; Koike, Yuka; Ohta, Masatomi; Horiguchi-Babamoto, Emi; Tsubata, Masahito; Kinoshita, Kaoru; Akase, Tomoko; Goshima, Yoshio; Aburada, Masaki; Shimada, Tsutomu

    2016-01-01

    Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome. PMID:27374289

  11. Gallic Acid, the Active Ingredient of Terminalia bellirica, Enhances Adipocyte Differentiation and Adiponectin Secretion.

    PubMed

    Makihara, Hiroko; Koike, Yuka; Ohta, Masatomi; Horiguchi-Babamoto, Emi; Tsubata, Masahito; Kinoshita, Kaoru; Akase, Tomoko; Goshima, Yoshio; Aburada, Masaki; Shimada, Tsutomu

    2016-01-01

    Visceral obesity induces the onset of metabolic disorders such as insulin resistance and diabetes mellitus. Adipose tissue is considered as a potential pharmacological target for treating metabolic disorders. The fruit of Terminalia bellirica is extensively used in Ayurvedic medicine to treat patients with diseases such as diabetes mellitus. We previously investigated the effects of a hot water extract of T. bellirica fruit (TB) on obesity and insulin resistance in spontaneously obese type 2 diabetic mice. To determine the active ingredients of TB and their molecular mechanisms, we focused on adipocyte differentiation using mouse 3T3-L1 cells, which are widely used to study adipocyte physiology. We show here that TB enhanced the differentiation of 3T3-L1 cells to mature adipocytes and that one of the active main components was identified as gallic acid. Gallic acid (10-30 µM) enhanced the expression and secretion of adiponectin via adipocyte differentiation and also that of fatty acid binding protein-4, which is the target of peroxisome proliferator-activated receptor gamma (PPARγ), although it does not alter the expression of the upstream genes PPARγ and CCAAT enhancer binding protein alpha. In the PPARγ ligand assay, the binding of gallic acid to PPARγ was undetectable. These findings indicate that gallic acid mediates the therapeutic effects of TB on metabolic disorders by regulating adipocyte differentiation. Therefore, TB shows promise as a candidate for preventing and treating patients with metabolic syndrome.

  12. Differential Chemokine Signature between Human Preadipocytes and Adipocytes

    PubMed Central

    Ignacio, Rosa Mistica C.; Gibbs, Carla R.; Lee, Eun-Sook

    2016-01-01

    Obesity is characterized as an accumulation of adipose tissue mass represented by chronic, low-grade inflammation. Obesity-derived inflammation involves chemokines as important regulators contributing to the pathophysiology of obesity-related diseases such as cardiovascular disease, diabetes and some cancers. The obesity-driven chemokine network is poorly understood. Here, we identified the profiles of chemokine signature between human preadipocytes and adipocytes, using PCR arrays and qRT-PCR. Both preadipocytes and adipocytes showed absent or low levels in chemokine receptors in spite of some changes. On the other hand, the chemokine levels of CCL2, CCL7-8, CCL11, CXCL1-3, CXCL6 and CXCL10-11 were dominantly expressed in preadipocytes compared to adipocytes. Interestingly, CXCL14 was the most dominant chemokine expressed in adipocytes compared to preadipocytes. Moreover, there is significantly higher protein level of CXCL14 in conditioned media from adipocytes. In addition, we analyzed the data of the chemokine signatures in adipocytes obtained from healthy lean and obese postmenopausal women based on Gene Expression Omnibus (GEO) dataset. Adipocytes from obese individuals had significantly higher levels in chemokine signature as follows: CCL2, CCL13, CCL18-19, CCL23, CCL26, CXCL1, CXCL3 and CXCL14, as compared to those from lean ones. Also, among the chemokine networks, CXCL14 appeared to be the highest levels in adipocytes from both lean and obese women. Taken together, these results identify CXCL14 as an important chemokine induced during adipogenesis, requiring further research elucidating its potential therapeutic benefits in obesity. PMID:27340388

  13. Characterization of actions of octanoate on porcine preadipocytes and adipocytes differentiated in vitro

    SciTech Connect

    Suzuki, Shunichi; Suzuki, Misae; Sembon, Shoichiro; Fuchimoto, Daiichiro; Onishi, Akira

    2013-03-01

    Highlights: ► Octanoate regulated gene expressions in a way distinct from rosiglitasone. ► Octanoate upregulatedPPRE and LXRE reporter activities. ► Octanoate may act on some PPARγ-target genes competitively with other ligands. - Abstract: Octanoate is used to induce adipogenic differentiation and/or lipid accumulation in preadipocytes of domestic animals. However, information on detailed actions of octanoate and the characteristics of octanoate-induced adipocytes is limited. The aim of this study was to examine these issues by comparing the outcomes of the effects of octanoate with those of rosiglitazone, which is a well-defined activator of peroxisome proliferator-activated receptor (PPAR)-γ. The adipocytes that were differentiated with 5 mM of octanoate had dispersed and diversely sized lipid droplets compared to those that were differentiated with 1 μM of rosiglitazone. The gene expression levels of adiponectin, glycerol-3-phosphate dehydrogenase, perilipin 1, and perilipin 4 were much higher in the adipocytes that were differentiated with rosiglitazone than in those differentiated with octanoate, while the gene expression levels of lipoprotein lipase and perilipin 2 were decreased in rosiglitazone-differentiated adipocytes compared to octanoate-differentiated adipocytes. However, the expressions of aP2 and CD36 genes were comparably induced. Luciferase reporter assays revealed that PPAR and liver-X-receptor activities were upregulated by octanoate more effectively than by rosiglitazone. Overall, these results suggested that the action of octanoate was complicated and may be dependent on the targeted genes and cellular status.

  14. Differentiation and characterization of human facial subcutaneous adipocytes.

    PubMed

    Chon, Su-Hyoun; Pappas, Apostolos

    2015-01-01

    Aging is associated with the loss of facial subcutaneous fat and with increased abdominal subcutaneous fat. Site specific differences in adipocyte phenotype and/or gene expression may play a role in these age-related changes. In this study, we isolated and characterized human facial preadipocytes and investigated distinct metabolic properties such as a differentiation pattern in relation to abdominal preadipocytes. Subcutaneous preadipocytes were isolated from human facial and abdominal skin and cultured in the presence of differentiation factors including rosiglitazone, a known peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, isobutyl-methyl xanthine (IBMX) and insulin. Differentiation was characterized microscopically and by quantitative real-time PCR. Unexpected superior adipogenic capacity of facial preadipocytes was observed; more facial preadipocytes differentiated in response to rosiglitazone than abdominal preadipocytes and facial preadipocytes retained their ability to differentiate through passage 11 compared with passage 5 for abdominal preadipocytes. Experiments confirmed a reduced lipolysis response in facial versus abdominal adipocytes after exposure to isoproterenol, which was consistent with the reduced β2-adrenergic receptor expression by 60% in the facial cells. The expression of other lipid metabolic gene markers was similar in both facial and abdominal adipocytes with the exception of β3-adrenergic receptor which was only found in abdominal adipose tissue. Gene profiling, by microarray analysis, identified that several HOX genes are robustly reduced in facial adipocytes compared to abdominal adipocytes, suggesting different characteristics between the 2 fat depots. These differences may have implications for development of treatments for facial fat loss during aging.

  15. Differentiation and characterization of human facial subcutaneous adipocytes

    PubMed Central

    Chon, Su-Hyoun; Pappas, Apostolos

    2014-01-01

    Aging is associated with the loss of facial subcutaneous fat and with increased abdominal subcutaneous fat. Site specific differences in adipocyte phenotype and/or gene expression may play a role in these age-related changes. In this study, we isolated and characterized human facial preadipocytes and investigated distinct metabolic properties such as a differentiation pattern in relation to abdominal preadipocytes. Subcutaneous preadipocytes were isolated from human facial and abdominal skin and cultured in the presence of differentiation factors including rosiglitazone, a known peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, isobutyl-methyl xanthine (IBMX) and insulin. Differentiation was characterized microscopically and by quantitative real-time PCR. Unexpected superior adipogenic capacity of facial preadipocytes was observed; more facial preadipocytes differentiated in response to rosiglitazone than abdominal preadipocytes and facial preadipocytes retained their ability to differentiate through passage 11 compared with passage 5 for abdominal preadipocytes. Experiments confirmed a reduced lipolysis response in facial versus abdominal adipocytes after exposure to isoproterenol, which was consistent with the reduced β2-adrenergic receptor expression by 60% in the facial cells. The expression of other lipid metabolic gene markers was similar in both facial and abdominal adipocytes with the exception of β3-adrenergic receptor which was only found in abdominal adipose tissue. Gene profiling, by microarray analysis, identified that several HOX genes are robustly reduced in facial adipocytes compared to abdominal adipocytes, suggesting different characteristics between the 2 fat depots. These differences may have implications for development of treatments for facial fat loss during aging. PMID:26167398

  16. Regulation of Peroxisome Proliferator-Activated Receptor γ Expression by Adipocyte Differentiation and Determination Factor 1/Sterol Regulatory Element Binding Protein 1: Implications for Adipocyte Differentiation and Metabolism

    PubMed Central

    Fajas, Lluis; Schoonjans, Kristina; Gelman, Laurent; Kim, Jae B.; Najib, Jamila; Martin, Genevieve; Fruchart, Jean-Charles; Briggs, Michael; Spiegelman, Bruce M.; Auwerx, Johan

    1999-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor implicated in adipocyte differentiation and insulin sensitivity. We investigated whether PPARγ expression is dependent on the activity of adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1 (ADD-1/SREBP-1), another transcription factor associated with both adipocyte differentiation and cholesterol homeostasis. Ectopic expression of ADD-1/SREBP-1 in 3T3-L1 and HepG2 cells induced endogenous PPARγ mRNA levels. The related transcription factor SREBP-2 likewise induced PPARγ expression. In addition, cholesterol depletion, a condition known to result in proteolytic activation of transcription factors of the SREBP family, induced PPARγ expression and improved PPRE-driven transcription. The effect of the SREBPs on PPARγ expression was mediated through the PPARγ1 and -3 promoters. Both promoters contain a consensus E-box motif that mediates the regulation of the PPARγ gene by ADD-1/SREBP-1 and SREBP-2. These results suggest that PPARγ expression can be controlled by the SREBP family of transcription factors and demonstrate new interactions between transcription factors that can regulate different pathways of lipid metabolism. PMID:10409739

  17. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    SciTech Connect

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana; Mairal, Aline; Mališová, Lucia; Štich, Vladimír; Langin, Dominique; Rossmeislová, Lenka

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  18. 2,4,6-Trihydroxybenzaldehyde, a potential anti-obesity treatment, suppressed adipocyte differentiation in 3T3-L1 cells and fat accumulation induced by high-fat diet in C57BL/6 mice.

    PubMed

    Kim, Kil-Nam; Kang, Min-Cheol; Kang, Nalae; Kim, Seo-Young; Hyun, Chang-Gu; Roh, Seong Woon; Ko, Eun-Yi; Cho, Kichul; Jung, Won-Kyo; Ahn, Ginnae; Jeon, You-Jin; Kim, Daekyung

    2015-03-01

    In the present study, 2,4,6-trihydroxybenzaldehyde (THB) was evaluated for inhibitory effects on adipocyte differentiation in 3T3-L1 cells and anti-obesity effects in mice with high-fat diet (HFD)-induced obesity. Lipid accumulation measurement indicated that THB markedly inhibited adipogenesis, and this involved down-regulation of the expression of the adipogenesis-related proteins, CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid synthase (FAS) and sterol regulatory element-binding protein-1c (SREBP-1c), in 3T3-L1 pre-adipocyte cells. In a mouse model of HFD-induced obesity, oral administration of THB (5 and 25mg/kg for 13 weeks) reduced the HFD-induced increase in weight gain. THB administration also reduced serum levels of glucose, triglycerides, and total cholesterol. A reduction in the hypertrophy of white adipose tissue was also observed. Furthermore, THB administration inhibited HFD-induced hepatic steatosis. These results provided evidence that administration of THB alleviated HFD-induced obesity in C57BL/6 mice and revealed the potential of THB as a nutraceutical to help prevent or treat obesity and the associated metabolic disorders.

  19. Downregulation of Runx2 by 1,25-Dihydroxyvitamin D3 Induces the Transdifferentiation of Osteoblasts to Adipocytes

    PubMed Central

    Kim, Jung Ha; Seong, Semun; Kim, Kabsun; Kim, Inyoung; Jeong, Byung-Chul; Kim, Nacksung

    2016-01-01

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) indirectly stimulates bone formation, but little is known about its direct effect on bone formation. In this study, we observed that 1,25(OH)2D3 enhances adipocyte differentiation, but inhibits osteoblast differentiation during osteogenesis. The positive role of 1,25(OH)2D3 in adipocyte differentiation was confirmed when murine osteoblasts were cultured in adipogenic medium. Additionally, 1,25(OH)2D3 enhanced the expression of adipocyte marker genes, but inhibited the expression of osteoblast marker genes in osteoblasts. The inhibition of osteoblast differentiation and promotion of adipocyte differentiation mediated by 1,25(OH)2D3 were compensated by Runx2 overexpression. Our results suggest that 1,25(OH)2D3 induces the transdifferentiation of osteoblasts to adipocytes via Runx2 downregulation in osteoblasts. PMID:27213351

  20. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus.

  1. Regulatory circuits controlling white versus brown adipocyte differentiation

    PubMed Central

    Hansen, Jacob B.; Kristiansen, Karsten

    2006-01-01

    Adipose tissue is a major endocrine organ that exerts a profound influence on whole-body homoeostasis. Two types of adipose tissue exist in mammals: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT stores energy and is the largest energy reserve in mammals, whereas BAT, expressing UCP1 (uncoupling protein 1), can dissipate energy through adaptive thermogenesis. In rodents, ample evidence supports BAT as an organ counteracting obesity, whereas less is known about the presence and significance of BAT in humans. Despite the different functions of white and brown adipocytes, knowledge of factors differentially influencing the formation of white and brown fat cells is sparse. Here we summarize recent progress in the molecular understanding of white versus brown adipocyte differentiation, including novel insights into transcriptional and signal transduction pathways. Since expression of UCP1 is the hallmark of BAT and a key factor determining energy expenditure, we also review conditions associated with enhanced energy expenditure and UCP1 expression in WAT that may provide information on processes involved in brown adipocyte differentiation. PMID:16898874

  2. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit

    PubMed Central

    Chen, Yong; Siegel, Franziska; Kipschull, Stefanie; Haas, Bodo; Fröhlich, Holger; Meister, Gunter; Pfeifer, Alexander

    2013-01-01

    Brown adipocytes are a primary site of energy expenditure and reside not only in classical brown adipose tissue but can also be found in white adipose tissue. Here we show that microRNA 155 is enriched in brown adipose tissue and is highly expressed in proliferating brown preadipocytes but declines after induction of differentiation. Interestingly, microRNA 155 and its target, the adipogenic transcription factor CCAAT/enhancer-binding protein β, form a bistable feedback loop integrating hormonal signals that regulate proliferation or differentiation. Inhibition of microRNA 155 enhances brown adipocyte differentiation and induces a brown adipocyte-like phenotype (‘browning’) in white adipocytes. Consequently, microRNA 155-deficient mice exhibit increased brown adipose tissue function and ‘browning’ of white fat tissue. In contrast, transgenic overexpression of microRNA 155 in mice causes a reduction of brown adipose tissue mass and impairment of brown adipose tissue function. These data demonstrate that the bistable loop involving microRNA 155 and CCAAT/enhancer-binding protein β regulates brown lineage commitment, thereby, controlling the development of brown and beige fat cells. PMID:23612310

  3. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation

    PubMed Central

    Batrakou, Dzmitry G.; de las Heras, Jose I.; Czapiewski, Rafal; Mouras, Rabah; Schirmer, Eric C.

    2015-01-01

    Recent work indicates that the nuclear envelope is a major signaling node for the cell that can influence tissue differentiation processes. Here we present two nuclear envelope trans-membrane proteins TMEM120A and TMEM120B that are paralogs encoded by the Tmem120A and Tmem120B genes. The TMEM120 proteins are expressed preferentially in fat and both are induced during 3T3-L1 adipocyte differentiation. Knockdown of one or the other protein altered expression of several genes required for adipocyte differentiation, Gata3, Fasn, Glut4, while knockdown of both together additionally affected Pparg and Adipoq. The double knockdown also increased the strength of effects, reducing for example Glut4 levels by 95% compared to control 3T3-L1 cells upon pharmacologically induced differentiation. Accordingly, TMEM120A and B knockdown individually and together impacted on adipocyte differentiation/metabolism as measured by lipid accumulation through binding of Oil Red O and coherent anti-Stokes Raman scattering microscopy (CARS). The nuclear envelope is linked to several lipodystrophies through mutations in lamin A; however, lamin A is widely expressed. Thus it is possible that the TMEM120A and B fat-specific nuclear envelope transmembrane proteins may play a contributory role in the tissue-specific pathology of this disorder or in the wider problem of obesity. PMID:26024229

  4. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages

    PubMed Central

    Morrison, Shona; McGee, Sean L

    2015-01-01

    Differentiated 3T3-L1 adipocytes are a widely used in vitro model of white adipocytes. In addition to classical white and brown adipocytes that are derived from different cell lineages, beige adipocytes have also been identified, which have characteristics of both white and brown adipocytes. Here we show that 3T3-L1 adipocytes display features of multiple adipocytes lineages. While the gene expression profile and basal bioenergetics of 3T3-L1 adipocytes was typical of white adipocytes, they responded acutely to catecholamines by increasing oxygen consumption in an UCP1-dependent manner, and by increasing the expression of genes enriched in brown but not beige adipocytes. Chronic exposure to catecholamines exacerbated this phenotype. However, a beige adipocyte differentiation procedure did not induce a beige adipocyte phenotype in 3T3-L1 fibroblasts. These multiple lineage features should be considered when interpreting data from experiments utilizing 3T3-L1 adipocytes. PMID:26451286

  5. Disruption of cell-matrix interactions by heparin enhances mesenchymal progenitor adipocyte differentiation

    SciTech Connect

    Luo Weijun; Shitaye, Hailu; Friedman, Michael; Bennett, Christina N.; Miller, Joshua; MacDougald, Ormond A.; Hankenson, Kurt D.

    2008-11-01

    Differentiation of marrow-derived mesenchymal progenitors to either the osteoblast or adipocyte lineage is reciprocally regulated. Factors that promote osteoblastogenesis inhibit adipogenesis, while adipogenic factors are inhibitory to osteoblast differentiation. Heparin, a soluble glycosaminoglycan, inhibits bone formation in vivo and osteoblast cell differentiation and function in vitro, and has been shown to promote adipocyte differentiation. To elucidate the role that heparin plays in the adipogenic induction of murine mesenchymal progenitors, we studied immortalized marrow stromal cells (IM-MSC), the MSC cell line, ST2, and 3T3L1 pre-adipocytes. Heparin alone was not sufficient to induce adipogenesis, but enhanced the induction under a variety of adipogenic cocktails. This effect was both dose- and time-dependent. Heparin showed a positive effect at concentrations > 0. 1 {mu}g/ml when applied before day 3 during the induction course. Heparin's effect on adipogenesis was independent of cell proliferation, cell density, and extracellular lipid. This effect is likely related to the unique structure of heparin because another polyanionic glycosaminoglycan, dextran sulfate, did not promote adipogenic differentiation. Heparin treatment altered morphology and adhesion characteristics of progenitor cells, resulting in cell rounding and aggregation. As well, heparin counteracted the known inhibitory effect of fibronectin on adipogenesis and decreased basal focal adhesion kinase and paxillin phosphorylation. We conclude that heparin-mediated disruption of cell-matrix adhesion enhances adipogenic potential.

  6. Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels.

    PubMed

    Palmieri, Erika Mariana; Spera, Iolanda; Menga, Alessio; Infantino, Vittoria; Iacobazzi, Vito; Castegna, Alessandra

    2014-12-20

    The role of glutamine synthetase (GS) during adipocyte differentiation is unclear. Here, we assess the impact of GS on the adipocytic response to a proinflammatory challenge at different differentiation stages. GS expression at the late stages of differentiation desensitized mature adipocytes to bacterial lipopolysaccharide (LPS) by increasing intracellular glutamine levels. Furthermore, LPS-activated mature adipocytes were unable to produce inflammatory mediators; LPS sensitivity was rescued following GS inhibition and the associated drop in intracellular glutamine levels. The ability of adipocytes to differentially respond to LPS during differentiation negatively correlates to GS expression and intracellular glutamine levels. Hence, modulation of intracellular glutamine levels by GS expression represents an endogenous mechanism through which mature adipocytes control the inflammatory response.

  7. Dopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes.

    PubMed

    Guloglu, M Oktar; Larsen, Anna

    2016-01-01

    Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for the dopaminergic differentiation of hESCs. This chapter describes a simple, reliable, and scalable dopaminergic induction method of hESCs using PA6-derived adipocytes. Coculturing hESCs with PA6-derived adipocytes markedly reduces the variable outcomes among experiments. Moreover, the colony differentiation step of this method can also be used for the dopaminergic induction of mouse embryonic stem cells and NTERA2 cells as well.

  8. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes

    PubMed Central

    Lin, Jung-Chun

    2015-01-01

    Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed. PMID:26389882

  9. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47.

    PubMed

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce; Janesick, Amanda; Mandrup, Susanne; Hamers, Timo; Legler, Juliette

    2014-04-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mechanisms by which EDCs direct preadipocytes to form adipocytes are poorly understood. Here, we examined transcriptional and epigenetic mechanisms underlying the induction of in vitro adipocyte differentiation by BDE-47. Quantitative high content microscopy revealed concentration-dependent enhanced adipocyte differentiation following exposure to BDE-47 or the antidiabetic drug troglitazone (TROG). BDE-47 modestly activated the key adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) in COS7 cells, transiently transfected with a GAL4 reporter construct. Increased gene expression was observed for Pparγ2, leptin (Lep), and glucose-6-phophatase catalytic subunit (G6pc) in differentiated 3T3-L1 cells after BDE-47 exposure compared to TROG. Methylation-sensitive high resolution melting (MS-HRM) revealed significant demethylation of three CpG sites in the Pparγ2 promoter after exposure to both BDE-47 and TROG in differentiated 3T3-L1 cells. This study shows the potential of BDE-47 to induce adipocyte differentiation through various mechanisms that include Pparγ2 gene induction and promoter demethylation accompanied by activation of PPARγ, and possible disruption of glucose homeostasis and IGF1 signaling. PMID:24559133

  10. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    SciTech Connect

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-07-18

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPAR{gamma} expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest.

  11. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    PubMed Central

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  12. Polysome profiling shows extensive posttranscriptional regulation during human adipocyte stem cell differentiation into adipocytes.

    PubMed

    Spangenberg, Lucia; Shigunov, Patricia; Abud, Ana Paula R; Cofré, Axel R; Stimamiglio, Marco A; Kuligovski, Crisciele; Zych, Jaiesa; Schittini, Andressa V; Costa, Alexandre Dias Tavares; Rebelatto, Carmen K; Brofman, Paulo R S; Goldenberg, Samuel; Correa, Alejandro; Naya, Hugo; Dallagiovanna, Bruno

    2013-09-01

    Adipocyte stem cells (hASCs) can proliferate and self-renew and, due to their multipotent nature, they can differentiate into several tissue-specific lineages, making them ideal candidates for use in cell therapy. Most attempts to determine the mRNA profile of self-renewing or differentiating stem cells have made use of total RNA for gene expression analysis. Several lines of evidence suggest that self-renewal and differentiation are also dependent on the control of protein synthesis by posttranscriptional mechanisms. We used adipogenic differentiation as a model, to investigate the extent to which posttranscriptional regulation controlled gene expression in hASCs. We focused on the initial steps of differentiation and isolated both the total mRNA fraction and the subpopulation of mRNAs associated with translating ribosomes. We observed that adipogenesis is committed in the first days of induction and three days appears as the minimum time of induction necessary for efficient differentiation. RNA-seq analysis showed that a significant percentage of regulated mRNAs were posttranscriptionally controlled. Part of this regulation involves massive changes in transcript untranslated regions (UTR) length, with differential extension/reduction of the 3'UTR after induction. A slight correlation can be observed between the expression levels of differentially expressed genes and the 3'UTR length. When we considered association to polysomes, this correlation values increased. Changes in the half lives were related to the extension of the 3'UTR, with longer UTRs mainly stabilizing the transcripts. Thus, changes in the length of these extensions may be associated with changes in the ability to associate with polysomes or in half-life.

  13. AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype.

    PubMed

    Abdul-Rahman, Omar; Kristóf, Endre; Doan-Xuan, Quang-Minh; Vida, András; Nagy, Lilla; Horváth, Ambrus; Simon, József; Maros, Tamás; Szentkirályi, István; Palotás, Lehel; Debreceni, Tamás; Csizmadia, Péter; Szerafin, Tamás; Fodor, Tamás; Szántó, Magdolna; Tóth, Attila; Kiss, Borbála; Bacsó, Zsolt; Bai, Péter

    2016-01-01

    Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ) by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs) from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R)-5-(4-Carbamoyl-5-aminoimidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR), a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis) when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained the same when

  14. AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype

    PubMed Central

    Abdul-Rahman, Omar; Kristóf, Endre; Doan-Xuan, Quang-Minh; Vida, András; Nagy, Lilla; Horváth, Ambrus; Simon, József; Maros, Tamás; Szentkirályi, István; Palotás, Lehel; Debreceni, Tamás; Csizmadia, Péter; Szerafin, Tamás; Fodor, Tamás; Szántó, Magdolna; Tóth, Attila; Kiss, Borbála; Bacsó, Zsolt; Bai, Péter

    2016-01-01

    Beige adipocytes are special cells situated in the white adipose tissue. Beige adipocytes, lacking thermogenic cues, morphologically look quite similar to regular white adipocytes, but with a markedly different response to adrenalin. White adipocytes respond to adrenergic stimuli by enhancing lipolysis, while in beige adipocytes adrenalin induces mitochondrial biogenesis too. A key step in the differentiation and function of beige adipocytes is the deacetylation of peroxisome proliferator-activated receptor (PPARγ) by SIRT1 and the consequent mitochondrial biogenesis. AMP-activated protein kinase (AMPK) is an upstream activator of SIRT1, therefore we set out to investigate the role of AMPK in beige adipocyte differentiation using human adipose-derived mesenchymal stem cells (hADMSCs) from pericardial adipose tissue. hADMSCs were differentiated to white and beige adipocytes and the differentiation medium of the white adipocytes was supplemented with 100 μM [(2R,3S,4R,5R)-5-(4-Carbamoyl-5-aminoimidazol-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate (AICAR), a known activator of AMPK. The activation of AMPK with AICAR led to the appearance of beige-like morphological properties in differentiated white adipocytes. Namely, smaller lipid droplets appeared in AICAR-treated white adipocytes in a similar fashion as in beige cells. Moreover, in AICAR-treated white adipocytes the mitochondrial network was more fused than in white adipocytes; a fused mitochondrial system was characteristic to beige adipocytes. Despite the morphological similarities between AICAR-treated white adipocytes and beige cells, functionally AICAR-treated white adipocytes were similar to white adipocytes. We were unable to detect increases in basal or cAMP-induced oxygen consumption rate (a marker of mitochondrial biogenesis) when comparing control and AICAR-treated white adipocytes. Similarly, markers of beige adipocytes such as TBX1, UCP1, CIDEA, PRDM16 and TMEM26 remained the same when

  15. Differentiation of Pre-Adipocytes in Modelled Microgravity

    NASA Astrophysics Data System (ADS)

    Coinu, R.; Postiglione, I.; Meloni, M. A.; Galleri, G.; Pippia, P.; Palumbo, G.

    2008-06-01

    It has been demonstrated that microgravity affects biological and biochemical functions of cells including: morphology, cytoskeleton and embryogenesis [1]; proliferation, reduction of DNA, protein synthesis and glucose transport [2]; signalling, reduction of EGF-dependant c-fos and c-jun expression [3]; gene expression, reduction of IL2 expression and release by activated T-cells [4]. Moreover it has be found that peroxisome proliferators activated receptor γ (PPARγ2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4, are highly expressed in response to modelled microgravity [5]. These findings prompted us to investigate the effects of microgravity on cellular differentiation rate using a well characterized model. Such model consists in murine pre-adipocyte cells (3T3-L1) properly stimulated with insulin, dexamethazone and isobuthylmethyl-xantine (DMI protocol). The adipogenic program is completed within a short time. The entire process requires coordinated and temporarily beated molecular events. Early events. Growth arrest at confluence; Clonal expansion (this process involves synchronous entry of cells into S phase of the cell cycle, leading to one or two rounds of mitosis); Early expression of C/EBPβ and C/EBPδ. Late events. Expression of PPARγ and C/EBPα Assumption of rounded morphology and accumulation of lipid droplets.

  16. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity

    PubMed Central

    2012-01-01

    Background Obesity is known to be associated with higher risks of cardiovascular disease, metabolic syndrome, and diabetes mellitus. Thyroid-stimulating hormone (TSHR) is the receptor for thyroid-stimulating hormone (TSH, or thyrotropin), the key regulator of thyroid functions. The expression of TSHR, once considered to be limited to thyrocytes, has been so far detected in many extrathyroidal tissues including liver and fat. Previous studies have shown that TSHR expression is upregulated when preadipocytes differentiate into mature adipocytes, suggestive of a possible role of TSHR in adipogenesis. However, it remains unclear whether TSHR expression in adipocytes is implicated in the pathogenesis of obesity. Methods In the present study, TSHR expression in adipose tissues from both mice and human was analyzed, and its association with obesity was evaluated. Results We here showed that TSHR expression was increased at both mRNA and protein levels when 3T3-L1 preadipocytes were induced to differentiate. Knockdown of TSHR blocked the adipocyte differentiation of 3T3-L1 preadipocytes as evaluated by Oil-red-O staining for lipid accumulation and by RT-PCR analyses of PPAR-γ and ALBP mRNA expression. We generated obesity mice (C57/BL6) by high-fat diet feeding and found that the TSHR protein expression in visceral adipose tissues from obesity mice was significantly higher in comparison with the non-obesity control mice (P < 0.05). Finally, the TSHR expression in adipose tissues was determined in 120 patients. The results showed that TSHR expression in subcutaneous adipose tissue is correlated with BMI (body mass index). Conclusion Taken together, these results suggested that TSHR is an important regulator of adipocyte differentiation. Dysregulated expression of TSHR in adipose tissues is associated with obesity, which may involve a mechanism of excess adipogenesis. PMID:22289392

  17. Regulation of UCP gene expression in brown adipocytes differentiated in primary culture. Effects of a new beta-adrenoceptor agonist.

    PubMed

    Champigny, O; Holloway, B R; Ricquier, D

    1992-07-01

    Primary cultures of precursor cells from mouse and rat brown adipose tissue (BAT) were used to study the effect of a new beta-agonist (ICI D7114) on the uncoupling protein (UCP) gene expression. ICI 215001 (the active metabolite of D7114) increased the expression of UCP and its mRNA in brown adipocytes differentiating in vitro in a dose-dependent manner. This stimulating effect was not inhibited by propranolol, a non-specific beta-antagonist, but was partially reduced by bupranolol, a beta 3-antagonist. No expression of UCP mRNA was ever induced by ICI 215001 in white adipocytes differentiated in vitro. It was concluded that the drug could affect the brown adipose cells through a beta 3-pathway. It could clearly modulate the expression of UCP in brown adipocytes differentiated in vitro, but was not able by itself to turn on the gene. PMID:1355051

  18. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    SciTech Connect

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  19. A novel crosstalk between Alk7 and cGMP signaling differentially regulates brown adipocyte function

    PubMed Central

    Balkow, Aileen; Jagow, Johanna; Haas, Bodo; Siegel, Franziska; Kilić, Ana; Pfeifer, Alexander

    2015-01-01

    Objective Obesity is an enormous burden for patients and health systems world-wide. Brown adipose tissue dissipates energy in response to cold and has been shown to be metabolically active in human adults. The type I transforming growth factor β (TGFβ) receptor Activin receptor-like kinase 7 (Alk7) is highly expressed in adipose tissues and is down-regulated in obese patients. Here, we studied the function of Alk7 in brown adipocytes. Methods Using pharmacological and genetic tools, Alk7 signaling pathway and its effects were studied in murine brown adipocytes. Brown adipocyte differentiation and activation was analyzed. Results Alk7 is highly upregulated during differentiation of brown adipocytes. Interestingly, Alk7 expression is increased by cGMP/protein kinase G (PKG) signaling, which enhances brown adipocyte differentiation. Activin AB effectively activates Alk7 and SMAD3 signaling. Activation of Alk7 in brown preadipocytes suppresses the master adipogenic transcription factor PPARγ and differentiation. Stimulation of Alk7 during late differentiation of brown adipocytes reduces lipid content and adipogenic marker expression but enhances UCP1 expression. Conclusions We found a so far unknown crosstalk between cGMP and Alk7 signaling pathways. Tight regulation of Alk7 is required for efficient differentiation of brown adipocytes. Alk7 has differential effects on adipogenic differentiation and the development of the thermogenic program in brown adipocytes. PMID:26266090

  20. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  1. Silica nanoparticles inhibit brown adipocyte differentiation via regulation of p38 phosphorylation

    NASA Astrophysics Data System (ADS)

    Son, Min Jeong; Kim, Won Kon; Kwak, Minjeong; Oh, Kyoung-Jin; Chang, Won Seok; Min, Jeong-Ki; Lee, Sang Chul; Song, Nam Woong; Bae, Kwang-Hee

    2015-10-01

    Nanoparticles are of great interest due to their wide variety of biomedical and bioengineering applications. However, they affect cellular differentiation and/or intracellular signaling when applied and exposed to target organisms or cells. The brown adipocyte is a cell type important in energy homeostasis and thus closely related to obesity. In this study, we assessed the effects of silica nanoparticles (SNPs) on brown adipocyte differentiation. The results clearly showed that brown adipocyte differentiation was significantly repressed by exposure to SNPs. The brown adipocyte-specific genes as well as mitochondrial content were also markedly reduced. Additionally, SNPs led to suppressed p38 phosphorylation during brown adipocyte differentiation. These effects depend on the size of SNPs. Taken together, these results lead us to suggest that SNP has anti-brown adipogenic effect in a size-dependent manner via regulation of p38 phosphorylation.

  2. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin.

    PubMed

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  3. Glucagon Like Peptide-1 Promotes Adipocyte Differentiation via the Wnt4 Mediated Sequestering of Beta-Catenin

    PubMed Central

    Liu, Rui; Li, Na; Lin, Yi; Wang, Mei; Peng, Yongde; Lewi, Keidren; Wang, Qinghua

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) plays a role in the regulation of adipogenesis; however, the precise underlying molecular mechanism has not been fully defined. Wnt was recently identified as an important regulator of adipogenesis. This study aimed to investigate the involvement of the Wnt signaling pathway in the effects of GLP-1 on adipocyte differentiation. 3T3-L1 cells were induced to differentiate. The changes in the expression levels of adipogenic transcription factors and Wnts and the phosphorylation level and subcellular localization of β-catenin were quantified after GLP-1 treatment. GLP-1 stimulated adipocyte differentiation and lipid accumulation, which were accompanied by the expression of adipocyte marker genes. The expression of Wnt4 was upregulated in the process of adipocyte differentiation, which was further enhanced by treatment with GLP-1. β-catenin, an important mediator of the Wnt pathway, was immediately dephosphorylated and translocated from cytoplasm to nucleus when differentiation was induced. In the presence of GLP-1, however, β-catenin was redirected to the cell plasma membrane leading to its decreased accumulation in the nucleus. Knockdown of Wnt4 blocked the effect of GLP-1 on the cellular localization of β-catenin and expression level of adipogenic transcription factors. Our findings showed that GLP-1 promoted adipogenesis through the modulation of the Wnt4/β-catenin signaling pathway, suggesting that the GLP-1-Wntβ-catenin system might be a new target for the treatment of metabolic disease. PMID:27504979

  4. Cellular origins of cold-induced brown adipocytes in adult mice

    PubMed Central

    Lee, Yun-Hee; Petkova, Anelia P.; Konkar, Anish A.; Granneman, James G.

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα+ cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreERT2) and adiponectin-CreERT2, respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα+ cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreERT2-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment.—Lee, Y.-H., Petkova, A. P., Konkar, A. A., Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. PMID:25392270

  5. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes.

    PubMed

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J; Nguyen, Long N; Chai, Xiaoran; Huang, Cher X; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L; Lodish, Harvey; Sun, Lei

    2014-12-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.

  6. MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes

    PubMed Central

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J.; Nguyen, Long N.; Chai, Xiaoran; Huang, Cher X.; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L.; Lodish, Harvey

    2014-01-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue–specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes. PMID:25008181

  7. The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-γ and Interfering with the Wnt/β-Catenin Pathways*

    PubMed Central

    Abdelkarim, Mouaadh; Caron, Sandrine; Duhem, Christian; Prawitt, Janne; Dumont, Julie; Lucas, Anthony; Bouchaert, Emmanuel; Briand, Olivier; Brozek, John; Kuipers, Folkert; Fievet, Catherine; Cariou, Bertrand; Staels, Bart

    2010-01-01

    The bile acid receptor farnesoid X receptor (FXR) is expressed in adipose tissue, but its function remains poorly defined. Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipocyte differentiation and function. The aim of this study was to analyze the role of FXR in adipocyte function and to assess whether it modulates PPARγ action. Therefore, we tested the responsiveness of FXR-deficient mice (FXR−/−) and cells to the PPARγ activator rosiglitazone. Our results show that genetically obese FXR−/−/ob/ob mice displayed a resistance to rosiglitazone treatment. In vitro, rosiglitazone treatment did not induce normal adipocyte differentiation and lipid droplet formation in FXR−/− mouse embryonic fibroblasts (MEFs) and preadipocytes. Moreover, FXR−/− MEFs displayed both an increased lipolysis and a decreased de novo lipogenesis, resulting in reduced intracellular triglyceride content, even upon PPARγ activation. Retroviral-mediated FXR re-expression in FXR−/− MEFs restored the induction of adipogenic marker genes during rosiglitazone-forced adipocyte differentiation. The expression of Wnt/β-catenin pathway and target genes was increased in FXR−/− adipose tissue and MEFs. Moreover, the expression of several endogenous inhibitors of this pathway was decreased early during the adipocyte differentiation of FXR−/− MEFs. These findings demonstrate that FXR regulates adipocyte differentiation and function by regulating two counteracting pathways of adipocyte differentiation, the PPARγ and Wnt/β-catenin pathways. PMID:20851881

  8. Aristolochia Manshuriensis Kom Inhibits Adipocyte Differentiation by Regulation of ERK1/2 and Akt Pathway

    PubMed Central

    Kwak, Dong Hoon; Lee, Ji-Hye; Kim, Taesoo; Ahn, Hyo Sun; Cho, Won-Kyung; Ha, Hyunil; Hwang, Youn-Hwan; Ma, Jin Yeul

    2012-01-01

    Aristolochia manshuriensis Kom (AMK) is a traditional medicinal herb used for the treatment of arthritis, rheumatism, hepatitis, and anti-obesity. Because of nephrotoxicity and carcinogenicity of AMK, there are no pharmacological reports on anti-obesity potential of AMK. Here, we showed AMK has an inhibitory effect on adipocyte differentiation of 3T3-L1 cells along with significantly decrease in the lipid accumulation by downregulating several adipocyte-specific transcription factors including peroxisome proliferation-activity receptor γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and C/EBP-β, which are critical for adipogenesis in vitro. AMK also markedly activated the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway including Ras, Raf1, and mitogen-activated protein kinase kinase 1 (MEK1), and significantly suppressed Akt pathway by inhibition of phosphoinositide-dependent kinase 1 (PDK1). Aristolochic acid (AA) and ethyl acetate (EtOAc) fraction of AMK with AA were significantly inhibited TG accumulation, and regulated two pathway (ERK1/2 and Akt) during adipocyte differentiation, and was not due to its cytotoxicity. These two pathways were upstream of PPAR-γ and C/EBPα in the adipogenesis. In addition, gene expressions of secreting factors such as fatty acid synthase (FAS), adiponectin, lipopreotein lipase (LPL), and aP2 were significantly inhibited by treatment of AMK during adipogenesis. We used the high-fat diet (HFD)-induced obesity mouse model to determine the inhibitory effects of AMK on obesity. Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1

  9. Cholesteryl ester transfer protein gene expression during differentiation of human preadipocytes to adipocytes in primary culture.

    PubMed

    Gauthier, B; Robb, M; McPherson, R

    1999-02-01

    The expression pattern of the CETP gene in relationship to that of LPL, adipsin, PPARgamma, C/EBPalpha, ADD1/SREBPI and actin was examined by RT-PCR during differentiation of human fibroblastic preadipocytes to adipocytes in primary culture. Preadipocytes were isolated from subcutaneous fat obtained from healthy female subjects undergoing mammary reduction procedures, and induced to differentiate in culture. Morphologically, adipogenesis was confirmed by the accumulation of lipid droplets in cells. We show that the gene encoding CETP is expressed in preadipocytes and is present throughout differentiation as compared to LPL and adipsin which were detected in the majority of samples by day 2 or 3 of adipogenesis. The transcription factors, PPARgamma, ADD1/SREBP1 and C/EBPalpha were expressed by day 2, concomitant with the appearance of LPL and adipsin but subsequent to the appearance of CETP. CETP mRNA was not detectable in human skin fibroblasts. These studies demonstrate that CETP. expression is induced at an early stage of commitment to the adipocyte lineage and may be activated by transcription factor(s), which are not members of the PPAR, ADD1/SREBP1 or C/EBP families. PMID:10030381

  10. Transcriptional and Epigenetic Mechanisms Underlying Enhanced in Vitro Adipocyte Differentiation by the Brominated Flame Retardant BDE-47

    PubMed Central

    2015-01-01

    Recent studies suggest that exposure to endocrine-disrupting compounds (EDCs) may play a role in the development of obesity. EDCs such as the flame retardant 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) have been shown to enhance adipocyte differentiation in the murine 3T3-L1 model. The mechanisms by which EDCs direct preadipocytes to form adipocytes are poorly understood. Here, we examined transcriptional and epigenetic mechanisms underlying the induction of in vitro adipocyte differentiation by BDE-47. Quantitative high content microscopy revealed concentration-dependent enhanced adipocyte differentiation following exposure to BDE-47 or the antidiabetic drug troglitazone (TROG). BDE-47 modestly activated the key adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) in COS7 cells, transiently transfected with a GAL4 reporter construct. Increased gene expression was observed for Pparγ2, leptin (Lep), and glucose-6-phophatase catalytic subunit (G6pc) in differentiated 3T3-L1 cells after BDE-47 exposure compared to TROG. Methylation-sensitive high resolution melting (MS-HRM) revealed significant demethylation of three CpG sites in the Pparγ2 promoter after exposure to both BDE-47 and TROG in differentiated 3T3-L1 cells. This study shows the potential of BDE-47 to induce adipocyte differentiation through various mechanisms that include Pparγ2 gene induction and promoter demethylation accompanied by activation of PPARγ, and possible disruption of glucose homeostasis and IGF1 signaling. PMID:24559133

  11. St. John's wort promotes adipocyte differentiation and modulates NF-κB activation in 3T3-L1 cells.

    PubMed

    Hatano, Tomoko; Sameshima, Yuka; Kawabata, Mami; Yamada, Shizuo; Shinozuka, Kazumasa; Nakabayashi, Toshikatsu; Mizuno, Hideya

    2014-01-01

    St. John's wort (SJW), or Hypericum perforatum, is a perennial herb that has been used in the treatment of depression in several countries. Though its therapeutic effect on depression has been extensively studied, its influence on metabolic syndrome is yet to be fully characterized. Therefore, we investigated the effect of SJW extract on adipocyte differentiation and its anti-inflammatory effects by using 3T3-L1 preadipocytes. Oil Red O staining indicated that SJW promotes adipocyte differentiation, while immunoblots indicated that SJW increases the expression of peroxisome proliferator activated receptor γ (PPARγ), a nuclear receptor regulating adipocyte differentiation, and adiponectin, an anti-inflammatory adipokine. Furthermore, the anti-inflammatory activity of SJW was demonstrated by its inhibition of the activation of nuclear factor-κB (NF-κB), an inflammatory transcription factor. Stimulation of mature 3T3-L1 adipocytes by tumor necrosis factor-α (TNF-α) decreased the expression of the NF-κB inhibitor IκBα, and increased its phosphorylation. Treatment with SJW further decreased the TNF-α-induced perturbation in IκBα expression and phosphorylation, which indicated that SJW mediated the inhibition of NF-κB activation. In addition, SJW decreased the TNF-α-induced increase in the mRNA levels of pro-inflammatory adipokines, interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Collectively, our results indicate that SJW treatment could promote adipocyte differentiation probably through its anti-inflammatory activity, which in turn suggests that SJW has the potential to minimize the risk factors of metabolic syndrome.

  12. Cellular origins of cold-induced brown adipocytes in adult mice.

    PubMed

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment.

  13. Suppressive Effects of Barley β-Glucans with Different Molecular Weight on 3T3-L1 Adipocyte Differentiation.

    PubMed

    Zhu, Yingying; Yao, Yang; Gao, Yue; Hu, Yibo; Shi, Zhenxing; Ren, Guixing

    2016-03-01

    In this study, 2 β-glucans with different molecular weight were prepared and purified from hull-less barley bran. The aim was to evaluate their effects on the differentiation of 3T3-L1 pre-adipocytes. Results showed that barley β-glucans inhibited the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, the suppressive effect of high-molecular-weight barley β-glucans (552 kDa, BGH) was stronger (P < 0.05) than that of low-molecular-weight barley β-glucan (32 kDa, BGL), evidenced by the significantly decrease (P < 0.05) of Oil-red O staining and intracellular triglyceride content in the mature adipocytes. Besides, gene expression analysis and Western Blot analysis revealed that both BGH and BGL inhibited the mRNA and protein levels of adipogenesis related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα) which are principal regulators of adipogenesis. Furthermore, the mRNA and protein expression levels of PPARγ target genes in adipose tissue including adipocyte fatty acid binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose-transporter 4 (Glut4) in 3T3-L1 cells was also markedly downregulated (P < 0.05). These findings were anticipated to help develop barley β-glucans based functional food for the management of obesity.

  14. Isoflavones in Chickpeas Inhibit Adipocyte Differentiation and Prevent Insulin Resistance in 3T3-L1 Cells.

    PubMed

    Gao, Yue; Yao, Yang; Zhu, Yinging; Ren, Guixing

    2015-11-11

    Diabetes mellitus is a metabolic disease characterized by hyperglycemia arising from defects in insulin secretion. This study investigated the effects of isoflavones in chickpea sprouts germinated in light (IGL) and isoflavones in chickpea seeds (ICS) on insulin resistance through their role in suppression of 3T3-L1 adipocyte differentiation. Results showed that IGL and ICS inhibit the differentiation of 3T3-L1 pre-adipocytes induced by differentiation medium in a dose-dependent manner, and the suppressive effect of IGL was stronger (p < 0.05) than that of ICS, evidenced by a decrease of Oil Red O staining and intracellular triacylglycerol content in the mature adipocytes. IGL and ICS also stimulated glucose uptake significantly (p < 0.05). Besides, IGL and ICS treatment caused a significant decrease in mRNA and protein expression levels of adipogenesis-related transcription factors peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα). Furthermore, the mRNA and protein expression levels of adipocyte fatty acid-binding protein (ap2), lipoprotein lipase (LPL), uncoupling protein-2 (UCP-2), and glucose transporter 4 (Glut4) in 3T3-L1 cells were also markedly down-regulated (p < 0.05).

  15. Impact of elvitegravir on human adipocytes: Alterations in differentiation, gene expression and release of adipokines and cytokines.

    PubMed

    Moure, Ricardo; Domingo, Pere; Gallego-Escuredo, José M; Villarroya, Joan; Gutierrez, Maria Del Mar; Mateo, Maria G; Domingo, Joan C; Giralt, Marta; Villarroya, Francesc

    2016-08-01

    Elvitegravir is a recently developed integrase inhibitor used for antiretroviral treatment of HIV infection. Secondary effects, including disturbances in lipid metabolism and, ultimately, in adipose tissue distribution and function, are common concerns associated with antiretroviral treatments. Here, we provide the first study of the effects of elvitegravir (in comparison with efavirenz, a non-nucleoside analog inhibitor of reverse transcriptase; and raltegravir, another integrase inhibitor) on human adipocyte differentiation, gene expression and secretion of adipokines and cytokines. Elvitegravir impaired adipogenesis and adipocyte metabolism in human SGBS adipocytes in a concentration-dependent manner (delaying acquisition of adipocyte morphology and reducing the expression of adipogenesis marker genes such as PPARγ, glucose transporter GLUT4, lipoprotein lipase, and the adipokines adiponectin and leptin). Compared with efavirenz, the effects of elvitegravir were similar but tended to occur at higher concentrations than those elicited by efavirenz, or were somewhat less intense than those caused by efavirenz at similar concentration. Elvitegravir tended to cause a more moderate induction of pro-inflammatory cytokines than efavirenz. Efavirenz induced a marked concentration-dependent increase in interleukin-8 expression and release whereas elvitregravir had little effect. Raltegravir had totally neutral actions of adipogenesis, adipocyte metabolism-related gene expression and release of adipokines and cytokines. In conclusion, elvitegravir alters adipocyte differentiation and function and promotes induction of pro-inflammatory cytokines similarly to efavirenz, but several effects were less intense. Further assessment of lipid metabolism and adipose tissue function in patients administered elvitegravir-based regimes is advisable considering that totally neutral effects of elvitegravir on lipid homeostasis cannot be anticipated from the current study in

  16. Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway

    PubMed Central

    Fleury, Audrey; Hoch, Lucile; Martinez, M. Carmen; Faure, Hélène; Taddei, Maurizio; Petricci, Elena; Manetti, Fabrizio; Girard, Nicolas; Mann, André; Jacques, Caroline; Larghero, Jérôme; Ruat, Martial; Andriantsitohaina, Ramaroson; Le Lay, Soazig

    2016-01-01

    Hedgehog (Hh) is a critical regulator of adipogenesis. Extracellular vesicles are natural Hh carriers, as illustrated by activated/apoptotic lymphocytes specifically shedding microparticles (MP) bearing the morphogen (MPHh+). We show that MPHh+ inhibit adipocyte differentiation and orientate mesenchymal stem cells towards a pro-osteogenic program. Despite a Smoothened (Smo)-dependency, MPHh+ anti-adipogenic effects do not activate a canonical Hh signalling pathway in contrast to those elicited either by the Smo agonist SAG or recombinant Sonic Hedgehog. The Smo agonist GSA-10 recapitulates many of the hallmarks of MPHh+ anti-adipogenic effects. The adipogenesis blockade induced by MPHh+ and GSA-10 was abolished by the Smo antagonist LDE225. We further elucidate a Smo/Lkb1/Ampk axis as the non-canonical Hh pathway used by MPHh+ and GSA-10 to inhibit adipocyte differentiation. Our results highlight for the first time the ability of Hh-enriched MP to signal via a non-canonical pathway opening new perspectives to modulate fat development. PMID:27010359

  17. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation

    PubMed Central

    Price, Nathan L.; Holtrup, Brandon; Kwei, Stephanie L.; Wabitsch, Martin; Rodeheffer, Matthew; Bianchini, Laurence; Suárez, Yajaira

    2016-01-01

    White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease. PMID:26830228

  18. microRNA-320/RUNX2 axis regulates adipocytic differentiation of human mesenchymal (skeletal) stem cells

    PubMed Central

    Hamam, D; Ali, D; Vishnubalaji, R; Hamam, R; Al-Nbaheen, M; Chen, L; Kassem, M; Aldahmash, A; Alajez, N M

    2014-01-01

    The molecular mechanisms promoting lineage-specific commitment of human mesenchymal (skeletal or stromal) stem cells (hMSCs) into adipocytes (ADs) are not fully understood. Thus, we performed global microRNA (miRNA) and gene expression profiling during adipocytic differentiation of hMSC, and utilized bioinformatics as well as functional and biochemical assays, and identified several novel miRNAs differentially expressed during adipogenesis. Among these, miR-320 family (miR-320a, 320b, 320c, 320d and 320e) were ~2.2–3.0-fold upregulated. Overexpression of miR-320c in hMSC enhanced adipocytic differentiation and accelerated formation of mature ADs in ex vivo cultures. Integrated analysis of bioinformatics and global gene expression profiling in miR-320c overexpressing cells and during adipocytic differentiation of hMSC identified several biologically relevant gene targets for miR-320c including RUNX2, MIB1 (mindbomb E3 ubiquitin protein ligase 1), PAX6 (paired box 6), YWHAH and ZWILCH. siRNA-mediated silencing of those genes enhanced adipocytic differentiation of hMSC, thus corroborating an important role for those genes in miR-320c-mediated adipogenesis. Concordant with that, lentiviral-mediated stable expression of miR-320c at physiological levels (~1.5-fold) promoted adipocytic and suppressed osteogenic differentiation of hMSC. Luciferase assay validated RUNX2 (Runt-related transcription factor 2) as a bona fide target for miR-320 family. Therefore, our data suggest miR-320 family as possible molecular switch promoting adipocytic differentiation of hMSC. Targeting miR-320 may have therapeutic potential in vivo through regulation of bone marrow adipogenesis. PMID:25356868

  19. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation.

    PubMed

    Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S

    2015-06-01

    Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.

  20. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis.

    PubMed

    Green, Courtney R; Wallace, Martina; Divakaruni, Ajit S; Phillips, Susan A; Murphy, Anne N; Ciaraldi, Theodore P; Metallo, Christian M

    2016-01-01

    Adipose tissue plays important roles in regulating carbohydrate and lipid homeostasis, but less is known about the regulation of amino acid metabolism in adipocytes. Here we applied isotope tracing to pre-adipocytes and differentiated adipocytes to quantify the contributions of different substrates to tricarboxylic acid (TCA) metabolism and lipogenesis. In contrast to proliferating cells, which use glucose and glutamine for acetyl-coenzyme A (AcCoA) generation, differentiated adipocytes showed increased branched-chain amino acid (BCAA) catabolic flux such that leucine and isoleucine from medium and/or from protein catabolism accounted for as much as 30% of lipogenic AcCoA pools. Medium cobalamin deficiency caused methylmalonic acid accumulation and odd-chain fatty acid synthesis. Vitamin B12 supplementation reduced these metabolites and altered the balance of substrates entering mitochondria. Finally, inhibition of BCAA catabolism compromised adipogenesis. These results quantitatively highlight the contribution of BCAAs to adipocyte metabolism and suggest that BCAA catabolism has a functional role in adipocyte differentiation. PMID:26571352

  1. Cardiac mesenchymal progenitors differentiate into adipocytes via Klf4 and c-Myc

    PubMed Central

    Kami, D; Kitani, T; Kawasaki, T; Gojo, S

    2016-01-01

    Direct reprogramming of differentiated cells to pluripotent stem cells has great potential to improve our understanding of developmental biology and disorders such as cancers, and has implications for regenerative medicine. In general, the effects of transcription factors (TFs) that are transduced into cells can be influenced by pre-existing transcriptional networks and epigenetic modifications. However, previous work has identified four key TFs, Oct4, Sox2, Klf4 and c-Myc, which can reprogram various differentiated cells to generate induced pluripotent stem cells. Here, we show that in the heart, the transduction of cardiac mesenchymal progenitors (CMPs) with Klf4 and c-Myc (KM) was sufficient to drive the differentiation of these cells into adipocytes without the use of adipogenic stimulation cocktail, that is, insulin, 3-isobutyl-1-methylxanthine (IBMX) and dexamethasone. KM-transduced CMPs exhibited a gradually increased expression of adipogenic-related genes, such as C/Ebpα, Pparγ and Fabp4, activation of the peroxisome proliferator-activated receptor (PPAR) signaling pathway, inactivation of the cell cycle-related pathway and formation of cytoplasmic lipid droplets within 10 days. In contrast, NIH3T3 fibroblasts, 3T3-L1 preadipocytes, and bone marrow-derived mesenchymal stem cells transduced with KM did not differentiate into adipocytes. Both in vitro and in vivo cardiac ischemia reperfusion injury models demonstrated that the expression of KM genes sharply increased following a reperfusion insult. These results suggest that ectopic adipose tissue formation in the heart following myocardial infarction results from CMPs that express KM following a stress response. PMID:27077806

  2. Differential effects of a gelatinase inhibitor on adipocyte differentiation and adipose tissue development.

    PubMed

    Van Hul, Matthias; Bauters, Dries; Lijnen, Roger H

    2013-10-01

    (1) A potential role for the gelatinases in adipocyte differentiation in vitro and adipose tissue development in vivo was investigated using the gelatinase inhibitor tolylsam ((R)-3-methyl-2-[4-(3-p-tolyl-[1,2,4]oxadiazol-5-yl)-benzenesulphonylamino]-butyric acid). (2) Differentiation of murine 3T3-F442A preadipocytes (12 days after reaching confluence) into mature adipocytes in vitro was promoted in the presence of tolylsam (10-100 μmol/L). (3) De novo development of fat tissue in nude mice injected with preadipocytes and kept on a high-fat diet was significantly impaired following treatment with tolylsam (100 mg/kg per day for 4 weeks). (4) Adipose tissue development in matrix metalloproteinase (MMP)-2 deficient mice, kept on a high-fat diet, was significantly impaired following administration of tolylsam (100 mg/kg per day for 15 weeks). This was associated with markedly enhanced metabolic rate. (5) Treatment of MMP-2-deficient mice with tolylsam (100 mg/kg per day, 15 weeks) was associated with the preservation of collagen and a reduction in blood vessel size in adipose tissues in vivo. (6) Furthermore, plasma levels of triglycerides and free fatty acids were reduced by tolylsam treatment of MMP-2-deficient mice (100 mg/kg per day, 15 weeks), whereas nutrient adsorption in the intestine was not affected. (7) The results of the present study indicate that tolylsam promotes preadipocyte differentiation in vitro, but impairs adipose tissue development in vivo.

  3. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Maeda, Hayato; Hosokawa, Masashi; Sashima, Tokutake; Takahashi, Nobuyuki; Kawada, Teruo; Miyashita, Kazuo

    2006-07-01

    Fucoxanthin is a major carotenoid found in edible seaweed such as Undaria pinnatifida and Hijikia fusiformis. We investigated the suppressive effects of fucoxanthin and its metabolite, fucoxanthinol, on the differentiation of 3T3-L1 preadipocytes to adipocytes. Fucoxanthin inhibited intercellular lipid accumulation during adipocyte differentiation of 3T3-L1 cells. Furthermore, fucoxanthin was converted to fucoxanthinol in 3T3-L1 cells. Fucoxanthinol also exhibited suppressive effects on lipid accumulation and decreased glycerol-3-phosphate dehydrogenase activity, an indicator of adipocyte differentiation. The suppressive effect of fucoxanthinol was stronger than that of fucoxanthin. In addition, in 3T3-L1 cells treated with fucoxanthin and fucoxanthinol, peroxisome proliferator-activated receptor gamma (PPARgamma), which regulates adipogenic gene expression, was down-regulated in a dose-dependent manner. These results suggest that fucoxanthin and fucoxanthinol inhibit the adipocyte differentiation of 3T3-L1 cells through down-regulation of PPARgamma. Fucoxanthinol had stronger suppressive effects than fucoxanthin on adipocyte differentiation in 3T3-L1 cells. PMID:16786166

  4. Effects of quercetin, a natural phenolic compound, in the differentiation of human mesenchymal stem cells (MSC) into adipocytes and osteoblasts.

    PubMed

    Casado-Díaz, Antonio; Anter, Jaouad; Dorado, Gabriel; Quesada-Gómez, José Manuel

    2016-06-01

    Natural phenols may have beneficial properties against oxidative stress, which is associated with aging and major chronic aging-related diseases, such as loss of bone mineral mass (osteoporosis) and diabetes. The main aim of this study was to analyze the effect of quercetin, a major nutraceutical compound present in the "Mediterranean diet", on mesenchymal stem-cell (MSC) differentiation. Such cells were induced to differentiate into osteoblasts or adipocytes in the presence of two quercetin concentrations (0.1 and 10μM). Several physiological parameters and the expression of osteoblastogenesis and adipogenesis marker genes were monitored. Quercetin (10μM) inhibited cell proliferation, alkaline phosphatase (ALPL) activity and mineralization, down-regulating the expression of ALPL, collagen type I alpha 1 (COL1A1) and osteocalcin [bone gamma-carboxyglutamate protein (BGLAP)] osteoblastogenesis-related genes in MSC differentiating into osteoblasts. Moreover, in these cultures, CCAAT/enhancer-binding protein alpha (CEBPA) and peroxisome proliferator-activated receptor gamma 2 (PPARG2) adipogenic genes were induced, and cells differentiated into adipocytes were observed. Quercetin did not affect proliferation, but increased adipogenesis, mainly at 10-μM concentration in MSC induced to differentiate to adipocytes. β- and γ-catenin (plakoglobin) nuclear levels were reduced and increased, respectively, in quercetin-treated cultures. This suggests that the effect of high concentration of quercetin on MSC osteoblastic and adipogenic differentiation is mediated via Wnt/β-catenin inhibition. In conclusion, quercetin supplementation inhibited osteoblastic differentiation and promoted adipogenesis at the highest tested concentration. Such possible adverse effects of high quercetin concentrations should be taken into account in nutraceutical or pharmaceutical strategies using such flavonol. PMID:27142748

  5. Differentiation of rat brown adipocytes during late foetal development: role of insulin-like growth factor I.

    PubMed Central

    Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M

    1995-01-01

    Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409

  6. Effect of docosahexaenoic acid and arachidonic acid on the expression of adipocyte determination and differentiation-dependent factor 1 in differentiating porcine adipocytes.

    PubMed

    Liu, B H; Kuo, C F; Wang, Y C; Ding, S T

    2005-07-01

    Adipocyte determination and differentiation-dependent factor 1 (ADD1) drives the expression of several lipogenic genes in mammals. Polyunsaturated fatty acids decrease ADD1 mRNA abundance in differentiating porcine adipocytes. The current study was designed to explore the mechanisms by which PUFA inhibit the expression of ADD1 in porcine adipocytes. Porcine preadipocytes were differentiated for 24 h with 0 or 100 microM of docosahexaenoic acid (DHA) and mixtures of different concentrations of antioxidants to investigate the effect of DHA and antioxidants on the ADD1 mRNA abundance. We found the relative mRNA abundance was decreased by the addition of 100 microM DHA to the medium for porcine differentiating adipocytes, and adding an antioxidant mixture to the medium prevented part of the decrease in ADD1 mRNA abundance. These data suggest that DHA decreased the steady-state transcription factor ADD1 mRNA through a mechanism related to fatty acid peroxidation. Indeed, adding 7.5 microM vitamin E (a natural antioxidant) also restored the concentrations of ADD1 and fatty acid synthase mRNA, which were decreased by DHA treatment; however, the DHA or the antioxidant treatment did not change the expression of antioxidation genes (superoxide dismutase 1 and glutathione peroxidase 1) in porcine stromal vascular cells. When supplemented with the eicosanoid synthesis pathway inhibitors, the inhibition of the expression of ADD1 by arachidonic acid was partially recovered. These results suggest that the mechanism by which PUFA decrease ADD1 mRNA is due to the metabolic product of eicosanoids and peroxidation of these PUFA.

  7. PKC-ALDH2 Pathway Plays a Novel Role in Adipocyte Differentiation

    PubMed Central

    Yu, Yu-Hsiang; Liao, Pei-Ru; Guo, Chien-Jung; Chen, Che-Hong; Mochly-Rosen, Daria; Chuang, Lee-Ming

    2016-01-01

    The ALDH2 gene encodes the mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme involved in ethanol clearance through acetaldehyde metabolism. ALDH2 also catalyzes the metabolism of other bioreactive aldehydes, including propionaldehyde, butyraldehyde, and 4-hydroxykenals (4-HNE). Increased levels of 4-HNE in adipose tissue positively correlate with obesity and insulin resistance. However, it remains unclear whether ALDH2 is involved in regulation of adipocyte differentiation. Here, we found that ALDH2 protein levels were lower in white adipose tissue of high-fat diet-fed mice and ob/ob mice relative to lean mice. Knockdown of ALDH2 expression in 3T3-L1 preadipocytes caused an increase in intracellular 4-HNE, thereby attenuated adipocyte differentiation. By contrast, an ALDH2 activator, Alda-1, significantly accelerated adipogenesis, which was accompanied by an increase in adipogenic gene expression. Consistently, adipogenesis was reduced when protein kinase C ε (PKCε), an ALDH2 phosphorylating activator, was silenced in 3T3-L1 preadipocytes, whereas treatment with a PKCε agonist in 3T3-L1 preadipocytes enhanced adipogenesis. Whole-genome microarray profiling of Alda-1-treated cells demonstrated several upregulated transcripts encoding proteins involved in metabolism and the majority of these transcripts are for proteins involved in PPAR signaling pathways. Furthermore, PKCε-ALDH2 interaction alleviates 4-HNE induced aberrant PPARγ regulation on adipogenesis. Taken together, these results demonstrate that ALDH2 activation enhances adipogenesis and signaling pathways involving PPARγ. Thus, activation of PKCε-ALDH2 regulatory axis may be a therapeutic target for treating obesity and type 2 diabetes. PMID:27575855

  8. PKC-ALDH2 Pathway Plays a Novel Role in Adipocyte Differentiation.

    PubMed

    Yu, Yu-Hsiang; Liao, Pei-Ru; Guo, Chien-Jung; Chen, Che-Hong; Mochly-Rosen, Daria; Chuang, Lee-Ming

    2016-01-01

    The ALDH2 gene encodes the mitochondrial aldehyde dehydrogenase 2 (ALDH2), a critical enzyme involved in ethanol clearance through acetaldehyde metabolism. ALDH2 also catalyzes the metabolism of other bioreactive aldehydes, including propionaldehyde, butyraldehyde, and 4-hydroxykenals (4-HNE). Increased levels of 4-HNE in adipose tissue positively correlate with obesity and insulin resistance. However, it remains unclear whether ALDH2 is involved in regulation of adipocyte differentiation. Here, we found that ALDH2 protein levels were lower in white adipose tissue of high-fat diet-fed mice and ob/ob mice relative to lean mice. Knockdown of ALDH2 expression in 3T3-L1 preadipocytes caused an increase in intracellular 4-HNE, thereby attenuated adipocyte differentiation. By contrast, an ALDH2 activator, Alda-1, significantly accelerated adipogenesis, which was accompanied by an increase in adipogenic gene expression. Consistently, adipogenesis was reduced when protein kinase C ε (PKCε), an ALDH2 phosphorylating activator, was silenced in 3T3-L1 preadipocytes, whereas treatment with a PKCε agonist in 3T3-L1 preadipocytes enhanced adipogenesis. Whole-genome microarray profiling of Alda-1-treated cells demonstrated several upregulated transcripts encoding proteins involved in metabolism and the majority of these transcripts are for proteins involved in PPAR signaling pathways. Furthermore, PKCε-ALDH2 interaction alleviates 4-HNE induced aberrant PPARγ regulation on adipogenesis. Taken together, these results demonstrate that ALDH2 activation enhances adipogenesis and signaling pathways involving PPARγ. Thus, activation of PKCε-ALDH2 regulatory axis may be a therapeutic target for treating obesity and type 2 diabetes. PMID:27575855

  9. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    SciTech Connect

    Kim, Ji Eun; Shepherd, Peter R. Chaussade, Claire

    2009-02-20

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110{alpha} and p110{delta} and that after differentiation, p110{delta} levels fall while p110{alpha} levels rise, together with C/EBP{alpha} and PPAR{gamma}. When using specific inhibitors during the differentiation process, we observed that neither p110{beta} nor p110{delta} inhibition, had any significant effect. In contrast PIK-75, a selective p110{alpha} inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110{alpha} inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  10. ATF3 inhibits adipocyte differentiation of 3T3-L1 cells

    SciTech Connect

    Jang, Min Kyung; Kim, Cho Hee; Seong, Je Kyung; Jung, Myeong Ho

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Overexpression of ATF3 inhibits adipocyte differentiation in 3T3-L1 cells. Black-Right-Pointing-Pointer Overexpression of ATF3 represses C/EBP{alpha} expression. Black-Right-Pointing-Pointer ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Black-Right-Pointing-Pointer ATF3 may play a role in hypoxia-mediated inhibition of adipocyte differentiation. -- Abstract: ATF3 is a stress-adaptive gene that regulates proliferation or apoptosis under stress conditions. However, the role of ATF3 is unknown in adipocyte cells. Therefore, in this study, we investigated the functional role of ATF3 in adipocytes. Both lentivirus-mediated overexpression of ATF3 and stably-overexpressed ATF3 inhibited adipocyte differentiation in 3T3-L1 cells, as revealed by decreased lipid staining with oil red staining and reduction in adipogenic genes. Thapsigargin treatment and overexpression of ATF3 decreased C/EBP{alpha} transcript and repressed the activity of the 3.6-kb mouse C/EBP{alpha} promoter, demonstrating that ATF3 downregulates C/EBP{alpha} expression. Transfection studies using mutant constructs containing 5 Prime -deletions in the C/EBP{alpha} promoter revealed that a putative ATF/CRE element, GGATGTCA, is located between -1921 and -1914. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that ATF3 directly binds to mouse C/EBP{alpha} promoter spanning from -1928 to -1907. Both chemical hypoxia-mimetics or physical hypoxia led to reduce the C/EBP{alpha} mRNA and repress the promoter activity of the C/EBP{alpha} gene, whereas increase ATF3 mRNA, suggesting that ATF3 may contribute to the inhibition of adipocyte differentiation in hypoxia through downregulation of C/EBP{alpha} expression. Collectively, these results demonstrate that ATF3 represses the C/EBP{alpha} gene, resulting in inhibition of adipocyte differentiation, and thus plays a role in hypoxia-mediated inhibition

  11. Mitochondrial (Dys)function in Adipocyte (De)differentiation and Systemic Metabolic Alterations

    PubMed Central

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissues, the importance of mitochondrial activity in the differentiation or the dedifferentiation programs of adipose cells and in systemic metabolic alterations has not been extensively reviewed previously. Here, we address the crucial role of mitochondrial functions during adipogenesis and in mature adipocytes and discuss the cellular responses of white adipocytes to mitochondrial activity impairment. In addition, we discuss the increase in scientific knowledge regarding mitochondrial functions in the last 10 years and the recent suspicion of mitochondrial dysfunction in several 21st century epidemics (ie, obesity and diabetes), as well as in lipodystrophy found in HIV-treated patients, which can contribute to the development of new therapeutic strategies targeting adipocyte mitochondria. PMID:19700756

  12. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation.

    PubMed

    Yang, Zhe; Hong, Lee Kian; Follett, Jordan; Wabitsch, Martin; Hamilton, Nicholas A; Collins, Brett M; Bugarcic, Andrea; Teasdale, Rohan D

    2016-03-01

    Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis. PMID:26581601

  13. Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation

    PubMed Central

    Parekh, Vaishali I.; Modali, Sita D.; Desai, Shruti S.; Agarwal, Sunita K.

    2015-01-01

    Lipoma in patients with the multiple endocrine neoplasia type 1 (MEN1) syndrome is a type of benign fat-cell tumor that has biallelic inactivation of MEN1 that encodes menin and could serve as a model to investigate normal and pathologic fat-cell (adipocyte) proliferation and function. The role of menin and its target genes in adipocytes is not known. We used in vitro differentiation to derive matched normal and menin-deficient adipocytes from wild type (WT) and menin-null (Men1-KO) mouse embryonic stem cells (mESCs), respectively, or 3T3-L1 cells without or with menin knockdown to investigate cell size, lipid content, and gene expression changes. Adipocytes derived from Men1-KO mESCs or after menin knockdown in 3T3-L1 cells showed a 1.5–1.7-fold increase in fat-cell size. Global gene expression analysis of mESC-derived adipocytes showed that lack of menin downregulated the expression of many differentially methylated genes including the tumor suppressor long noncoding RNA Meg3 but upregulated gene expression from the prolactin gene family locus. Our results show that menin deficiency leads to fat-cell hypertrophy and provide model systems that could be used to study the regulation of fat-cell size. PMID:26229531

  14. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation.

    PubMed

    Yang, Zhe; Hong, Lee Kian; Follett, Jordan; Wabitsch, Martin; Hamilton, Nicholas A; Collins, Brett M; Bugarcic, Andrea; Teasdale, Rohan D

    2016-03-01

    Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis.

  15. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes

    PubMed Central

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea PMID:26833256

  16. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes

    PubMed Central

    Liu, Longhua; Tao, Zhipeng; Zheng, Louise D; Brooke, Joseph P; Smith, Cayleen M; Liu, Dongmin; Long, Yun Chau; Cheng, Zhiyong

    2016-01-01

    Mitochondrial uncoupling proteins (UCPs) are inducible and play an important role in metabolic and redox homeostasis. Recent studies have suggested that FoxO1 controls mitochondrial biogenesis and morphology, but it remains largely unknown how FoxO1 may regulate mitochondrial UCPs. Here we show that FoxO1 interacted with transcription factor EB (Tfeb), a key regulator of autophagosome and lysosome, and mediated the expression of UCP1, UCP2 and UCP3 differentially via autophagy in adipocytes. UCP1 was down-regulated but UCP2 and UCP3 were upregulated during adipocyte differentiation, which was associated with increased Tfeb and autophagy activity. However, inhibition of FoxO1 suppressed Tfeb and autophagy, attenuating UCP2 and UCP3 but increasing UCP1 expression. Pharmacological blockade of autophagy recapitulated the effects of FoxO1 inhibition on UCPs. Chromatin immunoprecipitation assay demonstrated that FoxO1 interacted with Tfeb by directly binding to its promoter, and silencing FoxO1 led to drastic decrease in Tfeb transcript and protein levels. These data provide the first line of evidence that FoxO1 interacts with Tfeb to regulate autophagy and UCP expression in adipocytes. Dysregulation of FoxO1→autophagy→UCP pathway may account for metabolic changes in obesity. PMID:27777789

  17. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    PubMed

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-02-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea.

  18. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes.

    PubMed

    Li, Kai Kai; Liu, Chuek Lun; Shiu, Hoi Ting; Wong, Hing Lok; Siu, Wing Sum; Zhang, Cheng; Han, Xiao Qiang; Ye, Chuang Xing; Leung, Ping Chung; Ko, Chun Hay

    2016-01-01

    Cocoa tea (Camellia ptilophylla) is a naturally decaffeinated tea plant. Previously we found that cocoa tea demonstrated a beneficial effect against high-fat diet induced obesity, hepatic steatosis, and hyperlipidemia in mice. The present study aimed to investigate the anti-adipogenic effect of cocoa tea in vitro using preadipocytes 3T3-L1. Adipogenic differentiation was confirmed by Oil Red O stain, qPCR and Western blot. Our results demonstrated that cocoa tea significantly inhibited triglyceride accumulation in mature adipocytes in a dose-dependent manner. Cocoa tea was shown to suppress the expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma (PPAR γ) and CCAAT/enhancer binding protein (C/EBP α). The tea extract was subsequently found to reduce the expressions of adipocyte-specific genes such as sterol regulatory element binding transcription factor 1c (SREBP-1c), fatty acid synthase (FAS), Acetyl-CoA carboxylase (ACC), fatty acid translocase (FAT) and stearoylcoenzyme A desaturase-1 (SCD-1). In addition, JNK, ERK and p38 phosphorylation were inhibited during cocoa tea inhibition of 3T3-L1 adipogenic differentiation. Taken together, this is the first study that demonstrates cocoa tea has the capacity to suppress adipogenesis in pre-adipocyte 3T3-L1 similar to traditional green tea. PMID:26833256

  19. Sclerostin Enhances Adipocyte Differentiation in 3T3-L1 Cells.

    PubMed

    Ukita, Mayumi; Yamaguchi, Taihiko; Ohata, Noboru; Tamura, Masato

    2016-06-01

    Sclerostin, a secreted protein encoded by the Sost gene, is produced by osteocytes and is inhibited by osteoblast differentiation and bone formation. Recently, a functional association between bone and fat tissue has been suggested, and a correlation between circulating sclerostin levels and lipid metabolism has been reported in humans. However, the effects of sclerostin on adipogenesis remain unexplored. In the present study, we examined the role of sclerostin in regulating adipocyte differentiation using 3T3-L1 preadipocytes. In these cells, sclerostin enhanced adipocyte-specific gene expression and the accumulation of lipid deposits. Sclerostin also upregulated CCAAT/enhancer binding protein β expression but not cell proliferation and caspase-3/7 activities. Sclerostin also attenuated canonical Wnt3a-inhibited adipocyte differentiation. Recently, the transcriptional modulator TAZ has been involved in the canonical Wnt signaling pathway. Sclerostin reduced TAZ-responsive transcriptional activity and TAZ-responsive gene expression. Transfection of 3T3-L1 cells with TAZ siRNA increased the lipid deposits and adipogenic gene expression. These results show that sclerostin upregulates adipocyte differentiation in 3T3-L1 cells, suggesting a possible role for the osteocyte-derived sclerostin as a regulator of fat metabolism and as a reciprocal regulator of bone and adipose tissues metabolism.

  20. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demo...

  1. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  2. Rubi Fructus (Rubus coreanus) Inhibits Differentiation to Adipocytes in 3T3-L1 Cells.

    PubMed

    Jeong, Mi-Young; Kim, Hye-Lin; Park, Jinbong; An, Hyo-Jin; Kim, Sung-Hoon; Kim, Su-Jin; So, Hong-Seob; Park, Raekil; Um, Jae-Young; Hong, Seung-Heon

    2013-01-01

    Rubi Fructus (RF) is known to exert several pharmacological effects including antitumor, antioxidant, and anti-inflammatory activities. However, its antiobesity effect has not been reported yet. This study was focused on the antidifferentiation effect of RF extract on 3T3-L1 preadipocytes. When 3T3-L1 preadipocytes were differentiating into adipocytes, 10-100  μ g/mL of RF was added. Next, the lipid contents were quantified by Oil Red O staining. RF significantly reduced lipid accumulation and downregulated the expression of peroxisome proliferator-activated receptor γ (PPAR γ ), CCAAT0-enhancer-binding proteins α (C/EBP α ), adipocyte fatty acid-binding protein 2 (aP2), resistin, and adiponectin in ways that were concentration dependent. Moreover, RF markedly upregulated liver kinase B1 and AMP-activated protein kinase (AMPK). Interestingly, pretreatment with AMPK α siRNA and RF downregulated the expression of PPAR γ and C/EBP α protein as well as the adipocyte differentiation. Our study shows that RF is capable of inhibiting the differentiation of 3T3-L1 adipocytes through the modulation of PPAR γ , C/EBP α , and AMPK, suggesting that it has a potential for therapeutic application in the treatment or prevention of obesity.

  3. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo . E-mail: ksekiya@affrc.go.jp

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulated kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.

  4. Early expression of p107 is associated with 3T3-L1 adipocyte differentiation.

    PubMed

    Liu, Kenian; Guan, Yu; MacNicol, Melanie C; MacNicol, Angus M; McGehee, Robert E

    2002-08-30

    In response to hormonal stimulation quiescent 3T3-L1 preadipocyte cells reenter the cell cycle and undergo a mitotic expansion phase prior to terminal differentiation. The cell cycle regulatory proteins p130 and p107 undergo dramatic changes in protein levels within 24 h of differentiation. The role of these proteins in regulating adipocyte mitotic clonal expansion and/or differentiation are unclear. It has recently been demonstrated that adipocyte proliferation can be uncoupled from adipocyte differentiation through the use of the pharmacological MEK inhibitor PD98059 or the tyrosine phosphatase inhibitor, sodium vanadate. We examined the expression of p130 and p107 in stimulated 3T3-L1 cells in the presence of either PD98059, U0126 or sodium vanadate. While inhibition of MEK blocked proliferation, the cells underwent differentiation normally. In contrast, vanadate blocked differentiation without affecting proliferation. Inhibition of MEK did not affect the increase in p107 expression in stimulated cells indicating that induction of p107 is independent of MAP kinase signaling. Vanadate treatment caused a significant delay in p107 expression in the first 24 h following stimulation. Under these conditions, p130 expression was relatively unchanged. Our results indicate that a rapid increase in p107 expression correlates with a commitment to undergo adipocyte differentiation. The data further suggest that the rapid induction of p107 is not required for cellular proliferation during the mitotic clonal expansion phase. Taken together, these findings provide correlative data that implicate p107 in the terminal differentiation, but not proliferation, of quiescent preadipocytes following hormonal stimulation.

  5. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture

    SciTech Connect

    Kopecky, J.; Baudysova, M.; Zanotti, F.; Janikova, D.; Pavelka, S.; Houstek, J. )

    1990-12-25

    In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-(35S)methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria.

  6. Deleted in breast cancer 1 plays a functional role in adipocyte differentiation.

    PubMed

    Moreno-Navarrete, José María; Moreno, María; Vidal, Marta; Ortega, Francisco; Serrano, Marta; Xifra, Gemma; Ricart, Wifredo; Fernández-Real, José Manuel

    2015-04-01

    Genetic deletion of Dbc1 in mice reduced adipose tissue senescence and inflammation while promoting an expansion of this tissue. Here, we aimed to investigate DBC1 mRNA and protein levels in human adipose tissue from subjects with a wide spectrum of fat mass (cohort 1; n = 105) and insulin resistance (cohort 2; n = 47); we also investigated the effects of DBC1 knockdown on 3T3-L1 adipocyte differentiation. DBC1 mRNA was relatively abundant in both visceral (VAT) and subcutaneous adipose tissue (SAT) (mainly in the adipocyte fraction), being decreased in adipose tissue from obese compared with lean subjects. In both VAT and SAT, DBC1 mRNA levels were negatively associated with BMI and positively associated with age and the expression of PPARγ, GLUT4, IRS1, lipogenic (FASN, ACACA), lipid droplet-associated genes (PLIN1, FSP27, ADRP, and TIP47), and lipolytic (ABDH5, AKAP, and PRKACA) genes but negatively associated with ADIPOQ in VAT. DBC1 mRNA and protein levels were increased in the early stages of adipocyte differentiation of human and 3T3-L1 adipocytes. Dbc1 knockdown (KD) with lentivirus led to enhanced adipocyte differentiation, increasing intracellular lipid accumulation and adipogenic gene expression. In conclusion, although DBC1 gene expression was reduced in adipose tissue from obese subjects, it was negatively associated with ADIPOQ gene expression in VAT, suggesting that DBC1 might promote visceral adipose tissue dysfunction. In vitro data supported the antiadipogenic effects of DBC1.

  7. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  8. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    PubMed Central

    Jiao, Yang; Zhang, Jingying; Lu, Lunjie; Xu, Jiaying; Qin, Liqiang

    2016-01-01

    The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO) is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05). Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4) expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling. PMID:26907332

  9. Dynamics of lipid droplet-associated proteins during hormonally stimulated lipolysis in engineered adipocytes: stabilization and lipid droplet binding of adipocyte differentiation-related protein/adipophilin.

    PubMed

    Gross, Danielle N; Miyoshi, Hideaki; Hosaka, Toshio; Zhang, Hui-Hong; Pino, Elizabeth C; Souza, Sandra; Obin, Martin; Greenberg, Andrew S; Pilch, Paul F

    2006-02-01

    In mature adipocytes, triglyceride is stored within lipid droplets, which are coated with the protein perilipin, which functions to regulate lipolysis by controlling lipase access to the droplet in a hormone-regulatable fashion. Adipocyte differentiation-related protein (ADRP) is a widely expressed lipid droplet binding protein that is coexpressed with perilipin in differentiating fat cells but is minimally present in fully differentiated cultured adipocytes. We find that fibroblasts ectopically expressing C/EBPalpha (NIH-C/EBPalpha cells) differentiate into mature adipocytes that simultaneously express perilipin and ADRP. In response to isoproterenol, perilipin is hyperphosphorylated, lipolysis is enhanced, and subsequently, ADRP expression increases coincident with it surrounding intracellular lipid droplets. In the absence of lipolytic stimulation, inhibition of proteasomal activity with MG-132 increased ADRP levels to those of cells treated with 10 mum isoproterenol, but ADRP does not surround the lipid droplet in the absence of lipolytic stimulation. We overexpressed a perilipin A construct in NIH-C/EBPalpha cells where the six serine residues known to be phosphorylated by protein kinase A were changed to alanine (Peri A Delta1-6). These cells show no increase in ADRP expression in response to isoproterenol. We propose that ADRP can replace perilipin on existing lipid droplets or those newly formed as a result of fatty acid reesterification, under dynamic conditions of hormonally stimulated lipolysis, thus preserving lipid droplet morphology/structure. PMID:16239256

  10. Averrhoa carambola L. peel extract suppresses adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Rashid, Asyifah Mohamed; Lu, Kaihui; Yip, Yew Mun; Zhang, Dawei

    2016-02-01

    Obesity is associated with an increased risk of many chronic diseases. Recently, a growing body of evidence has shown that phytochemicals may inhibit adipogenesis and obesity. In this study, we report for the first time, the ability of Averrhoa carambola L. peel extract commonly known as star fruit (SFP) to effectively suppress adipocyte differentiation in 3T3-L1 preadipocytes and therefore, address it as a potential candidate to treat obesity and its related diseases. (-)-Epicatechin was identified as a bioactive compound likely responsible for this suppression. As the genetic expression studies revealed that the adipogenic activity of SFP extract was due to the simultaneous downregulation of the C/EBPα and PPARγ as well as the upregulation of PPARα receptor genes, a detailed computational docking study was also elucidated to reveal the likely binding mode of (-)-epicatechin to the receptor of interest, accounting for the likely mechanism that results in the overall suppression of adipocyte differentiation.

  11. Inhibition of mitotic clonal expansion mediates fisetin-exerted prevention of adipocyte differentiation in 3T3-L1 cells.

    PubMed

    Lee, Youngyi; Bae, Eun Ju

    2013-11-01

    Adipocytes are the key player in adipose tissue inflammation and subsequent systemic insulin resistance and its development involves complex process of proliferation and differentiation of preadipocytes. Fistein, a polyphenol flavonoid, is known to exert anti-inflammatory, anti-carcinogenic and anti-diabetic effects. In this study, we aimed to investigate the effect of fisetin on adipocyte proliferation and differentiation in 3T3-L1 preadipocyte cell line and its mechanism of action. We found that fisetin inhibits adipocyte differentiation in a concentration dependent manner, which were evidenced by Oil Red O staining and the protein expression of mature adipocyte marker genes fatty acid synthase and peroxisome proliferator-activated receptor γ. Moreover, the proliferation of preadipocytes was also markedly suppressed by treatment of fisetin for 24 and 48 h in the differentiation medium. We also found that fisetin inhibition of adipocyte differentiation was largely due to the effect on mitotic clonal expansion. Fisetin suppression of preadipocyte proliferation at early stage of differentiation was accompanied by the changes of expression of a series of cell cycle regulatory proteins. Altogether, our results suggest that the inhibition of adipocyte differentiation by fisetin may be at least in part mediated by cell cycle arrest during adipogenesis.

  12. Adipocyte differentiation-related protein promotes lipid accumulation in goat mammary epithelial cells.

    PubMed

    Shi, H B; Yu, K; Luo, J; Li, J; Tian, H B; Zhu, J J; Sun, Y T; Yao, D W; Xu, H F; Shi, H P; Loor, J J

    2015-10-01

    Milk fat originates from the secretion of cytosolic lipid droplets (CLD) synthesized within mammary epithelial cells. Adipocyte differentiation-related protein (ADRP; gene symbol PLIN2) is a CLD-binding protein that is crucial for synthesis of mature CLD. Our hypothesis was that ADRP regulates CLD production and metabolism in goat mammary epithelial cells (GMEC) and thus plays a role in determining milk fat content. To understand the role of ADRP in ruminant milk fat metabolism, ADRP (PLIN2) was overexpressed or knocked down in GMEC using an adenovirus system. Immunocytochemical staining revealed that ADRP localized to the surface of CLD. Supplementation with oleic acid (OA) enhanced its colocalization with CLD surface and enhanced lipid accumulation. Overexpression of ADRP increased lipid accumulation and the concentration of triacylglycerol in GMEC. In contrast, morphological examination revealed that knockdown of ADRP decreased lipid accumulation even when OA was supplemented. This response was confirmed by the reduction in mass of cellular TG when ADRP was knocked down. The fact that knockdown of ADRP did not completely eliminate lipid accumulation at a morphological level in GMEC without OA suggests that some other compensatory factors may also aid in the process of CLD formation. The ADRP reversed the decrease of CLD accumulation induced by adipose triglyceride lipase. This is highly suggestive of ADRP promoting triacylglycerol stability within CLD by preventing access to adipose triglyceride lipase. Collectively, these data provide direct in vitro evidence that ADRP plays a key role in CLD formation and stability in GMEC. PMID:26298750

  13. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes.

    PubMed

    Jumabay, Medet; Abdmaulen, Raushan; Urs, Sumithra; Heydarkhan-Hagvall, Sepideh; Chazenbalk, Gregorio D; Jordan, Maria C; Roos, Kenneth P; Yao, Yucheng; Boström, Kristina I

    2012-12-01

    White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues.

  14. ChemR23 knockout mice display mild obesity but no deficit in adipocyte differentiation.

    PubMed

    Rouger, Laurie; Denis, G Raphaël; Luangsay, Souphalone; Parmentier, Marc

    2013-12-01

    Chemerin was initially described as a chemoattractant factor for leukocyte populations. More recently, the protein has also been reported to be an adipokine, regulating adipocyte differentiation in vitro via its receptor ChemR23, and to be correlated with BMI and other parameters of the metabolic syndrome in humans. The aim of this study was to investigate the role of the chemerin/ChemR23 axis in the regulation of metabolism in vivo, using a mouse knockout (KO) model for ChemR23 (Cmklr1) in a C57BL/6 genetic background. Body weight and adipose tissue mass did not differ significantly in young animals, but were significantly higher in ChemR23 KO mice aged above 12 months. Glucose tolerance was unaffected. No significant modifications in the levels of blood lipids were observed and no increase in the levels of inflammatory markers was observed in the adipose tissue of KO mice. A high-fat diet did not exacerbate the obese phenotype in ChemR23 KO mice. No obvious defect in adipocyte differentiation was detected, while a marker of lipogenic activity (GPD1 expression) was found to be elevated. In conclusion, the chemerin/ChemR23 system does not appear to play a major role in adipocyte differentiation in vivo, but it may be involved in adipose tissue homeostasis. PMID:24084834

  15. Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes.

    PubMed

    Jumabay, Medet; Abdmaulen, Raushan; Urs, Sumithra; Heydarkhan-Hagvall, Sepideh; Chazenbalk, Gregorio D; Jordan, Maria C; Roos, Kenneth P; Yao, Yucheng; Boström, Kristina I

    2012-12-01

    White mature adipocytes give rise to multipotent cells, so-called de-differentiated fat (DFAT) cells, when losing their fat in culture. The objective of this study was to examine the ability of DFAT cells to give rise to endothelial cells (ECs) in vitro and vivo. We demonstrate that mouse and human DFAT cells, derived from adipose tissue and lipospirate, respectively, initially lack expression of CD34, CD31, CD146, CD45 and pericyte markers, distinguishing them from progenitor cells previously identified in adipose stroma. The DFAT cells spontaneously differentiate into vascular ECs in vitro, as determined by real-time PCR, fluorescence activated cell sorting, immunostaining, and formation of tube structures. Treatment with bone morphogenetic protein (BMP)4 and BMP9, important in regulating angiogenesis, significantly enhances the EC differentiation. Furthermore, adipocyte-derived cells from Green Fluorescent Protein-transgenic mice were detected in the vasculature of infarcted myocardium up to 6 weeks after ligation of the left anterior descending artery in mice. We conclude that adipocyte-derived multipotent cells are able to spontaneously give rise to ECs, a process that is promoted by BMPs and may be important in cardiovascular regeneration and in physiological and pathological changes in fat and other tissues. PMID:22999861

  16. Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells.

    PubMed

    Creydt, Virginia Pistone; Sacca, Paula Alejandra; Tesone, Amelia Julieta; Vidal, Luciano; Calvo, Juan Carlos

    2010-01-01

    Stromal tissue regulates the development and differentiation of breast epithelial cells, with adipocytes being the main stromal cell type. The aim of the present study was to evaluate the effect of adipocyte differentiation on proliferation and migration, as well as to assess the activity of heparanase and metalloproteinase-9 (MMP-9), in normal (NMuMG) and tumoral (LM3) murine breast epithelial cells. NMuMG and LM3 cells were grown on irradiated 3T3-L1 cells (stromal support, SS) at various degrees of differentiation [preadipocytes (preA), poorly differentiated adipocytes (pDA) and mature adipocytes (MA)] and/or were incubated in the presence of conditioned medium (CM) derived from each of these three types of differentiated cells. Cells grown on a plastic support or in fresh medium served as the controls. Cell proliferation was measured with a commercial colorimetric kit, and the motility of the epithelial cells was evaluated by means of a wound-healing assay. Heparanase activity was assessed by quantifying heparin degradation, and the expression of MMP-9 was determined using Western blotting. The results indicate that cell proliferation was increased after 24 and 48 h in the NMuMG and LM3 cells grown on preA, pDA and MA SS. In the NMuMG cells cultured on SS in the presence of all three types of CM, proliferation was enhanced. LM3 cell migration was increased in the presence of all three types of CM and in cells grown on preA SS. Heparanase activity was increased in the NMuMG cells incubated with all three types of CM, and in the LM3 cells incubated with the CM from pDA and MA. Both the NMuMG and LM3 cell lines presented basal expression of MMP-9; however, a significant increase in MMP-9 expression was observed in the LM3 cells incubated with each of the three types of CM. In conclusion, adipocyte differentiation influences normal and tumoral breast epithelial cell proliferation and migration. Heparanase and MMP-9 appear to be involved in this regulation. The

  17. Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics

    PubMed Central

    Hahn, Wendy S.; Kuzmicic, Jovan; Burrill, Joel S.; Donoghue, Margaret A.; Foncea, Rocio; Jensen, Michael D.; Lavandero, Sergio; Arriaga, Edgar A.

    2014-01-01

    Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Macrophage infiltration of adipose tissue and the chronic low-grade production of inflammatory cytokines have been mechanistically linked to the development of insulin resistance, the forerunner of type 2 diabetes mellitus. In this study, we evaluated the chronic effects of TNFα, IL-6, and IL-1β on adipocyte mitochondrial metabolism and morphology using the 3T3-L1 model cell system. TNFα treatment of cultured adipocytes led to significant changes in mitochondrial bioenergetics, including increased proton leak, decreased ΔΨm, increased basal respiration, and decreased ATP turnover. In contrast, although IL-6 and IL-1β decreased maximal respiratory capacity, they had no effect on ΔΨm and varied effects on ATP turnover, proton leak, or basal respiration. Only TNFα treatment of 3T3-L1 cells led to an increase in oxidative stress (as measured by superoxide anion production and protein carbonylation) and C16 ceramide synthesis. Treatment of 3T3-L1 adipocytes with cytokines led to decreased mRNA expression of key transcription factors and control proteins implicated in mitochondrial biogenesis, including PGC-1α and eNOS as well as deceased expression of COX IV and Cyt C. Whereas each cytokine led to effects on expression of mitochondrial markers, TNFα exclusively led to mitochondrial fragmentation and decreased the total level of OPA1 while increasing OPA1 cleavage, without expression of levels of mitofusin 2, DRP-1, or mitofilin being affected. In summary, these results indicate that inflammatory cytokines have unique and specialized effects on adipocyte metabolism, but each leads to decreased mitochondrial function and a reprogramming of fat cell biology. PMID:24595304

  18. [Adipocytic tumors].

    PubMed

    Stock, Nathalie

    2015-01-01

    Adipocytic tumors are the most common mesenchymal neoplasms, liposarcoma accounting for approximately 20% of soft tissue sarcomas. The differential diagnosis between benign and malignant tumors is often problematic and represents a significant proportion of consultation cases. The goal of this article is to review liposarcoma subtypes, the main benign adipocytic neoplasms: lipoblastoma, hibernoma, spindle/pleomorphic cell lipoma, chondroid lipoma, as well as non adipocytic neoplasms with a lipomatous component such as lipomatous solitary fibrous tumor, emphasizing on practical differential diagnosis issues, and immunohistochemical and molecular tools allowing their resolution.

  19. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    PubMed

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  20. KCNK10, a Tandem Pore Domain Potassium Channel, Is a Regulator of Mitotic Clonal Expansion during the Early Stage of Adipocyte Differentiation

    PubMed Central

    Nishizuka, Makoto; Hayashi, Takahiro; Asano, Mami; Osada, Shigehiro; Imagawa, Masayoshi

    2014-01-01

    KCNK10, a member of tandem pore domain potassium channel family, gives rise to leak K+ currents. It plays important roles in stabilizing the negative resting membrane potential and in counterbalancing depolarization. We previously demonstrated that kcnk10 expression is quickly elevated during the early stage of adipogenesis of 3T3-L1 cells and that reduction of kcnk10 expression inhibits adipocyte differentiation. However, the molecular mechanism of KCNK10 in adipocyte differentiation remains unclear. Here we revealed that kcnk10 is induced by 3-isobutyl-1-methylxanthine, a cyclic nucleotide phosphodiesterase inhibitor and a potent inducer of adipogenesis, during the early stage of adipocyte differentiation. We also demonstrated that KCNK10 functions as a positive regulator of mitotic clonal expansion (MCE), a necessary process for terminal differentiation. The reduction of kcnk10 expression repressed the expression levels of CCAAT/enhancer-binding protein β (C/EBPβ) and C/EBPδ as well as the phosphorylation level of Akt during the early phase of adipogenesis. In addition, knockdown of kcnk10 expression suppressed insulin-induced Akt phosphorylation. These results indicate that KCNK10 contributes to the regulation of MCE through the control of C/EBPβ and C/EBPδ expression and insulin signaling. PMID:25501330

  1. THRAP3 interacts with HELZ2 and plays a novel role in adipocyte differentiation.

    PubMed

    Katano-Toki, Akiko; Satoh, Tetsurou; Tomaru, Takuya; Yoshino, Satoshi; Ishizuka, Takahiro; Ishii, Sumiyasu; Ozawa, Atsushi; Shibusawa, Nobuyuki; Tsuchiya, Takafumi; Saito, Tsugumichi; Shimizu, Hiroyuki; Hashimoto, Koshi; Okada, Shuichi; Yamada, Masanobu; Mori, Masatomo

    2013-05-01

    Using yeast two-hybrid screen, we previously isolated HELZ2 (helicase with zinc finger 2, transcriptional coactivator) that functions as a coregulator of peroxisome proliferator-activated receptorγ (PPARγ). To further delineate its molecular function, we here identified thyroid hormone receptor-associated protein3 (THRAP3), a putative component of the Mediator complex, as a protein stably associating with HELZ2 using immunoprecipitation coupled with mass spectrometry analyses. In immunoprecipitation assays, Thrap3 could associate with endogenous Helz2 as well as Pparg in differentiated 3T3-L1 cells. HELZ2 interacts with the serine/arginine-rich domain and Bcl2 associated transcription factor1-homologous region in THRAP3, whereas THRAP3 directly binds 2 helicase motifs in HELZ2. HELZ2 and THRAP3 synergistically augment transcriptional activation mediated by PPARγ, whereas knockdown of endogenous THRAP3 abolished the enhancement by HELZ2 in reporter assays. Thrap3, similar to Helz2, is evenly expressed in the process of adipogenic differentiation in 3T3-L1 cells. Knockdown of Thrap3 in 3T3-L1 preadipocytes using short-interfering RNA did not influence the expression of Krox20, Klf5, Cebpb, or Cebpd during early stages of adipocyte differentiation, but significantly attenuated the expression of Pparg, Cebpa, and Fabp4/aP2 and accumulation of lipid droplets. Pharmacologic activation of Pparg by troglitazone could not fully restore the differentiation of Thrap3-knockdown adipocytes. In chromatin immunoprecipitation assays, endogenous Helz2 and Thrap3 could be co-recruited, in a ligand-dependent manner, to the PPARγ-response elements in Fabp4/aP2 and Adipoq gene enhancers in differentiated 3T3-L1 cells. These findings collectively suggest that Thrap3 could play indispensable roles in terminal differentiation of adipocytes by enhancing PPARγ-mediated gene activation cooperatively with Helz2. PMID:23525231

  2. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate

    PubMed Central

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. Materials and Methods: To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. Results: The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. Conclusion: The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes. PMID:27047647

  3. Antiadipogenic properties of retinol in primary cultured differentiating human adipocyte precursor cells.

    PubMed

    Garcia, E; Lacasa, D; Agli, B; Giudicelli, Y; Castelli, D

    2000-04-01

    The aim of this study was to investigate the effect of retinol on the human adipose conversion process using primary cultured human adipocyte precursor cells. When these cells were seeded in a medium containing retinol (concentrations ranging from 3.5 nM to 3.5 muM), cell proliferation was slightly inhibited by high concentrations of retinol, as demonstrated by cell counting and [(3)H]-thymidine incorporation. Moreover, the differentiation capacities of these cells were markedly and dose-dependently inhibited by retinol, as shown by the reduced expression of the lipogenic enzyme glycerol-3-phosphate dehydrogenase and by microscopic morphological analysis. These results strongly suggest that retinol, by inhibiting the ability of human preadipocytes to convert into mature adipocytes, could be of potential interest in the prevention of human adipose tissue development in general and of cellulitis in particular. PMID:18503465

  4. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice.

    PubMed

    Krautbauer, Sabrina; Eisinger, Kristina; Hader, Yvonne; Buechler, Christa

    2014-10-01

    Galectin-3 regulates immune cell function and clearance of advanced glycation end products. Galectin-3 is increased in serum of obese humans and mice and most studies suggest that this protein protects from inflammation in metabolic diseases. Current data show that galectin-3 is markedly elevated in the liver, subcutaneous and intra-abdominal fat depots of mice fed a high fat diet and ob/ob mice. Galectin-3 is also increased in brown adipose tissues of these animals and immunohistochemistry confirms higher levels in adipocytes. Raised galectin-3 in obese white adipocytes has been described in the literature and regulation of adipocyte galectin-3 by metabolites with a role in obesity has been analyzed. Galectin-3 is expressed in 3T3-L1 fibroblasts and human preadipocytes and is modestly induced in mature adipocytes. In 3T3-L1 adipocytes galectin-3 is localized in the cytoplasm and is also detected in cell supernatants. Glucose does not alter soluble galectin-3. Lipopolysaccharide has no effect while TNF reduces and IL-6 raises this lectin in cell supernatants. Palmitate and oleate modestly elevate soluble galectin-3. Differentiation of 3T3-L1 cells in the presence of 100 μM and 200 μM linoleate induces soluble galectin-3 and cellular levels are upregulated by the higher concentration. Current data suggest that free fatty acids and IL-6 increase galectin-3 in adipocytes and thereby may contribute to higher levels in obesity.

  5. Adipocyte in vascular wall can induce the rupture of abdominal aortic aneurysm

    PubMed Central

    Kugo, Hirona; Zaima, Nobuhiro; Tanaka, Hiroki; Mouri, Youhei; Yanagimoto, Kenichi; Hayamizu, Kohsuke; Hashimoto, Keisuke; Sasaki, Takeshi; Sano, Masaki; Yata, Tatsuro; Urano, Tetsumei; Setou, Mitsutoshi; Unno, Naoki; Moriyama, Tatsuya

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a vascular disease involving the gradual dilation of the abdominal aorta. It has been reported that development of AAA is associated with inflammation of the vascular wall; however, the mechanism of AAA rupture is not fully understood. In this study, we investigated the mechanism underlying AAA rupture using a hypoperfusion-induced animal model. We found that the administration of triolein increased the AAA rupture rate in the animal model and that the number of adipocytes was increased in ruptured vascular walls compared to non-ruptured walls. In the ruptured group, macrophage infiltration and the protein levels of matrix metalloproteinases 2 and 9 were increased in the areas around adipocytes, while collagen-positive areas were decreased in the areas with adipocytes compared to those without adipocytes. The administration of fish oil, which suppresses adipocyte hypertrophy, decreased the number and size of adipocytes, as well as decreased the risk of AAA rupture ratio by 0.23 compared to the triolein administered group. In human AAA samples, the amount of triglyceride in the adventitia was correlated with the diameter of the AAA. These results suggest that AAA rupture is related to the abnormal appearance of adipocytes in the vascular wall. PMID:27499372

  6. Adipocyte in vascular wall can induce the rupture of abdominal aortic aneurysm.

    PubMed

    Kugo, Hirona; Zaima, Nobuhiro; Tanaka, Hiroki; Mouri, Youhei; Yanagimoto, Kenichi; Hayamizu, Kohsuke; Hashimoto, Keisuke; Sasaki, Takeshi; Sano, Masaki; Yata, Tatsuro; Urano, Tetsumei; Setou, Mitsutoshi; Unno, Naoki; Moriyama, Tatsuya

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a vascular disease involving the gradual dilation of the abdominal aorta. It has been reported that development of AAA is associated with inflammation of the vascular wall; however, the mechanism of AAA rupture is not fully understood. In this study, we investigated the mechanism underlying AAA rupture using a hypoperfusion-induced animal model. We found that the administration of triolein increased the AAA rupture rate in the animal model and that the number of adipocytes was increased in ruptured vascular walls compared to non-ruptured walls. In the ruptured group, macrophage infiltration and the protein levels of matrix metalloproteinases 2 and 9 were increased in the areas around adipocytes, while collagen-positive areas were decreased in the areas with adipocytes compared to those without adipocytes. The administration of fish oil, which suppresses adipocyte hypertrophy, decreased the number and size of adipocytes, as well as decreased the risk of AAA rupture ratio by 0.23 compared to the triolein administered group. In human AAA samples, the amount of triglyceride in the adventitia was correlated with the diameter of the AAA. These results suggest that AAA rupture is related to the abnormal appearance of adipocytes in the vascular wall. PMID:27499372

  7. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  8. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation. PMID:27325693

  9. Effects of Tithonia diversifolia (Hemsl.) A. Gray Extract on Adipocyte Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Di Giacomo, Claudia; Vanella, Luca; Sorrenti, Valeria; Santangelo, Rosa; Barbagallo, Ignazio; Calabrese, Giovanna; Genovese, Carlo; Mastrojeni, Silvana; Ragusa, Salvatore; Acquaviva, Rosaria

    2015-01-01

    Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae) is widely used in traditional medicine. There is increasing interest on the in vivo protective effects of natural compounds contained in plants against oxidative damage caused from reactive oxygen species. In the present study the total phenolic and flavonoid contents of aqueous, methanol and dichloromethane extracts of leaves of Tithonia diversifolia (Hemsl.) A. Gray were determined; furthermore, free radical scavenging capacity of each extract and the ability of these extracts to inhibit in vitro plasma lipid peroxidation were also evaluated. Since oxidative stress may be involved in trasformation of pre-adipocytes into adipocytes, to test the hypothesis that Tithonia extract may also affect adipocyte differentiation, human mesenchymal stem cell cultures were treated with Tithonia diversifolia aqueous extract and cell viability, free radical levels, Oil-Red O staining and western bolt analysis for heme oxygenase and 5'-adenosine monophoshate-activated protein kinase were carried out. Results obtained in the present study provide evidence that Tithonia diversifolia (Hemsl.) A. Gray exhibits interesting health promoting properties, resulting both from its free radical scavenger capacity and also by induction of protective cellular systems involved in cellular stress defenses and in adipogenesis of mesenchymal cells. PMID:25848759

  10. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Watanabe, Akio; Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  11. Major role of adipocyte prostaglandin E2 in lipolysis-induced macrophage recruitment.

    PubMed

    Hu, Xiaoqian; Cifarelli, Vincenza; Sun, Shishuo; Kuda, Ondrej; Abumrad, Nada A; Su, Xiong

    2016-04-01

    Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis. PMID:26912395

  12. IGF-I is a mitogen involved in differentiation-related gene expression in fetal rat brown adipocytes

    PubMed Central

    1993-01-01

    Fetal rat brown adipocytes at time zero of culture constitute a population of cells of broad spectrum, as estimated by cell size, endogenous fluorescence and lipid content, and show an intrinsic mitogenic competence. They express constitutively early growth-related genes such as c-myc, c-fos, and beta-actin, tissue specific-genes such as the uncoupling protein (UCP) and the lipogenic marker malic enzyme (ME). Fetal brown adipocytes bear a high expression of insulin-like growth factor receptor (IGF-IR), and show a high affinity IGF-I specific-binding to its receptor, and a high number of binding sites per cell. After cell quiescence, insulin-like growth factor I (IGF-I) was as potent as 10% FCS in inducing DNA synthesis, cell number increase, and the entry of cells into the cell-cycle. In addition, IGF- I or 10% FCS for 48 h increased the percentage of [3H]thymidine-labeled nuclei as compared to quiescent cells. Single cell autoradiographic microphotographs show typical multilocular fat droplets brown adipocytes, resulting positive to [3H]thymidine-labeled nuclei in response to IGF-I. IGF-I increased mRNA expression of the early- response genes c-fos (30 min), c-myc (2 and 24 h), and H-ras (4 and 24 h). 10% FCS also increased c-fos and c-myc, but failed to increase H- ras as an early event. IGF-I or 10% FCS, however, similarly increased the mRNA late expression of c-myc, H-ras, c-raf, beta-actin, and glucose 6-phosphate dehydrogenase (G6PD) at 72 h, as compared to quiescent cells. IGF-I or FCS maintained at 24 h or increased at 48 and 72 h UCP mRNA expression. The results demonstrate that IGF-I is a mitogen for fetal rat brown adipocytes, capable of inducing the expression of early and late growth-regulated genes, and of increasing the lipogenic marker ME and the tissue-specific gene UCP, suggesting the involvement of IGF-I in the differentiation as well as in the proliferation processes. PMID:8253851

  13. Antioxidant, anti-adipocyte differentiation, antitumor activity and anthelmintic activities against Anisakis simplex and Hymenolepis nana of yakuchinone A from Alpinia oxyphylla

    PubMed Central

    2013-01-01

    Background Alpinia oxyphylla is a common remedy in traditional Chinese medicine. Yakuchinone A is a major constituent of A. oxyphylla and exhibits anti-inflammatory, antitumor, antibacterial, and gastric protective activities. Methods Antioxidant and antitumor characteristics of yakuchinone A in skin cancer cells as well as novel mechanisms for the inhibition of adipocyte differentiation, cestocidal activities against Hymenolepis nana adults, and nematocidal activities against Anisakis simplex larvae are investigated. Results Yakuchinone A presents the ability of the removal of DPPH·and ABTS+ free radicals and inhibition of lipid peroxidation. Yakuchinone A suppresses intracellular lipid accumulation during adipocyte differentiation in 3 T3-L1 cells and the expressions of leptin and peroxisome proliferator-activated receptor γ (PPARγ). Yakuchinone A induces apoptosis and inhibits cell proliferation in skin cancer cells. The inhibition of cell growth by yakuchinone A is more significant for non-melanoma skin cancer (NMSC) cells than for melanoma (A375 and B16) and noncancerous (HaCaT and BNLCL2) cells. Treatment BCC cells with yakuchinone A shows down-regulation of Bcl-2, up-regulation of Bax, and an increase in cleavage poly (ADP-ribose) polymerase (PARP). This suggests that yakuchinone A induces BCC cells apoptosis through the Bcl-2-mediated signaling pathway. The anthelmintic activities of yakuchinone A for A. simplex are better than for H. nana. Conclusions In this work, yakuchinone A exhibits antioxidative properties, anti-adipocyte differentiation, antitumor activity, and anthelmintic activities against A. simplex and H. nana. PMID:24070160

  14. Sera of overweight people promote in vitro adipocyte differentiation of bone marrow stromal cells

    PubMed Central

    2014-01-01

    Introduction Overweight status should not be considered merely an aesthetic concern; rather, it can incur health risks since it may trigger a cascade of events that produce further fat tissue through altered levels of circulating signaling molecules. There have been few studies addressing the effect of overweight status on the physiological functions of stem cells, including mesenchymal stem cells (MSCs), which are the progenitors of adipocytes and osteocytes and are a subset of the bone marrow stromal cell population. Methods We decided to investigate the influence of overweight individuals’ sera on in vitro MSC proliferation and differentiation. Results We observed that in vitro incubation of bone marrow stromal cells with the sera of overweight individuals promotes the adipogenic differentiation of MSCs while partially impairing proper osteogenesis. Conclusions These results, which represent a pilot study, might suggest that becoming overweight triggers further weight gains by promoting a bias in the differentiation potential of MSCs toward adipogenesis. The circulating factors involved in this phenomenon remain to be determined, since the great majority of the well known pro-inflammatory cytokines and adipocyte-secreted factors we investigated did not show relevant modifications in overweight serum samples compared with controls. PMID:24405848

  15. Effects of arachidonic acid on the concentration of hydroxyeicosatetraenoic acids in culture media of mesenchymal stromal cells differentiating into adipocytes or osteoblasts.

    PubMed

    Casado-Díaz, Antonio; Ferreiro-Vera, Carlos; Priego-Capote, Feliciano; Dorado, Gabriel; Luque-de-Castro, María Dolores; Quesada-Gómez, José Manuel

    2014-01-01

    Metabolites derived from the polyunsaturated fatty acids (PUFA) may modulate the mesenchymal stromal cell (MSC) differentiation. Such cells can differentiate into different cellular types, including adipocytes and osteoblasts. Aging favors the bone marrow MSC differentiation toward the former, causing a loss of bone density associated with pathologies like osteoporosis. The omega-6 arachidonic acid (AA) favors MSC adipogenesis to a greater extent than omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In this work, we study the joint action of both PUFA. Thus, not induced and induced to adipocyte or osteoblast MSC were treated with 20 μM of each PUFA (either AA, AA + DHA or AA + EPA). The expression of osteogenic and adipogenic molecular markers, the alox15b lipoxygenase gene expression and the 5-, 8-, 11-, 12- and 15-hydroxyeicosatetraenoic acids (HETE) derived from the AA metabolism in the culture media were determined. The results show that the adipogenesis induction of AA is not suppressed by the joint presence of EPA and DHA. In fact, both increased the adipogenic effect of AA on MSC differentiated into osteoblasts. The different HETE concentrations increased in cultures supplemented with AA, albeit such concentrations were lower in the cultures induced to differentiate, mainly at day 21 after the induction. Furthermore, the reduction in the HETE concentration was correlated with a higher expression of the alox15b gene. These results highlight the PUFA metabolism differences between uninduced and induced MSC to differentiate into adipocytes and osteoblasts, besides the relevant role of the lipoxygenase gene expression in adipogenesis induction.

  16. The small molecule indirubin-3′-oxime activates Wnt/β-catenin signaling and inhibits adipocyte differentiation and obesity

    PubMed Central

    Choi, O M; Cho, Y-H; Choi, S; Lee, S-H; Seo, S H; Kim, H-Y; Han, G; Min, D S; Park, T; Choi, K Y

    2014-01-01

    Objectives: Activation of the Wnt/β-catenin signaling pathway inhibits adipogenesis by maintaining preadipocytes in an undifferentiated state. We investigated the effect of indirubin-3′-oxime (I3O), which was screened as an activator of the Wnt/β-catenin signaling, on inhibiting the preadipocyte differentiation in vitro and in vivo. Methods: 3T3L1 preadipocytes were differentiated with 0, 4 or 20 μM of I3O. The I3O effect on adipocyte differentiation was observed by Oil-red-O staining. Activation of Wnt/β-catenin signaling in I3O-treated 3T3L1 cells was shown using immunocytochemical and immunoblotting analyses for β-catenin. The regulation of adipogenic markers was analyzed via real-time reverse transcription-PCR (RT-PCR) and immunoblotting analyses. For the in vivo study, mice were divided into five different dietary groups: chow diet, high-fat diet (HFD), HFD supplemented with I3O at 5, 25 and 100 mg kg−1. After 8 weeks, adipose and liver tissues were excised from the mice and subject to morphometry, real-time RT-PCR, immunoblotting and histological or immunohistochemical analyses. In addition, adipokine and insulin concentrations in serum of the mice were accessed by enzyme-linked immunosorbent assay. Results: Using a cell-based approach to screen a library of pharmacologically active small molecules, we identified I3O as a Wnt/β-catenin pathway activator. I3O inhibited the differentiation of 3T3-L1 cells into mature adipocytes and decreased the expression of adipocyte markers, CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ, at both mRNA and protein levels. In vivo, I3O inhibited the development of obesity in HFD-fed mice by attenuating HFD-induced body weight gain and visceral fat accumulation without showing any significant toxicity. Factors associated with metabolic disorders such as hyperlipidemia and hyperglycemia were also improved by treatment of I3O. Conclusion: Activation of the Wnt

  17. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes.

    PubMed

    Lu, Juu-Chin; Chang, Yu-Tzu; Wang, Chih-Tien; Lin, Yu-Chun; Lin, Chun-Ken; Wu, Zhong-Sheng

    2013-01-01

    In obesity, high levels of tumor necrosis factor α (TNFα) stimulate lipolysis in adipocytes, leading to hyperlipidemia and insulin resistance. Thiazolidinediones (TZDs), the insulin-sensitizing drugs, antagonize TNFα-induced lipolysis in adipocytes, thereby increasing insulin sensitivity in diabetes patients. The cellular target of TZDs is peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor that controls many adipocyte functions. As a transcription factor, PPARγ is closely modulated by coregulators, which include coactivators and corepressors. Previous studies have revealed that in macrophages, the insulin-sensitizing effect of PPARγ may involve suppression of proinflammatory gene expression by recruiting the corepressor complex that contains corepressors and histone deacetylases (HDACs). Therefore, we investigated whether the corepressor complex is involved in TZD-mediated suppression of TNFα-induced lipolysis in 3T3-L1 adipocytes. Trichostatin A (TSA), a pan HDAC inhibitor (HDACI) that inhibits class I and II HDACs, was used to examine the involvement of HDACs in the actions of TZDs. TSA alone increased basal lipolysis and attenuated TZD-mediated suppression of TNFα-induced lipolysis. Increased basal lipolysis may in part result from class I HDAC inhibition because selective class I HDACI treatment had similar results. However, attenuation of TZD-mediated TNFα antagonism may be specific to TSA and related hydroxamate-based HDACI rather than to HDAC inhibition. Consistently, corepressor depletion did not affect TZD-mediated suppression. Interestingly, TSA treatment greatly reduced PPARγ levels in differentiated adipocytes. Finally, extracellular signal-related kinase 1/2 (ERK1/2) mediated TNFα-induced lipolysis, and TZDs suppressed TNFα-induced ERK phosphorylation. We determined that TSA increased basal ERK phosphorylation, and attenuated TZD-mediated suppression of TNFα-induced ERK phosphorylation, consistent with TSA's effects

  18. Simvastatin inhibits ox-LDL-induced inflammatory adipokines secretion via amelioration of ER stress in 3T3-L1 adipocyte.

    PubMed

    Wu, Zhi-hong; Chen, Ya-qin; Zhao, Shui-ping

    2013-03-01

    Adipocytes behave as a rich source of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein 1 (MCP-1). Endoplasmic reticulum (ER) stress in adipocytes can alter adipokines secretion and induce inflammation. The aim of this study is to evaluate the effect of simvastatin on the ox-LDL-induced ER stress and expression and secretion of TNF-α and MCP-1 in 3T3-L1 adipocytes. Differentiated adipocytes were treated with various concentrations of ox-LDL (0-100 μg/ml) for 24h with or without simvastatin pre-treatment. The protein expressions of ER stress markers, glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP), were determined by Western blot analysis. The mRNA expressions of TNF-α and MCP-1 were measured by real-time PCR. The protein release of TNF-α and MCP-1 in culture medium were evaluated by ELISA. Ox-LDL treatment led to significant up-regulation of GRP78 and CHOP in dose-dependent manner. The expressions of TNF-α and MCP-1 were dose-dependently increased at mRNA and protein levels after ox-LDL intervention. The effects of ox-LDL on adipocytes were abolished by pre-treatment with 4-phenylbutyrate (4-PBA), a chemical chaperone known to ameliorate ER stress. Simvastatin could inhibit ox-LDL-induced ER stress and reduce the expression of TNF-α and MCP-1 at mRNA and protien level in dose dependent manner. In conclusion, ox-LDL can stimulate the expression and secretion of TNF-α and MCP-1 through its activation of ER stress in adipocytes. Simvastatin might exert direct anti-inflammatory effects in adipocytes through amelioration of ER stress.

  19. Ivy gourd (Coccinia grandis L. Voigt) root suppresses adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2014-01-01

    Background Ivy gourd (Coccinia grandis L. Voigt) is a tropical plant widely distributed throughout Asia, Africa, and the Pacific Islands. The anti-obesity property of this plant has been claimed but still remains to be scientifically proven. We therefore investigated the effects of ivy gourd leaf, stem, and root on adipocyte differentiation by employing cell culture model. Methods Dried roots, stems, and leaves of ivy gourd were separately extracted with ethanol. Each extract was then applied to 3T3-L1 pre-adipocytes upon induction with a mixture of insulin, 3-isobutyl-1-methylxanthine, and dexamethasone, for anti-adipogenesis assay. The active extract was further fractionated by a sequential solvent partitioning method, and the resulting fractions were examined for their abilities to inhibit adipogenesis in 3T3-L1 cells. Differences in the expression of adipogenesis-related genes between the treated and untreated cells were determined from their mRNA and protein levels. Results Of the three ivy gourd extracts, the root extract exhibited an anti-adipogenic effect. It significantly reduced intracellular fat accumulation during the early stages of adipocyte differentiation. Together with the suppression of differentiation, expression of the genes encoding PPARγ, C/EBPα, adiponectin, and GLUT4 were down-regulated. Hexane-soluble fraction of the root extract also inhibited adipocyte differentiation and decreased the mRNA levels of various adipogenic genes in the differentiating cells. Conclusions This is the first study to demonstrate that ivy gourd root may prevent obesity based mainly on the ability of its active constituent(s) to suppress adipocyte differentiation in vitro. Such an inhibitory effect is mediated by at least down-regulating the expression of PPARγ-the key transcription factor of adipogenesis in pre-adipocytes during their early differentiation processes. PMID:24884680

  20. Phytic acid and myo-inositol support adipocyte differentiation and improve insulin sensitivity in 3T3-L1 cells.

    PubMed

    Kim, Jin Nam; Han, Sung Nim; Kim, Hye-Kyeong

    2014-08-01

    Phytic acid, also known as myo-inositol hexaphosphate, has been shown to lower blood glucose levels and to improve insulin sensitivity in rodents. We investigated the effects of phytic acid and myo-inositol on differentiation, insulin-stimulated glucose uptake, and lipolysis of adipocytes to test the hypothesis that the antidiabetic properties of phytic acid and myo-inositol are mediated directly through adipocytes. 3T3-L1 cells were treated with 10, 50, or 200 μmol/L of phytic acid or myo-inositol. Oil Red O staining and an intracellular triacylglycerol assay were used to determine lipid accumulation during adipocyte differentiation. Immunoblotting and real-time polymerase chain reaction (PCR) were performed to evaluate expression of transcription factors, a target protein, and insulin signaling molecules. Phytic acid and myo-inositol exposures increased lipid accumulation in a dose-dependent manner (P < .01). The expression of key transcription factors associated with adipocyte differentiation, such as peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element-binding protein 1c, and the expression of fatty acid synthase increased upon treatments with phytic acid and myo-inositol (P < .05). Insulin-stimulated glucose uptake in mature adipocytes increased with phytic acid and myo-inositol treatments (P < .01). In addition, mRNA levels of insulin receptor substrate 1 (IRS1), mRNA levels of glucose transporter 4, and phosphorylation of tyrosine in IRS1 increased upon phytic acid and myo-inositol treatments. In fully differentiated adipocytes, phytic acid and myo-inositol reduced basal lipolysis dose dependently (P < .01). These results suggest that phytic acid and myo-inositol increase insulin sensitivity in adipocytes by increasing lipid storage capacity, improving glucose uptake, and inhibiting lipolysis.

  1. TLR-3 is Present in Human Adipocytes, but Its Signalling is Not Required for Obesity-Induced Inflammation in Adipose Tissue In Vivo

    PubMed Central

    van Diepen, Janna A.; Jansen, Henry; Hijmans, Anneke; Joosten, Leo A. B.; Tack, Cees J.; Netea, Mihai G.; Stienstra, Rinke

    2015-01-01

    Innate immunity plays a pivotal role in obesity-induced low-grade inflammation originating from adipose tissue. Key receptors of the innate immune system including Toll-like receptors-2 and -4 (TLRs) are triggered by nutrient excess to promote inflammation. The role of other TLRs in this process is largely unknown. In addition to double-stranded viral mRNA, TLR-3 can also recognize mRNA from dying endogenous cells, a process that is frequently observed within obese adipose tissue. Here, we identified profound expression of TLR-3 in adipocytes and investigated its role during diet-induced obesity. Human adipose tissue biopsies (n=80) and an adipocyte cell-line were used to study TLR-3 expression and function. TLR-3-/- and WT animals were exposed to a high-fat diet (HFD) for 16 weeks to induce obesity. Expression of TLR-3 was significantly higher in human adipocytes compared to the non-adipocyte cells part of the adipose tissue. In vitro, TLR-3 expression was induced during differentiation of adipocytes and stimulation of the receptor led to elevated expression of pro-inflammatory cytokines. In vivo, TLR-3 deficiency did not significantly influence HFD-induced obesity, insulin sensitivity or inflammation. In humans, TLR-3 expression in adipose tissue did not correlate with BMI or insulin sensitivity (HOMA-IR). Together, our results demonstrate that TLR-3 is highly expressed in adipocytes and functionally active. However, TLR-3 appears to play a redundant role in obesity-induced inflammation and insulin resistance. PMID:25867514

  2. Pdgfrβ+ Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice.

    PubMed

    Vishvanath, Lavanya; MacPherson, Karen A; Hepler, Chelsea; Wang, Qiong A; Shao, Mengle; Spurgin, Stephen B; Wang, Margaret Y; Kusminski, Christine M; Morley, Thomas S; Gupta, Rana K

    2016-02-01

    The expansion of white adipose tissue (WAT) in obesity involves de novo differentiation of new adipocytes; however, the cellular origin of these cells remains unclear. Here, we utilize Zfp423(GFP) reporter mice to characterize adipose mural (Pdgfrβ(+)) cells with varying levels of the preadipocyte commitment factor Zfp423. We find that adipose tissue contains distinct mural populations, with levels of Zfp423 distinguishing adipogenic from inflammatory-like mural cells. Using our "MuralChaser" lineage tracking system, we uncover adipose perivascular cells as developmental precursors of adipocytes formed in obesity, with adipogenesis and precursor abundance regulated in a depot-dependent manner. Interestingly, Pdgfrβ(+) cells do not significantly contribute to the initial cold-induced recruitment of beige adipocytes in WAT; it is only after prolonged cold exposure that these cells differentiate into beige adipocytes. These results provide genetic evidence for a mural cell origin of white adipocytes in obesity and suggest that beige adipogenesis may originate from multiple sources.

  3. Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes.

    PubMed

    Lechner, Stefan; Mitterberger, Maria C; Mattesich, Monika; Zwerschke, Werner

    2013-01-01

    We investigated the role of the major isoforms of CCAAT enhancer binding protein β (C/EBPβ), C/EBPβ-LAP and C/EBPβ-LIP, in adipogenesis of human white adipose-derived stromal/progenitor cells (ASC). C/EBPβ gene expression was transiently induced early in adipogenesis. At later stages, in immature adipocytes, the C/EBPβ mRNA and protein levels declined. The C/EBPβ-LIP protein steady-state level decreased considerably stronger than the C/EBPβ-LAP level and the C/EBPβ-LIP half-life was significantly shorter than the C/EBPβ-LAP half-life. The turn-over of both C/EBPβ-isoforms was regulated by ubiquitin/proteasome-dependent degradation. These data suggest that the protein stability of the C/EBPβ-isoforms is differentially regulated in the course of adipogenesis and in immature adipocytes. Constitutive overexpression of C/EBPβ-LIP had antiadipogenic activity in human ASC. C/EBPβ-LAP, which promotes adipogenesis in mouse 3T3-L1 preadipocytes by directly activating expression of the adipogenic keyregulator PPARγ2, induced the expression of PPARγ2 and of the adipocyte differentiation gene product FABP4 in confluent ASC in the absence of adipogenic hormones. At later stages after hormone cocktail-induced adipogenesis, in immature adipocytes, constitutive overexpression of C/EBPβ-LAP led to reduced expression of PPARγ2 and FABP4, C/EBPα expression was downregulated and the expression of the adipocyte differentiation gene products adiponectin and leptin was impaired. These findings suggest that constitutive overexpression of C/EBPβ-LAP induces adipogenesis in human ASC and negatively regulates the expression of adipogenic regulators and certain adipocyte differentiation gene products in immature adipocytes. We conclude the regulation of both C/EBPβ gene expression and C/EBPβ-LIP and C/EBPβ-LAP protein turn-over plays an important role for the expression of adipogenic regulators and/or adipocyte differentiation genes in early adipogenic differentiation of

  4. Calorie restriction-induced changes in the secretome of human adipocytes, comparison with resveratrol-induced secretome effects.

    PubMed

    Renes, Johan; Rosenow, Anja; Roumans, Nadia; Noben, Jean-Paul; Mariman, Edwin C M

    2014-09-01

    Obesity is characterized by dysfunctional white adipose tissue (WAT) that ultimately may lead to metabolic diseases. Calorie restriction (CR) reduces the risk for age and obesity-associated complications. The impact of CR on obesity has been examined with human intervention studies, which showed alterations in circulating adipokines. However, a direct effect of CR on the human adipocyte secretome remains elusive. Therefore, the effect of a 96h low glucose CR on the secretion profile of in vitro cultured mature human SGBS adipocytes was investigated by using proteomics technology. Low-glucose CR decreased the adipocyte triglyceride contents and resulted in an altered secretion profile. Changes in the secretome indicated an improved inflammatory phenotype. In addition, several adipocyte-secreted proteins related to insulin resistance showed a reversed expression after low-glucose CR. Furthermore, 6 novel CR-regulated adipocyte-secreted proteins were identified. Since resveratrol (RSV) mimics CR we compared results from this study with data from our previous RSV study on the SGBS adipocyte secretome. The CR and RSV adipocyte secretomes partly differed from each other, although both treatment strategies lead to secretome changes indicating a less inflammatory phenotype. Furthermore, both treatments induced SIRT1 expression and resulted in a reversed expression of detrimental adipokines associated with metabolic complications. PMID:24802182

  5. Iridoids from Fraxinus excelsior with adipocyte differentiation-inhibitory and PPARalpha activation activity.

    PubMed

    Bai, Naisheng; He, Kan; Ibarra, Alvin; Bily, Antoine; Roller, Marc; Chen, Xiaozhuo; Rühl, Ralph

    2010-01-01

    Two new secoiridoid glucosides, excelsides A (1) and B (2), were isolated from the seeds of Fraxinus excelsior. Their structures were elucidated as (2S,4S,3E)-methyl 3-ethylidene-4-(2-methoxy-2-oxoethyl)-2-[(6-O-beta-D-glucopyranosyl-beta-d-glucopyranosyl)oxy]-3,4-dihydro-2H-pyran-5-carboxylate and (2S,4S,3E)-methyl 3-ethylidene-4-{2-[2-(4-hydroxyphenyl)ethyl]oxy-2-oxoethyl}-2-[(6-O-beta-d-glucopyranosyl-beta-d-glucopyranosyl)oxy]-3,4-dihydro-2H-pyran-5-carboxylate, respectively, on the basis of NMR and MS data. Eight known compounds were identified as nuzhenide (3), GI3 (4), GI5 (5), ligstroside (6), oleoside 11-methyl ester (7), oleoside dimethyl ester (8), 1'''-O-beta-D-glucosylformoside (9), and salidroside (10). Compounds 1-9 inhibited adipocyte differentiation in 3T3-L1 cells. Dilutions of the aqueous extract of F. excelsior (1:10,000) as well as compounds 2, 3, 4, 5, and 8 activated the peroxisome proliferator-mediated receptor-alpha (PPARalpha) reporter cell system in the range of 10(-4) M, compared to 10(-7)-10(-8) M for the synthetic PPARalpha activator, WY14,643. Both biological activity profiles support the hypothesis that inhibition of adipocyte differentiation and PPARalpha-mediated mechanisms might be relevant pathways for the antidiabetic activity of F. excelsior extract.

  6. WEHI-3 cells inhibit adipocyte differentiation in 3T3-L1 cells

    SciTech Connect

    Lai, Jing; Liu, Gexiu; Yan, Guoyao; He, Dongmei; Zhou, Ying; Chen, Shengting

    2015-06-26

    By investigating the anti-adipogenic effects of WEHI-3 cells – a murine acute myelomonocytic leukemia cell line – we sought to improve the efficiency of hematopoietic stem cell transplantation (HSCT). Analysis of Oil Red O staining and the expression of adipogenic genes, including PPARγ, C/EBPα, FAS and LPL, indicated that WEHI-3 cells significantly inhibited 3T3-L1 mouse preadipocyte cells from differentiating into adipocytes. In vivo, fat vacuoles in mice injected with WEHI-3 cells were also remarkably reduced in the murine bone marrow pimelosis model. Moreover, the key gene in the Rho signaling pathway, ROCKII, and the key gene in the Wnt signaling pathway, β-catenin, were both upregulated compared with the control group. siRNA-mediated knockdown of ROCKII and β-catenin reversed these WEHI-3-mediated anti-adipogenic effects. Taken together, these data suggest that WEHI-3 cells exert anti-adipogenic effects and that both ROCKII and β-catenin are involved in this process. - Highlights: • WEHI-3, an acute myelomonocytic leukemia cell line, inhibited 3T3-L1 preadipocyte from differentiating into adipocyte. • WEHI-3 cells can arrest 3T3-L1 cells in G0/G1 phase by secreting soluble factors and thus inhibit their proliferation. • WEHI-3 cells reduced bone marrow pimelosis in the murine model. • Both ROCKII and β-catenin were involved in the WEHI-3-mediated anti-adipogenic effects.

  7. Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular {beta}-catenin protein

    SciTech Connect

    Cho, Munju; Park, Seoyoung; Gwak, Jungsug; Kim, Dong-Eun; Yea, Sung Su; Shin, Jae-Gook; Oh, Sangtaek

    2008-02-29

    The Wnt/{beta}-catenin signaling pathway plays important roles in cell differentiation. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and mice. Here we revealed that bisindoylmaleimide I (BIM), which is widely used as a specific inhibitor of protein kinase C (PKC), inhibits adipocyte differentiation through activation of the Wnt/{beta}-catenin signaling pathway. BIM increased {beta}-catenin responsive transcription (CRT) and up-regulated intracellular {beta}-catenin levels in HEK293 cells and 3T3-L1 preadipocytes. BIM significantly decreased intracellular lipid accumulation and reduced expression of important adipocyte marker genes including peroxisome-proliferator-activated receptor {gamma} (PPAR{gamma}) and CAATT enhancer-binding protein {alpha} (C/EBP{alpha}) in 3T3-L1 preadipocytes. Taken together, our findings indicate that BIM inhibits adipogenesis by increasing the stability of {beta}-catenin protein in 3T3-L1 preadipocyte cells.

  8. Pin1 enhances adipocyte differentiation by positively regulating the transcriptional activity of PPARγ.

    PubMed

    Han, Younho; Lee, Sung Ho; Bahn, Minjin; Yeo, Chang-Yeol; Lee, Kwang Youl

    2016-11-15

    Pin1 is a peptidylprolyl cis/trans isomerase and it has a unique enzymatic activity of catalyzing isomerization of the peptide bond between phospho-serine/threonine and proline. Through the conformational change of its substrates, Pin1 regulates diverse biological processes including adipogenesis. In mouse embryonic fibroblasts and 3T3-L1 preadipocytes, overexpression of Pin1 enhances adipocyte differentiation whereas inhibition of Pin1 activity suppresses it. However, the precise functions of Pin1 during adipogenesis are not clear. In the present study, we investigated the potential targets of Pin1 during adipogenesis. We found that Pin1 interacts directly with and regulates the transcriptional activity of PPARγ, a key regulator of adipogenesis. In addition, ERK activity and Ser273 of PPARγ, a potential ERK phosphorylation target site, are important for the regulation of PPARγ function by Pin1 in 3T3-L1 cells. Taken together our results suggest a novel regulatory mechanism of Pin1 during adipogenesis, in which Pin1 enhances adipocyte differentiation by regulating the function of PPARγ. PMID:27475846

  9. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation

    PubMed Central

    Thounaojam, Menaka C.; Jadeja, Ravirajsinh N.; Ramani, Umed V.; Devkar, Ranjitsinh V.; Ramachandran, A. V.

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity. PMID:21845103

  10. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  11. Nonlinear optical microscopy of adipose-derived stem cells induced towards osteoblasts and adipocytes

    NASA Astrophysics Data System (ADS)

    Mouras, R.; Bagnaninchi, P.; Downes, A.; Muratore, M.; Elfick, A.

    2011-07-01

    Adipose-derived stem cells (ADSCs) are adult stem cells isolated from lipoaspirates. They are a good candidate for autologuous cell therapy and tissue engineering. For these applications, label-free imaging could be critical to assess noninvasively the efficiency of stem cell (SC) differentiation. We report on the development and application of a multimodal microscope to monitor and quantify ADSC differentiation into osteoblasts and adipocytes.

  12. Cannabinoid type 1 receptor mediates depot-specific effects on differentiation, inflammation and oxidative metabolism in inguinal and epididymal white adipocytes

    PubMed Central

    Wagner, I V; Perwitz, N; Drenckhan, M; Lehnert, H; Klein, J

    2011-01-01

    Objective: The endocannabinoid system is a major component in the control of energy metabolism. Cannabinoid 1 (CB1)-receptor blockade induces weight loss and reduces the risk to develop the metabolic syndrome with its associated cardiovascular complications. These effects are mediated by central and peripheral pathways. Interestingly, weight loss is mainly achieved by a reduction of visceral fat mass. We analyzed fat depot-specific differences on adipocyte differentiation, inflammation and oxidative metabolism in CB1-receptor knockout cells. Materials and methods: We used newly generated epididymal/inguinal adipose cell lines from CB1-receptor knockout mice. Differences in differentiation were measured by fat-specific Oil Red O staining and quantitative analysis of key differentiation markers. Induction of apoptosis was evaluated by cell death detection and investigation of p53 phosphorylation. Inflammation markers were quantified by real-time PCR. For analyzing the process of transdifferentiation we measured oxygen consumption and mitochondrial biogenesis. Results: Differentiation was reduced in visceral adipocytes from CB1-receptor knockout mice as compared with wild-type controls. Moreover, we found an induction of apoptosis in these cells. In contrast, subcutaneous adipocytes from CB1-receptor knockout mice showed an accelerated differentiation and a reduced rate of apoptosis. Inflammation was increased in visceral fat cells, as analyzed by the expression pattern of interleukin-6, monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor-α, whereas in subcutaneous adipocytes these markers were decreased. Furthermore, subcutaneous CB1-receptor knockout cells were more sensitive toward a conversion into a brown fat phenotype. Uncoupling protein-1 as well as PGC-1α expression was significantly elevated. This was accompanied by an increase in mitochondrial biogenesis and oxygen consumption. Conclusion: In conclusion, we found depot-specific effects on

  13. Effects of insulin and IGF-I on growth hormone- induced STAT5 activation in 3T3-F442A adipocytes

    PubMed Central

    2013-01-01

    Background Growth hormone (GH) and insulin signaling pathways are known important regulators of adipose homeostasis. The cross-talk between GH and insulin signaling pathways in mature adipocytes is poorly understood. Methods In the present study, the impact of insulin on GH-mediated signaling in differentiated 3T3-F442A adipocytes and primary mice adipocytes was examined. Results Insulin alone did not induce STAT5 tyrosine phosphorylation, but enhanced GH-induced STAT5 activation. This effect was more pronounced when insulin was added 20 min prior to GH treatment. The above results were further confirmed by in vivo study, showing that insulin pretreatment potentiated GH- induced STAT5 tyrosine phosphorylation in visceral adipose tissues of C57/BL6 mice. In addition, our in vitro results showed that IGF-I had similar potentiating effect as insulin on GH-induced STAT5 activation. In vitro, insulin and IGF-I had an additive effect on GH- induced MAPK activation. Conclusion These results indicate that both insulin and IGF-I specifically potentiated GH mediated STAT5 activation in mature adipose cells. These findings suggest that insulin and GH, usually with antagonistic functions, might act synergistically to regulate some specific functions in mature adipocytes. PMID:23631823

  14. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    SciTech Connect

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.; McNicholas, Walter T.; Ryan, Silke

    2014-05-16

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key

  15. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells.

    PubMed

    Zych, J; Stimamiglio, M A; Senegaglia, A C; Brofman, P R S; Dallagiovanna, B; Goldenberg, S; Correa, A

    2013-05-01

    Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2'-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.

  16. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes.

    PubMed

    Pham, Tho X; Lee, Ji-Young

    2016-06-01

    We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions. PMID:27206252

  17. Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes.

    PubMed

    Chen, Shu; Osaki, Noriko; Shimotoyodome, Akira

    2015-05-22

    Green tea catechins have been shown to attenuate obesity in animals and humans. The catechins activate adenosine monophosphate-activated protein kinase (AMPK), and thereby increase fatty acid oxidation in liver and skeletal muscles. Green tea catechins have also been shown to reduce body fat in humans. However, the effect of the catechins on lipolysis in adipose tissue has not been fully understood. The aim of this study was to clarify the effect of green tea catechins on lipolysis in adipocytes and to elucidate the underlying mechanism. Differentiated mouse adipocyte cell line (3T3-L1) was stimulated with green tea catechins in the presence or absence of norepinephrine. Glycerol and free fatty acids in the media were measured. Phosphorylation of hormone-sensitive lipase (HSL) was determined by Western blotting, and the mRNA expression levels of HSL, adipose triglyceride lipase (ATGL), and perilipin were determined by quantitative RT-PCR. The cells were treated with inhibitors of protein kinase A (PKA), protein kinase C (PKC), protein kinase G (PKG), or mitogen-activated protein kinase (MAPK) to determine the responsible pathway. Treatment of 3T3-L1 adipocytes with green tea catechins increased the level of glycerol and free fatty acids released into the media in the presence, but not absence, of norepinephrine, and increased the level of phosphorylated HSL in the cells. The catechins also increased mRNA and protein levels of HSL and ATGL. PKA inhibitor (H89) attenuated the catechin-induced increase in glycerol release and HSL phosphorylation. The results demonstrate that green tea catechins enhance lipolysis in the presence of norepinephrine via a PKA-dependent pathway in 3T3-L1 adipocytes, providing a potential mechanism by which green tea catechins could reduce body fat. PMID:25849890

  18. Inhibitory effects of Fucoidan in 3T3-L1 adipocyte differentiation.

    PubMed

    Kim, Mi-Ja; Chang, Un-Jae; Lee, Jin-Sil

    2009-01-01

    Fucoidan is a group of sulfated fucose-containing polysaccharides that derived from non-mammalian origin such as marine brown algae, the jelly coat from sea urchin eggs, and the sea cucumber body wall. However, potential biological activities against obesity from fucoidan were not reported in the literature. The objective of this study was to evaluate protective effect of fucoidan in 3T3-L1 adipocyte differentiation. Preadipocyte 3T3-L1 was treated with 100 and 200 microg/ml fucoidan during adipogenesis. Adipogenesis was determined through Oil Red O staining method and the expression of adipogenic genes aP2, ACC, and PPARgamma. Adipogenesis of 3T3-L1 treated with 100 and 200 microg/ml fucoidan were significantly inhibited at 32.8% and 39.7% using Oil Red O staining method, respectively (P < 0.05). Treating the 3T3-L1 cells with 100 and 200 microg/ml fucoidan significantly decreased the expression of aP2 gene by 6.2% and 27.2%, respectively, of ACC gene by 22.2% and 38.2%, respectively, and of PPARgamma gene by 44.2% and 69.4%, respectively, compared to adipocyte controls (P < 0.05). The results suggest that fucoidan could be used for inhibiting fat accumulation, which is mediated by decreasing aP2, ACC, and PPARgamma gene expression.

  19. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo.

    PubMed

    Shu, Gang; Lu, Nai-Sheng; Zhu, Xiao-Tong; Xu, Yong; Du, Min-Qing; Xie, Qiu-Ping; Zhu, Can-Jun; Xu, Qi; Wang, Song-Bo; Wang, Li-Na; Gao, Ping; Xi, Qian-Yun; Zhang, Yong-Liang; Jiang, Qing-Yan

    2014-12-01

    Adipocyte dysfunction is associated with many metabolic diseases such as obesity, insulin resistance and diabetes. Previous studies found that phloretin promotes 3T3-L1 cells differentiation, but the underlying mechanisms for phloretin's effects on adipogenesis remain unclear. In this study, we demonstrated that phloretin enhanced the lipid accumulation in porcine primary adipocytes in a time-dependent manner. Furthermore, phloretin increased the utilization of glucose and nonesterified fatty acid, while it decreased the lactate output. Microarray analysis revealed that genes associated with peroxisome proliferator-activated receptor-γ (PPARγ), mitogen-activated protein kinase and insulin signaling pathways were altered in response to phloretin. We further confirmed that phloretin enhanced expression of PPARγ, CAAT enhancer binding protein-α (C/EBPα) and adipose-related genes, such as fatty acids translocase and fatty acid synthase. In addition, phloretin activated the Akt (Thr308) and extracellular signal-regulated kinase, and therefore, inactivated Akt targets protein. Wortmannin effectively blocked the effect of phloretin on Akt activity and the protein levels of PPARγ, C/EBPα and fatty acid binding protein-4 (FABP4/aP2). Oral administration of 5 or 10 mg/kg phloretin to C57BL BKS-DB mice significantly decreased the serum glucose level and improved glucose tolerance. In conclusion, phloretin promotes the adipogenesis of porcine primary preadipocytes through Akt-associated signaling pathway. These findings suggested that phloretin might be able to increase insulin sensitivity and alleviate the metabolic diseases. PMID:25283330

  20. Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin.

    PubMed

    Yau, Suk Yu; Li, Ang; Hoo, Ruby L C; Ching, Yick Pang; Christie, Brian R; Lee, Tatia M C; Xu, Aimin; So, Kwok-Fai

    2014-11-01

    Adiponectin (ADN) is an adipocyte-secreted protein with insulin-sensitizing, antidiabetic, antiinflammatory, and antiatherogenic properties. Evidence is also accumulating that ADN has neuroprotective activities, yet the underlying mechanism remains elusive. Here we show that ADN could pass through the blood-brain barrier, and elevating its levels in the brain increased cell proliferation and decreased depression-like behaviors. ADN deficiency did not reduce the basal hippocampal neurogenesis or neuronal differentiation but diminished the effectiveness of exercise in increasing hippocampal neurogenesis. Furthermore, exercise-induced reduction in depression-like behaviors was abrogated in ADN-deficient mice, and this impairment in ADN-deficient mice was accompanied by defective running-induced phosphorylation of AMP-activated protein kinase (AMPK) in the hippocampal tissue. In vitro analyses indicated that ADN itself could increase cell proliferation of both hippocampal progenitor cells and Neuro2a neuroblastoma cells. The neurogenic effects of ADN were mediated by the ADN receptor 1 (ADNR1), because siRNA targeting ADNR1, but not ADNR2, inhibited the capacity of ADN to enhance cell proliferation. These data suggest that adiponectin may play a significant role in mediating the effects of exercise on hippocampal neurogenesis and depression, possibly by activation of the ADNR1/AMPK signaling pathways, and also raise the possibility that adiponectin and its agonists may represent a promising therapeutic treatment for depression.

  1. Differentiation of A31T6 proadipocytes to adipocytes: A flow cytometric analysis

    SciTech Connect

    Smyth, M.J.; Wharton, W. )

    1992-03-01

    A flow cytometric assay has been developed which provides precise, quantitative information on the accumulation of cytoplasmic triglycerides in individual A31T6 proadipocytes as they differentiate into adipocytes. The opportunity to measure multiple optical parameter on a cell-by-cell basis has enabled us to monitor phenotypic aspects of differentiation with a greater level of sensitivity than was previously possible. Using the fluorescent hydrophobic probe, Nile red, they have found that as a cell proceeds along the differentiation pathway, the gold fluorescence signal from the cell increases, reflecting the accumulation of cytoplasmic lipid droplets. They have determined (1) the presence of an undifferentiated population of cells whose existence is not detected by conventional phase microscopy, (2) that insulin is no required to drive differentiation in this system, (3) that exposure to a combination of insulin and dexamethasone results in a lower accumulation of lipid in a cell than does exposure to either agent alone, and (4) that A31T6 cells show the same response to differentiation-promoting agents whether applied at the time of plating or at confluence.

  2. Suppression of Adipocyte Differentiation by Foenumoside B from Lysimachia foenum-graecum Is Mediated by PPARγ Antagonism

    PubMed Central

    Kwak, Hyun Jeong; Choi, Hye-Eun; Jang, Jinsun; Park, Soo Kyoung; Cho, Byoung Heon; Kim, Seul Ki; Lee, Sunyi; Kang, Nam Sook; Cheon, Hyae Gyeong

    2016-01-01

    Lysimachia foenum-graecum extract (LFE) and its active component foenumoside B (FSB) have been shown to inhibit adipocyte differentiation, but their mechanisms were poorly defined. Here, we investigated the molecular mechanisms responsible for their anti-adipogenic effects. Both LFE and FSB inhibited the differentiation of 3T3-L1 preadipocytes induced by peroxisome proliferator-activated receptor-γ (PPARγ) agonists, accompanied by reductions in the expressions of the lipogenic genes aP2, CD36, and FAS. Moreover, LFE and FSB inhibited PPARγ transactivation activity with IC50s of 22.5 μg/ml and 7.63 μg/ml, respectively, and showed selectivity against PPARα and PPARδ. Rosiglitazone-induced interaction between PPARγ ligand binding domain (LBD) and coactivator SRC-1 was blocked by LFE or FSB, whereas reduced NCoR-1 binding to PPARγ by rosiglitazone was reversed in the presence of LFE or FSB. In vivo administration of LFE into either ob/ob mice or KKAy mice reduced body weights, and levels of PPARγ and C/EBPα in fat tissues. Furthermore, insulin resistance was ameliorated by LFE treatment, with reduced adipose tissue inflammation and hepatic steatosis. Thus, LFE and FSB were found to act as PPARγ antagonists that improve insulin sensitivity and metabolic profiles. We propose that LFE and its active component FSB offer a new therapeutic strategy for metabolic disorders including obesity and insulin resistance. PMID:27176632

  3. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes.

    PubMed

    Majithia, Amit R; Flannick, Jason; Shahinian, Peter; Guo, Michael; Bray, Mark-Anthony; Fontanillas, Pierre; Gabriel, Stacey B; Rosen, Evan D; Altshuler, David

    2014-09-01

    Peroxisome proliferator-activated receptor gamma (PPARG) is a master transcriptional regulator of adipocyte differentiation and a canonical target of antidiabetic thiazolidinedione medications. In rare families, loss-of-function (LOF) mutations in PPARG are known to cosegregate with lipodystrophy and insulin resistance; in the general population, the common P12A variant is associated with a decreased risk of type 2 diabetes (T2D). Whether and how rare variants in PPARG and defects in adipocyte differentiation influence risk of T2D in the general population remains undetermined. By sequencing PPARG in 19,752 T2D cases and controls drawn from multiple studies and ethnic groups, we identified 49 previously unidentified, nonsynonymous PPARG variants (MAF < 0.5%). Considered in aggregate (with or without computational prediction of functional consequence), these rare variants showed no association with T2D (OR = 1.35; P = 0.17). The function of the 49 variants was experimentally tested in a novel high-throughput human adipocyte differentiation assay, and nine were found to have reduced activity in the assay. Carrying any of these nine LOF variants was associated with a substantial increase in risk of T2D (OR = 7.22; P = 0.005). The combination of large-scale DNA sequencing and functional testing in the laboratory reveals that approximately 1 in 1,000 individuals carries a variant in PPARG that reduces function in a human adipocyte differentiation assay and is associated with a substantial risk of T2D.

  4. N-Acetylcysteine Reduces Markers of Differentiation in 3T3-L1 Adipocytes

    PubMed Central

    Calzadilla, Pablo; Sapochnik, Daiana; Cosentino, Soledad; Diz, Virginia; Dicelio, Lelia; Calvo, Juan Carlos; Guerra, Liliana N.

    2011-01-01

    Oxidative stress plays a critical role in the pathogenesis of diabetes, hypertension and atherosclerosis. Some authors reported that fat accumulation correlates to systemic oxidative stress in humans and mice, but the relationship of lipid production and oxidative metabolism is still unclear. In our laboratory we used 3T3-L1 preadipocytes, which are able to differentiate into mature adipocytes and accumulate lipids, as obesity model. We showed that intracellular reactive oxygen species (ROS) and antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities increased in parallel with fat accumulation. Meanwhile N-acetylcysteine (NAC), a well known antioxidant and Glutathione (GSH) precursor, inhibited ROS levels as well as fat accumulation in a concentration-dependent manner. NAC also inhibited both adipogenic transcription factors CCAAT/enhancer binding protein beta (C/EBP β) and peroxisomal proliferator activated receptor gamma (PPAR γ) expression; we suggested that intracellular GSH content could be responsible for these effects. PMID:22072928

  5. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice.

    PubMed

    Yiannikouris, Frederique; Gupte, Manisha; Putnam, Kelly; Thatcher, Sean; Charnigo, Richard; Rateri, Debra L; Daugherty, Alan; Cassis, Lisa A

    2012-12-01

    Previous studies demonstrated that diet-induced obesity increased plasma angiotensin II concentrations and elevated systolic blood pressures in male mice. Adipocytes express angiotensinogen and secrete angiotensin peptides. We hypothesize that adipocyte-derived angiotensin II mediates obesity-induced increases in systolic blood pressure in male high fat-fed C57BL/6 mice. Systolic blood pressure was measured by radiotelemetry during week 16 of low-fat or high-fat feeding in Agt(fl/fl) and adipocyte angiotensinogen-deficient mice (Agt(aP2)). Adipocyte angiotensinogen deficiency had no effect on diet-induced obesity. Basal 24-hour systolic blood pressure was not different in low fat-fed Agt(fl/fl) compared with Agt(aP2) mice (124 ± 3 versus 128 ± 3 mm Hg, respectively). In Agt(fl/fl) mice, high-fat feeding significantly increased systolic blood pressure (24 hours; 134 ± 2 mm Hg; P<0.05). In contrast, high fat-fed Agt(aP2) mice did not exhibit an increase in systolic blood pressure (126 ± 2 mm Hg). Plasma angiotensin II concentrations were increased by high-fat feeding in Agt(fl/fl) mice (low fat, 32 ± 14; high fat, 219 ± 58 pg/mL; P<0.05). In contrast, high fat-fed Agt(aP2) mice did not exhibit elevated plasma angiotensin II concentrations (high fat, 18 ± 7 pg/mL). Similarly, adipose tissue concentrations of angiotensin II were significantly decreased in low fat- and high fat-fed Agt(aP2) mice compared with controls. In conclusion, adipocyte angiotensinogen deficiency prevented high fat-induced elevations in plasma angiotensin II concentrations and systolic blood pressure. These results suggest that adipose tissue serves as a major source of angiotensin II in the development of obesity hypertension.

  6. A novel role for neural cell adhesion molecule in modulating insulin signaling and adipocyte differentiation of mouse mesenchymal stem cells.

    PubMed

    Yang, Hai Jie; Xia, Yin Yan; Wang, Lei; Liu, Rui; Goh, Kim Jee; Ju, Pei Jun; Feng, Zhi Wei

    2011-08-01

    Neural cell adhesion molecule (NCAM) has recently been found on adult stem cells, but its biological significance remains largely unknown. In this study, we used bone-marrow-derived mesenchymal stem cells (MSCs) from wild-type and NCAM knockout mice to investigate the role of NCAM in adipocyte differentiation. It was demonstrated that NCAM isoforms 180 and 140 but not NCAM-120 are expressed on almost all wild-type MSCs. Upon adipogenic induction, Ncam(-/-) MSCs exhibited a marked decrease in adipocyte differentiation compared with wild-type cells. The role of NCAM in adipocyte differentiation was also confirmed in NCAM-silenced preadipocyte 3T3-L1 cells, which also had a phenotype with reduced adipogenic potential. In addition, we found that Ncam(-/-) MSCs appeared to be insulin resistant, as shown by their impaired insulin signaling cascade, such as the activation of the insulin-IGF-1 receptor, PI3K-Akt and CREB pathways. The PI3K-Akt inhibitor, LY294002, completely blocked adipocyte differentiation of MSCs, unveiling that the reduced adipogenic potential of Ncam(-/-) MSCs is due to insulin resistance as a result of loss of NCAM function. Furthermore, insulin resistance of Ncam(-/-) MSCs was shown to be associated with induction of tumor necrosis factor α (TNF-α), a key mediator of insulin resistance. Finally, we demonstrated that re-expression of NCAM-180, but not NCAM-140, inhibits induction of TNF-α and thereby improves insulin resistance and adipogenic potential of Ncam(-/-) MSCs. Our results suggest a novel role of NCAM in promoting insulin signaling and adipocyte differentiation of adult stem cells. These findings raise the possibility of using NCAM intervention to improve insulin resistance.

  7. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation.

    PubMed

    Yao, Yang; Zhu, Yingying; Gao, Yue; Shi, Zhenxing; Hu, Yibo; Ren, Guixing

    2015-10-01

    This study was performed to investigate the effect of quinoa saponins (QS) on the differentiation of 3T3-L1 preadipocytes. QS inhibited triglyceride (TG) accumulation in the mature adipocytes, evidenced by oil-red O staining and intracellular quantification. Real time-PCR analysis and western blot analysis showed that QS significantly down-regulated the mRNA and protein expression of key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer-binding protein alpha (C/EBPα), however, they had no significant effect on CCAAT/enhancer-binding protein beta (C/EBPβ) and CCAAT/enhancer-binding protein delta (C/EBPδ) which are the upstream regulators for adipogenesis compared with mature adipocytes. QS also reduced mRNA and protein expression of sterol regulatory element-binding protein-1c (SREBP-1c) related to the late stage of adipogenesis. Furthermore, lipoprotein lipase (LPL), adipocyte protein 2 (aP2) and glucose transporter 4 (Glut4), as adipocyte specific genes, were decreased in mature adipocytes by QS treatment. These findings indicate that QS are capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation.

  8. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation.

    PubMed

    Yao, Yang; Zhu, Yingying; Gao, Yue; Shi, Zhenxing; Hu, Yibo; Ren, Guixing

    2015-10-01

    This study was performed to investigate the effect of quinoa saponins (QS) on the differentiation of 3T3-L1 preadipocytes. QS inhibited triglyceride (TG) accumulation in the mature adipocytes, evidenced by oil-red O staining and intracellular quantification. Real time-PCR analysis and western blot analysis showed that QS significantly down-regulated the mRNA and protein expression of key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer-binding protein alpha (C/EBPα), however, they had no significant effect on CCAAT/enhancer-binding protein beta (C/EBPβ) and CCAAT/enhancer-binding protein delta (C/EBPδ) which are the upstream regulators for adipogenesis compared with mature adipocytes. QS also reduced mRNA and protein expression of sterol regulatory element-binding protein-1c (SREBP-1c) related to the late stage of adipogenesis. Furthermore, lipoprotein lipase (LPL), adipocyte protein 2 (aP2) and glucose transporter 4 (Glut4), as adipocyte specific genes, were decreased in mature adipocytes by QS treatment. These findings indicate that QS are capable of suppressing adipogenesis and therefore they seem to be natural bioactive factors effective in adipose tissue mass modulation. PMID:26242624

  9. Proinflammatory cytokine interleukin-1β suppresses cold-induced thermogenesis in adipocytes.

    PubMed

    Goto, Tsuyoshi; Naknukool, Supaporn; Yoshitake, Rieko; Hanafusa, Yuki; Tokiwa, Soshi; Li, Yongjia; Sakamoto, Tomoya; Nitta, Takahiro; Kim, Minji; Takahashi, Nobuyuki; Yu, Rina; Daiyasu, Hiromi; Seno, Shigeto; Matsuda, Hideo; Kawada, Teruo

    2016-01-01

    In this study, we investigated the effects of interleukin-1β (IL-1β), a typical proinflammatory cytokine on the β-adrenoreceptor-stimulated induction of uncoupling protein 1 (UCP1) expression in adipocytes. IL-1β mRNA expression levels were upregulated in white adipose tissues of obese mice and in RAW264.7 macrophages under conditions designed to mimic obese adipose tissue. Isoproterenol-stimulated induction of UCP1 mRNA expression was significantly inhibited in C3H10T1/2 adipocytes by conditioned medium from lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison with control conditioned medium. This inhibition was significantly attenuated in the presence of recombinant IL-1 receptor antagonist and IL-1β antibody, suggesting that activated macrophage-derived IL-1β is an important cytokine for inhibition of β-adrenoreceptor-stimulated UCP1 induction in adipocytes. IL-1β suppressed isoproterenol-induced UCP1 mRNA expression in C3H10T1/2 adipocytes, and this effect was partially but significantly abrogated by inhibition of extracellular signal-regulated kinase (ERK). IL-1β also suppressed the isoproterenol-induced activation of the UCP1 promoter and transcription factors binding to the cAMP response element. Moreover, intraperitoneal administration of IL-1β suppressed cold-induced UCP1 expression in adipose tissues. These findings suggest that IL-1β upregulated in obese adipose tissues suppresses β-adrenoreceptor-stimulated induction of UCP1 expression through ERK activation in adipocytes.

  10. Differential Roles of Smad1 and p38 Kinase in Regulation of Peroxisome Proliferator-activating Receptor γ during Bone Morphogenetic Protein 2-induced Adipogenesis

    PubMed Central

    Hata, Kenji; Nishimura, Riko; Ikeda, Fumiyo; Yamashita, Kenji; Matsubara, Takuma; Nokubi, Takashi; Yoneda, Toshiyuki

    2003-01-01

    Bone morphogenetic protein 2 (BMP2) promotes the differentiation of undifferentiated mesenchymal cells into adipocytes. To investigate the molecular mechanisms that regulate this differentiation process, we studied the relationship between BMP2 signaling and peroxisome proliferator-activating receptor γ (PPARγ) during adipogenesis of mesenchymal cells by using pluripotent mesenchymal cell line C3H10T1/2. In C3H10T1/2 cells, BMP2 induced expression of PPARγ along with adipogenesis. Overexpression of Smad6, a natural antagonist for Smad1, blocked PPARγ expression and adipocytic differentiation induced by BMP2. Overexpression of dominant-negative PPARγ also diminished adipocytic differentiation of C3H10T1/2 cells, suggesting the central role of PPARγ in BMP2-induced adipocytic differentiation. Specific inhibitors for p38 kinase inhibited BMP2-induced adipocytic differentiation and transcriptional activation of PPARγ, whereas overexpression of Smad6 had no effect on transcriptional activity of PPARγ. Furthermore, activation of p38 kinase by overexpression of TAK1 and TAB1, without affecting PPARγ expression, led the up-regulation of transcriptional activity of PPARγ. These results suggest that both Smad and p38 kinase signaling are concomitantly activated and responsible for BMP2-induced adipocytic differentiation by inducing and up-regulating PPARγ, respectively. Thus, BMP2 controls adipocytic differentiation by using two distinct signaling pathways that play differential roles in this process in C3H10T1/2 cells. PMID:12589053

  11. Hesperetin inhibit adipocyte differentiation and enhance Bax- and p21-mediated adipolysis in human mesenchymal stem cell adipogenesis.

    PubMed

    Subash-Babu, Pandurangan; Alshatwi, Ali A

    2015-03-01

    We aimed to explore the antiadipogenic and adipolysis effect of hesperetin in human mesenchymal stem cells (hMSCs)-induced adipogenesis. IC50 value of hesperetin was higher for hMSCs such as 149.2 ± 13.2 μmol for 24 h and 89.4 ± 11.4 μmol in 48 h, whereas in preadipocytes was 87.6 ± 9.5 μmol and 72.4 ± 5.6 μmol in 24 h and 48 h, respectively. Hesperetin treatment (5, 10, and 20 μmol) to adipogenesis-induced hMSCs (Group 1) and preadipocytes (Group 2) resulted in a significantly (p < 0.05) increased lipolysis. The treatment with hesperetin decreased the expression of resistin, adiponectin, aP2, LPL, PPAR-γ, and TNF-α in Groups 1 and 2, whereas a significant increase was observed in Bcl, Bax, and p21 expression in Group 2 compared to untreated preadipocytes. hMSCs cultured in adipogenic medium along with hesperetin significantly inhibited adipocyte differentiation and increased the proapoptotic gene expression levels in preadipocyte. Our result indicates the antiadipogenic and adipolysis effects of hesperetin.

  12. Activation of Hypoxia‐Inducible Factor‐2 in Adipocytes Results in Pathological Cardiac Hypertrophy

    PubMed Central

    Lin, Qun; Huang, Yan; Booth, Carmen J.; Haase, Volker H.; Johnson, Randall S.; Celeste Simon, M.; Giordano, Frank J.; Yun, Zhong

    2013-01-01

    Background Obesity can cause structural and functional abnormalities of the heart via complex but largely undefined mechanisms. Emerging evidence has shown that obesity results in reduced oxygen concentrations, or hypoxia, in adipose tissue. We hypothesized that the adipocyte hypoxia‐signaling pathway plays an essential role in the development of obesity‐associated cardiomyopathy. Methods and Results Using a mouse model in which the hypoxia‐inducible factor (HIF) pathway is activated by deletion of the von Hippel–Lindau gene specifically in adipocytes, we found that mice with adipocyte–von Hippel–Lindau deletion developed lethal cardiac hypertrophy. HIF activation in adipocytes results in overexpression of key cardiomyopathy‐associated genes in adipose tissue, increased serum levels of several proinflammatory cytokines including interleukin‐1β and monocyte chemotactic protein‐1, and activation of nuclear factor–κB and nuclear factor of activated T cells in the heart. Interestingly, genetic deletion of Hif2a, but not Hif1a, was able to rescue cardiac hypertrophy and abrogate adipose inflammation. Conclusion We have discovered a previously uncharacterized mechanism underlying a critical and direct role of the adipocyte HIF‐2 transcription factor in the development of adipose inflammation and pathological cardiac hypertrophy. PMID:24326162

  13. Ellagic Acid Reduces Adipogenesis through Inhibition of Differentiation-Prevention of the Induction of Rb Phosphorylation in 3T3-L1 Adipocytes

    PubMed Central

    Wang, Lifeng; Li, Linlin; Ran, Xinjian; Long, Mei; Zhang, Minfang; Tao, Yicun; Luo, Xin; Wang, Ye; Ma, Xiaoli; Halmurati, Upur; Ren, Jun

    2013-01-01

    Ellagic acid (EA) present in many fruits and nuts serves as antiproliferation, anti-inflammatory, and antitumorigenic properties. However, the effect of EA on preadipocytes adipogenesis and its mechanism(s) have not been elucidated. The present study was designed to examine the effect of EA on adipogenesis in 3T3-L1 preadipocytes and underlying mechanism(s) of action involved. Data show that EA administration decreased the accumulation of lipid droplets. The inhibition was diminished when the addition of EA was delayed to days 2–4 of differentiation. Clonal expansion was reduced in the presence of EA. FACS analysis showed that EA blocked the cell cycle at the G1/S transition. EdU incorporation also confirmed that EA refrained cell from entering S phase. Our data also revealed that the differentiation-induced protein expression of Cyclin A and phosphorylation of the retinoblastoma protein (Rb) were impaired by EA. Differentiation-dependent expression and DNA-binding ability of C/EBPα were also inhibited by EA. Alterations in cell cycle-associated proteins may be important with respect to the antiadipogenic action of EA. In conclusion, EA is capable of inhibiting adipogenesis in 3T3-L1 adipocytes possibly through reduction of Cyclin A protein expression and Rb phosphorylation. With the blocking of G1/S phase transition, EA suppresses terminal differentiation and lipid accumulation in 3T3-L1 adipocytes. PMID:24302962

  14. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects.

    PubMed

    Benabdelkamel, Hicham; Masood, Afshan; Almidani, Ghaith M; Alsadhan, Abdulmajeed A; Bassas, Abdulelah F; Duncan, Mark W; Alfadda, Assim A

    2015-02-01

    Overweight (OW) and obese individuals are considered to be graded parts of the scale having increasing weight as a common feature. They may not, however, be part of the same continuum and may differ metabolically. In this study we applied an untargeted proteomic approach to compare protein abundances in mature adipocytes derived from the subcutaneous adipose tissue of overweight and morbidly obese female subjects to those of lean age matched controls. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both lean (L; n = 7, 23.3 ± 0.4 kg/m(2); mean BMI ± SD), overweight (OW; n = 8, 27.9 ± 0.6 kg/m(2); mean BMI ± SD) and morbidly obese (MOB; n = 7, 44.8 ± 3.8 kg/m(2); mean BMI ± SD) individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). One hundred and ten differentially expressed protein spots (i.e., fitting the statistical criteria ANOVA test, p < 0.05; fold-change ≥1.5) were detected, and of these, 89 were identified by MALDI-TOF mass spectrometry. Of these, 66 protein spots were common to both groups whereas 23 were unique to the MOB group. Significant differences were evident in the abundances of key proteins involved in glucose and lipid metabolism, energy regulation, cytoskeletal structure and redox control signaling pathways. Differences in the abundance of some chaperones were also evident. The differentially abundant proteins were investigated using Ingenuity Pathway Analysis (IPA) to establish their associations with known biological functions. The network identified in the OW group with the highest score relates to-: cell-to-cell signaling and interaction; in contrast, in the MOB group the major interacting pathways are associated with lipid metabolism, small molecule biochemistry and cancer. The differences in abundance of the differentially regulated proteins were validated by

  15. Development of an OP9 Derived Cell Line as a Robust Model to Rapidly Study Adipocyte Differentiation

    PubMed Central

    Lane, Jacqueline M.; Doyle, Jamie R.; Fortin, Jean-Philippe; Kopin, Alan S.; Ordovás, José M.

    2014-01-01

    One hallmark of obesity is adipocyte hypertrophy and hyperplasia. To gain novel insights into adipose biology and therapeutics, there is a pressing need for a robust, rapid, and informative cell model of adipocyte differentiation for potential RNAi and drug screens. Current models are prohibitive for drug and RNAi screens due to a slow differentiation time course and resistance to transfection. We asked if we could create a rapid, robust model of adipogenesis to potentially enable rapid functional and obesity therapeutic screens. We generated the clonal population OP9-K, which differentiates rapidly and reproducibly, and displays classic adipocyte morphology: rounded cell shape, lipid accumulation, and coalescence of lipids into a large droplet. We further validate the OP9-K cells as an adipocyte model system by microarray analysis of the differentiating transcriptome. OP9-K differentiates via known adipogenic pathways, involving the transcriptional activation and repression of common adipose markers Plin1, Gata2, C/Ebpα and C/Ebpβ and biological pathways, such as lipid metabolism, PPARγ signaling, and osteogenesis. We implemented a method to quantify lipid accumulation using automated microscopy and tested the ability of our model to detect alterations in lipid accumulation by reducing levels of the known master adipogenic regulator Pparγ. We further utilized our model to query the effects of a novel obesity therapeutic target, the transcription factor SPI1. We determine that reduction in levels of Spi1 leads to an increase in lipid accumulation. We demonstrate rapid, robust differentiation and efficient transfectability of the OP9-K cell model of adipogenesis. Together with our microscopy based lipid accumulation assay, adipogenesis assays can be achieved in just four days' time. The results of this study can contribute to the development of rapid screens with the potential to deepen our understanding of adipose biology and efficiently test obesity

  16. Shikonin suppresses ERK 1/2 phosphorylation during the early stages of adipocyte differentiation in 3T3-L1 cells

    PubMed Central

    2013-01-01

    Background The naphthoquinone pigment, shikonin, is a major component of Lithospermum erythrorhizon and has been shown to have various biological functions, including antimicrobial, anti-inflammatory, and antitumor effects. In this study, we investigated the effect of shikonin on adipocyte differentiation and its mechanism of action in 3T3-L1 cells. Methods To investigate the effects of shikonin on adipocyte differentiation, 3T3-L1 cells were induced to differentiate using 3-isobutyl-1-methylzanthine, dexamethasone, and insulin (MDI) for 8 days in the presence of 0–2 μM shikonin. Oil Red O staining was performed to determine the lipid accumulation in 3T3-L1 cells. To elucidate the anti-adipogenic mechanism of shikonin, adipogenic transcription factors, the phosphorylation levels of ERK, and adipogenic gene expression were analyzed by Western blotting and quantitative real-time PCR. To further confirm that shikonin inhibits adipogenic differentiation through downregulation of ERK 1/2 activity, 3T3-L1 cells were treated with shikonin in the presence of FGF-2, an activator, or PD98059, an inhibitor, of the ERK1/2 signaling pathway. Results Shikonin effectively suppressed adipogenesis and downregulated the protein levels of 2 major transcription factors, PPARγ and C/EBPα, as well as the adipocyte specific gene aP2 in a dose-dependent manner. qRT-PCR analysis revealed that shikonin inhibited mRNA expression of adipogenesis-related genes, such as PPARγ, C/EBPα, and aP2. Adipocyte differentiation was mediated by ERK 1/2 phosphorylation, which was confirmed by pretreatment with PD98059 (an ERK 1/2 inhibitor) or FGF-2 (an ERK 1/2 activator). The phosphorylation of ERK1/2 during the early stages of adipogenesis in 3T3-L1 cells was inhibited by shikonin. We also confirmed that FGF-2-stimulated ERK 1/2 activity was attenuated by shikonin. Conclusions These results demonstrate that shikonin inhibits adipogenic differentiation via suppression of the ERK signaling pathway

  17. A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation

    PubMed Central

    Dubois-Chevalier, Julie; Oger, Frédérik; Dehondt, Hélène; Firmin, François F.; Gheeraert, Céline; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2014-01-01

    CCCTC-binding factor (CTCF) is a ubiquitously expressed multifunctional transcription factor characterized by chromatin binding patterns often described as largely invariant. In this context, how CTCF chromatin recruitment and functionalities are used to promote cell type-specific gene expression remains poorly defined. Here, we show that, in addition to constitutively bound CTCF binding sites (CTS), the CTCF cistrome comprises a large proportion of sites showing highly dynamic binding patterns during the course of adipogenesis. Interestingly, dynamic CTCF chromatin binding is positively linked with changes in expression of genes involved in biological functions defining the different stages of adipogenesis. Importantly, a subset of these dynamic CTS are gained at cell type-specific regulatory regions, in line with a requirement for CTCF in transcriptional induction of adipocyte differentiation. This relates to, at least in part, CTCF requirement for transcriptional activation of both the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARG) and its target genes. Functionally, we show that CTCF interacts with TET methylcytosine dioxygenase (TET) enzymes and promotes adipogenic transcriptional enhancer DNA hydroxymethylation. Our study reveals a dynamic CTCF chromatin binding landscape required for epigenomic remodeling of enhancers and transcriptional activation driving cell differentiation. PMID:25183525

  18. De novo lipogenesis in the differentiating human adipocyte can provide all fatty acids necessary for maturation.

    PubMed

    Collins, Jennifer M; Neville, Matt J; Pinnick, Katherine E; Hodson, Leanne; Ruyter, Bente; van Dijk, Theo H; Reijngoud, Dirk-Jan; Fielding, Mark D; Frayn, Keith N

    2011-09-01

    The primary products of de novo lipogenesis (DNL) are saturated fatty acids, which confer adverse cellular effects. Human adipocytes differentiated with no exogenous fat accumulated triacylglycerol (TG) in lipid droplets and differentiated normally. TG composition showed the products of DNL (saturated fatty acids from 12:0 to 18:0) together with unsaturated fatty acids (particularly 16:1n-7 and 18:1n-9) produced by elongation/desaturation. There was parallel upregulation of expression of genes involved in DNL and in fatty acid elongation and desaturation, suggesting coordinated control of expression. Enzyme products (desaturation ratios, elongation ratios, and total pathway flux) were also correlated with mRNA levels. We used (13)C-labeled substrates to study the pathway of DNL. Glucose (5 mM or 17.5 mM in the medium) provided less than half the carbon used for DNL (42% and 47%, respectively). Glutamine (2 mM) provided 9-10%, depending upon glucose concentration. In contrast, glucose provided most (72%) of the carbon of TG-glycerol. Pathway analysis using mass isotopomer distribution analysis (MIDA) revealed that the pathway for conversion of glucose to palmitate is complex. DNL in human fat cells is tightly coupled with further modification of fatty acids to produce a range of saturated and unsaturated fatty acids consistent with normal maturation.

  19. Anti-adipocyte Differentiation Activity and Chemical Composition of Essential Oil from Artemisia annua.

    PubMed

    Hwang, Dae Il; Won, Kyung-Jong; Kim, Do-yoon; Yoon, Seok Won; Park, Joo-Hoon; Kim, Bokyung; Lee, Hwan Myung

    2016-04-01

    Arteinisia annua L. essential oil (AAEO) has diverse properties including antibacterial, antioxidant, antinociceptive, and antimicrobial activities. However, the effect of AAEO on obesity remains to be investigated. In this study, we analyzed the compounds of AAEO and explored the effect of AAEO on the differentiation of preadipocyte into adipocyte using preadipocyte cell line 3T3-L1. Total yield of AAEO from 20 kg A. annua leaf and flower was 0.5%, v/w. Gas chromatography-mass spectrometry analysis showed that AAEO contained 34 compounds. 3T3-LI cells incubated in 3-isobutyl-l-methylxanthine / dexamethasone / insulin (MDI)-containing medium showed increased accumulation of lipid droplets. This increased response was suppressed by treatment with AAEO. Expressions of obesity-related proteins (PPARγ, C/EBPα, SREBP-1c, FAS, and ACC) were increased in 3T3-LI cells cultured in MDI medium and these responses were decreased by treatment with AAEO. These findings demonstrate that AAEO may suppress 3T3-LI cell differentiation by inhibiting adipogenesis and activation of lipid metabolism-related proteins. PMID:27396213

  20. The epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A influence adipocyte differentiation in human mesenchymal stem cells

    PubMed Central

    Zych, J.; Stimamiglio, M.A.; Senegaglia, A.C.; Brofman, P.R.S.; Dallagiovanna, B.; Goldenberg, S.; Correa, A.

    2013-01-01

    Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available. PMID:23797495

  1. Effect of Black Soybean Koji Extract on Glucose Utilization and Adipocyte Differentiation in 3T3-L1 Cells

    PubMed Central

    Huang, Chi-Chang; Huang, Wen-Ching; Hou, Chien-Wen; Chi, Yu-Wei; Huang, Hui-Yu

    2014-01-01

    Adipocyte differentiation and the extent of subsequent fat accumulation are closely related to the occurrence and progression of diseases such as insulin resistance and obesity. Black soybean koji (BSK) is produced by the fermentation of black soybean with Aspergilllus awamori. Previous study indicated that BSK extract has antioxidative and multifunctional bioactivities, however, the role of BSK in the regulation of energy metabolism is still unclear. We aimed to investigate the effect of glucose utilization on insulin-resistant 3T3-L1 preadipocytes and adipogenesis-related protein expression in differentiated adipocytes with BSK treatment. Cytoxicity assay revealed that BSK did not adversely affect cell viability at levels up to 200 μg/mL. The potential for glucose utilization was increased by increased glucose transporter 1 (GLUT1), GLUT4 and protein kinase B (AKT) protein expression in insulin-resistant 3T3-L1 cells in response to BSK treatment. Simultaneously, BSK inhibited lipid droplet accumulation in differentiated 3T3-L1 cells. The inhibitory effect of adipogenesis was associated with downregulated peroxisome proliferator-activated receptor γ (PPARγ) level and upregulated Acrp30 protein expression. Our results suggest that BSK extract could improve glucose uptake by modulating GLUT1 and GLUT4 expression in a 3T3-L1 insulin-resistance cell model. In addition, BSK suppressed differentiation and lipid accumulation in mature 3T3-L1 adipocytes, which may suggest its potential for food supplementation to prevent obesity and related metabolic abnormalities. PMID:24821545

  2. Redox modulation of adipocyte differentiation: hypothesis of "Redox Chain" and novel insights into intervention of adipogenesis and obesity.

    PubMed

    Wang, Xin; Hai, Chunxu

    2015-12-01

    In view of the global prevalence of obesity and obesity-associated disorders, it is important to clearly understand how adipose tissue forms. Accumulating data from various laboratories implicate that redox status is closely associated with energy metabolism. Thus, biochemical regulation of the redox system may be an attractive alternative for the treatment of obesity-related disorders. In this work, we will review the current data detailing the role of the redox system in adipocyte differentiation, as well as identifying areas for further research. The redox system affects adipogenic differentiation in an extensive way. We propose that there is a complex and interactive "redox chain," consisting of a "ROS-generating enzyme chain," "combined antioxidant chain," and "transcription factor chain," which contributes to fine-tune the regulation of ROS level and subsequent biological consequences. The roles of the redox system in adipocyte differentiation are paradoxical. The redox system exerts a "tridimensional" mechanism in the regulation of adipocyte differentiation, including transcriptional, epigenetic, and posttranslational modulations. We suggest that redoxomic techniques should be extensively applied to understand the biological effects of redox alterations in a more integrated way. A stable and standardized "redox index" is urgently needed for the evaluation of the general redox status. Therefore, more effort should be made to establish and maintain a general redox balance rather than to conduct simple prooxidant or antioxidant interventions, which have comprehensive implications.

  3. Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: implications for apoptosis and inflammation.

    PubMed

    Yin, Jiajing; Wang, Yufan; Gu, Liping; Fan, Nengguang; Ma, Yuhang; Peng, Yongde

    2015-04-01

    Endoplasmic reticulum (ER) stress and inflammation induced by obesity lead to adipocyte dysfunction, with the impairment of the insulin pathway. Recent studies have indicated that understanding the physiological role of autophagy is of great significance. In the present study, an in vitro model was used in which 3T3-L1 adipocytes were pre-loaded with palmitate (PA) to generate artificially hypertrophied mature adipocytes. PA induced an autophagic flux, determined by an increased microtubule-associated protein 1 light chain 3 (LC3)-II formation, as shown by western blot analysis and fluorescence microscopy, and was confirmed using transmission electron microscopy (TEM). Using TEM and western blot analysis, we observed increased ER stress in response to PA, as indicated by the increased levels of the ER stress markers, BiP, activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP), and the phosphoralytion of eukaryotic translation initiation factor 2α and c-Jun N-terminal kinase (JNK). Of note, we observed that the PA-induced ER stress occurred prior to the activation of autophagy. We confirmed that autophagy was induced in response to JNK-dependent ER stress, as autophagy was suppressed by treatment with the ER stress inhibitor, 4-phenyl butyrate (4-PBA), and the JNK inhibitor, SP600125. Upon the inhibition of autophagy using chloroquine (CQ), we observed exacerbated ER stress and an increased level of cell death. Importantly, to determine whether autophagy is linked to inflammation, the autophagy inhibitor, 3-methyladenine (3-MA) was used. The inhibition of autophagy led to a further increase in the PA-induced expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6). Consistently, such an increase was also observed following treatment with SP600125. In conclusion, our data indicate that PA elicits a ER stress-JNK-autophagy axis, and that this confers a pro-survival effect against PA-induced cell death and stress in

  4. Effect of polyunsaturated fatty acids on the expression of transcription factor adipocyte determination and differentiation-dependent factor 1 and of lipogenic and fatty acid oxidation enzymes in porcine differentiating adipocytes.

    PubMed

    Hsu, J M; Ding, S T

    2003-09-01

    Polyunsaturated fatty acids (FA) regulate genes involved in lipid metabolism. The effects of polyunsaturated FA on the transcription factor adipocyte determination and differentiation-dependent factor (ADD) 1 and fatty acid synthase (FAS) mRNA in differentiating porcine adipocytes were measured using a stromal vascular cell culture system. Porcine stromal vascular cells were isolated from subcutaneous adipose tissues and plated in Dulbecco's modified Eagle's medium (DMEM)-nutrient mixture F-12 Ham (F-12) plus fetal bovine serum (100 ml/l) for 24 h. Then cells were differentiated in DMEM-F12 plus insulin, hydrocortisone and transferrin without or with polyunsaturated FA at 6.25, 25.00 or 100.00 microM. The ADD1 mRNA was decreased by 100.00 microM-arachidonic acid, 6.25 to 100.00 microM-docosahexaenoic acid or cis-9,trans-11-conjugated linoleic acid. The polyunsaturated FA reduced the transcription rate of FAS, but not of ADD1. All three polyunsaturated FA accelerated degradation of ADD1 and FAS mRNA to reduce the abundance of ADD1 and FAS mRNA. Results also showed that polyunsaturated FA inhibit the ADD1 expression, not only of mRNA concentration, but also of mature ADD1 protein concentration, suggesting an overall reduction of ADD1 function by polyunsaturated FA. Our present experiments demonstrate that polyunsaturated FA regulate the gene expression of ADD1 and enzymes involved in lipid metabolism in porcine adipocytes.

  5. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    SciTech Connect

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk; Lee, Nam-Ho; Kim, Se-Jae

    2011-06-17

    Highlights: {yields} Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. {yields} Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. {yields} Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. {yields} Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), CCAAT/enhancer-binding protein {alpha} (C/EBP{alpha}), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPAR{gamma}, C/EBP{alpha}, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  6. The effect of plasminogen activator inhibitor-1 -675 4G/5G polymorphism on PAI-1 gene expression and adipocyte differentiation.

    PubMed

    Ozel Demiralp, Duygu; Aktas, Huseyin; Akar, Nejat

    2008-10-01

    Obesity is a complex, multifactorial chronic disease frequently associated with cardiovascular risks, hypertriglyceridemia, low high-density lipoprotein-cholesterol, high blood pressure, and the insulin resistance that appears to be central to the pathogenesis of Type II diabetes. Plasminogen activator inhibitor-1 expression induced in differentiating adipose tissue, but its role in adipogenesis and obesity is poorly understood. Circulating plasminogen activator inhibitor-1 levels are elevated at an early stage of impaired glucose tolerance, resulting in diabetes and metabolic syndrome. Plasminogen activator inhibitor-1 levels are also significantly elevated in the plasma of obese individuals and in adipose tissues of obese mice and humans. Some investigators proposed that the -675 4G/5G polymorphism in plasminogen activator inhibitor-1 promoter caused overexpression of this gene and predisposed carriers to obesity. In this study, we investigated the role of -675 4G/5G polymorphism in plasminogen activator inhibitor-1 promoter in the expression of this gene and the contribution of plasminogen activator inhibitor-1 to adipogenesis. Using a dual-luciferase promoter assay, we determined that the -675 4G/5G polymorphism contributes significantly to overexpression of plasminogen activator inhibitor-1 in the course of adipogenesis. The antidiabetic agents troglitazone and ciglitazone inhibited reporter gene expression driven by wild-type and -675 4G/5G mutant promoter, as well as the expression of endogenous plasminogen activator inhibitor-1, indicating that suppression of plasminogen activator inhibitor-1 expression may contribute to antidiabetic effects of these agents. The results indicate that absence of plasminogen activator inhibitor-1 in adipocytes may protect the cells against insulin resistance by promoting glucose uptake and adipocyte differentiation via a decrease in the peroxisome proliferator activated receptor-gamma expression that modulates the adipocyte

  7. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.

  8. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis. PMID:26494623

  9. Metallomics approach to changes in element concentration during differentiation from fibroblasts into adipocytes by element array analysis.

    PubMed

    Ogra, Yasumitsu; Nagasaki, Shu; Yawata, Ayako; Anan, Yasumi; Hamada, Koichi; Mizutani, Akihiro

    2016-04-01

    We aimed to establish an element array analysis that involves the simultaneous detection of all elements in cells and the display of changes in element concentration before and after a cellular event. In this study, we demonstrated changes in element concentration during the differentiation of 3T3-L1 mouse fibroblasts into adipocytes. This metallomics approach yielded unique information of cellular response to physiological and toxicological events.

  10. Rapamycin improves palmitate-induced ER stress/NF κ B pathways associated with stimulating autophagy in adipocytes.

    PubMed

    Yin, Jiajing; Gu, Liping; Wang, Yufan; Fan, Nengguang; Ma, Yuhang; Peng, Yongde

    2015-01-01

    Obesity-induced endoplasmic reticulum (ER) stress and inflammation lead to adipocytes dysfunction. Autophagy helps to adapt to cellular stress and involves in regulating innate inflammatory response. In present study, we examined the activity of rapamycin, a mTOR kinase inhibitor, against endoplasmic reticulum stress and inflammation in adipocytes. An in vitro model was used in which 3T3-L1 adipocytes were preloaded with palmitate (PA) to generate artificial hypertrophy mature adipocytes. Elevated autophagy flux and increased number of autophagosomes were observed in response to PA and rapamycin treatment. Rapamycin attenuated PA-induced PERK and IRE1-associated UPR pathways, evidenced by decreased protein levels of eIF2α phosphorylation, ATF4, CHOP, and JNK phosphorylation. Inhibiting autophagy with chloroquine (CQ) exacerbated these ER stress markers, indicating the role of autophagy in ameliorating ER stress. In addition, cotreatment of CQ abolished the anti-ER stress effects of rapamycin, which confirms the effect of rapamycin on ERs is autophagy-dependent. Furthermore, rapamycin decreased PA-induced nuclear translocation of NFκB P65 subunit, thereby NFκB-dependent inflammatory cytokines MCP-1 and IL-6 expression and secretion. In conclusion, rapamycin attenuated PA-induced ER stress/NFκB pathways to counterbalance adipocytes stress and inflammation. The beneficial of rapamycin in this context partly depends on autophagy. Stimulating autophagy may become a way to attenuate adipocytes dysfunction.

  11. Lipid droplets fusion in adipocyte differentiated 3T3-L1 cells: A Monte Carlo simulation

    SciTech Connect

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2014-02-15

    Several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis, atherosclerosis and other metabolic pathologies are related to the excessive accumulation of lipids in cells. Lipids accumulate in spherical cellular inclusions called lipid droplets (LDs) whose sizes range from fraction to one hundred of micrometers in adipocytes. It has been suggested that LDs can grow in size due to a fusion process by which a larger LD is obtained with spherical shape and volume equal to the sum of the progenitors’ ones. In this study, the size distribution of two populations of LDs was analyzed in immature and mature (5-days differentiated) 3T3-L1 adipocytes (first and second populations, respectively) after Oil Red O staining. A Monte Carlo simulation of interaction between LDs has been developed in order to quantify the size distribution and the number of fusion events needed to obtain the distribution of the second population size starting from the first one. Four models are presented here based on different kinds of interaction: a surface weighted interaction (R2 Model), a volume weighted interaction (R3 Model), a random interaction (Random model) and an interaction related to the place where the LDs are born (Nearest Model). The last two models mimic quite well the behavior found in the experimental data. This work represents a first step in developing numerical simulations of the LDs growth process. Due to the complex phenomena involving LDs (absorption, growth through additional neutral lipid deposition in existing droplets, de novo formation and catabolism) the study focuses on the fusion process. The results suggest that, to obtain the observed size distribution, a number of fusion events comparable with the number of LDs themselves is needed. Moreover the MC approach results a powerful tool for investigating the LDs growth process. Highlights: • We evaluated the role of the fusion process in the synthesis of the lipid droplets. • We compared the

  12. Fibrin glue is a candidate scaffold for long-term therapeutic protein expression in spontaneously differentiated adipocytes in vitro

    SciTech Connect

    Aoyagi, Yasuyuki; Kuroda, Masayuki; Asada, Sakiyo; Tanaka, Shigeaki; Konno, Shunichi; Tanio, Masami; Aso, Masayuki; Okamoto, Yoshitaka; Nakayama, Toshinori; Saito, Yasushi; Bujo, Hideaki

    2012-01-01

    Adipose tissue is expected to provide a source of cells for protein replacement therapies via auto-transplantation. However, the conditioning of the environment surrounding the transplanted adipocytes for their long-term survival and protein secretion properties has not been established. We have recently developed a preparation procedure for preadipocytes, ceiling culture-derived proliferative adipocytes (ccdPAs), as a therapeutic gene vehicle suitable for stable gene product secretion. We herein report the results of our evaluation of using fibrin glue as a scaffold for the transplanted ccdPAs for the expression of a transduced gene in a three-dimensional culture system. The ccdPAs secreted the functional protein translated from an exogenously transduced gene, as well as physiological adipocyte proteins, and the long viability of ccdPAs (up to 84 days) was dependent on the fibrinogen concentrations. The ccdPAs spontaneously accumulated lipid droplets, and their expression levels of the transduced exogenous gene with its product were maintained for at least 56 days. The fibrinogen concentration modified the adipogenic differentiation of ccdPAs and their exogenous gene expression levels, and the levels of exogenously transduced gene expression at the different fibrinogen concentrations were dependent on the extent of adipogenic differentiation in the gel. These results indicate that fibrin glue helps to maintain the high adipogenic potential of cultured adipocytes after passaging in a 3D culture system, and suggests that once they are successfully implanted at the transplantation site, the cells exhibit increased expression of the transduced gene with adipogenic differentiation.

  13. Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice.

    PubMed

    Nishikawa, Sho; Aoyama, Hiroki; Kamiya, Misa; Higuchi, Jun; Kato, Aiko; Soga, Minoru; Kawai, Taeko; Yoshimura, Kazuki; Kumazawa, Shigenori; Tsuda, Takanori

    2016-01-01

    Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. PMID:27598888

  14. Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice

    PubMed Central

    Nishikawa, Sho; Aoyama, Hiroki; Kamiya, Misa; Higuchi, Jun; Kato, Aiko; Soga, Minoru; Kawai, Taeko; Yoshimura, Kazuki; Kumazawa, Shigenori; Tsuda, Takanori

    2016-01-01

    Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. PMID:27598888

  15. Skp2 promotes adipocyte differentiation via a p27{sup Kip1}-independent mechanism in primary mouse embryonic fibroblasts

    SciTech Connect

    Okada, Mitsuru; Sakai, Tamon; Nakamura, Takehiro; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Matsuki, Yasushi; Watanabe, Eijiro; Hiramatsu, Ryuji; Sakaue, Hiroshi Kasuga, Masato

    2009-02-06

    Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27{sup Kip1}, a principal target of the SCF{sup Skp2} complex. Genetic ablation of p27{sup Kip1} in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27{sup Kip1} by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2{sup -/-} MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), largely restored lipid accumulation and PPAR{gamma} gene expression in Skp2{sup -/-} MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27{sup Kip1} expression.

  16. [The dynamic mitochondria-nuclear redistribution of FKBP51 during the process of adipocyte differentiation is regulated by PKA].

    PubMed

    Toneatto, Judith; Charó, Nancy L; Susperreguy, Sebastián; Piwien-Pilipuk, Graciela

    2013-01-01

    Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight immunophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interestingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis. FKBP51 transiently concentrates in the nuclear lamina, at a time that this nuclear compartment undergoes its reorganization. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. We found that the dynamic FKBP51 mitochondrial-nuclear shuttling is regulated by glucocorticoids and mainly on cAMP-PKA signaling since PKA inhibition by myristoilated-PKI, abrogated FKBP51 nuclear translocation induced by 3-isobutyl-1-methylxanthine (IBMX). It has been reported that PKA interacts with GR in a ligand dependent manner potentiating its transcriptional capacity. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced nuclear translocation of FKBP51, therefore PKA may exert a dual role in the control of GR. In summary, the presence of FKBP51 in the nucleus may be critical for GR transcriptional control, and possibly for the control of other transcription factors that are not members of the nuclear receptor family but are regulated by PKA signaling pathway, when transcription has to be strictly controlled to succeed in the acquisition of the adipocyte phenotype.

  17. [The dynamic mitochondria-nuclear redistribution of FKBP51 during the process of adipocyte differentiation is regulated by PKA].

    PubMed

    Toneatto, Judith; Charó, Nancy L; Susperreguy, Sebastián; Piwien-Pilipuk, Graciela

    2013-01-01

    Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight immunophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interestingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis. FKBP51 transiently concentrates in the nuclear lamina, at a time that this nuclear compartment undergoes its reorganization. FKBP51 nuclear localization is transient, after 48 h it cycles back to mitochondria. We found that the dynamic FKBP51 mitochondrial-nuclear shuttling is regulated by glucocorticoids and mainly on cAMP-PKA signaling since PKA inhibition by myristoilated-PKI, abrogated FKBP51 nuclear translocation induced by 3-isobutyl-1-methylxanthine (IBMX). It has been reported that PKA interacts with GR in a ligand dependent manner potentiating its transcriptional capacity. GR transcriptional capacity is reduced when cells are incubated in the presence of IBMX, forskolin or dibutyryl-cAMP, compounds that induced nuclear translocation of FKBP51, therefore PKA may exert a dual role in the control of GR. In summary, the presence of FKBP51 in the nucleus may be critical for GR transcriptional control, and possibly for the control of other transcription factors that are not members of the nuclear receptor family but are regulated by PKA signaling pathway, when transcription has to be strictly controlled to succeed in the acquisition of the adipocyte phenotype. PMID:24152393

  18. The effects of 2-bromopalmitate on the fatty acid composition in differentiating adipocytes of red sea bream (Pagrus major).

    PubMed

    Oku, Hiromi; Tokuda, Masaharu; Umino, Tetsuya

    2009-04-01

    To determine whether external factors affect the adipogenic function of fish adipocytes, the effects of 2-bromopalmitate (a PPAR agonist) on the fatty acid composition in differentiating adipocytes of red sea bream were investigated in vitro. In the presence of 2-bromopalmitate, the red sea bream adipocytes were differentiated and the effects on the fatty acid composition and the adipogenic gene expression were analyzed. With the level of 2-bromopalmitate, the content of 16:1n-7, a delta-9 desaturation product, increased in association with the increase in a stearoyl CoA desaturase (SCD) gene expression level while the triglyceride accumulation was not affected. Subsequently, the effects on the bioconversion of the n-3 and n-6 fatty acids, which are main series of dietary essential fatty acids, were examined. In the presence of 300 microM of 18:3n-3 or 18:2n-6, red sea bream stromal-vascular cells accumulated the lipid in the cytoplasm within 3 days by the fatty acid uptake with the increase of corresponding fatty acid contents. Furthermore, in both the 18:3n-3 and 18:2n-6 stored cells, the products of delta-6 desaturation (18:4n-3 and 18:3n-6, respectively) and C(18-20) elongation (20:3n-3 and 20:2n-6, respectively) were detected. However, neither the delta-6 desatutration nor C(18-20) elongation of 18:3n-3 and 18:2n-6 were enhanced by 2-bromopalmitate treatment. In conclusion, the results indicate that the adipocyte function in fish, e.g. adipogenic gene expression and fatty acid composition, can be modified by external factors and a main effect of 2-bromopalmitate is the increase in the content of delta-9 desaturation product by stimulating the SCD gene expression.

  19. Effects of MicroRNA-23a on Differentiation and Gene Expression Profiles in 3T3-L1 Adipocytes

    PubMed Central

    Huang, Yong; Huang, Jinxiu; Qi, Renli; Wang, Qi; Wu, Yongjiang; Wang, Jing

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate growth, development, and programmed death of cells. A newly-published study has shown that miRNA-23a could regulate 3T3-L1 adipocyte differentiation. Here, we identified miRNA-23a as a negative regulator of 3T3-L1 adipocyte differentiation again. Over-expression of miRNA-23a inhibited differentiation and decreased lipogenesis as well as down-regulated mRNA and protein expression of both peroxisome proliferator-activated receptor (PPAR) γ and fatty acid binding protein (FABP) 4, whereas knock down of miRNA-23a showed the opposite effects on differentiation as well as increasing the number of apoptotic cells. Additionally, digital gene expression profiling sequencing (DGE-Seq) was used to assay changes in gene expression profiles following alterations in the level of miR-23a. In total, over-expression or knock down of miRNA-23a significantly changed the expression of 313 and 425 genes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these genes were mainly involved in the stress response, immune system, metabolism, cell cycle, among other pathways. Additionally, the signal transducer and activator of transcription 1 (Stat1) was shown to be a target of miRNA-23a by computational and dual-luciferase reporter assays that indicated Janus Kinase (Jak)-Stat signal pathway was implicated in regulating adipogenesis mediated by miRNA-23a in adipocytes. PMID:27783036

  20. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis

    PubMed Central

    Wang, Cheng; Meng, Haoye; Wang, Xin; Zhao, Chenyang; Peng, Jing; Wang, Yu

    2016-01-01

    Osteoporosis is a systemic metabolic bone disorder characterized by a decrease in bone mass and degradation of the bone microstructure, leaving bones that are fragile and prone to fracture. Most osteoporosis treatments improve symptoms, but to date there is no quick and effective therapy. Bone marrow mesenchymal stem cells (BMMSCs) have pluripotent potential. In adults, BMMSCs differentiate mainly into osteoblasts and adipocytes in the skeleton. However, if this differentiation is unbalanced, it may lead to a decrease in bone mass. If the number of adipocyte cells increases and that of osteoblast cells decreases, osteoporosis can result. A variety of hormones and cytokines play an important role in the regulation of BMMSCs bidirectional differentiation. Therefore, a greater understanding of the regulation mechanism of BMMSC differentiation may provide new methods to prevent and treat osteoporosis. In addition, autologous, allogeneic BMMSCs or genetically modified BMMSC transplantation can effectively increase bone mass and density, increase bone mechanical strength, correct the imbalance in bone metabolism, and increase bone formation, and is expected to provide a new strategy and method for the treatment of osteoporosis. PMID:26795027

  1. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  2. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-04-07

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  3. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  4. PPARy and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this document, we have integrated knowledge about two major cellular markers found in cells of the adipocyte lineage. The first factor is PPARy, which has been identified as an important adipogenic regulator. PPARy plays an important role in converting adipofibroblasts, fibroblasts or preadipocyt...

  5. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PU.1 transcription factor is a critical regulator of hematopoiesis and leukemogenesis. Because PU.1 interacts with transcription factors GATA-2 and C/EBPa, both of which are involved in the regulation of adipogenesis, we investigated whether PU.1 also plays a role in the regulation of adipocyte diff...

  6. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    SciTech Connect

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C. . E-mail: roco@soton.ac.uk

    2006-06-10

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.

  7. Aldose reductases influence prostaglandin F2α levels and adipocyte differentiation in male mouse and human species.

    PubMed

    Pastel, Emilie; Pointud, Jean-Christophe; Loubeau, Gaëlle; Dani, Christian; Slim, Karem; Martin, Gwenaëlle; Volat, Fanny; Sahut-Barnola, Isabelle; Val, Pierre; Martinez, Antoine; Lefrançois-Martinez, Anne-Marie

    2015-05-01

    Aldose reductases (AKR1B) are widely expressed oxidoreductases whose physiological function remains elusive. Some isoforms are genuine prostaglandin F2α (PGF2α) synthases, suggesting they might influence adipose homeostasis because PGF2α inhibits adipogenesis. This was shown by Akr1b7 gene ablation in the mouse, which resulted in increased adiposity related to a lower PGF2α content in fat. Yet humans have no ortholog gene for Akr1b7, so the role of aldose reductases in human adipose homeostasis remains to be explored. We analyzed expression of genes encoding human and mouse aldose reductase isoforms in adipose tissues and differentiating adipocytes to assess conserved mechanisms regulating PGF2α synthesis and adipogenesis. The Akr1b3 gene encoded the most abundant isoform in mouse adipose tissue, whereas Akr1b7 encoded the only isoform enriched in the stromal vascular fraction. Most mouse aldose reductase gene expression peaked in early adipogenesis of 3T3-L1 cells and diminished with differentiation. In contrast with its mouse ortholog Akr1b3, AKR1B1 expression increased throughout differentiation of human multipotent adipose-derived stem cells, paralleling PGF2α release, whereas PGF2α receptor (FP) levels collapsed in early differentiation. Pharmacological inhibition of aldose reductase using Statil altered PGF2α production and enhanced human multipotent adipose-derived stem adipocyte differentiation. As expected, the adipogenic effects of Statil were counteracted by an FP agonist (cloprostenol). Thus, in both species aldose reductase-dependent PGF2α production could be important in early differentiation to restrict adipogenesis. PGF2α antiadipogenic signaling could then be toned down through the FP receptor or aldose reductases down-regulation in human and mouse cells, respectively. Our data suggest that aldose reductase inhibitors could have obesogenic potential.

  8. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes

    PubMed Central

    Bordicchia, Marica; Liu, Dianxin; Amri, Ez-Zoubir; Ailhaud, Gerard; Dessì-Fulgheri, Paolo; Zhang, Chaoying; Takahashi, Nobuyuki; Sarzani, Riccardo; Collins, Sheila

    2012-01-01

    The ability of mammals to resist body fat accumulation is linked to their ability to expand the number and activity of “brown adipocytes” within white fat depots. Activation of β-adrenergic receptors (β-ARs) can induce a functional “brown-like” adipocyte phenotype. As cardiac natriuretic peptides (NPs) and β-AR agonists are similarly potent at stimulating lipolysis in human adipocytes, we investigated whether NPs could induce human and mouse adipocytes to acquire brown adipocyte features, including a capacity for thermogenic energy expenditure mediated by uncoupling protein 1 (UCP1). In human adipocytes, atrial NP (ANP) and ventricular NP (BNP) activated PPARγ coactivator-1α (PGC-1α) and UCP1 expression, induced mitochondriogenesis, and increased uncoupled and total respiration. At low concentrations, ANP and β-AR agonists additively enhanced expression of brown fat and mitochondrial markers in a p38 MAPK–dependent manner. Mice exposed to cold temperatures had increased levels of circulating NPs as well as higher expression of NP signaling receptor and lower expression of the NP clearance receptor (Nprc) in brown adipose tissue (BAT) and white adipose tissue (WAT). NPR-C–/– mice had markedly smaller WAT and BAT depots but higher expression of thermogenic genes such as Ucp1. Infusion of BNP into mice robustly increased Ucp1 and Pgc-1α expression in WAT and BAT, with corresponding elevation of respiration and energy expenditure. These results suggest that NPs promote “browning” of white adipocytes to increase energy expenditure, defining the heart as a central regulator of adipose tissue biology. PMID:22307324

  9. OSBP-Related Proteins (ORPs) in Human Adipose Depots and Cultured Adipocytes: Evidence for Impacts on the Adipocyte Phenotype

    PubMed Central

    Zhou, You; Robciuc, Marius R.; Wabitsch, Martin; Juuti, Anne; Leivonen, Marja; Ehnholm, Christian; Yki-Järvinen, Hannele; Olkkonen, Vesa M.

    2012-01-01

    Oxysterol-binding protein (OSBP) homologues, ORPs, are implicated in lipid homeostatic control, vesicle transport, and cell signaling. We analyzed here the quantity of ORP mRNAs in human subcutaneous (s.c.) and visceral adipose depots, as well as in the Simpson-Golabi-Behmel syndrome (SGBS) adipocyte cell model. All of the ORP mRNAs were present in the s.c and visceral adipose tissues, and the two depots shared an almost identical ORP mRNA expression pattern. SGBS adipocytes displayed a similar pattern, suggesting that the adipose tissue ORP expression pattern mainly derives from adipocytes. During SGBS cell adipogenic differentiation, ORP2, ORP3, ORP4, ORP7, and ORP8 mRNAs were down-regulated, while ORP11 was induced. To assess the impacts of ORPs on adipocyte differentiation, ORP3 and ORP8, proteins down-regulated during adipogenesis, were overexpressed in differentiating SGBS adipocytes, while ORP11, a protein induced during adipogenesis, was silenced. ORP8 overexpression resulted in reduced expression of the aP2 mRNA, while down-regulation of adiponectin and aP2 was observed in ORP11 silenced cells. Furthermore, ORP8 overexpression or silencing of ORP11 markedly decreased cellular triglyceride storage. These data identify the patterns of ORP expression in human adipose depots and SGBS adipocytes, and provide the first evidence for a functional impact of ORPs on the adipocyte phenotype. PMID:23028956

  10. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    PubMed Central

    2011-01-01

    Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs). Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb

  11. IP-receptor and PPARs trigger the conversion of human white to brite adipocyte induced by carbaprostacyclin.

    PubMed

    Ghandour, Rayane A; Giroud, Maude; Vegiopoulos, Alexandros; Herzig, Stephan; Ailhaud, Gérard; Amri, Ez-Zoubir; Pisani, Didier F

    2016-04-01

    Brite adipocytes recently discovered in humans are of considerable importance in energy expenditure by converting energy excess into heat. This property could be useful in the treatment of obesity, and nutritional aspects are relevant to this important issue. Using hMADS cells as a human cell model which undergoes a white to a brite adipocyte conversion, we had shown previously that arachidonic acid, the major metabolite of the essential nutrient Ω6-linoleic acid, plays a major role in this process. Its metabolites PGE2 and PGF2 alpha inhibit this process via a calcium-dependent pathway, whereas in contrast carbaprostacyclin (cPGI2), a stable analog of prostacyclin, activates white to brite adipocyte conversion. Herein, we show that cPGI2 generates via its cognate cell-surface receptor IP-R, a cyclic AMP-signaling pathway involving PKA activity which in turn induces the expression of UCP1. In addition, cPGI2 activates the pathway of nuclear receptors of the PPAR family, i.e. PPARα and PPARγ, which act separately from IP-R to up-regulate the expression of key genes involved in the function of brite adipocytes. Thus dual pathways are playing in concert for the occurrence of a browning process of human white adipocytes. These results make prostacyclin analogs as a new class of interesting molecules to treat obesity and associated diseases. PMID:26775637

  12. Adipocyte Metrnl Antagonizes Insulin Resistance Through PPARγ Signaling.

    PubMed

    Li, Zhi-Yong; Song, Jie; Zheng, Si-Li; Fan, Mao-Bing; Guan, Yun-Feng; Qu, Yi; Xu, Jian; Wang, Pei; Miao, Chao-Yu

    2015-12-01

    Adipokines play important roles in metabolic homeostasis and disease. We have recently identified a novel adipokine Metrnl, also known as Subfatin, for its high expression in subcutaneous fat. Here, we demonstrate a prodifferentiation action of Metrnl in white adipocytes. Adipocyte-specific knockout of Metrnl exacerbates insulin resistance induced by high-fat diet (HFD), whereas adipocyte-specific transgenic overexpression of Metrnl prevents insulin resistance induced by HFD or leptin deletion. Body weight and adipose content are not changed by adipocyte Metrnl. Consistently, no correlation is found between serum Metrnl level and BMI in humans. Metrnl promotes white adipocyte differentiation, expandability, and lipid metabolism and inhibits adipose inflammation to form functional fat, which contributes to its activity against insulin resistance. The insulin sensitization of Metrnl is blocked by PPARγ inhibitors or knockdown. However, Metrnl does not drive white adipose browning. Acute intravenous injection of recombinant Metrnl has no hypoglycemic effect, and 1-week intravenous administration of Metrnl is unable to rescue insulin resistance exacerbated by adipocyte Metrnl deficiency. Our results suggest adipocyte Metrnl controls insulin sensitivity at least via its local autocrine/paracrine action through the PPARγ pathway. Adipocyte Metrnl is an inherent insulin sensitizer and may become a therapeutic target for insulin resistance. PMID:26307585

  13. Long-term niacin treatment induces insulin resistance and adrenergic responsiveness in adipocytes by adaptive downregulation of phosphodiesterase 3B.

    PubMed

    Heemskerk, Mattijs M; van den Berg, Sjoerd A A; Pronk, Amanda C M; van Klinken, Jan-Bert; Boon, Mariëtte R; Havekes, Louis M; Rensen, Patrick C N; van Dijk, Ko Willems; van Harmelen, Vanessa

    2014-04-01

    The lipid-lowering effect of niacin has been attributed to the inhibition of cAMP production in adipocytes, thereby inhibiting intracellular lipolysis and release of nonesterified fatty acids (NEFA) to the circulation. However, long-term niacin treatment leads to a normalization of plasma NEFA levels and induces insulin resistance, for which the underlying mechanisms are poorly understood. The current study addressed the effects of long-term niacin treatment on insulin-mediated inhibition of adipocyte lipolysis and focused on the regulation of cAMP levels. APOE*3-Leiden.CETP transgenic mice treated with niacin for 15 wk were subjected to an insulin tolerance test and showed whole body insulin resistance. Similarly, adipocytes isolated from niacin-treated mice were insulin resistant and, interestingly, exhibited an increased response to cAMP stimulation by 8Br-cAMP, β1- and β2-adrenergic stimulation. Gene expression analysis of the insulin and β-adrenergic pathways in adipose tissue indicated that all genes were downregulated, including the gene encoding the cAMP-degrading enzyme phosphodiesterase 3B (PDE3B). In line with this, we showed that insulin induced a lower PDE3B response in adipocytes isolated from niacin-treated mice. Inhibiting PDE3B with cilostazol increased lipolytic responsiveness to cAMP stimulation in adipocytes. These data show that long-term niacin treatment leads to a downregulation of PDE3B in adipocytes, which could explain part of the observed insulin resistance and the increased responsiveness to cAMP stimulation.

  14. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes

    PubMed Central

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M.; Foti, Daniela P.; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia – through the hypoxia-inducible factor 1 (HIF-1) – plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity. PMID:27445976

  15. Cooperation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes.

    PubMed

    Messineo, Sebastiano; Laria, Anna Elisa; Arcidiacono, Biagio; Chiefari, Eusebio; Luque Huertas, Raúl M; Foti, Daniela P; Brunetti, Antonio

    2016-01-01

    The architectural transcription factor high-mobility group AT-hook 1 (HMGA1) is a chromatin regulator with implications in several biological processes, including tumorigenesis, inflammation, and metabolism. Previous studies have indicated a role for this factor in promoting the early stages of adipogenesis, while inhibiting adipocyte terminal differentiation, and decreasing fat mass. It has been demonstrated that hypoxia - through the hypoxia-inducible factor 1 (HIF-1) - plays a major role in triggering changes in the adipose tissue of the obese, leading to inhibition of adipocyte differentiation, adipose cell dysfunction, inflammation, insulin resistance, and type 2 diabetes. To examine the possible cooperation between HMGA1 and HIF-1, herein, we investigated the role of HMGA1 in the regulation of Visfatin and VEGF, two genes normally expressed in adipose cells, which are both responsive to hypoxia. We demonstrated that HMGA1 enhanced Visfatin and VEGF gene expression in human embryonic kidney (HEK) 293 cells in hypoxic conditions, whereas HMGA1 knockdown in differentiated 3T3-L1 adipocytes reduced these effects. Reporter gene analysis showed that Visfatin and VEGF transcriptional activity was increased by the addition of either HMGA1 or HIF-1 and even further by the combination of both factors. As demonstrated by chromatin immunoprecipitation in intact cells, HMGA1 directly interacted with the VEGF gene, and this interaction was enhanced in hypoxic conditions. Furthermore, as indicated by co-immunoprecipitation studies, HMGA1 and HIF-1 physically interacted with each other, supporting the notion that this association may corroborate a functional link between these factors. Therefore, our findings provide evidence for molecular cross-talk between HMGA1 and HIF-1, and this may be important for elucidating protein and gene networks relevant to obesity.

  16. Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes.

    PubMed

    Han, Yunk-Yung; Song, Mi-Young; Hwang, Min-Sub; Hwang, Ji-Hye; Park, Yong-Ki; Jung, Hyo-Won

    2016-09-01

    Obesity is associated with a number of metabolic abnormalities such as type 2 diabetes and has become a major health problem worldwide. In the present study, we investigated the effects of Epimedium koreanum Nakai (Herba Epimedii, HE) and its main constituent icariin on the adipocyte differentiation in 3T3-L1 preadipocytes. HE extract and icariin significantly reduced lipid accumulation and suppressed the expressions of PPARγ, C/EBPα, and SREBP-1c in 3T3-L1 adipocytes. They also inhibited fatty acid synthase (FAS), acyl-Co A synthase (ACS1), and perilipin. Moreover, HE extract and icariin markedly increased the phosphorylation of AMPK. These results indicated that HE extract and icariin can inhibit the adipocyte differentiation through downregulation of the adipogenic transcription factors, suggesting that HE containing icariin may be used as a potential therapeutic agent in the treatment and prevention of obesity. PMID:27667512

  17. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.

    PubMed

    Lone, Jameel; Choi, Jae Heon; Kim, Sang Woo; Yun, Jong Won

    2016-01-01

    Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.

  18. Sequential ordered fatty acid alpha oxidation and Delta9 desaturation are major determinants of lipid storage and utilization in differentiating adipocytes.

    PubMed

    Su, Xiong; Han, Xianlin; Yang, Jingyue; Mancuso, David J; Chen, Jeannie; Bickel, Perry E; Gross, Richard W

    2004-05-01

    Herein, we exploit the power of global lipidomics to identify the critical role of peroxisomal processing of fatty acids in adipocyte lipid storage and metabolism. Remarkably, 3T3-L1 differentiating adipocytes rapidly acquired the ability to alpha oxidize unbranched fatty acids, which is manifested in the accumulation of odd chain length unbranched fatty acids in all major lipid classes. Moreover, in differentiating adipocytes, unsaturated odd chain length fatty acids in TAG molecular species contained exclusively Delta9 olefinic linkages. Unsaturated fatty acids (e.g., oleic and palmitoleic acids) were not subject to alpha oxidation, resulting in the absence of Delta8 unsaturated odd chain length fatty acids. This highly selective substrate utilization resulted in the obligatory sequential ordering of alpha oxidation prior to Delta9 desaturation. On the basis of these results, a putative type 2 peroxisomal localization sequence was identified at the N-terminus of mouse stearoyl-CoA desaturase I (SCD I) comprised of (30)KVKTVPLHL(38). Kinetic analysis demonstrated that the rate of alpha oxidation of exogenously administered [9,10-(3)H]palmitic acid increased 4-fold during differentiation. Similarly, quantitative PCR demonstrated a 4-fold increase in phytanoyl-CoA alpha hydroxylase (PAHX) and fatty acyl-CoA oxidase (FACO) mRNA levels during differentiation. Collectively, these results underscore the role of peroxisomal fatty acid processing as an important determinant of the metabolic fate of fatty acids in the differentiating adipocyte.

  19. Inhibition of Adipocyte Differentiation by Phytoestrogen Genistein Through a Potential Downregulation of Extracellular Signal-Regulated Kinases 1/2 Activity

    PubMed Central

    Liao, Qing-Chuan; Li, Ya-Lin; Qin, Yan-Fang; Quarles, L. Darryl; Xu, Kang-Kang; Li, Rong; Zhou, Hong-Hao; Xiao, Zhou-Sheng

    2016-01-01

    In the current study, we investigated the effects of genistein on adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cell (BMSC) cultures and its potential signaling pathway. The terminal adipogenic differentiation was assessed by western-blotting analysis of adipogenic-specific proteins such as PPARγ, C/EBPα, and aP2 and the formation of adipocytes. Treatment of mouse BMSC cultures with adipogenic cocktail resulted in sustained activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family, at the early phase of adipogenesis (from days 3 to 9). Inhibition of ERK1/2 activation by PD98059, a specific MEK inhibitor, reversed the induced adipogenic differentiation. Genistein dose-dependently decreased the phosphorylation of ERK1/2 in mouse BMSC cultures. Genistein incubation for the entire culture period, as well as that applied during the early phase of the culture period, significantly inhibited the adipogenic differentiation of mouse BMSC cultures. While genistein was incubated at the late stage (after day 9), no inhibitory effect on adipogenic differentiation was observed. BMSC cultures treated with genistein in the presence of fibroblast growth factor-2 (FGF-2), an activator of the ERK1/2 signaling pathway, expressed normal levels of ERK1/2 activity, and, in so doing, are capable of undergoing adipogenesis. Our results suggest that activation of the ERK1/2 signaling pathway during the early phase of adipogenesis (from days 3 to 9) is essential to adipogenic differentiation of BMSC cultures, and that genistein inhibits the adipogenic differentiation through a potential downregulation of ERK1/2 activity at this early phase of adipogenesis. PMID:18384126

  20. Widdrol-induced lipolysis is mediated by PKC and MEK/ERK in 3T3-L1 adipocytes.

    PubMed

    Jeong, Hyun Young; Yun, Hee Jung; Kim, Byung Woo; Lee, Eun Woo; Kwon, Hyun Ju

    2015-12-01

    Obesity is a serious medical condition causing various diseases such as heart disease, type-2 diabetes, and cancer. Fat cells (adipocytes) play an important role in the generation of energy through hydrolysis of lipids they accumulate. Therefore, induction of lipolysis (breakdown of lipids into fatty acids and glycerol), is one of the ways to treat obesity. In the present study, we investigated the lipolytic effect of widdrol in 3T3-L1 adipocytes and its mechanism. Widdrol considerably increased the amount of glycerol released from 3T3-L1 adipocytes into the medium in a time- and dose-dependent manner. To determine the mechanism of this effect, we investigated the alterations in glycerol release and protein expression in 3T3-L1 adipocytes treated with widdrol alone or widdrol and inhibitors of proteins involved in the cAMP-dependent pathway or cAMP-independent PKC-MAPK pathway, which are known to induce lipolysis in adipocytes. The adenylyl cyclase inhibitor SQ-22536, PLA2 inhibitor dexamethasone, PI3K inhibitor wortmannin, and PKA inhibitor H-89, which were used to investigate the involvement of the cAMP-dependent pathway, did not affect the lipolytic effect of widdrol. Widdrol-induced phosphorylation of PKC, MEK, and ERK, which are related to the PKC-MAPK pathway, and their phosphorylation was inhibited by their inhibitors (H-7, U0126, and PD-98059, respectively). Moreover, the increase in glycerol release induced by widdrol was almost completely blocked by PKC, MEK, and ERK inhibitors. These results suggest that widdrol induces lipolysis through activation of the PKC-MEK-ERK pathway. PMID:26359088

  1. TNFalpha disrupts mitotic clonal expansion and regulation of retinoblastoma proteins p130 and p107 during 3T3-L1 adipocyte differentiation.

    PubMed

    Lyle, R E; Richon, V M; McGehee, R E

    1998-06-18

    The inhibitory effects of TNFalpha on adipocyte differentiation are well described, however, the mechanisms are poorly understood. Early during hormonally-induced 3T3-L1 preadipocyte differentiation there is a requisite mitotic clonal expansion phase that is associated with significant regulation in p130 and p107 protein levels, two members of the retinoblastoma protein family that regulate cell cycle events through interactions with the E2F transcription factors. This regulation occurs within the first 24 hours of differentiation (Day 1) and is characterized by a transient increase in p107 protein and mRNA levels as well as a transient decrease in p130 protein levels. Here we describe that TNFalpha disrupts the normal pattern of expression of both p130 and p107 proteins, leading to a complete block in mitotic clonal expansion. Interestingly, TNFalpha-treated cells enter S-phase as determined by 5-bromo-2'-deoxyuridine uptake experiments, but rather than completing cell cycle, they are stimulated to undergo apoptosis.

  2. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL.

    PubMed

    Gaidhu, Mandeep P; Fediuc, Sergiu; Anthony, Nicole M; So, Mandy; Mirpourian, Mani; Perry, Robert L S; Ceddia, Rolando B

    2009-04-01

    This study was designed to investigate the effects of prolonged activation of AMP-activated protein kinase (AMPK) on lipid partitioning and the potential molecular mechanisms involved in these processes in white adipose tissue (WAT). Rat epididymal adipocytes were incubated with 5'-aminoimidasole-4-carboxamide-1-beta-d-ribofuranoside (AICAR;0.5 mM) for 15 h. Also, epididymal adipocytes were isolated 15 h after AICAR was injected (i.p. 0.7 g/kg body weight) in rats. Adipocytes were utilized for various metabolic assays and for determination of gene expression and protein content. Time-dependent in vivo plasma NEFA concentrations were determined. AICAR treatment significantly increased AMPK activation, inhibited lipogenesis, and increased FA oxidation. This was accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR)alpha, PPARdelta, and PPARgamma-coactivator-1alpha (PGC-1alpha) mRNA levels. Lipolysis was first suppressed, but then increased, both in vitro and in vivo, with prolonged AICAR treatment. Exposure to AICAR increased adipose triglyceride lipase (ATGL) content and FA release, despite inhibition of basal and epinephrine-stimulated hormone-sensitive lipase (HSL) activity. Here, we provide evidence that prolonged AICAR-induced AMPK activation can remodel adipocyte metabolism by upregulating pathways that favor energy dissipation versus lipid storage in WAT. Additionally, we show novel time-dependent effects of AICAR-induced AMPK activation on lipolysis, which involves antagonistic modulation of HSL and ATGL.

  3. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases

    PubMed Central

    Huang, Yiping; Zheng, Yunfei; Jin, Chanyuan; Li, Xiaobei; Jia, Lingfei; Li, Weiran

    2016-01-01

    Bone marrow mesenchymal stem cells (BMSCs) exhibit an increased propensity toward adipocyte differentiation accompanied by a reduction in osteogenesis in osteoporotic bone marrow. However, limited knowledge is available concerning the role of long non-coding RNAs (lncRNAs) in the differentiation of BMSCs into adipocytes. In this study, we demonstrated that lncRNA H19 and microRNA-675 (miR-675) derived from H19 were significantly downregulated in BMSCs that were differentiating into adipocytes. Overexpression of H19 and miR-675 inhibited adipogenesis, while knockdown of their endogenous expression accelerated adipogenic differentiation. Mechanistically, we found that miR-675 targeted the 3′ untranslated regions of the histone deacetylase (HDAC) 4–6 transcripts and resulted in deregulation of HDACs 4–6, essential molecules in adipogenesis. In turn, trichostatin A, an HDAC inhibitor, significantly reduced CCCTC-binding factor (CTCF) occupancy in the imprinting control region upstream of the H19 gene locus and subsequently downregulated the expression of H19. These results show that the CTCF/H19/miR-675/HDAC regulatory pathway plays an important role in the commitment of BMSCs into adipocytes. PMID:27349231

  4. PERK Utilizes Intrinsic Lipid Kinase Activity To Generate Phosphatidic Acid, Mediate Akt Activation, and Promote Adipocyte Differentiation

    PubMed Central

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J.; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A.; Witze, Eric S.

    2012-01-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought. PMID:22493067

  5. PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation.

    PubMed

    Bobrovnikova-Marjon, Ekaterina; Pytel, Dariusz; Riese, Matthew J; Vaites, Laura Pontano; Singh, Nickpreet; Koretzky, Gary A; Witze, Eric S; Diehl, J Alan

    2012-06-01

    The endoplasmic reticulum (ER) resident PKR-like kinase (PERK) is necessary for Akt activation in response to ER stress. We demonstrate that PERK harbors intrinsic lipid kinase, favoring diacylglycerol (DAG) as a substrate and generating phosphatidic acid (PA). This activity of PERK correlates with activation of mTOR and phosphorylation of Akt on Ser473. PERK lipid kinase activity is regulated in a phosphatidylinositol 3-kinase (PI3K) p85α-dependent manner. Moreover, PERK activity is essential during adipocyte differentiation. Because PA and Akt regulate many cellular functions, including cellular survival, proliferation, migratory responses, and metabolic adaptation, our findings suggest that PERK has a more extensive role in insulin signaling, insulin resistance, obesity, and tumorigenesis than previously thought.

  6. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes

    PubMed Central

    2013-01-01

    Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA. PMID:24059847

  7. Nuclear Hormone Receptor LXRα Inhibits Adipocyte Differentiation of Mesenchymal Stem Cells with Wnt/beta-catenin Signaling

    PubMed Central

    Matsushita, Kenichi; Morello, Fulvio; Zhang, Zhiping; Masuda, Tomoko; Iwanaga, Shiro; Steffensen, Knut R.; Gustafsson, Jan-Åke; Pratt, Richard E.; Dzau, Victor J.

    2015-01-01

    Nuclear hormone receptor liver X receptor-alpha (LXRα) plays a vital role in cholesterol homeostasis and is reported to play a role in adipose function and obesity although this is controversial. Conversely, mesenchymal stem cells (MSCs) are suggested to be a major source of adipocyte generation. Accordingly, we examined the role of LXRα in adipogenesis of MSCs. Adult murine MSCs (mMSCs) were isolated from wild type (WT) and LXR-null mice. Using WT mMSCs, we further generated cell lines stably overexpressing GFP-LXRα (mMSC/LXRα/GFP) or GFP alone (mMSC/GFP) by retroviral infection. Confluent mMSCs were differentiated into adipocytes by the established protocol. Compared with MSCs isolated from WT mice, MSCs from LXR-null mice showed significantly increased adipogenesis, as determined by lipid droplet accumulation and adipogenesis-related gene expression. Moreover, mMSCs stably overexpressing GFP-LXRα (mMSC/LXRα/GFP) exhibited significantly decreased adipogenesis compared with mMSCs overexpressing GFP alone (mMSC/GFP). Since Wnt/beta-catenin signaling is reported to inhibit adipogenesis, we further examined it. The LXR-null group showed significantly decreased Wnt expression accompanied by a decrease of cellular beta-catenin (vs. WT). The mMSC/LXRα/GFP group exhibited significantly increased Wnt expression accompanied by an increase of cellular beta-catenin (vs. mMSC/GFP). These data demonstrate that LXRα has an inhibitory effect on adipogenic differentiation in murine mesenchymal stem cells with Wnt/beta-catenin signaling. These results provide important insights into the pathophysiology of obesity and obesity related consequences such as metabolic syndrome and may identify potential therapeutic targets. PMID:26595172

  8. Alliin, a Garlic (Allium sativum) Compound, Prevents LPS-Induced Inflammation in 3T3-L1 Adipocytes

    PubMed Central

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile. PMID:24453416

  9. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes.

    PubMed

    Quintero-Fabián, Saray; Ortuño-Sahagún, Daniel; Vázquez-Carrera, Manuel; López-Roa, Rocío Ivette

    2013-01-01

    Garlic (Allium sativum L.) has been used to alleviate a variety of health problems due to its high content of organosulfur compounds and antioxidant activity. The main active component is alliin (S-allyl cysteine sulfoxide), a potent antioxidant with cardioprotective and neuroprotective actions. In addition, it helps to decrease serum levels of glucose, insulin, triglycerides, and uric acid, as well as insulin resistance, and reduces cytokine levels. However its potential anti-inflammatory effect is unknown. We examined the effects of alliin in lipopolysaccharide- (LPS-) stimulated 3T3-L1 adipocytes by RT-PCR, Western blot, and microarrays analysis of 22,000 genes. Incubation of cells for 24 h with 100 μmol/L alliin prevented the increase in the expression of proinflammatory genes, IL-6, MCP-1, and Egr-1 in 3T3-L1 adipocytes exposed to 100 ng/mL LPS for 1 h. Interestingly, the phosphorylation of ERK1/2, which is involved in LPS-induced inflammation in adipocytes, was decreased following alliin treatment. Furthermore, the gene expression profile by microarrays evidentiate an upregulation of genes involved in immune response and downregulation of genes related with cancer. The present results have shown that alliin is able to suppress the LPS inflammatory signals by generating an anti-inflammatory gene expression profile and by modifying adipocyte metabolic profile.

  10. 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes.

    PubMed

    Chakrabarti, Swarup K; Cole, Banumathi K; Wen, Yeshao; Keller, Susanna R; Nadler, Jerry L

    2009-09-01

    Inflammation and insulin resistance associated with visceral obesity are important risk factors for the development of type 2 diabetes, atherosclerosis, and the metabolic syndrome. The 12/15-lipoxygenase (12/15-LO) enzyme has been linked to inflammatory changes in blood vessels that precede the development of atherosclerosis. The expression and role of 12/15-LO in adipocytes have not been evaluated. We found that 12/15-LO mRNA was dramatically upregulated in white epididymal adipocytes of high-fat fed mice. 12/15-LO was poorly expressed in 3T3-L1 fibroblasts and was upregulated during differentiation into adipocytes. Interestingly, the saturated fatty acid palmitate, a major component of high fat diets, augmented expression of 12/15-LO in vitro. When 3T3-L1 adipocytes were treated with the 12/15-LO products, 12-hydroxyeicosatetranoic acid (12(S)-HETE) and 12-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), expression of proinflammatory cytokine genes, including tumor necrosis factor-alpha (TNF-alpha), monocyte chemoattractant protein 1 (MCP-1), interleukin 6 (IL-6), and IL-12p40, was upregulated whereas anti-inflammatory adiponectin gene expression was downregulated. 12/15-LO products also augmented c-Jun N-terminal kinase 1 (JNK-1) phosphorylation, a known negative regulator of insulin signaling. Consistent with impaired insulin signaling, we found that insulin-stimulated 3T3-L1 adipocytes exhibited decreased IRS-1(Tyr) phosphorylation, increased IRS-1(Ser) phosphorylation, and impaired Akt phosphorylation when treated with 12/15-LO product. Taken together, our data suggest that 12/15-LO products create a proinflammatory state and impair insulin signaling in 3T3-L1 adipocytes. Because 12/15-LO expression is upregulated in visceral adipocytes by high-fat feeding in vivo and also by addition of palmitic acid in vitro, we propose that 12/15-LO plays a role in promoting inflammation and insulin resistance associated with obesity. PMID:19521344

  11. Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning

    PubMed Central

    Bayindir, Irem; Babaeikelishomi, Rohollah; Kocanova, Silvia; Sousa, Isabel Sofia; Lerch, Sarah; Hardt, Olaf; Wild, Stefan; Bosio, Andreas; Bystricky, Kerstin; Herzig, Stephan; Vegiopoulos, Alexandros

    2015-01-01

    De novo formation of beige/brite adipocytes from progenitor cells contributes to the thermogenic adaptation of adipose tissue and holds great potential for the therapeutic remodeling of fat as a treatment for obesity. Despite the recent identification of several factors regulating browning of white fat, there is a lack of physiological cell models for the mechanistic investigation of progenitor-mediated beige/brite differentiation. We have previously revealed prostacyclin (PGI2) as one of the few known endogenous extracellular mediators promoting de novo beige/brite formation by relaying β-adrenergic stimulation to the progenitor level. Here, we present a cell model based on murine primary progenitor cells defined by markers previously shown to be relevant for in vivo browning, including a simplified isolation procedure. We demonstrate the specific and broad induction of thermogenic gene expression by PGI2 signaling in the absence of lineage conversion, and reveal the previously unidentified nuclear relocalization of the Ucp1 gene locus in association with transcriptional activation. By profiling the time course of the progenitor response, we show that PGI2 signaling promoted progenitor cell activation through cell cycle and adhesion pathways prior to metabolic maturation toward an oxidative cell phenotype. Our results highlight the importance of core progenitor activation pathways for the recruitment of thermogenic cells and provide a resource for further mechanistic investigation. PMID:26347713

  12. Attainment of Brown Adipocyte Features in White Adipocytes of Hormone-Sensitive Lipase Null Mice

    PubMed Central

    Ström, Kristoffer; Hansson, Ola; Lucas, Stéphanie; Nevsten, Pernilla; Fernandez, Céline; Klint, Cecilia; Movérare-Skrtic, Sofia; Sundler, Frank; Ohlsson, Claes; Holm, Cecilia

    2008-01-01

    Background Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored tri- and diglycerides, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. Methodology/Principal Findings Following a high-fat diet (HFD) regimen, energy expenditure, measured using indirect calorimetry, was increased in HSL null mice. White adipose tissue of HSL null mice was characterized by reduced mass and reduced protein expression of PPARγ, a key transcription factor in adipogenesis, and stearoyl-CoA desaturase 1, the expression of which is known to be positively correlated to the differentiation state of the adipocyte. The protein expression of uncoupling protein-1 (UCP-1), the highly specific marker of brown adipocytes, was increased 7-fold in white adipose tissue of HSL null mice compared to wildtype littermates. Transmission electron microscopy revealed an increase in the size of mitochondria of white adipocytes of HSL null mice. The mRNA expression of pRb and RIP140 was decreased in isolated white adipocytes, while the expression of UCP-1 and CPT1 was increased in HSL null mice compared to wildtype littermates. Basal oxygen consumption was increased almost 3-fold in white adipose tissue of HSL null mice and was accompanied by increased uncoupling activity. Conclusions These data suggest that HSL is involved in the determination of white versus brown adipocytes during adipocyte differentiation The exact mechanism(s) underlying this novel role of HSL remains to be elucidated, but it seems clear that HSL is required to sustain normal expression levels of pRb and RIP140, which both promote differentiation into the white, rather than the brown, adipocyte lineage

  13. Impact of Metabolic Regulators on the Expression of the Obesity Associated Genes FTO and NAMPT in Human Preadipocytes and Adipocytes

    PubMed Central

    Schönberg, Maria; Bernhard, Falk; Büttner, Petra; Landgraf, Kathrin; Kiess, Wieland; Körner, Antje

    2011-01-01

    Background FTO and NAMPT/PBEF/visfatin are thought to play a role in obesity but their transcriptional regulation in adipocytes is not fully understood. In this study, we evaluated the transcriptional regulation of FTO and NAMPT in preadipocytes and adipocytes by metabolic regulators. Methodology and Principal Findings We assessed FTO mRNA expression during human adipocyte differentiation of Simpson-Golabi-Behmel syndrome (SGBS) cells and primary subcutaneous preadipocytes in vitro and evaluated the effect of the metabolic regulators glucose, insulin, dexamethasone, IGF-1 and isoproterenol on FTO and NAMPT mRNA expression in SGBS preadipocytes and adipocytes. FTO mRNA levels were not significantly modulated during adipocyte differentiation. Also, metabolic regulators had no impact on FTO expression in preadipocytes or adipocytes. In SGBS preadipocytes NAMPT expression was more than 3fold induced by dexamethasone and isoproterenol and 1.6fold by dexamethasone in adipocytes. Complete glucose restriction caused an increase in NAMPT mRNA expression by more than 5fold and 1.4fold in SGBS preadipocytes and adipocytes, respectively. Conclusion FTO mRNA expression is not significantly affected by differentiation or metabolic regulators in human adipocytes. The stimulation of NAMPT expression by dexamethasone, isoproterenol and complete glucose restriction may indicate a regulation of NAMPT by metabolic stress, which was more pronounced in preadipocytes compared to mature adipocytes. PMID:21687707

  14. Nuclear MEK1 Sequesters PPARγ and Bisects MEK1/ERK Signaling: A Non-Canonical Pathway of Retinoic Acid Inhibition of Adipocyte Differentiation

    PubMed Central

    Dave, Sandeep; Nanduri, Ravikanth; Dkhar, Hedwin Kitdorlang; Bhagyaraj, Ella; Rao, Alka; Gupta, Pawan

    2014-01-01

    Uncontrolled adipogenesis and adipocyte proliferation have been connected to human comorbidities. Retinoic acid (RA) is known to inhibit adipocyte differentiation, however the underlying mechanisms have not been adequately understood. This study reports that RA acting as a ligand to RA receptors (RARs and RXRs) is not a sine qua non to the inhibition of adipogenesis. Our intriguing observation of a negative correlation between increased retinoylation and adipogenesis led us to explore retinoylated proteins in adipocytes. Exportin (CRM1) was found to be retinoylated, which in turn can affect the spatio-temporal regulation of the important signaling molecule mitogen-activated protein kinase kinase 1 (MEK1), likely by disrupting its export from the nucleus. Nuclear enrichment of MEK1 physically sequesters peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis, from its target genes and thus inhibits adipogenesis while also disrupting the MEK1-extracellular-signal regulated kinase (ERK) signaling cascade. This study is first to report the inhibition of adipocyte differentiation by retinoylation. PMID:24959884

  15. Impact of tamoxifen on adipocyte lineage tracing: Inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase

    PubMed Central

    Ye, Risheng; Wang, Qiong A.; Tao, Caroline; Vishvanath, Lavanya; Shao, Mengle; McDonald, Jeffery G.; Gupta, Rana K.; Scherer, Philipp E.

    2015-01-01

    Background The selective estrogen receptor modulator tamoxifen, in combination with the Cre-ERT2 fusion protein, has been one of the mainstream methods to induce genetic recombination and has found widespread application in lineage tracing studies. Methods & results Here, we report that tamoxifen exposure at widely used concentrations remains detectable by mass-spectrometric analysis in adipose tissue after a washout period of 10 days. Surprisingly, its ability to maintain nuclear translocation of the Cre-ERT2 protein is preserved beyond 2 months of washout. Tamoxifen treatment acutely leads to transient lipoatrophy, followed by de novo adipogenesis that reconstitutes the original fat mass. In addition, we find a “synthetically lethal” phenotype for adipocytes when tamoxifen treatment is combined with adipocyte-specific loss-of-function mutants, such as an adipocyte-specific PPARγ knockout. This is observed to a lesser extent when alternative inducible approaches are employed. Conclusions These findings highlight the potential for tamoxifen-induced adipogenesis, and the associated drawbacks of the use of tamoxifen in lineage tracing studies, explaining the discrepancy in lineage tracing results from different systems with temporal control of gene targeting. PMID:26629402

  16. Sulforaphane induces apoptosis in adipocytes via Akt/p70s6k1/Bad inhibition and ERK activation.

    PubMed

    Yao, Anjun; Shen, Yingzhuo; Wang, Anshi; Chen, Shiyong; Zhang, Huiqin; Chen, Fen; Chen, Zhongming; Wei, Hua; Zou, Zuquan; Shan, Yujuan; Zhang, Xiaohong

    2015-10-01

    Sulforaphane (SFN), an isothiocyanate isolated from cruciferous vegetables, possesses anti-oxidant and anti-cancer bioactivities. Moreover, SFN exerts its pro-apoptotic effects in some cancer lines. However, the effects and mechanisms of SFN on the regulation of apoptosis of adipocytes are still unknown. In this study, we found that SFN induced significant apoptosis in 3T3-L1 adipocytes and markedly decreased the cellular lipid content. Western blot demonstrated that SFN-induced apoptosis was mediated via the mitochondrial apoptosis pathway based on increased cleavage of poly-ADP-ribose-polymerase (PARP), release of cytochrome c into the cytoplasm, and activation of caspase-3, as well as decreased Bcl-2/Bax ratio. In addition, SFN markedly decreased phosphorylation of Akt and downstream proteins, p70s6k1 and Bad, and increased phosphorylation of ERK. Therefore, our findings clarified that SFN could induce 3T3-L1 adipocyte apoptosis via down-regulation of the Akt/p70s6k1/Bad pathway and up-regulation of the ERK pathway, suggesting SFN may be a promising agent for the treatment or prevention of obesity.

  17. Glucocorticoids increase adipocytes in muscle by affecting IL-4 regulated FAP activity

    PubMed Central

    Dong, Yanjun; Silva, Kleiton Augusto Santos; Dong, Yanlan; Zhang, Liping

    2014-01-01

    An increase in intramuscular adipocyte tissue (IMAT) is associated with glucose dysregulation, decreased muscle strength, and increased risk of disability. Unfortunately, the mechanisms stimulating intramuscular adipogenesis remain unclear. We found that dexamethasone (Dex) administration to mice with injured muscles stimulates the accumulation of IMAT. To identify precursors of these adipocytes, we isolated satellite cells and fibro/adipogenic progenitors (FAPs) from muscle; satellite cells did not differentiate into adipocytes even following Dex treatment. In contrast, Dex stimulated FAP differentiation into adipocytes. In vivo, we transplanted purified FAPs from transgenic, EGFP mice into the injured muscles of C57/BL6 mice and found that Dex administration stimulated adipogenesis from FAP-EGFP. The increase in adipogenesis depended on Dex-induced inhibition of interleukin-4 (IL-4). In the injured muscle of IL-4-knockout mice, the levels of adipocytes were increased, while in the injured muscles of Dex-treated mice with IL-4 injections, adipogenesis was suppressed. In cultured FAPs, IL-4 inhibited Dex-induced conversion of FAPs into adipocytes; this did not occur in FAPs expressing knockdown of the IL-4 receptor. Thus, we concluded that glucocorticoids stimulate FAPs to differentiate into adipocytes in injured muscles. This process is blocked by IL-4, suggesting that interfering with IL-4 signaling could prevent adipogenesis in muscle.—Dong, Y., Silva, K. A. S., Dong, Y., Zhang, L. Glucocorticoids increase adipocytes in muscle by affecting IL-4 regulated FAP activity. PMID:24948596

  18. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3.

    PubMed

    Hallenborg, P; Siersbæk, M; Barrio-Hernandez, I; Nielsen, R; Kristiansen, K; Mandrup, S; Grøntved, L; Blagoev, B

    2016-01-01

    The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last but not least, the binding of CRTC2 to a transcriptional enhancer that interacts with the Cebpd promoter was dramatically decreased upon JAK inhibition. Our data reveal the existence of an unusual functional interplay between STATs and CREB at the onset of adipogenesis through shared CRTC cofactors. PMID:27362806

  19. MDM2 facilitates adipocyte differentiation through CRTC-mediated activation of STAT3.

    PubMed

    Hallenborg, P; Siersbæk, M; Barrio-Hernandez, I; Nielsen, R; Kristiansen, K; Mandrup, S; Grøntved, L; Blagoev, B

    2016-06-30

    The ubiquitin ligase MDM2 is best known for balancing the activity of the tumor suppressor p53. We have previously shown that MDM2 is vital for adipocyte conversion through controlling Cebpd expression in a p53-independent manner. Here, we show that the proadipogenic effect of MDM2 relies on activation of the STAT family of transcription factors. Their activation was required for the cAMP-mediated induction of target genes. Interestingly, rather than influencing all cAMP-stimulated genes, inhibition of the kinases directly responsible for STAT activation, namely JAKs, or ablation of MDM2, each resulted in abolished induction of a subset of cAMP-stimulated genes, with Cebpd being among the most affected. Moreover, STATs were able to interact with the transcriptional cofactors CRTC2 and CRTC3, hitherto only reported to associate with the cAMP-responsive transcription factor CREB. Last but not least, the binding of CRTC2 to a transcriptional enhancer that interacts with the Cebpd promoter was dramatically decreased upon JAK inhibition. Our data reveal the existence of an unusual functional interplay between STATs and CREB at the onset of adipogenesis through shared CRTC cofactors.

  20. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation.

    PubMed

    García-Martín, Rubén; Alexaki, Vasileia I; Qin, Nan; Rubín de Celis, María F; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R; Eisenhofer, Graeme; Breier, Georg; Blüher, Matthias; Hampe, Jochen; El-Armouche, Ali; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin; Chavakis, Triantafyllos

    2016-02-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction. PMID:26572826

  1. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation

    PubMed Central

    Alexaki, Vasileia I.; Qin, Nan; Rubín de Celis, María F.; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R.; Eisenhofer, Graeme; Breier, Georg; Blüher, Matthias; Hampe, Jochen; El-Armouche, Ali; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin

    2015-01-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction. PMID:26572826

  2. Adipocyte-Specific Deletion of Manganese Superoxide Dismutase Protects From Diet-Induced Obesity Through Increased Mitochondrial Uncoupling and Biogenesis.

    PubMed

    Han, Yong Hwan; Buffolo, Márcio; Pires, Karla Maria; Pei, Shaobo; Scherer, Philipp E; Boudina, Sihem

    2016-09-01

    Obesity and insulin resistance are associated with oxidative stress (OS). The causal role of adipose OS in the pathogenesis of these conditions is unknown. To address this issue, we generated mice with an adipocyte-selective deletion of manganese superoxide dismutase (MnSOD). When fed a high-fat diet (HFD), the AdSod2 knockout (KO) mice exhibited less adiposity, reduced adipocyte hypertrophy, and decreased circulating leptin. The resistance to diet-induced adiposity was the result of an increased metabolic rate and energy expenditure. Furthermore, palmitate oxidation was elevated in the white adipose tissue (WAT) and brown adipose tissue of AdSod2 KO mice fed an HFD, and the expression of key fatty acid oxidation genes was increased. To gain mechanistic insight into the increased fat oxidation in HFD-fed AdSod2 KO mice, we quantified the mitochondrial function and mitochondrial content in WAT and found that MnSOD deletion increased mitochondrial oxygen consumption and induced mitochondrial biogenesis. This effect was preserved in cultured adipocytes from AdSod2 KO mice in vitro. As expected from the enhanced fat oxidation, circulating levels of free fatty acids were reduced in the HFD-fed AdSod2 KO mice. Finally, HFD-fed AdSod2 KO mice were protected from hepatic steatosis, adipose tissue inflammation, and glucose and insulin intolerance. Taken together, these results demonstrate that MnSOD deletion in adipocytes triggered an adaptive stress response that activated mitochondrial biogenesis and enhanced mitochondrial fatty acid oxidation, thereby preventing diet-induced obesity and insulin resistance. PMID:27284109

  3. Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity

    PubMed Central

    2016-01-01

    All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat depots and their mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate itself from white adipocytes. Importantly, adult human brown adipocyte appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases. Because many epigenetic changes can affect beige adipocyte differentiation, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important for therapeutic strategies. In this review we discuss some recent observations arising from the great physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2. PMID:27528872

  4. Biology of Beige Adipocyte and Possible Therapy for Type 2 Diabetes and Obesity.

    PubMed

    Lizcano, Fernando; Vargas, Diana

    2016-01-01

    All mammals own two main forms of fat. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue instead of inducing fat accumulation can produce energy as heat. Since adult humans possess significant amounts of active brown fat depots and their mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate itself from white adipocytes. Importantly, adult human brown adipocyte appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases. Because many epigenetic changes can affect beige adipocyte differentiation, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important for therapeutic strategies. In this review we discuss some recent observations arising from the great physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2. PMID:27528872

  5. TWEAK prevents TNF-α-induced insulin resistance through PP2A activation in human adipocytes.

    PubMed

    Vázquez-Carballo, Ana; Ceperuelo-Mallafré, Victòria; Chacón, Matilde R; Maymó-Masip, Elsa; Lorenzo, Margarita; Porras, Almudena; Vendrell, Joan; Fernández-Veledo, Sonia

    2013-07-01

    Visceral fat is strongly associated with insulin resistance. Obesity-associated adipose tissue inflammation and inflammatory cytokine production are considered key mediators of insulin signaling inhibition. TWEAK is a relatively new member of the TNF cytokine superfamily, which can exist as full length membrane-associated (mTWEAK) and soluble (sTWEAK) isoforms. Although TWEAK has been shown to have important functions in chronic inflammatory diseases its physiological role in adipose tissue remains unresolved. In this study, we explore the molecular mechanisms involved in the modulation of TNF-α-induced effects on insulin sensitivity by sTWEAK in a human visceral adipose cell line and also in primary human adipocytes obtained from visceral fat depots. Our data reveal that sTWEAK ameliorates TNF-α-induced insulin resistance on glucose uptake, GLUT4 translocation and insulin signaling without affecting other metabolic effects of TNF-α such as lipolysis or apoptotis. Co-immunoprecipitation experiments in adipose cells revealed that pretreatment with sTWEAK specifically inhibits TRAF2 association with TNFR1, but not with TNFR2, which mediates insulin resistance. However, sTWEAK does not affect other downstream molecules activated by TNF-α, such as TAK1. Rather, sTWEAK abolishes the stimulatory effect of TNF-α on JNK1/2, which is directly involved in the development of insulin resistance. This is associated with an increase in PP2A activity upon sTWEAK treatment. Silencing of the PP2A catalytic subunit gene overcomes the dephosphorylation effect of sTWEAK on JNK1/2, pointing to PP2A as a relevant mediator of sTWEAK-induced JNK inactivation. Overall, our data reveal a protective role of TWEAK in glucose homeostasis and identify PP2A as a new driver in the modulation of TNF-α signaling by sTWEAK.

  6. Green Tea (-)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes.

    PubMed

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-03-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The -970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  7. Green Tea (−)-Epigallotocatechin-3-Gallate Induces PGC-1α Gene Expression in HepG2 Cells and 3T3-L1 Adipocytes

    PubMed Central

    Lee, Mak-Soon; Lee, Seohyun; Doo, Miae; Kim, Yangha

    2016-01-01

    Green tea (Camellia sinensis) is one of the most popular beverages in the world and has been acknowledged for centuries as having significant health benefits. (−)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin in green tea, and it has been reported to have health benefit effects. Peroxisome proliferator-activated receptor γ coactivator (PGC)-1α is a crucial regulator of mitochondrial biogenesis and hepatic gluconeogenesis. The objective of this study was to investigate whether EGCG from green tea can affect the ability of transcriptional regulation on PGC-1α mRNA expression in HepG2 cells and 3T3-L1 adipocytes. To study the molecular mechanism that allows EGCG to control PGC-1α expression, the promoter activity levels of PGC-1α were examined. The PGC-1α mRNA level was measured using quantitative real-time PCR. The −970/+412 bp of PGC-1α promoter was subcloned into the pGL3-Basic vector that includes luciferase as a reporter gene. EGCG was found to up-regulate the PGC-1α mRNA levels significantly with 10 μmol/L of EGCG in HepG2 cells and differentiated 3T3-L1 adipocytes. PGC-1α promoter activity was also increased by treatment with 10 μmol/L of EGCG in both cells. These results suggest that EGCG may induce PGC-1α gene expression, potentially through promoter activation. PMID:27069908

  8. Hypoxia induces a HIF-1α dependent signaling cascade to make a complex metabolic switch in SGBS-adipocytes.

    PubMed

    Leiherer, Andreas; Geiger, Kathrin; Muendlein, Axel; Drexel, Heinz

    2014-03-01

    To elucidate the complex impact of hypoxia on adipose tissue, resulting in biased metabolism, insulin resistance and finally diabetes we used mature adipocytes derived from a Simpson-Golabi-Behmel syndrome patient for microarray analysis. We found a significantly increased transcription rate of genes involved in glycolysis and a striking association between the pattern of upregulated genes and disease biomarkers for diabetes mellitus and insulin resistance. Although their upregulation turned out to be HIF-1α-dependent, we identified further transcription factors mainly AP-1 components to play also an important role in hypoxia response. Analyzing the regulatory network of mentioned transcription factors and glycolysis targets we revealed a clear hint for directing glycolysis to glutathione and glycogen synthesis. This metabolic switch in adipocytes enables the cell to prevent oxidative damage in the short term but might induce lipogenesis and establish systemic metabolic disorders in the long run. PMID:24275182

  9. Hypoxia induces a HIF-1α dependent signaling cascade to make a complex metabolic switch in SGBS-adipocytes.

    PubMed

    Leiherer, Andreas; Geiger, Kathrin; Muendlein, Axel; Drexel, Heinz

    2014-03-01

    To elucidate the complex impact of hypoxia on adipose tissue, resulting in biased metabolism, insulin resistance and finally diabetes we used mature adipocytes derived from a Simpson-Golabi-Behmel syndrome patient for microarray analysis. We found a significantly increased transcription rate of genes involved in glycolysis and a striking association between the pattern of upregulated genes and disease biomarkers for diabetes mellitus and insulin resistance. Although their upregulation turned out to be HIF-1α-dependent, we identified further transcription factors mainly AP-1 components to play also an important role in hypoxia response. Analyzing the regulatory network of mentioned transcription factors and glycolysis targets we revealed a clear hint for directing glycolysis to glutathione and glycogen synthesis. This metabolic switch in adipocytes enables the cell to prevent oxidative damage in the short term but might induce lipogenesis and establish systemic metabolic disorders in the long run.

  10. Cancer cells, adipocytes and matrix metalloproteinase 11: a vicious tumor progression cycle.

    PubMed

    Motrescu, Elena Roza; Rio, Marie-Christine

    2008-08-01

    This brief review focuses on the emerging role of matrix metalloproteinase 11 (MMP-11) in cancer progression. It has recently been shown that MMP-11 is induced in adipose tissue by cancer cells as they invade their surrounding environment. MMP-11 negatively regulates adipogenesis by reducing pre-adipocyte differentiation and reversing mature adipocyte differentiation. Adipocyte dedifferentiation in turn leads to the accumulation of nonmalignant peritumoral fibroblast-like cells, which favor cancer cell survival and tumor progression. This MMP-11-mediated bi-directional cross-talk between invading cancer cells and adjacent adipocytes/pre-adipocytes highlights the central role that MMP-11 plays during tumor desmoplasia and represents a molecular link between obesity and cancer.

  11. Increasing adipocyte lipoprotein lipase improves glucose metabolism in high fat diet-induced obesity.

    PubMed

    Walton, R Grace; Zhu, Beibei; Unal, Resat; Spencer, Michael; Sunkara, Manjula; Morris, Andrew J; Charnigo, Richard; Katz, Wendy S; Daugherty, Alan; Howatt, Deborah A; Kern, Philip A; Finlin, Brian S

    2015-05-01

    Lipid accumulation in liver and skeletal muscle contributes to co-morbidities associated with diabetes and obesity. We made a transgenic mouse in which the adiponectin (Adipoq) promoter drives expression of lipoprotein lipase (LPL) in adipocytes to potentially increase adipose tissue lipid storage. These mice (Adipoq-LPL) have improved glucose and insulin tolerance as well as increased energy expenditure when challenged with a high fat diet (HFD). To identify the mechanism(s) involved, we determined whether the Adipoq-LPL mice diverted dietary lipid to adipose tissue to reduce peripheral lipotoxicity, but we found no evidence for this. Instead, characterization of the adipose tissue of the male mice after HFD challenge revealed that the mRNA levels of peroxisome proliferator-activated receptor-γ (PPARγ) and a number of PPARγ-regulated genes were higher in the epididymal fat pads of Adipoq-LPL mice than control mice. This included adiponectin, whose mRNA levels were increased, leading to increased adiponectin serum levels in the Adipoq-LPL mice. In many respects, the adipose phenotype of these animals resembles thiazolidinedione treatment except for one important difference, the Adipoq-LPL mice did not gain more fat mass on HFD than control mice and did not have increased expression of genes in adipose such as glycerol kinase, which are induced by high affinity PPAR agonists. Rather, there was selective induction of PPARγ-regulated genes such as adiponectin in the adipose of the Adipoq-LPL mice, suggesting that increasing adipose tissue LPL improves glucose metabolism in diet-induced obesity by improving the adipose tissue phenotype. Adipoq-LPL mice also have increased energy expenditure.

  12. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  13. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  14. Buddleja officinalis Maximowicz extract inhibits lipid accumulation on adipocyte differentiation in 3T3-L1 cells and high-fat mice.

    PubMed

    Roh, Changhyun; Park, Min-Kyoung; Shin, Hee-June; Jung, Uhee; Kim, Jin-Kyu

    2012-07-23

    Obesity is a global health problem. It is also known to be a risk factor for the development of metabolic disorders, type 2 diabetes, systemic hypertension, cardiovascular disease, dyslipidemia, and atherosclerosis. In this study, we elucidated that Buddleja officinalis Maximowicz extract significantly inhibited lipid accumulation during 3T3-L1 adipocyte differentiation. Furthermore, Buddleja officinalis Maximowicz extract reduced the body weight gain induced through feeding a high-fat diet to C57BL/6 mice. The treatment of Buddleja officinalis Maximowicz extract significantly reduced the adipose tissue weight to 2.7/100 g of body weight in high-fat mice. When their adipose tissue morphology was investigated for histochemical staining, the distribution of cell size in the high-fat diet groups was hypertrophied compared with those from Buddleja officinalis Maximowicz extract-treated mice. In addition, in Buddleja officinalis Maximowicz extract-treated mice, a significant reduction of serum triglyceride and T-cholesterol was observed at to 21% and 17%, respectively. The discovery of bioactive compounds from diet or dietary supplementation is one of possible ways to control obesity and to prevent or reduce the risks of various obesity-related diseases. These results support that Buddleja officinalis Maximowicz extract is expected to create the therapeutic interest with respect to the treatment of obesity.

  15. Reciprocal regulation of adipocyte and osteoblast differentiation of mesenchymal stem cells by Eupatorium japonicum prevents bone loss and adiposity increase in osteoporotic rats.

    PubMed

    Kim, Min-Ji; Jang, Woo-Seok; Lee, In-Kyoung; Kim, Jong-Keun; Seong, Ki-Seung; Seo, Cho-Rong; Song, No-Joon; Bang, Min-Hyuk; Lee, Young Min; Kim, Haeng Ran; Park, Ki-Moon; Park, Kye Won

    2014-07-01

    Pathological increases in adipogenic potential with decreases in osteogenic differentiation occur in osteoporotic bone marrow cells. Previous studies have shown that bioactive materials isolated from natural products can reciprocally regulate adipogenic and osteogenic fates of bone marrow cells. In this study, we showed that Eupatorium japonicum stem extracts (EJE) suppressed lipid accumulation and inhibited the expression of adipocyte markers in multipotent C3H10T1/2 and primary bone marrow cells. Conversely, EJE stimulated alkaline phosphatase activity and induced the expression of osteoblast markers in C3H10T1/2 and primary bone marrow cells. Daily oral administration of 50 mg/kg of EJE for 6 weeks to ovariectomized rats prevented body weight increase and bone mineral density decrease. Finally, activity-guided fractionation led to the identification of coumaric acid and coumaric acid methyl ester as bioactive anti-adipogenic and pro-osteogenic components in EJE. Taken together, our data indicate a promising possibility of E. japonicum as a functional food and as a therapeutic intervention for preventing osteoporosis and bone fractures.

  16. Effects of Pueraria lobata Root Ethanol Extract on Adipogenesis and Lipogenesis During 3T3-L1 Differentiation into Adipocytes.

    PubMed

    Lee, Chae Myoung; Yoon, Mi Sook; Kim, Young Chul

    2015-06-01

    We evaluated the inhibitory effect of Pueraria lobata root ethanol extract (PLREE) on lipid accumulation during 3T3-L1 differentiation to adipocytes by measuring the intracellular expression of adipogenic, lipogenic, and lipolytic markers and lipid accumulation. The total polyphenol and flavonoid content of PLREE were 47 and 29 mg/g, respectively. The electron donating capacity of PLREE at 1,000 μg/mL was 48.8%. Treatment of 3T3-L1 preadipocytes with 100, 250, or 500 μg/mL PLREE for 8 days dose-dependently promoted the differentiation of 3T3-L1 cells. In contrast, the lipid content of PLREE-treated cells was significantly reduced by 7.8% (p < 0.05), 35.6% (p < 0.001), and 42.2% (p < 0.001) following treatment with 100, 250, and 500 μg/mL PLREE, respectively, as compared to differentiated control cells. PLREE upregulated peroxisome proliferator-activated receptor γ mRNA and protein, and sterol regulator element-binding protein-1c mRNA levels, but did not affect CCAAT/enhancer binding-protein β and α mRNA levels. PLREE also downregulated acetyl-CoA carboxylase mRNA and protein, fatty acid synthase (FAS) protein, and leptin mRNA levels, but did not affect FAS mRNA expression. PLREE upregulated adipose triglyceride lipase mRNA and protein expression, and hormone-sensitive lipase (HSL) protein expression, but did not affect HSL mRNA expression. In conclusion, we found that PLREE enhanced adipogenesis, but reduced lipogenesis, resulting in decreased lipid accumulation in 3T3-L1 cells. PMID:26191386

  17. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes[S

    PubMed Central

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M. Luisa; Ribot, Joan; Landrier, Jean-François

    2015-01-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells. PMID:25914170

  18. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes.

    PubMed

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M Luisa; Ribot, Joan; Landrier, Jean-François

    2015-06-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.

  19. Protein Malnutrition Induces Bone Marrow Mesenchymal Stem Cells Commitment to Adipogenic Differentiation Leading to Hematopoietic Failure

    PubMed Central

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states. PMID:23516566

  20. Flavanone exhibits PPAR{gamma} ligand activity and enhances differentiation of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo

    2009-03-06

    Flavanones are class of polyphenolic compounds, some of which are found in foods and provide health benefits. In this study, we show that flavanone significantly enhances differentiation of 3T3-L1 preadipocytes. During adipogenesis, flavanone enhanced expression of genes and accumulation of proteins that are involved in adipocyte function. Some reports have indicated that flavanone inhibits proliferation of mammalian cells, and down-regulates expression of growth-related proteins. Such proteins include phosphorylated ERK1/2, cyclins, and Cdks that are important for an early event in adipogenesis, mitotic clonal expansion (MCE). We demonstrated that flavanone did not inhibit MCE or expression of MCE-related proteins, except for a modest inhibition of cyclin D1 expression. Using luciferase reporter assays, we found that flavanone acted as a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligand in a dose-dependent manner. Together, our results suggest that flavanone enhances adipogenesis, at least in part, through its PPAR{gamma} ligand activity.

  1. An analogue of atrial natriuretic peptide (C-ANP4-23) modulates glucose metabolism in human differentiated adipocytes.

    PubMed

    Ruiz-Ojeda, Francisco Javier; Aguilera, Concepción María; Rupérez, Azahara Iris; Gil, Ángel; Gomez-Llorente, Carolina

    2016-08-15

    The present study was undertaken to investigate the effects of C-atrial natriuretic peptide (C-ANP4-23) in human adipose-derived stem cells differentiated into adipocytes over 10 days (1 μM for 4 h). The intracellular cAMP, cGMP and protein kinase A levels were determined by ELISA and gene and protein expression were determined by qRT-PCR and Western blot, respectively, in the presence or absence of C-ANP4-23. The levels of lipolysis and glucose uptake were also determined. C-ANP4-23 treatment significantly increased the intracellular cAMP levels and the gene expression of glucose transporter type 4 (GLUT4) and protein kinase, AMP-activated, alpha 1 catalytic subunit (AMPK). Western blot showed a significant increase in GLUT4 and phosphor-AMPKα levels. Importantly, the adenylate cyclase inhibitor SQ22536 abolished these effects. Additionally, C-ANP4-23 increased glucose uptake by 2-fold. Our results show that C-ANP4-23 enhances glucose metabolism and might contribute to the development of new peptide-based therapies for metabolic diseases. PMID:27181211

  2. Dietary vitamin A restriction affects adipocyte differentiation and fatty acid composition of intramuscular fat in Iberian pigs.

    PubMed

    Ayuso, M; Óvilo, C; Rodríguez-Bertos, A; Rey, A I; Daza, A; Fenández, A; González-Bulnes, A; López-Bote, C J; Isabel, B

    2015-10-01

    The aim of this study was to investigate whether dietary vitamin A level is associated with differences in adipocyte differentiation or lipid accumulation in Iberian pigs at early growing (35.8kg live weight) and at finishing (158kg live weight). Iberian pigs of 16.3kg live weight were allocated to two feeding groups, one group received 10,000IU of vitamin A/kg diet (control); the other group received a diet with 0IU of vitamin A (var) for the whole experimental period. The dietary vitamin A level had no effect on growth performance and carcass traits. The early suppression of vitamin A increased the preadipocyte number in Longissimus thoracis (LT) muscle in the early growth period (P<0.001) and the neutral lipid content and composition (higher MUFA and lower SFA content) at the end of the finishing period (P<0.05). Vitamin A restriction in young pigs increases their lipogenic potential without affecting carcass traits.

  3. Directing Parthenogenetic Stem Cells Differentiate into Adipocytes for Engineering Injectable Adipose Tissue

    PubMed Central

    Liu, Wei; Yang, Xingyuan; Yan, Xingrong; Cui, Jihong; Liu, Wenguang; Sun, Mei; Rao, Yang; Chen, Fulin

    2014-01-01

    The selection of appropriate seed cells is crucial for adipose tissue engineering. Here, we reported the stepwise induction of parthenogenetic embryonic stem cells (pESCs) to differentiate into adipogenic cells and its application in engineering injectable adipose tissue with Pluronic F-127. pESCs had pluripotent differentiation capacity and could form teratomas that include the three primary germ layers. Cells that migrated from the embryoid bodies (EBs) were selectively separated and expanded to obtain embryonic mesenchymal stem cells (eMSCs). The eMSCs exhibited similar cell surface marker expression profiles with bone morrow mesenchymal stem cells (BMSCs) and had multipotent differentiation capacity. Under the induction of dexamethasone, indomethacin, and insulin, eMSCs could differentiate into adipogenic cells with increased expression of adipose-specific genes and oil droplet depositions within the cytoplasm. To evaluate their suitability as seed cells for adipose tissue engineering, the CM-Dil labelled adipogenic cells derived from eMSCs were seeded into Pluronic F-127 hydrogel and injected subcutaneously into nude mice. Four weeks after injection, glistering and semitransparent constructs formed in the subcutaneous site. Histological observations demonstrated that new adipose tissue was successfully fabricated in the specimen by the labelled cells. The results of the current study indicated that pESCs have great potential in the fabrication of injectable adipose tissue. PMID:25587287

  4. Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Promote Adipocyte Differentiation and Inhibit Inflammation in 3T3-F442A Cells

    PubMed Central

    Chakrabarti, Subhadeep; Wu, Jianping

    2015-01-01

    Milk derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) have shown promise as anti-hypertensive agents due to their inhibitory effects on angiotensin converting enzyme (ACE). Due to the key inter-related roles of hypertension, chronic inflammation and insulin resistance in the pathogenesis of metabolic syndrome, there is growing interest in investigating established anti-hypertensive agents for their effects on insulin sensitivity and inflammation. In this study, we examined the effects of IPP and VPP on 3T3-F442A murine pre-adipocytes, a widely used model for studying metabolic diseases. We found that both IPP and VPP induced beneficial adipogenic differentiation as manifested by intracellular lipid accumulation, upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) and secretion of the protective lipid hormone adiponectin by these cells. The observed effects were similar to those induced by insulin, suggesting potential benefits in the presence of insulin resistance. IPP and VPP also inhibited cytokine induced pro-inflammatory changes such as reduction in adipokine levels and activation of the nuclear factor kappa B (NF-κB) pathway. Taken together, our findings suggest that IPP and VPP exert insulin-mimetic adipogenic effects and prevent inflammatory changes in adipocytes, which may offer protection against metabolic disease. PMID:25714093

  5. Rat white adipocytes activate p85/p110 PI3K and induce PM GLUT4 in response to adrenoceptor agonists or aluminum fluoride.

    PubMed

    Ohsaka, Y; Nomura, Y

    2016-03-01

    Adipocyte responses to adrenergic and ß-adrenoceptor(-AR) (adrenoceptor) regulation are not sufficiently understood, and information helpful for elucidating the adrenoceptor-responsive machinery is insufficient. Here we show by using immunoprecipitated kinase analysis with a phosphatidylinositol 3-kinase (PI3K) p85 antibody that PI3K activation was induced by treatment with 10 or 100 µM norepinephrine (NE) for 15 min or with 10 mM aluminum fluoride (AF, a guanosine triphosphate (GTP)-binding (G) protein activator) for 20 min in white adipocytes (rat epididymal adipocytes) and that treatment with pertussis toxin (PTX, a G-protein inactivator) inhibited PI3K activation induced by the 20-min treatment with AF in the cells. In addition, western blot analysis revealed that glucose transporter 4 (GLUT4) level in the adipocyte plasma membrane (PM) fraction was increased by treatment with 10 µM NE, 100 µM dobutamine (DOB, a ß1-AR agonist), or 0.1 µM CL316243 (CL, a ß3-AR agonist) for 30 min or with 10 mM AF for 20 min. NE or AF treatment triggered 2-deoxyglucose (2-DG) uptake into adipocytes under the above conditions. Our results advance the understanding of responses to adrenoceptor regulation in white adipocytes and provide possible clues for clarifying the machinery involved in adrenergic and ß-AR responses in the cells. PMID:27030626

  6. [PRODUCT OF THE BMI1--A KEY COMPONENT OF POLYCOMB--POSITIVELY REGULATES ADIPOCYTE DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS].

    PubMed

    Petrov, N S; Vereschagina, N A; Sushilova, E N; Kropotov, A V; Miheeva, N F; Popov, B V

    2016-01-01

    Bmil is a key component of Polycomb (PcG), which in mammals controls the basic functions of mammalian somatic stem cells (SSC) such as self-renewal and differentiation. Bmi1 supports SSC via transcriptional suppression of genes associated with cell cycle and differentiation. The most studied target genes of Bmi1 are the genes of Ink4 locus, CdkI p16(Ink4a) and p1(Arf), suppression of which due to activating mutations of the BMI1 results in formation of cancer stem cells (CSC) and carcinomas in various tissues. In contrast, inactivation of BMI1 results in cell cycle arrest and cell senescence. Although clinical phenomena of hypo- and hyperactivation of BMI1 are well known, its targets and mechanisms of regulation of tissue specific SSC are still obscure. The goal of this study was to evaluate the regulatory role of BMI1 in adipocyte differentiation (AD) of mouse mesenchymal stem cells (MSC). Induction of AD in mouse MSC of the C3H10T1/2 cell line was associated with an increase in the expression levels of BMI1, the genes of pRb family (RB, p130) and demethylase UTX, but not methyltransferase EZH2, whose products regulate the methylation levels of H3K27. It was observed earlier that H3K27me3 may play the role of the epigenetic switch by promoting AD of human MSC via activating expression of the PPARγ2, the master gene of AD (Hemming et al., 2014). Here we show that inactivation of BMI1 using specific siRNA slows and decreases the levels of AD, but does not abolish it. This is associated with a complete inhibition of the expression of adipogenic marker genes--PPARγ2, ADIPOQ and a decrease in the expression of RB, p130, but not UTX. The results obtained give evidence that the epigenetic mechanism regulating AD differentiation in mouse and human MSC is different.

  7. PPARα agonist fenofibrate attenuates TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway

    SciTech Connect

    Wang, Weirong; Lin, Qinqin; Lin, Rong; Zhang, Jiye; Ren, Feng; Zhang, Jianfeng; Ji, Meixi; Li, Yanxiang

    2013-06-10

    The ligand-activated transcription factor peroxisome proliferator-activated receptor-α (PPARα) participates in the regulation of cellular inflammation. More recent studies indicated that sirtuin1 (SIRT1), a NAD{sup +}-dependent deacetylase, regulates the inflammatory response in adipocytes. However, whether the role of PPARα in inflammation is mediated by SIRT1 remains unclear. In this study, we aimed to determine the effect of PPARα agonist fenofibrate on the expressions of SIRT1 and pro-inflammatory cytokine CD40 and underlying mechanisms in 3T3-L1 adipocytes. We found that fenofibrate inhibited CD40 expression and up-regulated SIRT1 expression in tumor necrosis factor-α (TNF-α)-stimulated adipocytes, and these effects of fenofibrate were reversed by PPARα antagonist GW6471. Moreover, SIRT1 inhibitors sirtinol/nicotinamide (NAM) or knockdown of SIRT1 could attenuate the effect of fenofibrate on TNF-α-induced CD40 expression in adipocytes. Importantly, NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) augmented the effect of fenofibrate on CD40 expression in adipocytes. Further study found that fenofibrate decreased the expression of acetylated-NF-κB p65 (Ac-NF-κB p65) in TNF-α-stimulated adipocytes, and the effect of fenofibrate was abolished by SIRT1 inhibition. In addition, fenofibrate up-regulated SIRT1 expression through AMPK in TNF-α-stimulated adipocytes. Taken together, these findings indicate that PPARα agonist fenofibrate inhibits TNF-α-induced CD40 expression in 3T3-L1 adipocytes via the SIRT1-dependent signaling pathway. -- Highlights: • Fenofibrate up-regulates SIRT1 expression in TNF-α-stimulated adipocytes. • Fenofibrate inhibits CD40 expression through SIRT1 in adipocytes. • The effects of fenofibrate on CD40 and SIRT1 expressions are dependent on PPARα. • Fenofibrate inhibits CD40 expression via SIRT1-dependent deacetylation of NF-κB. • Fenofibrate increases SIRT1 expression through PPARα and AMPK in adipocytes.

  8. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats

    PubMed Central

    Song, Won-Yeong

    2016-01-01

    BACKGROUND/OBJECTIVES Turmeric (Curcuma longa L.) has been reported to have many biological functions including anti-obesity. Leptin, peptide hormone produced by adipocytes and its concentration is increased in proportion to the amount of the adipocytes. In the present study, we examined the effects of Korean turmeric on the regulation of adiposity and leptin levels in 3T3-L1 adipocytes and rats fed a high-fat and high-cholesterol diet. MATERIALS/METHODS Leptin secretion, free fatty acid and glycerol contents in 3T3-L1 adipocytes were measured after incubation of cells with turmeric for 24 hours. Rats were divided into four experimental groups: a normal diet group (N), a high-fat and high-cholesterol diet group (HF), a high-fat and high-cholesterol diet group supplemented with 2.5% turmeric extracts (TPA group) and a high-fat and high-cholesterol diet group supplemented with 5% turmeric extracts (TPB group). Serum samples were used for the measurement of leptin concentration. RESULTS Contents of free fatty acid and glycerol showed concentration dependent increase in response to turmeric extracts. Effects of turmeric extracts on reduction of lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Treatment with turmeric extracts resulted in increased expression levels of adipose triglyceride lipase and hormone-sensitive lipase mRNA. The concentration of leptin from 3T3-L1 adipocytes was significantly decreased by turmeric. Proportional abdominal and epididymal fats weights of the turmeric 5% supplemented group, TPB has significantly decreased compared to the HF group. The serum levels of leptin in the TPA and TPB groups were significantly lower than those of the HF group. CONCLUSIONS Based on these results, we suggested that Korean turmeric may contribute to the decreasing of body fat and regulating leptin secretion. PMID:27698955

  9. Korean Curcuma longa L. induces lipolysis and regulates leptin in adipocyte cells and rats

    PubMed Central

    Song, Won-Yeong

    2016-01-01

    BACKGROUND/OBJECTIVES Turmeric (Curcuma longa L.) has been reported to have many biological functions including anti-obesity. Leptin, peptide hormone produced by adipocytes and its concentration is increased in proportion to the amount of the adipocytes. In the present study, we examined the effects of Korean turmeric on the regulation of adiposity and leptin levels in 3T3-L1 adipocytes and rats fed a high-fat and high-cholesterol diet. MATERIALS/METHODS Leptin secretion, free fatty acid and glycerol contents in 3T3-L1 adipocytes were measured after incubation of cells with turmeric for 24 hours. Rats were divided into four experimental groups: a normal diet group (N), a high-fat and high-cholesterol diet group (HF), a high-fat and high-cholesterol diet group supplemented with 2.5% turmeric extracts (TPA group) and a high-fat and high-cholesterol diet group supplemented with 5% turmeric extracts (TPB group). Serum samples were used for the measurement of leptin concentration. RESULTS Contents of free fatty acid and glycerol showed concentration dependent increase in response to turmeric extracts. Effects of turmeric extracts on reduction of lipid accumulation in 3T3-L1 cells were examined by Oil Red O staining. Treatment with turmeric extracts resulted in increased expression levels of adipose triglyceride lipase and hormone-sensitive lipase mRNA. The concentration of leptin from 3T3-L1 adipocytes was significantly decreased by turmeric. Proportional abdominal and epididymal fats weights of the turmeric 5% supplemented group, TPB has significantly decreased compared to the HF group. The serum levels of leptin in the TPA and TPB groups were significantly lower than those of the HF group. CONCLUSIONS Based on these results, we suggested that Korean turmeric may contribute to the decreasing of body fat and regulating leptin secretion.

  10. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    PubMed

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  11. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes

    PubMed Central

    Bader, David A.; Abadie, Kathleen V.; Motamed, Massoud; Hamilton, Mark P.; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D.; Mancini, Michael A.; McGuire, Sean E.

    2015-01-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis. PMID:26192107

  12. Bone marrow–derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice

    PubMed Central

    Koh, Young Jun; Kang, Shinae; Lee, Hyuek Jong; Choi, Tae-Saeng; Lee, Ho Sub; Cho, Chung-Hyun; Koh, Gou Young

    2007-01-01

    Little is known about whether bone marrow–derived circulating progenitor cells (BMDCPCs) can transdifferentiate into adipocytes in adipose tissues or play a role in expanding adipocyte number during adipose tissue growth. Using a mouse bone marrow transplantation model, we addressed whether BMDCPCs can transdifferentiate into adipocytes under standard conditions as well as in the settings of diet-induced obesity, rosiglitazone treatment, and exposure to G-CSF. We also addressed the possibility of transdifferentiation to adipocytes in a murine parabiosis model. In each of these settings, our findings indicated that BMDCPCs did not transdifferentiate into either unilocular or multilocular adipocytes in adipose tissues. Most BMDCPCs became resident and phagocytic macrophages in adipose tissues — which resembled transdifferentiated multilocular adipocytes by appearance, but displayed cell surface markers characteristic for macrophages — in the absence of adipocyte marker expression. When exposed to adipogenic medium in vitro, bone marrow cells differentiated into multilocular, but not unilocular, adipocytes, but transdifferentiation was not observed in vivo, even in the contexts of adipose tissue regrowth or dermal wound healing. Our results suggest that BMDCPCs do not transdifferentiate into adipocytes in vivo and play little, if any, role in expanding the number of adipocytes during the growth of adipose tissues. PMID:18060029

  13. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion.

    PubMed

    Senol-Cosar, Ozlem; Flach, Rachel J Roth; DiStefano, Marina; Chawla, Anil; Nicoloro, Sarah; Straubhaar, Juerg; Hardy, Olga T; Noh, Hye Lim; Kim, Jason K; Wabitsch, Martin; Scherer, Philipp E; Czech, Michael P

    2016-01-01

    Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. PMID:26880110

  14. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion

    PubMed Central

    Senol-Cosar, Ozlem; Flach, Rachel J. Roth; DiStefano, Marina; Chawla, Anil; Nicoloro, Sarah; Straubhaar, Juerg; Hardy, Olga T.; Noh, Hye Lim; Kim, Jason K.; Wabitsch, Martin; Scherer, Philipp E.; Czech, Michael P.

    2016-01-01

    Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. PMID:26880110

  15. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    SciTech Connect

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  16. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases

    PubMed Central

    Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi

    2014-01-01

    Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857

  17. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases.

    PubMed

    Hardaway, Aimalie L; Herroon, Mackenzie K; Rajagurubandara, Erandi; Podgorski, Izabela

    2014-09-01

    Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease.

  18. Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells.

    PubMed

    Maeda, Hayato; Kanno, Shogo; Kodate, Mei; Hosokawa, Masashi; Miyashita, Kazuo

    2015-08-04

    Fucoxanthin (Fx) is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH), attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group.  In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells.

  19. Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages.

    PubMed

    Kim, Young-il; Mohri, Shinsuke; Hirai, Shizuka; Lin, Shan; Goto, Tsuyoshi; Ohyane, Chie; Sakamoto, Tomoya; Takahashi, Haruya; Shibata, Daisuke; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obese adipose tissue is characterized by enhanced macrophage infiltration. A loop involving monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNFα) between adipocytes and macrophages establishes a vicious cycle that augments inflammatory changes and insulin resistance in obese adipose tissue. Tomatoes, one of the most popular crops worldwide, contain many beneficial phytochemicals that improve obesity-related diseases such as diabetes. Some of them have also been reported to have anti-inflammatory properties. In this study, we focused on the potential protective effects of phytochemicals in tomatoes on inflammation. We screened fractions of tomato extract using nitric oxide (NO) assay in lipopolysaccharide (LPS)-stimulated RAW264 macrophages. One fraction, RF52, significantly inhibited NO production in LPS-stimulated RAW264 macrophages. Furthermore, RF52 significantly decreased MCP-1 and TNFα productions. The coculture of 3T3-L1 adipocytes and RAW264 macrophages markedly enhanced MCP-1, TNFα, and NO productions compared with the control cultures; however, the treatment with RF52 inhibited the production of these proinflammatory mediators. These results suggest that RF52 from tomatoes may have the potential to suppress inflammation by inhibiting the production of NO or proinflammatory cytokines during the interaction between adipocytes and macrophages. PMID:25603813

  20. FDP-E induces adipocyte inflammation and suppresses insulin-stimulated glucose disposal: effect of inflammation and obesity on fibrinogen Bβ mRNA.

    PubMed

    Kang, Minsung; Vaughan, Roger A; Paton, Chad M

    2015-12-01

    Obesity is associated with increased fibrinogen production and fibrin formation, which produces fibrin degradation products (FDP-E and FDP-D). Fibrin and FDPs both contribute to inflammation, which would be expected to suppress glucose uptake and insulin signaling in adipose tissue, yet the effect of FDP-E and FDP-D on adipocyte function and glucose disposal is completely unknown. We tested the effects of FDPs on inflammation in 3T3-L1 adipocytes and primary macrophages and adipocyte glucose uptake in vitro. High-fat-fed mice increased hepatic fibrinogen mRNA expression ninefold over chow-fed mice, with concomitant increases in plasma fibrinogen protein levels. Obese mice also displayed increased fibrinogen content of epididymal fat pads. We treated cultured 3T3-L1 adipocytes and primary macrophages with FDP-E, FDP-D, or fibrinogen degradation products (FgnDP-E). FDP-D and FgnDP-E had no effect on inflammation or glucose uptake. Cytokine mRNA expression in RAW264.7 macrophage-like cells and 3T3-L1 adipocytes treated with FDP-E induced inflammation with maximal effects at 100 nM and 6 h. Insulin-stimulated 2-deoxy-d-[(3)H]glucose uptake was reduced by 71% in adipocytes treated with FDP-E. FDP-E, but not FDP-D or FgnDP-E, induces inflammation in macrophages and adipocytes and decreases glucose uptake in vitro. FDP-E may contribute toward obesity-associated acute inflammation and glucose intolerance, although its chronic role in obesity remains to be elucidated.

  1. SIRT1 Limits Adipocyte Hyperplasia through c-Myc Inhibition*

    PubMed Central

    Abdesselem, Houari; Madani, Aisha; Hani, Ahmad; Al-Noubi, Muna; Goswami, Neha; Ben Hamidane, Hisham; Billing, Anja M.; Pasquier, Jennifer; Bonkowski, Michael S.; Halabi, Najeeb; Dalloul, Rajaa; Sheriff, Mohamed Z.; Mesaeli, Nasrin; ElRayess, Mohamed; Sinclair, David A.; Graumann, Johannes; Mazloum, Nayef A.

    2016-01-01

    The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD+-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity. Here we report that differentiated adipocytes are hyperplastic when SIRT1 is knocked down stably in mouse 3T3-L1 preadipocytes. This phenotype is associated with dysregulated adipocyte metabolism and enhanced inflammation. We also demonstrate that SIRT1 is a key regulator of proliferation in preadipocytes. Quantitative proteomics reveal that the c-Myc pathway is altered to drive enhanced proliferation in SIRT1-silenced 3T3-L1 cells. Moreover, c-Myc is hyperacetylated, levels of p27 are reduced, and cyclin-dependent kinase 2 (CDK2) is activated upon SIRT1 reduction. Remarkably, differentiating SIRT1-silenced preadipocytes exhibit enhanced mitotic clonal expansion accompanied by reduced levels of p27 as well as elevated levels of CCAAT/enhancer-binding protein β (C/EBPβ) and c-Myc, which is also hyperacetylated. c-Myc activation and enhanced proliferation phenotype are also found to be SIRT1-dependent in proliferating mouse embryonic fibroblasts and differentiating human SW872 preadipocytes. Reducing both SIRT1 and c-Myc expression in 3T3-L1 cells simultaneously does not induce the adipocyte hyperplasia phenotype, confirming that SIRT1 controls adipocyte hyperplasia through c-Myc regulation. A better understanding of the molecular mechanisms of adipocyte hyperplasia will open new avenues toward understanding obesity. PMID:26655722

  2. Enhancement of ajoene-induced apoptosis by conjugated linoleic acid in 3T3-L1 adipocytes.

    PubMed

    Yang, Jeong-Yeh; Della-Fera, Mary Anne; Hausman, Dorothy B; Baile, Clifton A

    2007-06-01

    Ajoene has been shown to induce apoptosis in 3T3-L1 adipocytes. In this report the effects on apoptosis of combinations of ajoene and trans-10, cis-12 conjugated linoleic acid (t10,c12CLA) in 3T3-L1 adipocytes were investigated. Although t10,c12CLA alone had no effect, ajoene plus t10,c12CLA reduced cell viability more than ajoene alone at 24 h (59.1 vs. 85.9% of control, respectively; p<0.05). Compared to treatment with t10,c12CLA, ajoene increased apoptosis 218% after 24 h (p<0.01), whereas ajoene plus t10,c12CLA increased apoptosis 122% over that caused by ajoene alone (p<0.01). Immunoblotting analysis also indicated that ajoene plus t10,c12CLA caused a greater increase in phosphorylation of c-Jun N-terminal kinase (JNK) and Bax expression and a greater release of mitochondrial proteins (cytochrome c, AIF) than additive responses to each compound alone. Ajoene plus t10,c12CLA also increased ROS production more than that resulting from ajoene treatment alone (264 vs 204% after 40 min, respectively; p<0.01). Furthermore, the antioxidant NAC prevented ROS generation and apoptosis by ajoene plus t10,c12CLA. Interestingly, the combination of ajoene and t10,c12CLA increased NF-kappaB activation and decreased the level of phosphorylated Akt more than each compound alone. Altogether, our observations indicate that t10,c12CLA potentiates the effect of ajoene on apoptosis in 3T3-L1 adipocytes.

  3. Adipose Tissue-Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation.

    PubMed

    Eljaafari, Assia; Robert, Maud; Chehimi, Marwa; Chanon, Stephanie; Durand, Christine; Vial, Guillaume; Bendridi, Nadia; Madec, Anne-Marie; Disse, Emmanuel; Laville, Martine; Rieusset, Jennifer; Lefai, Etienne; Vidal, Hubert; Pirola, Luciano

    2015-07-01

    Obesity, through low-grade inflammation, can drive insulin resistance and type 2 diabetes. While infiltration of adipose tissue (AT) with mononuclear cells (MNCs) is well established in obesity, the functional consequences of these interactions are less understood. Herein, we cocultured human adipose-derived stem cells (ASCs) from obese individuals with MNCs and analyzed their reciprocal behavior. Presence of ASCs 1) enhanced interleukin (IL)-17A secretion by Th17 cells, 2) inhibited γ-interferon and tumor necrosis factor α secretion by Th1 cells, and 3) increased monocyte-mediated IL-1β secretion. IL-17A secretion also occurred in stromal vascular fractions issued from obese but not lean individuals. Th17 polarization mostly depended on physical contacts between ASCs and MNCs-with a contribution of intracellular adhesion molecule-1-and occurred through activation of the inflammasome and phosphatidylinositol 3-kinase pathways. ASCs favored STAT3 over STAT5 transcription factor binding on STAT binding sites within the IL-17A/F gene locus. Finally, conditioned media from activated ASC-MNC cocultures inhibited adipocyte differentiation mRNA markers and impaired insulin-mediated Akt phosphorylation and lipolysis inhibition. In conclusion, we report that obese- but not lean-derived ASCs induce Th17 promotion and monocyte activation. This proinflammatory environment, in turn, inhibits adipogenesis and adipocyte insulin response. The demonstration of an ASC-Th17-monocyte cell axis reveals a novel proinflammatory process taking place in AT during obesity and defines novel putative therapeutic targets.

  4. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity

    PubMed Central

    Sodhi, Komal; Hilgefort, Jordan; Banks, George; Gilliam, Chelsea; Stevens, Sarah; Ansinelli, Hayden A.; Getty, Morghan; Abraham, Nader G.; Shapiro, Joseph I.

    2016-01-01

    Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. PMID:26681956

  5. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    SciTech Connect

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-05-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase (A-kinase), from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from /sup 32/P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the /sup 32/P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase.

  6. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    PubMed Central

    Taher, Muhammad; Mohamed Amiroudine, Mohamed Zaffar Ali; Tengku Zakaria, Tengku Muhamad Faris Syafiq; Ichwan, Solachuddin J. A.; Kaderi, Mohd Arifin; Ahmed, Qamar Uddin; Zakaria, Zainul Amiruddin

    2015-01-01

    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future. PMID:25873982

  7. Elements in the distal 5'-flanking sequence and the first intron function cooperatively to regulate glutamine synthetase transcription during adipocyte differentiation.

    PubMed Central

    Hadden, T J; Ryou, C; Miller, R E

    1997-01-01

    Glutamine synthetase (GS) expression increases dramatically during adipocyte differentiation of confluent 3T3-L1 cells. To identify differentiation-responsive cis-acting elements in the GS gene, several GSfusion genes were prepared and analyzed in stably transfected 3T3-L1 cells under conditions that trigger adipocyte differentiation. We find that the GS proximal 5'-flanking sequence lacks the regulatory elements required for differentiation-responsive expression. In contrast, a 2 kb intron 1 restriction fragment fused upstream of a heterologous promoter does drive reporter gene expression during hormone-triggered differentiation. The enhancer activity was localized to a 310 bp sequence near the middle of intron 1. Expression of fusion genes that include this 310 bp sequence does not temporally coincide with native gene expression. However, a composite gene that includes a far upstream GS sequence and the 2 kb intron 1 sequence yields a qualitatively different pattern of expression that closely resembles that of the native GS gene. The far upstream sequence alone exhibits no enhancer activity. Electrophoretic mobility shift analyses indicate that a 32 bp sequence within the 310 bp functional enhancer specifically binds differentiation-associated nuclear proteins. Although a C/EBP consensus sequence occurs in the 32 bp fragment, supershift analyses exclude C/EBP isoforms as the binding factor. In contrast, mutational analysis of the putative enhancer suggests that an HNF-3 isoform is involved. Thus our data indicate that elements in the distal 5'-flanking sequence and the first intron function cooperatively to regulate GS transcription and that HNF-3 may participate in that regulation. PMID:9380519

  8. Impact of 3-Amino-1,2,4-Triazole (3-AT)-Derived Increase in Hydrogen Peroxide Levels on Inflammation and Metabolism in Human Differentiated Adipocytes

    PubMed Central

    Ruiz-Ojeda, Francisco Javier; Gomez-Llorente, Carolina; Aguilera, Concepción María; Gil, Angel; Rupérez, Azahara Iris

    2016-01-01

    Obesity is characterized by an excessive accumulation of fat in adipose tissue, which is associated with oxidative stress and chronic inflammation. Excessive H2O2 levels are degraded by catalase (CAT), the activity of which is decreased in obesity. We investigated the effects of inhibition of catalase activity on metabolism and inflammation by incubating human differentiated adipocytes with 10 mM 3-amino-1,2,4-triazole (3-AT) for 24 h. As expected, the treatment decreased CAT activity and increased intracellular H2O2 levels significantly. Glutathione peroxidase (GPX) activity was also reduced, and the gene expression levels of the antioxidant enzymes GPX4 and peroxiredoxins (1, 3 and 5) were inhibited. Interestingly, this occurred along with lower mRNA levels of the transcription factors nuclear factor (erythroid 2-like 2) and forkhead box O, which are involved in redox homeostasis. However, superoxide dismutase activity and expression were increased. Moreover, 3-AT led to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and increased tumor necrosis alpha and interleukin 6 protein and gene expression levels, while lowering peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein levels. These alterations were accompanied by an altered glucose and lipid metabolism. Indeed, adipocytes treated with 3-AT showed reduced basal glucose uptake, reduced glucose transporter type 4 gene and protein expression, reduced lipolysis, reduced AMP-activated protein kinase activation and reduced gene expression of lipases. Our results indicate that increased H2O2 levels caused by 3-AT treatment impair the antioxidant defense system, lower PPARγ expression and initiate inflammation, thus affecting glucose and lipid metabolism in human differentiated adipocytes. PMID:27023799

  9. Impact of 3-Amino-1,2,4-Triazole (3-AT)-Derived Increase in Hydrogen Peroxide Levels on Inflammation and Metabolism in Human Differentiated Adipocytes.

    PubMed

    Ruiz-Ojeda, Francisco Javier; Gomez-Llorente, Carolina; Aguilera, Concepción María; Gil, Angel; Rupérez, Azahara Iris

    2016-01-01

    Obesity is characterized by an excessive accumulation of fat in adipose tissue, which is associated with oxidative stress and chronic inflammation. Excessive H2O2 levels are degraded by catalase (CAT), the activity of which is decreased in obesity. We investigated the effects of inhibition of catalase activity on metabolism and inflammation by incubating human differentiated adipocytes with 10 mM 3-amino-1,2,4-triazole (3-AT) for 24 h. As expected, the treatment decreased CAT activity and increased intracellular H2O2 levels significantly. Glutathione peroxidase (GPX) activity was also reduced, and the gene expression levels of the antioxidant enzymes GPX4 and peroxiredoxins (1, 3 and 5) were inhibited. Interestingly, this occurred along with lower mRNA levels of the transcription factors nuclear factor (erythroid 2-like 2) and forkhead box O, which are involved in redox homeostasis. However, superoxide dismutase activity and expression were increased. Moreover, 3-AT led to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and increased tumor necrosis alpha and interleukin 6 protein and gene expression levels, while lowering peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein levels. These alterations were accompanied by an altered glucose and lipid metabolism. Indeed, adipocytes treated with 3-AT showed reduced basal glucose uptake, reduced glucose transporter type 4 gene and protein expression, reduced lipolysis, reduced AMP-activated protein kinase activation and reduced gene expression of lipases. Our results indicate that increased H2O2 levels caused by 3-AT treatment impair the antioxidant defense system, lower PPARγ expression and initiate inflammation, thus affecting glucose and lipid metabolism in human differentiated adipocytes. PMID:27023799

  10. Impact of 3-Amino-1,2,4-Triazole (3-AT)-Derived Increase in Hydrogen Peroxide Levels on Inflammation and Metabolism in Human Differentiated Adipocytes.

    PubMed

    Ruiz-Ojeda, Francisco Javier; Gomez-Llorente, Carolina; Aguilera, Concepción María; Gil, Angel; Rupérez, Azahara Iris

    2016-01-01

    Obesity is characterized by an excessive accumulation of fat in adipose tissue, which is associated with oxidative stress and chronic inflammation. Excessive H2O2 levels are degraded by catalase (CAT), the activity of which is decreased in obesity. We investigated the effects of inhibition of catalase activity on metabolism and inflammation by incubating human differentiated adipocytes with 10 mM 3-amino-1,2,4-triazole (3-AT) for 24 h. As expected, the treatment decreased CAT activity and increased intracellular H2O2 levels significantly. Glutathione peroxidase (GPX) activity was also reduced, and the gene expression levels of the antioxidant enzymes GPX4 and peroxiredoxins (1, 3 and 5) were inhibited. Interestingly, this occurred along with lower mRNA levels of the transcription factors nuclear factor (erythroid 2-like 2) and forkhead box O, which are involved in redox homeostasis. However, superoxide dismutase activity and expression were increased. Moreover, 3-AT led to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and increased tumor necrosis alpha and interleukin 6 protein and gene expression levels, while lowering peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein levels. These alterations were accompanied by an altered glucose and lipid metabolism. Indeed, adipocytes treated with 3-AT showed reduced basal glucose uptake, reduced glucose transporter type 4 gene and protein expression, reduced lipolysis, reduced AMP-activated protein kinase activation and reduced gene expression of lipases. Our results indicate that increased H2O2 levels caused by 3-AT treatment impair the antioxidant defense system, lower PPARγ expression and initiate inflammation, thus affecting glucose and lipid metabolism in human differentiated adipocytes.

  11. Stinging Nettle (Urtica dioica L.) Attenuates FFA Induced Ceramide Accumulation in 3T3-L1 Adipocytes in an Adiponectin Dependent Manner

    PubMed Central

    Obanda, Diana N.; Zhao, Peng; Richard, Allison J.; Ribnicky, David; Cefalu, William T.; Stephens, Jacqueline M.

    2016-01-01

    Objective Excess dietary lipids result in the accumulation of lipid metabolites including ceramides that can attenuate insulin signaling. There is evidence that a botanical extract of Urtica dioica L. (stinging nettle) improves insulin action, yet the precise mechanism(s) are not known. Hence, we examined the effects of Urtica dioica L. (UT) on adipocytes. Research Design We investigated the effects of an ethanolic extract of UT on free fatty acid (palmitic acid) induced inhibition of insulin-stimulated Akt serine phosphorylation and modulation of ceramidase expression in 3T3-L1 adipocytes. Adipocytes were exposed to excess FFAs in the presence or absence of UT. Effects on adiponectin expression, ceramidase expression, ceramidase activity, ceramide accumulation and insulin signaling were determined. Results As expected, FFAs reduced adiponectin expression and increased the expression of ceramidase enzymes but not their activity. FFA also induced the accumulation of ceramides and reduced insulin-stimulated phosphorylation of Akt in adipocytes. The effects of FFA were partially reversed by UT. UT enhanced adiponectin expression and ceramidase activity in the presence of excess FFAs. UT abated ceramide accumulation and increased insulin sensitivity via enhanced Akt phosphorylation. A siRNA knockdown of adiponectin expression prevented UT from exerting positive effects on ceramidase activity but not Akt phosphorylation. Conclusions In adipocytes, the ability of UT to antagonize the negative effects of FFA by modulating ceramidase activity and ceramide accumulation is dependent on the presence of adiponectin. However, the ability of UT to enhance Akt phosphorylation is independent of adiponectin expression. These studies demonstrate direct effects of UT on adipocytes and suggest this botanical extract is metabolically beneficial. PMID:26939068

  12. The micosporine-like amino acids-rich aqueous methanol extract of laver (Porphyra yezoensis) inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes

    PubMed Central

    Kim, Hyunhee; Lee, Yunjung; Han, Taejun

    2015-01-01

    BACKGROUND/OBJECTIVES Increased mass of adipose tissue in obese persons is caused by excessive adipogenesis, which is elaborately controlled by an array of transcription factors. Inhibition of adipogenesis by diverse plant-derived substances has been explored. The aim of the current study was to examine the effects of the aqueous methanol extract of laver (Porphyra yezoensis) on adipogenesis and apoptosis in 3T3-L1 adipocytes and to investigate the mechanism underlying the effect of the laver extract. MATERIALS/METHODS 3T3-L1 cells were treated with various concentrations of laver extract in differentiation medium. Lipid accumulation, expression of adipogenic proteins, including CCAAT enhancer-binding protein α, peroxisome proliferator-activated receptor γ, fatty acid binding protein 4, and fatty acid synthase, cell viability, apoptosis, and the total content and the ratio of reduced to oxidized forms of glutathione (GSH/GSSG) were analyzed. RESULTS Treatment with laver extract resulted in a significant decrease in lipid accumulation in 3T3-L1 adipocytes, which showed correlation with a reduction in expression of adipogenic proteins. Treatment with laver extract also resulted in a decrease in the viability of preadipocytes and an increase in the apoptosis of mature adipocytes. Treatment with laver extract led to exacerbated depletion of cellular glutathione and abolished the transient increase in GSH/GSSG ratio during adipogenesis in 3T3-L1 adipocytes. CONCLUSION Results of our study demonstrated that treatment with the laver extract caused inhibition of adipogenesis, a decrease in proliferation of preadipocytes, and an increase in the apoptosis of mature adipocytes. It appears that these effects were caused by increasing oxidative stress, as demonstrated by the depletion and oxidation of the cellular glutathione pool in the extract-treated adipocytes. Our results suggest that a prooxidant role of laver extract is associated with its antiadipogenic and

  13. Identification of novel PPAR{gamma} target genes by integrated analysis of ChIP-on-chip and microarray expression data during adipocyte differentiation

    SciTech Connect

    Nakachi, Yutaka; Yagi, Ken; Nikaido, Itoshi; Bono, Hidemasa; Tonouchi, Mio; Schoenbach, Christian; Okazaki, Yasushi

    2008-07-25

    PPAR{gamma} (peroxisome proliferator-activated receptor gamma) acts as a key molecule of adipocyte differentiation, and transactivates multiple target genes involved in lipid metabolic pathways. Identification of PPAR{gamma} target genes will facilitate to predict the extent to which the drugs can affect and also to understand the molecular basis of lipid metabolism. Here, we have identified five target genes regulated directly by PPAR{gamma} during adipocyte differentiation in 3T3-L1 cells using integrated analyses of ChIP-on-chip and expression microarray. We have confirmed the direct PPAR{gamma} regulation of five genes by luciferase reporter assay in NIH-3T3 cells. Of these five genes Hp, Tmem143 and 1100001G20Rik are novel PPAR{gamma} targets. We have also detected PPREs (PPAR response elements) sequences in the promoter region of the five genes computationally. Unexpectedly, most of the PPREs detected proved to be atypical, suggesting the existence of more atypical PPREs than previously thought in the promoter region of PPAR{gamma} regulated genes.

  14. New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model.

    PubMed

    Lee, Ju-Hye; Cho, Hyun-Dong; Jeong, Ji-Hye; Lee, Mi-Kyung; Jeong, Yong-Ki; Shim, Ki-Hwan; Seo, Kwon-Il

    2013-12-01

    There is an increasing surplus of tomatoes that are abandoned due to their failure to meet customer standards. Therefore, to allow both value additions and the effective reuse of surplus tomatoes, we developed tomato vinegar (TV) containing phytochemicals and evaluated its anti-obesity effects in vitro and in vivo. TV inhibited adipocyte differentiation of 3T3-L1 preadipocyte and lipid accumulation during differentiation. TV supplementation in rats fed a high-fat diet (HFD) markedly decreased visceral fat weights without changing the food and calories intakes. TV significantly decreased hepatic triglyceride and cholesterol levels compared to the HFD group. Furthermore, TV lowered plasma LDL-cholesterol level and antherogenic index compared to the HFD group, whereas elevated HDL-cholesterol to total cholesterol ratio. These results show that TV prevented obesity by suppressing visceral fat and lipid accumulation in adipocyte and obese rats, and suggest that TV can be used as an anti-obesity therapeutic agent or functional food. PMID:23871083

  15. Coordinate Functional Regulation between Microsomal Prostaglandin E Synthase-1 (mPGES-1) and Peroxisome Proliferator-activated Receptor γ (PPARγ) in the Conversion of White-to-brown Adipocytes*

    PubMed Central

    García-Alonso, Verónica; López-Vicario, Cristina; Titos, Esther; Morán-Salvador, Eva; González-Périz, Ana; Rius, Bibiana; Párrizas, Marcelina; Werz, Oliver; Arroyo, Vicente; Clària, Joan

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor and a master regulator of adipogenesis. Microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is an inducible enzyme that couples with cyclooxygenase-2 for the biosynthesis of PGE2. In this study we demonstrate the existence of a coordinate functional interaction between PPARγ and mPGES-1 in controlling the process of pre-adipocyte differentiation in white adipose tissue (WAT). Adipocyte-specific PPARγ knock-out mice carrying an aP2 promoter-driven Cre recombinase transgene showed a blunted response to the adipogenic effects of a high fat diet. Pre-adipocytes from these knock-out mice showed loss of PPARγ and were resistant to rosiglitazone-induced WAT differentiation. In parallel, WAT from these mice showed increased expression of uncoupling protein 1, a mitochondrial enzyme that dissipates chemical energy as heat. Adipose tissue from mice lacking PPARγ also showed mPGES-1 up-regulation and increased PGE2 levels. In turn, PGE2 suppressed PPARγ expression and blocked rosiglitazone-induced pre-adipocyte differentiation toward white adipocytes while directly elevating uncoupling protein 1 expression and pre-adipocyte differentiation into mature beige/brite adipocytes. Consistently, pharmacological mPGES-1 inhibition directed pre-adipocyte differentiation toward white adipocytes while suppressing differentiation into beige/brite adipocytes. This browning effect was reproduced in knockdown experiments using a siRNA directed against mPGES-1. The effects of PGE2 on pre-adipocyte differentiation were not seen in mice lacking PPARγ in adipose tissue and were not mirrored by other eicosanoids (i.e. leukotriene B4). Taken together, these findings identify PGE2 as a key regulator of white-to-brown adipogenesis and suggest the existence of a coordinate regulation of adipogenesis between PPARγ and mPGES-1. PMID:23943621

  16. Aquaporin-10 Represents an Alternative Pathway for Glycerol Efflux from Human Adipocytes

    PubMed Central

    Laforenza, Umberto; Scaffino, Manuela F.; Gastaldi, Giulia

    2013-01-01

    Background Glycerol outflow from adipocytes has been considered for a decade to be mediated by aquaporin-7, an aquaglyceroporin highly expressed in the adipose tissue. Its involvement in glycerol metabolism has been widely studied also in humans. Recent studies in different aquaporin-7 KO mice models pose two different questions 1) the exact localization of aquaporin-7 in human white adipose tissue; 2) the existence of other aquaglyceroporins that work with aquaporin-7 to guarantee glycerol efflux and thus a normal adiposity in humans. To this purpose we investigated the expression, the localization and the functioning of aquaglyceroporin-10 in subcutaneous white adipose tissue, in isolated and cultured differentiated adipocytes. Methodology/Principal Findings Aquaporin-7 and -10 were expressed in the white adipose tissue both at mRNA and at protein level. Immunofluorescence revealed aquaporin-7 and -10 labelling in the human adipose tissue both to the plasma membrane and to a thin rim of cytoplasm of adipocytes. Aquaporin-7, but not aquaporin-10, colocalized with the endothelial marker CD34. Human cultured differentiated adipocytes showed an aquaporin-7 and -10 labelling mainly in the cytoplasm and in the lipid droplets with insulin reinforcing the lipid droplets staining and isoproterenol inducing its translocation to the plasma membrane compartment. Water and glycerol permeability measurements using adipocytes and adipose membrane vesicles confirmed the presence of functioning aquaglyceroporins. Aquaporin-10 silencing in human differentiated adipocytes resulted in a 50% decrease of glycerol and osmotic water permeability. Conclusions/Significance The results indicate that aquaporin-7, differently from mice, is present in both adipocyte and capillary plasma membranes of human adipose tissue. Aquaporin-10, on the contrary, is expressed exclusively in the adipocytes. The expression of two aquaglyceroporins in human adipose tissue is particularly important for the

  17. Bmp4 Promotes a Brown to White-like Adipocyte Shift.

    PubMed

    Modica, Salvatore; Straub, Leon G; Balaz, Miroslav; Sun, Wenfei; Varga, Lukas; Stefanicka, Patrik; Profant, Milan; Simon, Eric; Neubauer, Heike; Ukropcova, Barbara; Ukropec, Jozef; Wolfrum, Christian

    2016-08-23

    While Bmp4 has a well-established role in the commitment of mesenchymal stem cells into the adipogenic lineage, its role in brown adipocyte formation and activity is not well defined. Here, we show that Bmp4 has a dual function in adipogenesis by inducing adipocyte commitment while inhibiting the acquisition of a brown phenotype during terminal differentiation. Selective brown adipose tissue overexpression of Bmp4 in mice induces a shift from a brown to a white-like adipocyte phenotype. This effect is mediated by Smad signaling and might be in part due to suppression of lipolysis, via regulation of hormone sensitive lipase expression linked to reduced Ppar activity. Given that we observed a strong correlation between BMP4 levels and adipocyte size, as well as insulin sensitivity in humans, we propose that Bmp4 is an important factor in the context of obesity and type 2 diabetes. PMID:27524617

  18. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis. PMID:26781688

  19. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes.

    PubMed

    Kida, Ryosuke; Yoshida, Hirofumi; Murakami, Masaru; Shirai, Mitsuyuki; Hashimoto, Osamu; Kawada, Teruo; Matsui, Tohru; Funaba, Masayuki

    2016-01-01

    The ingestion of capsaicin, the principle pungent component of red and chili peppers, induces thermogenesis, in part, through the activation of brown adipocytes expressing genes related to mitochondrial biogenesis and uncoupling such as peroxisome proliferator-activated receptor (Ppar) γ coactivator-1α (Pgc-1α) and uncoupling protein 1 (Ucp1). Capsaicin has been suggested to induce the activation of brown adipocytes, which is mediated by the stimulation of sympathetic nerves. However, capsaicin may directly affect the differentiation of brown preadipocytes, brown adipocyte function, or both, through its significant absorption. We herein demonstrated that Trpv1, a capsaicin receptor, is expressed in brown adipose tissue, and that its expression level is increased during the differentiation of HB2 brown preadipocytes. Furthermore, capsaicin induced calcium influx in brown preadipocytes. A treatment with capsaicin in the early stage of brown adipogenesis did not affect lipid accumulation or the expression levels of Fabp4 (a gene expressed in mature adipocytes), Pparγ2 (a master regulator of adipogenesis) or brown adipocyte-selective genes. In contrast, a treatment with capsaicin in the late stage of brown adipogenesis slightly increased the expression levels of Fabp4, Pparγ2 and Pgc-1α. Although capsaicin did not affect the basal expression level of Ucp1, Ucp1 induction by forskolin was partially inhibited by capsaicin, irrespective of the dose of capsaicin. The results of the present study suggest the direct effects of capsaicin on brown adipocytes or in the late stage of brown adipogenesis.

  20. Differential effects of pertussis toxin on insulin-stimulated phosphatidylcholine hydrolysis and glycerolipid synthesis de novo. Studies in BC3H-1 myocytes and rat adipocytes

    SciTech Connect

    Hoffman, J.M.; Standaert, M.L.; Nair, G.P.; Farese, R.V. )

    1991-04-02

    Insulin-induced increases in diacylglycerol (DAG) have been suggested to result from stimulation of de novo phosphatidic acid (PA) synthesis and phosphatidylcholine (PC) hydrolysis. Presently, the authors found that insulin decreased PC levels of BC3H-1 myocytes and rat adipocytes by approximately 10-25% within 30 s. These decreases were rapidly reversed in both cell types, apparently because of increased PC synthesis de novo. In BC3H-1 myocytes, pertussis toxin inhibited PC resynthesis and insulin effects on the pathway of de novo PA-DAG-PC synthesis, as evidenced by changes in ({sup 3}H)glycerol incorporation, but did not inhibit insulin-stimulated PC hydrolysis. Pertussis toxin also blocked the later, but not the initial, increase in DAG production in the myocytes. Phorbol esters activated PC hydrolysis in both myocytes and adipocytes, but insulin-induced stimulation of PC hydrolysis was not dependent upon activation of PKC, since this hydrolysis was not inhibited by 500 {mu}M sangivamycin, an effective PKC inhibitor. The results indicate that insulin increases DAG by pertussis toxin sensitive and insensitive (PC hydrolysis) mechanisms, which are mechanistically separate, but functionally interdependent and integrated. PC hydrolysis may contribute importantly to initial increases in DAG, but later sustained increases are apparently largely dependent on insulin-induced stimulation of the pathway of de novo phospholipid synthesis.

  1. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance

    PubMed Central

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-01-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance. PMID:27051864

  2. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages.

    PubMed

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area ("buffalo hump") has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from "buffalo hump" and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of "classical" brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-"classical brown adipocyte" phenotype appears unique of

  3. Ethanolic extracts of Brassica campestris spp. rapa roots prevent high-fat diet-induced obesity via beta(3)-adrenergic regulation of white adipocyte lipolytic activity.

    PubMed

    An, Sojin; Han, Jang-Il; Kim, Min-Jung; Park, Ji-Seon; Han, Jong-Min; Baek, Nam-In; Chung, Hae-Gon; Choi, Myung-Sook; Lee, Kyung-Tae; Jeong, Tae-Sook

    2010-04-01

    The influence of ethanolic extracts of Brassica campestris spp. rapa roots (EBR) on obesity was examined in imprinting control region (ICR) mice fed a high-fat diet (HFD) and in 3T3-L1 adipocytes. The ICR mice used were divided into regular diet, HFD, EBR (50 mg/kg/day EBR administered orally), and orlistat (10 mg/kg/day orlistat administered orally) groups. The molecular mechanism of the anti-obesity effect of EBR was investigated in 3T3-L1 adipocytes as well as in HFD-fed ICR mice. In the obese mouse model, both weight gain and epididymal fat accumulation were highly suppressed by the daily oral administration of 50 mg/kg EBR for 8 weeks, whereas the overall amount of food intake was not affected. EBR treatment induced the expression in white adipocytes of lipolysis-related genes, including beta(3)-adrenergic receptor (beta(3)-AR), hormone-sensitive lipase (HSL), adipose triglyceride lipase, and uncoupling protein 2. Furthermore, the activation of cyclic AMP-dependent protein kinase, HSL, and extracellular signal-regulated kinase was induced in EBR-treated 3T3-L1 cells. The lipolytic effect of EBR involved beta(3)-AR modulation, as inferred from the inhibition by the beta(3)-AR antagonist propranolol. These results suggest that EBR may have potential as a safe and effective anti-obesity agent via the inhibition of adipocyte lipid accumulation and the stimulation of beta(3)-AR-dependent lipolysis.

  4. Metformin limits the adipocyte tumor-promoting effect on ovarian cancer.

    PubMed

    Tebbe, Calvin; Chhina, Jasdeep; Dar, Sajad A; Sarigiannis, Kalli; Giri, Shailendra; Munkarah, Adnan R; Rattan, Ramandeep

    2014-07-15

    Omental adipocytes promote ovarian cancer by secretion of adipokines, cytokines and growth factors, and acting as fuel depots. We investigated if metformin modulates the ovarian cancer promoting effects of adipocytes. Effect of conditioned media obtained from differentiated mouse 3T3L1 preadipoctes on the proliferation and migration of a mouse ovarian surface epithelium cancer cell line (ID8) was estimated. Conditioned media from differentiated adipocytes increased the proliferation and migration of ID8 cells, which was attenuated by metformin. Metformin inhibited adipogenesis by inhibition of key adipogenesis regulating transcription factors (CEBPα, CEBPß, and SREBP1), and induced AMPK. A targeted Cancer Pathway Finder RT-PCR (real-time polymerase chain reaction) based gene array revealed 20 up-regulated and 2 down-regulated genes in ID8 cells exposed to adipocyte conditioned media, which were altered by metformin. Adipocyte conditioned media also induced bio-energetic changes in the ID8 cells by pushing them into a highly metabolically active state; these effects were reversed by metformin. Collectively, metformin treatment inhibited the adipocyte mediated ovarian cancer cell proliferation, migration, expression of cancer associated genes and bio-energetic changes. Suggesting, that metformin could be a therapeutic option for ovarian cancer at an early stage, as it not only targets ovarian cancer, but also modulates the environmental milieu.

  5. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages

    PubMed Central

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area (“buffalo hump”) has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from “buffalo hump” and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of “classical” brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-“classical brown adipocyte” phenotype

  6. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells

    PubMed Central

    Guo, Qi; Chen, Yusi; Guo, Lijuan; Jiang, Tiejian; Lin, Zhangyuan

    2016-01-01

    Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide the fate of BMSCs remain unclear. In our study, microRNA-23a, and microRNA-23b (miR-23a/b) were found to be markedly downregulated in BMSCs of aged mice and humans. The overexpression of miR-23a/b in BMSCs promoted osteogenic differentiation, whereas the inhibition of miR-23a/b increased adipogenic differentiation. Transmembrane protein 64 (Tmem64), which has expression levels inversely related to those of miR-23a/b in aged and young mice, was identified as a major target of miR-23a/b during BMSC differentiation. In conclusion, our study suggests that miR-23a/b has a critical role in the regulation of mesenchymal lineage differentiation through the suppression of Tmem64.

  7. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells

    PubMed Central

    Guo, Qi; Chen, Yusi; Guo, Lijuan; Jiang, Tiejian; Lin, Zhangyuan

    2016-01-01

    Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide the fate of BMSCs remain unclear. In our study, microRNA-23a, and microRNA-23b (miR-23a/b) were found to be markedly downregulated in BMSCs of aged mice and humans. The overexpression of miR-23a/b in BMSCs promoted osteogenic differentiation, whereas the inhibition of miR-23a/b increased adipogenic differentiation. Transmembrane protein 64 (Tmem64), which has expression levels inversely related to those of miR-23a/b in aged and young mice, was identified as a major target of miR-23a/b during BMSC differentiation. In conclusion, our study suggests that miR-23a/b has a critical role in the regulation of mesenchymal lineage differentiation through the suppression of Tmem64. PMID:27606130

  8. miR-23a/b regulates the balance between osteoblast and adipocyte differentiation in bone marrow mesenchymal stem cells.

    PubMed

    Guo, Qi; Chen, Yusi; Guo, Lijuan; Jiang, Tiejian; Lin, Zhangyuan

    2016-01-01

    Age-related osteoporosis is associated with the reduced capacity of bone marrow mesenchymal stem cells (BMSCs) to differentiate into osteoblasts instead of adipocytes. However, the molecular mechanisms that decide the fate of BMSCs remain unclear. In our study, microRNA-23a, and microRNA-23b (miR-23a/b) were found to be markedly downregulated in BMSCs of aged mice and humans. The overexpression of miR-23a/b in BMSCs promoted osteogenic differentiation, whereas the inhibition of miR-23a/b increased adipogenic differentiation. Transmembrane protein 64 (Tmem64), which has expression levels inversely related to those of miR-23a/b in aged and young mice, was identified as a major target of miR-23a/b during BMSC differentiation. In conclusion, our study suggests that miR-23a/b has a critical role in the regulation of mesenchymal lineage differentiation through the suppression of Tmem64. PMID:27606130

  9. Reduced DPP4 activity improves insulin signaling in primary human adipocytes.

    PubMed

    Röhrborn, Diana; Brückner, Julia; Sell, Henrike; Eckel, Jürgen

    2016-03-11

    DPP4 is a ubiquitously expressed cell surface protease which is also released to the circulation as soluble DPP4 (sDPP4). Recently, we identified DPP4 as a novel adipokine oversecreted in obesity and thus potentially linking obesity to the metabolic syndrome. Furthermore, sDPP4 impairs insulin signaling in an autocrine and paracrine fashion in different cell types. However, it is still unknown which functional role DPP4 might play in adipocytes. Therefore, primary human adipocytes were treated with a specific DPP4 siRNA. Adipocyte differentiation was not affected by DPP4 silencing. Interestingly, DPP4 reduction improved insulin responsiveness of adipocytes at the level of insulin receptor, proteinkinase B (Akt) and Akt substrate of 160 kDa. To investigate whether the observed effects could be attributed to the enzymatic activity of DPP4, human adipocytes were treated with the DPP4 inhibitors sitagliptin and saxagliptin. Our data show that insulin-stimulated activation of Akt is augmented by DPP4 inhibitor treatment. Based on our previous observation that sDPP4 induces insulin resistance in adipocytes, and that adipose DPP4 levels are higher in obese insulin-resistant patients, we now suggest that the abundance of DPP4 might be a regulator of adipocyte insulin signaling. PMID:26872429

  10. Endocrine modulators of mouse subcutaneous adipose tissue beige adipocyte markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stromal vascular fraction (SVF) of subcutaneous adipose tissue contains precursors that can give rise to beige adipocytes. Beige adipocytes are characterized by the expression of specific markers, but it is not clear which markers best evaluate beige adipocyte differentiation. Both regulators of...

  11. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    SciTech Connect

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  12. Role of LRP1 and ERK and cAMP Signaling Pathways in Lactoferrin-Induced Lipolysis in Mature Rat Adipocytes

    PubMed Central

    Ikoma-Seki, Keiko; Nakamura, Kanae; Morishita, Satoru; Ono, Tomoji; Sugiyama, Keikichi; Nishino, Hoyoku; Hirano, Hisashi; Murakoshi, Michiaki

    2015-01-01

    Lactoferrin (LF) is a multifunctional glycoprotein present in milk. A clinical study showed that enteric-coated bovine LF tablets decrease visceral fat accumulation. Furthermore, animal studies revealed that ingested LF is partially delivered to mesenteric fat, and in vitro studies showed that LF promotes lipolysis in mature adipocytes. The aim of the present study was to determine the mechanism underlying the induction of lipolysis in mature adipocytes that is induced by LF. To address this question, we used proteomics techniques to analyze protein expression profiles. Mature adipocytes from primary cultures of rat mesenteric fat were collected at various times after exposure to LF. Proteomic analysis revealed that the expression levels of hormone-sensitive lipase (HSL), which catalyzes the rate-limiting step of lipolysis, were upregulated and that HSL was activated by protein kinase A within 15 min after the cells were treated with LF. We previously reported that LF increases the intracellular concentration of cyclic adenosine monophosphate (cAMP), suggesting that LF activates the cAMP signaling pathway. In this study, we show that the expression level and the activity of the components of the extracellular signal-regulated kinase (ERK) signaling pathway were upregulated. Moreover, LF increased the activity of the transcription factor cAMP response element binding protein (CREB), which acts downstream in the cAMP and ERK signaling pathways and regulates the expression levels of adenylyl cyclase and HSL. Moreover, silencing of the putative LF receptor low-density lipoprotein receptor-related protein 1 (LRP1) attenuated lipolysis in LF-treated adipocytes. These results suggest that LF promoted lipolysis in mature adipocytes by regulating the expression levels of proteins involved in lipolysis through controlling the activity of cAMP/ERK signaling pathways via LRP1. PMID:26506094

  13. Adrenergic stimulation of lipoprotein lipase gene expression in rat brown adipocytes differentiated in culture: mediation via beta3- and alpha1-adrenergic receptors.

    PubMed Central

    Kuusela, P; Rehnmark, S; Jacobsson, A; Cannon, B; Nedergaard, J

    1997-01-01

    In order to investigate whether the positive effect of adrenergic stimulation on lipoprotein lipase (LPL) gene expression in brown adipose tissue is a direct effect on the brown adipocytes themselves, the expression of the LPL gene was investigated by measuring LPL mRNA levels in brown adipocytes, isolated as precursors from the brown adipose tissue of rats and grown in culture in a fully defined medium before experimentation. Addition of noradrenaline led to an enhancement of LPL gene expression; the mRNA levels increased as a linear function of time for at least 5 h and were finally approx. 3 times higher than in control cells, an increase commensurate with that seen in vivo in both LPL mRNA levels and LPL activity during physiological stimulation. The increase was dependent on transcription. The effect of noradrenaline showed simple Michaelis-Menten kinetics with an EC50 of approx. 11 nM. beta3-Agonists (BRL-37344 and CGP-12177) could mimic the effect of noradrenaline; the beta1-agonist dobutamine and the beta2-agonist salbutamol could not; the alpha1-agonist cirazoline had only a weak effect. The effect of noradrenaline was fully inhibited by the beta-antagonist propranolol and was halved by the alpha1-antagonist prazosin; the alpha2-antagonist yohimbine was without effect. An increase in LPL mRNA level similar to (but not significantly exceeding) that caused by noradrenaline could also be induced by the cAMP-elevating agents forskolin and cholera toxin, and 8-Br-cAMP also increased LPL mRNA levels. The increase in LPL gene expression was not mediated via an increase in the level of an intermediary proteinaceous factor. It is concluded that the physiologically induced increase in LPL gene expression is a direct effect of noradrenaline on the brown adipocytes themselves, mediated via a dominant beta3-adrenergic pathway and an auxiliary alpha1-adrenergic pathway which converge at a regulatory point in transcriptional control. PMID:9032464

  14. Endoplasmic reticulum stress suppresses lipin-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayoshi; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2013-02-01

    Highlights: ► Lipin-1 involves lipid metabolism, adipocyte differentiation, and inflammation. ► Adipose lipin-1 expression is reduced in obesity. ► ER stress suppresses lipin-1 expression in 3T3-L1 adipocytes. ► Activation of PPAR-γ recovers ER stress-induced lipin-1 reduction. -- Abstract: Lipin-1 plays crucial roles in the regulation of lipid metabolism and cell differentiation in adipocytes. In obesity, adipose lipin-1 mRNA expression is decreased and positively correlated with systemic insulin sensitivity. Amelioration of the lipin-1 depletion might be improved dysmetabolism. Although some cytokines such as TNF-α and interleukin-1β reduces adipose lipin-1 expression, the mechanism of decreased adipose lipin-1 expression in obesity remains unclear. Recently, endoplasmic reticulum (ER) stress is implicated in the pathogenesis of obesity. Here we investigated the role of ER stress on the lipin-1 expression in 3T3-L1 adipocytes. We demonstrated that lipin-1 expression was suppressed by the treatment with ER stress inducers (tunicamycin and thapsigargin) at transcriptional level. We also showed that constitutive lipin-1 expression could be maintained by peroxisome proliferator-activated receptor-γ in 3T3-L1 adipocytes. Activation of peroxisome proliferator-activated receptor-γ recovered the ER stress-induced lipin-1 suppression. These results suggested that ER stress might be involved in the pathogenesis of obesity through lipin-1 depletion.

  15. Bixin regulates mRNA expression involved in adipogenesis and enhances insulin sensitivity in 3T3-L1 adipocytes through PPAR{gamma} activation

    SciTech Connect

    Takahashi, Nobuyuki; Goto, Tsuyoshi; Taimatsu, Aki; Egawa, Kahori; Katoh, Sota; Kusudo, Tatsuya; Sakamoto, Tomoya; Ohyane, Chie; Lee, Joo-Young; Kim, Young-il; Uemura, Taku; Hirai, Shizuka; Kawada, Teruo

    2009-12-25

    Insulin resistance is partly due to suppression of insulin-induced glucose uptake into adipocytes. The uptake is dependent on adipocyte differentiation, which is controlled at mRNA transcription level. The peroxisome proliferator-activated receptor (PPAR), a ligand-regulated nuclear receptor, is involved in the differentiation. Many food-derived compounds serve as ligands to activate or inactivate PPAR. In this study, we demonstrated that bixin and norbixin (annatto extracts) activate PPAR{gamma} by luciferase reporter assay using GAL4-PPAR chimera proteins. To examine the effects of bixin on adipocytes, 3T3-L1 adipocytes were treated with bixin or norbixin. The treatment induced mRNA expression of PPAR{gamma} target genes such as adipocyte-specific fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and adiponectin in differentiated 3T3-L1 adipocytes and enhanced insulin-dependent glucose uptake. The observations indicate that bixin acts as an agonist of PPAR{gamma} and enhances insulin sensitivity in 3T3-L1 adipocytes, suggesting that bixin is a valuable food-derived compound as a PPAR ligand to regulate lipid metabolism and to ameliorate metabolic syndrome.

  16. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics - Resveratrol as Ameliorating Factor on LPS Induced Changes.

    PubMed

    Nøhr, Mark K; Kroager, Toke P; Sanggaard, Kristian W; Knudsen, Anders D; Stensballe, Allan; Enghild, Jan J; Ølholm, Jens; Richelsen, Bjørn; Pedersen, Steen B

    2016-01-01

    Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis) revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning adipose tissue

  17. SILAC-MS Based Characterization of LPS and Resveratrol Induced Changes in Adipocyte Proteomics – Resveratrol as Ameliorating Factor on LPS Induced Changes

    PubMed Central

    Kroager, Toke P.; Sanggaard, Kristian W.; Knudsen, Anders D.; Stensballe, Allan; Enghild, Jan J.; Ølholm, Jens; Richelsen, Bjørn; Pedersen, Steen B.

    2016-01-01

    Adipose tissue inflammation is believed to play a pivotal role in the development obesity-related morbidities such as insulin resistance. However, it is not known how this (low-grade) inflammatory state develops. It has been proposed that the leakage of lipopolysaccharides (LPS), originating from the gut microbiota, through the gut epithelium could drive initiation of inflammation. To get a better understanding of which proteins and intracellular pathways are affected by LPS in adipocytes, we performed SILAC proteomic analysis and identified proteins that were altered in expression. Furthermore, we tested the anti-inflammatory compound resveratrol. A total of 927 proteins were quantified by the SILAC method and of these 57- and 64 were significantly up- and downregulated by LPS, respectively. Bioinformatic analysis (GO analysis) revealed that the upregulated proteins were especially involved in the pathways of respiratory electron transport chain and inflammation. The downregulated proteins were especially involved in protein glycosylation. One of the latter proteins, GALNT2, has previously been described to regulate the expression of liver lipases such as ANGPTL3 and apoC-III affecting lipid metabolism. Furthermore, LPS treatment reduced the protein levels of the insulin sensitizing adipokine, adiponectin, and proteins participating in the final steps of triglyceride- and cholesterol synthesis. Generally, resveratrol opposed the effect induced by LPS and, as such, functioning as an ameliorating factor in disease state. Using an unbiased proteomic approach, we present novel insight of how the proteome is altered in adipocytes in response to LPS as seen in obesity. We suggest that LPS partly exerts its detrimental effects by altering glycosylation processes of the cell, which is starting to emerge as important posttranscriptional regulators of protein expression. Furthermore, resveratrol could be a prime candidate in ameliorating dysfunctioning adipose tissue

  18. α-Naphthoflavone Increases Lipid Accumulation in Mature Adipocytes and Enhances Adipocyte-Stimulated Endothelial Tube Formation.

    PubMed

    Wang, Mei-Lin; Lin, Shyh-Hsiang; Hou, Yuan-Yu; Chen, Yue-Hwa

    2015-05-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated factor that regulates biological effects associated with obesity. The AhR agonists, such as environmental contaminants 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and β-naphthoflavone (BNF), inhibit preadipocyte differentiation and interfere with the functions of adipose tissue, whereas the antagonist may have opposite or protective effects in obesity. This study investigated the effects of α-naphthoflavone (α-NF), an AhR antagonist, on adipogenesis- and angiogenesis-associated factors in mature adipocytes and on cross-talk of mature adipocytes with endothelial cells (ECs). Besides, the roles of the AhR on lipid accumulation and on secretion of vascular endothelial growth factor were also determined by introducing siRNA of AhR. Differentiated 3T3-L1 cells were treated with α-naphthoflavone (α-NF) (1-5 μM) for 16 h. Lipid accumulation and the expressions of AhR-associated factors in the cells were determined. The interaction between adipocytes and ECs was investigated by cultivating ECs with conditioned medium (CM) from α-NF-treated mature adipocytes, followed by the determination of endothelial tube formation. The results showed that α-NF significantly increased triglyceride (TG) accumulation in mature adipocytes, which was associated with increased expression of hormone-sensitive lipase (HSL), estrogen receptor (ER), as well as decreased expression of AhR, AhR nuclear translocator (ARNT), cytochrome P4501B1 (CYP1B1), and nuclear factor erythroid-2-related factor (NRF-2) proteins. In addition, CM stimulated formation of tube-like structures in ECs, and α-NF further enhanced such stimulation in association with modulated the secretions of various angiogenic mediators by mature adipocytes. Similarly, increased TG accumulation and vascular endothelial growth factor (VEGF) secretion were observed in AhR-knockout cells. In conclusion, α-NF increased TG accumulation in mature adipocytes and enhanced

  19. Deficiency of adipocyte fatty-acid-binding protein alleviates myocardial ischaemia/reperfusion injury and diabetes-induced cardiac dysfunction.

    PubMed

    Zhou, Mi; Bao, Yuqian; Li, Haobo; Pan, Yong; Shu, Lingling; Xia, Zhengyuan; Wu, Donghai; Lam, Karen S L; Vanhoutte, Paul M; Xu, Aimin; Jia, Weiping; Hoo, Ruby L-C

    2015-10-01

    Clinical evidence shows that circulating levels of adipocyte fatty-acid-binding protein (A-FABP) are elevated in patients with diabetes and closely associated with ischaemic heart disease. Patients with diabetes are more susceptible to myocardial ischaemia/reperfusion (MI/R) injury. The experiments in the present study investigated the role of A-FABP in MI/R injury with or without diabetes. Non-diabetic and diabetic (streptozotocin-induced) A-FABP knockout and wild-type mice were subjected to MI/R or sham intervention. After MI/R, A-FABP knockout mice exhibited reductions in myocardial infarct size, apoptotic index, oxidative and nitrative stress, and inflammation. These reductions were accompanied by an improved left ventricular function compared with the relative controls under non-diabetic or diabetic conditions. After diabetes induction, A-FABP knockout mice exhibited a preserved cardiac function compared with that in wild-type mice. Endothelial cells, but not cardiomyocytes, were identified as the most likely source of cardiac A-FABP. Cardiac and circulating A-FABP levels were significantly increased in mice with diabetes or MI/R. Diabetes-induced superoxide anion production was significantly elevated in wild-type mice, but diminished in A-FABP knockout mice, and this elevation contributed to the exaggeration of MI/R-induced cardiac injury. Phosphorylation of endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO) were enhanced in both diabetic and non-diabetic A-FABP knockout mice after MI/R injury, but diminished in wild-type mice. The beneficial effects of A-FABP deficiency on MI/R injury were abolished by the NOS inhibitor N(G)-nitro-L-arginine methyl ester. Thus, A-FABP deficiency protects mice against MI/R-induced and/or diabetes-induced cardiac injury at least partially through activation of the eNOS/NO pathway and reduction in superoxide anion production.

  20. Antidiabetic Activities of Abutilon indicum (L.) Sweet Are Mediated by Enhancement of Adipocyte Differentiation and Activation of the GLUT1 Promoter

    PubMed Central

    Krisanapun, Chutwadee; Lee, Seong-Ho; Peungvicha, Penchom; Temsiririrkkul, Rungravi; Baek, Seung Joon

    2011-01-01

    Abutilon indicum (L.) Sweet is an Asian phytomedicine traditionally used to treat several disorders, including diabetes mellitus. However, molecular mechanisms supporting the antidiabetic effect of A. indicum L. remain unknown. The aim of this study was to evaluate whether extract of A. indicum L. improves insulin sensitivity. First, we observed the antidiabetic activity of aqueous extract of the entire plant (leaves, twigs and roots) of A. indicum L. on postprandial plasma glucose in diabetic rats. The subsequent experiments revealed that butanol fractions of the extract bind to PPARγ and activate 3T3-L1 differentiation. To measure glucose uptake enhanced by insulin-like activity, we used rat diaphragm incubated with various concentrations of the crude extract and found that the extract enhances glucose consumption in the incubated solution. Our data also indicate that the crude extract and the fractions (water and butanol) did not affect the activity of kinases involved in Akt and GSK-3β pathways; however, the reporter assay showed that the crude extract could activate glucose transporter 1 (GLUT1) promoter activity. These results suggest that the extract from A. indicum L. may be beneficial for reducing insulin resistance through its potency in regulating adipocyte differentiation through PPARγ agonist activity, and increasing glucose utilization via GLUT1. PMID:21603234

  1. Antidiabetic Activities of Abutilon indicum (L.) Sweet Are Mediated by Enhancement of Adipocyte Differentiation and Activation of the GLUT1 Promoter.

    PubMed

    Krisanapun, Chutwadee; Lee, Seong-Ho; Peungvicha, Penchom; Temsiririrkkul, Rungravi; Baek, Seung Joon

    2011-01-01

    Abutilon indicum (L.) Sweet is an Asian phytomedicine traditionally used to treat several disorders, including diabetes mellitus. However, molecular mechanisms supporting the antidiabetic effect of A. indicum L. remain unknown. The aim of this study was to evaluate whether extract of A. indicum L. improves insulin sensitivity. First, we observed the antidiabetic activity of aqueous extract of the entire plant (leaves, twigs and roots) of A. indicum L. on postprandial plasma glucose in diabetic rats. The subsequent experiments revealed that butanol fractions of the extract bind to PPARγ and activate 3T3-L1 differentiation. To measure glucose uptake enhanced by insulin-like activity, we used rat diaphragm incubated with various concentrations of the crude extract and found that the extract enhances glucose consumption in the incubated solution. Our data also indicate that the crude extract and the fractions (water and butanol) did not affect the activity of kinases involved in Akt and GSK-3β pathways; however, the reporter assay showed that the crude extract could activate glucose transporter 1 (GLUT1) promoter activity. These results suggest that the extract from A. indicum L. may be beneficial for reducing insulin resistance through its potency in regulating adipocyte differentiation through PPARγ agonist activity, and increasing glucose utilization via GLUT1. PMID:21603234

  2. Anti-inflammatory effect of resveratrol on TNF-{alpha}-induced MCP-1 expression in adipocytes

    SciTech Connect

    Zhu Jian; Yong Wei; Wu Xiaohong; Yu Ying; Lv Jinghuan; Liu Cuiping; Mao Xiaodong; Zhu Yunxia; Xu Kuanfeng; Han Xiao Liu Chao

    2008-05-02

    Chronic low-grade inflammation characterized by adipose tissue macrophage accumulation and abnormal cytokine production is a key feature of obesity and type 2 diabetes. Adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, induced by cytokines, has been shown to play an essential role in the early events during macrophage infiltration into adipose tissue. In this study we investigated the effects of resveratrol upon both tumor necrosis factor (TNF)-{alpha}-induced MCP-1 gene expression and its underlying signaling pathways in 3T3-L1 adipoctyes. Resveratrol was found to inhibit TNF-{alpha}-induced MCP-1 secretion and gene transcription, as well as promoter activity, which based on down-regulation of TNF-{alpha}-induced MCP-1 transcription. Nuclear factor (NF)-{kappa}B was determined to play a major role in the TNF-{alpha}-induced MCP-1 expression. Further analysis showed that resveratrol inhibited DNA binding activity of the NF-{kappa}B complex and subsequently suppressed NF-{kappa}B transcriptional activity in TNF-{alpha}-stimulated cells. Finally, the inhibition of MCP-1 may represent a novel mechanism of resveratrol in preventing obesity-related pathologies.

  3. Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice

    PubMed Central

    Satoh, Masashi; Hoshino, Miyuki; Fujita, Koki; Iizuka, Misao; Fujii, Satoshi; Clingan, Christopher S.; Van Kaer, Luc; Iwabuchi, Kazuya

    2016-01-01

    It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity. PMID:27329323

  4. 18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes.

    PubMed

    Kirkwood, Jay S; Miranda, Cristobal L; Bobe, Gerd; Maier, Claudia S; Stevens, Jan F

    2016-01-01

    The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in

  5. 18O-Tracer Metabolomics Reveals Protein Turnover and CDP-Choline Cycle Activity in Differentiating 3T3-L1 Pre-Adipocytes

    PubMed Central

    Kirkwood, Jay S.; Miranda, Cristobal L.; Bobe, Gerd; Maier, Claudia S.; Stevens, Jan F.

    2016-01-01

    The differentiation of precursor cells into mature adipocytes (adipogenesis) has been an area of increased focus, spurred by a rise in obesity rates. Though our understanding of adipogenesis and its regulation at the cellular level is growing, many questions remain, especially regarding the regulation of the metabolome. The 3T3-L1 cell line is the most well characterized cellular model of adipogenesis. Using a time course metabolomics approach, we show that the 3T3-L1 preadipocyte metabolome is greatly altered during the first 48 hours of differentiation, where cells go through about two rounds of cell division, a process known as mitotic clonal expansion. Short-chain peptides were among several small molecules that were increased during mitotic clonal expansion. Additional indicators of protein turnover were also increased, including bilirubin, a degradation product of heme-containing proteins, and 3-methylhistidine, a post-translationally modified amino acid that is not reutilized for protein synthesis. To study the origin of the peptides, we treated differentiating preadipocytes with 18O labeled water and found that 18O was incorporated into the short chain peptides, confirming them, at least in part, as products of hydrolysis. Inhibitors of the proteasome or matrix metalloproteinases affected the peptide levels during differentiation, but inhibitors of autophagy or peptidases did not. 18O was also incorporated into several choline metabolites including cytidine 5'-diphosphocholine (CDP-choline), glycerophosphocholine, and several phosphatidylcholine species, indicative of phosphatidylcholine synthesis/degradation and of flux through the CDP-choline cycle, a hallmark of proliferating cells. 18O-Tracer metabolomics further showed metabolic labeling of glutamate, suggestive of glutaminolysis, also characteristic of proliferating cells. Together, these results highlight the utility of 18O isotope labeling in combination with metabolomics to uncover changes in

  6. Adipocyte lipases and defect of lipolysis in human obesity.

    PubMed

    Langin, Dominique; Dicker, Andrea; Tavernier, Geneviève; Hoffstedt, Johan; Mairal, Aline; Rydén, Mikael; Arner, Erik; Sicard, Audrey; Jenkins, Christopher M; Viguerie, Nathalie; van Harmelen, Vanessa; Gross, Richard W; Holm, Cecilia; Arner, Peter

    2005-11-01

    The mobilization of fat stored in adipose tissue is mediated by hormone-sensitive lipase (HSL) and the recently characterized adipose triglyceride lipase (ATGL), yet their relative importance in lipolysis is unknown. We show that a novel potent inhibitor of HSL does not inhibit other lipases. The compound counteracted catecholamine-stimulated lipolysis in mouse adipocytes and had no effect on residual triglyceride hydrolysis and lipolysis in HSL-null mice. In human adipocytes, catecholamine- and natriuretic peptide-induced lipolysis were completely blunted by the HSL inhibitor. When fat cells were not stimulated, glycerol but not fatty acid release was inhibited. HSL and ATGL mRNA levels increased concomitantly during adipocyte differentiation. Abundance of the two transcripts in human adipose tissue was highly correlated in habitual dietary conditions and during a hypocaloric diet, suggesting common regulatory mechanisms for the two genes. Comparison of obese and nonobese subjects showed that obesity was associated with a decrease in catecholamine-induced lipolysis and HSL expression in mature fat cells and in differentiated preadipocytes. In conclusion, HSL is the major lipase for catecholamine- and natriuretic peptide-stimulated lipolysis, whereas ATGL mediates the hydrolysis of triglycerides during basal lipolysis. Decreased catecholamine-induced lipolysis and low HSL expression constitute a possibly primary defect in obesity. PMID:16249444

  7. Mitochondria in White, Brown, and Beige Adipocytes.

    PubMed

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  8. Mitochondria in White, Brown, and Beige Adipocytes

    PubMed Central

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  9. Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

    SciTech Connect

    Liu, Ping; Kong, Feng; Wang, Jue; Lu, Qinghua; Xu, Haijia; Qi, Tonggang; Meng, Juan

    2015-02-01

    Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression

  10. Spexin is a Novel Human Peptide that Reduces Adipocyte Uptake of Long Chain Fatty Acids and Causes Weight Loss in Rodents with Diet-induced Obesity*

    PubMed Central

    Walewski, José L.; Ge, Fengxia; Lobdell, Harrison; Levin, Nancy; Schwartz, Gary J.; Vasselli, Joseph; Pomp, Afons; Dakin, Gregory; Berk, Paul D.

    2014-01-01

    Objective Microarray studies identified Ch12:orf39 (Spexin) as the most dysregulated gene in obese human fat. Therefore we examined its role in obesity pathogenesis. Design and Methods Spexin effects on food intake, meal patterns, body weight, Respiratory Exchange Ratio (RER), and locomotor activity were monitored electronically in C57BL/6J mice or Wistar rats with dietary-induced obesity (DIO). Its effects on adipocyte [3H]-oleate uptake were determined. Results In humans, Spexin gene expression was down-regulated 14.9-fold in obese omental and subcutaneous fat. Circulating Spexin changed in parallel, correlating (r = −0.797) with Leptin. In rats, Spexin (35 μg/kg/day s.c) reduced caloric intake ~32% with corresponding weight loss. Meal patterns were unaffected. In mice, Spexin (25 μg/kg/day i.p.) significantly reduced the RER at night, and increased locomotion. Spexin incubation in vitro significantly inhibited facilitated fatty acid (FA) uptake into DIO mouse adipocytes. Conditioned taste aversion testing (70μg/kg/day i.p.) demonstrated no aversive Spexin effects. Conclusions Spexin gene expression is markedly down-regulated in obese human fat. The peptide produces weight loss in DIO rodents. Its effects on appetite and energy regulation are presumably central; those on adipocyte FA uptake appear direct and peripheral. Spexin is a novel hormone involved in weight regulation, with potential for obesity therapy. PMID:24550067

  11. Inhibition of O-GlcNAcase Using a Potent and Cell-Permeable Inhibitor Does Not Induce Insulin Resistance in 3T3-L1 Adipocytes

    PubMed Central

    Macauley, Matthew S.; He, Yuan; Gloster, Tracey M.; Stubbs, Keith A.; Davies, Gideon J.; Vocadlo, David J.

    2010-01-01

    Summary To probe increased O-GlcNAc levels as an independent mechanism governing insulin resistance in 3T3-L1 adipocytes, a new class of O-GlcNAcase (OGA) inhibitor was studied. 6-Acetamido-6-deoxy-castanospermine (6-Ac-Cas) is a potent inhibitor of OGA. The structure of 6-Ac-Cas bound in the active site of an OGA homolog reveals structural features contributing to its potency. Treatment of 3T3-L1 adipocytes with 6-Ac-Cas increases O-GlcNAc levels in a dose-dependent manner. These increases in O-GlcNAc levels do not induce insulin resistance functionally, measured using a 2-deoxyglucose (2-DOG) uptake assay, or at the molecular level, determined by evaluating levels of phosphorylated IRS-1 and Akt. These results, and others described, provide a structural blueprint for improved inhibitors and collectively suggest that increased O-GlcNAc levels, brought about by inhibition of OGA, does not by itself cause insulin resistance in 3T3-L1 adipocytes. PMID:20851343

  12. Inhibition of isoproterenol-induced lipolysis in rat inguinal adipocytes in vitro by physiological melatonin via a receptor-mediated mechanism.

    PubMed

    Zalatan, F; Krause, J A; Blask, D E

    2001-09-01

    Because the pineal hormone melatonin has been implicated in affecting adiposity in rats and fatty acid transport in certain rat tumor models, we tested whether melatonin regulates lipolysis in a normal cell system in vitro. Adipocytes were isolated from the inguinal fat pads (i.e. sc fat) of Sprague Dawley male rats during mid-light phase. Lipolysis was stimulated with isoproterenol (3 microM), and cells were incubated for 4 h in the presence or absence of a physiological circulating concentration of melatonin (1 nM). Lipolysis was measured by determining the amount of glycerol present in the incubation buffer, expressed as nmol glycerol/mg cellular fatty acid. We observed a 20- to 30-fold stimulation of basal lipolysis by isoproterenol, and this stimulation was inhibited 50--70% by melatonin. Melatonin exhibited this effect over a wide range of concentrations tested (100 pM-1 microM) with an IC(50) of approximately 500 pM. The effect by melatonin (1 nM) was completely blocked by pertussis toxin (50 ng/ml), by 8-bromo-cAMP (10 nM), and by the melatonin receptor antagonist S-20928 (1 nM). These results suggest that the antilipolytic effect occurs through one of the G(i) protein-coupled melatonin receptors because we have shown that both the mt(1) (Mel 1a) and MT(2) (Mel 1b) melatonin receptors are expressed in inguinal adipocytes. Melatonin inhibition of lipolysis was not observed in adipocytes isolated from rat epididymal fat pads (i.e. visceral fat), even though these cells also express both the mt(1) and MT(2) receptors. The results indicate that physiological circulating concentrations of melatonin inhibit isoproterenol-induced lipolysis in rat adipocytes via a G protein-coupled melatonin receptor-mediated signal transduction pathway in a site-specific manner.

  13. Adipocytes, like their progenitors, contribute to inflammation of adipose tissues through promotion of Th-17 cells and activation of monocytes, in obese subjects.

    PubMed

    Chehimi, Marwa; Robert, Maud; Bechwaty, Michel El; Vial, Guillaume; Rieusset, Jennifer; Vidal, Hubert; Pirola, Luciano; Eljaafari, Assia

    2016-01-01

    Recently, we have reported that adipose tissue-derived stem cells (ASC) harvested from obese donors induce a pro-inflammatory environment when co-cultured with peripheral blood mononuclear cells (MNC), with a polarization of T cells toward the Th17 cell lineage, increased secretion of IL-1β and IL-6 pro-inflammatory cytokines, and down-regulation of Th1 cytokines, such as IFNγ and TNFα. However, whether differentiated adipocytes, like the aforementioned ASC, are pro-inflammatory in obese subject AT remained to be investigated. Herein, we isolated ASC from AT of obese donors and differentiated them into adipocytes, for either 8 or 14 d. We analyzed their capacity to activate blood MNC after stimulation with phytohemagglutinin A (PHA), or not, in co-culture assays. Our results showed that co-cultures of MNC with adipocytes, like with ASC, increased IL-17A, IL-1β, and IL-6 pro-inflammatory cytokine secretion. Moreover, like ASC, adipocytes down-regulated TNFα secretion by Th1 cells. As adipocytes differentiated from ASC of lean donors also promoted IL-17A secretion by MNC, an experimental model of high-fat versus chow diet mice was used and supported that adipocytes from obese, but not lean AT, are able to mediate IL-17A secretion by PHA-activated MNCs. In conclusion, our results suggest that, as ASC, adipocytes in obese AT might contribute to the establishment of a low-grade chronic inflammation state. PMID:27617173

  14. Pioglitazone enhances small-sized adipocyte proliferation in subcutaneous adipose tissue.

    PubMed

    Kajita, Kazuo; Mori, Ichiro; Hanamoto, Takayuki; Ikeda, Takahide; Fujioka, Kei; Yamauchi, Masahiro; Okada, Hideyuki; Usui, Taro; Takahashi, Noriko; Kitada, Yoshihiko; Taguchi, Kohichiro; Kajita, Toshiko; Uno, Yoshihiro; Morita, Hiroyuki; Ishizuka, Tatsuo

    2012-01-01

    The possibility that mature adipocytes proliferate has not been fully investigated. In this study, we demonstrate that adipocytes can proliferate. 5-bromo-2'-deoxyuridine (BrdU)-labeled adipocyte like cells, most of which were less than 30 μm in diameter, were observed in adipose tissue. Proliferating cell nuclear antigen (PCNA) was simultaneously detected in BrdU-labeled nuclei. Observation of individual mature adipocytes of smeared specimens on glass slides revealed that small sized adipocytes more frequently incorporated BrdU. Cultured mature adipocytes using the ceiling-cultured method showed clustering of proliferating cells in small-sized adipocytes. These small cultured adipocytes, but not large ones, extensively incorporated BrdU. Quantified analysis of BrdU incorporation demonstrated that mature visceral adipocytes, including epididymal, mesenteric and perirenal adipocytes, proliferated more actively than subcutaneous ones. On the other hand, treatment with pioglitazone (Pio), a ligand of peroxisome proliferator-activated receptor γ, containing food for 2w, elevated BrdU incorporation and expression of PCNA in mature adipocytes isolated from subcutaneous, but not visceral adipose tissue. Moreover, Pio induced increased BrdU-labeled small-sized subcutaneous adipocytes, which was associated with an increased number of total small adipocytes in subcutaneous adipose tissue. In conclusion, mature adipocytes have a subgroup representing the potential to replicate, and this proliferation is more active in visceral adipocytes. Treatment with Pio increases proliferation in subcutaneous adipocytes. These results may explain the mechanism of Pio-induced hyperplasia especially in subcutaneous adipocytes.

  15. Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling.

    PubMed

    Shen, Yan; Honma, Natsumi; Kobayashi, Katsuya; Jia, Liu Nan; Hosono, Takashi; Shindo, Kazutoshi; Ariga, Toyohiko; Seki, Taiichiro

    2014-01-01

    We previously demonstrated that cinnamon extract (CE) ameliorates type 1 diabetes induced by streptozotocin in rats through the up-regulation of glucose transporter 4 (GLUT4) translocation in both muscle and adipose tissues. This present study was aimed at clarifying the detailed mechanism(s) with which CE increases the glucose uptake in vivo and in cell culture systems using 3T3-L1 adipocytes and C2C12 myotubes in vitro. Specific inhibitors of key enzymes in insulin signaling and AMP-activated protein kinase (AMPK) signaling pathways, as well as small interference RNA, were used to examine the role of these kinases in the CE-induced glucose uptake. The results showed that CE stimulated the phosphorylation of AMPK and acetyl-CoA carboxylase. An AMPK inhibitor and LKB1 siRNA blocked the CE-induced glucose uptake. We also found for the first time that insulin suppressed AMPK activation in the adipocyte. To investigate the effect of CE on type 2 diabetes in vivo, we further performed oral glucose tolerance tests and insulin tolerance tests in type 2 diabetes model rats administered with CE. The CE improved glucose tolerance in oral glucose tolerance tests, but not insulin sensitivity in insulin tolerance test. In summary, these results indicate that CE ameliorates type 2 diabetes by inducing GLUT4 translocation via the AMPK signaling pathway. We also found insulin antagonistically regulates the activation of AMPK. PMID:24551069

  16. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes.

    PubMed

    Colitti, Monica; Stefanon, Bruno

    2016-01-01

    Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis. PMID:27540349

  17. Different anti-adipogenic effects of bio-compounds on primary visceral pre-adipocytes and adipocytes

    PubMed Central

    Colitti, Monica; Stefanon, Bruno

    2016-01-01

    Several natural compounds exhibit strong capacity for decreasing triglyceride accumulation, enhancing lipolysis and inducing apoptosis. The present study reports the anti-adipogenic effects of Silybum marianum (SL), Citrus aurantium (CA), Taraxacum officinale (TO), resveratrol (RE), Curcuma longa (CU), caffeine (CF), oleuropein (OL) and docosahexaenoic acid (DHA) in reducing differentiation and increasing lipolysis and apoptosis. Analyses were performed on human primary visceral pre-adipocytes after 10 (P10) and 20 (P20) days of treatment during differentiation and on mature adipocytes after 7 days of treatment (A7). The percentage of apoptosis induced by TO extract in P10 and P20 cells was significantly higher than that induced by all other compounds and in CTRL cells. Triglyceride accumulation was significantly lower in cells treated with DHA, CF, RE in comparison to cells treated with OL and in CTRL cells. Treatments with CF, DHA and OL significantly incremented lipolysis in P20 cells in comparison to other compounds and in CTRL cells. On the contrary, the treatment of A7 cells with OL, CA and TO compounds significantly increased cell lipolysis. The addition of CF in differentiating P20 pre-adipocytes significantly increased the expression of genes involved in inhibition of adipogenesis, such as GATA2, GATA3, WNT1, WNT3A, SFRP5, and DLK1. Genes involved in promoting adipogenesis such as CCND1, CEBPB and SREBF1 were significantly down-regulated by the treatment. The screening of bioactive compounds for anti-adipogenic effects showed that in differentiating cells TO extract was the most effective in inducing apoptosis and CF and DHA extracts were more efficient in inhibition of differentiation and in induction of cell lipolysis. PMID:27540349

  18. Calcium-Induced Alteration of Mitochondrial Morphology and Mitochondrial-Endoplasmic Reticulum Contacts in Rat Brown Adipocytes

    PubMed Central

    Golic, I.; Velickovic, K.; Markelic, M.; Stancic, A.; Jankovic, A.; Vucetic, M.; Otasevic, V.; Buzadzic, B.; Korac, B.

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  19. Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis.

    PubMed

    Ambati, Suresh; Yang, Jeong-Yeh; Rayalam, Srujana; Park, Hea Jin; Della-Fera, Mary Anne; Baile, Clifton A

    2009-04-01

    This paper describes effects of several sulfur-containing compounds from garlic on the cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes. In both preadipocytes and mature adipocytes, 100 and 200 microM ajoene significantly decreased cell viability and increased apoptosis. The effect on apoptosis was further confirmed with Hoechst staining. In contrast, diallyl sulfide, diallyl disulfide, diallyl trisulfide, deoxyalliin, and allyl methyl sulfide had no significant effect on cell viability or apoptosis in either preadipocytes or mature adipocytes. In maturing preadipocytes ajoene significantly decreased lipid accumulation in a dose-dependent manner and these results were further confirmed by a decrease in lipid droplet number and lipid content through Oil Red O staining. There was no significant change in lipid accumulation in maturing preadipocytes treated with other garlic derivatives. Thus, despite the same source of origin, garlic, ajoene was the only one with potent effects on cell viability, apoptosis and adipogenesis in 3T3-L1 adipocytes.

  20. The multiple endocrine neoplasia type 1 (MEN1) tumor suppressor regulates peroxisome proliferator-activated receptor gamma-dependent adipocyte differentiation.

    PubMed

    Dreijerink, Koen M A; Varier, Radhika A; van Beekum, Olivier; Jeninga, Ellen H; Höppener, Jo W M; Lips, Cornelis J M; Kummer, J Alain; Kalkhoven, Eric; Timmers, H T Marc

    2009-09-01

    Menin, the product of the MEN1 (multiple endocrine neoplasia type 1) tumor suppressor gene, is involved in activation of gene transcription as part of an MLL1 (mixed-lineage leukemia 1)/MLL2 (KMT2A/B)-containing protein complex which harbors methyltransferase activity for lysine 4 of histone H3 (H3K4). As MEN1 patients frequently develop lipomas and peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in several MEN1-related tumor types, we investigated regulation of PPARgamma activity by menin. We found that menin is required for adipocyte differentiation of murine 3T3-L1 cells and PPARgamma-expressing mouse embryonic fibroblasts. Menin augments PPARgamma target gene expression through recruitment of H3K4 methyltransferase activity. Menin interacts directly with the activation function 2 transcription activation domain of PPARgamma in a ligand-independent fashion. Ligand-dependent coactivation, however, is dependent on the LXXLL motif of menin and the intact helix 12 of PPARgamma. We propose that menin is an important factor in PPARgamma-mediated adipogenesis and that loss of PPARgamma function may contribute to lipoma development in MEN1 patients.

  1. Fad104, a Positive Regulator of Adipocyte Differentiation, Suppresses Invasion and Metastasis of Melanoma Cells by Inhibition of STAT3 Activity

    PubMed Central

    Katoh, Daiki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2015-01-01

    Metastasis is the main cause of death in patients with cancer, and understanding the mechanisms of metastatic processes is essential for the development of cancer therapy. Although the role of several cell adhesion, migration or proliferation molecules in metastasis is established, a novel target for cancer therapy remains to be discovered. Previously, we reported that fad104 (factor for adipocyte differentiation 104), a regulatory factor of adipogenesis, regulates cell adhesion and migration. In this report, we clarify the role of fad104 in the invasion and metastasis of cancer cells. The expression level of fad104 in highly metastatic melanoma A375SM cells was lower than that in poorly metastatic melanoma A375C6 cells. Reduction of fad104 expression enhanced the migration and invasion of melanoma cells, while over-expression of FAD104 inhibited migration and invasion. In addition, melanoma cells stably expressing FAD104 showed a reduction in formation of lung colonization compared with control cells. FAD104 interacted with STAT3 and down-regulated the phosphorylation level of STAT3 in melanoma cells. These findings together demonstrate that fad104 suppressed the invasion and metastasis of melanoma cells by inhibiting activation of the STAT3 signaling pathway. These findings will aid a comprehensive description of the mechanism that controls the invasion and metastasis of cancer cells. PMID:25671570

  2. Mango (Mangifera indica L.) peel extract fractions from different cultivars differentially affect lipid accumulation in 3T3-L1 adipocyte cells.

    PubMed

    Taing, Meng-Wong; Pierson, Jean-Thomas; Shaw, Paul N; Dietzgen, Ralf G; Roberts-Thomson, Sarah J; Gidley, Michael J; Monteith, Gregory R

    2013-02-26

    Plant phytochemicals are increasingly recognised as sources of bioactive molecules which may have potential benefit in many health conditions. In mangoes, peel extracts from different cultivars exhibit varying effects on adipogenesis in the 3T3-L1 adipocyte cell line. In this study, the effects of preparative HPLC fractions of methanol peel extracts from Irwin, Nam Doc Mai and Kensington Pride mangoes were evaluated. Fraction 1 contained the most hydrophilic components while subsequent fractions contained increasingly more hydrophobic components. High content imaging was used to assess mango peel fraction effects on lipid accumulation, nuclei count and nuclear area in differentiating 3T3-L1 cells. For all three mango cultivars, the more hydrophilic peel fractions 1-3 inhibited lipid accumulation with greater potency than the more hydrophobic peel fractions 4. For all three cultivars, the more lipophilic fraction 4 had concentrations that enhanced lipid accumulation greater than fractions 1-3 as assessed by lipid droplet integrated intensity. The potency of this fraction 4 varied significantly between cultivars. Using mass spectrometry, five long chain free fatty acids were detected in fraction 4; these were not present in any other peel extract fractions. Total levels varied between cultivars, with Irwin fraction 4 containing the highest levels of these free fatty acids. Lipophilic components appear to be responsible for the lipid accumulation promoting effects of some mango extracts and are the likely cause of the diverse effects of peel extracts from different mango cultivars on lipid accumulation.

  3. Emerging Complexities in Adipocyte Origins and Identity.

    PubMed

    Sanchez-Gurmaches, Joan; Hung, Chien-Min; Guertin, David A

    2016-05-01

    The global incidence of obesity and its comorbidities continues to rise along with a demand for novel therapeutic interventions. Brown adipose tissue (BAT) is attracting attention as a therapeutic target because of its presence in adult humans and high capacity to dissipate energy as heat, and thus burn excess calories, when stimulated. Another potential avenue for therapeutic intervention is to induce, within white adipose tissue (WAT), the formation of brown-like adipocytes called brite (brown-like-in-white) or beige adipocytes. However, understanding how to harness the potential of these thermogenic cells requires a deep understanding of their developmental origins and regulation. Recent cell-labeling and lineage-tracing experiments are beginning to shed light on this emerging area of adipocyte biology. We review here adipocyte development, giving particular attention to thermogenic adipocytes.

  4. Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.

    PubMed

    Dave, Sandeep; Kaur, Naval Jit; Nanduri, Ravikanth; Dkhar, H Kitdorlang; Kumar, Ashwani; Gupta, Pawan

    2012-01-01

    The phytotherapeutic protein stem bromelain (SBM) is used as an anti-obesity alternative medicine. We show at the cellular level that SBM irreversibly inhibits 3T3-L1 adipocyte differentiation by reducing adipogenic gene expression and induces apoptosis and lipolysis in mature adipocytes. At the molecular level, SBM suppressed adipogenesis by downregulating C/EBPα and PPARγ independent of C/EBPβ gene expression. Moreover, mRNA levels of adipocyte fatty acid-binding protein (ap2), fatty acid synthase (FAS), lipoprotein lipase (LPL), CD36, and acetyl-CoA carboxylase (ACC) were also downregulated by SBM. Additionally, SBM reduced adiponectin expression and secretion. SBM's ability to repress PPARγ expression seems to stem from its ability to inhibit Akt and augment the TNFα pathway. The Akt-TSC2-mTORC1 pathway has recently been described for PPARγ expression in adipocytes. In our experiments, TNFα upregulation compromised cell viability of mature adipocytes (via apoptosis) and induced lipolysis. Lipolytic response was evident by downregulation of anti-lipolytic genes perilipin, phosphodiestersae-3B (PDE3B), and GTP binding protein G(i)α(1), as well as sustained expression of hormone sensitive lipase (HSL). These data indicate that SBM, together with all-trans retinoic-acid (atRA), may be a potent modulator of obesity by repressing the PPARγ-regulated adipogenesis pathway at all stages and by augmenting TNFα-induced lipolysis and apoptosis in mature adipocytes.

  5. Zanthoxylum piperitum DC ethanol extract suppresses fat accumulation in adipocytes and high fat diet-induced obese mice by regulating adipogenesis.

    PubMed

    Gwon, So Young; Ahn, Ji Yun; Kim, Tae Wan; Ha, Tae Youl

    2012-01-01

    This study was conducted to determine the anti-obesity effects of Zanthoxylum piperitum DC fruit ethanol extract (ZPE) in 3T3-L1 adipocytes and obese mice fed a high-fat diet. We evaluated the influence of the addition of ZPE to a high-fat diet on body weight, adipose tissue weight, serum and hepatic lipids in C57BL/6 mice. In addition, adipogenic gene expression was determined by Western blot and real-time reverse transcription-PCR analysis. We assessed the effect of ZPE on 3T3-L1 preadipocyte differentiation. ZPE reduced weight gain, white adipose tissue mass, and serum triglyceride and cholesterol levels (p<0.05) in high-fat diet-fed C57BL/6 mice. ZPE decreased lipid accumulation and PPARγ, C/EBPα, SREBP-1, and FAS protein and mRNA levels in the liver. ZPE inhibited in vitro adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP-1 in 3T3L1 cells. These findings suggest that Z. piperitum DC exerts an anti-obesity effect by inhibiting adipogenesis through the downregulation of genes involved in the adipogenesis pathway.

  6. Protein-tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition.

    PubMed

    Wu, Xiangdong; Hardy, V Elise; Joseph, Jeffrey I; Jabbour, Serge; Mahadev, Kalyankar; Zhu, Li; Goldstein, Barry J

    2003-06-01

    Protein-tyrosine phosphatases (PTPases), in particular PTP1B, have been shown to modulate insulin signal transduction in liver and skeletal muscle in animal models; however, their role in human adipose tissue remains unclear. The uptake of (14)C-D-glucose in response to 10 or 100 nmol/L insulin was measured in isolated subcutaneous adipocytes from subjects with a mean age of 44 years (range, 26 to 58) and mean body mass index (BMI) of 35.6 (range, 29.7 to 45.5). The endogenous activity of total PTPases and specifically of PTP1B in immunoprecipitates was measured in cell lysates under an inert atmosphere with and without added reducing agents. Using nonlinear regression analysis, higher BMI was significantly correlated with lower adipocyte glucose uptake (r = 0.73, P =.01) and with increased endogenous total PTPase activity (r = 0.64, P =.04). Correlation with waist circumference gave similar results. The endogenous total PTPase activity also strongly correlated with insulin-stimulated glucose uptake (R =.89, P <.0001); however, the activity of PTP1B was unrelated to the level of glucose uptake. Consistent with the insulin-stimulated oxidative inhibition of thiol-dependent PTPases reported for 3T3-L1 adipocytes and hepatoma cells, treatment of human adipocytes with 100 nmol/L insulin for 5 minutes lowered endogenous PTPase activity to 37% of control (P <.001), which was increased 25% by subsequent treatment with dithiothreitol in vitro. Cellular treatment with diphenyleneiodonium (DPI), an NADPH oxidase inhibitor that blocks the cellular generation of H(2)O(2) and reduces the insulin-induced reduction of cellular PTPase activity, also diminished insulin-stimulated glucose uptake by 82% (P =.001). These data suggest that total cellular PTPase activity, but not the activity of PTP1B, is higher in more obese subjects and is negatively associated with insulin-stimulated glucose transport. The insulin-stimulated oxidative inhibition of PTPases may also have an important

  7. Regulation of adipocyte lipolysis.

    PubMed

    Frühbeck, Gema; Méndez-Giménez, Leire; Fernández-Formoso, José-Antonio; Fernández, Secundino; Rodríguez, Amaia

    2014-06-01

    In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.

  8. Regulation of adipocyte lipolysis.

    PubMed

    Frühbeck, Gema; Méndez-Giménez, Leire; Fernández-Formoso, José-Antonio; Fernández, Secundino; Rodríguez, Amaia

    2014-06-01

    In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms. PMID:24872083

  9. Genistein-mediated inhibition of mammary stromal adipocyte differentiation limits expansion of mammary stem/progenitor cells by paracrine signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary adiposity may contribute to breast cancer development and progression by releasing cytokines and other inflammatory mediators that promote mammary epithelial proliferation. We evaluated the effects of soy isoflavone genistein (GEN) on the adipogenic differentiation of a SV40-immortalized mou...

  10. Troglitazone induces differentiation in Trypanosoma brucei

    SciTech Connect

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael . E-mail: michael.duszenko@uni-tuebingen.de

    2007-05-15

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor {gamma}. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator.

  11. Epilepsy-induced motility of differentiated neurons.

    PubMed

    Chai, Xuejun; Münzner, Gert; Zhao, Shanting; Tinnes, Stefanie; Kowalski, Janina; Häussler, Ute; Young, Christina; Haas, Carola A; Frotscher, Michael

    2014-08-01

    Neuronal ectopia, such as granule cell dispersion (GCD) in temporal lobe epilepsy (TLE), has been assumed to result from a migration defect during development. Indeed, recent studies reported that aberrant migration of neonatal-generated dentate granule cells (GCs) increased the risk to develop epilepsy later in life. On the contrary, in the present study, we show that fully differentiated GCs become motile following the induction of epileptiform activity, resulting in GCD. Hippocampal slice cultures from transgenic mice expressing green fluorescent protein in differentiated, but not in newly generated GCs, were incubated with the glutamate receptor agonist kainate (KA), which induced GC burst activity and GCD. Using real-time microscopy, we observed that KA-exposed, differentiated GCs translocated their cell bodies and changed their dendritic organization. As found in human TLE, KA application was associated with decreased expression of the extracellular matrix protein Reelin, particularly in hilar interneurons. Together these findings suggest that KA-induced motility of differentiated GCs contributes to the development of GCD and establish slice cultures as a model to study neuronal changes induced by epileptiform activity.

  12. Polymethoxyflavonoids tangeretin and nobiletin increase glucose uptake in murine adipocytes.

    PubMed

    Onda, Kenji; Horike, Natsumi; Suzuki, Tai-ichi; Hirano, Toshihiko

    2013-02-01

    Tangeretin and nobiletin are polymethoxyflavonoids that are contained in citrus fruits. Polymethoxyflavonoids are reported to have several biological functions including anti-inflammatory, anti-atherogenic, or anti-diabetic effects. However, whether polymethoxyflavonoids directly affect glucose uptake in tissues is not well understood. In the current study, we investigated whether tangeretin and nobiletin affect glucose uptake in insulin target cells such as adipocytes. We observed that treatment with tangeretin or nobiletin significantly increased the uptake of [(3) H]-deoxyglucose in differentiated 3T3-F442A adipocytes in a concentration-dependent manner. Data showed that phosphatidyl inositol 3 kinase, Akt1/2, and the protein kinase A pathways were involved in the increase in glucose uptake induced by polymethoxyflavonoids. These data suggest that the anti-diabetic action of polymethoxyflavonoids is partly exerted via these signaling pathways in insulin target tissues.

  13. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP).

    PubMed Central

    Ron, D; Brasier, A R; McGehee, R E; Habener, J F

    1992-01-01

    Tumor necrosis factor (TNF)-treated 3T3-L1 adipocytes were used as a model for studying the effects of systemic inflammation on adipose tissue. Lipopolysaccharide-treated monocyte-conditioned medium or recombinant human TNF alpha induced morphological dedifferentiation of the adipocytes and led to loss of adipocyte specific gene expression. Gel shift, Southwestern and Western immunoblot analysis demonstrated that dedifferentiation was preceded by a decrease in the DNA binding activity and protein level of the transcription factor CCAAT/enhancer binding protein (C/EBP). Liver activating protein, a related protein that binds identical DNA sequences, increased during cytokine treatment. Both proteins activate specific enhancer elements located in the promoter region of many genes whose transcription is altered during systemic inflammation. Pulse-chase labeling followed by immunoprecipitation demonstrated that C/EBP is a rapidly turning over protein in adipocytes and that cytokine treatment led to a specific, time dependent decrease in its rate of synthesis. Because C/EBP binding sites have been shown to play an important role in regulating the expression of genes involved in adipocyte metabolism, we propose that the TNF-induced changes in the complement of transcription factors binding those sites may be important in the pathogenesis of inflammation-induced atrophy of adipose tissue. Images PMID:1729273

  14. Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway.

    PubMed

    Padmaja Divya, Sasidharan; Pratheeshkumar, Poyil; Son, Young-Ok; Vinod Roy, Ram; Andrew Hitron, John; Kim, Donghern; Dai, Jin; Wang, Lei; Asha, Padmaja; Huang, Bin; Xu, Mei; Luo, Jia; Zhang, Zhuo

    2015-08-01

    Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure. PMID:25979314

  15. Arsenic Induces Insulin Resistance in Mouse Adipocytes and Myotubes Via Oxidative Stress-Regulated Mitochondrial Sirt3-FOXO3a Signaling Pathway.

    PubMed

    Padmaja Divya, Sasidharan; Pratheeshkumar, Poyil; Son, Young-Ok; Vinod Roy, Ram; Andrew Hitron, John; Kim, Donghern; Dai, Jin; Wang, Lei; Asha, Padmaja; Huang, Bin; Xu, Mei; Luo, Jia; Zhang, Zhuo

    2015-08-01

    Chronic exposure to arsenic via drinking water is associated with an increased risk for development of type 2 diabetes mellitus (T2DM). This study investigates the role of mitochondrial oxidative stress protein Sirtuin 3 (Sirt3) and its targeting proteins in chronic arsenic-induced T2DM in mouse adipocytes and myotubes. The results show that chronic arsenic exposure significantly decreased insulin-stimulated glucose uptake (ISGU) in correlation with reduced expression of insulin-regulated glucose transporter type 4 (Glut4). Expression of Sirt3, a mitochondrial deacetylase, was dramatically decreased along with its associated transcription factor, forkhead box O3 (FOXO3a) upon arsenic exposure. A decrease in mitochondrial membrane potential (Δψm) was observed in both 3T3L1 adipocytes and C2C12 myotubes treated by arsenic. Reduced FOXO3a activity by arsenic exhibited a decreased binding affinity to the promoters of both manganese superoxide dismutase (MnSOD) and peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, a broad and powerful regulator of reactive oxygen species (ROS) metabolism. Forced expression of Sirt3 or MnSOD in mouse myotubes elevated Δψm and restored ISGU inhibited by arsenic exposure. Our results suggest that Sirt3/FOXO3a/MnSOD signaling plays a significant role in the inhibition of ISGU induced by chronic arsenic exposure.

  16. Cisplatin Induces Differentiation of Breast Cancer Cells

    PubMed Central

    Prabhakaran, Praseetha; Hassiotou, Foteini; Blancafort, Pilar; Filgueira, Luis

    2013-01-01

    Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36–51% and proliferation capacity by 36–67%. Treatment with cisplatin resulted in 12–67% down-regulation of stem cell markers (CD49f, SSEA4) and 10–130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor. PMID:23761858

  17. Induced differentiation inhibits sphere formation in neuroblastoma.

    PubMed

    Craig, Brian T; Rellinger, Eric J; Alvarez, Alexandra L; Dusek, Haley L; Qiao, Jingbo; Chung, Dai H

    2016-08-19

    Neuroblastoma arises from the neural crest, the precursor cells of the sympathoadrenal axis, and differentiation status is a key prognostic factor used for clinical risk group stratification and treatment strategies. Neuroblastoma tumor-initiating cells have been successfully isolated from patient tumor samples and bone marrow using sphere culture, which is well established to promote growth of neural crest stem cells. However, accurate quantification of sphere-forming frequency of commonly used neuroblastoma cell lines has not been reported. Here, we show that MYCN-amplified neuroblastoma cell lines form spheres more frequently than non-MYCN-amplified cell lines. We also show that sphere formation is directly sensitive to cellular differentiation status. 13-cis-retinoic acid is a clinically used differentiating agent that induces a neuronal phenotype in neuroblastoma cells. Induced differentiation nearly completely blocked sphere formation. Furthermore, sphere formation was specifically FGF-responsive and did not respond to increasing doses of EGF. Taken together, these data suggest that sphere formation is an accurate method of quantifying the stemness phenotype in neuroblastoma. PMID:27297102

  18. ATF3 inhibits PPARγ-stimulated transactivation in adipocyte cells

    SciTech Connect

    Jang, Min-Kyung; Jung, Myeong Ho

    2015-01-02

    Highlights: • ATF3 inhibits PPARγ-stimulated transcriptional activation. • ATF3 interacts with PPARγ. • ATF3 suppresses p300-mediated transcriptional coactivation. • ATF3 decreases the binding of PPARγ and recruitment of p300 to PPRE. - Abstract: Previously, we reported that activating transcription factor 3 (ATF3) downregulates peroxisome proliferator activated receptor (PPARγ) gene expression and inhibits adipocyte differentiation in 3T3-L1 cells. Here, we investigated another role of ATF3 on the regulation of PPARγ activity. ATF3 inhibited PPARγ-stimulated transactivation of PPARγ responsive element (PPRE)-containing reporter or GAL4/PPARγ chimeric reporter. Thus, ATF3 effectively repressed rosiglitazone-stimulated expression of adipocyte fatty acid binding protein (aP2), PPARγ target gene, in 3T3-L1 cells. Coimmunoprecipitation and GST pulldown assay demonstrated that ATF3 interacted with PPARγ. Accordingly, ATF3 prevented PPARγ from binding to PPRE on the aP2 promoter. Furthermore, ATF3 suppressed p300-mediated transcriptional coactivation of PPRE-containing reporter. Chromatin immunoprecipitation assay showed that overexpression of ATF3 blocked both binding of PPARγ and recruitment of p300 to PPRE on aP2 promoter induced by rosiglitazone treatment in 3T3-L1 cells. Taken together, these results suggest that ATF3 interacts with PPARγ and represses PPARγ-mediated transactivation through suppression of p300-stimulated coactivation in 3T3-L1 cells, which may play a role in inhibition of adipocyte differentiation.

  19. Anti-Obesity Effects of the Mixture of Eriobotrya japonica and Nelumbo nucifera in Adipocytes and High-Fat Diet-Induced Obese Mice.

    PubMed

    Sharma, Bhesh Raj; Oh, Jin; Kim, Hyeon-A; Kim, Yong Jae; Jeong, Kyu-Shik; Rhyu, Dong Young

    2015-01-01

    The present study is to evaluate the anti-obesity effects of Eriobotrya japonica (EJ), Nelumbo nucifera (NN), and their mixture (MIX, 1:1 ratio) in 3T3-L1 adipocytes and high-fat diet-induced obese mice. The treatment of EJ, NN, and MIX in 3T3-L1 adipocytes effectively inhibited lipid accumulation, significantly decreased expression of peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element binding protein (SREBP1c), and adipocyte lipid-binding protein (aP2), and significantly increased phosphorylation of AMP-activated protein kinase (AMPK). Moreover, oral treatment of MIX showed stronger effects than individual treatment. C57BL/6J mice (6 week old) were divided into two groups; low fat diet (LFD) containing 10% calories from fat and high fat diet (HFD) containing 60% calories from fat. The HFD groups were further divided into five subgroups; treated with distilled water (HFD), treated with 400 mg/kg EJ (EJ400), treated with 400 mg/kg NN (NN400), treated with 200 mg/kg MIX (MIX200), and treated with 400 mg/kg MIX (MIX400) during 13 weeks. In our results, the administration of EJ, NN, and MIX significantly decreased body weight (BW), fat weight, liver weight, hepatic triglyceride (TG) and total cholesterol (TC), lipid droplets in the liver, food efficacy ratio, and the plasma TG, TC, glucose, insulin, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in a dose-dependent manner, and MIX treatment showed stronger effect than their individual treatments. Similarly, MIX treatment decreased the expression of PPARγ, SREBP-1c, FAS, and ACC more strongly in the adipose tissue than single treatments. In conclusion, the MIX of EJ and NN extract may strongly regulate BW gain than EJ or NN alone, and its anti-obesity effect is associated with the control of lipid metabolism, including adipogenesis and lipogenesis.

  20. beta. -Adrenergic stimulation of brown adipocyte proliferation

    SciTech Connect

    Geloeen, A.; Collet, A.J.; Guay, G.; Bukowiecki, L.J. Laboratoire de Thermoregulation et Metabolisme Energetique, Lyon )

    1988-01-01

    The mechanisms of brown adipose tissue (BAT) growth were studied by quantitative photonic radioautography using tritiated thymidine to follow mitotic activity. To identify the nature of the adrenergic pathways mediating brown adipocyte proliferation and differentiation, the effects of cold exposure (4 days at 4{degree}C) on BAT growth were compared with those induced by treating rats at 25{degree}C with norepinephrine (a mixed agonist), isoproterenol (a {beta}-agonist), and phenylephrine (an {alpha}-agonist). Norepinephrine mimicked the effects of cold exposure, not only on the mitotic activity, but also on the distribution of the labeling among the various cellular types. Isoproterenol entirely reproduced the effects of norepinephrine both on the labeling index and on the cellular type labeling frequency. These results demonstrate that norepinephrine triggers a coordinated proliferation of brown adipocytes and endothelial cells in warm-exposed rats that is similar to that observed after cold exposure. They also suggest that cold exposure stimulates BAT growth by increasing the release of norepinephrine from sympathetic nerves and that the neurohormone activates mitoses in BAT precursor cells via {beta}-adrenergic pathways.

  1. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes[S

    PubMed Central

    Wu, Di; Xi, Qian-Yun; Cheng, Xiao; Dong, Tao; Zhu, Xiao-Tong; Shu, Gang; Wang, Li-Na; Jiang, Qing-Yan; Zhang, Yong-Liang

    2016-01-01

    TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models. PMID:27324794

  2. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes.

    PubMed

    Wu, Di; Xi, Qian-Yun; Cheng, Xiao; Dong, Tao; Zhu, Xiao-Tong; Shu, Gang; Wang, Li-Na; Jiang, Qing-Yan; Zhang, Yong-Liang

    2016-08-01

    TNF-α is a multifunctional cytokine participating in immune disorders, inflammation, and tumor development with regulatory effects on energy metabolism. Our work focused on the function of TNF-α in adipogenesis of primary porcine adipocytes. TNF-α could suppress the insulin receptor (IR) at the mRNA and protein levels. Microarray analysis of TNF-α-treated porcine adipocytes was used to screen out 29 differentially expressed microRNAs (miRNAs), 13 of which were remarkably upregulated and 16 were intensely downregulated. These 29 differentially expressed miRNAs were predicted to mainly participate in the insulin signaling pathway, adipocytokine signaling pathway, and type 2 diabetes mellitus pathway by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. miR-146a-5p, reportedly involved in immunity and cancer relevant processes, was one of the most highly differentially expressed miRNAs after TNF-α treatment. Red Oil O staining and TG assay revealed that miR-146a-5p suppressed adipogenesis. A dual-luciferase reporter and siRNA assay verified that miR-146a-5p targeted IR and could inhibit its protein expression. miR-146a-5p was also validated to be involved in the insulin signaling pathway by reducing tyrosine phosphorylation of insulin receptor substrate-1. Our study provides the first evidence of miR-146a-5p targeting IR, which facilitates future studies related to obesity and diabetes using pig models. PMID:27324794

  3. In brown adipocytes, adrenergically induced β{sub 1}-/β{sub 3}-(G{sub s})-, α{sub 2}-(G{sub i})- and α{sub 1}-(G{sub q})-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation

    SciTech Connect

    Wang, Yanling; Fälting, Johanna M.; Mattsson, Charlotte L.; Holmström, Therése E.; Nedergaard, Jan

    2013-10-15

    Brown adipose tissue is unusual in that the neurotransmitter norepinephrine influences cell destiny in ways generally associated with effects of classical growth factors: regulation of cell proliferation, of apoptosis, and progression of differentiation. The norepinephrine effects are mediated through G-protein-coupled receptors; further mediation of such stimulation to e.g. Erk1/2 activation is in cell biology in general accepted to occur through transactivation of the EGF receptor (by external or internal pathways). We have examined here the significance of such transactivation in brown adipocytes. Stimulation of mature brown adipocytes with cirazoline (α{sub 1}-adrenoceptor coupled via G{sub q}), clonidine (α{sub 2} via G{sub i}) or CL316243 (β{sub 3} via G{sub s}) or via β{sub 1}-receptors significantly activated Erk1/2. Pretreatment with the EGF receptor kinase inhibitor AG1478 had, remarkably, no significant effect on Erk1/2 activation induced by any of these adrenergic agonists (although it fully abolished EGF-induced Erk1/2 activation), demonstrating absence of EGF receptor-mediated transactivation. Results with brown preadipocytes (cells in more proliferative states) were not qualitatively different. Joint stimulation of all adrenoceptors with norepinephrine did not result in synergism on Erk1/2 activation. AG1478 action on EGF-stimulated Erk1/2 phosphorylation showed a sharp concentration–response relationship (IC{sub 50} 0.3 µM); a minor apparent effect of AG1478 on norepinephrine-stimulated Erk1/2 phosphorylation showed nonspecific kinetics, implying caution in interpretation of partial effects of AG1478 as reported in other systems. Transactivation of the EGF receptor is clearly not a universal prerequisite for coupling of G-protein coupled receptors to Erk1/2 signalling cascades. - Highlights: • In brown adipocytes, norepinephrine regulates proliferation, apoptosis, differentiation. • EGF receptor transactivation is supposed to mediate GPCR-induced

  4. RPL13A and EEF1A1 Are Suitable Reference Genes for qPCR during Adipocyte Differentiation of Vascular Stromal Cells from Patients with Different BMI and HOMA-IR

    PubMed Central

    Gentile, Adriana-Mariel; Lhamyani, Said; Coín-Aragüez, Leticia; Oliva-Olivera, Wilfredo; Zayed, Hatem; Vega-Rioja, Antonio; Monteseirin, Javier; Romero-Zerbo, Silvana-Yanina; Tinahones, Francisco-José; Bermúdez-Silva, Francisco-Javier; El Bekay, Rajaa

    2016-01-01

    Real-time or quantitative PCR (qPCR) is a useful technique that requires reliable reference genes for data normalization in gene expression analysis. Adipogenesis is among the biological processes suitable for this technique. The selection of adequate reference genes is essential for qPCR gene expression analysis of human Vascular Stromal Cells (hVSCs) during their differentiation into adipocytes. To the best of our knowledge, there are no studies validating reference genes for the analyses of visceral and subcutaneous adipose tissue hVSCs from subjects with different Body Mass Index (BMI) and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index. The present study was undertaken to analyze this question. We first analyzed the stability of expression of five potential reference genes: CYC, GAPDH, RPL13A, EEF1A1, and 18S ribosomal RNA, during in vitro adipogenic differentiation, in samples from these types of patients. The expression of RPL13A and EEF1A1 was not affected by differentiation, thus being these genes the most stable candidates, while CYC, GAPDH, and 18S were not suitable for this sort of analysis. This work highlights that RPL13A and EEF1A1 are good candidates as reference genes for qPCR analysis of hVSCs differentiation into adipocytes from subjects with different BMI and HOMA-IR. PMID:27304673

  5. Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus

    PubMed Central

    Romijn, J. A.; Heine, R. J.

    2007-01-01

    Type 2 diabetes is associated with excessive food intake and a sedentary lifestyle. Local inflammation of white adipose tissue induces cytokine-mediated insulin resistance of adipocytes. This results in enhanced lipolysis within these cells. The fatty acids that are released into the cytosol can be removed by mitochondrial β-oxidation. The flux through this pathway is normally limited by the rate of ADP supply, which in turn is determined by the metabolic activity of the adipocyte. It is expected that the latter does not adapt to an increased rate of lipolysis. We propose that elevated fatty acid concentrations in the cytosol of adipocytes induce mitochondrial uncoupling and thereby allow mitochondria to remove much larger amounts of fatty acids. By this, release of fatty acids out of adipocytes into the circulation is prevented. When the rate of fatty acid release into the cytosol exceeds the β-oxidation capacity, cytosolic fatty acid concentrations increase and induce mitochondrial toxicity. This results in a decrease in β-oxidation capacity and the entry of fatty acids into the circulation. Unless these released fatty acids are removed by mitochondrial oxidation in active muscles, these fatty acids result in ectopic triacylglycerol deposits, induction of insulin resistance, beta cell damage and diabetes. Thiazolidinediones improve mitochondrial function within adipocytes and may in this way alleviate the burden imposed by the excessive fat accumulation associated with the metabolic syndrome. Thus, the number and activity of mitochondria within adipocytes contribute to the threshold at which fatty acids are released into the circulation, leading to insulin resistance and type 2 diabetes. PMID:17712547

  6. Fat Mass Reduction With Adipocyte Hypertrophy and Insulin Resistance in Heterozygous PPARγ Mutant Rats.

    PubMed

    Gumbilai, Valentino; Ebihara, Ken; Aizawa-Abe, Megumi; Ebihara, Chihiro; Zhao, Mingming; Yamamoto, Yuji; Mashimo, Tomoji; Hosoda, Kiminori; Serikawa, Tadao; Nakao, Kazuwa

    2016-10-01

    Agonist-induced activation of peroxisome proliferator-activated receptor-γ (PPARγ) stimulates adipocyte differentiation and insulin sensitivity. Patients with heterozygous PPARγ dominant-negative mutation develop partial lipodystrophy and insulin resistance. Inconsistent with this evidence in humans, it was reported that heterozygous PPARγ knockout mice have increased insulin sensitivity and that mice with heterozygous PPARγ dominant-negative mutation have normal insulin sensitivity and improved glucose tolerance. In the context of the interspecies intranslatability of PPARγ-related findings, we generated a PPARγ mutant rat with a loss-of-function mutation (Pparg(mkyo)) without dominant-negative activity by using the ENU (N-ethyl-N-nitrosourea) mutagenesis method. Heterozygous Pparg(mkyo/+) rats showed reduced fat mass with adipocyte hypertrophy and insulin resistance, which were highly predictable from known actions of PPARγ agonists and phenotypes of patients with the PPARγ mutation. This report is the first in our knowledge to clearly demonstrate that both alleles of PPARγ are required for normal adipocyte development and insulin sensitivity in vivo. Furthermore, the study indicates that PPARγ regulates mainly adipocyte number rather than adipocyte size in vivo. The choice of appropriate species as experimental models is critical, especially for the study of PPARγ.

  7. Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes.

    PubMed

    Ren, Mingming; Han, Zhen; Li, Jinglai; Feng, Gang; Ouyang, Shuyuan

    2015-11-01

    Embryonic stem (ES) cells offer the potential to generate all cell types in the body, which provide a promising approach to repair tissue damage or dysfunction. In the past decade, great efforts have been made to induce the differentiation of ES cells into numerous types of cells, such as adipocytes, neurocytes and cardiomyocytes. However, the low differentiated efficiency and successful rate limit the development of induction of the differentiation of stem cells for tissue engineering. Here, we utilize ascorbic acid (AA)-loaded fluorescent TRITC-mesoporous silica nanoparticles (TMSN-AA) as a potential tool to induce the differentiation of human ES cells into cardiomyocytes. The treatment of human ES cells by TMSN-AA nanoplex arrests cell cycle at G1 phase and decreases the expression of stemness genes octamer-binding transcription factor 4 (OCT4) and sex determining region Y-box 2 (SOX2), which exhibits more significant induction efficiency of stem cell differentiation than the treatment by AA alone. Furthermore, we have tested the myocardial marker genes cardiac Troponin I (cTnI) and fetal liver kinase 1 (FLK-1), and found these genes are up-regulated by TMSN-AA nanoplex. Importantly, this work demonstrates the more efficient induction efficiency of human ES cells differentiation by the nanoparticle-drug formulation. Our studies reveal a novel approach based on MSNs as nanocarriers to induce the differentiation of human ES cells into cardiomyocytes efficiently and feasibly, and offer the potential perspectives for tissue engineering, eventually in clinical applications.

  8. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes.

    PubMed

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  9. Caffeic Acid Phenethyl Ester Regulates PPAR's Levels in Stem Cells-Derived Adipocytes

    PubMed Central

    Vanella, Luca; Tibullo, Daniele; Godos, Justyna; Pluchinotta, Francesca Romana; Di Giacomo, Claudia; Sorrenti, Valeria; Acquaviva, Rosaria; Russo, Alessandra; Li Volti, Giovanni; Barbagallo, Ignazio

    2016-01-01

    Hypertrophic obesity inhibits activation of peroxisome proliferators-activated receptor gamma (PPARγ), considered the key mediator of the fully differentiated and insulin sensitive adipocyte phenotype. We examined the effects of Caffeic Acid Phenethyl Ester (Cape), isolated from propolis, a honeybee hive product, on Adipose Stem Cells (ASCs) differentiation to the adipocyte lineage. Finally we tested the effects of Cape on insulin-resistant adipocytes. Quantification of Oil Red O-stained cells showed that lipid droplets decreased following Cape treatment as well as radical oxygen species formation. Additionally, exposure of ASC to high glucose levels decreased adiponectin and increased proinflammatory cytokines mRNA levels, which were reversed by Cape-mediated increase of insulin sensitivity. Cape treatment resulted in decreased triglycerides synthesis and increased beta-oxidation. Exposure of ASCs to Lipopolysaccharide (LPS) induced a reduction of PPARγ, an increase of IL-6 levels associated with a well-known stimulation of lipolysis; Cape partially attenuated the LPS-mediated effects. These observations reveal the main role of PPARγ in the adipocyte function and during ASC differentiation. As there is now substantial interest in functional food and nutraceutical products, the observed therapeutic value of Cape in insulin-resistance related diseases should be taken into consideration. PMID:26904104

  10. Cadmium modulates adipocyte functions in metallothionein-null mice

    SciTech Connect

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  11. Capsaicin Induces “Brite” Phenotype in Differentiating 3T3-L1 Preadipocytes

    PubMed Central

    Baboota, Ritesh K.; Singh, Dhirendra P.; Sarma, Siddhartha M.; Kaur, Jaspreet; Sandhir, Rajat; Boparai, Ravneet K.; Kondepudi, Kanthi K.; Bishnoi, Mahendra

    2014-01-01

    Objective Targeting the energy storing white adipose tissue (WAT) by pharmacological and dietary means in order to promote its conversion to energy expending “brite” cell type holds promise as an anti-obesity approach. Present study was designed to investigate/revisit the effect of capsaicin on adipogenic differentiation with special reference to induction of “brite” phenotype during differentiation of 3T3-L1 preadipocytes. Methods Multiple techniques such as Ca2+ influx assay, Oil Red-O staining, nutrigenomic analysis in preadipocytes and matured adipocytes have been employed to understand the effect of capsaicin at different doses. In addition to in-vitro experiments, in-vivo studies were carried out in high-fat diet (HFD) fed rats treated with resiniferatoxin (RTX) (a TRPV1 agonist) and in mice administered capsaicin. Results TRPV1 channels are expressed in preadipocytes but not in adipocytes. In preadipocytes, both capsaicin and RTX stimulate Ca2+ influx in dose-dependent manner. This stimulation may be prevented by capsazepine, a TRPV1 antagonist. At lower doses, capsaicin inhibits lipid accumulation and stimulates TRPV1 gene expression, while at higher doses it enhances accumulation of lipids and suppresses expression of its receptor. In doses of 0.1–100 µM, capsaicin promotes expression of major pro-adipogenic factor PPARγ and some of its downstream targets. In concentrations of 1 µM, capsaicin up-regulates anti-adipogenic genes. Low-dose capsaicin treatment of 3T3-L1 preadipocytes differentiating into adipocytes results in increased expression of brown fat cell marker genes. In white adipose of mice, capsaicin administration leads to increase in browning-specific genes. Global TRPV1 ablation (i.p. by RTX administration) leads to increase in locomotor activity with no change in body weight. Conclusion Our findings suggest the dual modulatory role of capsaicin in adipogenesis. Capsaicin inhibits adipogenesis in 3T3-L1 via TRPV1 activation and

  12. Autotaxin and Its Product Lysophosphatidic Acid Suppress Brown Adipose Differentiation and Promote Diet-Induced Obesity in Mice

    PubMed Central

    Federico, Lorenzo; Ren, Hongmei; Mueller, Paul A.; Wu, Tao; Liu, Shuying; Popovic, Jelena; Blalock, Eric M.; Sunkara, Manjula; Ovaa, Huib; Albers, Harald M.; Mills, Gordon B.; Morris, Andrew J.

    2012-01-01

    Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibit reduced expression of brown adipose tissue-related genes in peripheral white adipose tissue and accumulate significantly more fat than wild-type controls when fed a high-fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and are consistent with a model in which a decrease in mature peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice. PMID:22474126

  13. The extinction differential induced virulence macroevolution

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Liufang; Wang, Jin

    2014-04-01

    We apply the potential-flux landscape theory to deal with the large fluctuation induced extinction phenomena. We quantify the most probable extinction pathway on the landscape and measure the extinction risk by the landscape topography. In this Letter, we investigate the disease extinction through an epidemic model described by a set of chemical reaction. We found the virulence-differential-dependent symbioses between mother and daughter pathogen species: mutualism and parasitism. The symbioses, whether mutualism or parasitism, benefit the higher virulence species. This implies that speciation towards lower virulence is an effective strategy for a pathogen species to reduce its extinction risk.

  14. Royalactin induces queen differentiation in honeybees.

    PubMed

    Kamakura, Masaki

    2011-05-26

    The honeybee (Apis mellifera) forms two female castes: the queen and the worker. This dimorphism depends not on genetic differences, but on ingestion of royal jelly, although the mechanism through which royal jelly regulates caste differentiation has long remained unknown. Here I show that a 57-kDa protein in royal jelly, previously designated as royalactin, induces the differentiation of honeybee larvae into queens. Royalactin increased body size and ovary development and shortened developmental time in honeybees. Surprisingly, it also showed similar effects in the fruitfly (Drosophila melanogaster). Mechanistic studies revealed that royalactin activated p70 S6 kinase, which was responsible for the increase of body size, increased the activity of mitogen-activated protein kinase, which was involved in the decreased developmental time, and increased the titre of juvenile hormone, an essential hormone for ovary development. Knockdown of epidermal growth factor receptor (Egfr) expression in the fat body of honeybees and fruitflies resulted in a defect of all phenotypes induced by royalactin, showing that Egfr mediates these actions. These findings indicate that a specific factor in royal jelly, royalactin, drives queen development through an Egfr-mediated signalling pathway. PMID:21516106

  15. Enhanced accumulation of adipocytes in bone marrow stromal cells in the presence of increased extracellular and intracellular [Ca{sup 2+}

    SciTech Connect

    Hashimoto, Ryota; Katoh, Youichi; Nakamura, Kyoko; Itoh, Seigo; Iesaki, Takafumi; Daida, Hiroyuki; Nakazato, Yuji; Okada, Takao

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances adipocyte accumulation in the presence of adipogenic inducers. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} enhances both proliferation and adipocyte differentiation in BMSCs. Black-Right-Pointing-Pointer High [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub o} in BMSCs. Black-Right-Pointing-Pointer An intracellular Ca{sup 2+} chelator suppresses the enhancement in adipocyte accumulation. Black-Right-Pointing-Pointer Controlling [Ca{sup 2+}]{sub o} may govern the balance of adipocyte and osteoblast development. -- Abstract: The bone marrow stroma contains osteoblasts and adipocytes that have a common precursor: the pluripotent mesenchymal stem cell found in bone marrow stromal cells (BMSCs). Local bone marrow Ca{sup 2+} levels can reach high concentrations due to bone resorption, which is one of the notable features of the bone marrow stroma. Here, we describe the effects of high [Ca{sup 2+}]{sub o} on the accumulation of adipocytes in the bone marrow stroma. Using primary mouse BMSCs, we evaluated the level of adipocyte accumulation by measuring Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity. High [Ca{sup 2+}]{sub o} enhanced the accumulation of adipocytes following treatment with both insulin and dexamethasone together but not in the absence of this treatment. This enhanced accumulation was the result of both the accelerated proliferation of BMSCs and their differentiation into adipocytes. Using the fura-2 method, we also showed that high [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i}. An intracellular Ca{sup 2+} chelator suppressed the enhancement in adipocyte accumulation due to increased [Ca{sup 2+}]{sub o} in BMSCs. These data suggest a new role for extracellular Ca{sup 2+} in the bone marrow stroma: increased [Ca{sup 2+}]{sub o} induces an increase in [Ca{sup 2+}]{sub i} levels, which in turn enhances the accumulation of

  16. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    SciTech Connect

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  17. Early growth response 2 (Egr2) plays opposing roles in committing C3H10T1/2 stem cells to adipocytes and smooth muscle-like cells.

    PubMed

    Wang, Shan-Shan; Huang, Hai-Yan; Chen, Su-Zhen; Li, Xi; Liu, Yang; Zhang, Wen-Ting; Tang, Qi-Qun

    2013-08-01

    Early growth response 2 (Egr2) is a zinc-finger transcription factor that acts as an important modulator of a variety of physiological processes, such as cell differentiation, proliferation and apoptosis. Here we showed that Egr2 was downregulated by bone morphogenetic protein (BMP) signaling pathways during the commitment of C3H10T1/2 stem cells to adipocyte lineage. Overexpression of Egr2 completely prevented BMP4-induced adipocyte lineage commitment of C3H10T1/2 stem cells, while simultaneously stimulating early smooth muscle-like differentiation. We also demonstrated that Egr2-induced early smooth muscle-like differentiation is transforming growth factor β1-independent. Egr2 can activate the transcription of early smooth muscle cell specific genes smooth muscle protein 22α and calponin 1. Together, the results indicated a novel role for Egr2 in repressing adipocyte lineage commitment and promoting early smooth muscle-like cell differentiation. PMID:23751188

  18. Metabolic interplay between white, beige, brown adipocytes and the liver.

    PubMed

    Scheja, Ludger; Heeren, Joerg

    2016-05-01

    In mammalian evolution, three types of adipocytes have developed, white, brown and beige adipocytes. White adipocytes are the major constituents of white adipose tissue (WAT), the predominant store for energy-dense triglycerides in the body that are released as fatty acids during catabolic conditions. The less abundant brown adipocytes, the defining parenchymal cells of brown adipose tissue (BAT), internalize triglycerides that are stored intracellularly in multilocular lipid droplets. Beige adipocytes (also known as brite or inducible brown adipocytes) are functionally very similar to brown adipocytes and emerge in specific WAT depots in response to various stimuli including sustained cold exposure. The activation of brown and beige adipocytes (together referred to as thermogenic adipocytes) causes both the hydrolysis of stored triglycerides as well as the uptake of lipids and glucose from the circulation. Together, these fuels are combusted for heat production to maintain body temperature in mammals including adult humans. Given that heating by brown and beige adipocytes is a very-well controlled and energy-demanding process which entails pronounced shifts in energy fluxes, it is not surprising that an intensive interplay exists between the various adipocyte types and parenchymal liver cells, and that this influences systemic metabolic fluxes and endocrine networks. In this review we will emphasize the role of hepatic factors that regulate the metabolic activity of white and thermogenic adipocytes. In addition, we will discuss the relevance of lipids and hormones that are secreted by white, brown and beige adipocytes regulating liver metabolism in order to maintain systemic energy metabolism in health and disease. PMID:26829204

  19. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

    PubMed

    Sultana, Afroza; Cochran, Blake J; Tabet, Fatiha; Patel, Mili; Torres, Luisa Cuesta; Barter, Philip J; Rye, Kerry-Anne

    2016-06-01

    Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

  20. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    PubMed Central

    Barquissau, V.; Beuzelin, D.; Pisani, D.F.; Beranger, G.E.; Mairal, A.; Montagner, A.; Roussel, B.; Tavernier, G.; Marques, M.-A.; Moro, C.; Guillou, H.; Amri, E.-Z.; Langin, D.

    2016-01-01

    Objective Fat depots with thermogenic activity have been identified in humans. In mice, the appearance of thermogenic adipocytes within white adipose depots (so-called brown-in-white i.e., brite or beige adipocytes) protects from obesity and insulin resistance. Brite adipocytes may originate from direct conversion of white adipocytes. The purpose of this work was to characterize the metabolism of human brite adipocytes. Methods Human multipotent adipose-derived stem cells were differentiated into white adipocytes and then treated with peroxisome proliferator-activated receptor (PPAR)γ or PPARα agonists between day 14 and day 18. Gene expression profiling was determined using DNA microarrays and RT-qPCR. Variations of mRNA levels were confirmed in differentiated human preadipocytes from primary cultures. Fatty acid and glucose metabolism was investigated using radiolabelled tracers, Western blot analyses and assessment of oxygen consumption. Pyruvate dehydrogenase kinase 4 (PDK4) knockdown was achieved using siRNA. In vivo, wild type and PPARα-null mice were treated with a β3-adrenergic receptor agonist (CL316,243) to induce appearance of brite adipocytes in white fat depot. Determination of mRNA and protein levels was performed on inguinal white adipose tissue. Results PPAR agonists promote a conversion of white adipocytes into cells displaying a brite molecular pattern. This conversion is associated with transcriptional changes leading to major metabolic adaptations. Fatty acid anabolism i.e., fatty acid esterification into triglycerides, and catabolism i.e., lipolysis and fatty acid oxidation, are increased. Glucose utilization is redirected from oxidation towards glycerol-3-phophate production for triglyceride synthesis. This metabolic shift is dependent on the activation of PDK4 through inactivation of the pyruvate dehydrogenase complex. In vivo, PDK4 expression is markedly induced in wild-type mice in response to CL316,243, while this increase is blunted

  1. Glyphosate Inhibits PPAR Gamma Induction and Differentiation of Preadipocytes and is able to Induce Oxidative Stress.

    PubMed

    Martini, Claudia N; Gabrielli, Matías; Brandani, Javier N; Vila, María Del C

    2016-08-01

    Glyphosate-based herbicides (GF) are extensively used for weed control. Thus, it is important to investigate their putative toxic effects. We have reported that GF at subagriculture concentrations inhibits proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. In this investigation, we evaluated the effect of GF on genes upregulated during adipogenesis. GF was able to inhibit the induction of PPAR gamma, the master gene in adipogenesis but not C/EBP beta, which precedes PPAR gamma activation. GF also inhibited differentiation and proliferation of another model of preadipocyte: mouse embryonic fibroblasts. In exponentially growing 3T3-L1 cells, GF increased lipid peroxidation and the activity of the antioxidant enzyme, superoxide dismutase. We also found that proliferation was inhibited with lower concentrations of GF when time of exposure was extended. Thus, GF was able to inhibit proliferation and differentiation of preadipocytes and to induce oxidative stress, which is indicative of its ability to alter cellular physiology. PMID:27044015

  2. Olanzapine promotes the accumulation of lipid droplets and the expression of multiple perilipins in human adipocytes.

    PubMed

    Nimura, Satomi; Yamaguchi, Tomohiro; Ueda, Koki; Kadokura, Karin; Aiuchi, Toshihiro; Kato, Rina; Obama, Takashi; Itabe, Hiroyuki

    2015-11-27

    Second generation antipsychotics are useful for the treatment of schizophrenia, but concerns have been raised about the side effects of diabetes mellitus and obesity. Olanzapine, especially, is associated with more weight gain than the others. It has been reported that olanzapine promotes adipocyte-differentiation in rodents both in vivo and in vitro. In this study the effects of antipsychotics on human adipocytes were investigated by using human mesenchymal stem cells (hMSCs). When hMSCs were differentiated and treated with various antipsychotics, olanzapine and clozapine increased intracellular lipids. Olanzapine induced lipid accumulation in a dose-dependent manner. Proteomic analysis revealed that PLIN4 and several enzymes for lipid metabolism were increased in the hMSCs after olanzapine treatment. During adipocyte differentiation, olanzapine increased the protein expression of PLIN1, PLIN2 and PLIN4. These proteins are known to be associated with the initial stage of lipid droplet formation. Immunocytochemistry showed that olanzapine increased and enlarged the lipid droplets coated with PLIN1 and PLIN2 while PLIN4 was largely distributed in the cytosol. mRNA expression of PLIN2, but not PLIN1 or PLIN4, was increased by olanzapine. On the other hand, olanzapine did not alter the mRNA level of transcription regulators involved in adipocyte-differentiation or adipokines. The present study shows that olanzapine induced transient PLIN2 expression in hMSCs that could result in an accumulation of lipid droplets and overexpression of PLIN1 and PLIN4, providing information of possible interest for olanzapine-induced weight gain. PMID:26471304

  3. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    PubMed

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  4. The adipocyte-inducible secreted phospholipases PLA2G5 and PLA2G2E play distinct roles in obesity.

    PubMed

    Sato, Hiroyasu; Taketomi, Yoshitaka; Ushida, Ayako; Isogai, Yuki; Kojima, Takumi; Hirabayashi, Tetsuya; Miki, Yoshimi; Yamamoto, Kei; Nishito, Yasumasa; Kobayashi, Tetsuyuki; Ikeda, Kazutaka; Taguchi, Ryo; Hara, Shuntaro; Ida, Satoshi; Miyamoto, Yuji; Watanabe, Masayuki; Baba, Hideo; Miyata, Keishi; Oike, Yuichi; Gelb, Michael H; Murakami, Makoto

    2014-07-01

    Metabolic disorders, including obesity and insulin resistance, have their basis in dysregulated lipid metabolism and low-grade inflammation. In a microarray search of unique lipase-related genes whose expressions are associated with obesity, we found that two secreted phospholipase A2s (sPLA2s), PLA2G5 and PLA2G2E, were robustly induced in adipocytes of obese mice. Analyses of Pla2g5(-/-) and Pla2g2e(-/-) mice revealed distinct roles of these sPLA2s in diet-induced obesity. PLA2G5 hydrolyzed phosphatidylcholine in fat-overladen low-density lipoprotein to release unsaturated fatty acids, which prevented palmitate-induced M1 macrophage polarization. As such, PLA2G5 tipped the immune balance toward an M2 state, thereby counteracting adipose tissue inflammation, insulin resistance, hyperlipidemia, and obesity. PLA2G2E altered minor lipoprotein phospholipids, phosphatidylserine and phosphatidylethanolamine, and moderately facilitated lipid accumulation in adipose tissue and liver. Collectively, the identification of "metabolic sPLA2s" adds this gene family to a growing list of lipolytic enzymes that act as metabolic coordinators.

  5. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor γ and the retinoid X receptor

    PubMed Central

    Tontonoz, Peter; Singer, Samuel; Forman, Barry M.; Sarraf, Pasha; Fletcher, Jonathan A.; Fletcher, Christopher D. M.; Brun, Regina P.; Mueller, Elisabetta; Altiok, Soner; Oppenheim, Heather; Evans, Ronald M.; Spiegelman, Bruce M.

    1997-01-01

    Induction of terminal differentiation represents a promising therapeutic approach to certain human malignancies. The peroxisome proliferator-activated receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form a heterodimeric complex that functions as a central regulator of adipocyte differentiation. Natural and synthetic ligands for both receptors have been identified. We demonstrate here that PPARγ is expressed at high levels in each of the major histologic types of human liposarcoma. Moreover, primary human liposarcoma cells can be induced to undergo terminal differentiation by treatment with the PPARγ ligand pioglitazone, suggesting that the differentiation block in these cells can be overcome by maximal activation of the PPAR pathway. We further demonstrate that RXR-specific ligands are also potent adipogenic agents in cells expressing the PPARγ/RXRα heterodimer, and that simultaneous treatment of liposarcoma cells with both PPARγ- and RXR-specific ligands results in an additive stimulation of differentiation. Liposarcoma cell differentiation is characterized by accumulation of intracellular lipid, induction of adipocyte-specific genes, and withdrawal from the cell cycle. These results suggest that PPARγ ligands such as thiazolidinediones and RXR-specific retinoids may be useful therapeutic agents for the treatment of liposarcoma. PMID:8990192

  6. [The adipocyte, prodigious cell].

    PubMed

    Domínguez Carmona, Manuel

    2005-01-01

    In this work, I stand out the rich endocrine role of adipocytes, that together with its function of lipidic deposit and regulating of metabolism, this confers them a central place in physiology and pathology.

  7. Lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol on 3T3-L1 adipocytes and high fat and fructose diet induced obese C57/BL6J mice.

    PubMed

    Saravanan, Munisankar; Pandikumar, Perumal; Saravanan, Subramaniam; Toppo, Erenius; Pazhanivel, Natesan; Ignacimuthu, Savarimuthu

    2014-10-01

    Aegle marmelos Correa., (Rutaceae) is a medium sized tree distributed in South East Asia and used traditionally for the management of obestiy and diabetes. In this study the lipolytic and antiadipogenic effects of (3,3-dimethylallyl) halfordinol (Hfn) isolated from leaves of A. marmelos have been investigated. Intracellular lipid accumulation was measured by oil red O staining and glycerol secretion. The expression of genes related to adipocyte differentiation was analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR). Hfn decreased intracellular triglyceride accumulation and increased glycerol release in a dose dependent manner (5-20 μg/ml) in differentiated 3T3-L1 adipocytes. In high fat diet fed C57/BL 6J mice, treatment with Hfn for four weeks reduced plasma glucose, insulin and triglyceride levels and showed a significant reduction in total adipose tissue mass by 37.85% and visceral adipose tissue mass by 62.99% at 50mg/kg b.w. concentration. RT-PCR analyses indicated that Hfn decreased the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer binding protein α (CEBPα) and increased the expression of sterol regulatory enzyme binding protein (SREBP-1c), peroxisome proliferator-activated receptor α (PPARα), Adiponectin and Glucose transporter protein 4 (GLUT4) compared to the high fat diet group. These results suggested that Hfn decreased adipocyte differentiation and stimulated lipolysis of adipocytes. This study justifies the folklore medicinal uses and claims about the therapeutic values of this plant for the management of insulin resistance and obesity.

  8. Oleic acid enhances G protein coupled receptor 43 expression in bovine intramuscular adipocytes but not in subcutaneous adipocytes.

    PubMed

    Chung, K Y; Smith, S B; Choi, S H; Johnson, B J

    2016-05-01

    We hypothesized that fatty acids would differentially affect G protein coupled receptor (GPR) 43 mRNA expression and GPR43 protein concentrations in bovine intramuscular (IM) and subcutaneous (SC) adipocytes. The GPR43 protein was detected in bovine liver, pancreas, and semimembranosus (MUS) muscle in samples taken at slaughter. Similarly, GPR43 protein levels were similar in IM adipose tissue and SM muscle but was barely detectable in SC adipose tissue. Primary cultures of IM and SC stromal vascular cells were isolated from bovine adipose tissues. Oleic acid (100 μ) stimulated PPARγ gene expression and decreased stearoyl-CoA desaturase (SCD) gene expression but had no effect on GPR43 gene expression, which was readily detectable in both IM and SC adipocytes. Differentiation cocktail (Diff; 10 μ insulin, 4 μ dexamethasone, and 10 μ ciglitizone) stimulated CCAAT/enhancer-binding protein β (C/EBPβ) and PPARγ gene expression in SC but not IM adipocytes, but Diff increased SCD gene expression in both cell types. Linoleic acid (10 µ) increased PPARγ gene expression relative to Diff cocktail in SC adipocytes, whereas linoleic acid and α-linolenic decreased SCD gene expression relative to control adipocytes and adipocytes incubated with Diff ( < 0.05). Increasing concentrations of oleic acid (1, 10, 100, and 500 μM) increased GPR43 protein and mRNA expression in IM but not SC adipocytes. These data indicated that oleic acid alters mRNA and protein concentrations of GPR43 in bovine IM adipocytes. PMID:27285685

  9. Featured Article: Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells

    PubMed Central

    Ezquer, Fernando; Espinosa, Maximiliano; Arango-Rodriguez, Martha; Puebla, Carlos; Sobrevia, Luis; Conget, Paulette

    2015-01-01

    The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone’s canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes’ specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and

  10. Hypoxic adipocytes pattern early heterotopic bone formation.

    PubMed

    Olmsted-Davis, Elizabeth; Gannon, Francis H; Ozen, Mustafa; Ittmann, Michael M; Gugala, Zbigniew; Hipp, John A; Moran, Kevin M; Fouletier-Dilling, Christine M; Schumara-Martin, Shannon; Lindsey, Ronald W; Heggeness, Michael H; Brenner, Malcolm K; Davis, Alan R

    2007-02-01

    The factors contributing to heterotopic ossification, the formation of bone in abnormal soft-tissue locations, are beginning to emerge, but little is known about microenvironmental conditions promoting this often devastating disease. Using a murine model in which endochondral bone formation is triggered in muscle by bone morphogenetic protein 2 (BMP2), we studied changes near the site of injection of BMP2-expressing cells. As early as 24 hours later, brown adipocytes began accumulating in the lesional area. These cells stained positively for pimonidazole and therefore generated hypoxic stress within the target tissue, a prerequisite for the differentiation of stem cells to chondrocytes and subsequent heterotopic bone formation. We propose that aberrant expression of BMPs in soft tissue stimulates production of brown adipocytes, which drive the early steps of heterotopic endochondral ossification by lowering oxygen tension in adjacent tissue, creating the correct environment for chondrogenesis. Results in misty gray lean mutant mice not producing brown fat suggest that white adipocytes convert into fat-oxidizing cells when brown adipocytes are unavailable, providing a compensatory mechanism for generation of a hypoxic microenvironment. Manipulation of the transcriptional control of adipocyte fate in local soft-tissue environments may offer a means to prevent or treat development of bone in extraskeletal sites. PMID:17255330

  11. Upregulation of lipid synthesis in small rat adipocytes by microvesicle-associated CD73 from large adipocytes.

    PubMed

    Müller, Günter; Schneider, Marion; Biemer-Daub, Gabriele; Wied, Susanne

    2011-08-01

    Filling-up lipid stores is critical for size increase of mammalian adipocytes. The glycosylphosphatidylinositol (GPI)-anchored protein, CD73, is released from adipocytes into microvesicles in response to the lipogenic stimuli, palmitate, the antidiabetic sulfonylurea drug glimepiride, phosphoinositolglycans (PIG), and H(2)O(2). Upon incubation of microvesicles with adipocytes, CD73 is translocated to cytoplasmic lipid droplets (LD) and esterification is upregulated. The role of CD73-harboring microvesicles in coordinating esterification between differently sized adipocytes was studied here. Populations consisting of either small or large or of both small and large isolated rat adipocytes as well as native adipose tissue pieces from young and old rats were incubated with or depleted of endogenous microvesicles and analyzed for translocation of CD73 and esterification in response to the lipogenic stimuli. Large adipocytes exhibited higher and lower efficacy in releasing CD73 into microvesicles and in translocating CD73 to LD, respectively, compared to small adipocytes. Populations consisting of both small and large adipocytes were more active in esterification in response to the lipogenic stimuli than either small or large adipocytes. With both adipocytes and adipose tissue pieces from young rats esterification stimulation by the lipogenic stimuli was abrogated by depletion of CD73-harboring microvesicles from the incubation medium and interstitial spaces, respectively. In conclusion, stimulus-induced lipid synthesis between differently sized adipocytes is controlled by the release of microvesicle-associated CD73 from large cells and its subsequent translocation to LD of small cells. This information transfer via microvesicles harboring GPI-anchored proteins may shift the burden of triacylglycerol storage from large to small adipocytes. PMID:21372807

  12. Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation

    PubMed Central

    Yamashita, Yzumi; Nakachi, Yutaka; Nikaido, Itoshi; Bono, Hidemasa; Ninomiya, Yuichi; Kanesaki-Yatsuka, Yukiko; Akita, Masumi; Motegi, Hiromi; Wakana, Shigeharu; Noda, Tetsuo; Sablitzky, Fred; Arai, Shigeki; Kurokawa, Riki; Fukuda, Toru; Katagiri, Takenobu; Schönbach, Christian; Suda, Tatsuo; Mizuno, Yosuke; Okazaki, Yasushi

    2010-01-01

    Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated. To identify candidate genes associated with senile osteoporosis, we performed genome-wide expression analyses of differentiating osteoblasts and adipocytes. Among transcription factors that were enriched in the early phase of differentiation, Id4 was identified as a key molecule affecting the differentiation of both cell types. Experiments using bone marrow-derived stromal cell line ST2 and Id4-deficient mice showed that lack of Id4 drastically reduces osteoblast differentiation and drives differentiation toward adipocytes. On the other hand knockdown of Id4 in adipogenic-induced ST2 cells increased the expression of Pparγ2, a master regulator of adipocyte differentiation. Similar results were observed in bone marrow cells of femur and tibia of Id4-deficient mice. However the effect of Id4 on Pparγ2 and adipocyte differentiation is unlikely to be of direct nature. The mechanism of Id4 promoting osteoblast differentiation is associated with the Id4-mediated release of Hes1 from Hes1-Hey2 complexes. Hes1 increases the stability and transcriptional activity of Runx2, a key molecule of osteoblast differentiation, which results in an enhanced osteoblast-specific gene expression. The new role of Id4 in promoting osteoblast differentiation renders it a target for preventing the onset of senile osteoporosis. PMID:20628571

  13. Bone Morphogenetic Protein-9 Effectively Induces Osteo/Odontoblastic Differentiation of the Reversibly Immortalized Stem Cells of Dental Apical Papilla

    PubMed Central

    Wang, Jinhua; Zhang, Hongmei; Zhang, Wenwen; Huang, Enyi; Wang, Ning; Wu, Ningning; Wen, Sheng; Chen, Xian; Liao, Zhan; Deng, Fang; Yin, Liangjun; Zhang, Junhui; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Zhang, Zhonglin; Ye, Jixing; Deng, Youlin; Luu, Hue H.; Haydon, Rex C.

    2014-01-01

    Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration. PMID:24517722

  14. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana.

    PubMed

    Yoshimoto, Kaori; Noutoshi, Yoshiteru; Hayashi, Ken-ichiro; Shirasu, Ken; Takahashi, Taku; Motose, Hiroyasu

    2012-08-01

    Thermospermine, a structural isomer of spermine, is synthesized by a thermospermine synthase designated ACAULIS5 (ACL5). Thermospermine-deficient acl5 mutant of Arabidopsis thaliana shows severe dwarfism and excessive xylem differentiation. By screening for compounds that affect xylem differentiation in the acl5 mutant, we identified auxin analogs that remarkably enhanced xylem vessel differentiation in the acl5 mutant but not in the wild type. The xylem-inducing effect of auxin analogs was clearly suppressed by thermospermine, indicating that auxin-inducible xylem differentiation is normally limited by thermospermine. Here, we further characterized xylem-inducing effect of auxin analogs in various organs. Auxin analogs promoted protoxylem differentiation in roots and cotyledons in the acl5 mutant. Our results indicate that the opposite action between thermospermine and auxin in xylem differentiation is common in different organs and also suggest that thermospermine might be required for the suppression of protoxylem differentiation.

  15. Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages ▿ §

    PubMed Central

    Lefterova, Martina I.; Steger, David J.; Zhuo, David; Qatanani, Mohammed; Mullican, Shannon E.; Tuteja, Geetu; Manduchi, Elisabetta; Grant, Gregory R.; Lazar, Mitchell A.

    2010-01-01

    The nuclear receptor peroxisome proliferator activator receptor γ (PPARγ) is the target of antidiabetic thiazolidinedione drugs, which improve insulin resistance but have side effects that limit widespread use. PPARγ is required for adipocyte differentiation, but it is also expressed in other cell types, notably macrophages, where it influences atherosclerosis, insulin resistance, and inflammation. A central question is whether PPARγ binding in macrophages occurs at genomic locations the same as or different from those in adipocytes. Here, utilizing chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we demonstrate that PPARγ cistromes in mouse adipocytes and macrophages are predominantly cell type specific. In thioglycolate-elicited macrophages, PPARγ colocalizes with the hematopoietic transcription factor PU.1 in areas of open chromatin and histone acetylation, near a distinct set of immune genes in addition to a number of metabolic genes shared with adipocytes. In adipocytes, the macrophage-unique binding regions are marked with repressive histone modifications, typically associated with local chromatin compaction and gene silencing. PPARγ, when introduced into preadipocytes, bound only to regions depleted of repressive histone modifications, where it increased DNA accessibility, enhanced histone acetylation, and induced gene expression. Thus, the cell specificity of PPARγ function is regulated by cell-specific transcription factors, chromatin accessibility, and histone marks. Our data support the existence of an epigenomic hierarchy in which PPARγ binding to cell-specific sites not marked by repressive marks opens chromatin and leads to local activation marks, including histone acetylation. PMID:20176806

  16. Anti-obesity effect of Blumea balsamifera extract in 3T3-L1 preadipocytes and adipocytes.

    PubMed

    Kubota, Hiroaki; Kojima-Yuasa, Akiko; Morii, Risako; Huang, Xuedan; Norikura, Toshio; Rho, Sook-Nyung; Matsui-Yuasa, Isao

    2009-01-01

    Obesity, the leading metabolic disease in the world, is a serious health problem in industrialized countries. We investigated the anti-obesity effect of Blumea balsamifera extract on adipocyte differentiation of 3T3-L1 preadipocytes and anti-obesity effect of 3T3-L1 adipocytes. We found that treatment with an extract of Blumea balsamifera suppressed lipid accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity without affecting cell viability in 3T3-L1 preadipocytes and adipocytes. Furthermore, Blumea balsamifera extract brought significant attenuation of expressions of key adipogenic transcription factors, including peroxisome proliferator-activated receptor (PPAR)gamma, CCAAT element binding protein (C/EBPs) and leptin, however, induced up-regulation of adiponectin at the protein level in 3T3-L1 preadipocytes and adipocytes. These results suggest that Blumea balsamifera extract may block adipogenesis, at least in part, by decreasing key adipogenic transcription factors in 3T3-L1 preadipocytes and may have antiatherogenic, anti-inflammatory, and antidiabetic effects through up-regulation of adiponectin in 3T3-L1 adipocytes. PMID:19885945

  17. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue

    PubMed Central

    Stine, Rachel R.; Shapira, Suzanne N.; Lim, Hee-Woong; Ishibashi, Jeff; Harms, Matthew; Won, Kyoung-Jae; Seale, Patrick

    2015-01-01

    Objective The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity. Methods In addition to primary cell culture studies, we used ​Ebf2 knockout mice and mice overexpressing EBF2 in the adipose tissue to study the necessity and sufficiency of EBF2 to induce beiging in vivo. Results We found that EBF2 is required for beige adipocyte development in mice. Subcutaneous WAT or primary adipose cell cultures from Ebf2 knockout mice did not induce Uncoupling Protein 1 (UCP1) or a thermogenic program following adrenergic stimulation. Conversely, over-expression of EBF2 in adipocyte cultures induced UCP1 expression and a brown-like/beige fat-selective differentiation program. Transgenic expression of Ebf2 in adipose tissues robustly stimulated beige adipocyte development in the WAT of mice, even while housed at thermoneutrality. EBF2 overexpression was sufficient to increase mitochondrial function in WAT and protect animals against high fat diet-induced weight gain. Conclusions Taken together, our results demonstrate that EBF2 controls the beiging process and suggest that activation of EBF2 in WAT could be used to reduce obesity. PMID:26844207

  18. Differential regulation of peroxisome proliferator activated receptor gamma1 (PPARgamma1) and PPARgamma2 messenger RNA expression in the early stages of adipogenesis.

    PubMed

    Saladin, R; Fajas, L; Dana, S; Halvorsen, Y D; Auwerx, J; Briggs, M

    1999-01-01

    Adipocyte differentiation is driven by the expression and activation of three transcription factor families: the differentially expressed CAAT/enhancer binding proteins (C/EBPs) alpha, beta, and delta; the helix-loop-helix adipocyte differentiation and determination factor-1; and peroxisome proliferator activated receptor gamma (PPARgamma), expressed as two isoforms, PPARgamma1 and the adipocyte-specific PPARgamma2. Overexpression of PPARgamma can induce adipocyte differentiation; therefore, we analyzed the expression of the two PPARgamma isoforms during early stages of differentiation to determine whether one was preferentially induced as an early determining event. Surprisingly, in the first 24 h, a 3-6-fold increase of PPARgamma2 mRNA was observed, whereas PPARgamma1 mRNA remained unchanged. PPARgamma1 was induced 1 day later. Overexpression of C/EBPbeta has also been shown to induce adipocyte differentiation. A C/EBP site was identified only in the human PPARgamma2 promoter. Its deletion blunted the response of PPARgamma2 promoter to cotransfected C/EBPbeta or methylisobutylxanthine treatment. We hypothesize that PPARgamma2 initiates adipocyte differentiation.

  19. Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats.

    PubMed

    Uriarte, G; Paternain, L; Milagro, F I; Martínez, J A; Campion, J

    2013-09-01

    The aim of the study was to analyze the phenotypic and epigenetic changes induced by the shift to a chow diet after an obesogenic environment. Animals were randomized to fed chow (control group) or high-fat-sucrose diet (HFS). After 10 weeks, half of the rats fed with HFS diet were reassigned to a chow diet (rest group) while the other half continued with the obesogenic diet (HFS group) until week 20. Changes in fat content, biochemical profile, and DNA methylation levels of several gene promoters from retroperitoneal adipocytes were analyzed. HFS diet intake for 10 weeks induced obese phenotype in the animals, increasing body weight and fat content. These effects were maintained until the end of the trial in HFS group, where an increase in liver fat content, a modification of lipid profile, and retroperitoneal adipose tissue hypertrophy were also observed. Changing the dietary pattern reversed these parameters. Epigenetic analysis showed that HFS diet intake for 20 weeks hypermethylated several CpG sites (6.7 and 29.30) and hypomethylated CpG site 15 from leptin gene promoter. Moreover, the obesogenic diet also hypomethylated CpG site 1 from Fasn (fatty acid synthase) gene promoter, without changes on Ppargc1a (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), Srebf1 (sterol regulatory element-binding transcription factor 1), and aquaporin 7. Shifting to a chow diet reverted HFS-induced DNA methylation levels of some CpG sites of leptin promoter. Changing the dietary pattern hypomethylated a CpG site of Srebf1 and hypermethylated other CpGs on Ppargc1a and Fasn promoter. This study shed light on the reversibility of phenotypical and epigenetic changes induced by a HFS diet intake.

  20. QRFP-43 inhibits lipolysis by preventing ligand-induced complex formation between perilipin A, caveolin-1, the catalytic subunit of protein kinase and hormone-sensitive lipase in 3T3-L1 adipocytes.

    PubMed

    Mulumba, Mukandila; Granata, Riccarda; Marleau, Sylvie; Ong, Huy

    2015-05-01

    QRFP (RFamide) peptides are neuropeptides involved in food intake and adiposity regulation in rodents. We have previously shown that QRFP-43 (43RFa) and QRFP-26 (26RFa) inhibited isoproterenol (ISO)-induced lipolysis in adipocytes. However, the antilipolytic signaling pathways activated by QRFP peptides have not been investigated. In the present study, 3T3-L1 adipocytes were used to identify the main pathways involved in QRFP-43 decreasing ISO-induced lipolysis. Our results show that QRFP-43 reduced ISO-induced phosphorylation of perilipin A (PLIN) and hormone-sensitive lipase (HSL) on Ser660 by 43 and 25%, respectively, but increased Akt phosphorylation by 44%. However, the inhibition of phosphodiesterase 3B (PDE3B), a regulator of lipolysis activated by Akt, did not reverse the antilipolytic effect of QRFP-43. PDE3B inhibition reversed the decrease of Ser660 HSL phosphorylation associated with QRFP-43 antilipolytic effect. QRFP-43 also prevented PKC activation and ISO-induced Src kinases activation leading to the inhibition of the caveolin-1 (CAV-1) translocation on lipid droplets. Indeed, QRFP-43 attenuated phorbol 12-myristate 13-acetate-induced lipolysis and ISO-induced extracellular signal-regulated and Src kinases by 28, 37 and 48%, respectively. The attenuation of ISO-induced lipolysis by QRFP-43 was associated with a decrease of phosphorylated Ser660 HSL, PKA-catalytic (PKA-c) subunit and CAV-1 translocation on lipid droplets by 37, 50 and 46%, respectively. The decrease in ISO-induced CAV-1 and PKA-c translocation was associated with a reduction of PLIN phosphorylation by 44% in QRFP-43-treated adipocytes. These results suggest that QRFP-43 attenuated ISO-induced lipolysis by preventing the formation of an active complex on lipid droplets and the activation of Src kinases and PKC. PMID:25677823

  1. Rab18 Dynamics in Adipocytes in Relation to Lipogenesis, Lipolysis and Obesity

    PubMed Central

    Pulido, Marina R.; Diaz-Ruiz, Alberto; Jiménez-Gómez, Yolanda; Garcia-Navarro, Socorro; Gracia-Navarro, Francisco; Tinahones, Francisco; López-Miranda, José; Frühbeck, Gema; Vázquez-Martínez, Rafael; Malagón, Maria M.

    2011-01-01

    Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed. PMID:21829560

  2. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    SciTech Connect

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  3. Intracellular mechanisms coupled to NPY Y2 and Y5 receptor activation and lipid accumulation in murine adipocytes.

    PubMed

    Rosmaninho-Salgado, Joana; Cortez, Vera; Estrada, Marta; Santana, Magda M; Gonçalves, Alexandra; Marques, Ana Patrícia; Cavadas, Cláudia

    2012-12-01

    The formation of adipose tissue is a process that includes the pre-adipocyte proliferation and differentiation to adipocytes that are cells specialized in lipid accumulation. The adipocyte differentiation is a process driven by the coordinated expression of various transcription factors, such as peroxisome proliferator-activated receptor (PPAR-γ). Neuropeptide Y (NPY) induces adipocyte proliferation and differentiation but the NPY receptors and the intracellular pathways involved in these processes are still not clear. In the present work we studied the role of NPY receptors and the intracellular pathways involved in the stimulatory effect of NPY on lipid accumulation. The murine pre-adipocyte cell line, 3T3-L1, was used as a cell model. Adipogenesis was evaluated by quantifying lipid accumulation by Oil red-O assay and by analyzing PPAR-γ expression using the Western blotting assay. Adipocytes were incubated with NPY (100nM) and a decrease on lipid accumulation and PPAR-γ expression was observed in the presence of NPY Y(2) receptor antagonist (BIIE0246, 1μM) or NPY Y(5) antagonist. Furthermore, NPY Y(2) (NPY(3-36), 100nM) or NPY Y(5) (NPY(19-23)(GLY(1), Ser(3), Gln(4), Thr(6), Ala(31), Aib(32), Gln(34)) PP, 100nM) receptor agonists increased lipid accumulation and PPAR-γ expression. We further investigate the intracellular pathways associated with NPY Y(2) and NPY Y(5) receptor activation. Our results show NPY induces PPAR-γ expression and lipid accumulation through NPY Y(2) and NPY Y(5) receptors activation. PKC and PLC inhibitors inhibit lipid accumulation induced by NPY Y(5) receptor agonist. Moreover, our results suggest that lipid accumulation induced by NPY Y(2) receptor activation occurs through PKA, MAPK and PI3K pathways. In conclusion, this study contributes to a step forward on the knowledge of intracellular mechanisms associated with NPY receptors activation on adipocytes and contributes to a better understanding and the development of new

  4. Secretome-derived isotope tags (SDIT) reveal adipocyte-derived apolipoprotein C-I as a predictive marker for cardiovascular disease.

    PubMed

    Li, Rong-Xia; Ding, Yu-Bo; Zhao, Shi-Lin; Xiao, Yuan-Yuan; Li, Qing-run; Xia, Fang-Ying; Sun, Liang; Lin, Xu; Wu, Jia-Rui; Liao, Kan; Zeng, Rong

    2012-05-01

    We developed a quantitative strategy, named secretome-derived isotopic tag (SDIT), to concurrently identify and quantify the adipocyte-secreted plasma proteins from normal and high-fat-diet (HFD) induced obese mice, based on the application of isotope-labeled secreted proteins from cultured mouse adipocytes as internal standards. We detected 197 proteins with significant changes between normal and obese mice plasma. Importantly, a novel adipocyte-secreted plasma protein, apolipoprotein C-I (apoC-I), significantly increased in the obese mice plasma. The expression and secretion of adipocyte apoC-I was detected in differentiated 3T3-L1 and primary rat adipocytes. Our in vitro experiments proved that functional Golgi apparatus was required for apoC-I secretion. Additionally, obese mice had increased apoC-I production in adipose tissue. Population survey of 367 participants showed that the plasma level of apoC-I was significantly increased in obese individuals compared with healthy individuals. After multiple adjustments for age and sex, the odds ratios for risk factors of cardiovascular disease including high LDL cholesterol, hypercholesterolemia, and hypertriglyceridemia, respectively, were used to compare the highest with the lowest apoC-I quartile. Taken together, our studies provide a novel strategy to concurrently identify and quantify tissue-specific secreted proteins. This strategy can be used to identify the largest global characterization of adipocyte-derived plasma proteome and provides a potential disease-related biomarker for clinical diagnoses. By selectively analyzing adipocyte-secreted proteins in plasma from obese vs lean murine and/or human subjects, we discovered that apoC-I is an adipocyte-secreted plasma protein and a predictive marker for cardiovascular disease.

  5. Brazilian propolis extract increases leptin expression in mouse adipocyt